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Preface

Arithmetic dynamics is discrete-time dynamics (functiteration) over arithmetical sets, such as
algebraic number rings and fields, finite fielgisadic fields, polynomial rings, algebraic curves,
etc. This rapidly growing area of research lies at the iaimfbetween dynamics and number
theory. It is rich in history and motivations, and is a fextground for the development of
algorithmic and computer-oriented theories.

Some constructs of arithmetic dynamics (periodic orbit3 toeir stability), are straightforward
adaptations of dynamical concepts. Others (entropy, ¢ations), expose unexpected connec-
tions. The probabilistic phenomena are the most intriguasgthey originate from fluctuations
of arithmetical origin. There one finds at the outset prolderhconsiderable difficulty.

Some ideas of arithmetic dynamics are simple and compelBggxploiting this circumstance,

it is possible to introduce this subject while keeping the-prquisite material to a minimum.

This is the aim of the present course. | assume some fartyliarth dynamical systems ideas,
although little specific knowledge is actually used. Theassary background in arithmetic and
algebra will be reviewed briefly, mostly omitting the proofs

For advanced texts on arithmetic dynamics, §é2 4,113, 2].

Franco Vivaldi
London, July 2011.
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1 Gauss and the digits of rationals

We begin with some observations about digits of fractiortee d@ecimal fraction A7 is periodic,

with period length 6

% = 0.142857142857. ..

The period of the fraction A11 is only 2; if we change the numerator, the digits changethmi
period remains the same
1

8
ﬁ_0.0909... ﬁ_0'7272"'

By contrast, the digits of 1112 are not periodic: there is a transient of length 2, folldviog

period 1

11
— =0.91666....
12

These problems were first studied by Gauss, in 1801 [5, a6{- 31
Consider a rational numbeg = n/m, with 0 < Xp < 1. Letds,dy, ... be its decimal digits.

d
:Zﬁzo.dldz... dg € {0,...,9}. 1)

n
m %5

The first digitd; is computed as the integer part ofxg0

10x = dy.dods.. .. th = [10%]

where the symbol - | denotes the floor function. Let nowf = 10dy —d; = 0.dxd3.... We
obtaind, as the integer part of X, etc. This process leads to the following recursive segeienc
of rational numbers € [0,1)

X0 = X X1 =104 — [10x[, k=>0. (2)

Each element of this sequence has denomimai{ggnoring simplifications); there ama such ra-
tional numbers, hence, by Dirichlet’s pigeon hole prinejjghe sequendey) must be eventually
periodic. But then so must the sequeridg) of the decimal digits okp.

Dynamically speaking, there are two perspectives on tleblpm. On the one hand, we may
clear the denominators of our rationals, to obtain a dynamier a finite set of integers. For
instance, the first few steps in the recursive constructfadhedigits of 1/7 are as follows
1 3 3 2 2 6

10><?—1+?, 10><?_4+?, 10><?_2+?.
The numerator$l,3,2,...) of the fractions form a recursive sequence of integers,raeted
by multiplication by 10 modulo 7. This construct clearly extls to any integer base> 1, with
digitsdyx € {0,1,...,w—1}. So, for each denominatom, we have a dynamical system over the
set of remainders (residues classes) modulo

fom(X) = wx(modm).
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On the other hand, we may embed the rational dynamics —defipextjuation[[R)— on the
continuum, namely the unit interval= [0, 1)

fo:l —1 X — wx(mod 1). (3)

The dynamical systerfy, has strong statistical properties (ergodic, mixing, pesientropy). It
is not difficult to see that mafy, m is conjugate to the restriction df, to the rational numbers
with denominatom in the unit interval. (Two map$ : X — X andg:Y — Y are conjugate if
there exists a one-to-one map X — Y such thatf = L~1ogoL.)

If x e 1NQ, thenx is eventually periodic undef,. The converse is also true. Indeedxiis
periodic, then so are its digits in base From a periodic digit sequendeo,ds,...,d_1), we
computex explicitly as (see exercises)

0 1 t—1
x= dew & = deet 7K. (4)
kZO w -1 kZO

The pointx is clearly rational. The digits may be chosen arbitrarily,periodic orbits of any
period exist. They are precisely the rationals with den@tanco-prime tow, which are dense
in I and all unstable (sincg | = |w| > 1). If the denominator ok is not co-prime tow, we
observe irreversible pre-periodic behaviour.

Some natural questions arise, none of which has an easy answe

— If xo =n/m, then the period is at most— 1; what is the actual period?
— Which rationalsn/m have period equal tm—1?

— The denominator of a periodic point is a divisor@f— 1, wheret is the period. What is
the smallest denominator a point with periocan have?

These problems lead to the study of the linear map wx, first over the finite rings of modular

arithmetic, and then over the-adic fields. It will be instructive to compare and contrdstde
dynamics with those of the analogous map over the complexbetsn

1.1 Exercises
The mapf,, is defined in[(B).

Problem 1. Let X be a finite set and let : X — X be a map. Show that all orbits dfare
periodic if and only iff is invertible.

Problem 2. Prove that a point in the unit interval is eventually peroflir the mapf,, iff it is
rational, and periodic iff its denominator is co-primedo



Problem 3. Consider the ‘doubling mapf,.

(a) By looking at periodic binary digits, show that there aresthorbits of minimal period 4.
How many orbits are there of minimal period 6? (To answer, gownot need to compute all
6-strings!).

(b) Divide the unit interval in four equal sub-intervals, hermggtermine the density histogram
with respect to this partititﬂh for the periodic orbit with initial condition 451. Do the same with
the initial condition ¥13.

(c) Divide the unit interval in 16 equal sub-intervals, whenetedmine the binary digits of a
16-cycle whose density histogram is uniform (i.e., the ey@s one point in each sub-interval).
Problem 4. Consider the doubling maf.

(a) Determine all points of the 3-cycle with initial condition

X0 =0.001001001001.. =0.001

as rational numbers.
[ The numbekg is the sum of a geometric series.

(b) Do the same for the 6-cycle

Xo =0.001101001101001101. =0.001101

1The fraction of the points that belong to each sub-interval.
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2 Modular arithmetic

A background reference for this sectionlis [7].
We recall some facts about modular arithmetic.

1. Letm be a positive integer, and latandb be integers. lim dividesb —a we say that is
congruent to b modulom, and we writea = b(modm). This notation is due to Gauss. The
integermis called themodulus of the congruence.

2. A congruence relation is an equivalence relation &efThe equivalence claga)y, of an
integerais the set of integers that differ fromby a multiple ofm, namely

[@m=/{...,a—2ma—m,aa+ma+2m,...} =a+nmZ.

There arem suchresidue classesnodulom. A set of m representatives, one from each class,
is called acomplete set of residuesnodulom. Common choices are,D,....m— 1, or the
numerically least residues, e.g., for oad

m-—1 m—1

., —2,-1,0,1,2, ..., ——.
2 Y Y Y Y Bt B Y 2

3. Addition and multiplication of residue classes to the eanodulus are defined as
[Xm+ [YIm = [X+Y]m X [YIm = [X-Y]m
or, equivalently,
(X+MZ) + (y+MZ) = X+y-+nZ (X+MZ)(y+mZ) = xy+ mZ.

These operations give the $&tmZ of residue classes the structure dirate commutative ring
with identity . The additive and multiplicative identities of the ring dne classef0]m and[1]m,
respectively.

4. For sum, subtraction, and multiplication, congruenocabé same modulus behave like equa-
tions. Thus ifa= a (modm) andb = b’ (modm), thena+b = a + b’ (modm) andab =
a'b’ (modm). Division requires care. b= ac(modm), andd = gcd(a, m), thenb= c(modm/d).
In particular, ifm= pis prime, then the congruenaé= ac(mod p) implies eithela= 0(mod p)
orb=c(modp).

5. A solution of the linear congruenes = b (modm) exists iffd = gcd(a, m) dividesb, in which
case, ifx=sis one solution, then

m
X=s+k— keZ
d
gives all solutionsq incongruent solutions moduhn). The solutiors can be found, for instance,
by using Euclid’s algorithm. Thus il = 1 anda is co-prime tom, thensis amodular inverse

of a, that is,[g}m = [a].

6. In particular, forp prime anda # 0(modp), the congruencax= 1(modp) always has a
solution. Indeed the finite ring/mZ is afinite field iff mis a prime number.
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For each positive integan, we let@(n) be the number of integers in the range.1,n, which
are relatively prime ta. The functiong is calledEuler’s ¢-function. Thus@(5) = 4, p(6) = 2.

Forn> 1, we have K ¢(n) < n—1. We havep(n) = n— 1 precisely ifnis prime.
The following theorem, due to Euler, generalises an eamisult by Fermat]7, theorem 72].

Theorem 1 If a and m are co-prime, therPd™ = 1(modm).
Theorem 2 The functiorpis multiplicative, i.e., if m and n are co-prime, th@tmn) = @(m)@(n).

For a proof, see |7, theorem 60].
Letm> 1 have the prime factorisation

where thepi are distinct primes ane > 1. Using theorerfil2, we can compute the value@f)
from the knowledge ofp(p®), wherep is a prime number, andis a positive integer. Clearly

o(p°) =#{1,2,3,...,p%} —#{p,2p,3p, ..., p°} = p*— p* L.

From this we obtain the formula
r r
1 1
o(m) = P¢ (pk—1)=m <L—J- (5)
kEll kEll Pk
The divisor sum of Euler'gp-function is very tidy [7, theorem 63].

Theorem 3 Let m> 1 be an integer. Then

> o(d)=m

djm

2.1 Primitive roots

Let w andm be co-prime integers, anth > 1. The (multiplicative)order of w modulom is
the smallest positive integérsuch thatw' = 1(modm). We write orgn(a) = t. From Euler’s
theorem, we have)?™ = 1(modm), so the order oo modulom exists, and does not exceed

@(m).
If w andm are not co-prime, them! # 1(modm), for all positivet (sincew' = 1+kmimplies
thatw andmare co-prime); so the order is undefined.

