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Preface

Arithmetic dynamics is discrete-time dynamics (function iteration) over arithmetical sets, such as
algebraic number rings and fields, finite fields,p-adic fields, polynomial rings, algebraic curves,
etc. This rapidly growing area of research lies at the interface between dynamics and number
theory. It is rich in history and motivations, and is a fertile ground for the development of
algorithmic and computer-oriented theories.

Some constructs of arithmetic dynamics (periodic orbits and their stability), are straightforward
adaptations of dynamical concepts. Others (entropy, bifurcations), expose unexpected connec-
tions. The probabilistic phenomena are the most intriguing, as they originate from fluctuations
of arithmetical origin. There one finds at the outset problems of considerable difficulty.

Some ideas of arithmetic dynamics are simple and compelling. By exploiting this circumstance,
it is possible to introduce this subject while keeping the pre-requisite material to a minimum.
This is the aim of the present course. I assume some familiarity with dynamical systems ideas,
although little specific knowledge is actually used. The necessary background in arithmetic and
algebra will be reviewed briefly, mostly omitting the proofs.

For advanced texts on arithmetic dynamics, see [4, 13, 2].

Franco Vivaldi
London, July 2011.
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1 Gauss and the digits of rationals

We begin with some observations about digits of fractions. The decimal fraction 1/7 is periodic,
with period length 6

1
7

= 0.142857142857. . . .

The period of the fraction 1/11 is only 2; if we change the numerator, the digits change, but the
period remains the same

1
11

= 0.0909. . .
8
11

= 0.7272. . .

By contrast, the digits of 11/12 are not periodic: there is a transient of length 2, followed by
period 1

11
12

= 0.91666. . . .

These problems were first studied by Gauss, in 1801 [5, art. 316].

Consider a rational numberx0 = n/m, with 06 x0 < 1. Letd1,d2, . . . be its decimal digits.

n
m

= ∑
k>1

dk

10k = 0.d1d2 . . . dk ∈ {0, . . . ,9}. (1)

The first digitd1 is computed as the integer part of 10x0

10x0 = d1.d2d3 . . . d1 = ⌊10x0⌋

where the symbol⌊·⌋ denotes the floor function. Let nowx1 = 10d0− d1 = 0.d2d3 . . .. We
obtaind2 as the integer part of 10x1, etc. This process leads to the following recursive sequence
of rational numbersxk ∈ [0,1)

x0 = x xk+1 = 10xk−⌊10xk⌋, k > 0. (2)

Each element of this sequence has denominatorm (ignoring simplifications); there aremsuch ra-
tional numbers, hence, by Dirichlet’s pigeon hole principle, the sequence(xk) must be eventually
periodic. But then so must the sequence(dk) of the decimal digits ofx0.

Dynamically speaking, there are two perspectives on this problem. On the one hand, we may
clear the denominators of our rationals, to obtain a dynamics over a finite set of integers. For
instance, the first few steps in the recursive construction of the digits of 1/7 are as follows

10× 1
7

= 1+
3
7
, 10× 3

7
= 4+

2
7
, 10× 2

7
= 2+

6
7
.

The numerators(1,3,2, . . .) of the fractions form a recursive sequence of integers, determined
by multiplication by 10 modulo 7. This construct clearly extends to any integer baseω > 1, with
digitsdk ∈ {0,1, . . . ,ω −1}. So, for each denominatorm, we have a dynamical system over the
set of remainders (residues classes) modulom

fω,m(x) = ωx(modm).
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On the other hand, we may embed the rational dynamics —definedby equation (2)— on the
continuum, namely the unit intervalI = [0,1)

fω : I → I x 7→ ωx(mod 1). (3)

The dynamical systemfω has strong statistical properties (ergodic, mixing, positive entropy). It
is not difficult to see that mapfω,m is conjugate to the restriction offω to the rational numbers
with denominatorm in the unit interval. (Two mapsf : X → X andg : Y → Y are conjugate if
there exists a one-to-one mapL : X →Y such thatf = L−1◦g◦L.)

If x ∈ I ∩Q, thenx is eventually periodic underfω . The converse is also true. Indeed, ifx is
periodic, then so are its digits in baseω. From a periodic digit sequence(d0,d1, . . . ,dt−1), we
computex explicitly as (see exercises)

x =
∞

∑
k=0

dkω−(k+1) =
1

ωt −1

t−1

∑
k=0

dkωt−1−k. (4)

The pointx is clearly rational. The digits may be chosen arbitrarily, so periodic orbits of any
period exist. They are precisely the rationals with denominator co-prime toω, which are dense
in I and all unstable (since| f ′ω | = |ω| > 1). If the denominator ofx is not co-prime toω, we
observe irreversible pre-periodic behaviour.

Some natural questions arise, none of which has an easy answer:

– If x0 = n/m, then the period is at mostm−1; what is the actual period?

– Which rationalsn/m have period equal tom−1?

– The denominator of a periodic point is a divisor ofωt −1, wheret is the period. What is
the smallest denominator a point with periodt can have?

These problems lead to the study of the linear mapx 7→ ωx, first over the finite rings of modular
arithmetic, and then over thep-adic fields. It will be instructive to compare and contrast these
dynamics with those of the analogous map over the complex numbers.

1.1 Exercises

The mapfω is defined in (3).

Problem 1. Let X be a finite set and letf : X → X be a map. Show that all orbits off are
periodic if and only if f is invertible.

Problem 2. Prove that a point in the unit interval is eventually periodic for the mapfω iff it is
rational, and periodic iff its denominator is co-prime toω.
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Problem 3. Consider the ‘doubling map’f2.

(a) By looking at periodic binary digits, show that there are three orbits of minimal period 4.
How many orbits are there of minimal period 6? (To answer, youdo not need to compute all
6-strings!).

(b) Divide the unit interval in four equal sub-intervals, hencedetermine the density histogram
with respect to this partition1, for the periodic orbit with initial condition 1/51. Do the same with
the initial condition 1/13.

(c) Divide the unit interval in 16 equal sub-intervals, whence determine the binary digits of a
16-cycle whose density histogram is uniform (i.e., the cycle has one point in each sub-interval).

Problem 4. Consider the doubling mapf2.

(a) Determine all points of the 3-cycle with initial condition

x0 = 0.001001001001. . . = 0.001

as rational numbers.
[The numberx0 is the sum of a geometric series.]

(b) Do the same for the 6-cycle

x0 = 0.001101001101001101. . . = 0.001101.

1The fraction of the points that belong to each sub-interval.
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2 Modular arithmetic

A background reference for this section is [7].

We recall some facts about modular arithmetic.

1. Let m be a positive integer, and leta andb be integers. Ifm dividesb−a we say thata is
congruent to b modulom, and we writea ≡ b(modm). This notation is due to Gauss. The
integerm is called themodulus of the congruence.

2. A congruence relation is an equivalence relation overZ. The equivalence class[a]m of an
integera is the set of integers that differ froma by a multiple ofm, namely

[a]m = {. . . ,a−2m,a−m,a,a+m,a+2m, . . .} = a+mZ.

There arem suchresidue classesmodulom. A set ofm representatives, one from each class,
is called acomplete set of residuesmodulo m. Common choices are 0,1, . . . ,m− 1, or the
numerically least residues, e.g., for oddm

−m−1
2

, . . . ,−2,−1,0,1,2, . . . ,
m−1

2
.

3. Addition and multiplication of residue classes to the same modulus are defined as

[x]m+[y]m = [x+y]m [x]m · [y]m = [x·y]m

or, equivalently,

(x+mZ)+(y+mZ) = x+y+mZ (x+mZ)(y+mZ) = xy+mZ.

These operations give the setZ/mZ of residue classes the structure of afinite commutative ring
with identity . The additive and multiplicative identities of the ring arethe classes[0]m and[1]m,
respectively.

4. For sum, subtraction, and multiplication, congruences to the same modulus behave like equa-
tions. Thus ifa ≡ a′ (modm) and b ≡ b′ (modm), then a± b ≡ a′ ± b′ (modm) and ab ≡
a′b′ (modm). Division requires care. Ifab≡ac(modm), andd = gcd(a,m), thenb≡ c(modm/d).
In particular, ifm= p is prime, then the congruenceab= ac(mod p) implies eithera≡0(mod p)
or b≡ c(mod p).

5. A solution of the linear congruenceax≡ b(modm) exists iffd = gcd(a,m) dividesb, in which
case, ifx = s is one solution, then

x = s+k
m
d

k∈ Z

gives all solutions (d incongruent solutions modulom). The solutionscan be found, for instance,
by using Euclid’s algorithm. Thus ifb = 1 anda is co-prime tom, thens is amodular inverse
of a, that is,[s]m = [a]−1

m .

6. In particular, forp prime anda 6≡ 0(mod p), the congruenceax≡ 1(mod p) always has a
solution. Indeed the finite ringZ/mZ is afinite field iff m is a prime number.
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For each positive integerm, we letφ(n) be the number of integers in the range 1, . . . ,n, which
are relatively prime ton. The functionφ is calledEuler’s φ -function. Thusφ(5) = 4,φ(6) = 2.

Forn > 1, we have 16 φ(n) 6 n−1. We haveφ(n) = n−1 precisely ifn is prime.

The following theorem, due to Euler, generalises an earlierresult by Fermat [7, theorem 72].

Theorem 1 If a and m are co-prime, then aφ(m) ≡ 1(modm).

Theorem 2 The functionφ is multiplicative, i.e., if m and n are co-prime, thenφ(mn) = φ(m)φ(n).

For a proof, see [7, theorem 60].

Let m> 1 have the prime factorisation

m=
r

∏
k=1

pek
k

where thepk are distinct primes andek > 1. Using theorem 2, we can compute the value ofφ(n)
from the knowledge ofφ(pe), wherep is a prime number, ande is a positive integer. Clearly

φ(pe) = #{1,2,3, . . . , pe}−#{p,2p,3p, . . . , pe} = pe− pe−1.

From this we obtain the formula

φ(m) =
r

∏
k=1

pek−1
k (pk−1) = m

r

∏
k=1

(

1− 1
pk

)

. (5)

The divisor sum of Euler’sφ -function is very tidy [7, theorem 63].

Theorem 3 Let m> 1 be an integer. Then

∑
d|m

φ(d) = m.

2.1 Primitive roots

Let ω andm be co-prime integers, andm > 1. The (multiplicative)order of ω modulom is
the smallest positive integert such thatωt ≡ 1(modm). We write ordm(a) = t. From Euler’s
theorem, we haveωφ(m) ≡ 1(modm), so the order ofω modulom exists, and does not exceed
φ(m).

If ω andm are not co-prime, thenωt 6≡ 1(modm), for all positivet (sinceωt = 1+km implies
thatω andm are co-prime); so the order is undefined.

Theorem 4 Let ω and m> 1 be co-prime integers, and let t be the multiplicative order of ω
modulo m. The following holds:
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(i) ω i ≡ 1(modm) ⇔ t | i

(ii) t | φ(m)

(iii ) If i , j,∈ Z and i> j, then

ω i ≡ ω j (modm) ⇔ i ≡ j (modt).

Henceω,ω2, . . . ,ωt are distinct modulo m.

(iv) For all k > 0, we haveordm(ωk) = t/gcd(k, t).

(v) If d|t, then there areφ(d) values ofωk modulo m for whichordm(ωk) = d.

The most important item is(ii), which can be justified as follows. From remark 5 above, it
follows that the congruence classes co-prime to the modulusm form a multiplicative group. The
order of this group isφ(m), by definition ofφ . Then the order of an element of this group divides
φ(m), from Lagrange’s theorem. The proof of the remaining items in theorem 4 is left as an
exercise.

