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Abstract 
In this paper we present a switch that can be used to trans- 
fer multimedia type of trafJic. The switch provides a guar- 
anteed throughput and a bounded latency. We focus on the 
design of a prototype Switching Element using the new 
technology opportunities being offered today. The architec- 
ture meets the multimedia requirements but still has a low 
complexity and needs a minimum amount of hardware. 
A main item of this paper will be the background of the 
architectural design decisions made. These include the 
interconnection topology, buffer organization, routing and 
scheduling. 

The implementation of the switching fabric with FPGAs, 
allows us to experiment with switching mode, routing strat- 
egy and scheduling policy in a multimedia environment. 
The switching elements are interconnected in a Kautz 
topology. Kautz graphs have interesting properties such as: 
a small diametec the degree is independent of the network 
size, the network is fault-tolerant and has a simple routing 
algorithm. 

1. Introduction 
In the past decade we have seen a revolution in VLSI 

technology. The transmission and switching technologies 
have rapidly advanced to higher speeds; it is now techni- 
cally feasible to build networks with gigabit throughput. 
The Field Programmable Gate Arrays (FPGA) technology 
allows gate arrays to be reprogrammed an unlimited 
number of times, and also has on-chip static memory (the 
X4000 family of Xilinx). Using programmable elements 
gives us the opertunity to learn from experiences on proto- 
types and to adapt the architecture. 

We are currently building a prototype network using 
these off-the-shelf technologies. Our goal is to build a local 
area network that supports multimedia applications. These 
applications require not just high transmission speeds, but 
also small end-to-end latency with little variation, a guaran- 
teed throughput, graceful degradation under heavy work- 
loads, and performance that is both fair and predictable. 

Low-latency services are necessary for voice and video 
transfer, process control, remote sensing etc. Data for these 
services is usually worthless if it does not arrive in time. A 
video sequence, for instance, must be retrieved at a high 
and constant rate; frames retrieved too late are no longer 
useful and can be ignored. An additional problem is the 
synchronization of different media. These applications 
require real-time and reliable communications where cer- 
tain strict deadlines must be met. 

The bandwidth of many existing networks is by far not 
enough for distributed multimedia applications. Their 
throughput and latency is becoming a bottleneck in 
demanding real-time applications. One reason is that these 
networks use a single shared path for their communication. 

Point-to-point networks are organized as star shaped net- 
works, in which all stations are connected by dedicated 
links to a central switching fabric. A connection between 
two stations is established through the switching fabric. 
The main advantages [9] of point-to-point networks are that 
they offer an aggregate network bandwidth that can be 
much larger than the throughput of a single link, and have 
a high availability by allowing multiple paths in the switch- 
ing fabric. The interfaces in the stations can be simple and 
low cost (most of the complexities are contained within the 
switching fabric) and the design is relatively independent 
of the technology of the physical layer of the links. If there 
are multiple paths in the switching fabric, the connections 
will experience a higher availability. 

In this paper' we present a network that can be used to 
transfer multimedia traffic with the above requirements. We 
focus on the design of a prototype switching fabric using 
the new technology opportunities being offered today. The 

1. Recent results obtained about the comminication infra- 
structure in the Pegasus research project [7] are presented in 
this paper. The Pegasus Project is a project of the Universi- 
ties of men te  and Cambridge, supported by the European 
Communities Esprit Programme through BRA project 6586. 
It is partially supported by the Cambridge Olivetti Research 
Laboratory and a grant from Digital Equipment Corporation. 
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architecture we are proposing meets the multimedia 
requirements but still has a low complexity and a small 
number of chips. A minimal cost is required as we expect 
that high speed networking will not only be used for the 
high-end workstations, but also for stand-alone network 
devices such as cameras and displays. The switching fabric 
must be able to adapt easily to other requirements and situ- 
ations. Once prototyping has been completed an implemen- 
tation of such an architecture in custom VLSI easily scales 
to larger switches and faster links. 