Theorem 4 Let w and m> 1 be co-prime integers, and let t be the multiplicative ordéwn
modulo m. The following holds:



(i) @ =1(modm) &t i
(i) t]e(m)
(iii) Ifi,j,e Zandi> j, then
w = (modm) < i=j(modt).
Hencew, w?, ..., ' are distinct modulo m.
(iv) Forall k > 0, we haveordm(wX) =t/gcdk,t).

(v) Ifdlt, then there arap(d) values ofw* modulo m for whictordy(w) = d.

The most important item igii ), which can be justified as follows. From remark 5 above, it
follows that the congruence classes co-prime to the moduliasm a multiplicative group. The
order of this group igp(m), by definition ofg. Then the order of an element of this group divides
@(m), from Lagrange’s theorem. The proof of the remaining itemshieoren} is left as an
exercise.

Let w andm be co-prime integers, witm > 1. We say thatw is aprimitive root modulom if
ordm(w) = @(m).
Some remarks

1. Givenm, a primitive root modulon does not necessarily exist; the existence of a primitive
root is equivalent to the multiplicative group @f mZ being cyclic.

2. If a primitive rootw exists, therw, «?, . .., w?™ are all co-prime tanand distinct modulo
m, from theorenil{iii ). Hence these integers constitute a reduced residue systeluaon
m.

3. If a primitive rootw exists, then there ar@(@(m)) distinct ones modulon, by 2 above
and theorerfil4iv).

Theorem 5 Let p be a prime. Then for each divisor d of-d there arep(d) numbers of order
d, which are incongruent modulo p.

Lettingd = p— 1, we deduce that there apg¢p — 1) primitive roots modulo a prime.

2.2 Dynamical interpretation
Letmandw be positive integers. We consider the dynamical system

fom:Z/MZ — Z/mZ X — wx(modm) (6)



wherew is an integer. The phase space haslements. From observation 5, sectidn 2 we see
that the dynamics is invertible if and only if ga@, m) = 1, in which case; = w!x..1 (modm),
and all orbits are periodic.

In what follows we assume thatandmare co-prime. For periodicity, we requixe= xo (modm).
Now, X = w'Xo (modm), giving
Xow' = Xg (Mmodm).

Dividing by xo, we obtain (observation 4, sectibh 2)

m
gedxo,m)”
Thus the minimal periodlis themultiplicative order of w modulom’. Such a quantity is well-
defined, sincev andm are co-prime by assumption (see remark in sedfioh 2.1).

w' = 1(modn) m =

Thus the period depends on the initial conditigrnvia gcd xo, m). From the formula forp(m)
@), we see that if’ | m, theng(n) | @(m). This fact, together with theorelh(#) implies that
if gcd(w, m) = 1, then the period of any orbit df is a divisor of¢g(m).

The simplest case i = p, a prime. Then god, p) is eitherp or 1. The former case corre-
sponds to a fixed point at the origin. For all other initial ddions, the period is the same, and
is equal to ord(w). The period is maximal precisely whenis a primitive root modula.

The following lemma will allow us to reduce the computatidritee period of the orbits of{(6) to
the case in whiclmis a prime power.

Lemma 6 Letw, my, m, be pairwise co-prime integers, withynm, > 1. Then
Or Gy m, (@) = lcm(0rdy, (), 0rdy, (w)).

The case in whiclmandw are not co-prime is left as an exercise.

2.3 Anunsolved problem

We pointed out that the period of any non-zero poinZifmZ is maximal precisely iilm= p
is a prime number, and is a primitive root modulg. In dynamical terms, itv is a primitive
root modulop, then the orbit of a rational point with denominajounder the magd,, consists
of p— 1 equally spaced points in the unit interval. This is an exttmary degree of spatial
uniformity, which most periodic orbits of, do not have.

Fix an integerw # 0,4+1. What is the probability thaw is a primitive root modulgp? More
precisely, let?,, be the set of all the primes co-primedg and let us consider the quantity

_#Hpe Py p<x ordp(w) =p—1}
Alw,X) = #Hpe Py p<xt '

(If p¢ P, then org(w) is undefined.) Then we take the limit

(7)

A(w) = lim A(w,X).

X—00
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The quantityA(w) —if it exists— is the fraction of prime numbers co-primedofor which the
period is maximal. Does this limit exist? It is not difficutt see that itw = n? is a square, then
such a limitis zero. Indeed, from Euler’'s theorem, we have

-1
Z =nP~1 = 1(modp)

and so the order ab divides(p—1)/2, and it can never be maximal. Let us thus assumecthat
is not a square iff.

In 1927, E Artin put forward the following conjecture.

Conjecture 1 Let w be an integer which is not the power of any integer. Then

1

Alw) = 1-—— ) =0.3739558.. (8)
() u ( p(p— 1))

independent odv.

The number appearing in this formula is knownfa$in’s constant. Subsequent computations

revealed that some adjustments are required in the aboveifation (the square-free kernel of
w must not be congruent to 1 modulo 4).

0.42 7
0.41 A
0.40 1
0.39 7

0.38

0.37

0.36

0354+—. . . . .
0 20000 40000 60000 80000 100000
X

Figure 1:Behaviour of the quantity\(2,x) defined in equatiori]7), as a functionxofThe horizontal line
represents Artin’s constarfil(8). This computation wasgraréd over the first 10,000 odd primes.

Artin’s conjecture is still unresolved; it has been proveuler the assumption of the so-called

generalised Riemann hypothesisi[11]. The convergenceeajilntity [7) to Artin’s constant is
illustrated in figurdL, fow = 2.

11



In summary, linear dynamics modulo a prirpéas a simple structure: there is a fixed point at the
origin, and the remaining — 1 points are subdivided intd periodic orbits of periodp—1)/N,

for some divisoN of p— 1. The computation dfl is conceptually simple, but hard in practice.
(There is no known algorithm that will outpdi in a time which is polynomial in the input size.
The latter is of order log p), the number of bits needed to specffy) However, an underlying
probabilistic phenomenon is at work. Artin’s conjecturatss that the chances tHat= 1 are
about 37%.

2.4 Exercises

The mapfy, m is defined in[(B).

Problem 1. Calculate the value of the Eulerfunction ¢(m) for the following values ofn

a) 512; b) 1155; c) 1oL

Problem 2. For the following values ofn, characterize the integeds such that mag, m has
precisely two orbits.
a) 13; b) 23

[ Consider primitive roots.

Problem 3. Compute the quantity

7
E(mod 23

by determining ¥13 as 131 = 131, wheret is the order of 13 modulo 23.
[ To compute, consider the computations of part (a) of previous problem.

Problem4. Show that the number of distinct periods the orbits of the mgap (with gcd(w, m) =
1) cannot be greater than the number of divisorswfdentify conditions under which the num-
ber of distinct periods is equal to the number of divisorsof

Problem 5. Determine the maximum transient length an orbifgf, can have.

Problem 6. Let w,m,m, be pairwise co-prime integers, withy, np > 1. Prove that

Or i, m, (@) = lcm(0rdm, (w), 0rdm, (w)).

(Using this formula, the computation of the periods of thkitsrof the mapf, m;m, is reduced
to that of the mapde m, and fy,m,.)

12



Problem 7. Prove that the product of all the squares modplis congruent to(—1)(P+1)/2
modulop.
[Use a primitive root.

Problem 8. Show that ifp andq = 4p+ 1 are both primes, then 2 is a primitive root modulo
g. Give a dynamical interpretation of this result.
[ Some knowledge of quadratic residues is requjred.

Problem 9. Write a computer program to reproduce the data of fighre 1.

13



3 p-adic numbers

A background reference for this sectionlis [6].

Linear dynamics modulo a prime-power is highly organiselder€ is a rather surprising theory,
that will allow us to describe it using the tools of analydikis is the theory op-adic numbers.

The familiar absolute value functign | is first defined irZ,

if x>0
|1 Z—7Z |x|:{x "X
—x if x<O.

and then extended to the fie{@dlof rational numbers via the equation

a|_|al

=== abeZ, b#0.

5l b) beZ, b7
We wish to define other absolute value functiongjn
Fix a primep. The p-adic valuation vy is the function

Vp:Z~ {0} = Z

defined as follows. For eache Z, letvp(n) be the unique non-negative integesuch that

n=p’-n ged(p,n’) = 1.
If x=a/be Q- {0}, then letting

Vp(X) = Vp(&) — Vvp(b)

we extend/, to non-zero rationals. For example

v5(9000 =2 w(91) =1 w3(2/3)=-1  vp(2/3)=0, p>3.
Lemma 7 For all X,y € Q \. {0}, we have

1) Vp(Xy) = Vp(X) +Vp(Y).
i) Vp(X+Yy) = min(vp(x), vp(y)).

The proof is left as an exercise.
Letx € Q. The p-adic absolute valugix| is defined as follows

Xp— {p“‘“ i x 0

0 if x=0. ©)

14



Theorem 8 The function x— |x|, satisfies the following conditions, for allxe Q.
i) Xlp=0<x=0
i) [Xylp = |X|p|¥lp

i) [x+Yylp < max(|X|p, |Ylp)-

The proof is an immediate consequence of leriima 7. Sinc¢|rRigty|p) < [X/p+ |y
iii ) implies the triangle inequality

p, property

V) [X+Y|p < [X[p+Y|p-

LetF be a field. A functior] - | : F — R satisfyingi),ii),iv) is called arabsolute value If iv)
is replaced by the strongér), then the absolute value is said tormn-archimedean.

Lemma9 Let F be a field. Any absolute value on F satisfies the followirditions, for all
xekF.

b 1=
If [X"| =1, then|x| =1

| =] = [x].

i)
i)
i) [ -1 =
)

iv
PROOF By definition, ifx # 0, then|x| is a positive real number. Then
=111 =1L = [2=1; X=X"=1=[x=1;

etc.UJ
LetF be afield, lef - | be an absolute value dn, and letx,y € F. Define a distancd onF as

d(xy) = [x—yl.