Let ω andm be co-prime integers, withm> 1. We say thatω is aprimitive root modulom if
ordm(ω) = φ(m).

Some remarks

1. Givenm, a primitive root modulomdoes not necessarily exist; the existence of a primitive
root is equivalent to the multiplicative group ofZ/mZ being cyclic.

2. If a primitive rootω exists, thenω,ω2, . . . ,ωφ(m) are all co-prime tomand distinct modulo
m, from theorem 4(iii ). Hence these integers constitute a reduced residue system modulo
m.

3. If a primitive rootω exists, then there areφ(φ(m)) distinct ones modulom, by 2 above
and theorem 4(iv).

Theorem 5 Let p be a prime. Then for each divisor d of p−1 there areφ(d) numbers of order
d, which are incongruent modulo p.

Lettingd = p−1, we deduce that there areφ(p−1) primitive roots modulo a primep.

2.2 Dynamical interpretation

Let m andω be positive integers. We consider the dynamical system

fω,m : Z/mZ → Z/mZ x 7→ ωx(modm) (6)
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whereω is an integer. The phase space hasm elements. From observation 5, section 2 we see
that the dynamics is invertible if and only if gcd(ω,m) = 1, in which casext ≡ω−1xt+1(modm),
and all orbits are periodic.

In what follows we assume thatω andmare co-prime. For periodicity, we requirext ≡ x0(modm).
Now, xt ≡ ωtx0(modm), giving

x0ωt ≡ x0(modm).

Dividing by x0, we obtain (observation 4, section 2)

ωt ≡ 1(modm′) m′ =
m

gcd(x0,m)
.

Thus the minimal periodt is themultiplicative order of ω modulom′. Such a quantity is well-
defined, sinceω andm′ are co-prime by assumption (see remark in section 2.1).

Thus the period depends on the initial conditionx0 via gcd(x0,m). From the formula forφ(m)
(5), we see that ifm′ | m, thenφ(m′) | φ(m). This fact, together with theorem 4(ii) implies that
if gcd(ω,m) = 1, then the period of any orbit off is a divisor ofφ(m).

The simplest case ism= p, a prime. Then gcd(x0, p) is eitherp or 1. The former case corre-
sponds to a fixed point at the origin. For all other initial conditions, the period is the same, and
is equal to ordp(ω). The period is maximal precisely whenω is a primitive root modulop.

The following lemma will allow us to reduce the computation of the period of the orbits of (6) to
the case in whichm is a prime power.

Lemma 6 Let ω,m1,m2 be pairwise co-prime integers, with m1,m2 > 1. Then

ordm1m2(ω) = lcm(ordm1(ω), ordm2(ω)).

The case in whichmandω are not co-prime is left as an exercise.

2.3 An unsolved problem

We pointed out that the period of any non-zero point inZ/mZ is maximal precisely ifm= p
is a prime number, andω is a primitive root modulop. In dynamical terms, ifω is a primitive
root modulop, then the orbit of a rational point with denominatorp under the mapfω consists
of p− 1 equally spaced points in the unit interval. This is an extraordinary degree of spatial
uniformity, which most periodic orbits offω do not have.

Fix an integerω 6= 0,±1. What is the probability thatω is a primitive root modulop? More
precisely, letPω be the set of all the primes co-prime toω, and let us consider the quantity

A(ω,x) =
#{p∈ Pω : p 6 x, ordp(ω) = p−1}

#{p∈ Pω : p 6 x} . (7)

(If p 6∈ Pω , then ordp(ω) is undefined.) Then we take the limit

A(ω) = lim
x→∞

A(ω,x).
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The quantityA(ω) —if it exists— is the fraction of prime numbers co-prime toω for which the
period is maximal. Does this limit exist? It is not difficult to see that ifω = n2 is a square, then
such a limit is zero. Indeed, from Euler’s theorem, we have

ω
p−1

2 = np−1 ≡ 1(mod p)

and so the order ofω divides(p−1)/2, and it can never be maximal. Let us thus assume thatω
is not a square inZ.

In 1927, E Artin put forward the following conjecture.

Conjecture 1 Let ω be an integer which is not the power of any integer. Then

A(ω) = ∏
p

(

1− 1
p(p−1)

)

= 0.3739558. . . (8)

independent ofω.

The number appearing in this formula is known asArtin’s constant . Subsequent computations
revealed that some adjustments are required in the above formulation (the square-free kernel of
ω must not be congruent to 1 modulo 4).

Figure 1:Behaviour of the quantityA(2,x) defined in equation (7), as a function ofx. The horizontal line
represents Artin’s constant (8). This computation was performed over the first 10,000 odd primes.

Artin’s conjecture is still unresolved; it has been proved under the assumption of the so-called
generalised Riemann hypothesis [11]. The convergence of the quantity (7) to Artin’s constant is
illustrated in figure 1, forω = 2.
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In summary, linear dynamics modulo a primep has a simple structure: there is a fixed point at the
origin, and the remainingp−1 points are subdivided intoN periodic orbits of period(p−1)/N,
for some divisorN of p−1. The computation ofN is conceptually simple, but hard in practice.
(There is no known algorithm that will outputN in a time which is polynomial in the input size.
The latter is of order log2(p), the number of bits needed to specifyp.) However, an underlying
probabilistic phenomenon is at work. Artin’s conjecture states that the chances thatN = 1 are
about 37%.

2.4 Exercises

The mapfω,m is defined in (6).

Problem 1. Calculate the value of the Eulerφ -functionφ(m) for the following values ofm

a) 512; b) 1155; c) 10!.

Problem 2. For the following values ofm, characterize the integersω such that mapfω,m has
precisely two orbits.

a) 13; b) 23.

[Consider primitive roots.]

Problem 3. Compute the quantity
7
13

(mod 23)

by determining 1/13 as 13−1 = 13t−1, wheret is the order of 13 modulo 23.
[To computet, consider the computations of part (a) of previous problem.]

Problem 4. Show that the number of distinct periods the orbits of the mapfω,m (with gcd(ω,m) =
1) cannot be greater than the number of divisors ofm. Identify conditions under which the num-
ber of distinct periods is equal to the number of divisors ofm.

Problem 5. Determine the maximum transient length an orbit offω,m can have.

Problem 6. Let ω,m1,m2 be pairwise co-prime integers, withm1,m2 > 1. Prove that

ordm1,m2(ω) = lcm
(

ordm1(ω),ordm2(ω)
)

.

(Using this formula, the computation of the periods of the orbits of the mapfω,m1m2 is reduced
to that of the mapsfω,m1 and fω,m2.)
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Problem 7. Prove that the product of all the squares modulop is congruent to(−1)(p+1)/2

modulop.
[Use a primitive root.]

Problem 8∗. Show that ifp andq = 4p+1 are both primes, then 2 is a primitive root modulo
q. Give a dynamical interpretation of this result.
[Some knowledge of quadratic residues is required.]

Problem 9. Write a computer program to reproduce the data of figure 1.
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3 p-adic numbers

A background reference for this section is [6].

Linear dynamics modulo a prime-power is highly organised. There is a rather surprising theory,
that will allow us to describe it using the tools of analysis.This is the theory ofp-adic numbers.

The familiar absolute value function| · | is first defined inZ,

| · | : Z → Z |x| =
{

x if x > 0

−x if x < 0.

and then extended to the fieldQ of rational numbers via the equation

∣

∣

∣

a
b

∣

∣

∣
=

|a|
|b| a,b∈ Z, b 6= 0.

We wish to define other absolute value functions onQ.

Fix a primep. Thep-adic valuation vp is the function

vp : Zr{0}→ Z

defined as follows. For eachn∈ Z, let vp(n) be the unique non-negative integerv such that

n = pv ·n′ gcd(p,n′) = 1.

If x = a/b∈ Qr{0}, then letting

vp(x) = vp(a)−vp(b)

we extendvp to non-zero rationals. For example

v5(900) = 2 v7(91) = 1 v3(2/3) = −1 vp(2/3) = 0, p > 3.

Lemma 7 For all x,y∈ Qr{0}, we have

i) vp(xy) = vp(x)+vp(y).

ii) vp(x+y) > min(vp(x),vp(y)).

The proof is left as an exercise.

Let x∈ Q. Thep-adic absolute value|x|p is defined as follows

|x|p =

{

p−vp(x) if x 6= 0

0 if x = 0.
(9)
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Theorem 8 The function x7→ |x|p satisfies the following conditions, for all x,y∈ Q.

i) |x|p = 0 ⇔ x = 0

ii) |xy|p = |x|p|y|p

iii ) |x+y|p 6 max(|x|p, |y|p).

The proof is an immediate consequence of lemma 7. Since max(|x|p, |y|p) 6 |x|p+ |y|p, property
iii ) implies the triangle inequality

iv) |x+y|p 6 |x|p+ |y|p.

Let F be a field. A function| · | : F → R+ satisfyingi), ii), iv) is called anabsolute value. If iv)
is replaced by the strongeriii ), then the absolute value is said to benon-archimedean.

Lemma 9 Let F be a field. Any absolute value on F satisfies the followingconditions, for all
x∈ F.

i) |1| = 1

ii) If |xn| = 1, then|x| = 1

iii ) |−1| = 1

iv) |−x| = |x|.

PROOF. By definition, ifx 6= 0, then|x| is a positive real number. Then

|1| = |1×1| = |1| |1| ⇒ |1| = 1; |xn| = |x|n = 1 ⇒ |x| = 1;

etc.�

Let F be a field, let| · | be an absolute value onF, and letx,y∈ F. Define a distanced onF as

d(x,y) = |x−y|.

We mainly considerF = Q, and| · | = | · |p. It is customary to associate the ordinary absolute
value| · | with the ‘prime at infinity’, and write

| · |∞ := | · |.

Proposition 10 Let F be a field, and let| · | be a non-archimedean absolute value on F. If
x,y∈ F, and|x| 6= |y|, then|x+y| = max(|x|, |y|).
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PROOF. Without loss of generality, we suppose that|x| > |y|. Then

|x+y| 6 |x| = max(|x|, |y|).

On the other hand,x = (x+y)−y, and hence

|x| 6 max(|x+y|, |y|)

and since|x| > |y|, this inequality can hold only if

max(|x+y|, |y|) = |x+y|.

Thus|x+y| 6 |x| 6 |x+y|, which proves our assertion.�

For example, ifF = Q, with absolute value| · |2, then|1024+1023|2 = |1023|2 = 1.

Consider now finite expansions in basep.

x =
n

∑
k=n0

dkpk dk ∈ {0,1, . . . , p−1}, dn0 6= 0. (10)

If dk 6= 0, then|dkpk|p = |dk|p|p|kp = p−k, so the non-zero terms in the above sum become smaller
ask increases. Consequently, from proposition 10 and an easy induction, we obtain

|x|p = p−n0.

Therefore, in thep-adic metric, sums of the type (10) are bounded.

To make these observations concrete, let us examine the sequence of non-negative powers of 2,
measuring their size with the absolute value| · |3. We have|2|3 = 1, and hence|2k|3 = 1 for all
k ∈ Z. We represent 2k to the base 3 as in equation (10), and then write the 3-ary digits of 2k

backwards, so that the digit which is most significant with respect to| · |3 appears on the left.

k 2k 3-adic digits

0 1= 1 ·30 .1
1 2= 2 ·30 .2
2 4= 1 ·30+1 ·31 .11
3 8= 2 ·30+2 ·31 .22
4 16= 1 ·30+2 ·31+1 ·32 .121
5 32= 2 ·30+1 ·31+1 ·33 .2101

2 ·3 64= 1 ·30+1 ·32+2 ·33 .1012
...

2 ·32 22·32
= 1 ·30+1 ·33+2 ·34+ · · · .1001212. . .

