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1 Complex Numbers

Dee nitions
Des nition 1.1 Complex numbers are des ned as ordered pairs (z, y)

Points on acomplex plane. Real axis, imaginary axis, purely imaginary numbers. Real
and imaginary parts of complex number. Equality of two complex numbers.

Dee nition 1.2 The sum and product of two complex numbers are des ned as follows:
(T1,y1) + (2,92) = (21 + 22,51 +42)
(x1,91) - (T2,92) = (T17T2 — Y1Y2, T1Y2 + Tay1)

Intherest of the chapter use z, z1, 29, . . . for complex numbersand x, y for real numbers.
introduce i and z = x + iy notation.

Algebraic Properties

1. Commutativity

21+ 22 =22 + 21, 2122 = 2221

2. Associtivity

(214 22) + 23 = 21 + (22 + 23), (#122)23 = 21(2223)

3. Distributive Law
2(z1 4 22) = 221 + 229

4. Additive and Multiplicative Indentity
z+ 0=z, z-1=z

5. Additive and Multiplicative Inverse
-k = (*I, 7y)

—1 x —Y
= _— O
’ <x2+y2’x2+y2>’ 7



Chapter 1 Complex Numbers

6. Subtraction and Division

Z1 —1
21—z =21+ (—22), Pt
2

7. Modulus or Absolute Value
2| = Va2 +y?

8. Conjugates and properties

]
|

r—iy = (x,—y)

z1 + z9 = Z_1 + 2’_2
2122 = 2122
21 21
22 22
9.
2 _
2| = 2z
z24+Z zZ—Z
Rez = ,Jmz = -
2 21

10. Triangle Inequality
|21 + 22| < |21] + |22]

Polar Coordinates and Euler Formula

1. Polar Form: for z # 0,
z =1 (cosf+isinh)
wherer = |z| and tan§ = y/z. 6 is called the argument of z. Since § + 2nmisalso
an argument of z,the principle value of argument of z istake such that —m < 6 <
. For z = Othe arg z is undes ned.

2. Euler formula: Symbollically,
e = (cosf + isinf)

3.
Z129 = rlrgei(gﬁ‘%)
a0 ﬁei(91—02)
22 2
P — Tnené’

4. deMoivre's Formula

(cos@ +isinf)" = cosnf + isinnd
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Roots of Complex Numbers

Let z = ret then

2/ =t exp (2 <€ + %—ﬂ)>
non

There are only n distinct roots which can be given by k¥ = 0,1,...,n — 1.1f fisa
principle value of arg z then 6/n is called the principle root.

\1/3 , ) , , , ,
Example1.1 Thethree possiblerootsof (1—\%’) = (e’”f/‘*)l/3 areei™/12 eim/12+i2m/3 gin/12+idm/3

Regions in Complex Plane

1. € — nbd of z; isdes ned asa set of al points z which satisfy

|z — 20 < €
2. Deleted nbd of zgisanbd of zy excluding point zg.
3. Interior Point, Exterior Point, Boundary Point, Open set and closed set.

4. Domain, Region, Bounded sets, Limit Points.



2 Functions of Complex Vari-
ables

Functions of a Complex Variable

A function f deened on aset S isarule that uniquely associates to each point z of S a
acomplex number w. Set S iscaled the domain of fand w iscalled thevaueof f at =
andisdenoted by f (2) = w.

f(z) = fz +iy) = u(z,y) + iv(z, y)

f(2) = f(re’?) = u(r,0) + iv(r,0) = F(r,0)e’®"?)
Example2.1 Write f(2) = 1/2%inu + iv form.
u(z,y) = Erk and v(z,y) =

u(r,0) = r~?cos20and v(r,0) = —r~2sin 26
Domain of f isC — {0}.

A multiple-valued function isarule that assigns more than one value to each point of
domain.

Example2.2 f(z) = /2. This function assigns two distinct values to each z (+ 0).
One can choose the function to be single-valued by specifying

VZ = ++/reif/?

where @ isthe principal value.

Elementary Functions
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1. Polynomials

P(2) = ag+ a1z + agz® + -+ 4 ap2"™

whrere the coefe cients are real. Rational Functions.

2. Exponential Function

2 23

e :1+Z+§+§+"‘

Converges for al z. For real z the dee nition coincides with usual exponential func-
tion. Easy to seethat e’ = cos @ + isinf. Then

e = e%(cosy +isiny)

a efle?? = eAt?z,

b. 227 = 2.
c. A line segment from (z, 0) to (z, 27) maps to a circle of radius e* centered at

d.

origin.

