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ABSTRACT 
 
This paper is a personal exploration of where the ideas of “distribution” that we are 
trying to develop in students come from and are leading to, how they fit together, and 
where they are important and why. We need to have such considerations in the back 
of our minds when designing learning experiences. The notion of “distribution” as a 
lens through which statisticians look at the variation in data is developed. I explore 
the sources of variation in data, empirical versus theoretical distributions, the nature 
of statistical models, sampling distributions, the conditional nature of distributions 
used for modelling, and the underpinnings of inference. 
 
Keywords: Frequency distributions, Statistical models; Sampling distributions; 
Statistical inference; Types of distribution; Variation 
 

1. INTRODUCTION 
 

There are aspects of statistics that are so basic to the way we think in the subject that 
no one abstracts, enunciates and examines them. We encountered this phenomenon 
frequently in conducting the research for Wild and Pfannkuch (1999). It is not a problem 
for the statistical practice of professionals since they have long since been successfully 
encultured into these ways of thinking. It may well, however, be a root cause of some of 
the problems we face in statistics education. “Variation” was one of these unenunciated 
givens until quite recently and still is for many communities of statisticians. 
“Distribution” is another fundamental given of statistical reasoning. I can find a great deal 
written about specialized usages and definitions of “distribution” but almost nothing 
about “distribution” itself as an underlying conceptual structure. For example, Wiley’s 
massive 16 volume Encyclopedia of Statistical Sciences does not contain an entry for 
“distribution” as an entity although it contains over 300 different sections in which 
“distribution” appears in the title. 

The main aim of this paper is to try to explore for teachers and statistics education 
researchers where the ideas of “distribution” that we are trying to develop in students are 
leading to, and where they are important and why. We need to have such considerations 
in the back of our minds when designing learning experiences. They are a logical 
precursor for a planned educational development; a platform upon which the educational 
“when?,” “in what order?,” “by what means?” and so on, can be built. Our journey 
towards an understanding of “distribution,” and the need for concepts of distribution, 
begins with the pervasive nature of variation. 

Section 3 of Wild and Pfannkuch (1999) was entitled “Variation, randomness and 
statistical models.” The genesis of that story was, “In the beginning was variation.” 
Variation is an observed reality detectable in all systems and entities. It is, in a word, 
omnipresent. A statistical response is generated when the variation we have to deal with 
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in pursuing a real-world goal is not completely predictable at levels of precision that are 
of practical importance and we have given up, at least temporarily, on the ability to 
understand differences between individuals at a level that might make them predictable. 
The statistical response is to investigate, disentangle and model patterns of variation in 
order to learn from them. We will see that the notion of “distribution” is, at its most basic, 
intuitive level, “the pattern of variation in a variable,” or set of variables in the 
multivariate case. Thus the notion of “distribution” underlies virtually all statistical ways 
of reasoning about variation. So it is particularly fitting that the first special section of the 
Statistics Education Research Journal (Garfield and Ben-Zvi, 2005) had the theme of 
“variation” and this, the second special issue, has the theme of “distribution.” 

Statisticians look at variation through a lens which is “distribution” (Figure 1). 
Provided “variation” is in the background of our thinking, we are looking through the 
“distribution” lens as soon as we look at our data in any way that sets aside case labels. 
Setting aside case labels is no small matter, however. There has been a good deal of work 
about how children at elementary and middle school levels relate to data. Bakker and 
Gravemeijer (2004, p. 147) write that such students “tend to conceive a dataset as a 
collection of individual values instead of an aggregate that has certain properties.” What 
is important and interesting to children is the particular. Case labels (e.g., the names of 
people) inform us that a particular data record describes a specific entity, often a person. 
It is a very big step indeed from this to thinking about data in aggregate terms. 
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Figure 1. “Distribution” as a lens 
 
In statistics we are seldom interested in a dataset as a collection of separate snapshots 

of particular individuals taken in a particular way at a particular instance in time. Rather 
we look at data to learn more widely applicable lessons. These lessons are not, we 
believe, to be found in the individual data points themselves but in patterns discernible in 
the dataset as a whole. So we put aside (temporarily ignore) the links between data points 
and individuals as distracting detail in order to better focus on patterns. When case labels 
are set aside individuals with identical values for the variables of interest become 
indistinguishable so that, without any loss of information, we can reduce the data to a set 
of distinct values and their corresponding frequencies, that is, to a frequency distribution. 
All of the information about patterns of variation is in the (typically multivariate) 
frequency distributions. All summary statistics and almost all the graphs we look at are 
summaries and graphs of frequency distributions. We use them to discover and describe 
aspects of the patterns in the variation contained in the frequency distributions. We 
convert frequency distributions into relative-frequency distributions to facilitate the 
comparison of batches of data (e.g., to compare data from different subgroups) containing 
different numbers of observations. 
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Where does the variation we see in data come from? There is typically real variation 
in the systems we are investigating and this is inevitably overlaid with additional 
variation induced by the observational process as in Figure 2. Why do we summarise and 
model patterns of variation? Primarily we do it for the purposes of prediction, explanation 
or control; that is, in order to be able to make better predictions, better understand the 
mechanisms generating the data, or to enable us to change the pattern of variation in the 
system in the future, at least to some partial but useful extent such as by reducing 
mortality rates. 
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Figure 2. Sources of variation in data 
 