...
2 ·33 22·33

= 1 ·30+1 ·34+2 ·35+ · · · .100012101. . .
...

2 ·34 22·34
= 1 ·30+1 ·35+2 ·36+ · · · .1000012102. . .

...
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Let us inspect the data. The sequence of integers

43,432
, . . . ,43k

, . . .

appears to ‘converge’ to 1, in the sense that the terms of the sequence differ from 1 by an increas-
ing power of 3. This phenomenon need not be completely mysterious. If you consider that in the
3-adic metric, increasing powers of 3 become smaller and smaller, then the convergence of the
sequence above seems justified by the limit

lim
ε→0

4ε = 1.

There also seems to be convergence for the integer sequence

43k −1
3k , k = 0,1, . . . .

What is the limit in this case? Analogy with complex analysiswould suggest that

lim
ε→0

4ε −1
ε

= log(4).

These heuristic observations can be made rigorous, as we shall see in the next sections.

3.1 Completion

The process of completion generalises the construction of the real numbers from the rationals,
familiar from real analysis.

Let F be a field, and let| · | be an absolute value onF. A sequence(xk) in F is a Cauchy
sequenceif ∀ε > 0 ∃N ∈ N such that|xn−xm| < ε wheneverm,n > N. A field F is complete
with respect to| · | if every Cauchy sequence inF has a limit.

The fieldQ is not complete with respect to| · |∞. This can be seen, for instance, by constructing
a rational Cauchy sequence whose limit is

√
2, which is irrational. Then this sequence does not

converge inQ. LikewiseQ is not complete with respect to| · |p for any p. This will be shown
later.

The process of completion amounts to adjoining toQ the set of limits of Cauchy sequences.
Canonical sets of representatives for such sequences are the decimal expansion for| · |∞, and
their analogue (10) for| · |p.

Let Cp be the set of all sequences inQ which are Cauchy with respect to| · |p.

Proposition 11 Defining

(xk)+(yk) = (xk +yk) (xk)× (yk) = (xk×yk) (11)

where(xk),(yk) ∈ Cp, makesCp into a commutative ring with identity.
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All that needs to be checked is that the sequences on the RHS are Cauchy. The rest is easy.

The setCp contains a ‘copy’ ofQ, which is the set of constant sequences of rational numbers.
Formally, this means that the map

τ : Q → Cp x 7→ (x,x,x, . . .)

is injective. In particular, the sequences(0,0, . . .) and(1,1, . . .) are, respectively, the additive and
multiplicative identities of the ringCp.

We recall some definitions from commutative algebra. Anideal in a commutative ringR is an
additive subgroupI ⊂ R, which is also closed under multiplication by any ring element, that is

∀r ∈ R, ∀x∈ I , rx ∈ I .

An ideal of the form
(x) = xR= {xr : r ∈ R}

is called aprincipal ideal. ThusR= (1). An ideal I 6= R which is not contained in any other
ideal different fromR is called amaximal ideal.

The sum of two ideals is defined naturally, as the (Minkowsky)sum of two sets, namely

I +J = {x+y : x∈ I , y∈ J}.

In this context, we use the notation

(x,y) = xR+yR.

For example, ifR= Z, then(x,y) = xZ+yZ = gcd(x,y)Z. (Think about it.)

Regarding a ringR and an idealI as additive groups, we form the factor groupR/I , whose
elements are represented by the sets

x+ I = {x}+ I = {x+y : y∈ I}.

Addition and multiplication inR/I are defined as

(x+ I)+(y+ I) = (x+y)+ I (x+ I)(y+ I) = xy+ I .

The importance of maximal ideals stems from the following result.

Theorem 12 Let R be a commutative ring with identity, and let I be an idealin R. Then R/I is a
field if and only if I is maximal.

For a proof, see, e.g., [14, chapter 3].

We return to our Cauchy sequences. We define

N = {(xk) ∈ Cp : lim
k→∞

|xk|p = 0}.

The setN is an ideal inCp, as easily verified from (11).
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Theorem 13 The idealN is maximal.

PROOF. Let (xk) ∈ Cp rN , and letI = ((xk),N ). We will show thatI = Cp, that is, that
(1) ∈ I .

Since(xk) 6→ 0, then∃c > 0 andN such that|xk|p > c > 0 for all k > N. In particular, fork > N
we havexk 6= 0, so we define the sequence(yk) where

yk =

{

0 if k < N

1/xk if > N.

Next we show that(yk) is Cauchy. Indeed fork > N, we have

|yk+1−yk|p =

∣

∣

∣

∣

1
xk+1

− 1
xk

∣

∣

∣

∣

p
=

∣

∣

∣

∣

xk−xk+1

xkxk+1

∣

∣

∣

∣

p
6

|xk−xk+1|p
c2 → 0.

Since| · | is non-archimedean, we have, lettingj = k+ r > k

|y j −yk|p = |yk+r −yk+r−1 +yk+r−1−yk+r−2 + · · ·+yk+1−yk|p
6 max(|yk+r −yk+r−1|p, |yk+r−1−yk+r−2|p, . . . , |yk+1−yk|p) → 0

which establishes the Cauchy property. Now

xkyk =

{

0 if k < N

1 if k > N

and therefore(1)− (xk)(yk) ∈ N .

This shows the the sequence(1) can be written as a multiple of(xk) plus an element ofN , and
hence(1) ∈ I , as desired.�

We have also proved

Lemma 14 A rational sequence(yk) is Cauchy with respect to| · |p if and only if|yk+1−yk|p →
0.

From theorems 12 and 13, we conclude that the quotient

Qp = Cp/N

is a field. This is thefield p-adic numbers. ThusQp is the set of all equivalence classes of
rational sequences which are Cauchy with respect to| · |p, and where the equivalence identifies
sequences whose difference converges to zero.

Consider the rational sequence(xn), where

xn =
n

∑
k=n0

dkpk dk ∈ {0,1, . . . , p−1}, dn0 6= 0 (12)
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and(dk) is a given sequence. This is a Cauchy sequence, since|xn+1−xn|p → 0 (lemma 14), and
so we can consider its limit

x =
∞

∑
k=n0

dkpk. (13)

Accordingly, we define
|x|p = lim

n→∞
|xn|p = p−n0. (14)

We want to show that every equivalence class inCp contains a sequence of the type (13) —an
infinite expansion to the basep. It will then follow that (14) defines a non-archimedean absolute
value inQp. The image ofQp under| · |p is a discrete set of rational numbers:

|Qp|p = {pn : n∈ Z}.

Such a range of values does not change going fromQ to Qp.

Lemma 15 Let (yn) ∈ Cp rN . Then|yn|p is eventually stationary.

PROOF. By assumption, there isc> 0 such that|yn|p > c for all sufficiently largen, say,n > N1.
There is alsoN2 such that|yn+1−yn|p < c for all n > N2. Let N = max(N1,N2). For all n > N
we have

|yn|p = |yn−yn+1 +yn+1|p 6 max(|yn−yn+1|p, |yn+1|p) = |yn+1|p
|yn+1|p = |yn+1−yn +yn|p 6 max(|yn+1−yn|p, |yn|p) = |yn|p

and so|yn|p 6 |yn+1|p 6 |yn|p giving |yn+1|p = |yn|p, as desired.�

Theorem 16 Every equivalence class inCp contains a sequence of the type(13).

PROOF. Let (yn) ∈ Cp. If (yn) ∈ N , then(yn) ∼ (0,0, . . .), which is of the type (13).

Otherwise, letp−n0 be the stationary value of|yn|p, according to lemma 15. Without loss of
generality, we replace(yn) with a sequence for which|yn|p = p−n0, for all n.

Definey′n via yn = pn0y′n, so that|yn|p = 1. Choose a sub-sequence(zn) of (y′n) such that|zn+1−
zn|p 6 p−n for all n. Since|zn|p = 1, we can choosed′

0,d
′
1, . . . ,d

′
n ∈ {0, . . . , p− 1} such that

x′n = ∑n
k=0d′

kpn has the propertyzn ≡ x′n(mod pn). The conditionzn ≡ z′n(mod pn) ensures that
there existsd′

n+1 such thatzn+1 ≡ x′n+1(mod pn+1), and so on. We obtain(x′n)∼ (zn)∼ (y′n), and
therefore the sequence (13) with coefficientsdk = d′

k+n is equivalent to(yn). �

Real numbers are often identified with decimal expansions. From theorem 16, we can do an
analogous thing with thep-adics, which we identify with the infinite expansion in basep

x =
∞

∑
k=n0

dkpk dk ∈ {0, . . . , p−1}, dn0 6= 0 (15)

with non-archimedean absolute value

|x|p = p−n0.

This representation isunique, unlike decimal expansions.
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3.2 p-adic integers

The setZp of p-adic integersis defined as

Zp =
{

x∈ Qp : |x|p 6 1
}

.

ThusZp is theclosed unit discin Qp. Since| · |p is discrete —its values are the integer powers
of p— the setZp is also open, because|xn|p 6 1 could be replaced by|x|p < p.

The setZp is a ring . indeed it contains 0 and 1, it is closed under addition and multiplication
(theorem 8) and change of sign (lemma 9 (iv)).

The set
pZp = {x∈ Qp : |x|p < 1}

is an ideal in Zp. Indeed it is closed under addition, it contains 0, and ifx ∈ Zp andy∈ pZp,
thenxy∈ pZp, since|xy|p = |x|p|y|p.

The set
Zp r pZp = {x∈ Qp : |x|p = 1}

is theunit circle . It consists of theinvertible elements2 in Zp. It follows that any ideal inZp

properly containingZp must contain an invertible element, and hence it contains 1,that is, it is
Zp itself. This shows thatpZp is maximal, and henceZp/pZp is afield, from theorem 12.

Proposition 17 The fieldZp/pZp has p elements.

PROOF. Among the expressions (15) withn0 > 0 we identify those that differ by expressions
with n0 > 1. This leavesp possibilities, given by the values of the first digitd0. �

The following result is known asHensel’s lemma

Theorem 18 Let f(x) be a polynomial with coefficients inZp. If there exists a p-adic integerα1

such that
f (α1) ≡ 0(modp)

and its derivative
f ′(α1) 6≡ 0(mod p),

then there exists a unique p-adic integerα such that

i) f (α) = 0 ii) α ≡ α1(modp).

PROOF. We shall construct a Cauchy sequence of integersα1,α2, . . . converging toα, and such
that, for alln > 1

f (αn) ≡ 0(modpn) αn+1 ≡ αn(modpn).

This ‘coherent’ sequence is Cauchy because|αn+1−αn|p 6 p−n (lemma 14). Also, its limitα
will satisfy f (α) = 0 (by continuity of f ), andα ≡ α1(mod p) (by construction).

2The invertible elements in a ring are calledunits.
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The first termα1 exists by assumption. To constructα2 we require (to satisfyii)) that

α2 = α1 +d1p.

Substituting and expanding, we get

f (α2) = f (α1)+ f ′(α1)d1p+O(p2)

giving the congruence
d1p f ′(α1)+ f (α1) ≡ 0(modp2).

Now, f (α1) ≡ 0(modp), so thatf (α1) = pβ , for someβ ∈ Zp. After division byp, we obtain

d1 f ′(α1)+β ≡ 0(modp)

and hence
d1 ≡−β f ′(α1)

−1(modp)

which is legitimate sincef ′(α1) is invertible modulop. Exactly the same calculation will work
to getαn+1 from αn, as easily checked.�

EXAMPLE. Let f (x) = x2 +1, andp = 5.

f (2) = 22+1≡ 0(mod 5) f ′(2) = 2 ·2 6≡ 0(mod 5).

Becausef (2) ≡ 5 · 1(mod 52), we haveβ = 1 (using the notation introduced in the proof of
Hensel’s lemma). Thus

d1 ≡−1 · 1
4
≡−4≡ 1(mod 5) α2 = 2+1 ·5 = 7.