We mainly consideF = Q, and| - - |p. Itis customary to associate the ordinary absolute
value| - | with the ‘prime at infinity’, and write

Proposition 10 Let F be a field, and let - | be a non-archimedean absolute value on F. If
x,y € F, and|x| # |y], then|x+y| = max(|x], |y|).

15



PrROOF Without loss of generality, we suppose tidt> |y|. Then
X+y| <X =max(|x],|y]).
On the other handk = (x+y) —y, and hence
X < max(|x+yl,|yl)

and sincex| > |y

, this inequality can hold only if

max(|Xx+Yl,|y|) = [X+Y].

Thus|x+Y| < |x| < |x+Y|, which proves our assertiofl

For example, iff = Q, with absolute valué-

2, then|1024+ 1023, = |1023, = 1.

Consider now finite expansions in bgse

n
x=y d p dc € {0,1,...,p—1},  dn, #0. (10)

k= Np

If d # 0, then|dp¥|p = |dk|p| Pl = P, so the non-zero terms in the above sum become smaller
askincreases. Consequently, from proposifioh 10 and an easyiion, we obtain

X|p=p~".
Therefore, in thep-adic metric, sums of the typE{[10) are bounded.

To make these observations concrete, let us examine thersegjof non-negative powers of 2,
measuring their size with the absolute vajues. We havel2|3 = 1, and hencé2¥|3 = 1 for all

k € Z. We represent'2to the base 3 as in equatidi]10), and then write the 3-arysdigiX
backwards, so that the digit which is most significant witbpect to| - |3 appears on the left.

k 2K 3-adic digits
0 1=1.-3° 1

1 2=2.30 2

2 4=1-304+1.31 11

3 8§=2.3042.31 .22

4 16=1-34+2.31+1.32 121

5 32=2.304+1.314+1.33 2101

2.3 64=1-30+1.324+2.33 1012

2.32 22% _1.30.1.38342.34 ... .1001212..
2.33 228 _1.30,1.3%42.35 ... .100012101. .
2.3% 228 _1.3041.3542.36 ... .1000012102..

16



Let us inspect the data. The sequence of integers
B4

appears to ‘converge’ to 1, in the sense that the terms ofttpgesice differ from 1 by an increas-
ing power of 3. This phenomenon need not be completely mgsierif you consider that in the
3-adic metric, increasing powers of 3 become smaller andlesmthen the convergence of the
sequence above seems justified by the limit

lim 4% = 1.

e—0

There also seems to be convergence for the integer sequence

What is the limit in this case? Analogy with complex analys@uld suggest that

[

lano i log(4).

These heuristic observations can be made rigorous, as Wessban the next sections.

3.1 Completion

The process of completion generalises the constructioheoféal numbers from the rationals,
familiar from real analysis.

Let F be a field, and let - | be an absolute value dh. A sequencexy) in F is a Cauchy
sequencdf Ve > 0 3N € N such thatx, — xm| < € whenevem,n > N. A field F is complete
with respect tg - | if every Cauchy sequence ihas a limit.

The fieldQ is not complete with respect to |». This can be seen, for instance, by constructing
a rational Cauchy sequence whose limit/8, which is irrational. Then this sequence does not
converge inQ. LikewiseQ is not complete with respect {o |, for any p. This will be shown
later.

The process of completion amounts to adjoiningdtdhe set of limits of Cauchy sequences.

Canonical sets of representatives for such sequencesedetimal expansion fdr- |, and
their analogue{(10) for- |p.
Let ¢p be the set of all sequences@which are Cauchy with respect o |p.
Proposition 11 Defining
(%) + (Yk) = (X% + Vi) (%) X (Yk) = (% X Vi) (11)

where(Xy), (Yk) € €p, makess, into a commutative ring with identity.

17



All that needs to be checked is that the sequences on the RHSaachy. The rest is easy.

The seté}, contains a ‘copy’ ofQ, which is the set of constant sequences of rational numbers.
Formally, this means that the map

T:Q— % X (X, %,X,...)

is injective. In particular, the sequendés0,...) and(1,1,...) are, respectively, the additive and
multiplicative identities of the ring.

We recall some definitions from commutative algebra. ideal in a commutative rindR is an
additive subgroup C R, which is also closed under multiplication by any ring elemé¢hat is

VreR, Vxel, rxel.

An ideal of the form
(X) =xR={xr: r e R}

is called aprincipal ideal. ThusR= (1). An ideall # R which is not contained in any other
ideal different fromR is called amaximal ideal.

The sum of two ideals is defined naturally, as the (Minkowskyj of two sets, namely
| +J={x+y:xel,yed}.
In this context, we use the notation
(x,y) =XR+yR

For example, iR=Z, then(x,y) = XZ +yZ = gcdx,y)Z. (Think about it.)

Regarding a rindR and an ideal as additive groups, we form the factor gro®gl, whose
elements are represented by the sets

X+l ={x}+1={x+y:yel}.
Addition and multiplication iR/l are defined as
(X+1) + (y+1) = (x+y) +I (X+1)(y+1) =xy+1.

The importance of maximal ideals stems from the followirgute

Theorem 12 Let R be a commutative ring with identity, and let | be an ided&®. Then Rl is a
field if and only if | is maximal.

For a proof, see, e.gl, |14, chapter 3].
We return to our Cauchy sequences. We define

The set/ is an ideal in¢), as easily verified fronT{11).
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Theorem 13 The ideal /" is maximal.

PROOF Let (Xc) € 6p~ ./, and let. = ((x),.#"). We will show that.# = ¢, that is, that
(1) e ..

Since(x) # 0, thendc > 0 andN such thatxg|p > ¢ > 0 for allk > N. In particular, fork > N
we havex, # 0, so we define the sequengg) where

~fo if k<N
V1w it =N

Next we show thatyy) is Cauchy. Indeed fdk > N, we have

1 1

|yk+1—Yk|p: Xk—H—E

Xk — Xk+1
XieXi+-1

p

— X
< | X C2k+1\p o

p
Since| - | is non-archimedean, we have, lettipg- k+r > k
Vi=Ylp = [Wker —Ykar—1+Yirr—1 = Yar—2+ -+ Yirs — Yklp
< maxX(|Yisr — Yesr—1lps [Yirr—1 = Ykar—2lps -+ [Yke 1 — Yklp) — O
which establishes the Cauchy property. Now

[0 if k<N
A=V i k=N

and thereforé1) — (X)(Yk) € 4.

This shows the the sequenc® can be written as a multiple dky) plus an element of/", and
hence(1) € .7, as desired]

We have also proved

Lemma 14 A rational sequencgyy) is Cauchy with respect to |, if and only if |y 1 — Yk|p —
0.

From theoremB12 arid1 3, we conclude that the quotient
Qp=Gp/N

is a field. This is thdield p-adic numbers ThusQy is the set of all equivalence classes of
rational sequences which are Cauchy with respe¢t tg, and where the equivalence identifies
sequences whose difference converges to zero.

Consider the rational sequeng), where

n
=Y d&p  de{01,...,p—1}, dn,#0 (12)

k= No
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and(dy) is a given sequence. This is a Cauchy sequence, piflce— Xn|p — 0 (lemméIH4), and
so we can consider its limit

x=y d p. (13)
k=n0
Accordingly, we define
Xp = lim [xa|p=p~". (14)

We want to show that every equivalence clasgjcontains a sequence of the typel(13) —an
infinite expansion to the bage It will then follow that (I4) defines a non-archimedean dbto
value inQp. The image ofQ, under| - | is a discrete set of rational numbers:

Qplp={p":neZ}.
Such a range of values does not change going fota Qp.

Lemma 15 Let (yn) € €p ~ 4. Then|yy|p is eventually stationary.

PROOF By assumption, there s> 0 such thatyn|, > ¢ for all sufficiently largen, say,n > Nj.
There is alsd\, such thatyn1 — Yn|p < c for all n > Np. Let N = max(Ng,Np). Foralln > N
we have

|Yn||0 = |¥n —Yn+1+Yn+1|p < max(|yn —Yn+1|p7 |yn+1|p> = |yn+1|p
Yn+1lp = [Yn+1 = Yn =+ Ynlp < MaX(|Yni1 — Yn|ps [Ynlp) = [Ynlp

and soyn|p < |Yn+1lp < |Ynlp 9IVING [Ynt-1|p = |Ynlp, as desiredl]
Theorem 16 Every equivalence class i}, contains a sequence of the ty@&).

PROOF. Let (yn) € Gp. If (Yn) € A7, then(yn) ~ (0,0,...), which is of the type[(1I3).

Otherwise, letp~™ be the stationary value d¥n|,, according to lemmB&Z5. Without loss of
generality, we replacéy,) with a sequence for whiclyn|p, = p~", for all n.

Defineyy, viayn = p™y;, so thatyn|p = 1. Choose a sub-sequen@g) of (y;,) such thatz,,; —
Znlp < p~" for all n. Since|zy|p = 1, we can choosey,d;,...,d}, € {0,...,p—1} such that
Xn = S k_odp" has the property, = x, (mod p"). The conditiorz, = z,(mod p") ensures that
there existsl/,, ; such that,1 =X, 4 (mod p™™*), and so on. We obtaifx;,) ~ (z,) ~ (), and
therefore the sequende(13) with coefficietits= d; , , is equivalent tdy). O

Real numbers are often identified with decimal expansionemRheoreni_1l6, we can do an
analogous thing with thp-adics, which we identify with the infinite expansion in base

x=y dpX dg€{0,...,p—1}, dn, #0 (15)
k=l’l0
with non-archimedean absolute value
X|p=p~ .

This representation ignique unlike decimal expansions.
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3.2 p-adic integers
The setZp of p-adic integersis defined as
Zp={x€Qp: |Xp<1}.
ThusZy, is theclosed unit discin Qp. Since| - |, is discrete —its values are the integer powers

of p—the setZ, is also open, becau$e|p < 1 could be replaced b/ < p.