Section 3 of Wild and Pfannkuch (1999) went on to discuss how statisticians look for 
sources of variability by looking for patterns and relationships between variables and in 
particular for those patterns that are likely to persist. It talked about explained and 
unexplained or residual variation. The majority of the section discussed “the quest for 
causes” and I don’t want to touch on that here (except to promulgate “variation causes 
statistics”!). It concluded with the following: (1) variation is an observable reality; (2) 
some variation can be explained; (3) other variation cannot be explained on current 
knowledge; (4) random variation is the way in which statisticians model unexplained 
variation; (5) this unexplained variation may in part or in whole be produced by the 
process of observation through random sampling; (6) randomness is a convenient human 
construct which is used to deal with variation in which patterns cannot be detected. 

We look for regularities or patterns in the observed variation and those that we 
believe, considering what we see in the data and what we understand about the 
mechanisms generating the data, are likely to be real and not ephemeral correspond to 
“explained variation.” Unexplained variation, or “noise,” is what is left over once we 
have “removed” all such patterns. It is thus, by definition, variation in which we can find 
no patterns. We model unexplained variation as being generated by a random process, 
implicitly if not explicitly. The simplest such models are regression models. We are 
papering over, at this point, a rather large crevasse which is the difficulty in deciding 
whether an apparent pattern in our data is likely to be a persistent characteristic of the 
process generating the data, and thus form a structural element in our model, or 
ephemeral and should be swept up in random elements of a model. 

There is an old saying that goes, “If it looks like a duck, walks like a duck and quacks 
like a duck, then it is a duck.” If it looks/walks/quacks like a duck, the statistician will use 
the inferential reasoning appropriate for ducks, despite having no real assurance that this 
bird actually has duck DNA. When modelling unexplained variation, because it looks 
random when viewed in any of the ways we have devised for inspecting it, we will draw 
the inferences that we know would be appropriate if it was in fact randomly generated. 
We do this because we do not know any better ways of proceeding (and don’t believe 
anyone else does either). For further discussion, see Section 3.4 of Wild and Pfannnkuch 
(1999). 
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Having established “distribution” as a lens through which we view variation in data 
and explored the nature of explained and unexplained variation we will now start looking 
at distinctions between types of distributions that draw on these ideas. 

 
2. EMPIRICAL VERSUS THEORETICAL DISTRIBTIONS 

 
2.1.  INTRODUCTION 

 
In an effort to understand better how statisticians use “distribution,” I pointed Google 

at a number of sites including the American Statistical Association (ASA) where it 
searched the pages of the Journal of the American Statistical Association, the Journal of 
Statistics Education, other ASA journals, and many other resources. The adjectives and 
other qualifiers that I found used with “distribution” are collected in Appendix 1. By far 
the most common usages fell into two classes, “named theoretical distributions” (e.g., 
normal, binomial, …) and “the distribution of …” referring to the empirical or frequency 
distribution of some particular measured quantity, so that will be our starting point. 

The distinction that underlies discussions of empirical versus theoretical distributions 
is between the variation we see in our data and a potential model for the process that 
gives rise to that variation (Figure 3). The empirical, frequency or observed distribution 
of our variable(s) contains the variation that we can see directly in our data. There is no 
inferential component, just a description of what exists in the data. When we move on to 
try to learn wider lessons from features seen in the current dataset, we conceive of 
unexplained variation present as having been generated by some unknown distribution. 
We often refer to this as the “true” or “underlying” distribution even though it is almost 
always a conceptual entity. When we use a full parametric model in our analysis we 
choose some named parametric distribution, such as the normal distribution, which we 
then assume to be what generates the data. This is the theoretical distribution, which 
describes or defines a probability model. 
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Figure 3. Empirical versus theoretical distributions 
 
 We have hundreds of humanly invented distributions for such purposes. In certain 

application areas, experience has shown that certain distributions are useful, but there is 
no way of ever knowing that our data are being generated from some particular 
distribution. So we never really believe our assumed theoretical distributions. The best we 
can hope for is that the act of sampling from the assumed theoretical distribution 
adequately mimics the most important features of the process which generated our data. 
Our lack of trust in the theoretical distribution leads to considerations of “robustness” and 
“goodness of fit.” That is, we would like to use inferential procedures that are 
comparatively insensitive to departures from distributional assumptions (robust) and we 
want to avoid using a theoretical distribution for inference that demonstrably does not 
“fit” the data – by which we mean that the distribution would be unlikely, in some sense, 
to produce the dataset we have in hand. To have any hope of making sense of this 
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modelling process, students need to experience the behaviour of data which are generated 
from truly random sources (or as close as we can get to that) and lay that alongside real 
data. This is the crux of “connecting chance and data.” I will expand on this point in the 
next subsection. 