Now
f (7) = 50= 2 ·52(mod 52) ⇒ β = 2

and hence

d2 ≡−2 · 1
14

≡−1
7
≡−1

2
≡ 2(mod 5) α3 = 7+2 ·52 = 57.

We write

α =
√
−1 =

∞

∑
k=0

dk5
k.

Regarding(dk) as the sequence of ‘digits’ ofα, we have
√
−1 = .21213423. . . in Q5.

Let us consider the following approximation to the root
√
−1 of f (x), given by the first five digits

√
−1≈ 2+1 ·5+2 ·52+1 ·53+3 ·54 ≡ 2057(mod 55).

We find
f (2057) = 4231250= 55 ·1354≡ 0(mod 55).
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3.3 Sequences and series

We have seen that the elements ofQp can be identified with the limits of sequences(xn) of the
type

xn =
n

∑
k=n0

dkpk dk ∈ {0,1, . . . , p−1}, dn0 6= 0

and it is natural to consider infinite sequences and series ofelements ofQp.

We recall that ametric spaceis a set equipped with adistance function; in our case this function
is given by the absolute valuedp(x,y) = |x− y|p. A metric space iscomplete if every Cauchy
sequence converges. The most important fact about analysisonQp is the following.

Theorem 19 The setQp is a complete metric space.

For a proof, see [6, section 3.2].

The following result highlights a significant difference between analysis inR or C and inQp.

Lemma 20 A sequence(an) in Qp is Cauchy if and only if

lim
n→∞

|an+1−an|p = 0.

This is a generalisation of lemma 14 given for rational sequences. Its proof can be repeated
verbatim for this case. This lemma gives us the following important result:

Corollary 21 An infinite series inQp converges if and only if its general terms goes to zero.

PROOF. A series converges if the sequence of partial sums converges. The difference between
thenth and the(n−1)th partial sums is equal to thenth term of the series. If the latter tends to
zero, it follows from lemma 20 that the sequence of partial sums is Cauchy, hence converges.�

The above corollary is plainly false inR or C, due to the well-know counterexample

∑
k>1

1
k
.

The general termk−1 approaches zero, but the series diverges.

EXAMPLE. The series∑k>0 pk converges inQp, since|pn|p → 0. For itsnth partial sum, we find
n

∑
k=0

pk =
1− pn−1

1− p
→ 1

1− p
.

We also obtain
−1 = ∑

k>0

(p−1)pk.

So, inQ5 we have

−1
4

=
1

1−5
= 1+5+52+53+ · · · −1 = 4+4 ·5+4 ·52+4 ·53+ · · · .
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3.4 Exercises

Problem 1. Prove that, for all non-zero rational numbersx andy, we have

i) vp(xy) = vp(x)+vp(y)

ii) vp(x+y) > min(vp(x),vp(y)).

[To prove the first property, write out the prime factorization of x andy; for the second, factor
out common powers ofp from the sum.]

Problem 2. Compute

|35|7, |12/56|7, |2400|7, |2400/2401|7.

Problem 3. Let F be a field. Prove that the function

| · | : x 7→
{

1 if x 6= 0

0 if x = 0

is an absolute value onF (called thetrivial absolute value). Prove that, for every primep, this is
the only absolute value that can be defined onF = Z/pZ.
[Use lemma 9 and Euler’s theorem.]

Problem 4. Let d(x,y) = |x−y|p. Prove that for allx,y,z∈ Q

i) d(x,y) = 0 iff x = y;

ii) d(x,y) = d(y,x);

iii ) d(x,z) 6 max(d(x,y),d(y,z)).

Problem 5. Let x∈ Qr{0}. Then

∏
p6∞

|x|p = 1

where the product is taken over all primes, including the prime at infinity (ordinary absolute
value).
[Begin withx being a positive integer.]

Problem 6. Decide if the following sequences converge inQp, and find the limit of those that
do

1) pn 2) n! 3) n 4) 1/n 5) (1+ p)pn
.
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Problem 7. Let the radius of convergenceρ of thep-adic power series∑k>0akxk be determined
by the equation

ρ−1 = limsup n
√

|an|p.

Prove that, for thep-adic exponential function

exp(x) =
∞

∑
k=0

xk

k!

we haveρ > p−1/(p−1).

Problem 8. Prove that, for any odd primep, the fieldQ is not complete with respect to| · |p,
namely there exists a Cauchy sequence of rational numbers that does not converge to a rational
number.
[Choose an integera such that:a is not a square inQ; a is not divisible byp; a is a square modulo
p. (Why does such an integer exist?) Then use Hensel’s lemma for the polynomialx2−a.]

Problem 9. Same as previous problem, forp = 2.
[Try cube roots.]

25



4 Linear dynamics in Qp

We have seen that the computation of the period of orbits of the linear map

fω : x 7→ ωx(modm) gcd(ω,m) = 1

can be reduced to the case in which

i) the initial condition is co-prime to the modulus;

ii) the modulus is a prime power.

If m = pk is a prime power, thep-adic formalism developed above will allow us to treat the
infinite sequence of maps

x 7→ ωx(mod pk) k = 1,2, . . . (16)

as a single map overQp.

The idea is that, by increasingk, we increase the accuracy with which we represent the exact
(infinite k) p-adic dynamics. In this perspective, the periodicity observed for any finitek in the
map (16), corresponds to orbits that return close to the initial condition, within a distancep−k. If
the p-adic motion is not periodic, then the sequence of periods modulo pk, for increasingk, is a
sequencePoincaré recurrence times.

We shall generalise the mapfω to the case in whichω is a p-adic integer, as opposed to an ordi-
nary integer. This generalisation presents no additional difficulty, but brings substantial benefits.
Thus we consider the linear map

fω : Qp → Qp x 7→ ωx |ω|p = 1, ∀k∈ N ωk 6= 1.

The last condition (which can be expressed by saying thatω is not aroot of unity ) ensures that
the p-adic motions are not periodic. We have

| fω(x)|p = |ωx|p = |ω|p|x|p = |x|p

and therefore the absolute value of every point of an orbit isthe same. Indeed, all circles inQp

centred at 0, namely
{x∈ Qp |x|p = pn} n∈ Z

are invariant underfω . (In what follows, we shall omit the subscriptω, whenever appropriate.)

Because|omega|p = 1, we have thep-adic expansion

ω = d0+d1p+d2p2 + · · · d0 6= 0.

Let r be the multiplicative order ofω modulop, that is,

ω r ≡ 1(mod p)
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andr is the smallest positive integer with that property. (This is the same as the multiplicative
order ofd0 modulop.) We defines∈ N andβ ,µ ∈ Zp via the equations

µ = ω r = 1+ psβ |β |p = 1. (17)

To justify the existence and uniqueness of such quantities,we note that, sinceω is not a root of
unity, thenω r −1 6= 0. To computes, we consider the equation

ps =
ω r −1

β

and since|β |p = 1, we find, taking the absolute value,

|ps|p = p−s = |ω r −1|p = p−νp(ωr−1),

from which we find that
s= νp(ω r −1).

By definition of multiplicative order, we know thatω r −1 is divisible byp, hences is a positive
integer. Finally

|µ|p = |ω r |p = |ω|rp = 1.

A unit µ with the property thatµ ≡ 1(modp) is called aone-unit.

EXAMPLE. We compute the value of the parametersr,µ,s,β is some cases.

i) Let p = 5,ω = 2; thenr = 4, andµ = 24 = 16= 1+3 ·51 so thats= 1,β = 3.

ii) Let

p = 3,ω = −1
2

= 1+3+32+ · · · = 1+3(1+3+32+ · · ·).

We findr = 1,s= 1,β = −1
2.

iii ) Let p = 7 andω =
√

2. Thenω is a root of f (x) = x2−2. We find

f (3) = 7≡ 0(mod 7) f ′(3) 6≡ 0(mod 7).

From Hensel’s lemma, we know that a rootω of f (x) exists inQ7, and is determined uniquely
by the conditionω ≡ 3(mod 7). Computation gives

ω = .312612. . .

Check:
√

2≡3+1·7+2·72+6·73≡2166(mod 74) 21662 = 4691556= 2+74·1954≡2(mod 74).

The first digit ofω is d1 = 3, and 3 is a primitive root modulo 7, sor = 6. We findω6 = (
√

2)6 =
8 = 1+ 7, sos= 1,β = 1. Note that if we had chosen the other root off modulo 7, namely
−3≡ 4(mod 7), we would have obtained different parameter values.

We now determine the period of the orbits of the mapfω reduced modulopk, by considering
p-adic approximations. For initial conditions co-prime top, such a period is equal to the order
of ω modulo pk. This quantity is well-defined, since|ω|p = 1 implies that any integer in the
residue class ofω modulopk is co-prime top. We have
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Theorem 22 Let ω, r and s be as above. Then

ordpk(ω) =

{

r if 1 6 k 6 s

rpk−s if k > s.

PROOF. The casek 6 s is an immediate consequence of equation (17) and the definition of r. We
proceed by induction onk > s, and we have just verified that the base casek = s holds. Assume
that our statement is true for somek > s, that is,

ω rpk−s
= µ pk−s

= 1+ pkβk k > s

whereβk is an appropriate unit.

Let u = rpk−s. Then ordpk+1(ω) must be a multipletu of u, for somet > 1 (lest the inductive
assumption is violated). The binomial theorem gives

ωut =
(

1+ pkβk

)t
=

t

∑
n=0

(

t
n

)

pnkβ n
k

= 1+ t pkβk +
t(t−1)

2
p2kβ 2

k + · · · .

Clearlyvp
(

(pkβk)
n
)

= nk. Furthermore for alln 6 t, we have

vp

((

t
n

))

=

{

0 if 1 6 t < p

1 if t = p

and therefore
ωut 6≡ 1(mod pk+1) t = 1,2, . . . , p−1.

On the other hand, we have

ωup = 1+ pk+1βk +O(p2k+1) = 1+ pk+1βk+1

whereO(p2k−1) represents an unspecified element ofp2k+1Zp andβk+1 is a unit. The last two
expressions ensure that ordpk+1(ω) = up= rpk+1−s, completing the induction.�

The dynamical interpretation of theorem 22 is the following. We consider the orbitxt = f t
ω(x0)

of a pointx0 ∈ Qp. After r iterates of the map, the pointxr returns, for the first time, in a small
neighbourhood of the initial point, a disc of radiusp−s. All previous iterates remained at unit
distance fromx0. To return to a smaller neighbourhood ofx0, we must iterate the maprp times,
whereby the distance fromx0 becomesp−s−1 for the first time, etc. At these recurrence times,
the corresponding iterate of the map becomes closer and closer to the identity. The orbit never
returns exactly to the initial point, because we have assumed thatω is not a root of unity.

EXAMPLE. We have seen that the decimal digits of 1/7 have period 6. What is the period of the
decimals of 1/7k for k > 1?

We havep = 7,ω = 10, r = 6. We compute

106 = 1+7 ·142857 142857= 33 ·11·13·37.

Sos= 1, andβ = 142857. We find ord7k(10) = 6 ·7k−1, for k > 1.
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4.1 One units: recurrence and renormalisation

We are interested in characterising the aperiodic motion offω in greater detail. Recall that a
one-unit is a unit which is congruent to 1 modulop. We will show that the dynamics generated
by one-units is regular, in a sense to be made precise below.

