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1.1 Introduction

C** is a large-grain data-parallel programming language. It preserves the
principal advantages of SIMD data parallelism—comprehensible and near-
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determinate parallel execution—while relaxing SIMD’s constricted execu-
tion model [14]. We have used C** as a vehicle for experimenting with
parallel language features and with implementation techniques that exploit
program-level control of a parallel computer’s memory system [16]. This
paper both describes the language and summarizes progress in language
design and implementation since the previous C** paper [14].

Data-parallel programming languages originally evolved on fine-grain
SIMD computers [6], which execute individual instructions in lockstep on
a collection of processing units. Early data-parallel languages, such as C*
[24], mimicked this execution model by executing each parallel operation in
lockstep. Both the machines and languages benefited from the simplicity of
a single thread of control and the absence of data races. However, both suf-
fered from SIMD’s intrinsically inefficient conditional statements—in which
each processing unit steps through both arms of a condition—and inefficien-
cies introduced by the synchronization necessary to run SIMD programs on
the more common MIMD processors.

Section 1.2 outlines several alternatives to SIMD execution of data-
parallel languages. Most of these languages take a pragmatic approach and
run data-parallel operations in MIMD style, i.e. asynchronously. This ap-
proach causes no problems for simple operators, such as whole-array arith-
metic, and offers the notational convenience of structuring a program with
data-parallel operators. However, uncontrolled sharing allows data races,
and these data-parallel languages provide few, if any, mechanisms for serial-
izing conflicts. In effect, these languages trade a higher-level programming
model for implementation ease and the siren’s lure of high performance.

C** follows a different approach. It defines a clear semantics for conflict-
ing memory references in asynchronously executed data-parallel operations
(Section 1.3). In C**  invoking a data-parallel operation on a data aggre-
gate asynchronously executes the operation on each element in the collec-
tion. However, C**’s semantics require that invocations appear to execute
simultaneously and instantaneously, so that their memory references can-
not conflict. This semantics is similar to the copy-in-copy-out semantics of
primitive operations in other data-parallel languages. However, unlike other
languages, C**’s semantics is not limited to a few arithmetic operations on
dense matrices. Instead, C** defines and implements this semantics for
arbitrary C++ code.

C** prevents conflicts within a data-parallel operation by deferring the
delivery of values until after the operation completes and by providing a
rich and extensible collection of reduction operators to combine conflict-
ing values. A data-parallel operation can modify memory, but changes do
not become globally visible until the operation completes. At that point,
modifications from different invocations are reconciled into a globally con-
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sistent state for the next data-parallel operation. This mechanism works
well for one-to-one and one-to-many communication, but is insufficient for
many-to-one or many-to-many communication since providing a semantics
for conflicting writes to the same location is difficult. Instead, C** sup-
ports the latter forms of communication with a rich variety of reductions,
including reduction assignments and user-defined reduction functions (Sec-
tion 1.4).

Of course, a clear semantics is no substitute for high performance. Our
C** implementation exploits Tempest [9, 16], an interface which provides
user-level code with the mechanisms to implement a shared-address space
and a custom coherence policy. LCM, C**’s memory system, allows shared
memory to become inconsistent during data-parallel operations. When a
data-parallel operation modifies a shared location, LCM uses a fine-grain,
copy-on-write coherence policy that matches C** semantics to copy the
location’s cache block (Section 1.5). When the data-parallel operation fin-
ishes, LCM reconciles copies to create a consistent global state.

As an extended example, Section 1.6 contains our solution to the poly-
gon overlay problem Appendix ??. The first version is an inefficient, but
concise, data-parallel program, which is greatly improved by using a bet-
ter algorithm. This algorithm’s performance is in turn improved by us-
ing high-level C** mechanisms—in particular, user-level reductions—to im-
prove communication. Other benchmarks also show that, although high-
level and concise, C** programs can run as fast, or faster than low-level,
carefully-written and tuned programs.

It is a commonplace that parallel programming is difficult, and that par-
allel machines will not be widely used until this complexity is brought under
control. If true, the programming languages community bears responsibil-
ity for this failure. It has invested more effort in packaging hardware-level
features, such as message passing, than in exploring new languages that
raise the level of programming abstraction, such as HPF.

Parallel languages with a higher-level semantics may not please all pro-
grammers or solve all problems, but they do make parallel programming
easier. The architecture community draws a clear distinction between mech-
anisms, which hardware should provide, and policy, which software should
implement [31, 32]. The languages community should look at hardware
mechanisms as a means to an end, not an end in itself.

1.2 Data-Parallel Languages

A data-parallel programming language expresses parallelism by evaluating,
in parallel, operations on collections of data [11]. The key features of such
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a language are: a means for aggregating data into a single entity, which we
will call a data aggregate; a way to specify an operation on each element in
an aggregate; and a semantics for the parallel execution of these operations.
Data-parallel languages should be distinguished from the data-parallel pro-
gramming style [7], which can be used even in languages that do not claim
to support data parallelism.

Unfortunately, the definition of data parallelism is a bit fuzzy around
the edges. For example, languages such as Fortran-90 [1] and HPF [12] mix
other programming models with a limited collection of data-parallel opera-
tions. A sub-language can be data parallel, even though its parent language
is not. In addition, functional languages provide data aggregates and oper-
ations [2], but typically do not consider parallel execution. However, since
these languages do not permit side effects, extending their semantics to
permit parallel execution is straightforward.

Data-parallel languages differ widely in the operations and semantics
that they provide. We choose to classify data-parallel operations into four
categories: fine grain, coarse grain, large grain, and functional. The dis-
cussion below is organized around this classification, since these categories
strongly affect semantics. Techniques for specifying data aggregates differ
mainly in syntactic details and are not discussed further.

1.2.1 Fine-Grain Languages

As discussed earlier, fine-grain data-parallel languages originally evolved
from the model of fine-grain SIMD machines, such as the ICL DAP and
Thinking Machines CM-1 Connection Machine [10]. Beyond hardware sim-
plicity, a fine-grained SIMD model offers several programming advantages.
Since each SIMD processor executes the same instruction simultaneously, a
parallel program has a single thread of control and is easier to understand.
In addition, read-write and write-read data races cannot occur since a par-
allel instruction reads its input before computing and writing its output.
The only possible conflicts are output dependencies in which two instruc-
tions write to a memory location. Some machines (e.g., CM-2) provide
an elaborate collection of mechanisms for combining values written to a
memory location.

Unfortunately, SIMD execution has a fatal disadvantage for many pro-
grams. In particular, lockstep execution is extremely costly for programs
with conditionals, since each processor must step through both arms of a
conditional, although it only executes code from one alternative.

Several languages, such as C*! [24], directly implement a SIMD model

1Version 5 of C*. Version 6 changed the language significantly; this section considers
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and consequently inherit its advantages and disadvantages. In C*, a do-
main is a collection of data instances, each of which is associated with
a virtual processor. The virtual processors for a domain execute opera-
tions on their instance in lockstep. The granularity of a lockstep operation
is a language operator, rather than a machine instruction (a distinction
which makes little difference in C). Although it was designed for SIMD ma-
chines, Quinn and Hatcher successfully compiled C* for MIMD machines
by eliminating unnecessary synchronization and asynchronously executing
sequences of non-conflicting instructions [8, 28].

Fine-grain data parallelism has other manifestations as well. Lin and
Snyder distinguish point-based data-parallel languages, such as C*, from
array-based ones [18]. Array-based languages, such as ZPL [18] or parts of
Fortran-90 [1] and HPF [12], overload operators to apply to data aggregates—
for example, add arrays by adding their respective elements—and provide
array shift and permuatation operations. This approach expresses paral-
lelism through compositions of the initial parallel operators. For some appli-
cation domains, such as matrix arithmetic, point-based languages produce
clear and short programs.

To contrast these approaches, compare Program 1.1, which contains
a point-based stencil written in C* and Program 1.2, which contains an
array-based stencil written in HPF.

domain point {
float x;
} A INDIND;

[domain point].{
int offset = (this - &A[0]1[01);
int i = offset / N; /* Compute row and column */
int j = offset % N;
if (4 >0) && (j > 0) & (i < N) & (j < N))
x = (A[i-11[j] + A[i+11[3] + A[Qi1[j-11 + A[i1[j+11) / 4;

Program 1.1: Point-based stencil written in C* (version 5).

A(1:N, 1:N) = (ACO:N-1, 1:N) + A(2:N+1, 1:N) + A(1:N, O0:N-1) + A(1:N, 2:N+1)) / 4

Program 1.2: Array-based stencil written in HPF.
Both types of fine-grain languages communicate by reading and writ-
ing memory. SIMD and whole-array operations share a read-compute-write

only the older version.
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semantics in which a parallel operation reads its input values before mod-
ifying a program’s state. For example, in both stencils, the computations
average neighboring values from the previous iteration.