No Zeros.

3. Trigonometric Functions

Des ne

- TQ 020 0T®

e’I,Z _"_efl,z
cosz =
2
) et? — o7z
sinz =
2
sin z
tanz =
CoS 2

sinz+cos?z=1

. 2sin 21 o8 2o = sin(21 + 22) + sin(z1 — 22)

. 208 21 COS 23 = cos(z1 + 22) + cos(z1 — 22)

. 28in z; 8in 22 = — cos(z1 + 22) + cos(z1 — 22)

. sin(z + 27) = sin z and cos(z + 27) = cos 2.

.sinz=0iff z=nr (n=0,%£1,...)

.cosz=0iff z=%4+nr  (n=0,%1,...)

. These functions are not bounded.

. A line segment from (0, y) to (27, y) maps to an ellipse with semimajor axis

equal to cosh y under sin function.

4. Hyperbolic Functions

Des ne

cosh z

sinhz =



Mappings

Mappings

sinh (iz) = isin z; cosh(iz) = cos z

. cosh? z —sinh? z = 1

. sinh(z + 27i) = sinh(z); cosh(z + 2mi) = cosh(z)
.sinhz=0iffz=nm  (n=0,%1,...)
.coshz=0iffz= (3 +nm)i (n=0,%1,...)

P oo

5. Logarithmic Function

Des ne
log z =log r + (0 + 2nn)

then elog? = 2.

7

a s multiple-valued. Hence cannot be considered as inverse of exponetial func-

tion.
b. Priniciple value of log function is given by
log z = logr + i©
where © isthe principal value of argument of z.
C. log(z122) = log z1 + log 22

w = f(z). Graphical representation of images of setsunder f is called mapping. Typi-

cally shown in following manner:

1. Draw regular sets (lines, circles, geometric regions etc) in a complex plane, which

wecdl z plane. Use z = z + iy = re??.

2. Show itsimages on another complex plane, which we call w plane. Usew = f(z)
u+iv = pe'.

Example2.3 w = 22.
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0.5]

\ \
\ |
|

-0.60.40.200 0.20.40.60.8 1

Mapping of 22 Mapping 22
1. A straight line z = t mapsto aparabolav? = —4¢? (u — ¢?)
2. Astraight liney = t mapsto aparabolav? = 4t (u — t?)

3. A half circle given by z = rpe' where 0 < # < = maps to afull circle given by
w = r2e?2%. This also means that the upper half plane maps on to the entire complex
plane.

4. A hyperbolaz? — y? = ¢ mapsto astraight lineu = c.

Mappings by Elementary Functions.

1. Trandation by zy isgivenby w = z + z,.
2. Rotation through an angle 0 is given by w = ¢/ 2.
3. Rele ection through x axisisgiven by w = Z.

4. Exponential Function
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Exponential Function
A vertical line mapsto acircle.

A horizontal line mapsto aradia line.

A horizontal strip enclosed between y = 0and y = 27 maps to the entire complex
plane.

5. Sine Function sin z = sinx cosh y + i cos x sinh y

A vertical line mapsto abranch of a hyperbola.

A horizontal line maps to an ellipse and has a period of 27.



Limits

3 Analytic Functions

A function f is des ned in adeleted nbd of zg.

Des nition 3.1 The limit of the function f (z) as z — zqis a number wy if, for any
given e > 0 thereexistsa > 0 such that

|z — 20| < 6= |f(2) —wo| <e.
Example3.1 f(z)=5z.Showthatlim,_,., f (z) = 520.
Example3.2 f(z) = 2. Showthatlim, .., f (2) = 23.
Example3.3 f(z) = z/z. Show that the limit of f doesnot exist as z — 0.
Theorem 3.1 Let f(2) = u(x,y) + iv(z,y) and wg = ug + ivg. lim f(z) = wy if
Z—20
and only if lim 1u = ug and lim v = vg.
(z,y)—(0,y0) (z,y)—(20,y0)
Example3.4 f(z) =sinz. Showthat thelim, ., f (z) =sinz

Example3.5 f(z) = 2x + iy?. Show that thelim,_o; f (2) = 4i.