We denote byH the set of one-units. ThenH = 1+ pZp. More generally, we denote byHs =
1+ psZp the set of one-units oflevel> s. Geometrically,Hs is a closed disc of radiusp−s centred
at 1. Algebraically,Hs is a multiplicative group, since 1∈ Hs and

(1+ pkβ )−1 = 1− pkβ + p2kβ 2+ · · ·

which shows that the inverse of a one-unit is a one-unit of thesame level. Thenµ ∈ Hs if and
only if z= (µ −1)/ps is a p-adic integer. So we define

zt =
µt −1

ps

which yields
zt+τ = µtzt +zτ . (18)

Lettingτ = 1 in the above formula, we obtain the invertible recursion

zt+1 = µzt +z1 t > 1. (19)

If we let z1 = β (cf. (26)), then the digits ofzt are the digits ofω rt that are not fixed. Thus the
map (19) is relevant to our problem if the initial conditionz1 is a unit.

From the discussion above, it follows that the pointzt is periodic modulopk with period pk, so
it visits each residue class modulopk exactly once. It follows that the orbit(zt) is not only dense
in Zp, but is also ergodic with respect to the Haar measure. The ergodicity of (19) is associated
to a logarithmic problem, namely the solution fort of the equationzt = x. The computation of
this logarithm is much simpler that that of the discrete logarithm modulo the primep, because
one can exploit the analytic structure of thep-adic logarithmic function.

From equation (26) it also follows that for the mapping (19) the recurrence times for an orbit to
visit a circle of radiusp−t about the origin is exactlypt , and this value is independent from the
unit chosen within a given level. This is in sharp contrast with the case of linear mapsx 7→ ωx
overC (with |ω|= 1, andω not a root of unity), where recurrence times depend on the continued
fractions expansion of the rotational angle being considered.

There is considerable regularity in the dynamics of the map (19). One sees immediately that
the evolution of the low-order digits ofz is determined by an additive, rather than multiplicative,
algorithm. Indeed, ifµ is a one-unit of levels, equation (18) becomes

zt+1 ≡ zt +z1(mod ps).

To see that the motion possesses an overall additive nature,we introduce a renormalisation oper-
atorR, acting on maps overQp,

R( f ) = B−1◦ f p◦B (20)
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which involves ap-fold composition with the affine scaling

B(x) = px+x x∈ Qp,

whose effect is to magnify about the pointx. (The operatorR is reminiscent of Feigenbaum’s
operator.)

The operatorR possesses a one-parameter family of fixed pointf ∗λ , namely, all translations in
Qp,

f ∗λ (x) = x+λ R( f ∗λ ) = f ∗λ .

We let f act on an affine mapf

f (x) = µx+ γ µ 6= 1. (21)

We have

(R f)(x) =
1
p

[ f p(px+x)−x]

= µ px+
µ p−1

p

(

γ
µ −1

+x

)

,

showing that the action ofR corresponds to the following reparametrisation forf

µ 7→ µ p γ 7→ µ p−1
p

(

γ
µ −1

+x

)

.

The asymptotics of the orbit off underR are given by

lim
n→∞

(Rn f )(x) = lim
n→∞

µ pn
x+

µ pn −1
pn

(

γ
µ −1

+x
1+ pn

1− p

)

.

If µ is a one-unit, then

lim
n→∞

µ pn
= 1 lim

n→∞

µ pn −1
pn = log(µ), (22)

where thep-adic logarithmic function log(1+ x) agrees in the open unit disc|x|p < 1 with the
sum of the familiar power series

log(1+x) = ∑
k>1

(−1)k+1xk

k
.

Noting thatpn → 0, one sees that the second formula in (22) corresponds to theformula

log(x) = lim
ε→0

xε

ε
.
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Thus an affine mapf with a one-unit multiplier lies in the stable manifold of a translationf ∗λ .
Lettingγ = z1 in (21), we see that the multiplicative mapping (19) under renormalisation aboutz
converges to the translational fixed point ofR

f (x) = µx+λ = z+ log(µ)

(

1
ps +

z
1− p

)

.

We remark that by exploiting theZp-module property of the group of one-units, we can interpret
the relationxt = f t(x0) for a linear mapf (x) = µx with the one-unit multiplierµ as a flow with
p-adic time. The vector field generated bu this flow is then given by

v(x) = lim
t→0

f t(x)−x
t

= lim
t→0

µt −1
t

x = log(µ)x.

In this context, time measures recurrence distances, that is, |t|p is proportional to|xt −x0|p.

4.2 Exercises

Problem 1. Forn∈ Z, consider the circles, centred at zero.

Cn = {x∈ Qp : vp(x) = n}

Prove that the restriction offω to Cn is conjugate to the restriction off to C0.

Problem 2. Compute the period of the orbit through the pointx= 1 for the mapx 7→ωx(mod pk), k>

1, in the following cases
ω = 4, p = 5 ω = 14, p = 29.

(In the second case, use Maple.)

Problem 3. Let ω = 1+ ps. Show that any orbits of the mapQp → Qp, x 7→ ωx with initial
pointx is contained in a disc of radius|x|pp−s centred atx.
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5 Linearisation

Let f (x) be a polynomial with integer coefficients. We letf act onZ/pkZ, wherep is a prime.
Can the dynamics be studied withp-adic methods?

We restrict our attention to motions in the vicinity of a fixedpoint of f . The latter is a solution
of the equationf (x) = x, namely a root of the polynomial

Φ(x) = f (x)−x.

Assume thatΦ has a roota modulo p and thatΦ′(a) 6≡ 0(modp). From Hensel’s lemma, it
follows thatΦ has a rootθ in Zp, with θ ≡ a(modp).

Furthermore,f (θ) = θ , namelyθ is a fixed point of f in Zp. To study motions nearθ , we
consider the new variablez= x−θ . We find

z 7→ f (x)−θ = f (z+θ)−θ = f (θ)+ f ′(θ)z+O(z2)−θ
= f ′(θ)z+O(z2).

The mapz 7→ f ′(θ)z is the linearisation of the mapf near the pointθ . The quantityf ′(θ) is
called themultiplier of f ′ at θ .

EXAMPLE. Let p = 7 and f (x) = x2 +1. ThenΦ(x) = x2−x+1, andΦ′(x) = 2x−1. We find

Φ(x) = (x−3)(x−5)(mod 7) Φ′(3) ≡ 5(mod 7), Φ′(5) ≡ 2(mod 7).

From Hensel’s lemma, it follows thatΦ has two distinct rootθ , θ̄ in Z7, with

θ ≡ 3(mod 7) θ̄ ≡ 5(mod 7).

The map in the variablez= x−θ reads

z 7→ f (z+θ)−θ = (z+θ)2+1−θ = 2θz+z2+θ2−θ +1

= 2θz+z2 +Φ(θ) = 2θz+z2

where we have used the fact theθ is a root ofΦ. So the linearisation off is z 7→ 2θz, with
multiplier f ′(θ) = 2θ . In particular

z 7→ 6z(mod 7) nearθ
z 7→ 4z(mod 7) nearθ̄ .

Let f (x) = ωx+ O(x2) be a polynomial with coefficients inQp, (or, more generally, ap-adic
power series overQp, converging in some neighbourhood of the origin) which has afixed point
at 0 with multiplierω. The linearisation problem is posed as follows: does there exist a smooth
change of coordinates that turnsf into its linear part?
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Specifically, we look for a functionL : Qp → Qp which satisfies the equation

L ( f (x)) = ωL (x). (23)

This is calledSchröder functional equation. We requireL to be expressible as a power series,
convergent in some non-empty disc aboutx= 0, and invertible in some suitable (possibly smaller)
disc

L (x) = b0+b1x+b2x2 + · · · . (24)

For the sake of concreteness, we consider the simplest non-trivial case, namely that of a quadratic
polynomial overZp, with an indifferent fixed point at the origin

f (x) = ωx+ax2 |ω|p = 1.

Schröder equation reads

L (ωx+ax2) = ∑
n>0

bn(ωx+ax2)n = ∑
n>0

ωbnxn.

Using the binomial theorem, we obtain

∑
n>0

bn

n

∑
k=0

(

n
k

)

ωkan−kx2n−k = ∑
n>0

ωbnxn.

Equating the coefficients of the same powers ofx, we obtain an infinite sequence of equations
for the unknown coefficientsbn, to be solved recursively.

Let m denote the power ofx under consideration. We obtain

m= 0 : b0 = ωb0 ⇒ b0 = 0
m= 1 : ωb1 = ωb1 ⇒ b1 arbitrary.

Noting thatb1 is the derivative ofL at 0, forL to be invertible, we needb1 6= 0. We choose
b1 = 1, for normalisation. Furthermore

m= 2 : b1

(

1
0

)

+b2

(

2
2

)

ω2 = ωb2

⇒ b2 = − ab1

ω(ω −1)
= − a

ω(ω −1)
.

Form> 2 we obtain the recursion

bm

[(

m
m

)

ωm−ω
]

= bmω(ωm−1−1) = −
m−1

∑
n=⌈m/2⌉

bm

(

n
2n−m

)

ω2n−mam−n

(⌈·⌉ is the ceiling function) which expressesbm in terms of some coefficients of lower order. The
lower bound of summation ensures that

( n
2n−m

)

6= 0.
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Recalling that
∣

∣

∣

∣

(

n
k

)
∣

∣

∣

∣

p
6 1 |a|p 6 1 |ω|p = 1

an easy induction shows that

|bm|p 6
1

|Dm−1|p
where

Dm =
m

∏
i=1

(ω i −1). (25)

The quantityDm appears at denominator of the expression definingbm. How small isDm? As
we did before, we letr be the order ofω modulop, and we define the quantitiesµ,s andβ via
the equations

µ = ω r = 1+ psβ |β |p = 1. (26)

The only term in the product (25) that are smaller than 1 correspond to the values ofi that are
multiples ofr. Lettingn = ⌊m/r⌋, we obtain

vp(Dm) =
n

∑
j=1

vp(µ j −1)

=
n

∑
j=1

vp(µ −1)+
n

∑
j=1

vp(µ j−1 + µ j−2 + · · ·+1)

= ns+
n

∑
j=1

vp( j)

= ns+ ∑
j>1

⌊

n
p j

⌋

6 ns+ ∑
j>1

n
p j

= ns+n
1

p−1
=

⌊m
r

⌋

(

s+
1

p−1

)

.

Thus vp(Dm) is bounded above by a linear function ofm. This means that|Dm|p decreases
no faster than exponentially, and hence|bm|p increases no faster than exponentially, that is, the
power series (24) has a non-zero radius of convergence. Using standard results on the invertibility
of power series, we obtain

Theorem 23 Let f(x) = ωx+ ax2, with a,ω ∈ Zp and ω a p-adic unit which is not a root of
unity. Then there exists a neighbourhood of the origin wheref is conjugate to its linear part.

This theorem can be generalised to the case of anyp-adic functionf analytic in a neighbourhood
of the origin. The region surrounding an indifferent fixed point where the motion is conjugate to
a rotation is called ap-adic Siegel disc.Siegel proved the existence of such discs for analytic
maps overC , where the question of convergence of the conjugacy function L is considerably
more difficult.
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5.1 Conjugacy and the logarithm

We consider the following one-parameter family of nonlinear maps

fθ (x) = (1+x)θ −1 θ ∈ Zp. (27)

These maps illustrate clearly the main features of regular motions over thep-adics. These are the
endomorphisms of the so-called multiplicative formal group, which in the specialised literature
are usually denoted by[θ ](x)[8].

We are interested in the dynamics of these endomorphisms, over algebraic extensionsK of Qp.
If θ ∈ Z, then fθ is defined over the whole ofK, but if one restrictsx to the domain|x|p < 1
(the maximal ideal), then the exponent can be allowed to be anelement ofZp, which is the case
of interest to number theorists. Whenever we applyfθ outside the maximal ideal, it will be
understood thatθ is a rational integer.