These semantics prevent read-write, but not write-write, conflicts. Some
fine-grain languages allow reduction functions to combine colliding values
into a single value. We refer to this process as a reduction assignment.
An alternate view of a parallel assignment operator treats it as a mapping
[25, 30], which is a restricted many-to-many communication operator.

1.2.2 Coarse-Grain Languages

Fine-grain data parallelism either shares SIMD’s inefficient execution model,
which requires excessive synchronization on non-SIMD hardware. An ob-
vious generalization is to execute data-parallel operations asynchronously,
so that each invocation of an operation runs independently of other ones.
Although this change eliminates inefficient conditional statements, it also
raises new problems with memory conflicts between parallel tasks. The
original SIMD data-parallel model requires no locks, barriers, or other ex-
plicit synchronization. Asynchronous data-parallel languages, for the most
part, ignore the possibility of conflict and allow these error-prone features
of MIMD programming.

Coarse-grain data-parallel languages allow data-parallel operations to
execute asynchronously. For example, HPF’s INDEPENDENT DO loops [12]
or pC++’s parallel member functions [17] execute arbitrary code as a data-
parallel operation. These languages provide no guarantees about conflicting
memory accesses, SO a programmer must ensure that parallel operations are
independent. For example, an HPF stencil operation (Program 1.3) needs
two copies of an array to ensure that updates do not interfere with reads.
The real cost of coarse-grain data parallelism is the time and effort required
to write, understand, and debug the complex code and not the storage or
time overheads.

'HPF$ INDEPENDENT
DO 10 I=1,N
'HPF$ INDEPENDENT
D0 10 J=1,N
AL(I, J) = (A2(I-1, J) + A2(I+1, J) + A2(I, J-1) + A2(I, J+1)) / 4
10 CONTINUE

'HPF$ INDEPENDENT
DO 20 I=1,N
'HPF$ INDEPENDENT
DO 20 J=1,N
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A2(I, J) = (A1(I-1, J) + A1(I+1, J) + A1(I, J-1) + A1(I, J+1)) / 4
20 CONTINUE

Program 1.3: Coarse-grain stencil in HPF.

Communication in coarse-grain data-parallel languages again occurs
through assignment to memory. Assignments may cause conflicts, and a
programmer must ensure that parallel operations are data race-free by
avoiding conflicting data accesses or by resolving collisions with reduc-
tions. Most coarse-grain languages limit reductions to a predefined set
of operators, but some, such as HPF, are considering adding user-defined
reductions.

1.2.3 Large-Grain Languages

Large-grain data-parallel languages allow coarse-grain parallelism, but pro-
vide a clearly defined semantics for conflicting memory accesses. For exam-
ple, C** [14] specifies that each invocation of a data-parallel operation runs
as if executed simultaneously and instantaneously, so that all invocations
start from the same memory state and incur no conflicts. When an invo-
cation updates a global datum, only that invocation sees a change to the
memory state until the data-parallel operation completes. At that point, all
changes are merged into a single consistent view of memory. Program 1.4
shows how a stencil operation can be written in C**. The pseudo-variables,
#0 and #1, are bound to each invocation’s i** and j*® coordinates, respec-
tively. Since it is written with only one copy of the array, this code is similar
to the point-based stencils described earlier (Program 1.1).

A[#0] [#1] = (A[#0-11[#1] + A[#0+1]1[#1] + A[#0][#1-1] + A[#0][#1+11) / 4;

Program 1.4: Large-grain stencil in C**.

Large-grain languages permit conflict-free execution of coarse-grain pro-
grams, at the expense of considerable compiler analysis or run-time com-
plexity. However, as discussed below, this complexity is manageable and
the semantic clarity is beneficial to programmers.

1.2.4 Purely Functional Languages

The final data-parallel languages are purely functional (e.g., NESL [5]) and
offer advantages of data parallelism and functional programming. Conflicts
do not occur because these languages do not permit imperative updates.
As a result, the languages need not limit grain size or define new memory



8 CHAPTER 1. C**

semantics to guarantee deterministic execution. On the other hand, these
languages present all of the implementation difficulties of conventional func-
tional languages [22].

Data communication in purely functional languages occurs through func-
tion arguments and return values. Functional languages heavily use reduc-
tions to combine values returned from parallel functions, thereby providing
powerful many-to-one communication mechanisms. Reductions, unfortu-
nately, do not extend easily to many-to-many communication, so program-
mers must build and decompose intermediate structures.

1.3 C** Qverview?

C** is a large-grain data-parallel language (to use the taxonomy and con-
cepts introduced in Section 1.2). It was designed to investigate whether
large-grain data parallelism is both useful as a programming paradigm and
implementable with reasonable efficiency. After several years of effort, the
answer to both questions appears to be “yes”.

C** introduces a new type of object into C++. These objects are Ag-
gregates, which collect data into an entity that can be operated on concur-
rently by parallel functions. C** also introduces slices, so that a program
can manipulate portions of an Aggregate. These concepts are extensions
to C++, so a C** program can exploit that language’s abstraction and
object-oriented programming facilities.

1.3.1 Aggregates

In C** Aggregate objects are the basis for parallelism. An Aggregate class
(Aggregate, for short) declares an ordered collection of values, called Aggre-
gate elements (elements, for short), that can be operated on concurrently
by an Aggregate parallel function (parallel function, for short). To declare
Aggregates, C**extends the class definition syntax of C++in two ways.
First, the programmer specifies the type of the Aggregate element follow-
ing the name of the Aggregate. Second, the number of dimensions and their
sizes follow the element type. For example, the following declarations de-
fine 2-dimensional matrices of floating point elements of an indeterminate
and two determinate sizes:

class matrix(float) [1 [I {---};
struct small_matrix(float) [5] [6]1 {---};
class large_matrix(float) [100] [100] {---};

2This section is a revised version of the C** language description, which appeared
elsewhere [14]. The language syntax has evolved slightly, but the basic concepts have
not changed.
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Like C++classes, Aggregates use either the keyword class or struct
to declare a new type of object. Unlike C++classes, Aggregates have a rank
and cardinality that is specified by their declaration. An Aggregate’s data
members can be either basic C++types or structures or classes defined
by the programmer. An Aggregate’s rank is the number of dimensions
specified in its class declaration. Rank is defined by the declaration and
cannot be changed. The cardinality of each dimension may be specified in
the class declaration. If omitted from the class, the cardinality must be
supplied when the Aggregate is created. Each dimension is indexed from 0
to N —1, where N is the cardinality of the dimension. For example, indices
for both dimensions of a small matrix run from 0 to 4.

An Aggregate object looks similar, but differs fundamentally, from a
conventional C4+ array of objects:

e An Aggregate class declaration specifies the type of the collection, not
of the individual elements. This is an important point: matrix, which
is an Aggregate, is an object consisting of a two-dimensional collection
of floating point values, not a two-dimensional array of objects.

o Aggregate member functions operate on the entire collection of ele-
ments, not individual elements (Section 1.3.2).

e Elements in an Aggregate can be operated on in parallel, unlike ob-
jects in an array.

e Aggregates can be sliced (Section 1.3.5).

However, Aggregate elements can be referenced in the same manner as
objects in an array. For example, if A is a small matrix object, A[0][0]
is its first element.

1.3.2 Aggregate Functions

Aggregate member functions are similar to class member functions in most
respects. A key difference, however, is that Aggregate member functions are
applied to an entire Aggregate, not just an element, and that the keyword
this is a pointer to the entire Aggregate. For example, in:

class matrix (float) [1 [1{
friend ostream& operator<< (ostream&, matrix&) ;

};

ostream& operator<< (ostream &out, matrix &m) {
for (int i = 0; i < cardinality (0); i++) {
for (int j = 0; j < cardinality (1); j++)
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out << m[il[j] << " ";
out << ’\’;
}
}

the operator << is a friend function that prints a matrix to a stream.
All Aggregates automatically have the following two member functions:

int rank () — Return number of dimensions in Aggregate
int cardinality (int dim) — Return cardinality of dimension dim

1.3.3 Aggregate Constructors

As in C++, Aggregates may define constructors and destructors. An Ag-
gregate constructor initializes the entire collection of elements, not the in-
dividual elements. By contrast, each element in an array is initialized by a
call to the type’s default constructor. For example:

class matrix (float) [1 [1 {
matrix (float initial_value) {
int i, j;
for (i = 0; i < cardinality (0); i++)
for (j = 0; j < cardinality (1); j++)
(*this) [1] [j] = initial_value;
};

}s

defines an Aggregate matrix of floating point values whose constructor ini-
tializes all matrix elements to a specified value, so that

new matrix [100][100] (1);

creates a 100 x 100 matrix of 1’s.