Theorem 32 If lim f(z) =wpand lim F (z) = Wy,

I [f (=) + F(2)] = wo+ W

lim f(2)F(2) = woWy;

zZ—20

lim f(2)/F(2) = —2 W, +#£0.
Z—20 Wo

This theorem immediately makes available the entire machinery and tools used for real
analysisto be applied to complex analysis. Therulesfor « nding limits then can belisted
asfollows:
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Continuity

Derivative

1. limc=c
z—2Q

2. lim 2" = zj.

Z—Z0

3. lim P(z) = P(z)if Pisapolynomia in z.

Z—2Z0

4. lim exp (z) = exp (20) -

Z—2Z20

5. lim sin(z) = sin 2.
Z—2Z0

Dee nition 3.2 Afunction f, des ned in some nbd of z is continuous at z if

Tim £ (2) = f (z0).

This de nition clearly assumesthat the function is des ned at 2z, and thelimit onthe LHS
exists. The function fis continuous in a region if it is continuous at al pointsin that
region.

If funtions f and g are continuous at zgthen f + g, fg and f/g (g (20) # 0) are also
continuous at 2.

If afunction f (z) = u (z,y)+iv (z, y) iscontinuous at z, then the component functions
wand v are aso continuous at (xg, yo)-

Des nition 3.3  Afunction f, des ned in some nbd of z is differentiable at z, if

o £ = £ (0)

z—20 Z— 20
exists. The limit is called the derivative of f at z, and is denoted by f' (zo) or 4L (zg).
Example3.6 f(z) = 22 Showthat f/(z) = 2z.

Example3.7 f(z) = |2|*. Show that this function is differentiable only at z = 0. In
real analysis|z| is not differentiable but || is.

If afunction is differentiable at z, then it is continuous at z.
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The converse in not true. See Example 3.7.

Even if component functions of a complex function have all the partia derivatives, does
not imply that the complex function will be differentiable. See Example 3.7.

Some rules for obtaining the derivatives of functions are listed here. Let fand g be
differentiable at 2.

=
Q..|Q_

(fE9)(2) =1 () +g(2).

: (f9)(2) = f'(2) g (2) + [ (2) ¢’ (2)

L(f/9)(2) = (f'(2) g (2) = [ (2) 9 (2)) /9 ()] if g (=) # .
)(2) =1 (9(2)) ¢ (2) .

w N

N
Sl
—
[

o
Q

S~
o
Il
o

o
S~
R,
&

Il

3

N\‘f
\
i

Cauchy-Riemann Equations

Theorem 3.3 If f (2) exists, then all the «rst order partial derivatives of component
function u (z, y) and v (x, y) exist and satisfy Cauchy-Riemann Conditions:

Uy = Uy

Uy = —Vg.

Example3.8 f(z) = 22 = 22 — y? + i2zy. Show that Cauchy-Riemann Condtions
are satis- ed.

Example3.9 f(z) = |z|° = 22 + y2. Show that the Cauchy-Riemann Condtions are
satissed only at z = 0.

Theorem 3.4 Let f(2) = u(x,y) + iv (x, y) be des ned in some nbd of the point zy. If
theerst partial derivatives of v and v exist and are continuous at z, and satisfy Cauchy-
Riemann equations at zy, then f is differentiable at zy and

I (2) = ug + ivy = vy — duy.
Example3.10 f(z) =exp(z).Showthat f’ (2) = exp(2).
Example3.11 f(z) =sin(z).Showthat f’ (z) = cos(z).

Example3.12 f(z) = é Show that the CR conditions are satis* ed at z = 0 but the
function fisnot differentiable at 0.
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If we write z = ¢ then we can write Cauchy-Riemann Conditions in polar coordi-

nates:

1
vy
r

Up

Ug —Trv,.

Analytic Functions
Dee nition 3.4 A function isanalytic in an open set if it has a derivative at each point
inthat set.
Dee nition 3.5 Afunctionisanalytic at a point z if it isanalytic in some nbd of z.
De- nition 3.6  Afunction isan entire function if it isanalytic at all points of C.
Example3.13 f(z) = 1/zisanalytic at all nonzero paints.
Example3.14 f(z) = |z|* isnot analytic anywhere.

A function is not analytic at a point zq, but is analytic a¢ some point in each nbd of
2o then zq is called the singular point of the function f.