Where do outliers fit? Outliers are observations we suspect are not being generated 
by the process which is generating the bulk of the data, but by a different (e.g., gross 
error) process. When we detect outliers we go back to the case labels hoping that there is 
some additional information we can uncover about that case that might help us 
understand why it appears so different. For example, we may be able somehow to 
determine whether the outlier is an error that can be corrected or removed. 

 
2.2.  “HEIGHTS ARE NORMALLY DISTRIBUTED” 

 
At risk of belabouring points, I will now approach the ideas in Section 2.1 from 

another direction. How can we understand a statement like “heights are normally 
distributed”? We should not understand it in an absolute, literal sense because the 
statement is far more precise than anything we could ever actually know. Usually we are 
using “heights are normally distributed” in a loose descriptive way. The shape of the 
empirical distribution of the heights that we have seen (in whatever context) looks as 
though it is reasonably well approximated by the probability density curve of some 
particular normal distribution. We may make a leap of faith by believing that the 
approximation would still be good if we could look at the empirical distribution of 
heights from everyone in the parent population from which the heights we have seen have 
been drawn. We could make an even greater leap by thinking that this is probably also the 
way it would turn out if we looked at heights of people drawn from some other 
population that we have not yet investigated. 

If we add the idea or reality of sampling at random from a population where the 
height distribution is well approximated by a normal distribution, then it follows that the 
behaviour of the data we get from sampling people and measuring their heights should be 
almost indistinguishable from the type of data we would get from taking random draws 
from a normal distribution. That latter behaviour can be investigated directly 
mathematically or via simulation. 

If we make the assumption that our data on heights have been sampled from a Normal 
probability model then inferential statements (e.g., a confidence interval for the mean of 
the heights population distribution) follow from statistical theory as a consequence of that 
assumption. This is analogous to mathematics where, if one takes a set of conditions as 
holding true (axioms), then many other statements deduced as a logical consequence of 
these initial axioms (the theorems), must also hold true. 

Some of the distributional leaps of faith in the first paragraph may be informed by a 
nonsignificant test of normality for our height data. But how much does this tell us? It 
tells us only that we cannot rule out the possibility that sampling variation alone may 
have produced the degree of “departure from normality” that we see with these data. 
Experience shows that, in virtually every situation, any theoretical distributional 
assumption we care to make will be shown to be implausible given enough data. What we 
are doing is never about the assumed theoretical distribution being right. It is only ever 
about the assumed theoretical distribution being a close enough approximation so that the 
methods of drawing inferences that follow from the assumptions we make are not 
misleading in any important way. This brings us back to robustness and goodness of fit as 
discussed in Section 2.1. We make distributional assumptions in order to come up with 
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methods of drawing inferences from data that still work when those distributional 
assumptions are not quite right. 

There is a very understandable desire to drive the teaching of probability models and 
distributions using real data because dice, coins, and so on are boring, even irrelevant. 
This runs into the problem discussed above. We can never know that any specific set of 
real data has been generated from any specific probability model. At best we can believe 
that the model is a good approximation. Probability models are abstract constructs that 
are used to model real-world behaviour. Their successful operation stands on two legs. 
The first leg consists of understanding the abstract construct that is the model, the sort of 
“data” the model generates, and how we reason inferentially in that idealised 
environment. The second leg consists of seeing the parallels that suggest to us that the 
model may provide a reasonable approximation to a given reality, of applying the model-
based reasoning, and then of interpreting the results in terms of the original context. For 
most of the mental connections that have to be built in order to understand the model and 
the nature of its random behaviour, real-world context is simply a distracting irrelevance. 
That is not the place of real-world context. Interaction with context occurs in the 
recognition of model applicability, the interpretation of model parameters and the 
interpretation of any inferential statements that follow from applying the model-based 
reasoning. 

As a non-traditional illustration, what students are experiencing in the fascinating 
basketball environment described by Prodroumou and Pratt (2006) is the stochastic 
behaviour of simulated “data” generated by a statistical model. While students do not 
directly learn anything new about basketball, by adjusting model parameters they can 
make the behaviour exhibited by the simulated environment (i.e., the statistical model) 
feel a lot like that of basketball. They can play with strategies that affect their 
performance in the simulated game and if they believe that the simulation gives an 
approximation that is close enough in key features to basketball they should then be 
willing to transfer some of the lessons learned in the simulation environment to the actual 
game. 

 
2.3.  MORE ABOUT DISTRIBUTIONS AND MODELS 

 
We now explore some complications neglected in the discussion in Section 2.1. When 

we choose “a” theoretical distribution as a model for some variable, typically we are 
actually referring to an assumption that the true distribution is an unknown member of a 
parametric family of distributions such as the Normal(μ,σ2) family. Here assigning 
different values to the parameters μ and σ2 gives rise to different distributions within the 
family and we make statistical inferences about the unknown “true” values of the 
parameters that “produced the data.” 