1.3.4 Parallel Functions

Aggregate member and friend functions are sequential by default. A par-
allel function is a member or friend function in an Aggregate class that
can be invoked simultaneously on each element of the Aggregate. A par-
allel function (either a member or friend function) is identified by keyword
parallel after its argument list. For example:

class matrix (float) [1 [1 {
float checksum () parallel;
friend transpose (parallel matrix) parallel;

}s



1.3. C** OVERVIEW* 11

declares checksum and transpose to be parallel functions.

In a parallel member function, the parallel argument is the Aggregate
object to which the function is applied. In a parallel friend function, the
parallel argument must be prefaced by parallel (for example, the first
argument in transpose).

Analogous to the variable this, which points to the entire Aggregate,
parallel functions may also use the self pointer, which points to the element
the invocation operates on.

A parallel function behaves as if it were invoked simultaneously on all
elements of its parallel argument. An invocation of a function on an Aggre-
gate element can determine the coordinates of its element from the pseudo
variables:

#0 1%t coordinate
#1 2nd coordinate
#n — 1 n® coordinate

Semantics of Parallel Functions

To explain parallel functions more precisely, we must define a few terms.
A parallel function call is the application of a parallel member or friend
function to an Aggregate. A parallel function invocation is the execution of
the function on one Aggregate element. Hence, calling a parallel function
starts many function invocations, all of which appear to execute simulta-
neously. A function invocation’s state is the collection of memory locations
read or written during the invocation.

“Applied atomically” means that while a parallel function is executing,
its state is only modified by the function itself, not by other concurrently
executing tasks. In other words, the function appears to execute instanta-
neously and is unaffected by anything else running at the same time. In
effect, the semantics are as if each invocation executed as follows:

o Atomically copy all referenced locations into a purely local copy.
e Compute using local copies.
e Write all modified copies back to global locations.

Since a parallel function is applied simultaneously to an Aggregate’s
elements, all invocations begin with identical state (except for the pseudo
variables, #0, #1, etc., which differ in each invocation).

As an example, consider a stencil computation on a matrix:
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friend void stencil (parallel matrix A) parallel

A[#0] [#1] = (A[#0-1][#1] + A[#0+1]1[#1]
+ A[#0] [#1-1] + A[#0][#1+1]) / 4.0;
}

The computation is applied simultaneously to each element of the matrix,
so the new values are entirely a function of the old.

If invocations of a parallel function modify global state, C** only guar-
antees that each modified location will contain a value computed by some
invocation. If an invocation modifies more than one location, only a por-
tion of its modifications may be visible after the parallel call. Part of a
multi-location modification can be overwritten by other invocations.

Results From Parallel Functions

If a parallel function’s result type is the same as its parallel argument’s
type, the parallel function allocates a new Aggregate of the same size and
type as the parallel argument and initializes it with results returned from
the corresponding invocations. The function invoked on the first element of
the parallel argument computes the value for the first element of the result,
and so on. Since the parallel function initializes the result Aggregate, the
Aggregate’s constructor, if any, is not invoked.

On the other hand, if the result type is a scalar, the values returned
by the parallel function must be returned in reduction return statements
(Section 1.3.4) that combine results from the invocations into a single value
of the specified type.

For example:

friend matrix operator* (parallel matrix A, matrix B) parallel
{return (A[#0]1[1 * B[I1[#11);}

friend float operator* (parallel mrow R, mcol C) parallel
{returny+ (R[#0] * C[#01);}

is a matrix multiplication routine that creates and returns a new parallel
matrix of the same size as the parallel matrix A. The invocation associated
with element (4,7) of A computes the dot product A(%,*) - B(x, 7).

Reductions

Reductions are a basic operation in data-parallel programming because they
provide a conflict-free and efficient way of combining results from indepen-
dent computations. A reduction applies an associative binary operator,
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pair-wise, to a sequence of values. For example, if o is the operator, the
reduction of the sequence v is v; o v3 o3 ... 0 v,. Given n processors, this
reduction can be applied in parallel in lgn steps.

C** supplies two types of reductions. The first combines values assigned
to a location to avoid conflicts between concurrent writes. The second com-
bines values returned from the multiple invocations of a parallel functions.

Reduction Assignment

Reduction assignments are legal only within parallel functions. A reduc-
tion assignment uses the operator specified to the right of the % to combine
the values assigned to the location in different invocations. Reduction as-
signments are necessary because an ordinary assignment permits only one
invocation to modify the location. Changes to the location are not visible
until the parallel function call completes.

For example:

float sum = 0.0, pos_sum = 0.0;

matrix::sum_elements () parallel {
sum =%+ *self;
if (*self > 0)
pos_sum =+ ¥self;
}

computes two sums. The first is the sum of all elements in a matrix. The
second (pos_sum) is the sum of the positive elements in the matrix.

Reduction Returns

A parallel function with a scalar result must combine the results from each
invocation with a reduction return. This return combines multiple values
using the operator specified to the right of the ¥%.

For example:

friend float sum (parallel mrow A) parallel
{returny+ (A[#01);}

1.3.5 Slices

A slice selects a subset of an Aggregate along an axis. A slice is not a copy.
It shares all selected elements with the larger Aggregate. Slices are partic-
ularly valuable when they themselves are also Aggregates and consequently
can be manipulated in parallel. Slices permit effective specification of par-
allel computations on pieces of an Aggregate. For example, many matrix
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computations are naturally described in terms of operations on rows and
columns. If the row and column slices are Aggregates, the operations can
be data parallel.

In C** omitting an index expression from a dimension of an Aggregate
reference produces a slice that includes all elements along that dimension.
This slice differs from the pointer to an array element that results from
omitting a subscript in a C++ array reference. Trailing empty braces may
be omitted, so that A[1] [] is equivalent to A[1]. For example, the following
three expressions are slices of a matrix:

matrix A;

Alil - é-th row of A
A[i][] - equivalent to the above
A[1[3] - j-th column of A

Subclassing and Slices

In C**, the type of a slice is a subclass of the Aggregate’s class, in all
respects except inheritance of functions. The declaration of a slice’s subclass
both names the new subclass and describes which indices must be specified
in computing the slice. #n denotes the n'" index in a reference to the slice.
For example, consider the following matrix slices:

class mrow : matrix[.]; // row slice of matriz
class mcol : matrix[][.1; // column slice of matriz

mrow is a row from a matrix that is computed by omitting the column index.

1.4 User-Defined Reductions

Since C** was first defined, the principal change to it has been the addi-
tion of user-defined reductions. This feature permits efficient many-to-one
communication by providing a well-defined semantics for conflicting writes.
Existing data-parallel languages typically resolve collisions with a limited
collection of reduction functions. C** provides user-defined reductions,
which are arbitrary binary functions that combine colliding values. This
feature extends reduction functions to user-defined data types and enables
programmers to combine values in many more situations.
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Figure 1.1: DSMC Schematic Diagram

1.4.1 DSMC Example

To motivate user-defined reductions, consider DSMC, a particle-in-cell code
that simulates particle movement and collision using discrete Monte Carlo
simulation [29]. DSMC divides space into cells in a static cartesian grid
and distributes molecules among cells (Figure 1.1). Molecular interactions
create forces that move molecules. DSMC simulates the movement and
collision of molecules over many time steps, each of which comprises three
phases:

move: molecules change position based on their velocities.
enter: new molecules enter the domain from a jet stream.
collide: molecules collide with others in the same cell.

Parallelism in DSMC can be expressed as data-parallel operations on
either cells or molecules. The latter technique is more complex as the
collide phase requires an extra mapping to associate molecules with cells.
The discussion below is based on the cell approach, which is used in practice
[29, 21].

The move phase requires many-to-many communication since it updates
the positions of all molecules. In the process, molecules may move from
one cell to another (usually neighboring) cell. Inter-cell molecule transfer
results in many-to-many communication, since each cell exports molecules
to different destinations and receives molecules from many other cells.