Harmonic Functions

Des nition 3.7 A real valued function H (x, y) is said to be harmonic in a domain of
xy planeif it has continuous partial derivatives of the ¢ rst and second order and satis es
Laplace equation:

Theorem 3.5 If afunction f (z) = u (z,y) + v (z,y) isanalytic in a domain D then
the functions v and v are harmonicin D.

Des nition 3.8 If two given functions u (x, %) and v (x, y) are harmonic in domain D
and their e rst order partial derivatives satisfy Cauchy-Riemann Conditions

Uy = Uy
Uy = —Uy.
then vis said to be harmonic conjugate of w.

Example3.15 Letu (z,y) = 2% — y? and v (z,y) = 2xy. Show that v is hc of u and
not vice versa.

Example3.16 wu(z,y) = y* — 3zy. Find harmonic conjugate of u.



Contours

4 Integrals

Example4.1 Represent aline segment joining points (0, 6) and (3, 11) by parametric
equations.

Example 4.2 Show that a half circle in upper half plane with radius R and centered
at origin can be parametrized in various ways as given below:

1. z(t) = Rcost, y(t) = Rsint, wheret : 0 — .
2. x(t)y=t,  y(t)=+vVR?—-t2,wheret: —R — R.
3. xz(t)=R(2t — 1), y(t) = 2RVt — t2,wheret : 0 — 1.

Desnition 4.1 A set of points z = (x, y) in complex planeis called an arc if
v=z(t), y=y), (a<t<Dh)
where z (¢) and y (t) are continuous functions of the real parameter ¢.

Example4.3 z(t) = cost, y (t) = sin(2t), where ¢ : 0 — 2. Show that the
curve cutsitself and is closed.

Anarciscaled simpleif t; # to = 2 (t1) # 2 (t2) .
Anarcisclosed if z (a) = 2z (b).

An arcisdifferentiableif 2/(t) = 2’ (¢) + i3/ (¢) existsand 2’ (t) and 3/’ (¢) are continu-
ous. A smooth arc is differentiable and 2’ (¢) is nonzero for dl .

Dee nition 4.2  Length of a smooth arc is des ned as

b
L(C) :/ 12 (1)) dt.

Thelength isinvariant under parametrization change.
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Dee nition 4.3 A contour is a constructed by joining * nite smooth curves end to end
such that z (¢ ) is continuous and 2’ (¢) is piecewise continuous.

A closed simple contour has only « rst and last point same and does not cross itself.

Contour Integral

If C'is a contour in complex plane desned by z (t) = x(t) + iy (t) and a function
f(z) =u(z,y) +iv(x,y) isde ned onit. Theintegral of f (z) along the contour C' is
denoted and de ned as follows:

/Cf(z)dz _ /abf(z)z’(t)dt
= /ab(ux' — vy )dt + i/b(uy’ + va')dt

a

= /(udx —vdy) +i /(udy + vdir)

The component integrals are usual real integrals and are well des ned. In the last form
appropriate limits must placed in the integrals.

Some very straightforward rules of integration are given below:

=

- Jowf(2)dz =w [, f(z) dz where wisacomplex constant.
Je(f (2) +9(2))dz = [ | (2) dz + [ 9 (2) dz.

3 Joio, f(R)dz= [, f(2)dz+ [, [ (2)dz.

Mo FR)dz| < [ 1f (2 (1) 2 (1)) dt.

If |f(z)] < Mfordl z € Cthen|[, f(2)dz| < ML, where L islength of the
countour C.

N

N

o

Example4.4 f(z) = 2% Find integral of f from (0,0) to (2, 1) along a straight line
and also along st line path from (0, 0) to (2, 0) and from (2, 0) to (2, 1).

Example4.5 f(z)=1/z. Findtheintegral from(2,0)to (—2,0) along a semicircu-
lar path in upper plane given by |z| = 2.

Example4.6 Show that | [, f(z)dz| < Zfor f(z) = 1/(2*> ~1)and C : |2| =
2from2to 2i.
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Cauchy-Goursat Theorem

Antiderivative

Theorem 4.1 (Jordan Curve Theorem) Every simple and closed contour in complex
plane splits the entire plane into two domains one of which is bounded. The bounded
domain is called the interior of the countour and the other one is called the exterior of
the contour.

De* ne a sense direction for a contour.