The study offθ illustrates the dynamical significance of thep-adic logarithmic and exponential
functions, which provide analytic conjugacies to Siegel discs. These maps also exemplify the
most salient dynamical features of the so-calledendomorphisms of formal groups, which we
briefly describe in the next section.

From (27), we obtain

fθ ( fφ (x)) = fθ ((1+x)φ −1)

= (1+x)θφ −1 = fθφ (x),

that is, all elements of the family commute. In particular

f t
θ (x) = fθ t(x),

which is valid for rational integerst, and ifθ is a one-unit, thent may be taken to be anyp-adic
integer. Thus ifx∗ is a fixed point offθ , so is fφ (x∗), and since the number of fixed points offθ
is finite,x∗ is also (pre)-periodic forfφ .

The derivative (multiplier) of the map is given by

f ′θ (x) = θ(1+x)θ−1. (28)

The periodic orbits of period dividingt are roots of the polynomial

Φt(x) = fθ t (x)−x = (1+x)
[

(1+x)θ t−1−1
]

(29)

The first factor ofΦt yields a fixed point atx = −1, which is superstable (the multiplier is equal
to zero), and independent ofθ .

Its basin of attraction is the set ofx for which

lim
t→∞

f t
θ (x)+1 = lim

t→∞
(1+x)θ t

= 0,

which implies|1+x|p < 1, that is, the basin is the open unit disc centred atx = −1.
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The second factor of (29) yields a fixed point at the origin, with multiplierθ , as well as infinitely
many cyclesx∗ with the property that 1+x∗ are the(θ t −1)th roots of unity. Motions near these
periodic points are the same as near the origin, apart from a linear scaling. Indeed letx∗ 6= 0,−1
be a periodic point of minimal periodt, and letη = 1+x∗. From (28) and (29), we find for the
kth derivative

f (k)
θ t (0) = f (k)

θ t (x∗)ηk−1 k > 1

so that, in terms of the local coordinatey = x−x∗ we have the linear conjugacy

1
η

fθ t (yη) = fθ t(x), (30)

which preserves the metric since|η|p = 1. In particular, the multiplier of at-cycle is the same as
that at the origin, and therefore these periodic orbits are either all attractive, ifθ is divisible by
p, or indifferent, ifθ is co-prime top. (Here we exclude the trivial caseθ = ±1.)

In the former case the basin of attraction of the origin is theset ofx for which

lim
t→∞

f t
θ = 0 or lim

t→∞
(1+x)θ t

= 1.

We haveε = θ t → 0, p-adically, and the basin includes the open unit disc, because if ε is ap-adic
integer, then the binomial theorem is valid in that domain, and

(ε
k

)

goes to zero withε.

On the other hand, the basin of the origin cannot include the unit circle, because of the presence
non only of the superstable cycle there, but also of the otherroots of unity. The latter are attrac-
tive, and, by the conjugacy (30), have basins of the same sizeas that at the origin. Note that in
this case all periodic points belong to the subgroupG of E, and the one-unitsH are all attracted
to the origin. In particular, thep-power roots of unity are eventually fixed, that is, they reach the
origin in a finite number of iterations.

If the map is invertible, that is, ifθ is not divisible byp, then all cycles (apart from the superstable
one) are surrounded by a Siegel disc, meaning that the map is analytically conjugate to its linear
part in a neighbourhood of each cycle. The size of a disc is themaximal domain where the
conjugacy function has an analytic inverse. It is sufficientto construct the Siegel disc at the
origin. Conjugatingfθ to its linear part (which is justθx) amounts to solving Schröder functional
equation (cf. 23)

L ( fθ (x)) = θL (x) (31)

for L analytic of the form
L (x) = ∑

k>0

ckx
k (32)

which has solution
L (x) = log(1+x)

independently fromθ . This solution is unique if we require thatL (0) = 1 andl ′(0) = 1. The
series (32) defining thep-adic logarithm converges in the open unit disc, and the superstable
attractor atx = −1 gives a dynamical system justification for the exclusion ofthe unit circle
from the domain of convergence.
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On the other hand, the actual radius of the disc is somewhat smaller, for the inverse of the
conjugacy functionL —the exponential function— converges only over the smallerdomain
ν(x) > (p−1)−1. The dynamical reason for this phenomenon is that the disc atthe origin must
exclude the remaining periodic points, which now lie insidethe maximal ideal (the numbers
1+x∗ are one-units), each surrounded by its own disc, according to (30).

Dynamically speaking, the convergence of logarithmic series in a region which includes other
discs depends on the concomitance of two facts. First, the logarithm vanishes at the centre of
secondary discs, thereby mapping them into the primary one.Second, all discs have the same
multiplier, which must be the case, as seen by differentiating (31) and noting that the derivative
of the logarithm does not vanish in the secondary discs.

5.2 Remarks on endomorphisms of formal groups

The main features of the phase portrait of the mapfθ described in section 5.1 are shared by
automorphisms of more general groups, which we describe informally in this section. We shall
in no way attempt to do justice to such a vast realm of number theory, we merely explain some
key concepts using the language of dynamics. We refer the reader to [9] for an advanced text.

A one-parameterformal group is given by a formal power seriesF in two indeterminates, over
a ringR, with no constant term, and with unit linear coefficients

F(x,y) = x+y+ · · ·

representing the group law. For this to be a group, we must have associativity

F(x,F(y,z)) = F(F(x,y),z),

andx must have a formal inverseι(x):

F(x, ι(x)) = F(ι(x),x) = 0.

We take the ringR to be the ring of integers is some finite extension ofQp.

An endomorphismof F is a formal power seriesf without constant coefficient, which respects
the group law, namely

f (F(x,y) = F( f (x), f (y)) f (x) = ωx+ · · · .

The existence of endomorphisms is ensured by the commutativity of F , and they are parametrised
by the coefficientω.

Dynamically speaking, and endomorphism of a formal group is(in its domain of convergence) a
nonlinear mapping with a fixed point at the origin, with multiplier ω. In our example (27), the
mappingsfθ are the endomorphisms of the formal multiplicative group

F(x,y) = x+y+xy
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which mimics the law of multiplication of one-units

(1+x)(1+y) = 1+x+y+xy= 1+F(x,y)

for x andy in the maximal ideal.

The logarithm L of a formal group is a formal power seriesL(x) = x+ · · · that turns the group
law into addition

L(F(x,y)) = L(x)+L(y).

The term-by-term construction of the logarithm yields a power series with coefficients in the field
of fraction s of the ringA, which can be shown to converge in the entire maximal ideal.

For any endomorphismf of F one has

L( f (x)) = f ′(0)L(x) = ωL(x) (33)

which conjugates the mappingf to its linearisation about the origin. Thus iff is an automor-
phism, then the logarithm of a formal group serves as a conjugacy function to a Siegel disc. IfF
is the multiplicative group, we have seen thatL(x) = log(1+x).

It can be shown that the logarithmL of a formal group vanishes at all periodic points within the
maximal ideal, and has non-vanishing derivative there. So one always has the same phase portrait
as in multiplicative case, with full tiling by isochronous Siegel discs. In particular, the size of the
disc at the origin is determined by the domain of convergenceof L−1, which is smaller than that
of L, since the disc cannot include other periodic points.

5.3 Exercises

Problem 1. Let f (x) = x2−x+2. Find the fixed points off in Z5, with three digits accuracy.
By computing the corresponding multipliers, determine thenature of such fixed points.

Problem 2. Let f (x) = ωx+ax2, with a,ω ∈ Zp. Extend theorem 23 to the case|ω|p < 1.
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6 An application: planar rotations with round-off errors

A planar rotation is a mapping of the type

F : R2 → R2
(

x
y

)

7→
(

cos(2πν) −sin(2πν)
sin(2πν) cos(2πν)

)(

x
y

)

ν ∈ [0,1) (34)

describing an anticlockwise rotation by an angle 2πν. The quantityν is called therotation
number. The rotation is said to be rational (irrational), ifν is rational (irrational).

In the irrational case —the one we are interested in— all orbits of F, apart from the origin, are
non-periodic and dense on circles centred at the origin.

Let us consider the matrix

A =

(

λ −1
1 0

)

λ = 2cos(2πν). (35)

Denoting byJ the matrix appearing in (34), and letting

C =

(

1 −cos(2πν)
0 sin(2πν)

)

one verifies thatCA= JC. This means thatC induces a semi-conjugacy betweenJ andA. Be-
cause det(C) = sin(2πν), we have

A = C−1JC ν 6= 0,
1
2
.

This equation shows that, apart from two trivial cases, the dynamics induced byJ and byA are
conjugate, that is, they have the same orbit structure. The invariant sets ofA are the ellipses

x2−λxy+y2 = const.

We shall use the following result

Lemma 24 Let λ = 2cos(2πν), whereν is a real number. Ifλ is rational, but not an integer,
thenν is irrational.

The proof requires some knowledge of the arithmetic of rootsof unity, and it will be omitted
(see, e.g., [10, chapter 3]).

We shall now perturb the linear mapping defined by the matrix (35), by discretising the space.
Our aim is to model the effects of space discretisation that is present in a computer representation
of a dynamical system. Because the linear motion is regular,it will be possible to isolate the
irregular fluctuations that appear when the space is discrete. We remark that these phenomena,
still far from understood, have attracted the interest of dynamicists for a long time [12].

We consider the following lattice map

Ψ = Z2 → Z2 (x,y) 7→ (⌊λx⌋−y,x) λ = 2cos(2πν) (36)
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Figure 2:A portion of a periodic orbit of the mapΨ, for λ = 1/2. The period is 696.

where⌊·⌋ denotes the floor function. Without the floor function, this mapping reduces to the
action of the matrixA.

LettingΨ(x,y) = (x′,y′), we find

(x,y) = (y′,⌊λy′⌋−x′)

that is, the mappingΨ is invertible. It follows that the orbits ofΨ are either periodic, or they
escape to infinity in both time directions. In this model the discretisation length —the spacing
beween lattice points— is fixed, and the limit of vanishing discretisation corresponds to motions
at infinity.

We consider the following family of parameter values

λ =
q
pn gcd(q, p) = 1, |q| 6 2pn, n > 1.

From (36) and lemma 24, we conclude that the corresponding values of the rotation numberµ
are irrational. An orbit of the mapΨ for the parameterλ = 1/2 is shown in figure 2. This orbit
is periodic, and consists of an irregular set of points arranged along an ellipse.

Let us consider the polynomialf (x) = x2−qx+ p2n. We find

f (x) ≡ x(x−q)(mod p2n) f ′(x) = 2x−q.

Thus

f (0) = f (q) ≡ 0(mod p2n), f ′(0) ≡−q(mod p2n), f ′(q) ≡ q(modp2n).
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Since p andq are co-prime, the polynomialf has two distinct rots modulop, with non-zero
derivative. From Hensel’s lemma, it follows thatf has two distinct rootsθ , θ̄ in Zp, where

θ ≡ 0(mod p2n) θ̄ ≡ q(mod p2n). (37)

We have (see exercises)

|θ |p =
1

p2n |θ̄ |p = 1.

Using Newton’s method with initial conditionθ = 0 (see equation (37)), we find (see exercises)

θ =
p2n

q
+

p4n

q3 +2
p6n

q5 + · · ·

and hence
θ
pn =

pn

q
+O(p2n). (38)

We shall embed the round-off map (36) in the ringZp of p-adic integers. Considering that
θ/pn ∈ pnZp, from (38), we define the map

L : Z2 → Zp (x,y) 7→ x−y
θ
pn . (39)

Becauseθ 6∈ Q, being the root of the quadratic irreducible polynomialf , the mapL is injective.
The image underL of the latticeZ2, namely the set

Z = L (Z2) ⊂ Zp

is an additive subgroup of thep-adic integers.