Consider expressing this pattern in a fine-grain data-parallel language.
A fine-grain language can transfer molecules between cells through parallel
assignment. Let Leave and Enter be the maximum number of molecules
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leaving and entering a cell in a time step, respectively. A parallel assign-
ment can transfer only one molecule at a time. Therefore, a fine-grain lan-
guage requires Leave repetitions of the assignment to transfer all molecules.
Furthermore, unless the language provides reductions capable of resolving
conflicts, these parallel assignments would fail when two molecules are si-
multaneously transferred to the same cell. To handle this case, the transfer
must become a two step process. In the first step, senders to a cell choose
a winner. In the second step, the winner transfers a molecule. In the worst
case, this algorithm requires Leave x Enter parallel steps, each of which
involves two synchronizations. User-defined reductions or a parallel prefix
operation to enumerate incoming molecules reduces the cost of combining
colliding molecules, however, the algorithm still require Leave steps in a
fine-grain language.

In a coarse-grain language, this algorithm is typically implemented us-
ing low-level synchronization primitives, such as locks or monitors. These
constructions are undesirable since they introduce explicit synchronization,
which destroys the data-parallel abstraction. In addition, their high cost,
and the serialization they induce, can prevent parallel speedup [21].

By contrast, user-defined reductions capture the many-to-many commu-
nication pattern of molecule transfer. In a language that supports them,
such as C**, DSMC can use an append function to resolve conflicts be-
tween molecules entering a cell by merging lists of them. This approach
leads to good performance. For example, on a 32 processor CM-5, a version
of DSMC written in C** using user-defined reductions ran 1.1 times faster
than the hand-coded C version of the program.

1.4.2 Syntax of User-Defined Reductions

User-defined reductions combine colliding values in a parallel assignment.
These reductions are specified by a function name in a reduction oper-
ation. For example, the polygon overlay C** code (Program 1.7) uses
the combining function merge in the statement return %merge thelList

nulllist;. The nullList argument is initial value of the accumulator.

In general, the reduction function for values of type a has type a x a —
a. For example, the merge function in Program 1.7 has type polyList_s
x polyList_s — polyList_s. The current C** compiler uses a variant
of this typing rule in which the first parameter serves as both input and
output (e.g., type (polyList_s *) X polyList_s — void).
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1.4.3 Semantics of User-Defined Reductions

Although the concept of user-defined reductions is not new, they have not
been implemented in another parallel programming language (to the best
of our knowledge). However, the MPI message-passing library does provide
for user-defined reductions [20]. In the process of implementing user-defined
reductions, several questions arose about their semantics. The discussion
below describes these choices and how we resolved them in C**.

Conflicts

If used in reduction assignments, user-defined reduction functions are in-
voked during execution of a parallel function, which, in languages such as
C** has a well-defined semantics for conflicting memory accesses. What
restrictions (if any) should be placed on memory accesses in reduction func-
tions?

The most severe restriction is to require that reduction functions be
side-effect free, so their output is a pure function of their input.® This ap-
proach has many advantages (and is used by SIMD hardware and fine-grain
languages) since pure functions do not introduce new conflicts. Although
this restriction may be reasonable for atomic data, such as numbers, it can
impede reductions on structured data, since it demands a functional style
that may introduce considerable overhead. Consider, for example, using
user-defined reductions to add new nodes to an oct-tree in a Barnes-Hut
algorithm [4]. Without side-effects, each insertion requires copying all nodes
along the path from the root to the leaf. Even this approach is problematic
in languages like C, that separate memory allocation from initialization
since, without an effect system [19], assignments will appear as side effects.

Alternatively, a language may permit compiler directives, such as HPF’s
INTENT directive, to declare safety properties that a compiler cannot
prove. This approach allows reduction functions that have side effects but
do not cause conflicts. However, erroneous directives may lead to subtle
conflict errors.

A third alternative requires a run-time system to identify data ac-
cess conflicts due to unsafe user-defined reductions, as in Steele’s Parallel
Scheme [?]. This approach identifies all errors at runtime, but is complex
and expensive.

In the end, we decided not to restrict user-defined reduction functions
and to trust programmers to use this powerful feature carefully, since it
could easily subvert the language semantics. This decision was in part

SNote that side effects and associativity are independent properties since a routine
with side effects can easily be associative.
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necessary because of the difficulty of determining if an arbitrary piece of
C++ code is side-effect free and in part desirable so programmers had the
freedom to experiment with this new language feature.

Reduction Assignment Result Availability

If a parallel function references the target location of a reduction assign-
ment, what value does it see after the assignment? With the original C**
semantics, a parallel function sees only its update, as if it runs sequen-
tially. Although this provides a simple semantic model, it can be difficult
to implement, so we considered several alternatives.

The first is to prohibit non-reduction accesses to a location used for
reduction assignments, as in Fortran D [?]. This method’s advantage is
that it provides a run-time system with the flexibility to determine when
and how a reduction should be carried out. However, this method has
two major disadvantages. First, it burdens a programmer unnecessarily.
For example, in DSMC’s move phase, the parallel function for a cell reads
its molecule list and moves molecules to other cells’ lists. The restriction
requires a programmer to maintain a separate “incoming” list for each cell,
and merge it with the cell’s molecule list in a separate phase. Second,
static analysis cannot identify all erroneous accesses. More complex and
expensive run-time disambiguation is necessary to detect all errors.

The second approach is to retain the original value of a location, even
after a reduction assignment. When a data-parallel operation completes,
the run-time system combines colliding values and updates locations. In
effect, this approach performs reductions after the data-parallel operation
(although a system has the freedom to perform the two phases concurrently,
so long as a reduction does not conflict with a data-parallel operation).

The final approach combines the two and is suitable for a language like
C**_ Like the second alternative, it defers reductions, but it also updates
a local copy of a location to merge the local contribution. This approach
ties reductions closely to C**’s semantics and may not be appropriate for
coarse-grain languages in general.

Combining Order

Since primitive reduction functions are associative and commutative, the
order in which values are combined does not affect the result. This free-
dom provides a run-time system with flexibility to implement reductions
efficiently. For example, a run-time system can use a combining tree to im-
plement reductions in logarithmic parallel time. User-defined reductions,
on the other hand, are not necessarily associative or commutative, but
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are usually effectively associative. Effectively associative functions are re-
duction functions whose lack of associativity does not affect a program’s
results [25]. For example, consider using an append function as a set union
operator for a set in which the order of items is semantically unimportant.

Arbitrary reduction order is a reasonable choice for user-defined re-
ductions for two reasons. First, a programmer can implement a specific
ordering by collecting all values into a list (e.g., using append), sorting the
list, and combining values explicitly. More importantly, the absence of or-
dering allows optimizations that improve the performance of user-defined
reductions.

1.4.4 Extensions to User-Defined Reduction Assign-
ments

A reduction assignment is actually two actions, combining conflicting values
and updating the target with the value. By default, the update operation is
simple assignment. C** generalizes the update with a user-defined update
function. An update function can store the combined value in the target
in non-trivial ways. For example, in DSMC (Section 1.4.1), an update
function merges the list of incoming molecule with a cell’s list of molecules.
A user-defined update is only syntactic sugar and adds no power to the
language. To continue the DSMC example, without user-defined updates,
the programmer must store the incoming list in a temporary and append
it to the cell’s list later. Semantically, an update function satisfies the
same restrictions as a combining function (Section 1.4.3). The insertPoly
function Program 1.5 (reproduced below from the polygon overlay code
in Program 1.10) is a example of an update function. insertPoly adds
incoming polygons to a grid cell’s polygon list.

void insertPoly(polyNode_p *result, poly_s thePoly)

{
polyNode_p ptr = new polyNode_s;// allocate new node
ptr->poly = thePoly; // fill it in
ptr->next = *result; // link node into list
*result = ptr; //  return result

}

Program 1.5: Code to Partition a Polygon Vector.

Another option is to omit a combining function and only specify an
update function. The C**runtime system uses the update function to
insert colliding values, one by one, in the target location. The function
polyVec: :partitionVecin Program 1.10 uses the update function insertPoly



20 CHAPTER 1. C**

(in Program 1.5), in this manner, to add incoming polygons one by one.
Updates without combining are analogous to integrated reductions [33].

1.4.5 Implementing User-Level Reductions

User-defined reductions can be implemented on a message-passing machine
or by using the Tempest interface with minimal run-time system support.
Furthermore, the semantics of reductions provide a compiler with oppor-
tunities for optimization. This section describes implementation of user-
defined reductions in the C** compiler. In C**, reductions follow the de-
ferred reduction model that retains old values. Currently, C** does not
specify methods to identify or prevent conflicts between independent re-
ductions. All mechanisms described in this section extend easily to other
data-parallel languages. The description has three stages. The first de-
scribes basic mechanisms that the compiler uses to implement reductions.
The second shows how the compiler can vectorize messages to improve per-
formance. The third describes how local combining allows the compiler to
reduce the amount of data communicated between processors.