The setZp is aring. indeed it contains 0 and 1, it is closed under addition anttiptication
(theorenB) and change of sign (lembhay ),

The set
pZp = {x€ Qp : [X|p < 1}
is anideal in Zp. Indeed it is closed under addition, it contains 0, andl& Zp andy € pZy,
thenxy € pZp, sincelxy|p = |X|p|Y|p.
The set
Zp~ PZp={x€Qp : |Xp=1}
is theunit circle. It consists of thenvertible element§] in Zp. It follows that any ideal irZp

properly containingZ, must contain an invertible element, and hence it containisat,is, it is
Zp itself. This shows thapZ,, is maximal, and henc&/pZ, is afield, from theoreniIR2.

Proposition 17 The fieldZ,/pZp has p elements.

PROOF Among the expressionE_{[15) witly > 0 we identify those that differ by expressions
with ng > 1. This leaves possibilities, given by the values of the first digit [

The following result is known aklensel’s lemma

Theorem 18 Let f(x) be a polynomial with coefficients f,. If there exists a p-adic integer,
such that
f(a1) =0(modp)

and its derivative
'(a1) #0(modp),
then there exists a unique p-adic integesuch that

i) f(a)=0 i) o=ap(modp).

PrROOF We shall construct a Cauchy sequence of integers,, ... converging toa, and such
that, foralln > 1
f(on) =0(modp") Qni1 = o (modp").

This ‘coherent’ sequence is Cauchy becalsg 1 — an|p < p~" (lemmalIH). Also, its limito
will satisfy f(a) = 0 (by continuity off), anda = a1 (mod p) (by construction).

2The invertible elements in a ring are calledits.
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The first terma; exists by assumption. To construt we require (to satisfyi)) that
ap = a1 +d1p.
Substituting and expanding, we get
f(az) = f(a1) + f'(a1)dip+O(p?)
giving the congruence
dipf'(a1) + f(a1) = 0(mod p?).
Now, f(ai) = 0(modp), so thatf (a1) = pB, for someB € Zy. After division by p, we obtain
dif'(a1) + B = 0(modp)

and hence
dy = —Bf'(ar) " (modp)

which is legitimate sincd’(a1) is invertible modulop. Exactly the same calculation will work
to getan, 1 from ay, as easily checkedl

EXAMPLE. Let f(x) =x2+1, andp=5.
f(2)=22+1=0(mod5  f'(2)=2-2%#0(mod 5.

Becausef(2) = 5-1(mod ¥), we haveB = 1 (using the notation introduced in the proof of
Hensel’'s lemma). Thus

1
d15—1-25—451(m0d3 0=2+1.5=17.
Now
f(7) =50=2-5%(mod %) = B=2

and hence

dp=-2 i=—}=—}=2(mod5) a3 =7+2-5°=57

2T 14T 7T 27 - —on
We write

k
a=+v—-1= k;dKS .
Regarding dy) as the sequence of ‘digits’ of, we have
V—1=.21213423.. in Qs.
Let us consider the following approximation to the rgét 1 of f(x), given by the first five digits
V—1r2+1.542.524+1.5°+3.5*=2057(mod 5).

We find
f(2057) = 4231250= 5°- 1354= 0(mod %).
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3.3 Sequences and series

We have seen that the elementsf can be identified with the limits of sequendeg) of the
type

n
Xn = depk dk6{0717"'7p_1}7 dn()?'éo

k=n0
and it is natural to consider infinite sequences and seriekeafents ofQp,.

We recall that anetric spaceis a set equipped withdistance functior in our case this function
is given by the absolute valul(x,y) = [Xx—y|p. A metric space i€ompleteif every Cauchy
sequence converges. The most important fact about analy&s is the following.

Theorem 19 The setQ, is a complete metric space.

For a proof, se€ |6, section 3.2].
The following result highlights a significant differencetiween analysis ifR or C and inQp.

Lemma 20 A sequenceéan) in Qp is Cauchy if and only if
lim |an1—an|p = 0.

This is a generalisation of lemnial14 given for rational seqes. Its proof can be repeated
verbatim for this case. This lemma gives us the following amt@nt result:

Corollary 21 An infinite series irfQ, converges if and only if its general terms goes to zero.

PROOF. A series converges if the sequence of partial sums consefjee difference between
thenth and the(n — 1)th partial sums is equal to threh term of the series. If the latter tends to
zero, it follows from lemm&30 that the sequence of partiahsis Cauchy, hence convergés.
The above corollary is plainly false i or C, due to the well-know counterexample

1

K>1 k

The general terrk ! approaches zero, but the series diverges.
EXAMPLE. The series -0 pX converges irQp, since|p"|p — 0. For itsnth partial sum, we find
n « 1— pn—l 1

kZop_ 1-p —>1—p.
We also obtain
-1=5 (p-1)p"
K>0
So, inQs we have
—%:%:1+5+52+53+--- —1=444.54+4.5°4+4.5%4+....
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3.4 Exercises

Problem 1. Prove that, for all non-zero rational numberandy, we have

1) Vp(Xy) = Vp(X) +Vp(Y)
i) Vp(x+y) = min(vp(X),vp(y)).
[ To prove the first property, write out the prime factorizatiof x andy; for the second, factor

out common powers gs from the suni.

Problem 2. Compute

|35]7, |112/56|7, 124007, |2400/24015.

Problem 3. LetF be afield. Prove that the function

{1 if x £ 0

|-|ZX»—> .
0 ifx=0

is an absolute value dn (called thetrivial absolute value). Prove that, for every primpethis is
the only absolute value that can be defined~or Z/pZ.
[Use lemm&l9 and Euler’s theorgm.

Problem 4. Letd(x,y) = [x—Y]p. Prove that for alk,y,z€ Q
i) d(x,y)=0iff x=Yy,
i) d(xy) = d(y,x);
i) d(x,z) < maxd(x,y),d(y,2)).

Problem 5. Letxe Q~ {0}. Then

[1Xp=1

p<eo

where the product is taken over all primes, including thengriat infinity (ordinary absolute
value).
[ Begin withx being a positive integér.

Problem 6. Decide if the following sequences converge(p, and find the limit of those that
do
Hp" 2)nt 3)n  41/n 5 @1A+pP.
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Problem 7. Let the radius of convergengeof the p-adic power serie§ o axk be determined
by the equation

p~t =limsupy/|aq|p.
Prove that, for thg-adic exponential function

© Xk
expx) =Y —
2 K
we havep > p~1/(P-1),

Problem 8. Prove that, for any odd primp, the fieldQ is not complete with respect {o |,
namely there exists a Cauchy sequence of rational numbatrsitkes not converge to a rational
number.

[Choose an integexsuch thata is not a square if); a is not divisible byp; a is a square modulo
p. (Why does such an integer exist?) Then use Hensel’s lemntag@olynomiak? — a.]

Problem 9. Same as previous problem, fpr= 2.
[ Try cube roots]

25



4 Linear dynamics in Qp

We have seen that the computation of the period of orbitsefittear map
fo: X— wx(modm) gcdw,m) =1
can be reduced to the case in which

i) the initial condition is co-prime to the modulus;

ii) the modulus is a prime power.

If m= pXis a prime power, the-adic formalism developed above will allow us to treat the
infinite sequence of maps
x— wx(modp®)  k=1,2,... (16)

as a single map ovépy,.

The idea is that, by increasirlg we increase the accuracy with which we represent the exact
(infinite k) p-adic dynamics. In this perspective, the periodicity oleedrfor any finitek in the

map [I6), corresponds to orbits that return close to th&lrdondition, within a distanceX. If

the p-adic motion is not periodic, then the sequence of perioddutmpX, for increasing, is a
sequencéoincaré recurrence times

We shall generalise the mdp to the case in whickw is a p-adic integer, as opposed to an ordi-
nary integer. This generalisation presents no additioiffaddlty, but brings substantial benefits.
Thus we consider the linear map

foo: Qp— Qp X—wx |wp=1  vkeN *#1

The last condition (which can be expressed by sayingdhigtnot aroot of unity ) ensures that
the p-adic motions are not periodic. We have

[fo(X)[p = [wx|p = |@lpX|p = [x|p

and therefore the absolute value of every point of an ortittéssame. Indeed, all circles @,
centred at 0, namely

{xeQp X|p=p"} nez
are invariant undef,,. (In what follows, we shall omit the subscri@t whenever appropriate.)
Becausgomega, = 1, we have thg-adic expansion

w=dy+hp+dop?+---  do#£0.
Letr be the multiplicative order afo modulop, that is,

" = 1(modp)
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andr is the smallest positive integer with that property. (Ttighie same as the multiplicative
order ofdp modulop.) We defines € N andf3, u € Zp via the equations

p=aw =1+pB [Blp=1 (17)

To justify the existence and uniqueness of such quantiiesjote that, since» is not a root of
unity, thenw" — 1 # 0. To computes, we consider the equation

w—1
S
=75

and sincgf|p = 1, we find, taking the absolute value,

Plp=p = o —1p=p @Y,

from which we find that
s=vp(w —1).
By definition of multiplicative order, we know thad" — 1 is divisible byp, hencesis a positive
integer. Finally
Hlp=|w'[p=|w=1
A unit py with the property thatt = 1(mod p) is called aone-unit.
EXAMPLE. We compute the value of the parameteys, s, 3 is some cases.
i)Letp=5,w=2;thenr =4, andy =2*=16=1+3-5'sothats= 1,3 = 3.
i) Let
1

p=3w=-3= 1+3+3 4 =1+3(1+3+3+--).
We findr =1,s=1,8=—3.
iii ) Let p= 7 andw = v/2. Thenw is a root of f (x) = x> — 2. We find

f(3) =7=0(mod 7) f/(3) £ 0(mod 7).

From Hensel's lemma, we know that a raotof f(x) exists inQ7, and is determined uniquely
by the conditiorco = 3(mod 7). Computation gives

w=.312612..
Check:
V2=3+1.742-774+6-72=2166(mod 7*) 2166 =4691556=2+7*.1954=2(mod 7).
The first digit ofwis d; = 3, and 3 is a primitive root modulo 7, $6= 6. We findw® = (v/2) =

8=1+7,s0s=1( = 1. Note that if we had chosen the other rootfomodulo 7, namely
—3=4(mod 7), we would have obtained different parameter values.