2 Architectural design issues 
A wide range of communication types and primitives 

should be supported in a distributed multimedia system. In 
these systems workstations are connected to a various 
number of services such as: high-performance file servers, 
communication servers (gateways to Wide-Area-Net- 
works), servers for manipulation of voice video and anima- 
tion, etc. Our network typically provides communication 
facilities within a building or campus. In each building or 
floor there are one or more switching fabrics (often called 
hubs). We have chosen a star sbaped network, in which all 
stations are connected by dedicated links to a central 
switching fabric. A connection between two stations is 
established through the switching fabric. 

Each switching fabric can ccinnect about 100 worksta- 
tions that are located in a distance of up to 250 meters from 
the fabric. The switching fabrics are interconnected through 
high speed links. All stations communicate via ATM only. 
In this paper we mainly discuss the communication within 
a switching fabric. 

communication 
server 

CD-i [1-e file server h-e file seTveT 

Figure 1: Global architelcture of a distributed 

In this section we will give the background of the archi- 
tectural design decisions made. These include the intercon- 
nection topology, buffer organization, routing and 
scheduling. 

multimedia system. 

2.1 Interconnection talpology 
This section describes the network topology used to 

interconnect the switching elements inside the switching 
fabric. The interconnection topology must be able to sup- 
port the stringent demands of multimedia communications. 
The topology we are seeking for is a multistage network of 
very simple switching elements for several reasons. First of 
all the fabric must be ablle to connect a various number of 
nodes (up to 100 nodes). 'Therefore it is by far not possible 
to use a shared medium its interconnect. To provide a low 
latency the topology must have a low diameter. Further- 
more, since we want to build networks of arbitrarily large 
size using (VLSI) components as nodes, we need to have a 
fixed number of connections per node. Therefore the degree 
of the graph should be fixed and independent of the number 
of nodes. A crossbar for example requires the number of 
connections to increase with the number of nodes. 

A multistage network must be able to admit self-routing. 
This means that each switching element is able to switch 
(route) a received message autonomously by only using a 
self-routing label preceding the message. Messages placed 
on the network are automatically routed and delivered to 
the output destination. Since multistage networks suffer 
from intemal blocking, special care has to be taken to pro- 
vide a guaranteed perfo~mance. Misrouting of a cell to 
avoid blocking should be handled with care, since all cells 
must be kept in order. 

The connectivity should be high to obtain a high availa- 
bility. If there are multiple disjoint paths possible in the 
graph, the connections will perceive a higher availability 
and the performance degradation due to increased routing 
distances resulting from faults is low. 

In our prototype switch we are using a Kautz topology 
because of its valuable piroperties [6] .  For detailed defini- 
tion and properties of Kautz networks we refer to [ 111. The 
main advantages are: 

Fixed degree: only one type of switching element needs 
to be designed. Using this switch an arbitrary large net- 
work can be constructed by choosing an appropriate 
diameter k. 
Low diameter and high connectivity: due to these facts 
we were able to use a simple, circuit switching type of 
transfer mode. In our prototype network we use a 
directed Kautz network; with diameter k=4 and degree 3. 
On this network with 108 nodes on average only 3 hops 
are required to reach a destination. In combination with 
virtual channels it allows us to apply bandwidth reserva- 
tion for real-time traffic. 
Fault tolerant routing: directed Kautz graphs support a 
simple algorithm for generating the shortest route 
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(length I k). It can be extended to generate a route (of 
length 5 k+2) that survives at least d-1 node or link 
faults. This property can also be used to avoid congested 
nodes or links [5], [lo]. 
The network admits selfrouting of messages. In a Kautz 
digraph a straightforward generic route of length k can 
be found by simple concatenation of the source address 
and destination address. In the example directed graph' 
with d=3 and k=2 (figure 2) we find a route R = <1013> 

10 

32 

Figure 2: Example of a Kautz graph (K(3,2)). 

from (10) to (13) via node (01). This route has length 2 
(= k). In addition to that there are alternative routes: 
<10213> and <10313> of length 3. 
Embedding of trees: Kautz graphs can embed standard 
computation graphs such as: a ring and a d-ary tree. This 
last property can be used to implement multicast and 
broadcast efficiently in the network. 

2.2 Buffer organization 
One of the main decisions when designing a switch is 

how to organize buffering inside switches. Even in an inter- 
nally non-blocking switch at some points buffers are 
required because a number of paths share common links. 
There exist many alternatives for organizing these buffers. 
The buffers may be placed at the switch inputs, the output, 
or they might be shared. 