We now define the map
Ψ∗ : Z → Z Ψ∗ = L ◦Ψ◦L (40)

which is conjugate toΨ onZ . For the purpose of characterising the mapΨ∗, we first define the
shift mapping σ onZp. Given ap-adic integerz

z= b0+b1p+b2p2 + · · · bk ∈ {0,1, . . . , p−1}

we let
σ(z) = b1 +b2p+b3p3 · · · . (41)

This is a smooth expansive map, with a dense set of periodic points. It preserves the standard
probability measure onZp (the additive Haar measure), obtained by assigning to the residue class
z(modpk) the measurep−k.

Furthermore, givenx∈ Z, we define the integerc(x) via the equation

qx−c(x)
pn =

⌊

qx
pn

⌋

. (42)

We shall prove the following.
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Theorem 25 The mappingΨ∗ can be extended continuously to the whole ofZp, giving

Ψ∗ : Zp → Zp z 7→ σn(θ̄z)

whereθ̄ is the p-adic unit given in (37), andσ is the shift mapping (41).

PROOF. Becauseθ andθ̄ are roots off , we have

θ + θ̄ = q θθ̄ = p2n.

Let z= L (x,y) = x−y θ
pn . We compute

Φ∗(z) = L

(⌊

qx
pn

⌋

−y,x

)

=

⌊

qx
pn

⌋

−y− θ
pn

=
1
pn (x(q−θ)− pny−c(x)) =

1
pn

(

xθ̄ − θθ̄
pn y−c(x)

)

=
1
pn(θ̄z−c(x)).

From equation (38), we find thatyθ/pn = O(pn). Thus

qx≡ qz≡ θ̄z(mod pn)

which shows that
Ψ∗(z) = σn(θ̄z).

Now, if z(k) → z is a Cauchy sequence inZ , then so isσn(θ̄z(k)), and sinceZ is dense inZp,
we can extendΨ∗ to the whole ofZp. �

The theorem above shows that the round-off mappingΨ is conjugate to a restriction to a dense
set of an expanding mapΨ∗ over thep-adic integers.

Thus, in a sense, the round-off errors in the model (36) are a manifestation ofp-adic chaos!

6.1 Exercises

Let f (x) = x2 − qx+ p2n, wherep is a prime number,q is co-prime top, andn is a positive
integer. Letθ ,θ̄ be the roots off in Qp, with θ ≡ 0(mod p), andθ̄ ≡ q(mod p).

Problem 1. Prove that

|θ |p =
1
pn |θ̄ |p = 1.

Problem 2. Using Newton’s method, show that

θ =
p2n

q
+

p4n

q3 +2
p6n

q5 +5
p8n

q7 + · · · .

Obtain a similar expansion for̄θ .
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Problem 3. Let q = 1, p = 2,n = 1. By iterating Newton’s method, show that

θ ≡ 56724(mod 216)

and hence obtain the 2-adic expansion

θ = .0010100110111011. . ..

Problem 4.

(This exercise requires knowledge of algebraic number theory.)

Let λ be a root of f . Show that in the ringZ[λ ], the ideal(p) splits into the product of two
distinct prime ideals:(p) = PP̄. Hence show that, for all positive integersk, the idealPk has the
Z-basis

Pk = [pk,sk−λ ] with sk ≡ θ (mod pk)

whereP andλ are paired via the congruenceλ ≡ 0(modP).
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7 Solutions to exercises

7.1 Section 1

Solution 1:

If all orbits are periodic, then each point has a single pre-image, thencef is invertible. Con-
versely, letx be non-periodic. Then there exist positive integerst1 < t2, such thatf t1(x) = f t2(x).
Assume thatt2 (hence alsot1) is minimal. The points

f t1−1(x) f t2−1(x)

map to the same point. By the minimality oft2, they are distinct (think about it), hencef is
non-invertible.

Solution 2:

The sufficiency of both statements follows from the fact thatthe rationals with denominatorq in
the unit intervalI are a finite set, which is left invariant byfω . Furthermore, ifω is co-prime to
q, then the restriction offω to this set is invertible, giving periodicity.

Conversely, letx∈ I be eventually periodic. Then the digitsdk in baseω are eventually repeating.
Without loss of generality, we may assume that the fractional part of x is purely periodic:

x = 0.d1 · · · dn. (43)

(Any real number may be reduced to this form by first multiplying by a power ofω and then
subtracting an integer, and neither operation affects the property of having repeated digits.) We
define the integer

D =
n

∑
k=1

dkωn−k.

From equation (43), we find

x =
D
ωn +

D
ω2n +

D
ω3n + · · · = D

∞

∑
k=1

(

1
ωn

)k

=
D

ωn−1
.

We see thatx is rational. �

Solution 3:
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(a)
0011,0001,0111.

There are 26 binary strings of length 6. Of those, 23 have minimal period 3 or 1, which must be
subtracted. Furthermore 22 strings have minimal period 2 or 1, which must also be subtracted,
except that in doing so we subtract the 1-strings twice. Thusthe total number of strings of
minimal period 6 is

26−23−22+21 = 64−8−4+2 = 54.

The total number oforbits is then given by 54/6 = 9.

(b) Let x0 = 1/51. The numerators of the points in the orbits are

1,2,4,8,16,32,13,26,1, . . .

So the orbit has period 8. We partition the unit interval intofour sub-intervals

Ik =
[

(k−1)/4, k/4
)

k = 1, . . . ,4
4

⋂

k=1

Ik = [0,1).

We have (referring to numerators only)

{1,2,4,8} ∈ I1 {13,16} ∈ I2 {26,32} ∈ I3.

So for x ∈ Ik, the densityρ(x) is equal to the relative number of points inIk divided by the
measure ofIk (which is 1/4)

ρ(x) =



















2 x∈ I1
1 x∈ I2
1 x∈ I3
0 x∈ I4

∫ 1

0
ρ(x)dx= 1.

Likewise, if x0 = 1/13 we find

1,2,4,8,3,6,12,11,9,5,10,7

so the period is 12. This time the density is uniform

ρ(x) = 1.

(c)
x0 = 0.0000111100101101= 259/4369.

The string above contains all 4-substrings. (There is more than one orbit with this feature.)
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Solution 4:

(a) We have

x0 = 0.001=
1
23 +

1
26 +

1
29 + · · · =

∞

∑
k=1

1
8

=
1
7
.

Then

x1 ≡ 2x0(mod 1) =
2
7

x2 ≡ 2x1(mod 1) =
4
7
.

(b) We have

x0 = 0.001101= 0.000001+0.000100+0.001000

= 0.000001(1+4+8)

= 13
∞

∑
k=1

(

1
26

)k

=
13
63

.

Iterating the map, we find

x0 =
13
63

, x1 =
26
63

, x2 =
52
63

, x3 =
41
63

, x4 =
19
63

, x5 =
38
63

.
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7.2 Section 2

Solution 1:

(a) 512= 29

φ(29) = 28(2−1) = 28 = 256
(b) 1155= 3 ·5 ·7 ·11

φ(1155) = (3−1) · (5−1) · (7−1) · (11−1)= 2 ·6 ·10= 480
(c) 10!= 28 ·34 ·52 ·7

φ(10!) = 27 · (2−1) ·33 · (3−1) ·5 · (5−1) · (7−1)= 829440

Solution 2:

The mapf has just two orbits precisely whenm is prime, andω is a primitive root modulom.

(a) m= 13: φ(m) = 12, so possible orders are 1,2,3,4,6,12. We have, modulo 13

22 ≡ 4; 23 ≡ 8; 24 ≡ 3; 26 ≡ 4 ·3≡−1.

So 2 has order 12, i.e., it is a primitive root. We haveφ(12) = 4, and a reduced residue system
modulo 12 is{1,5,7,11}. So the primitive roots are

21 ≡ 2; 25 ≡ 6; 27 ≡−2≡ 11; 211 ≡ 2−1 ≡ 7.

The desired values ofω are the integers congruent to the above ones.

(b) m= 23: φ(m) = 22, so possible orders are 1,2,11,22. We have, modulo 23

22 ≡ 4; 23 ≡ 8; 24 ≡ 17≡−7; 28 ≡ 49≡ 3; 211 ≡ 3 ·8≡ 1

So ord23(2) = 11. Moreover, because 3≡ 28(mod 23), and 4≡ 22(mod 23), the order of both 3
and 4 is a divisor of that of 2, so 3 and 4 cannot be primitive roots. Try 5:

52 ≡ 2; 53 ≡ 10; 54 ≡ 4; 58 ≡ 44 ≡−7; 511 ≡−70≡−1

So 5 has order 22, and is a primitive root. We haveφ(22) = 10, and a reduced residue system
modulo 22 is{1,3,5,7,9,13,15,17,19,21}. So the primitive roots are

51 ≡ 5; 53 ≡ 10; 55 ≡ 20; 57 ≡ 17; 59 ≡ 11;

513 ≡ 21; 515 ≡ 19; 517 ≡ 15; 519 ≡ 7; 521 ≡ 14.

The desired values ofω are the integers congruent to the above ones.
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Solution 3:

From the previous problem we see that 13 is not a primitive root modulo 23, so its order is 1,2
or 11. The order is not 1 and moreover 132 ≡ 8(mod 23). So the order of 13 is 11, whence
13−1 ≡ 1310(mod 23). We find, modulo 23

132 ≡ 8 134 ≡ 64≡−5 135 ≡−65≡ 4 1310≡ 16≡−7.

Solution 4:

The periodic point equation reads

(ωt −1)x≡ 0(modm)

wherex is the initial condition. For every divisord of m, consider the initial conditionx = dx′,
with x′ co-prime tom. Simplification gives the congruence

ωt ≡ 1(modm/d)

and there are no other congruences. So the possible periods are the possible values of the order
of ω modulom/d (which exists, becauseω andm are co-prime). Ifm is prime, thenm has two
divisors, and ifω 6≡ 1(modm) then there are two periods, so the bound is sharp.

Solution 5:

Consider the quantities
s= max

k∈N
gcd(ωk−1,m) t = φ(m/s)

and then letl be the smallest value ofk∈N such that gcd(ωk−1,m) = s. Consider the initial point
x = 1. The first periodic point in the orbit of 1 isx0 = f l (1), so this orbit has transient lengthl .
Transients cannot be longer (think about it). The maximal period is t, which happens whenω is
a primitive root modulom/s.

Solution 6:

Let t1 = ordm1(ω), t2 = ordm2(ω), s= lcm(t1, t2). Then, fori = 1,2, s/ti is an integer, and

ωs = ωti s/ti ≡ (1)s/ti (modmi).

Thusωs−1 is divisible by the integersm1 andm2, and hence by their product (because they are
co-prime). It follows thats is a multiple of ordm1m2(ω) (proposition 2.7(i)). If t < s, then we
cannot haveωt −1≡ 0(modm1m2). Indeed if this were true, if we dividet by ti (i = 1,2), for at
least one value ofi we would get non-zero remainderr i < ti. The congruenceω r i ≡ 1(modmi)
would then contradict the definition of order (think about it).
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Solution 7:

Let g be a primitive root modulop. The squares modulop correspond to the even powers ofg.
Thus

(p−1)/2

∏
t=1

g2t = gT

where

T = 2
(p−1)/2

∑
t=1

t =
p−1

2
p+1

2
.

Thus
(p−1)/2

∏
t=1

g2t =
(

g(p−1)/2
)(p+1)/2

≡ (−1)(p+1)/2(modp).

Solution 8:

Let q = 4p+1, with p andq primes. We note that:

i) p is odd.

ii) There areφ(q) = q−1 = 4p reduced residue classes moduloq.

iii ) The number of primitive roots is (fromi) andii)) φ(q−1) = φ(4p) = φ(4)φ(p) = 2(p−
1) = 2p−2.

iv) Becauseq≡ 5(mod 8), 2 is a quadratic non-residue moduloq, from quadratic reciprocity.

