
A Switch Architecture for
Real-Time Multimedia Communications

Gerard J.M. Smit, Paul J.M. Havinga
University of Twente, dept. Computer Science

P.O. Box 217,7500 AE Enschede, the Netherlands
e-mail: { smit, havinga} @cs.utwente.nl

Abstract
In this paper we present a switch that can be used to trans-
fer multimedia type of trafJic. The switch provides a guar-
anteed throughput and a bounded latency. We focus on the
design of a prototype Switching Element using the new
technology opportunities being offered today. The architec-
ture meets the multimedia requirements but still has a low
complexity and needs a minimum amount of hardware.
A main item of this paper will be the background of the
architectural design decisions made. These include the
interconnection topology, buffer organization, routing and
scheduling.

The implementation of the switching fabric with FPGAs,
allows us to experiment with switching mode, routing strat-
egy and scheduling policy in a multimedia environment.
The switching elements are interconnected in a Kautz
topology. Kautz graphs have interesting properties such as:
a small diametec the degree is independent of the network
size, the network is fault-tolerant and has a simple routing
algorithm.

1. Introduction
In the past decade we have seen a revolution in VLSI

technology. The transmission and switching technologies
have rapidly advanced to higher speeds; it is now techni-
cally feasible to build networks with gigabit throughput.
The Field Programmable Gate Arrays (FPGA) technology
allows gate arrays to be reprogrammed an unlimited
number of times, and also has on-chip static memory (the
X4000 family of Xilinx). Using programmable elements
gives us the opertunity to learn from experiences on proto-
types and to adapt the architecture.

We are currently building a prototype network using
these off-the-shelf technologies. Our goal is to build a local
area network that supports multimedia applications. These
applications require not just high transmission speeds, but
also small end-to-end latency with little variation, a guaran-
teed throughput, graceful degradation under heavy work-
loads, and performance that is both fair and predictable.

Low-latency services are necessary for voice and video
transfer, process control, remote sensing etc. Data for these
services is usually worthless if it does not arrive in time. A
video sequence, for instance, must be retrieved at a high
and constant rate; frames retrieved too late are no longer
useful and can be ignored. An additional problem is the
synchronization of different media. These applications
require real-time and reliable communications where cer-
tain strict deadlines must be met.

The bandwidth of many existing networks is by far not
enough for distributed multimedia applications. Their
throughput and latency is becoming a bottleneck in
demanding real-time applications. One reason is that these
networks use a single shared path for their communication.

Point-to-point networks are organized as star shaped net-
works, in which all stations are connected by dedicated
links to a central switching fabric. A connection between
two stations is established through the switching fabric.
The main advantages [9] of point-to-point networks are that
they offer an aggregate network bandwidth that can be
much larger than the throughput of a single link, and have
a high availability by allowing multiple paths in the switch-
ing fabric. The interfaces in the stations can be simple and
low cost (most of the complexities are contained within the
switching fabric) and the design is relatively independent
of the technology of the physical layer of the links. If there
are multiple paths in the switching fabric, the connections
will experience a higher availability.

In this paper' we present a network that can be used to
transfer multimedia traffic with the above requirements. We
focus on the design of a prototype switching fabric using
the new technology opportunities being offered today. The

1. Recent results obtained about the comminication infra-
structure in the Pegasus research project [7] are presented in
this paper. The Pegasus Project is a project of the Universi-
ties of men te and Cambridge, supported by the European
Communities Esprit Programme through BRA project 6586.
It is partially supported by the Cambridge Olivetti Research
Laboratory and a grant from Digital Equipment Corporation.

0-8186-5370-1/94 $3.00 0 1994 IEEE

438

architecture we are proposing meets the multimedia
requirements but still has a low complexity and a small
number of chips. A minimal cost is required as we expect
that high speed networking will not only be used for the
high-end workstations, but also for stand-alone network
devices such as cameras and displays. The switching fabric
must be able to adapt easily to other requirements and situ-
ations. Once prototyping has been completed an implemen-
tation of such an architecture in custom VLSI easily scales
to larger switches and faster links.

2 Architectural design issues
A wide range of communication types and primitives

should be supported in a distributed multimedia system. In
these systems workstations are connected to a various
number of services such as: high-performance file servers,
communication servers (gateways to Wide-Area-Net-
works), servers for manipulation of voice video and anima-
tion, etc. Our network typically provides communication
facilities within a building or campus. In each building or
floor there are one or more switching fabrics (often called
hubs). We have chosen a star sbaped network, in which all
stations are connected by dedicated links to a central
switching fabric. A connection between two stations is
established through the switching fabric.