Basic Reductions

A reduction assignment updates its target with the combined value of col-
liding right-hand-side values. The C**implementation involves two proces-
sors: the processor that executes the reduction assignment (processor A)
and the processor that owns the target location (processor B). Processor
A, which executes the reduction, sends processor B a message containing
three items: the right-hand-side value, the combining function descriptor,
and the target location pointer. At the end of the parallel phase, Proces-
sor B collects incoming reduction messages, combines colliding values and
updates target locations. To implement update reductions (Section 1.4.4),
processor B replaces the combining function with an update function.

The “owner-updates” model is simple to implement and requires mini-
mal runtime system support. It depends on the runtime system to support
target location queries, which is usually available in languages that provide
a global name space.

Bulk Reductions

During a data-parallel operation, a processor may execute multiple reduc-
tions for two reasons. First, the number of elements in a collection is
typically much larger than the number of processors, so each processor
executes multiple invocations. Second, each invocation may itself execute
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Program | Scientific Domain Compared against C** | SPMD | (SPMD/C*¥*)
DSMC Particle-in-cell Hybrid SM-MP 74.2 82.7 0.90
EM3D Electromagnetics Hybrid SM-MP 10.7 5.0 2.14
Water Molecular dynamics | Shared memory (SM) | 13.0 13.6 0.96
Moldyn Molecular dynamics | Hybrid SM-MP 27.0 26.7 1.01
FFT Signal processing Shared memory (SM) 2.0 8.5 0.11

Table 1.1: Comparative benchmark execution times (in seconds on 32-
processor CM-5)

multiple reduction assignments. The deferred reduction model allows the
compiler to defer sending reduction messages until the end of the parallel
phase. This permits several messages to the same destination processor to
be bundled into a single message, which is typically far more efficient to
send and receive.

Local Combining

Local combining further enables the compiler to reduce the amount of data
communicated in messages. If different invocations perform reductions on
the same target, values can be combined locally, before global combining.
C*®’g run-time system uses a per-processor hash table to track common
targets. Probing this table increases the overhead of the reduction, but
allows for a decrease in communications cost. This is a good example of
an optimization that trades off worse sequential performance for better
communication (and therefore parallel) performance.

1.4.6 User-defined Reduction Performance

We evaluated our reduction implementation by comparing C** versions
of five benchmarks (one small and four medium-size applications) against
highly optimized hand-coded SPMD versions of the programs on a 32 pro-
cessor CM-5. All of these programs’ communication patterns were fully
captured by reduction assignments (both user-defined and primitive). Ta-
ble 1.1 summarizes our results. In the worst case, the C** version was
2x slower than the message-passing EM3D code. It was between 1% slower
and 10% faster on DSMC, Moldyn and Water, and 4.25x faster on the com-
munication intensive FF'T code. Given the complexity and effort in tuning
the SPMD codes, the C** programs are far more attractive.




22 CHAPTER 1. C**
1.5 C** Implementation’

Efficiently compiling parallel languages for parallel computers is difficult.
Most languages assume a shared address space in which any part of a
computation can reference any data. Parallel machines provide either too
little or too much support for many languages [15]. On one hand, message-
passing machines require a compiler to statically analyze and handle all
details of data placement and access, or pay a large cost to defer decisions
to run time. On the other hand, shared-memory machines provide more
dynamic mechanisms, but generally use them to implement a fixed cache-
coherence policy that may not meet a language’s needs.

In C**, the compiler exploits control over the memory system of a paral-
lel computer to construct a language-specific address space for a high-level
parallel language. Because the semantics of memory match the semantics
of a language, a compiler can generate efficient code, with assurance that
the memory system will detect unusual cases and errors so that a run-time
system can handle them.

The hardware base is a parallel computer with a Tempest-like interface,
which provides mechanisms that permit user-level software to implement
shared-memory policies [13, 23]. A Tempest memory system is possible on
a wide range of parallel systems, including those without shared-memory
hardware [27]. Tempest offers a program control over both communications
and data placement, as is possible with message passing, and the dynamic
fine-grain policies possible with shared memory.

Reconcilable Shared Memory (RSM) provides a global address space and
basic coherence policy whose two key policies governing memory system be-
havior are under program control. The first is the system’s response when
a processor requests a copy of a cache block. The second is the system’s
response when a processor returns a cache block in response to a request.
Unlike most shared-memory systems, RSM places no restrictions on mul-
tiple outstanding writable copies of a block and permits non-sequentially
consistent memory models. A language-specific coherence protocol uses
RSM mechanisms to support a language’s semantics directly. Custom co-
herence policies can also improve the performance of shared-memory pro-
grams written in any language. For example, global reductions and stale
data fit naturally into the RSM model. Finally, RSM can help detect un-
synchronized data accesses (data races).

"This section is a shorter version of the full LCM paper [16].
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1.5.1 LCM

RSM systems can aid the implementation of parallel programming lan-
guages, particularly higher-level languages such as C**. A natural way
to implement C**’s semantics is a copy-on-write scheme, in which each
parallel invocation obtains and modifies its own copy of shared data. We
implemented this policy in an RSM system called Loosely Coherent Mem-
ory (LCM). LCM and the C** compiler cooperate to detect the need for
shared data and to copy it, instead of the conventional approach in which
a compiler generates conservative code to copy shared data. LCM’s copies,
although they share the address of the original, are private to a processor
and remain inconsistent until a global reconciliation returns memory to a
consistent state.

RSM offers several advantages over explicit copying. A compiler can
produce code optimized for cases in which no copying is necessary; these
predominate in many programs. Compiler-produced copying code is conser-
vative and incurs unnecessary overhead either by copying too much data or
by testing to avoid unnecessary copying. The LCM copy-on-write scheme
defers copying until a location is actually accessed, which reduces the quan-
tity of data that must be copied. The Myrias machine [?] implemented,
in hardware, a similar copy-on-write mechanism for parallel DO loops.
It, however, used a fixed reconciliation policy and copied entire hardware

pages.

A compiler’s control of LCM permits optimizations when analysis is
possible. For example, not all modifications to shared data need cause a
copy. Only items which might be shared between processes must be copied.
If compiler analysis determines that no other process will access a location,
it need not be copied, which avoids the overhead of making and reconciling
a copy. However, this approach requires close cooperation between the
compiler and memory system to select—at a fine grain—policies governing
portions of data structures.

In C**, computation alternates between parallel and sequential phases.
Memory becomes coherent at the end of a parallel phase as processors
reconcile their modified memory locations. C**’s semantics dictate how
copies are reconciled. In general, C** requires only that the coherent value
left in a memory location modified by a parallel function call be a value
produced by some invocation of the call. LCM discards all but one of the
modified copies. However, values written by C**’s reduction assignments
require different reconciliation functions that combine values.
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1.5.2 LCM Implementation

We built an LCM system on the Blizzard implementation of Tempest. Bliz-
zard is a fine-grain distributed shared memory system that runs at near
shared-memory hardware speeds on a Thinking Machines CM-5 [27]. We
compared the performance of four C** programs running under both the
unmodified Stache protocol [23] and LCM (implemented using the Tem-
pest mechanisms provided by Blizzard). We found that the LCM memory
system improved performance by up to a factor of 4 for applications that
used dynamic data structures. LCM’s performance was slightly slower than
transparent shared memory for applications with static data and sharing
patterns, which a compiler can analyze and optimize directly without using
LCM.

LCM is a user-level Tempest protocol that runs on a CM-5. We started
with the user-level Stache protocol [23], which provides cache-coherent
shared memory and uses a processor’s local memory as a large, fully asso-
ciative cache. This cache is essential to ensure that a processor’s locally
modified (inconsistent) blocks are not lost by being flushed to their home
node. When a modified cache block is selected for replacement (either be-
cause of a capacity or conflict miss), the block is moved to the Stache in
local memory. On a cache miss to the block, its value comes from the
Stache, rather than the block’s home processor.

LCM provides the C** compiler with three directives. The first of these,
mark modification(addr), creates an inconsistent, writable copy of the
cache block containing addr. If the block is not already in the processor’s
cache, it is brought in. The second, reconcile_copies() appears as a
global barrier executed by every processor. When it finishes and releases
the processors, the memory has been reconciled across all processors and
is again in a coherent state. This directive flushes all modified blocks back
to their home processors to be reconciled. Outstanding read-only copies
of these blocks are then invalidated throughout the system. The third,
flush _copies(), performs a partial reconciliation by flushing a processor’s
modified cache blocks back to their home processors. The next section
illustrates how the C** compiler uses these directives.