[8] gives a detailed discussion about the advantages and 
drawbacks of some typical multistage configurations. Gen- 

1. In a directed graph there is an arc from a vertex x to a ver- 
tex y if and only if the last k-1 letters of x are the same as the 
first k-1 letters of y. In other words the vertex (XI,...,+) is 
neighbor to d vertices (x2, ..., xk,Z), where z is any letter from 
the alphabet different from xk So for example in figure 2 
there is an arc from (IO) to (03). 

erally, pure input queueing is easier to implement than pure 
output or sharing queueing in switch architectures. The lat- 
ter architectures, however, provide optimal delay and 
throughput performance, whereas the former suffer severe 
throughput degradation due to the Head Of Line (HOL) 
blocking. If the first message in the queue is blocked, the 
physical channel is idle, because no other message is able 
to cross the switch to the required output link. 

From a performance point of view a better approach is 
using parallel buffers. A switch may organise the input 
buffers by associating them with virtual channels. Virtual 
networks, implementing a number of virtual channels on 
one physical link, was first introduced as a technique to 
avoid deadlocks in networks. Dally [3] showed that virtual 
networks increase the connectivity of networks and have 
performance advantages as well. 

The buffers of each virtual channel are allocated inde- 
pendently of the buffers of the other virtual channels. This 
added allocation flexibility increases channel utilization 
and thus throughput. A blocked message, even one that 
extends through several links (e.g. in case of worm-hole 
routing), blocks only one virtual channel per link and can 

from link to cross-bar 

a: FIFO organisation 

from link 
cross-bar 

~~ b: parallel organisation 

Figure 3: buffer organizations 

be overtaken by messages in other virtual channels. The 
size of the buffer depends on the routing mechanism used. 

2.3 Routing 
In order to provide an arbitrary and fully dynamic con- 

nectivity in a static network of nodes, routing mechanisms 
must be implemented, which provide the propagation of 
data from node to node, based on addresses contained 
within a packet. This is an important issue in parallel and 
distributed systems because it is one of the key components 
that determines communication latency. Such a data rout- 
ing mechanism must satisfy a number of functional require- 
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ments: 

The routing protocol must be deadlock free; no message 
may be stalled permanently. 
The routing resources (message: buffers, link bandwidth) 
must be allocated in afair way.. 
Freedom of live lock situations; every message injected 
into the network must eventually be delivered. 
Freedom of starvation; every sender must be able to 
inject a message into the network. 

Due to the little available buffer space inside the switch- 
ing element a store-and-forward routing mechanisms seems 
not appropriate. Moreover, since we intend to use a parallel 
input queueing this mechanism would impose too stringent 
requirements on buffer space in e,ach node since it must be 
able to store a number of cell packets. 

Instead of storing a packet completely in a node and then 
transmitting it to the next node, wormhole routing operates 
by advancing the head of packet directly from incoming to 
outgoing channels. Only a few bytes (called flits) are buff- 
ered at each node. APit is the smallest unit of information 
that a queue or a channel can accept or refuse. As soon as a 
node examines the header flit of a message, it selects the 
next channel on the route and begins forwarding flits down 
that channel. As flits are forwarded, the message spreads 
out across the links between the source and the destination. 
Wormhole routing requires a separate routing unit within 
each node. 

There exist a number of deadlock free routing algo- 
rithms. Most algorithms are based on preventing cycles in 
the dependency graph [ 11. However, this approach restricts 
the routing of packets: it reduces the number of paths that a 
packet may take. The method of nosy worms [ 151 is another 
deadlock free approach. In this method, messages start off 
by being buffered at their sending node. Each message 
attempts to establish a connection with the destination node 
by forming an unbroken path acroiss intermittent nodes. If a 
block or a failure is encountered along the route the mes- 
sage gives up by recoiling back to the sender, thus avoiding 
deadlock. If there are alternative routes another node dis- 
joint route can be tried. This leads to an adaptive routing 
mechanism that routes around corigestions and faults. Once 
a connection is made the entire message is transferred from 
source to destination, where it is again buffered before it is 
off-loaded to the receiving system. In fact this is a kind of 
circuit switching. 