Each switching fabric can ccinnect about 100 worksta-
tions that are located in a distance of up to 250 meters from
the fabric. The switching fabrics are interconnected through
high speed links. All stations communicate via ATM only.
In this paper we mainly discuss the communication within
a switching fabric.

communication
server

CD-i [1-e file server h-e file seTveT

Figure 1: Global architelcture of a distributed

In this section we will give the background of the archi-
tectural design decisions made. These include the intercon-
nection topology, buffer organization, routing and
scheduling.

multimedia system.

2.1 Interconnection talpology
This section describes the network topology used to

interconnect the switching elements inside the switching
fabric. The interconnection topology must be able to sup-
port the stringent demands of multimedia communications.
The topology we are seeking for is a multistage network of
very simple switching elements for several reasons. First of
all the fabric must be ablle to connect a various number of
nodes (up to 100 nodes). 'Therefore it is by far not possible
to use a shared medium its interconnect. To provide a low
latency the topology must have a low diameter. Further-
more, since we want to build networks of arbitrarily large
size using (VLSI) components as nodes, we need to have a
fixed number of connections per node. Therefore the degree
of the graph should be fixed and independent of the number
of nodes. A crossbar for example requires the number of
connections to increase with the number of nodes.

A multistage network must be able to admit self-routing.
This means that each switching element is able to switch
(route) a received message autonomously by only using a
self-routing label preceding the message. Messages placed
on the network are automatically routed and delivered to
the output destination. Since multistage networks suffer
from intemal blocking, special care has to be taken to pro-
vide a guaranteed perfo~mance. Misrouting of a cell to
avoid blocking should be handled with care, since all cells
must be kept in order.

The connectivity should be high to obtain a high availa-
bility. If there are multiple disjoint paths possible in the
graph, the connections will perceive a higher availability
and the performance degradation due to increased routing
distances resulting from faults is low.

In our prototype switch we are using a Kautz topology
because of its valuable piroperties [6] . For detailed defini-
tion and properties of Kautz networks we refer to [111. The
main advantages are:

Fixed degree: only one type of switching element needs
to be designed. Using this switch an arbitrary large net-
work can be constructed by choosing an appropriate
diameter k.
Low diameter and high connectivity: due to these facts
we were able to use a simple, circuit switching type of
transfer mode. In our prototype network we use a
directed Kautz network; with diameter k=4 and degree 3.
On this network with 108 nodes on average only 3 hops
are required to reach a destination. In combination with
virtual channels it allows us to apply bandwidth reserva-
tion for real-time traffic.
Fault tolerant routing: directed Kautz graphs support a
simple algorithm for generating the shortest route

439

(length I k). It can be extended to generate a route (of
length 5 k+2) that survives at least d-1 node or link
faults. This property can also be used to avoid congested
nodes or links [5], [lo].
The network admits selfrouting of messages. In a Kautz
digraph a straightforward generic route of length k can
be found by simple concatenation of the source address
and destination address. In the example directed graph'
with d=3 and k=2 (figure 2) we find a route R = <1013>

10

32

Figure 2: Example of a Kautz graph (K(3,2)).

from (10) to (13) via node (01). This route has length 2
(= k). In addition to that there are alternative routes:
<10213> and <10313> of length 3.
Embedding of trees: Kautz graphs can embed standard
computation graphs such as: a ring and a d-ary tree. This
last property can be used to implement multicast and
broadcast efficiently in the network.

2.2 Buffer organization
One of the main decisions when designing a switch is

how to organize buffering inside switches. Even in an inter-
nally non-blocking switch at some points buffers are
required because a number of paths share common links.
There exist many alternatives for organizing these buffers.
The buffers may be placed at the switch inputs, the output,
or they might be shared.

[8] gives a detailed discussion about the advantages and
drawbacks of some typical multistage configurations. Gen-

1. In a directed graph there is an arc from a vertex x to a ver-
tex y if and only if the last k-1 letters of x are the same as the
first k-1 letters of y. In other words the vertex (XI,...,+) is
neighbor to d vertices (x2, ..., xk,Z), where z is any letter from
the alphabet different from xk So for example in figure 2
there is an arc from (IO) to (03).

erally, pure input queueing is easier to implement than pure
output or sharing queueing in switch architectures. The lat-
ter architectures, however, provide optimal delay and
throughput performance, whereas the former suffer severe
throughput degradation due to the Head Of Line (HOL)
blocking. If the first message in the queue is blocked, the
physical channel is idle, because no other message is able
to cross the switch to the required output link.