C** parallel function invocations start execution with the original (pre-
parallel call) global state. LCM retains an unmodified copy of global data
throughout a parallel call. At the first write to a cache block managed by
the copy-on-write policy, the block’s home node creates a clean copy of the
block in main memory. The node uses a clean copy to satisfy subsequent
requests for unmodified global data.

Another complication is that each processor typically runs many dis-
tinct invocations of a parallel function. The system must ensure that a
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new invocation does not access local cache blocks modified by a previous
invocation. To avoid this error, LCM’s flush _copies() directive removes
modified copies of global data from the Stache. If a compiler cannot ensure
that invocations access distinct locations, it issues this directive between
invocations. This directive flushes cache blocks to their home processor,
where they are reconciled. A subsequent read of one of these blocks returns
its original value from the clean copy. Cache flushing, although semanti-
cally correct, performs poorly for applications that re-use data in flushed
blocks. In another approach, each processor keeps a clean copy of every
block it modifies. In this case, the f1lush copies directive returns modified
values to their home node and replaces the cached value with the clean
copy, so it remains local for a subsequent reference.

LCM’s memory usage depends on the number of potentially modified
locations. At a location’s first mark modification directive, LCM creates
a clean copy in memory. Cached copies resulting from this directive re-
quire slightly more state information than ordinary cached blocks. Clean
copies exist only during a parallel function call and are reclaimed at the
reconcile_copies() directive.

1.5.3 Compiling C**

Compiling a C** program to run under LCM is straightforward. To ensure
the correct semantics for parallel functions, the C** compiler inserts mem-
ory system directives, described above, in parallel functions. Alternatively,
the compiler could guarantee these semantics with run-time code that ex-
plicitly copies data potentially modified in a parallel function invocation.
Explicit copying works well for functions with static and analyzable data
access patterns. However, it becomes complicated and expensive for pro-
grams with dynamic behavior, since the generated code must either perform
run-time checks or copy a conservative superset of the modified locations.
This section illustrates both approaches with a static parallel function (the
stencil function) and a dynamic parallel function (an adaptive mesh) and
compares the performance of LCM against the explicit copying strategy.

Stencil Example

As a first example, consider a simplified version of the code generated by
the C** compiler for a stencil function to run under LCM:

void stencil_SPMD(matrix &A)

for ( all invocations assigned to me)

{
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set variables #0 and #1 ;

// Function body:
mark_modification(A[#0] [#1]); // LCM directive

A[#0]1 [#1] = (A[#0-11[#1]1 + A[#0+1]1[#1] + A[#0][y-1]1 + A[#0][#1+1]) / 4.0;
flush_copies(); // LCM directive

}

reconcile_copies(); // LCM directive

}

Each invocation writes to A[#0][#1], which is also read by its four
neighboring invocations. Compiler analysis easily detects this potential
conflict, which the C** compiler rectifies with mark modification direc-
tives. The flush copies directive removes modified copies from a pro-
cessor’s cache before another invocation starts. The reconcile_copies
directive causes the memory system to reconcile modified locations and
update global state to a consistent value.

Because compiler analysis reveals that stencil accesses the entire array,
the C** compiler could also preserve C** semantics by maintaining two
copies of A—all reads come from the old copy of A and all writes go to the
new copy of A. After each iteration, the code exchanges the two arrays with
a pointer swap. This simple technique preserves the C** semantics with
little overhead beyond the cost of twice the memory and cache usage.

1.5.4 Dynamic C** Program

LCM offers greater benefits for programs with dynamic behavior that is
difficult or impossible to analyze. These programs require extensive (and
expensive) run-time operations to run in parallel [26]. For example, con-
sider an adaptive mesh version of stencil, which selectively subdivides
some mesh points into finer detail. It is part of a program that computes
electric potentials in a box. The program imposes a mesh over the box and
computes the potential at each point by averaging its four neighbors. At
points where the gradient is steep, finer detail is necessary and the program
subdivides the cell into four child cells. This process iterates until the mesh
relaxes. Initially, points on the mesh are represented in a two-dimensional
matrix, but dynamically allocated quad-trees capture cell subdivision:

// Update my quad-tree in the mesh
double Mesh::update_mesh() parallel
{
// What part of tree changed?
*self = update_quad_tree(self, neighbors);
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// Return maximum of local values
return %> local_epsilon;

}

// Main program - do the iterations
main()

{

create_mesh();
while (difference >= epsilon)
difference = update_mesh();

In this program, the mesh changes dynamically so a compiler cannot
determine which parts will be modified. Without an LCM system, a com-
piler must conservatively copy the entire mesh between iterations to ensure
C**’g semantics. With LCM, the memory system detects modifications and
copies only data that is modified.

1.6 Polygon Overlay Example

As in the other chapters in this book, we illustrate our language with a
C** program that computes polygon overlays. This problem starts with two
maps, A and B, each covering the same geographic area and each composed
of a collection of non-overlapping polygons. This calculation computes the
intersection of the two maps by computing the geometric intersection of
polygons from each map. As described in Chapter ??, we assume that
polygons are non-empty rectangles and that the entire collection fits in
memory.

This section outlines two implementations of the polygon overlay cal-
culation in C**. The first is simple and inefficient (Section 1.6.1), but fits
the data-parallel style well. However, as in life, style is no substitute for
thought, and the second version uses an auxiliary data structure to greatly
reduce the cost of computation (Section 1.6.2).

1.6.1 Naive C** Implementation

The naive program directly applies data parallelism to the problem. Each
polygon in one map executes a data-parallel operation that computes its
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intersection with every polygon in the second map. The non-empty inter-
sections form the result of the computation. This method is simple, but
extremely inefficient, since most intersections are empty.

struct poly_s { // a polygon
short x1, yl; // low corner
short xh, yh; // high corner
I¥
struct polyVec (poly_s) [] // polygon Aggregate
{
- member functions omitted- - -
I¥
polyVec *leftVec, *rightVec; // input vectors

Program 1.6: C** declarations for naive algorithm.

Program 1.6 shows the relevant C** declarations for this program. Each
polygon is represented by the coordinates of its lower left and upper right
corners. The Aggregate class, polyVec, holds polygons from an input map.

The parallel C** function polyVec: : computeVecVecOverlay (in Pro-
gram 1.7) computes the intersection of polygon self (which, analogous to
this, points to the polygon a invocation is responsible for) with the second
vector of polygons vec. Each non-empty intersection is added to a local
list theList, and independent local lists are combined with the user-defined
reduction merge in Program 1.7. The data-parallel overlay operation is ap-
plied to the first vector of polygons by the statement:

results = (leftVec->computeVecVecOverlay(rightVec)) .head;

polyList_s polyVec::computeVecVecOverlay(polyVec *vec) parallel

{

polyList_s theList = {NULL, NULL}; // ptrs to head and tail

for (int i=0; i<vec->cardinality(0); i++) {
polyNode_p tmp = polyOverlay(self, &((*vec)[i]));
if (tmp != NULL)
thelist.insert (tmp) ;

}

return ymerge theList : nullList; // user-defined reduction

}

void merge(polyList_s *result, polyList_s theList)

{

if (result->head==NULL && result->tail==NULL) { // Isresult NULL?
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*result = thelList;

} else if (!(theList.head==NULL && theList.tail==NULL)) {
result->tail->next = theList.head;
result->tail = thelList.tail;

Program 1.7: C** code for naive overlay
For efficiency reasons, the data-parallel operation in Program 1.7 returns
a structure containing pointers to the head and tail of its list of polygons.
The merge routine destructively concatenates two lists by changing the tail
of the first to point to the head of the second one.

1.6.2 Grid Partitioning a Map

We greatly improved the performance of the computation by exploiting
locality—both geographic, in the problem, and spatial and temporal, in the
computer. Instead of comparing every polygon against every other polygon,
the revised program compares a polygon against the far smaller collection of
polygons that are spatially adjacent. This program partitions the space in
the second polygon map into a rectilinear grid and uses this grid to reduce
the number of polygons that must be examined. This change requires a
new, two-dimensional, partition class (in Program 1.8) to maintain the
decomposed polygon map. Each cell in the partition contains a list of
polygons that are partially or entirely within the cell. The second list in a
cell is used in the double partition approach (Section 1.6.2).

struct polyNode_s { // polygon list cell
poly_s poly; // the polygon
polyNode_s *next; // link to next
s

typedef polyNode_s *polyNode_p;

struct partition.s {

polyNode_p lists[2]; //  pair of lists
}s
struct partition(partition_s) [1[]
{
- other member functions omitted- - -
b

Program 1.8: Declarations for partition algorithm.
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The partitioning approach requires a new overlay routine (Program 1.9).
It only needs to compare a polygon against polygons in the partition cells
that it overlaps. These cells can be quickly identified from the two endpoints
that define the polygon. A polygon overlaps all partition cells between the
partition that contains its lower left and upper right corners.