Now, a primitive root is a non-residue, and fromii) the number of non-residues isφ(q)/2 = 2p.
From iii ) it then follows that all but two non-residues are primitive roots.

Next we identify these two non-residues. Letg be a primitive root moduloq, and leta be an
integer co-prime toq. Thengt = a, for somet, and therefore

(

a
q

)

=

(

gt

q

)

=

(

g
q

)t

= (−1)t . (1)

The possible orders moduloq are the divisors ofq− 1 = 4p, namely: 1,2,4, p,2p,4p. We
examine the elements of order 4. There areφ(4) = 2 of them, and leta be one of them. The
corresponding exponentt in (1) is a solution to the congruence

gcd(4,4p)t = 4t ≡ 0(mod 4p) =⇒ t ≡±p(mod 4p)

Sincep is odd, from (1) we have, either case, that(a/q) = −1, and therefore the elements of
order 4 are non-residues.

It follows that the only non-residues which are not primitive roots are those of order 4 moduloq.
To prove that 2 is a primitive root, it now suffices to show that2 does not have order 4 modulo
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q. The only prime which is of the form 4p+1, and which is smaller that 24 is q = 13= 4·3+1.
But 24 6≡ 1(mod 13).

This completes the proof.

Consider now the mapfω,m, with m= q, q as above, andω ≡ 2(modm). We conclude that this
map has exactly two two orbits, a fixed point at the origin, andone(m−1)-cycle.

Solution 9:

Figure 1 was generated by the following Maple code.

#-------- the first N primes

N:=10000:

Primes:=[seq(ithprime(k),k=2..N+1)]:

#-------- the sequence [[p,ord(2)]...]

Orders:=map(x->[x,numtheory[order](2,x)],Primes):

#-------- Artin’s constant

AC:=0.3739558:

#-------- Artin[k] is A(2,x) for x = the kth odd prime

Artin:=array(1..N):

total:=0:

for k to N do

if Orders[k,1]-Orders[k,2]=1 then

total:=total+1

fi:

Artin[k]:=total/k

od:

#-------- plot

plot([seq([Primes[k],Artin[k]],k=1..N)],

[[0,AC],[Primes[-1],AC]],’x’=0..Primes[-1],’A’=0.35..0.42);

50



7.3 Section 3

Solution 1: See hints.

Solution 2:

|35|7 = 1/7, |12/56|7 = 7, |2400|7 = 1, |2400/2401|7 = 2401.

Solution 3:

By definition, we have|0| = 0. From lemma 4.3i), we have|1| = 1. From Euler’s theorem, we
havexp−1 = 1, whence|xp−1|= |x|p−1 = |1|= 1, and|x|= 1 from lemma 4.3ii). So the absolute
value is trivial.

Solution 4:

By theorem 4.2i), |x− y|p = 0 iff x− y = 0, so i) is established. By lemma 4.3ii) we have
|x− y|p = | − (x− y)|p = |y− x|p, and ii) is proved. Finally, applying the non-archimedean
property to the equation

(x−y) = (x−z)+(z−y)

we proveiii ).

Solution 5:

Let x be a positive integer, and letx = pα1
1 · · · pαk

k be its prime factorization. We find











|x|q = 1 if q 6= pi

|x|pi p
−αi
i for i = 1, . . . ,k

|x|∞ = pα1
1 · · · pαk

k

The result then follows. Ifx is a positive rational, then we deal with numerator and denominator
separately, extending the result to this case. Finally, thesign makes no difference, due to lemma
4.3 iii ).

Solution 6:

1. We have
|pn|p = |p|np = (p−1)n → 0

So the sequence converges to 0.
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2. We find
vp(n!) > ⌊n/p⌋ → ∞

where⌊·⌋ is the floor function. Hencen! converges to zero.

3. The sequencen does not converge: indeed one can find consecutive terms of this sequence,
that get arbitrarily close to 0 and to 1, respectively. Choose, for instance,n = pk and
n = pk +1, for sufficiently largek.

4. The sequence 1/n does not converge, for the same reason.

5. From the binomial theorem

(1+ p)pn
= 1+O(pn+1) → 1.

Solution 7:

Between 1 andn, there are⌊n/p⌋ integers divisible byp, ⌊n/p2⌋ divisible by p2, etc. Thus

vp(n!) =
∞

∑
k=1

⌊

n

pk

⌋

.

Therefore

vp(n!) 6

∞

∑
k=1

n
pk =

n
p−1

.

It follows that
|n!|p = p−vp(n!) > p−n/(p−1)

and therefore for the radius of convergenceρ we obtain the estimate

ρ > p−1/(p−1).

Solution 8:

Firstly, an integera with the above properties does exist. Indeed, using a primitive root we see
that forp> 2 half of the integers between 1 andp−1 are squares modulop, whereas the number
of integer squares in the same range is at most⌊√p−1⌋, where⌊·⌋ is the floor function. So for
p > 5 there are more modular squares than squares, and hence somemodular square is not a
square inZ. For p = 3,5, one may choosea = 7,6, respectively.

Becausea is not a square inQ, any solution of the equationf (x) = x2−a = 0 is not a rational
number. We must show that there exists a Cauchy sequence of rational numbers that converges
with respect to| · |p to a root of f . Let x0 be such thata≡ x2

0(mod p). Then

f (x0) ≡ 0(mod p) f ′(x0) ≡ 2b 6≡ 0(modp)
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where the rightmost inequality holds becausep is assumed to be odd. By Hensel’s lemma, we
can construct a sequence of integers

x0, x1, . . .

such that, for alln, f (xn) ≡ 0(modpn), andxn+1 ≡ xn(modpn). From lemma 5.4, this is a
Cauchy sequence of rational numbers (integers, in fact), that converges with respect to| · |p to a
solution of the equationf (x) = 0. SoQ is not complete.

Solution 9:

We consider cube roots instead of square roots. Thus letf (x) = x3−3, and cube roots of 3 are
not rational. We find

f (1) ≡ 0(mod 2) f ′(1) ≡ 1(mod 2).

Hensel’s lemma applies, and we proceed as above.
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7.4 Section 4

Solution 1: Let

L : Cn → C0 x 7→ pnx.

The mapL, being linear and non-constant, is clearly bijective.

Solution 2:

Forω = 4, p = 5, we find

ord5(4) = 2 |42−1|5 = |15|5 = 5−1.

Using the notation of theorem 6.1, we haver = 2,s= 1, so the period modulo 5k is
{

2 if k = 1

2 ·5k−1 if k > 1.

Forω = 14, p = 29, possible orders are 1,2,7,14,28. We compute, modulo 29,

142 = 196= −5, 144 = 25= −4, 147 = 20·14= 280= −10, 1414 = 100= −1.

So 14 is a primitive root modulo 29 (r = 28). Using Maple, we find

|1428−1|29 = 29−2

sos= 2. The required period modulo 29k is
{

28 if k = 1,2

28·29k−2 if k > 2.

Solution 3:

We compute
f t
ω(x)−x = x(ωt −1).

Now
|ωt −1|p = |t ps+O(p2s)|p 6 p−s

and hence
| f t

ω(x)−x|p 6 |x|pp−s.

We note that the left-hand side of this inequality represents the distance between the initial point
x and an arbitrary point of its orbit.
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7.5 Section 5

Solution 1:

The fixed points are roots of the polynomial

Φ(x) = f (x)−x = x2−2x+2.

We find

Φ(3) ≡ Φ(4) ≡ 0(mod 5); Φ′(3) ≡ 4(mod 5); Φ′(4) ≡ 1(mod 5).

From Hensel’s lemma, the polynomialΦ has two distinct rootsθ1,θ2 in Z5, with

θ1 ≡ 3(mod 5) θ2 ≡ 4(mod 5).

We compute
θ1 = 3+1 ·5+2 ·52+ · · · θ2 = 4+3 ·5+2 ·52+ · · ·

Thus
θ1 ≡ 58(mod 53) θ2 ≡ 69(mod 53).

The corresponding multipliersωi = f ′(θi) are

ω1 = f ′(θ1) ≡ 115(mod 53) ω2 = f ′(θ2) ≡ 12(mod 53).

Thus the fixed pointθ1 is an attractor,|ω1|p = 1/p, while θ2 is indifferent,|ω2|p = 1.

In particular, iterating in the vicinity ofθ1, we converge toθ1 (see problem 4). For example, the
orbit through the pointx0 = 3, which is near toθ1, is given by

(3,8,58,3308, . . .)

and we recover the approximationθ1 ≈ 58(mod 53) found above.

Solution 2:

We solve Schröder functional equation

L( f (x)) = ωL(x)

for the power series
L(x) = ∑

n>0
bnxn.

As in the proof of Theorem 7.1, we findb0 = 0, andb1 arbitrary; hence we setb1 = 1. The
recursion relations for the coefficientsbn reads

bm = − 1
ωm−1

m−1

∑
n=⌈m/2⌉

bn

(

n
2n−m

)

ω2n−m−1am−n m> 1.
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Sincem> 1, the quantityωm−1 is a unit, from proposition 4.4. Letcn be the coefficient ofbn

in the above sum, namely

cn =

(

n
2n−m

)

ω2n−m−1am−n

and letcn = 0 for 0< n < ⌈m/2⌉. Considering thatcn is a p-adic integer, we find

|b|m =

∣

∣

∣

∣

∣

m−1

∑
n=1

bncn

∣

∣

∣

∣

∣

6 max
0<n<m

(|bncn|p) 6 max
0<n<m

(|bn|).

Hence allbn are integers, and the series forL has a non-zero radius of convergence. We see the
radius of convergence ofL is not smaller than 1; in particular, the (semi)-conjugacy holds in the
closed disc of radius 1/p.
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7.6 Section 6

Solution 1:

Sinceq is co-prime top, thenθ̄ is a unit. The congruenceθ ≡ 0(modpn) shows that|θ |p 6 p−n.
To prove equality, use, say, Newton’s method (see next problem).

Solution 2:

The Newton mapθs 7→ θs+1 is given by

θs+1 = θs−
f (θs)

f ′(θs)
=

θ2
s − p2n

2θs−q
.

Iterating this with initial conditionθ0 = 0, we find

θ1 =
p2n

q
, θ2 =

q2p2n− p4n

q(q2−2p2n)
,

etc. To get a power series, we note that

1
q2−2p2n =

1
q2 ·

1
1−2p2n/q2 .

Since|2p2n/q2|p < 1, we may expand the rightmost fraction in power series

1
1−2p2n/q2 = 1+

2p2n

q2 +
4p4n

q4 + · · · ,

etc. Iterating Newton’s map once more, we obtain the expansion of θ modulop8n.

The expansion of̄θ is dealt with similarly.

Solution 3:

The rootθ is known with 2 digit accuracy. To obtain 16 digits accuracy,it suffices to iterate
Newton’s method three times, since the accuracy doubles at each iterations. We obtain

θ ≡− 52
119

(mod 216) ≡ 56724(mod 216)

where the last congruence is obtained either with Euclid’s algorithm, or —if you feel lazy—
with Maple. Expanding 56724 in base 2 gives the desired digitstring (with the digits written
backwards!).
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Solution 4:

This statement follows at once from the factorization off (X) modulop into two distinct factors.

Because the norm ofPk is pk, and the smallest positive integer contained inPk is pk (lestP and
P̄ would not be distinct), we conclude that theZ-basis ofPk must be of the given form, for some
sk to be determined modulopk. The congruence class of ofsk is determined by noting that the
local image ofλ is θ , and that the local image of each basis element must be congruent to zero
modulopk.
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valuation, 14
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