From a performance point of view a better approach is
using parallel buffers. A switch may organise the input
buffers by associating them with virtual channels. Virtual
networks, implementing a number of virtual channels on
one physical link, was first introduced as a technique to
avoid deadlocks in networks. Dally [3] showed that virtual
networks increase the connectivity of networks and have
performance advantages as well.

The buffers of each virtual channel are allocated inde-
pendently of the buffers of the other virtual channels. This
added allocation flexibility increases channel utilization
and thus throughput. A blocked message, even one that
extends through several links (e.g. in case of worm-hole
routing), blocks only one virtual channel per link and can

from link to cross-bar

a: FIFO organisation

from link
cross-bar

~~ b: parallel organisation

Figure 3: buffer organizations

be overtaken by messages in other virtual channels. The
size of the buffer depends on the routing mechanism used.

2.3 Routing
In order to provide an arbitrary and fully dynamic con-

nectivity in a static network of nodes, routing mechanisms
must be implemented, which provide the propagation of
data from node to node, based on addresses contained
within a packet. This is an important issue in parallel and
distributed systems because it is one of the key components
that determines communication latency. Such a data rout-
ing mechanism must satisfy a number of functional require-

440

ments:

The routing protocol must be deadlock free; no message
may be stalled permanently.
The routing resources (message: buffers, link bandwidth)
must be allocated in afair way..
Freedom of live lock situations; every message injected
into the network must eventually be delivered.
Freedom of starvation; every sender must be able to
inject a message into the network.

Due to the little available buffer space inside the switch-
ing element a store-and-forward routing mechanisms seems
not appropriate. Moreover, since we intend to use a parallel
input queueing this mechanism would impose too stringent
requirements on buffer space in e,ach node since it must be
able to store a number of cell packets.

Instead of storing a packet completely in a node and then
transmitting it to the next node, wormhole routing operates
by advancing the head of packet directly from incoming to
outgoing channels. Only a few bytes (called flits) are buff-
ered at each node. APit is the smallest unit of information
that a queue or a channel can accept or refuse. As soon as a
node examines the header flit of a message, it selects the
next channel on the route and begins forwarding flits down
that channel. As flits are forwarded, the message spreads
out across the links between the source and the destination.
Wormhole routing requires a separate routing unit within
each node.

There exist a number of deadlock free routing algo-
rithms. Most algorithms are based on preventing cycles in
the dependency graph [11. However, this approach restricts
the routing of packets: it reduces the number of paths that a
packet may take. The method of nosy worms [151 is another
deadlock free approach. In this method, messages start off
by being buffered at their sending node. Each message
attempts to establish a connection with the destination node
by forming an unbroken path acroiss intermittent nodes. If a
block or a failure is encountered along the route the mes-
sage gives up by recoiling back to the sender, thus avoiding
deadlock. If there are alternative routes another node dis-
joint route can be tried. This leads to an adaptive routing
mechanism that routes around corigestions and faults. Once
a connection is made the entire message is transferred from
source to destination, where it is again buffered before it is
off-loaded to the receiving system. In fact this is a kind of
circuit switching.

Circuit switched routing is ofkn used in combination
with virtual channels. Virtual channels can be used to
improve the performance, avoid communication deadlocks
or to realize real-time communication.

~

441

In dynamic scheduling, ithe bandwidth allocation is done
distributed on the nodes along the path. A scheduling algo-
rithm determines which input is connected to an output at a
given time. The scheduling mechanism can be distributed
over the switch. At first each input sends requests to the
required output. Each output returns an acknowledgement
indicating whether the message is blocked or can be for-
warded. An input that receives a blocked status can try to
transmit another message. Because there is only a limited
amount of time to schedule it is not possible to achieve the
highest possible link utilization.

Furthermore it is hard to make a fair scheduling with no
starvation. Fair scheduling requires that each input flow
(possibly from several input links) must be allocated an
equal part of the output link bandwidth.

In the prototype switch., each flow (virtual channel) has
a dedicated buffer, so it is possible to have a scheduling
table associated with each output. For every active flow of
the outgoing link there is am entry in this table. The sched-
uler uses this table to schedule the buffers of the input, such
that each flow gets a fair share of the bandwidth.