We now determine the period of the orbits of the mfapreduced modul@¥, by considering
p-adic approximations. For initial conditions co-primegpsuch a period is equal to the order
of w modulo pK. This quantity is well-defined, sindev|p, = 1 implies that any integer in the
residue class ofo modulopX is co-prime top. We have
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Theorem 22 Let w,r and s be as above. Then
r if 1<k<s
ord «(w) =
ok (@) {rpk‘s if k>s
PROOF The casd < sis an immediate consequence of equatioh (17) and the defirfr. We

proceed by induction ok > s, and we have just verified that the base dases holds. Assume
that our statement is true for sorke: s, that is,

WP =P =148 k>s
wheref is an appropriate unit.

Letu=rpk=S. Then orgy:1(w) must be a multipleu of u, for somet > 1 (lest the inductive
assumption is violated). The binomial theorem gives

W't = (1+ |0“Bk)t = ;(:1) pBy

t(t—1
= 1+tpk.3k+%p2kﬁk +ee

Clearlyvp ((p*Bk)") = nk. Furthermore for alh < t, we have
((t)) 0 ifl<t<p
n 1 ift=p

w'#1(modp“t)  t=12...p-1
On the other hand, we have
WP =1+ PP+ O(p™* M) = 1+ P

whereO(p*~1) represents an unspecified elemenp8ft1Z, andfy, 1 is a unit. The last two
expressions ensure that grd (w) = up= rpkt1-S, completing the inductiori]

and therefore

The dynamical interpretation of theordém 22 is the followiige consider the orbit; = L, (xo)

of a pointxy € Qp. Afterr iterates of the map, the poirt returns, for the first time, in a small
neighbourhood of the initial point, a disc of radipsS. All previous iterates remained at unit
distance fronky. To return to a smaller neighbourhood»@f we must iterate the map times,
whereby the distance fromy becomeg~S~1 for the first time, etc. At these recurrence times,
the corresponding iterate of the map becomes closer andrdioshe identity. The orbit never
returns exactly to the initial point, because we have assuhegw is not a root of unity.

ExAMPLE. We have seen that the decimal digits g7 have period 6. What is the period of the
decimals of Y7 for k > 1?

We havep =7, w = 10,r = 6. We compute
10°=147-142857 142857 3°.11-13-37.

Sos=1, andB = 142857. We find org(10) = 6- 71, fork > 1.
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4.1 One units; recurrence and renormalisation

We are interested in characterising the aperiodic motiofi,pin greater detail. Recall that a
one-unit is a unit which is congruent to 1 modyoWe will show that the dynamics generated
by one-units is regular, in a sense to be made precise below.

We denote byH the set of one-units. Thed = 1+ pZ,. More generally, we denote dys =
1+ p°Zy, the set of one-units dével > s. GeometricallyHs is a closed disc of radius® centred
at 1. AlgebraicallyHs is a multiplicative group, since & Hs and

(1+pB) T =1-pB+p™ B>+
which shows that the inverse of a one-unit is a one-unit ofstiree level. Them € Hg if and
only if z= (u —1)/p®is ap-adic integer. So we define
pt—1
pS

Zt:

which yields
Zpr=H2z+7 (18)
Letting T = 1 in the above formula, we obtain the invertible recursion

Zy=pz+zn  t>1 (19)

If we let z, = B (cf. (28)), then the digits o are the digits otv™ that are not fixed. Thus the
map [I9) is relevant to our problem if the initial conditianis a unit.

From the discussion above, it follows that the painis periodic modulop® with period p, so
it visits each residue class moduib exactly once. It follows that the orhit;) is not only dense
in Zp, but is also ergodic with respect to the Haar measure. Thed@igy of (I9) is associated
to a logarithmic problem, namely the solution toof the equatiors = x. The computation of
this logarithm is much simpler that that of the discrete kithan modulo the primep, because
one can exploit the analytic structure of tpedic logarithmic function.

From equation[(26) it also follows that for the mappihgl (1% tecurrence times for an orbit to
visit a circle of radiusp™ about the origin is exactlyp', and this value is independent from the
unit chosen within a given level. This is in sharp contraghviie case of linear maps— wx
overC (with |w| = 1, andw not a root of unity), where recurrence times depend on thé&meed
fractions expansion of the rotational angle being consider

There is considerable regularity in the dynamics of the nii&}).( One sees immediately that
the evolution of the low-order digits dfis determined by an additive, rather than multiplicative,
algorithm. Indeed, iju is a one-unit of leves, equation[(IB) becomes

Z.1=2z+2z(modp®).

To see that the motion possesses an overall additive natar@troduce a renormalisation oper-
atorR, acting on maps ovepp,
R(f)=B 1o fPoB (20)
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which involves ap-fold composition with the affine scaling

B(X) = px+X X € Qp,

whose effect is to magnify about the pot (The operatoR is reminiscent of Feigenbaum’s
operator.)

The operatoR possesses a one-parameter family of fixed péjntnamely, all translations in
@pl
fy(X) =x+A R(fy) = fy.

We let f act on an affine map
fx)=px+y p#1 (21)
We have

(RHX) = %[fp<px+x>—x]

p_
= upx-l—u 1< Y -l-)‘(),

p \u-1
showing that the action d® corresponds to the following reparametrisation for
pP-1 ( y _)
U — uP Y ——+X].
p p—1
The asymptotics of the orbit df underR are given by

n pn_ n
lim (R)(x) = lim ”'x+ H 1<HV +>—<1+p>.

N—co N—co pn

If u is a one-unit, then

lim u?" =1 lim

n—oo n—oo

— log(), (22)

where thep-adic logarithmic function lofl + x) agrees in the open unit digxj, < 1 with the
sum of the familiar power series

k+1xk
log(1+X) )
k>1

Noting thatp" — 0, one sees that the second formuldid (22) corresponds foriinela
E

log(x) = lim il

e—0 &
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Thus an affine mag with a one-unit multiplier lies in the stable manifold of amslationf;.
Lettingy = z; in (21), we see that the multiplicative mappiigl(19) undeorenalisation about
converges to the translational fixed pointRf

1 2
f(X) = ux+A =z+log(u) <Hs + ﬁ)) )
We remark that by exploiting th&,-module property of the group of one-units, we can interpret
the relationx, = f'(xo) for a linear mapf (x) = ux with the one-unit multiplieu as a flow with
p-adic time. The vector field generated bu this flow is then give

tiy) —
9 = im = =

pt—1

x = log()x.

In this context, time measures recurrence distances,2h#liis proportional tgx; — Xo|p.

4.2 Exercises

Problem 1. Forn e Z, consider the circles, centred at zero.
%n={xe€Qp : vp(X)=n}

Prove that the restriction df, to %y is conjugate to the restriction dfto %p.

Problem 2. Compute the period of the orbit through the poiat 1 for the mapx— wx(mod p¥), k >
1, in the following cases
w=4p=>5 w=14 p=29.

(In the second case, use Maple.)

Problem 3. Let w =1+ p° Show that any orbits of the map, — Qp, x — wx with initial
pointx is contained in a disc of radiys|p,p~° centred ak.
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5 Linearisation

Let f(x) be a polynomial with integer coefficients. We leact onZ/pKZ, wherep is a prime.
Can the dynamics be studied wiphadic methods?

We restrict our attention to motions in the vicinity of a fixpdint of f. The latter is a solution
of the equatiorf (x) = x, namely a root of the polynomial

Assume that has a roota modulo p and that®’(a) # 0(modp). From Hensel's lemma, it
follows that® has a roof in Zp, with 6 = a(modp).

Furthermore,f(8) = 6, namely0 is a fixed point off in Z,. To study motions neaf, we
consider the new variable= x— 6. We find

z—f(X)—0 = f(z+0)—0=1(0)+f(0)z+0(Z)—6
f'(8)z+0(2).

The mapz— f’(0)zis thelinearisation of the mapf near the poinB. The quantityf’(0) is
called themultiplier of f’ até.

EXAMPLE. Letp=7 andf(x) = x?+1. Then®(x) = x? — x+ 1, and®’(x) = 2x— 1. We find
®(x) = (x—3)(x—5) (mod 7) @' (3)=5(mod 7), @'(5)=2(mod 7).

From Hensel's lemma, it follows th&® has two distinct roo8, 9in Z7, with

6 =3(mod 7 6 =5(mod 7).
The map in the variable= x — 6 reads

2 f(z4+0)—0 = (z+0)*+1-0=202+72+6°-6+1
= 20z+Z+D(0) =20z+7

where we have used the fact tBeis a root of ®. So the linearisation of is z+— 20z, with
multiplier f/(6) = 26. In particular

z— 6z(mod 7) near@
z— 4z(mod 7) nearo.

Let f(x) = wx+ O(x?) be a polynomial with coefficients i@p, (or, more generally, g-adic
power series oveQp, converging in some neighbourhood of the origin) which héigexd point
at 0 with multiplierw. The linearisation problem is posed as follows: does theist @ smooth
change of coordinates that turfisnto its linear part?
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Specifically, we look for a functior” : Qp — Qp which satisfies the equation
Z(f(X) = wZ(x). (23)

This is calledSchroder functional equation. We requireZ to be expressible as a power series,
convergent in some non-empty disc abost0, and invertible in some suitable (possibly smaller)
disc

ZL(X) =bo+bix+bx+--.. (24)
For the sake of concreteness, we consider the simplestivoad-tase, namely that of a quadratic
polynomial overZp, with an indifferent fixed point at the origin

f(x) =wx+ad  |wp=1
Schroder equation reads

ZL(wx+ax) = %bn wx+ax)" %wbnx

Using the binomial theorem, we obtain

n;bnk_ ( )w ahKy2n—k — %wbx

Equating the coefficients of the same powerx,ofve obtain an infinite sequence of equations
for the unknown coefficientis,, to be solved recursively.