Beyond the simplest models, we do not just specify “a distribution.” We actually 
build a construct using structural and random elements where each random element has a 
distribution. The simplest models of this form are the one-way analysis of variance model 
depicted in Figure 4, which underlies traditional inferential methods for comparing 
groups, and the simple linear regression model depicted in Figure 5. In Figure 4 the 
shapes are little normal curves coming up out of the page. The normal distribution for the 
y-values in group i is centred at μi. Under this model, “observations” belonging to the ith 
group are generated by sampling from a normal distribution with mean μi and some 
variance σ2, which is the same for all of the groups. This is represented on the right hand 
plot, which also retains a “ghost” of the generating distribution. The model generates a 
type of pattern that we often observe in real data when we are trying to compare groups 
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and thus forms a model for the mechanism generating such data that we can often apply 
in practice. In reality, the values of μi and σ2 are unknown. Standard statistical inferences 
include testing for, or finding confidence intervals for, differences between the true group 
means. 

(a)  One-way Anova  model (b)  Data sampled from the model

y y

2 31 42 31 4
Group Group

2

3

1

4

 
 

Figure 4. The one-way analysis of variance model 
 
The simple linear regression model in Figure 5 is essentially the same except that the 

true means μx when plotted against the x-value at which an observation is taken are 
constrained to lie on a line. The structural part of this model is the linear relationship 
between x and the mean value of y. The random part is the distribution of y-values taken 
at a given x around that the mean and that is what generates the observed scatter about the 
linear pattern. 

 
y y

x 2 3x1x 4xx 2 3x1x 4x

(a)  The simple linear model (b)  Data sampled from the model  
 

Figure 5. The simple linear model 
 
Variation seen in even very simple data structures stems from a variety of sources 

(e.g., person-to-person, measurement, or occasion-to-occasion). There is a need to be able 
to think in quite sophisticated distributional ways to tease these things out. Hierarchies of 
random components (multilevel modelling) can be very helpful here. Luckily, in many 
commonly encountered problems it is not necessary to do so. Naïve approaches that 
sweep the subtleties under the carpet are actually valid. Suppose, for example, we want to 
compare the blood pressures of a drug-treated group and a control group on placebo. 
People do not have “a blood pressure.” At the very least there is person-to-person 
variation in the levels of their average blood pressure, occasion-to-occasion variation in 
actual blood pressure of the same individual, and measurement error is a third source of 
variation adding to the other two. The variability of blood-pressure readings seen within 
each of the two treatment groups is the result of all of these sources. Nonetheless, with 
only a single observation per individual (and admittedly under certain idealised 
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assumptions) a 2-sample t-test, or confidence interval, for a difference in mean levels is 
still a valid analysis regardless of whether we have all of these sources of variation 
operating or if only person-to-person variation was operating. What differs is how we 
interpret the within-group variances. We would not raise the complications of multiple 
sources of variation for inferential beginners to avoid cognitive overload but suspicions 
about them might well cause unease in some. 

Many complex models for processes involving time and space are built up in terms of 
chains or hierarchies of conditional distributions. For building models for processes 
evolving in time, for example, we often build up probability models conditionally by 
thinking in terms of what might happen next given the history of the process up until that 
point. This is a way of conceptualizing that permits prediction and also enables us to cope 
with data features like censoring. 

With Bayesian inference we push the conceptual envelope out still further with the 
idea of describing the state of knowledge (prior to collecting the data) about parameters in 
a distributional model in terms of distributions called prior distributions. A Bayesian 
treatment of one-way analysis of variance, for example, would include prior distributions 
for all of the μi’s and the variance σ2. Inference proceeds by updating these prior 
distributions using information in the data to form corresponding posterior distributions 
intended to encapsulate the new data-informed state of knowledge. 

 
2.4.  ALL DISTRIBUTIONS ARE CONDITIONAL 

 
All distributions we work with are really “conditional distributions.” This is not to say 

that we need complicated conditional probability ideas to think about them, just that they 
apply to particular subpopulations or systems operating under particular conditions or 
“settings” or to a particular time. We want to plant the idea that as conditions (or the 
groups we look at) change, the pattern of variation in an outcome variable often changes 
too and that we can learn useful things when we can quantify or otherwise describe the 
nature of those changes. If we can do this there is useful predictive information in such 
things as group membership and an impetus is given to trying to understand why the 
patterns might change. The regression problem can be conceived of as an investigation 
into how the distribution (pattern of variation) of a response variable y changes as the 
setting (x) changes. Group comparisons (two-sample, analysis of variance, etc.) can be 
conceived as an investigation into how the distribution (pattern of variation) of a response 
variable changes as we move from subpopulation to subpopulation (group to group) as 
shown, in an idealised way, in Figures 4 and 5. In the models depicted in Figures 4 and 5, 
all that changes about the distribution of y–values as group membership changes (Figure 
4) or x changes (Figure 5) is confined to the mean level of the response. Spread, shape 
and everything else remains identical. Of course, even if this was true of the mechanism 
generating the data, in any observed dataset all of the features of the empirical 
distributions will still differ from group-to-group at least to some extent. 