3 The Rattlesnake Switch
In this section we will give some implementation details

about the prototype Rattlesnake Switch. The switch con-
sists of a number of switching elements interconnected via
bi-directional links. A typical switching element has 3 input
and 3 output links. Although the switching elements can be

Applications generating real-time data are able to
reserve a circuit switched connection from source to desti-
nation. Less demanding aipplications, like file transfers,
may release the connection after a message transfer is com-
pleted. In this way the the buffers are released and can be
used for other connections.

A performance analysis of the routing mechanisms and
transfer modes used in the prototype Rattlesnake switch is
presented in [121.

2.4 Scheduling
In all switch architectures with buffering, a scheduling

mechanism determines which buffer may transmit its data
in a given time slot. The sicheduler must be fair, and must
not incur starvation. Basicailly there are two types of sched-
uling: static and dynamic scheduling [2]. In static schedul-
ing the bandwidth allocation is stored in scheduling tables,
that describe what communication takes place in each time
slot. The main advantage of static scheduling is that is has
a bounded latency. Therefiore it can be used for real-time
traffic. The disadvantage is that it is hard to set up the
scheduling tables in all nodes on the path, and that for each
reservation the scheduling tables have to be reorganized.

configurated in several network topologies such as: torus,
mesh and deBruijn networks, we advocate a Kautz network
topology [101 because of its valuable properties. Particu-
larly, Kautz graphs have a small diameter, a fixed and a
small degree (see section 2.1).

Each switching element is connected to a port controller
(Snake Control). The port controller is connected via point-
to-point links (> 100Mbids) to a (work)station or a server.
It has local memory in which the ATM cells coming from
and going to the serial link are buffered. The Snake Control
takes care of the ATM adaptation and performs an advanced
priority scheme. It is responsible for the implementation of
the transfer mode and use of the Switching Elements [13].
It uses a Hybrid lime Division Multiplexing transfer mode
[4] in which time is divided into frames. Each frame has a
fixed maximum number of slots. Part of these slots are
assigned to real-time services, and the rest to non real-time
services. The real-time messages as well as the non real-
time message have to be split up into small fragments with
the size of a flit. These flits can be transmitted in the allo-
cated slots; i.e. real-time flits in real-time slots and other
flits in non real-time slots. In addition to that the non real-
time traffic is allowed to seize any unused real-time slot.

A connection between two arbitrary stations is made via
two or more switching elements in the switching fabric. A
message generated by a source station travels through these
switching elements to reach a destination station. The
Switching elements forward messages from an input link to
an output link, as directed by the destination address in each
message header.

3.1 The Switching Element
In this section we present the switch architecture in more

detail. A switch has 3 input sections and 3 output sections.
The input and output sections are connected via a crossbar.
The claim unit is the global administration controller that
assigns virtual channels to connections.

The Snake Controller splits up ATM cells coming from
the stations into flits and transmits them to its Switching
Element. APit consists in our case of 32 bits data and 8 bits
identification. The identification consists of a 4 bits virtual
channel number and 4 bits type.

We use a physical channel consisting of an 8-bit forward
path and a 1-bit reverse path. Each flit is sent (internally and
externally) over the forward path in five phases: one flit
identification phase and four data phases. Simultaneously a
Cbit status of the current virtual channel is transmitted over
the reverse path.

Figure 4 shows the internal organisation of an input link
of a switching element. Each inlink contains 16paralZeZflit
buffers. These buffers are used to implement the 16 virtual

442

flit
buffers

scheduling

I I I

from
link data (flits)

d channel#, link# to Outlink

* I -
mapping
table

m
new channel# link#

Figure 4: Structure of the input part of a link.

channels of a link. When establishing a connection from
source to destination, each switch assigns a flit buffer (and
thus a virtual channel) for this circuit. The routing informa-
tion (i.e. the selected outlink) is stored in mapping tables
associated with each inlink. Each entry in the table also
contains the new virtual channel number that must be used
for the connection with the next SE. This channel number
is assigned by the claimer unit during the connection setup
phase (see section 3.3). Each entry in the mapping table has
only local significance and identifies the local virtual chan-
nel translation.

While a flit is being transferred over the link, informa-
tion in the reverse direction is returned to indicate the status
of the buffers of the receiving node (since they might not be
emptied yet). Associated with each flit buffer is a status
buffer of 4 bits. This status is transferred via the reverse
path during the reception of a flit. The outlink section of the
previous SE, will transfer this status to its inlink where it
will be stored in the status buffer. With this mechanism it is
possible to return small status messages not only between
Switching Elements, but also from the receiving Snake
Control.