With the naive program, computing the overlay of two datasets contain-
ing approximately 60K polygons each resulted in over 3.6 billion polygon
comparisons. By contrast, the partitioning version, using a partition of
45 by 45 cells, required only 3.6 million comparisons—an improvement of
three orders of magnitude.

#define ownPoly(x,y,p)\
((£findCell(p->poly.x1)==x) && (findCell(p->poly.yl)==y))
#define findCell(x) ((int) (((x)-1) / (cellSize)))

polyList_s polyVec::computeVecPartOverlay(partition #*p) parallel

{

polylList_s theList = {NULL, NULL};

int xStart = findCell(self->x1); //  find appropriate cells
int xStop findCell(self->xh);
int yStart = findCell(self->yl);
int yStop findCell (self->yh);

for (int x=xStart; x<=xStop; x++) // step through cells
for (int y=yStart; y<=yStop; y++)
for (polyNode_p ptr=((*p)[x][yl.lists[0]); ptr!=NULL; ptr=ptr->next) {

polyNode_p tmp = polyQOverlay(self, &(ptr->poly));

if ((tmp != NULL) && (ownPoly(x,y,tmp)))
thelist.insert (tmp); // link in overlap

else if (tmp !'= NULL)
delete tmp; //  not “owned”, delete

}

return Ymerge theList : nullList;

Program 1.9: Overlay Routine for Partition Algorithm.
Since a pair of polygons may overlap in several partitions, the code must
be careful to avoid recording duplicate intersections. The C** program, in
the routine ownPoly, records the intersection of two polygons only when
the lower corner of the overlap falls within the current partition cell.
The distribution of polygons in partition cells affects load balancing and
hence the program’s performance. We use a simple heuristic to partition
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the polygons. The program first calculates the number of cells in each
partition from the area of an input polygon map and the number of polygons
it contains. The program then computes the average polygon area and
sets the partition cell size to some multiple of the average polygon area,
called the granularity. More will be said about choices of granularity in
Section 1.6.4.

The code in Program 1.10 partitions the Aggregate of polygons. The
data parallel function invocation on a polygon copies the polygon into the
appropriate partition cells. Since this process is many-to-many commu-
nication, with the potential for write conflicts, a user-defined reduction
(insertPoly) links polygons into a partition’s cell list.

void insertPoly(polyNode_p *result, poly_s thePoly)

{
polyNode_p ptr = new polyNode_s;// allocate new node
ptr->poly = thePoly; // fill it in
ptr->next = *result; // link node into list
*result = ptr; // return result
}
void polyVec::partitionVec(partition *p, int n) parallel
{
int xStart = findCell(self->x1); // find dest cells
int xStop = findCell(self->xh);
int yStart = findCell(self->yl);
int yStop = findCell(self->yh);
for (int x=xStart; x<=xStop; x++) // do combining writes
for (int y=yStart; y<=yStop; y++)
&((*p) [x] [y].lists[n]) =)insertPoly *self;
}

Program 1.10: Code to Partition a Polygon Vector.

Note that the reduction assignment passes a polygon structure, not
a pointer to a polygon. This is for efficiency. Passing a pointer as an
argument to the user-defined reduction operation means that insertPoly
must dereference the pointer to obtain a copy of the polygon to link into
the list. This dereference requires communication if the reduction occurs
on a processor other than the one that allocated the polygon. Passing
polygons, instead of pointers, causes the polygon data to be sent directly
to the processor that performs the reduction and eliminates a potential
extra round of communication.



32 CHAPTER 1. C**

The same reasoning, in reverse, applies to the overlay routine in Pro-
gram 1.7. The solution is formed by a reduction that references pointers
to the head and tail of each invocation’s polygons list. Thus, only a pair
of pointers are passed between processors. If the code used a combining
assignment, similar to the one in Program 1.10, it would transmit all poly-
gons in the list, instead of just the list’s head and tail. Of course, sending
the polygons might be more efficient if the processor that invoked the data-
parallel operation later read the entire result.

Partitioning Both Maps

A natural extension of the partitioning approach is to partition both poly-
gon vectors and overlay the partitions cell by cell. Although this double
partitioning approach performs the same number of comparisons as the
single partition version, it exploits memory locality more effectively. Each
grid cell now contains two lists of polygons, one list for each map. Since
both of a cell’s polygon lists are allocated on the same processor, the poly-
gon comparison phase requires no communication. Program 1.11 lists the
parallel overlay function.

polylist_s partition::computePartPartOverlay() parallel

{

polylList_s theList = {NULL, NULL};

for (polyNode_p pl=self->lists[0]; p1!=NULL; pl=pl->next) {
for (polyNode_p p2=self->lists[1]; p2!=NULL; p2=p2->next) {

polyNode_p tmp = polyOverlay(&(pl->poly), &(p2->poly));

if ((tmp != NULL) && (ownPoly(#0,#1,tmp)))
thelList.insert (tmp) ;

else if (tmp !'= NULL)
delete tmp;

}
}

return Zmerge theList : nullList;

}

Program 1.11: Overlay Routine for Double Partition Version.
Although the extra partitioning step increases execution time for small
numbers of processors, the double partition code has better locality, and
therefore incurs fewer misses, which increases scalability. For example, a
run with 60K polygon datasets on 32 processors resulted in 2151 coherence
misses during the overlay phase of the single partition code. The double
partition overlay phase incurred only 46 misses. Section 1.6.4 shows that
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this change results in more nearly linear scaled speedups for the double
partition version.

1.6.3 Performance Tuning

The initial version of the partitioned code ran reasonably well, but sev-
eral changes improved both the speed of the C** code and its scalability.
Although C** is a high-level language, we were able to perform these opti-
mizations within the language.

Memory Management

The program creates and destroys many polygon list nodes during the par-
titioning and overlay phases. Measurements showed that it spent consid-
erable time in calls to malloc and free. Furthermore, malloc’s 8-byte
memory overhead for each allocation greatly increased the total memory
requirement. We therefore implemented our own list of free polygon list
node on each processor. When the list is exhausted, the program requests
four pages of memory (16K bytes) and carves it into pieces of the appro-
priate size.

Communication Reduction

In order to obtain good speedups on a distributed shared memory machine
such as the CM-5, it is important to reduce communication when possible.
This section describes three optimizations that decrease communication.

The first improvement changed polygon coordinates to shorts, instead
of ints. This cut both the memory and communication requirements in
half. Also, padding the partition cells to 32 bytes reduced false sharing.

Since polygon maps are accessed sequentially, our second optimization
uses a large unit of coherence to exploit temporal locality. Our memory
coherence protocol, implemented in software, allows us to maintain coher-
ence on larger 1024-byte blocks, rather than the default 32-byte blocks [23].
This change reduced the number of cache faults on shared data significantly.
For example, on datasets containing approximately 60K polygons each, and
running on 32 processors, the number of cache misses dropped from 60,876
to 4,962.

The final optimization further reduced communication in the double
partition code by distributing the grid data and grid computation identi-
cally. The shared-memory substrate distributes global data using round-
robin page placement, while C**’s run-time system divides invocations in
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equal blocks. By adjusting the number of partition cells to occupy a power-
of-two number of pages,this optimization ensures that a processor accesses
exactly those grid cells that are allocated to it. Thus, the entire overlay
computation requires no communication other than the reduction to com-
bine pieces of the solution.

Area Optimizations

Both the single and double partitioning approaches can benefit from an
area-based optimization. Once a polygon’s entire area has overlapped other
polygons, it can be removed from consideration. Discarding polygons re-
duces the number of comparisons and therefore the cost of calculating the
intersection.

For the single partition version, each polygon from the first map records
its unused area. When the area is consumed, the polygon is discarded. A
more aggressive approach could record unused areas of polygons in the sec-
ond map as well. The second optimization is inappropriate for the single-
partition version since it requires changes from one invocation to be visible
to all others. The results in the next section only use the simple optimiza-
tion for the single-partition code.

The double-partition approach requires more complex analysis since a
polygon in the first map cannot be discarded unless it is completely enclosed
in a partition cell. However, a slightly more complex area calculation, which
starts with the portion of a polygon enclosed by a cell, works well. Fur-
thermore, the double-partition version can exploit the second optimization
because both lists of polygons within a cell are accessed by the same parallel
function invocation. Unfortunately, measurements showed that the cost of
building and maintaining a second data structure to record polygon areas
outweighed the benefits of the more aggressive optimization. As the gran-
ularity of a partition increases, the optimization becomes more attractive.
However, our measurements showed that it was better to use smaller gran-
ularities and the first area optimization than larger granularities and both
optimizations. Thus, the results for the double-partition code use only the
first area optimization.