Circuit switched routing is ofkn used in combination 
with virtual channels. Virtual channels can be used to 
improve the performance, avoid communication deadlocks 
or to realize real-time communication. 

~ 
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In dynamic scheduling, ithe bandwidth allocation is done 
distributed on the nodes along the path. A scheduling algo- 
rithm determines which input is connected to an output at a 
given time. The scheduling mechanism can be distributed 
over the switch. At first each input sends requests to the 
required output. Each output returns an acknowledgement 
indicating whether the message is blocked or can be for- 
warded. An input that receives a blocked status can try to 
transmit another message. Because there is only a limited 
amount of time to schedule it is not possible to achieve the 
highest possible link utilization. 

Furthermore it is hard to make a fair scheduling with no 
starvation. Fair scheduling requires that each input flow 
(possibly from several input links) must be allocated an 
equal part of the output link bandwidth. 

In the prototype switch., each flow (virtual channel) has 
a dedicated buffer, so it is possible to have a scheduling 
table associated with each output. For every active flow of 
the outgoing link there is am entry in this table. The sched- 
uler uses this table to schedule the buffers of the input, such 
that each flow gets a fair share of the bandwidth. 

3 The Rattlesnake Switch 
In this section we will give some implementation details 

about the prototype Rattlesnake Switch. The switch con- 
sists of a number of switching elements interconnected via 
bi-directional links. A typical switching element has 3 input 
and 3 output links. Although the switching elements can be 

Applications generating real-time data are able to 
reserve a circuit switched connection from source to desti- 
nation. Less demanding aipplications, like file transfers, 
may release the connection after a message transfer is com- 
pleted. In this way the the buffers are released and can be 
used for other connections. 

A performance analysis of the routing mechanisms and 
transfer modes used in the prototype Rattlesnake switch is 
presented in [ 121. 

2.4 Scheduling 
In all switch architectures with buffering, a scheduling 

mechanism determines which buffer may transmit its data 
in a given time slot. The sicheduler must be fair, and must 
not incur starvation. Basicailly there are two types of sched- 
uling: static and dynamic scheduling [2]. In static schedul- 
ing the bandwidth allocation is stored in scheduling tables, 
that describe what communication takes place in each time 
slot. The main advantage of static scheduling is that is has 
a bounded latency. Therefiore it can be used for real-time 
traffic. The disadvantage is that it is hard to set up the 
scheduling tables in all nodes on the path, and that for each 
reservation the scheduling tables have to be reorganized. 



configurated in several network topologies such as: torus, 
mesh and deBruijn networks, we advocate a Kautz network 
topology [ 101 because of its valuable properties. Particu- 
larly, Kautz graphs have a small diameter, a fixed and a 
small degree (see section 2.1). 

Each switching element is connected to a port controller 
(Snake Control). The port controller is connected via point- 
to-point links (> 100Mbids) to a (work)station or a server. 
It has local memory in which the ATM cells coming from 
and going to the serial link are buffered. The Snake Control 
takes care of the ATM adaptation and performs an advanced 
priority scheme. It is responsible for the implementation of 
the transfer mode and use of the Switching Elements [13]. 
It uses a Hybrid lime Division Multiplexing transfer mode 
[4] in which time is divided into frames. Each frame has a 
fixed maximum number of slots. Part of these slots are 
assigned to real-time services, and the rest to non real-time 
services. The real-time messages as well as the non real- 
time message have to be split up into small fragments with 
the size of a flit. These flits can be transmitted in the allo- 
cated slots; i.e. real-time flits in real-time slots and other 
flits in non real-time slots. In addition to that the non real- 
time traffic is allowed to seize any unused real-time slot. 

A connection between two arbitrary stations is made via 
two or more switching elements in the switching fabric. A 
message generated by a source station travels through these 
switching elements to reach a destination station. The 
Switching elements forward messages from an input link to 
an output link, as directed by the destination address in each 
message header. 