Let mdenote the power of under consideration. We obtain

=0: bo:wbo = bo:0
1: wby=wb; = byarbitrary.

Noting thatb; is the derivative ofZ at 0, for.Z to be invertible, we neell; # 0. We choose
b1 = 1, for normalisation. Furthermore

_ 5. 1 2\ 2 _
m=2: b1<0)-|—b2<2)w = wby

ab a

:>b2:_a)(w—1) T w(w-1)

Form > 2 we obtain the recursion

m m _ 2Nn—m,ym—n
bm Km)w —w} = bmw(w™" n_;m <2n m)w al

([ -1 is the ceiling function) which expresskg in terms of some coefficients of lower order. The
lower bound of summation ensures ttigt" ) # 0.
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Recalling that

()] <t b=t -1
k p
an easy induction shows that
1
Pbnlp < ———
| m|p |9m—1|p
where
m .
al

The quantity?Zn, appears at denominator of the expression defibjpgHow small isZ,? As
we did before, we let be the order otv modulop, and we define the quantitigs s and3 via
the equations

p=w =1+pB  [Blp=1 (26)
The only term in the producE{25) that are smaller than 1 apoad to the values adfthat are
multiples ofr. Lettingn = |m/r |, we obtain

Vp(Zm) =

<
=
=
|
Naw?

M= M=

Thusvp(Zm) is bounded above by a linear function wf This means thatZm|, decreases

no faster than exponentially, and herjbg|p increases no faster than exponentially, that is, the

power seried(24) has a non-zero radius of convergencegdtndard results on the invertibility
of power series, we obtain

Theorem 23 Let f(x) = wx+ax?, with a w € Z, and w a p-adic unit which is not a root of
unity. Then there exists a neighbourhood of the origin wHegeconjugate to its linear part.

This theorem can be generalised to the case ofmagic functionf analytic in a neighbourhood
of the origin. The region surrounding an indifferent fixedrgavhere the motion is conjugate to

a rotation is called g-adic Siegel disc. Siegel proved the existence of such discs for analytic

maps overs, where the question of convergence of the conjugacy func#bis considerably
more difficult.
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5.1 Conjugacy and the logarithm

We consider the following one-parameter family of nonlineeps
foX)=(1+x°-1 0eczp,. (27)

These maps illustrate clearly the main features of regutatrons over thep-adics. These are the
endomorphisms of the so-called multiplicative formal grpwhich in the specialised literature
are usually denoted by](x)[8.

We are interested in the dynamics of these endomorphisnes abyebraic extensions of Qp.

If 8 € Z, then fg is defined over the whole df, but if one restrictsx to the domainx|p < 1
(the maximal ideal), then the exponent can be allowed to beeament ofZy, which is the case
of interest to number theorists. Whenever we apfyyoutside the maximal ideal, it will be
understood thaf is a rational integer.

The study offg illustrates the dynamical significance of theadic logarithmic and exponential
functions, which provide analytic conjugacies to Siegskdi These maps also exemplify the
most salient dynamical features of the so-cabedomorphisms of formal groups which we
briefly describe in the next section.

From (ZT), we obtain

fo(fp(x) = fo((1+x)¢-1)
(14x)%% — 1= faqu(x),

that is, all elements of the family commute. In particular
f5(X) = fer(x),

which is valid for rational integers and if 6 is a one-unit, theh may be taken to be any-adic
integer. Thus ik* is a fixed point offg, so isf,(x*), and since the number of fixed points f
is finite, X" is also (pre)-periodic foff,.

The derivative (multiplier) of the map is given by
fo(x) = 0(1+x)°1. (28)
The periodic orbits of period dividingare roots of the polynomial
®(X) = fgt (X) — X = (1+X) (1+x)9t—1—1] (29)

The first factor of®; yields a fixed point ak = —1, which is superstable (the multiplier is equal
to zero), and independent 6f

Its basin of attraction is the set for which
lim £5(x) +1= lim (1+x8 =0,
which implies|1+x|p < 1, that is, the basin is the open unit disc centrexi-at—1.
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The second factor of{29) yields a fixed point at the origirthwnultiplier 8, as well as infinitely
many cycles<* with the property that 4 x* are the(6' — 1)th roots of unity. Motions near these
periodic points are the same as near the origin, apart frameaid scaling. Indeed lat # 0, —1
be a periodic point of minimal periog and letn = 1+ x*. From [2Z8) and[{29), we find for the
kth derivative

(O = 1ot k=1

so that, in terms of the local coordingte- x — x* we have the linear conjugacy
1
n for(yn) = for (%), (30)

which preserves the metric singg|p, = 1. In particular, the multiplier of &cycle is the same as
that at the origin, and therefore these periodic orbits &heeall attractive, if0 is divisible by
p, or indifferent, if @ is co-prime top. (Here we exclude the trivial cage= +1.)

In the former case the basin of attraction of the origin issleofx for which

limfy=0  or tlim(1+x)9t =1
We havee = 68! — 0, p-adically, and the basin includes the open unit disc, bex#uds ap-adic
integer, then the binomial theorem is valid in that domairg éf;) goes to zero witlz.

On the other hand, the basin of the origin cannot include tiecircle, because of the presence
non only of the superstable cycle there, but also of the otiws of unity. The latter are attrac-
tive, and, by the conjugac{/{B0), have basins of the sameasitleat at the origin. Note that in
this case all periodic points belong to the subgr@upf E, and the one-unitsl are all attracted
to the origin. In particular, th@-power roots of unity are eventually fixed, that is, they redee
origin in a finite number of iterations.

If the map is invertible, that is, # is not divisible byp, then all cycles (apart from the superstable
one) are surrounded by a Siegel disc, meaning that the mayalgt@ally conjugate to its linear
part in a neighbourhood of each cycle. The size of a disc isrtheimal domain where the
conjugacy function has an analytic inverse. It is sufficientonstruct the Siegel disc at the
origin. Conjugatingfg to its linear part (which is jus#x) amounts to solving Schroder functional
equation (cfC2B)

Z(fo(x)) = 602(x) (31)

for £ analytic of the form
ZL(x) = %ckxk (32)
k>

which has solution
Z(x) =log(1+x)

independently fron®. This solution is unique if we require tha’(0) = 1 andl’(0) = 1. The
series [[3R) defining the-adic logarithm converges in the open unit disc, and the rstgigle
attractor atx = —1 gives a dynamical system justification for the exclusionth& unit circle
from the domain of convergence.
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On the other hand, the actual radius of the disc is somewhatiesmfor the inverse of the
conjugacy function? —the exponential function— converges only over the smal@main
v(X) > (p—1)~1. The dynamical reason for this phenomenon is that the dieeadrigin must
exclude the remaining periodic points, which now lie instde maximal ideal (the numbers
1+ x* are one-units), each surrounded by its own disc, accordifg).

Dynamically speaking, the convergence of logarithmicesem a region which includes other
discs depends on the concomitance of two facts. First, thariihm vanishes at the centre of
secondary discs, thereby mapping them into the primary &@seond, all discs have the same
multiplier, which must be the case, as seen by differemiga{B1) and noting that the derivative
of the logarithm does not vanish in the secondary discs.

5.2 Remarks on endomorphisms of formal groups

The main features of the phase portrait of the nfaplescribed in section 3.1 are shared by
automorphisms of more general groups, which we descrilmgnmlly in this section. We shall
in no way attempt to do justice to such a vast realm of numb=wrih we merely explain some
key concepts using the language of dynamics. We refer thterea [9] for an advanced text.

A one-parameteformal group is given by a formal power seri¢sin two indeterminates, over
a ringR, with no constant term, and with unit linear coefficients

F(Xy) =Xx+y+---
representing the group law. For this to be a group, we must hasociativity
FXF(y,2) =F(F(xy),2),
andx must have a formal invergéx):
F(x1(x)) =F(1(x),x) =0.

We take the rindR to be the ring of integers is some finite extensioQef

An endomorphismof F is a formal power serie$ without constant coefficient, which respects
the group law, namely

F(FOoy) =F(f(x), f(y))  f(x) = wx+---.

The existence of endomorphisms is ensured by the commityati-, and they are parametrised
by the coefficientw.

Dynamically speaking, and endomorphism of a formal groymigs domain of convergence) a
nonlinear mapping with a fixed point at the origin, with mpligr . In our examplel(27), the
mappingsfg are the endomorphisms of the formal multiplicative group

F(X,y) =X+y+Xxy
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which mimics the law of multiplication of one-units
(14+X)(1+y) =1+X+y+xy=1+F(Xy)

for x andy in the maximal ideal.

Thelogarithm L of a formal group is a formal power serie$x) = x+ - - - that turns the group
law into addition

L(F (x,y)) = L(X) +L(y)-

The term-by-term construction of the logarithm yields a pogeries with coefficients in the field
of fraction s of the ringA, which can be shown to converge in the entire maximal ideal.

For any endomorphisrh of F one has
L(f(x) = f'(O)L(x) = wL(X) (33)

which conjugates the mappingto its linearisation about the origin. Thusffis an automor-
phism, then the logarithm of a formal group serves as a caayéunction to a Siegel disc. K
is the multiplicative group, we have seen thét) = log(1+ x).

It can be shown that the logarithimof a formal group vanishes at all periodic points within the
maximal ideal, and has non-vanishing derivative there.r&oadways has the same phase portrait
as in multiplicative case, with full tiling by isochronouge§el discs. In particular, the size of the
disc at the origin is determined by the domain of convergeride 1, which is smaller than that
of L, since the disc cannot include other periodic points.

5.3 Exercises

Problem 1. Let f(x) = x? — x+ 2. Find the fixed points of in Zs, with three digits accuracy.
By computing the corresponding multipliers, determinenture of such fixed points.

Problem 2. Let f(x) = wx+ ax?, with a,w € Z,. Extend theorerfi 23 to the cale], < 1.
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6 An application: planar rotations with round-off errors

A planar rotation is a mapping of the type
2 _, o2 X coq2mnv) —sin(2nv)\ [x
F:R°—>R (y) — (sin(2nv) cos21v) y v e|[0,1) (34)
describing an anticlockwise rotation by an angkv2 The quantityv is called therotation
number. The rotation is said to be rational (irrational) vifis rational (irrational).