Theorem 4.2 Let C bea simple closed contour with positive orientation and let D be
the interior of C. If Pand () are continuous and have continuous partial derivatives
P,,P,,Q, and @, at all pointson C and D, then

/C (Pl y)di + Q (z.y) dy) = / / Qs (2,) — P, (2, ) dady

Theorem 4.3 (Cauchy-Goursat Theorem) Let f be analytic in a simply connected
domain D. If C'isany simple closed contour in D, then

Léf@ﬁu:u

Example4.7 f(z) = 22, exp(z), cos(z) etc are entire functions so integral about any
loop is zero.

Theorem 4.4 Let C; and C> be two simple closed positively oriented contours such
that Cs liesentirely in theinterior of C;. If fisan analytic function in a domain D that
contains C; and C5 both and the region between them, then

le(z)dz:/czf(z)dz.

Example4.8 f(z) = 1/z. Find [ f(z)dz if C' isany contour containing origin.
Choose a circular contour inside C.

Example4.9 [, ;=-dz = 2ni if C contains z.

Example4.10 Find |, % where C' : |z| = 2. Extend the Cauchy Goursat theorem

to multiply connected domains.

Theorem 4.5 (Fundamental Theorem of Integration) Let fbe deened in a simply
connected domain D and is analytic in D. If z; and z are pointsin D and C'is any
contour in D joining z, and z,then the function

ﬂ@zéf@@
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isanalyticin D and F' (z) = f (2).

Des nition 4.4 If fisanalyticin D and z;and z, are two pointsin D then the des nite
integral is des ned as

[ H@)dz=Fla) - F(a)
where F' is an antiderivative 6f f.

2+1

Example4.1l [ 22dz = 23/3|§” — 2441
0

i .
Example4.12  [cosz = sinz|]; =sini —sin1.
1

z2
Example4.13 [ 4 =log 2z, —log 2.

21

Cauchy Integral Formula

Theorem 4.6 (Cauchy Integral Formula) Let f beanalyticindomain D. Let C bea
positively oriented simple closed contour in D. If zg isin theinterior of C' then

1 [ s
f(z0) = 21 Jo 2 — 20
Example4.14 f(z) = Z2—1+4. Find [, f(2)dzifC : |z —i| =2.

Example4.15 f(z) = 5757 Find Jo £ (2) dzif Cissquarewith verticeson (+2, +2) .

Theorem 4.7 If f isanalytic at a point, then all its derivatives exist and are analytic

at that point.
() _n! f(z)dz
f (ZO) /C(Z )71+1

271 — 20
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Convergence of Sequences and Series

Example51 z,=1/n
Example5.2 2z, =a"
Example53 2z, =-2+i(—1)" /n?

Dee nition 5.1  An ine nite sequece z1, 29, . .., 2,, . . . Of complex numbers has a limit
z if for each positive ¢, there exists positive integer IV such that

|z, — 2| <€  whenever n > N.

The sequences have only one limit. A sequence said to converge to z if zisitslimit. A
sequence divergesif it does not converge.

Example5.4 2, = 2" convergesto Oif |z| < 1 else diverges.
Example55 z,=1/y/n+i(n+1)/n convergestos.

Theorem 5.1 Supposethat z, = z,, + iy, and z = x + iy. Then,

lim z, =z
n—oo

if and only if

lim z, =2 and lim y, =y
n—oo n—od

Desnition 5.2 If {2, } isasequence, theine nitesumz; + zo + -+ - + 2z, +- - - iscalled
o0
aseriesandisdenoted by > z,.

n=1

(o]
Des nition 5.3 A series > z, issaid to convergeto a sum S if a sequence of partial
SUms n=1
Syn=z1+z29+---+2,
convergesto S.
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Taylor Series

Laurent Series

Theorem 5.2 Qupposethat z,, = x,, + iy, and S = X + Y. Then,

Zzn:S

n=1

if and only if

D un=Y

n=1

i Ty = X and

n=1

Example56 > “z"=1/(1—2z)if[z] <1

Theorem 5.3 (Taylor Series) If fisanalyticinacircular discof radius Ry andcentered
at zp, then at each point inside the disc thereis a series representation for f given by

F(2)=) an(z—2)"
n=0

where
£ (20)

An = ]
n.

Example5.7 sinz =3 z*""/(2n+ 1)L

Example58 - =>¢0"(-1)"z" |2/ <1
Example59 e* =3 2"/nl.
Example5.10 1 =>0°(-1)"(z—-1)" [z—-1|<1.