3.1 The Switching Element 
In this section we present the switch architecture in more 

detail. A switch has 3 input sections and 3 output sections. 
The input and output sections are connected via a crossbar. 
The claim unit is the global administration controller that 
assigns virtual channels to connections. 

The Snake Controller splits up ATM cells coming from 
the stations into flits and transmits them to its Switching 
Element. APit consists in our case of 32 bits data and 8 bits 
identification. The identification consists of a 4 bits virtual 
channel number and 4 bits type. 

We use a physical channel consisting of an 8-bit forward 
path and a 1-bit reverse path. Each flit is sent (internally and 
externally) over the forward path in five phases: one flit 
identification phase and four data phases. Simultaneously a 
Cbit status of the current virtual channel is transmitted over 
the reverse path. 

Figure 4 shows the internal organisation of an input link 
of a switching element. Each inlink contains 16paralZeZflit 
buffers. These buffers are used to implement the 16 virtual 
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Figure 4: Structure of the input part of a link. 

channels of a link. When establishing a connection from 
source to destination, each switch assigns a flit buffer (and 
thus a virtual channel) for this circuit. The routing informa- 
tion (i.e. the selected outlink) is stored in mapping tables 
associated with each inlink. Each entry in the table also 
contains the new virtual channel number that must be used 
for the connection with the next SE. This channel number 
is assigned by the claimer unit during the connection setup 
phase (see section 3.3). Each entry in the mapping table has 
only local significance and identifies the local virtual chan- 
nel translation. 

While a flit is being transferred over the link, informa- 
tion in the reverse direction is returned to indicate the status 
of the buffers of the receiving node (since they might not be 
emptied yet). Associated with each flit buffer is a status 
buffer of 4 bits. This status is transferred via the reverse 
path during the reception of a flit. The outlink section of the 
previous SE, will transfer this status to its inlink where it 
will be stored in the status buffer. With this mechanism it is 
possible to return small status messages not only between 
Switching Elements, but also from the receiving Snake 
Control. 

3.2 Scheduling 
In the first prototype we use a simple dynamic scheduler. 

This scheduler does not use the fair queueing mechanism as 
described in section 2.4. The input and output links negoti- 
ate about the scheduling of the next data transfer action 
while a data transfer is taking place. 

Each inlink has its own scheduler that selects an input flit 
that will be forwarded to an output link. Associated with 
each flit buffer there is a register indicating whether the flit 
actually has data. The scheduler uses a round robin mecha- 
nism to select a flit buffer that contains data. It sends a 



request to the required output. If the output receives 
requests, it chooses one (round robin) to grant and sends an 
acknowledgement to the inlink. 

It is possible that in one time slot more than one inlinks 
choose to send a flit to the sarne outlink section, even 
though there are other flits available for other outlinks. This 
drawback is circumvented because during the time of one 
flit transfer 4 scheduling actions can be performed. So all 
outgoing links can be requested. 

Note that these iterations are only used to fill the gap of 
unused outputs. The inlink scheduler may only change the 
priority (the round robin scheduling) of a flit buffer during 
one flit cycle. Although this mechanism is not fair, it does 
not incur starvation. Every virtual channel of an input will 
receive a grant from an output. 

3.3 Connection setup 
The communication architecture should provide a guar- 

anteed throughput and a bounded Ilatency. Therefore it must 
be able to establish hard real-time connections (i.e. band- 
width reservation using real-time virtual channels). 

We use a simple deadlock free routing algorithm (called 
nosy worms algorithm) similar to the one described in sec- 
tion 2.3. The algorithm attempts to establish a connection 
with the destination by allocating an unbroken path across 
intermittent nodes. If a failure ox a blocking condition ,is 
encountered along the route the set-up message gives up by 
recoiling back to the sender; thus avoiding deadlock. 
Another route can be tried’. 

To find a path from inlet to outlet of the switching fabric 
we take advantage of the self-routing property of Kautz net- 
works. The route to be followed is contained in a single 
string of digits, called the routing mg. The consecutive dig- 
its of the routing tag are interpreted stage-by-stage. Each 
Switching Element reads one control flit, sets up the map- 
ping table, and sends the rest of the message to the required 
outlink. When an input section receives the first claim flit of 
a connection, it delivers this flit at the claim unit. The Claim 
Unit will assign a free virtual channel and update the map- 
ping table of the inlink. 