3.2 Scheduling
In the first prototype we use a simple dynamic scheduler.

This scheduler does not use the fair queueing mechanism as
described in section 2.4. The input and output links negoti-
ate about the scheduling of the next data transfer action
while a data transfer is taking place.

Each inlink has its own scheduler that selects an input flit
that will be forwarded to an output link. Associated with
each flit buffer there is a register indicating whether the flit
actually has data. The scheduler uses a round robin mecha-
nism to select a flit buffer that contains data. It sends a

request to the required output. If the output receives
requests, it chooses one (round robin) to grant and sends an
acknowledgement to the inlink.

It is possible that in one time slot more than one inlinks
choose to send a flit to the sarne outlink section, even
though there are other flits available for other outlinks. This
drawback is circumvented because during the time of one
flit transfer 4 scheduling actions can be performed. So all
outgoing links can be requested.

Note that these iterations are only used to fill the gap of
unused outputs. The inlink scheduler may only change the
priority (the round robin scheduling) of a flit buffer during
one flit cycle. Although this mechanism is not fair, it does
not incur starvation. Every virtual channel of an input will
receive a grant from an output.

3.3 Connection setup
The communication architecture should provide a guar-

anteed throughput and a bounded Ilatency. Therefore it must
be able to establish hard real-time connections (i.e. band-
width reservation using real-time virtual channels).

We use a simple deadlock free routing algorithm (called
nosy worms algorithm) similar to the one described in sec-
tion 2.3. The algorithm attempts to establish a connection
with the destination by allocating an unbroken path across
intermittent nodes. If a failure ox a blocking condition ,is
encountered along the route the set-up message gives up by
recoiling back to the sender; thus avoiding deadlock.
Another route can be tried’.

To find a path from inlet to outlet of the switching fabric
we take advantage of the self-routing property of Kautz net-
works. The route to be followed is contained in a single
string of digits, called the routing mg. The consecutive dig-
its of the routing tag are interpreted stage-by-stage. Each
Switching Element reads one control flit, sets up the map-
ping table, and sends the rest of the message to the required
outlink. When an input section receives the first claim flit of
a connection, it delivers this flit at the claim unit. The Claim
Unit will assign a free virtual channel and update the map-
ping table of the inlink.

The path of a logical connection is set for the duration of
a connection. This means that messages of a certain con-
nection will always follow the same path through the
switching fabric. When the input section receives a release

1. The probability of a connection message reaching its des-
tination depends primarily on the c:hances of finding an un-
broken chain of channels. [12] gives simulation results
showing that these chances are improved by using a low di-
ameter network (e.g. Kautz), using alternative routes, and by
using virtual channels.

flit, it notifies the Claim Unit, which will update the map-
ping tables, The inlink will transmit the release flit to the
outlink to notify the other !switches down stream.

When the Claim Unit could not find a free virtual chan-
nel for a certain link, it can reply with a ‘route error’ status.
The input section stores this error code in the status buffer.
On reception of the following flit of that channel, this error
code is returned to signal that the connection request failed.
This status ripples back to the source, which can decide to
try another route.

4 Implementation
In our prototype the switch is implemented with Field

Programmable Gate Array (FPGA) technology [161. Xil-
inx’s FPGA architecture is similar to other gate arrays, with
an interior matrix of configurable logic blocks and a sur-
rounding ring of YO interface blocks.

This technology allows gate arrays to be reprogrammed
an unlimited number of timles. Therefore they are suited for
designs in which the functions of the hardware needs adap-
tations in order to meet changing application requirements.
The main reason for using FPGAs is JexibiZiQ. We use
FF’GAs as dynamic programmable units, whose function
can be changed under program control [Ill.

We had to make a numher of a priori design decisions,
decisions that cannot be chimged because they are fixed for
instance due to circuit layout or interconnections structure.
We have made a prototype printed circuit board containing
2 Xiliw PG4010 FPGAs to implement the Switching Ele-
ment and the Snake Control, and two memories of 2
Mbytes connected to the !snake Control. A switch has 3
input and 3 output links with each 9 wires. These wires can
be selected uni-directional or bi-directional. The interface
with the node computers is provided using TAXI links [17].
(We use the Fairile transmission boards designed by Uni-
versity of Cambridge.)

This prototype board allows us to do experiments with
and performance measurements of several transmission
modes, bandwidth reservati on, scheduling, routing for non
real-time traffic, link protocols, multicast etc. We use
VHDL as a design tool and a VHDL synthesizer from
VIEWlogic [141 to generate the configuration code for the
Xilinx chips. A limitation of the current FF’GAs is that they
have only a limited amouni of on-chip memory. However,
this does not affect wormhiole routing, where only a few
flits need to be stored in the: switch. Wormhole routing can
be implemented efficiently in FPGAs. If the switch is used
in store-and-forward fashion, the off-chip memory is used.
The available FPGA memory is sufficient to implement
wormhole routing with a limited number of virtual chan-
nels.