Theorem 5.4 (Laurent Series) If fisanalytic at all points z in an annular region D
suchthat R < |z — 29| < Rg,then at each point in D there is a series representation
for f given by

PO =3 o)+ Y

n=0
where
1 / f(2)dz
an = o= | 1
21 C (z — ZO)
b 1 / f(z)dz
n 27i o (Z . ZO)—'IH-l
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and C'isany contour in D.

Example5.11 |If fis analytic inside a disc of radius Rabout z;, then the Laurent
seriesfor fisidentical to the Taylor seriesfor f. Thatisall b, = 0.

Example5.12 - =320 U™ where|z| > 1.

1+z n=1

Example5.13  f(2) = z—p5—- Find Laurent seriesfor all |2 < 1,1 < [2] < 2
and |z| > 2.

Example5.14 Notethat by = 5= [, f (2) d=.



6 Theory of Residues And Its
Applications

Singularities
Des nition 6.1 If afunction f fails to be analytic at z, but is analytic at some point in
each neighbourhood of zy, then zy isasingular point of f.

Des nition 6.2 If a function f fails to be analyitc at z, but is analytic at each z in
0 < |z — 20| < 6 for some 6, then f issaid to be an isolated singular point of f.

Example6.1 f(z) = 1/z hasanisolated singularity at 0.
Example6.2 f(z) = 1/sin(wz) hasisolated singularitiesat z = 0, 1, .. ..

Example6.3 f(z) = 1/sin(w/z) has isolated singularities at z = 1/nfor integral
n, also hasa singularity at z = 0.

Example6.4 f(z) = log z all points of negative x-axis are singular.

Types of singularities

If afunction f has an isolated singularity at z, then 3a ¢ such that fis andytic at al
pointsin0 < |z — zp| < é. Then f must have a Laurent series expansion about z,. The
part >°°° by (2 — z0)” " iscalled the principal part of f.

1. If there areine nite nonzero b; in the prinipal part then 2 is called an essential singu-
larity of f.

2. If for someinteger m, b,, # 0 but b; = Ofor al ¢ > m then z, is called a pole of
order mof f.If m = 1thenitiscalled asimple pole.

3. If dl bsare zero then z is called aremovable singularity.
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Residues

Example6.5 f(z) = (sinz)/zisundesned at z = 0. f has a removable isolated
singularity at z = 0.

Suppose a function f has an isolated singularity at zg, then there existssa 6 > 0such
that fisanalyticfor al z indeleted nbd 0 < |z — zg| < §. Then f hasaLaurent series
representation

g an zfzon—i—g =
Z—ZO

i n=0
The coefe cient

b= o /f(z)dz

2mi c
where C' isany contour in the deleted nbd, is called the residue of f at 2.

Example6.6 f(z) =

z)dz = 2miby = 2miif C contains 2y, other-

wise 0.
Example6.7 f(z) = Z(Z—ZSqowa z)dz=—-ZifC:[z—2]=1.
Example6.8 f(z) = zexp (). Show [, f (2)dz = miif C : |2| = 1.

Example6.9 f(z) = exp (). Show [, f (z)dz = 0if C : |z| = 1 even though it
hasa singularity at = = 0.

Theorem 6.1 If a function f is analytic on and inside a positively oriented countour
C, except for a « nite number of points z;_zo, ..., z; inside C, then

k
/C f(2)dz =2mi Z Resf (z;) .

Example6.10 Showthat [ S2=%dz = 10mi

Residues of Poles

Theorem 6.2 If afunction f hasa pole of order m at z, then
: 1 dmil m
Resf (z0) = lim | ——<———=((z—20)" f(2))| -

z—z0 | (M — 1)l dzm~1

Example6.11 f(z) = -=-. SmplepoleRes f (z) = 1.
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Example6.12 f(z) = —1—. Smplepoleat = = 0. Res f (0) = 1/16. Pole of

2(z—20)

order 4 at z = 2. Res f (2) = —1/16.

Example6.13 [ (z) = <=2 Resf(0) = —3/x%. Res f (r) = — (6 — n?) /2",

22(z—m)3"

Quotients of Analytic Functions

P(z)

Theorem 6.3  If afunction f (2) = 53,

where P and (Q are analytic at zg, then

1. fissingular at z iff Q (20) = 0.

2. fhasasimplepoleat zg if Q' (20) # 0. Thenresidueof fat zg ISP (20) /Q’ (20)-
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