1.6.4 Results

All measurements were run on a 32-processor partition of a Thinking Ma-
chines CM-5. Our timings do not include the time to read the data from
disk. On the CM-5, the time to read the input files is larger than the time
to actually perform the computation. For example, on the 60K polygon
datasets and 32 processors, it takes more than 20 times longer to read the
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data than to compute the overlay. Since the CM-5 does not support paral-
lel I/0, the input files are read by a front-end process and sent to a single
CM-5 processor, which creates a serial bottleneck that would artificially
limit the program’s speedup.

For the same reason, we also did not include the time to distribute the
input data across the processors. Since all data initially resides on the pro-
cessor that read the file, distributing the data takes a large amount of time
and forms a bottleneck. On 32 processors, the data distribution time is
roughly equal to the time for two partitioning steps and the overlay com-
putation. For reference, the graph in Figure 1.7 shows how including the
distribution time would reduce the application’s speedup. This bottleneck
is clearly an area for future work.

Granularity

Selecting a granularity for partition cells (Section 1.6.2), as typical, requires
tradeoffs. At first glance, small granularities appear best since they require
fewer comparisons during the overlay phase. However, as the granularity
decreases, polygons span partition cells more frequently. This increases
memory requirements, since each of these polygons is duplicated. Parti-
tioning with a granularity of 5 doubles the number of polygons that must
be represented. Even with a granularity of 20, approximately 50% more
polygons must be represented.

The granularity also affects the program’s speedup. The partitioning
phase runs best with large granularities, since few cell-spanning polygons
require less communication. However, the overlay computation performs
less work with small granularities. The best granularity is therefore a bal-
ance between the partition and overlay phases’ needs. This balance is
different for the single and double partition approaches, since the double
partition code spends more time partitioning.

As was mentioned in Section 1.6.3, we adjusted the number of cells in the
partition to ensure that the memory underlying a partition is power-of-two
number of pages. This limits the choice of granularity, but some latitude
still remains. In the experiments below, we used a granularity of 30 for the
smallest dataset and a granularity of 36 for the other two datasets. These
values were compromises that produced consistently high performance for
varying numbers of processors.

The k100 dataset

The k100 series of polygon maps were the largest ones provided. Each
contains approximately 60,000 polygons. Figure 1.2 shows the execution
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Figure 1.2: Execution times of the overlay phase for the k100 data set
(partition granularity 30).

times to compute the overlay for the first two datasets of this series. The
runtime of the naive program is not shown, since it is far larger than the
partitioning versions. For example, on one processor, it requires more than
4500 seconds for the naive computation, versus roughly 10 seconds for the
partitioned program. Figure 1.3 shows the scaled speedups (speedups with
respect to one-processor runs) for all three versions.

The naive code has the best scaled speedup: 25.8 on 32 processors
(an efficiency of 80.6%). The partitioning versions have scaled speedups
of 16.0 and 20.7, for efficiencies of 52.0% and 64.7%. Detailed analysis of
the partitioning versions showed that load imbalances reduced the speedup.
The average time spent idle due to load imbalance is roughly constant with
respect to the number of processors. On one processor, it amounts to just
over 1% of the computation time. At 32 processors it makes up about 25%.
A good portion of the problem is that the total computation time on 32
processors is only half of a second, which exacerbates the load imbalance.
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Figure 1.4: Execution times of the overlay phase for the 150K data set
(partition granularity 36).

Larger Datasets

To study the program’s performance, we generated a new dataset with
roughly 150,000 polygons per input file. Datasets of this size used nearly
all memory on a single processor. Figure 1.4 shows the execution times
and Figure 1.5 the scaled speedups for the overlay phase. All three versions
of the code produced better scaled speedups on the larger dataset, with
double partitioning reaching a scaled speedup of 25.7, for an efficiency of
80.4%. The naive code reached 28.6 for an efficiency of 89.4%.

To obtain better scaled speedups, we generated a dataset with approxi-
mately 300,000 polygons per input file. This problem could not run on one
processor due to memory limitations, so we measured performance on 2—-32
processors. Figure 1.6 shows the execution times and Figure 1.7 the scaled
speedups. The double partition code achieved a scaled speedup of 13.6, for
an efficiency of 85.0%. We could not measure the performance of the naive
code for this dataset because it took too long to run (over 20 hours on 2
processors). Figure 1.7 also shows scaled speedups for the partition and
overlay phases.
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Figure 1.5: Scaled speedups of the overlay phase for the 150K data set
(partition granularity 36).
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Figure 1.6: Execution times for the 300K data set (partition granularity
36).
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1.7 Conclusion

Designing a new programming language is in many ways like writing the
Great American Novel—except that the rewards, both on the average and
at the margin, are more lucrative for authors than language designers. Both
occupations require overwhelming confidence that your wonderful new idea
will succeed and prosper where the vast majority of your predecessors sank
into oblivion.

C**’s conceit was that a parallel language could offer some benefits
of SIMD programming, without some of its disadvantages, by restricting
parallel execution semantics. C**research has focused on techniques for effi-
ciently implementing these semantics and language extensions for increasing
the semantics’ generality. In both respects, the research is successful. By
exploiting Tempest user-level shared memory, the C**compiler and system
implement a large-grain data-parallel language with a simple, clear seman-
tics and little unnecessary overhead. Although the many polygon overlay
examples are difficult to compare because of algorithm and processor differ-
ences, C**’s speedup curves are close to linear. In addition, our experience
with C**demonstrates that user-level reductions are a powerful language
feature that permits concise, efficient implementation of many parallel al-
gorithms, even within the constraints of large-grain data parallelism.

The course that we followed is, unfortunately, unlikely to lead to wide
popularity and use of C**. The recent languages on the best seller lists—
C, C++, Perl, TCL—are an amalgamation of ideas from earlier research
languages and all began with a low-cost, widely-available implementation.
pC++(Chapter ??) is consciously following this model. It is unclear, how-
ever, if this model will succeed for high-performance computing since porta-
bility is often the enemy of performance. Seeing little hope of writing a best
seller, our efforts followed a different approach and concentrated on imple-
menting, developing, and demonstrating a few ideas.

During this research, several more general observations have become
clear:

e The programming language community is too introspective. In re-
cent years, it has begun a dialog with the applications community.
However, it still does not interact with computer architects, to un-
derstand and influence future machines. Machines are still designed
and built to fit perceived needs of users, without much consideration
to the requirements of languages or compilers [?]. In the end, the
users, compiler writers, and architects all suffer.

The C**research has been conducted as part of the Wisconsin Wind
Tunnel Project [?], which is investigating the hardware/software trade-
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offs in parallel shared memory machines. A key design tenet of the
Wind Tunnel research is that hardware should provide mechanisms
and software should implement policy. C**has both exploited this ap-
proach by using the Tempest mechanisms to implement its language
semantics in the memory system. Hardware provides low-costs tests
that detect exceptional conditions without slowing normal execution.

e Following a moving target is hard. Four years ago, we introduced par-
allelism into C**by extending the class mechanism. Today, we would
likely specify Aggregates with Templates (like the Amelia Vector Tem-
plate Library Chapter ??). When we started, Templates were a new
language feature that compilers partially and poorly implemented.
Today, Templates are a widely used and important language feature
that most compilers still implement poorly.

Our primary problem was that C++ is a very complex language and
the continual standardization process increased the number and com-
plexity of its features. As a consequence, C++ compilers are com-
plex, poorly written, and constantly changing. Adding our minor
changes to C++ required considerable time and effort better spent
on research. Templates, when properly implemented, may permit
language extension without language modification.

e Too many languages, not enough evaluation; or, what makes a good
language? In the absence of objective criteria, everyone will continue
using and teaching familiar languages whose compilers are at hand.
Without quantitative comparisons against alternative languages and
implementations, it will remain impossible to write a programming
languages paper that excites more than a small handful of readers. In
a better world, new language features (and implementations) would
be compared by measures that matter, such as performance, concise-
ness, and readability.

This book takes a first step in that direction. By comparing the many
implementations of the polygon overlay code, a reader can begin to
evaluate the many parallel C++ languages. Of course, all of the
usual disclaimers (“its only one program running on an experimental
implementation on a slow, old machine”) apply if our C**code does
not fare well.
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