443

5 Conclusion
In this paper we have presented the architecture of a

high-performance, low-latency network suitable for hard
real-time multimedia applications. For real-time services
we use a connection oriented protocol. A modified nosy
worms protocol is used for setting up a connection for real-
time services. Once a connection is established it guaran-
tees a bounded latency. To increase the probability of find-
ing a connection from source to destination we exploit the
node disjoint routes and the low diameter of the intercon-
nection network. Above that we use virtual channels in
order to improve the performance and to avoid communica-
tion deadlocks.

The switches use input buffering. For each virtual chan-
nel there is a buffer in the switch. The buffers are organized
in a parallel fashion to avoid head of line blocking.

The network of the switching fabric is built up from
switching elements interconnected in a Kautz topology.
Kautz graphs have interesting properties such as: small
diameter, the degree is independent of the network size, the
network is fault-tolerant and has a simple routing algo-
rithm.

A prototype of a switching element has been imple-
mented with a standard FPGA. The design of the switching
fabric with FPGAs, allows us to experiment with switching
mode, routing strategy and scheduling policy in a multime-
dia environment.

References
Adamo, J.M.: “Minimal, adaptive and deadlock-free rout-
ing for multiprocessors”, Laboratoire de LIP-MAG, Ecole
normale superieure de Lyon, France, June 1991.

Anderson T.E., Owicki S.S., Saxe J.B., Tacker C.P.: “High
Speed Switch Scheduling for Local Area Networks”, Proc.

Dally W.J.: “Virtual-channel Flow Control”, Proc. 17th
ACMnEEE Symposium on Computer Architecture, 1990,

Hui J.Y.: ”Switching and traffic theory for integrated broad-
band networks.”, Dordrecht, The Netherlands: Kluwer Aca-
demic Publishers, 1990.

ACM ASPLOS V, pp 98-110, 1992.

pp 60-67.

Imase M., Soneoka T., Okada K.: “A fault-tolerant proces-
sor interconnection network” (original in Japanese); trans-
lated in Systems and Computers in Japan, vol 17, no 8 pp

Kautz W.H.:“Bounds on directed (dJc) graphs. Theory of
cellular logic networks and machines”, AFCRL-68-0668
Final report, pp 20-28, 1968.

Leslie I.M., McAuley D., Mullender S.J.: “Pegasus - oper-
ating system support for distributed multimedia systems
(pegasus paper 92-2)”, Memoranda Informatica 92-76,
Twente University dept. Computer Science, 1992,

Pattavina A.: “Nonblocking Architectures for N M Switch-
ing”, IEEE Communications Magazine, February 1993, pp

Schroeder M.D., Birrell A.D. et al.;”Autonet: a High-speed,
Self-configuring Local Area Network Using Point-to-point
Links”, Digital Systems Research Center, Palo Alto, CA,
April 1990.

Smit G.J.M., Havinga P.J.M., Jansen P.G.: “An algorithm
for generating node disjoint routes in Kautz digraphs’, Pro-
ceedings Fifth International Parallel Processing Sympo-
sium, Anaheim, CA, 1991.

Smit G.J.M., Havinga P.J.M., Jansen P.G.: “On the design
of a reconfigurable network switch”, Microprocessing and
Microprogramming 34, pp 59-62, 1992

Smit G.J.M., Havinga P.J.M.: “Performance analysis of
routing algorithms for the Rattlesnake network”, Proceed-
ings MASCOTS ‘93, January 1993, pp 155-160

Tibboel W. H.: “Virtual Lines, a deadlock free and real-time
buffer allocation mechanism for an ATM-network”, Ms
Thesis, University of Twente, department of Computer Sci-
ence, July 1993.

“VHDL-Designer User’s Guide”, VIEWlogic Systems Inc,
April 1990.

Whobrey D.: “A communications chip for multiproces-
sors”, Proc. CONPAR 88 pp 464-473, 1988.

“The Programmable Logic Data Book”, Xilinx Inc., 1993.

Advanced Micro Devices: “AM79168lAM79 169-275
TAXIchip TransmitterReceiver”, Publication 15765, Feb-
ruary 1992.

21-30, 1986.

38-48.

444