In the irrational case —the one we are interested in— allteri F, apart from the origin, are
non-periodic and dense on circles centred at the origin.

Let us consider the matrix

A= (i _01) A =2cog2mnv). (35)

Denoting byJ the matrix appearing ifi(34), and letting
C_ 1 —cog2mnv)
~ \0 sin2mv)

one verifies thaCA = JC. This means that induces a semi-conjugacy betwegandA. Be-
cause déC) = sin(2mnv), we have

A=clc v 7éo,%.

This equation shows that, apart from two trivial cases, treadhics induced by and byA are
conjugate that is, they have the same orbit structure. The invarietst GfA are the ellipses

x2 — Axy+y? = const
We shall use the following result

Lemma 24 LetA = 2cog2nv), wherev is a real number. IfA is rational, but not an integer,
thenv is irrational.

The proof requires some knowledge of the arithmetic of radtanity, and it will be omitted
(see, e.g.[110, chapter 3]).

We shall now perturb the linear mapping defined by the maB®),(by discretising the space.
Our aim is to model the effects of space discretisation ghaptesent in a computer representation
of a dynamical system. Because the linear motion is regitlaill be possible to isolate the
irregular fluctuations that appear when the space is desci&e remark that these phenomena,
still far from understood, have attracted the interest ofaiyicists for a long time [12].

We consider the following lattice map

W=22 7%  (xy)~ ([Ax-yX) A =2cog2m) (36)
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Figure 2:A portion of a periodic orbit of the may, for A = 1/2. The period is 696.

where| - | denotes the floor function. Without the floor function, thispping reduces to the
action of the matribA.

LettingW(x,y) = (X,Y), we find
(va) = (y,7 V‘y,J _X,)

that is, the mappind is invertible. It follows that the orbits d# are either periodic, or they

escape to infinity in both time directions. In this model thscdetisation length —the spacing
beween lattice points— is fixed, and the limit of vanishingotétisation corresponds to motions
at infinity.

We consider the following family of parameter values

A =% geda,p)=1, g <2p", n>1
From (36) and lemmB@24, we conclude that the correspondihgsaf the rotation numbex

are irrational. An orbit of the mal for the parameted = 1/2 is shown in figur€&l2. This orbit
is periodic, and consists of an irregular set of points ayemhalong an ellipse.

Let us consider the polynomidix) = x?> — gx+ p?". We find

f(x)=x(x—q)(modp?)  f'(x)=2x—q.

f(0)=f(q) =0(modp®),  f'(0)=—qg(modp®),  f'(q)=q(modp™).
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Sincep andq are co-prime, the polynomial has two distinct rots modul@, with non-zero
derivative. From Hensel's lemma, it follows thiihas two distinct root#, 6 in Zp, where

6 =0(modp®)  6=q(modp®). (37)
We have (see exercises) L
Blo=  10lp=1

Using Newton’s method with initial conditiof = 0 (see equatioi{B7)), we find (see exercises)

2n 4n 6N
p p 2 p

O0=—+—"F5+2—4+-
qa g o
and hence
8 _ P o) (38)
P g

We shall embed the round-off map136) in the rifig of p-adic integers. Considering that
0/p" € p"Zp, from (38), we define the map

6
‘Z:Zz—>Zp (x,y)Hx—yE. (39)
Becausd ¢ Q, being the root of the quadratic irreducible polynomiiathe map¥? is injective
The image undefZ of the latticeZ?, namely the set

¥ =%(7% CZy

is an additive subgroup of theadic integers.

We now define the map
W . ¥ -z Y= LoWYo L (40)

which is conjugate t& on 2. For the purpose of characterising the n¥f we first define the
shift mapping o onZp. Given ap-adic integerz

z=bo+bip+bop®+---  bee{0,1,...,p—1}

we let
0(2) = by +bpp+bgp®---. (41)

This is a smooth expansive map, with a dense set of perioditgadt preserves the standard
probability measure of (the additive Haar measure), obtained by assigning to 8idue class
z(mod p¥) the measur@ .

Furthermore, givex € Z, we define the integex(x) via the equation

= |3

We shall prove the following.
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Theorem 25 The mapping?* can be extended continuously to the whol&gfgiving
W Zp—Zp 2 0"(62)
wheref is the p-adic unit given if{37), and is the shift mappind{31).

PROOE Becausd and®@ are roots off, we have

6+60=q 66=p™

Letz=Z(xy) = x—y%. We compute

o = (|7 5)- |2 -5
= %(X(q— 8) —p'y—c(x) = % (XG - —_Y—C(X)>

1 —
= ﬁ(ez—c(x)).
From equation[(38), we find thgb /p" = O(p"). Thus
qx= qz= 6z(mod p")

which shows that _

W*(z) = 0"(62).
Now, if Z¥ — zis a Cauchy sequence i, then so iso"(62%), and sinceZ” is dense iy,
we can exten®* to the whole ofZp. [J

The theorem above shows that the round-off mappiig conjugate to a restriction to a dense
set of an expanding mag* over thep-adic integers.

Thus, in a sense, the round-off errors in the modédl (36) araifestation ofp-adic chaos!

6.1 Exercises

Let f(x) = x> — gx+ p?", wherep is a prime numbery is co-prime top, andn is a positive
integer. Letd,0 be the roots of in Qp, with 8 = 0(modp), and8 = q(modp).

Problem 1. Prove that 1
10lp=— 6lp=1.

pl"\

Problem 2. Using Newton’s method, show that

2n 4n 6n 3n
o= P _oP 5P ..
q q q q

Obtain a similar expansion ft.
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Problem 3. Letg= 1, p=2,n=1. By iterating Newton’s method, show that
0 = 56724(mod 26
and hence obtain the 2-adic expansion

6 =.0010100110111011..

Problem 4.
(This exercise requires knowledge of algebraic numberrtheo

Let A be a root off. Show that in the ringZ[A], the ideal(p) splits into the product of two
distinct prime ideals(p) = PP. Hence show that, for all positive integdesthe idealP* has the
Z-basis

PK=[p"s—A] with s=06(modp")

whereP andA are paired via the congruenge= 0(modP).
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7 Solutions to exercises
7.1 Section 1

Solution 1:

If all orbits are periodic, then each point has a single pnage, thencd is invertible. Con-
versely, letx be non-periodic. Then there exist positive inteders tp, such thatf's(x) = f2(x).
Assume that, (hence alsa,) is minimal. The points

ftlfl(x) ftgfl(x)

map to the same point. By the minimality Bf they are distinct (think about it), hendeis
non-invertible.

Solution 2:

The sufficiency of both statements follows from the fact thatrationals with denominatagrin
the unit intervall are a finite set, which is left invariant biy,. Furthermore, ifw is co-prime to
g, then the restriction of, to this set is invertible, giving periodicity.

Conversely, lex € | be eventually periodic. Then the digdgin basew are eventually repeating.
Without loss of generality, we may assume that the fractipag of x is purely periodic:

x= 0.0y - Ch. (43)

(Any real number may be reduced to this form by first multiptyiby a power ofw and then
subtracting an integer, and neither operation affects tbhpgrty of having repeated digits.) We
define the integer

n
D= dkwnfk.
2

From equation[{43), we find

n' .2n " .3n n
W W w S\ w
B D
 ow—1

We see thax is rational. O

Solution 3:
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(a)
001100010111

There are 2 binary strings of length 6. Of those? Bave minimal period 3 or 1, which must be
subtracted. Furthermorée 2trings have minimal period 2 or 1, which must also be sulggc
except that in doing so we subtract the 1-strings twice. Tihestotal number of strings of
minimal period 6 is

2628 22421 —64-8-44+2=54

The total number obrbitsis then given by 546 = 9.
(b) Letxo=1/51. The numerators of the points in the orbits are
1,2,4,8,16,32,13 26,1, ...

So the orbit has period 8. We partition the unit interval ifdor sub-intervals

lk=[(k=1)/4,k/4) k=1,...,4 FNW:DJ)
k=1

We have (referring to numerators only)
{1,2,4,8} €1 {1316} € 1, {26,32} € I3.

So for x € I, the densityp(x) is equal to the relative number of points lindivided by the
measure ofy (which is 1/4)

XElq
XEl
X€El3
XE ly

p(x) = [ pax=1

O r FP, DN

Likewise, ifxp = 1/13 we find
1,2,4,8,3,6,12119,5,10,7
so the period is 12. This time the density is uniform

p(x)=1.

(©)

Xo = 0.000011110010110% 259/4369

The string above contains all 4-substrings. (There is muaa bne orbit with this feature.)
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Solution 4:

(a) We have
— 1 1 1 21 1
=0001l= o4 =4 —o+--=5 ===,
xo = 0.00 23+26-|—29+ k;8 -
Then 5 4
xlzzxo(modl):? x252x1(m0d1):?.
(b) We have

Xo = 0.001101= 0.000001+ 0.0001004+ 0.001000
0.000001(1+4+8)
% k
1 13
k; 26 63
Iterating the map, we find

13 26 52 41 19 38

XO:6_3’ Xlza),, X2:6_3’ X?’:E%’ X4:6_3’ X5=@~
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7.2 Section 2

Solution 1:
(@) 512=2°
0(2%) =28(2—-1) =28 = 256
(b) 1155=3.5.7-11
(1155 =(3-1)-(5-1)-(7—1)-(11-1)=2-6-10=480
(c) 101=28.3%.52.7
©(10) =27.(2—-1)-3%-(3—1)-5-(5—1)-(7—1) = 829440
Solution 2:

The mapf has just two orbits precisely whenis prime, andw is a primitive root modulan.

(a) m=13: ¢(m) =12, so possible orders are213,4,6,12. We have, modulo 13
2=4;, 2=8;, =3  P=4.3=-1

So 2 has order 12, i.e., it is a primitive root. We hap@ 2) = 4, and a reduced residue system
modulo 12 is{1,5,7,11}. So the primitive roots are

2152; 2556; 275—2511; Al=p-1=7

The desired values ab are the integers congruent to the above ones.