Regression and analysis of variance problems are not usually presented at this level of 
generality. The emphasis in most textbooks is not on how the distribution changes but on 
how the mean changes. Why this emphasis just on means? There are many reasons. One 
is a desire to look at the simplest feature of the distribution first. Then there is the 
historical influence of having well-worked out theory for simple models in which the 
mean is the only thing that changes as x changes (or as we move from group to group). 
Additionally, the parsimony principle (or Keep-It-Simple-Stupid principle) leads us to 
model only changes in mean unless the data forces us to do something more complicated. 
Other characteristics are much harder to make inferences about. For example, normal 
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theory-based inferences for means are quite robust but those for spreads are extremely 
sensitive to departures from normality assumptions. As an indicative convention, the 
more “detailed” the feature being compared, the more data we require to usefully 
characterise or compare it. 

 
2.5.  SAMPLE DISTRIBUTION VERSUS POPULATION DISTRIBUTION 

 
For beginning students we usually introduce the distinction between empirical and 

theoretical distributions gently via the distinction between the sample distribution and the 
population distribution. More precisely this is the distinction between the distribution of 
values for a variable for individuals represented in our dataset versus what that 
distribution would be if we had data on everyone in the population. Beginning this way is 
consistent with our desire in teaching to move sufficiently slowly from the concrete to the 
conceptual so that students do not drown in subtlety. Distributional models for data from 
processes are necessarily conceptual and immediately raise all sorts of difficult questions, 
for example, about the stability of the process through time and space and about 
dependencies. With data from a population, however, we can think in much simpler 
terms, namely of sampling from a large set of individuals at one point in time, and 
measuring one or more characteristics on each individual selected. 

In practice, however, nothing is ever quite that simple, quite that “concrete.” The 
really concrete, (real finite population measured once with one device at one time by one 
person in one way) is not really of interest to anyone because the quantities of interest are 
confounded, at the very least, by measurement-process variation. What we see is not 
exactly what is there. As soon as we allow for a contribution of the measurement process 
to the variation present in the data we are immediately transported from a manageable 
easily understood world to a world where data are generated by sampling from a 
conceptual population (an imagined construct) or are generated by some sort of random 
process (see Konold & Pollatsek, 2004). Urban myth has it that mediaeval mapmakers 
alluded to dangers lurking beyond the borders of the known world with the phrase “Here 
There be Dragons.” Our maps of the statistical/inferential world made for beginning 
students need to be inscribed very carefully for teachers with “Here There be Dragons” 
underlined with “These Dragons be Real.” 

 
3. SAMPLING DISTRIBUTIONS 

 
Next in importance, after the empirical and theoretical distributions of observations, 

are sampling distributions (see Figure 6). The former two relate to the unit-to-unit 
variation that we can see within a study or dataset and to a model for the generation of 
that unit-to-unit variation. (I prefer to personalize this and speak in terms of individual-to-
individual variation.) Sampling distributions relate to study-to-study variation in 
estimates or statistics (e.g., sample means, proportions, regression slope estimates and t-
statistics) which cannot be demonstrated from any particular study because each research 
study provides only one study-level data point. It is most accessibly introduced to 
students, I believe, in terms of the sampling variation in a parameter estimate, for 
example, of a population mean or proportion. Statistics educators now have a very good 
array of complementary ways of enabling students to experience the sampling variation 
generated by the process of “conduct a study and calculate an estimate” (see Chance, 
delMas & Garfield, 2004, pp. 294-297). This sampling variation can be modelled using 
either a (theoretical) probability distribution deduced from the distribution used to model 
the unit-level data or an asymptotic (large-sample) approximation, or it may be simulated 
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using a resampling technique be it bootstrap, jackknife or permutation depending upon 
the situation and the analyst’s taste. 

The main priority with sampling distributions is to get across the idea that estimates 
and other statistics change every time we do a new study even if we perform each study 
according to exactly the same protocols. Properly appreciated, this becomes the prime 
motivator for the need for inferential methods which incorporate uncertainty, be they 
significance tests and confidence intervals or Bayesian. A second priority is the Central 
Limit Theorem for means which lays the groundwork for commonly used inferential 
techniques for a range of simple, but common, situations. 
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Figure 6. Incorporating the sampling distribution 
 
Although the expression “sampling variation” appears often in the statistics education 

literature it appears very rarely in the statistics literature. There is no article on sampling 
distributions in the Encyclopedia of Statistical Sciences and of the over 300 section 
headings that contain the word “distribution” the phrase “sampling distribution” appears 
in only three. It is a background concept that underpins much of what we do in statistical 
inference but once the idea has been established it is seldom explicitly referred to. The 
adjective “sampling” is either dropped, to be inferred from the context, or it may appear 
in other guises such as the null distribution (of a test statistic), which is the sampling 
distribution that the test statistic would have if the null hypothesis was true. 