The path of a logical connection is set for the duration of 
a connection. This means that messages of a certain con- 
nection will always follow the same path through the 
switching fabric. When the input section receives a release 

1. The probability of a connection message reaching its des- 
tination depends primarily on the c:hances of finding an un- 
broken chain of channels. [12] gives simulation results 
showing that these chances are improved by using a low di- 
ameter network (e.g. Kautz), using alternative routes, and by 
using virtual channels. 

flit, it notifies the Claim Unit, which will update the map- 
ping tables, The inlink will transmit the release flit to the 
outlink to notify the other !switches down stream. 

When the Claim Unit could not find a free virtual chan- 
nel for a certain link, it can reply with a ‘route error’ status. 
The input section stores this error code in the status buffer. 
On reception of the following flit of that channel, this error 
code is returned to signal that the connection request failed. 
This status ripples back to the source, which can decide to 
try another route. 

4 Implementation 
In our prototype the switch is implemented with Field 

Programmable Gate Array (FPGA) technology [ 161. Xil- 
inx’s FPGA architecture is similar to other gate arrays, with 
an interior matrix of configurable logic blocks and a sur- 
rounding ring of YO interface blocks. 

This technology allows gate arrays to be reprogrammed 
an unlimited number of timles. Therefore they are suited for 
designs in which the functions of the hardware needs adap- 
tations in order to meet changing application requirements. 
The main reason for using FPGAs is JexibiZiQ. We use 
FF’GAs as dynamic programmable units, whose function 
can be changed under program control [Ill. 

We had to make a numher of a priori design decisions, 
decisions that cannot be chimged because they are fixed for 
instance due to circuit layout or interconnections structure. 
We have made a prototype printed circuit board containing 
2 Xiliw PG4010 FPGAs to implement the Switching Ele- 
ment and the Snake Control, and two memories of 2 
Mbytes connected to the !snake Control. A switch has 3 
input and 3 output links with each 9 wires. These wires can 
be selected uni-directional or bi-directional. The interface 
with the node computers is provided using TAXI links [17]. 
(We use the Fairile transmission boards designed by Uni- 
versity of Cambridge.) 

This prototype board allows us to do experiments with 
and performance measurements of several transmission 
modes, bandwidth reservati on, scheduling, routing for non 
real-time traffic, link protocols, multicast etc. We use 
VHDL as a design tool and a VHDL synthesizer from 
VIEWlogic [ 141 to generate the configuration code for the 
Xilinx chips. A limitation of the current FF’GAs is that they 
have only a limited amouni of on-chip memory. However, 
this does not affect wormhiole routing, where only a few 
flits need to be stored in the: switch. Wormhole routing can 
be implemented efficiently in FPGAs. If the switch is used 
in store-and-forward fashion, the off-chip memory is used. 
The available FPGA memory is sufficient to implement 
wormhole routing with a limited number of virtual chan- 
nels. 
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5 Conclusion 
In this paper we have presented the architecture of a 

high-performance, low-latency network suitable for hard 
real-time multimedia applications. For real-time services 
we use a connection oriented protocol. A modified nosy 
worms protocol is used for setting up a connection for real- 
time services. Once a connection is established it guaran- 
tees a bounded latency. To increase the probability of find- 
ing a connection from source to destination we exploit the 
node disjoint routes and the low diameter of the intercon- 
nection network. Above that we use virtual channels in 
order to improve the performance and to avoid communica- 
tion deadlocks. 

The switches use input buffering. For each virtual chan- 
nel there is a buffer in the switch. The buffers are organized 
in a parallel fashion to avoid head of line blocking. 

The network of the switching fabric is built up from 
switching elements interconnected in a Kautz topology. 
Kautz graphs have interesting properties such as: small 
diameter, the degree is independent of the network size, the 
network is fault-tolerant and has a simple routing algo- 
rithm. 

A prototype of a switching element has been imple- 
mented with a standard FPGA. The design of the switching 
fabric with FPGAs, allows us to experiment with switching 
mode, routing strategy and scheduling policy in a multime- 
dia environment. 
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