 
4. COMPARISONS CURE UNIVARIATITIS 

 
Teaching about the features of distributions for beginners tends to be in the context of 

a single variable, that is, in a univariate setting. All too often this has led to students being 
fed, year after year, a constant diet of univariate data and contrived univariate situations. I 
plead with teachers to move on to multivariate notions such as comparisons between 
groups and relationships between variables as soon as the most basic foundations have 
been laid. This is necessary to avoid infecting students with the dread disease univariatitis 
which is notorious for causing its victims to experience sensations of drowning in 
irrelevance and, ultimately, death by boredom. We may have to keep revisiting the 
univariate world but should take extreme care not to end up living there. 

One important reason for using multivariate data early is that it gives a time-efficient 
environment in which students can themselves generate interesting questions to 
investigate using data, for example, by making interesting comparisons or investigating 
possible relationships. As pointed out in Wild (1994, p. 164), “not only is question 
generation arguably the most important part of the investigative process, the bubbling up 
of questions from an awakened curiosity provides much of the excitement of 
investigation.” 
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Single distributions and the features of single distributions are seldom of interest in 
and of themselves. Interest generally lies in changes in these features, between places or 
groups, or over time. So why do we spend so much time working with single univariate 
distributions? Our main purpose is to lay the conceptual ground work that facilitates 
thinking about comparisons and relationships but traditional statistics teaching spends far 
too much time on it. We start with data and talk about centre, spread, modes, gaps, 
clusters, skewness, quantiles (particularly medians and quartiles), outliers, and other 
words are also starting to be used out of concerns about language being child-friendly and 
descriptive (e.g., “spreadoutness,” “clumps,” and “bumps”). This all too easily turns into 
what my colleague Matt Regan pejoratively terms “name calling.” Let us put the simple 
data features to work in comparisons before we start naming and worrying about more 
detailed data features. Useful inferences about the latter are much less common in 
practice and much less reliable as well. So as soon as we introduce ideas like centre and 
spread we should put them straight to work in making some real and interesting 
comparisons – having visited the dull, grey, univariate world we need to bring the 
learning straight back into the vibrant real world. The same applies for notions like 
skewness. The fact that data for some variables are severely skewed is interesting mainly 
because data on other variables are not (another type of comparison) and because of 
practical implications of distributional shapes. 

One of the many things we want students to be able to do when looking at plots of 
their data is to react to and wonder about causes for “the unexpected,” particularly 
outliers – things that fall beyond “the expected pattern of variation.” In order to do this 
students need some ideas about what to expect. A good place to start is the patterns of 
variation produced by sampling from a normal distribution or a finite population in which 
the characteristic of interest is approximately normally distributed. Particularly with small 
to moderate samples, the extent of what we might think of as “non-normal behaviour” 
present in data generated from a normal distribution can be astounding. Meaning should 
only be sought in those features of the data that correspond to features of the parent 
population or other mechanisms generating the data. Because exploratory data analysis is 
seldom coupled with exploration of models and random behaviour, many of the features 
beginning students point to, name and ponder causes for (gaps, clumps, outliers, 
skewness, bimodal behaviour, etc) are within the threshold of random error. 

A recent innovation for the beginnings of inference introduced explicitly by Bakker 
and Gravemeijer (2004, pp. 158-165), but also used by others, for example, Konold and 
Pollatsek (2004, pp. 172, 180, 193), is the mind game for children of “growing the 
sample” which is basically concerned with conjecturing about what we might expect to 
happen to a display if “we added more people.” In our terms, a data feature is meaningful 
only if it would still be present if we grew the sample substantially. For example, a gap 
would not be filled in, or apparent clusters would not coalesce. We move beyond name 
calling to statistical thinking when we can relate the features that we can see and name in 
our dataset, and believe will persist, to what we know about the world in order to arrive at 
some level of real-world insight, however small. We may, as a simple example, identify 
two clusters in a distribution and through further detective work determine that they are 
composed of identifiably different classes of individuals. 

With categorical data, the most important reasons for working with relative 
frequencies (equivalently proportions or percentages), such as in relative frequency tables 
and resulting bar graphs, is to facilitate the comparison of datasets of different sizes, and 
to form a bridge to probability. With continuous measurement data, the real reason for 
teaching standardized histograms in which proportions are represented by areas is to lead 
in to the idea of probability density and density curves. This form of standardisation also 
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permits comparison of datasets which have been summarised using different class 
intervals and to display a single set of data that has, for some other reason, been 
summarised using class intervals of different width. In practice, however, the need to do 
either of these things is so rare that I would never give it class time. 

Some in the statistics education research community have found proportions of a 
sample below/above cut points (e.g., proportions of girls and boys with a height above 
120 cm) provide a child-friendly introduction to the making of comparisons between 
groups when the response variable is continuous. It appears that this is something that 
many children do almost spontaneously. The reason we seldom see it in more advanced 
treatments is because the choice of cut point tends to be arbitrary and because this method 
of making comparisons is statistically inefficient. For example, more data is required to 
demonstrate a significant difference between groups this way than by comparing means. 
Statistical inefficiency does not provide a convincing argument against beginning 
students engaging with data in a way that is natural to them, however. It is much more 
important that they are enculturated to engage. Moreover, there are important areas in 
which the cut-point method is used, at least for communication purposes. Medical 
reporting often employs 5-year survival rates, for example. 

 
5. DISCUSSION 

 
The ultimate goal of statistical investigation is learning about some external reality 

and this involves forming and updating models of this context reality. In applied statistics 
there are three main elements that are brought together: current understandings of the 
context reality, data, and the use of statistical models and knowledge to guide how we 
collect data and learn from our data (understandings). Figure 7 attempts to represent the 
interrelationships.  
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Figure 7. Learning via statistics 
 
The need for statistics flows from variation, particularly the presence of “unexplained 

variation,” in data. The statistical response to variation is to investigate, disentangle and 
model patterns of variation in order to learn from them. Virtually all of the ways 
statisticians do this involve looking at data through a lens which is distribution. While 
labels are interesting to children they have to learn to set aside labels and move beyond 
“who is this?” to start seeing and focussing on the patterns of variation and then to 
thinking about what aspects of these patterns might be expected to persist more generally. 
As Rubin et al. (2005) state, “aggregate views are preferable, as they are required to look 
beyond the data towards making inferences about the underlying populations or processes 
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represented by data samples.” When case labels are removed data records with identical 
values for the variables become entirely exchangeable and we are left with frequency 
distributions. The graphs and summaries we use are ways of looking at, summarising and 
conveying aspects of the information present in these distributions. Fundamentally, the 
notion of “distribution” is the pattern of variation in a variable (or set of variables). 

The operation of the thinking processes represented in Figure 7 rests heavily on the 
interplay between the behaviour of our data and understanding the stochastic behaviour of 
potentially useful statistical models. To do this well requires bringing together the two 
elements of experience with exploratory data analysis and experience with the stochastic 
behaviour generated by models. Empirical (frequency) distributions tell us about data 
behaviour, whereas theoretical distributions are critical conceptual building blocks for 
statistical models. Put another way, the distinction underlying empirical versus theoretical 
distributions is between the variation we see in our data and a model for the process that 
generates that variation. We conceive of unexplained variation present as having been 
generated by some “true” or “underlying” distribution. In a full parametric analysis we 
assume these distributions are unknown members of a known, named parametric family 
of distributions. The idea of “population distributions” may paper over some 
complications for beginners but the paper is usually very thin. 

Whereas empirical and theoretical distributions of observations relate to within study 
(or within dataset) variation that we can imperfectly see, sampling distributions relate to 
study-to-study variation in estimates or statistics which cannot be seen from any 
particular study because each study provides only one study-level data point. Sampling 
distributions motivate the need for and are a component of the development of statistical 
inference. 

All distributions are conditional in the sense that they apply to particular 
subpopulations or systems operating under particular conditions or “settings” or to a 
particular time. The regression problem can be conceived as an investigation of how the 
distribution of a response variable changes as the setting (x) changes and group 
comparisons can be conceived as an investigation of how the distribution of a response 
variable changes as we move from group to group. 

Because distributions are such a fundamental component of statistical reasoning our 
main goal should not be, “How do we reason about distributions?” but “How do we 
reason with distributions?,” moving from a world where individual atoms are what is 
interesting to reasoning using aggregates. As Watson (2005) writes, children are 
beginning to learn about distributions from an early age starting when they first create 
pictograms of favourite fruits or modes of transport. They are not told, and do not need to 
be told, that they are learning about “distribution.” Students typically first encounter 
summary features of distributions such as means, medians and even interquartile ranges 
long before they have any but the vaguest idea of “distribution.” We look at graphs of 
distributions long before we develop the notion of distribution. Indeed our more complex 
notions of distribution and the nature of various features of distributions draw heavily 
upon the behaviours that have already been seen exhibited in graphs of data. 

So do students need to be able to form and articulate a concept of distribution to be 
able to operate in a statistical way? Or, to steal from Nike, can students “Just do it” using 
graphs, summaries and an intuitive appreciation of variation? My feeling is that an 
explicit notion of distribution is not needed until we want to motivate, understand and 
then use probability models. Although distribution is the second foundation stone on 
which statistics is built (“variation” is the first), what is critical for early learners is much 
less, “What is ‘distribution’?” than, “How are my data distributed?” and beginning to 
answer that question using appropriate graphs and summaries. One of the usual English-
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language meanings of the word “distributed,” taken from the Oxford English Dictionary, 
“is spread or disperse(d) abroad through a whole space or over a whole surface.” The first 
step is that measured characteristics of individuals (e.g., heights) are not identical – their 
values are distributed across a range – and that we can learn useful things by looking at 
how they are distributed. “How are my data distributed?” points someone like me in the 
right direction but does it speak to the variety of students that might experience it? We 
can be very grateful we have committed researchers in statistics education who are 
prepared to pick up questions like the above, and the issues raised below, and move the 
discussion beyond conjecture and anecdote. 

It is my belief that we should be forming mental habits in which raw data (numbers) 
prompt students immediately to reach for pictures of that data, or as Moore (1991, p. 426) 
says, “a structure of thought that whispers, ‘Variation matters … Why not draw a 
graph?’” Summaries should be related conceptually to these pictures. Pictures of data, of 
distributions, do not need to be conventional pictures though they should converge to 
them over time as statistical knowledge develops; there are good reasons why 
conventional pictures have taken hold. Someone’s student somewhere at some time may 
very well come up with something startling and new which should inform the way 
everyone else does graphics but we must expect this to be rare. A trap for teachers is the 
presumption that conventional pictures are easy to read. Tools which are so transparent to 
the initiated (nothing to teach, it’s completely obvious, how could anyone not get it?!) can 
be quite opaque to beginners. Students need also to learn that there is not just one correct 
picture, that we can form a better overall view of reality by using an array of different 
pictures that better highlight different features of the data. Section 4 of Gould (2004) 
provides good examples of this and also how the insights so obtained feed into the 
development of statistical models for the data. 

The key drivers for successful statistical practice, and thus the most critical elements 
to be instilled by statistics education are three propensities: the propensity to collect data 
that usefully addresses the question of interest, the propensity to question the applicability 
of data to the problem in hand, and the propensity to seek meaning in data. Everything 
else is about how to act on these propensities.  

Most of the papers at STRL-4 and in this special issue deal with students’ 
engagement with empirical distributions, their features, and with comparisons of these 
features between groups. When features like location shifts between groups show up in a 
set of boxplots, for example, the following questions are never far off. “But does it 
actually mean anything?” “If we did it again would it come out much the same? Or could 
the order of the groups even be reversed?” Instantly we are transported to the realm of 
inference. 

The inferences beginning students are able to make are necessarily informal, but 
therein lies the rub. There are great difficulties with informal inferences as Pfannkuch 
(2006) discusses. Assessment of “significance” balances the three factors: effect size, 
variability and sample size, in a very complicated way. Sets of standard boxplots that 
look identical, except for being based on different sample sizes, must be interpreted 
differently (notched box plots, Garret & Nash, 2001, provide a workaround). It may well 
be that there are no easy answers. There were some very sound imperatives that drove the 
development of our formal schools of statistical inference! As statistics educators we 
need to encourage our students into the mental habit of continually seeking meaning in 
data, which includes trying to make inferences, even using inadequate tools. The focus 
for the next SRTL Research Forum (SRTL-5 in 2007) and, I hope, a future special issue 
of SERJ, is informal ideas of inference. I look forward to the results with extreme interest. 
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APPENDIX: USAGE OF DISTRIBUTION 
 

(Below “~” represents “distribution” to focus attention on accompanying adjectives and other modifiers) 
 

NAMED theoretical ~ (e.g., normal, binomial, 
…) 
~ OF SOMETHING OBSERVED 
ACTING UPON ~s (e.g., comparing ~s, …) 
Some sort of characteristic of ~ (mean, sd, 
quantiles, …) 
Descriptor of (~ is skewed , symmetric, bimodal, 
long-tailed, …) 
 
vertical ~, horizontal ~, length ~, Circular ~s, 
spherical ~s, Geographical ~ 
Of some sort of extreme (e.g., maximum flow ~) 
Efficacy ~ 
Spatial ~, temporal ~ 
Stationary ~ 
Spectral ~ 
Survival ~ 
Shape ~s 
Shot-noise ~s 
Latent root ~s 
Frequency ~ 
Empirical ~ 
Sample ~ 
Observed ~ 
 
Probability ~ 
Parametric ~ 
Dependence of ~al shape on parameters 
Multiparameter ~s 
Continuous versus discrete ~ 
Derived ~ 
Probability mass ~ 
Cumulative ~ 
Inverse cumulative ~ 
(cumulative) ~ function 
Univariate ~, bivariate ~, multivariate ~ 
Conditional ~, Marginal ~, Joint ~ 
Truncated ~ 
Tolerance ~ 
Inflated ~s 
Run length ~ 
 
Target ~ 
Theoretical ~ 
Unknown ~ 
Underlying ~, Population ~, True ~, 
Sampling ~ 
Confidence ~ 
Null and Alternative ~s (testing) 
Nonnull ~ theory 
~ of a test statistic 
Independence ~ 

Expected ~ 
Reference ~ 
~ free 
 
Permutation ~ 
bootstrap ~, bootstrap resampling ~ 
jackknife ~ 
Simulated ~ 
Imputation ~ 
Predictive ~s 
 
Error ~ 
Residual ~ 
Studentized ~ 
 
~ theory 
~al properties 
Spaces of ~s 
Families of ~s 
Asymptotic ~ 
Limiting ~ 
Convergence in ~ 
infinitely divisible ~s 
 
Mixture ~ 
Mixing ~ 
Contaminated ~ 
 
Initial ~ 
Equilibrium ~, steady-state ~ 
 
Random effect ~ 
Frailty ~ 
Latent ~ 
~ of one or more latent variables 
 
BAYESIAN 
Prior ~, hyperprior ~ 
Posterior ~ 
Reference prior ~ 
Improper prior ~ 
 (unmodified, or Bayesian or posterior) 
predictive ~ 
(Metropolis-Hasting) candidate ~ 
Target ~ (in MCMC sampling) 
weighted