(b) m=23: ¢(m) =22, so possible orders are2l11, 22. We have, modulo 23
2%=4, 2=8 2F=17=-7, 2B=49=3  21"=3.8=1

So org3(2) = 11. Moreover, because=328 (mod 23, and 4= 2?(mod 23, the order of both 3
and 4 is a divisor of that of 2, so 3 and 4 cannot be primitiveésodry 5:

52 =2: 5% =10; 5'=4; =4'=_7; 511=_70=-1

So 5 has order 22, and is a primitive root. We hg(@2) = 10, and a reduced residue system
modulo 22 is{1,3,5,7,9,13/15,17,19,21}. So the primitive roots are

5l =5: 5% =10; 5 = 20; 5 =17; 5 =11;

518 =21: 5 =10; 5 = 15; 59=7: 521=14

The desired values ab are the integers congruent to the above ones.
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Solution 3:

From the previous problem we see that 13 is not a primitivé noodulo 23, so its order is,2
or 11. The order is not 1 and moreover?t3 8(mod 23. So the order of 13 is 11, whence
1371 = 13'%(mod 23. We find, modulo 23

13%2=8 13 =64= -5 1P=_-65=4 139=16=-7.

Solution 4:

The periodic point equation reads
(w'—1)x=0(modm)

wherex is the initial condition. For every divisal of m, consider the initial conditiox = dX,
with X' co-prime tom. Simplification gives the congruence

w' = 1(modm/d)

and there are no other congruences. So the possible permtiseapossible values of the order
of w modulom/d (which exists, becaus® andm are co-prime). limis prime, therm has two
divisors, and ifw # 1(modm) then there are two periods, so the bound is sharp.

Solution 5:

Consider the quantities

k—1

s= maxgcd w* -, m) t=q@(m/s)
keN

and then let be the smallest value &fc N such that gctto*~1, m) = s. Consider the initial point
x = 1. The first periodic point in the orbit of 1 i = f'(1), so this orbit has transient length
Transients cannot be longer (think about it). The maximalgest, which happens whew is
a primitive root modulan/s.

Solution 6:

Lett; = ordy, (w), to = ordm,(w), s=lcm(ty,tz). Then, fori = 1,2, s/t; is an integer, and
w® = wlis/ti = (1)%Y (modmy).

Thusw® — 1 is divisible by the integemy andmy, and hence by their product (because they are
co-prime). It follows thass is a multiple of orehm,(w) (proposition 2.7(i)). If t < s, then we
cannot havey' — 1= 0(modmmy). Indeed if this were true, if we divideby t; (i = 1,2), for at
least one value afwe would get non-zero remaindegr< tj. The congruencey’' = 1(modny)
would then contradict the definition of order (think aboit it
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Solution 7:

Let g be a primitive root modulg. The squares modulp correspond to the even powersgf
Thus

(p-1)/2
|'l g*
where 2
(p—1)
_p—1p+
Thus (b-1)/2
p-1 (p+1)/
2t (4(P-1)/2 — (_1\(p+1)/2
9= (g =(-1 (modp).
o =7
Solution 8:

Letg=4p+ 1, with pandq primes. We note that:

i) pisodd.
i) There arep(q) = q— 1= 4p reduced residue classes modqglo

iii) The number of primitive roots is (fror) andii)) @(q—1) = @(4p) = @(4)p(p) = 2(p—
1)=2p-2

iv) Because =5(mod 8, 2 is a quadratic non-residue modwajofrom quadratic reciprocity.

Now, a primitive root is a non-residue, and framthe number of non-residuesggq),/2 = 2p.
Fromiii ) it then follows that all but two non-residues are primitio®ts.

Next we identify these two non-residues. Igebe a primitive root modula, and leta be an
integer co-prime ta. Theng! = a, for somet, and therefore

(0)-()-(0)-cv

The possible orders modulp are the divisors ofy — 1 = 4p, namely: 12,4, p,2p,4p. We
examine the elements of order 4. There @fd) = 2 of them, and lea be one of them. The
corresponding exponehtn (1) is a solution to the congruence

gcd4,4p)t =4t =0(mod 4p) = t==xp(mod 4p)

Sincep is odd, from (1) we have, either case, tfiafq) = —1, and therefore the elements of
order 4 are non-residues.

It follows that the only non-residues which are not prinatioots are those of order 4 moduwjo
To prove that 2 is a primitive root, it now suffices to show tBatoes not have order 4 modulo
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g. The only prime which is of the formpH- 1, and which is smaller that'2sq=13=4-3+1.
But 2* # 1(mod 13.

This completes the proof.

Consider now the mafy, m, with m= g, g as above, and = 2(modm). We conclude that this
map has exactly two two orbits, a fixed point at the origin, and(m— 1)-cycle.

Solution 9:

Figurell was generated by the following Maple code.

- the first N primes

N:=10000:

Primes:=[seq(ithprime (k) ,k=2..N+1)]:

#———- the sequence [[p,ord(2)]...]

Orders:=map (x->[x,numtheory[order] (2,x)] ,Primes) :
#-—- Artin’s constant

AC:=0.3739558:

e Artin[k] is A(2,x) for x = the kth odd prime
Artin:=array(1..N):

total:=0:

for k to N do
if Ordersl[k,1]-Orders[k,2]=1 then
total:=total+l
fi:
Artin[k] :=total/k

#-—————— plot

plot([seq([Primes[k],Artin([k]],k=1..N)],
[[0,AC], [Primes[-1],AC]],’x’=0. .Primes[-1],’A’=0.35..0.42);
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7.3 Section 3

Solution 1: See hints.
Solution 2:
|35]7 =1/7, |12/56|7 =7, |24007 =1, |2400/24017 = 2401

Solution 3:

By definition, we have0| = 0. From lemma 4.3), we havell| = 1. From Euler’s theorem, we
havexP~1 = 1, whencgxP—| = |x|P~1 = |1| = 1, and|x| = 1 from lemma 4.3i). So the absolute
value is trivial.

Solution 4:

By theorem 4.3), [x—y|p = 0 iff x—y =0, soi) is established. By lemma 4iB we have
IX—Ylp=|—(X=Y)|p=|y—Xp, andii) is proved. Finally, applying the non-archimedean
property to the equation

(X=y) = (x=2)+(z-y)
we proveiii ).

Solution 5:
Letx be a positive integer, and lgt= pfl e pﬁ’" be its prime factorization. We find

Xlg=1 if g7 pi
X[ fori=1,....k

|X|oo et pgl e pgk

The result then follows. Ik is a positive rational, then we deal with numerator and danatar
separately, extending the result to this case. Finallysitye makes no difference, due to lemma
4 3iii ).

Solution 6:

1. We have
Plp=1Iplp=(pH)"—0
So the sequence converges to 0.
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2. We find
Vp(n!) > [n/p| —

where| -] is the floor function. Henca! converges to zero.

3. The sequenaedoes not converge: indeed one can find consecutive termsadhuence,
that get arbitrarily close to 0 and to 1, respectively. Cledsr instancen = pK and
n= pX+ 1, for sufficiently largek.

4. The sequence/h does not converge, for the same reason.

5. From the binomial theorem

(1+p)P =1+0(p™h - 1.

Solution 7:

Between 1 ana, there arg/n/p| integers divisible by, |n/p?| divisible by p?, etc. Thus

1l n
Vp(n!) = — | .
() kle"J
Therefore .
n n
Vp(n!) < —_ =
p( ) kglpk p—1

It follows that
Inl|p= pVe(M) 5 p=1/(p-1)

and therefore for the radius of convergemqree obtain the estimate

p 2 p_l/(p_l) )

Solution 8:

Firstly, an integer with the above properties does exist. Indeed, using a pvenibot we see
that forp > 2 half of the integers between 1 apd- 1 are squares modulm whereas the number
of integer squares in the same range is at g4t — 1|, where|- | is the floor function. So for
p > 5 there are more modular squares than squares, and hencersmanéar square is not a
square irZ. For p = 3,5, one may choosae= 7,6, respectively.

Because is not a square i), any solution of the equatioh(x) = x> —a = 0 is not a rational
number. We must show that there exists a Cauchy sequencgarfalanumbers that converges
with respect tg - |, to a root of f. Let g be such thaa = x3 (mod p). Then

f(xo) = 0(modp) f'(x0) = 2b # 0(mod p)
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where the rightmost inequality holds becaysis assumed to be odd. By Hensel's lemma, we
can construct a sequence of integers

X0, X1, ...

such that, for alln, f(x,) = 0(modp"), andxn 1 = X, (modp"). From lemma 5.4, this is a
Cauchy sequence of rational numbers (integers, in fac),dbnverges with respect {o|, to a
solution of the equatiori(x) = 0. SoQ is not complete.

Solution 9:

We consider cube roots instead of square roots. Thui(lgt= x> — 3, and cube roots of 3 are
not rational. We find

f(1) =0(mod 2 /(1) = 1(mod 2.
Hensel's lemma applies, and we proceed as above.
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7.4 Section 4

Solution 1: Let

L: 6 — %o X— p"X.

The mapL, being linear and non-constant, is clearly bijective.
Solution 2:
Forw=4,p=>5, we find

ords(4) =2  |42—1s=|155=5"1.

Using the notation of theorem 6.1, we have 2,s= 1, so the period moduldGs

2 ifk=1
2.5 1 jfk>1.

Forw = 14, p= 29, possible orders are 1,2,7,14,28. We compute, modulo 29,
14 =196= -5 14*=25=—-4, 14" =20-14=280=—10, 14*=100=—1.
So 14 is a primitive root modulo 29 & 28). Using Maple, we find
1478 1)29 = 292

sos= 2. The required period modulo 2%

28 ifk=12

28-292 ifk> 2.
Solution 3:
We compute

fL(x) —x=x(w'—1).
Now

' —1|p=[tp*+O(p®)|p< p~°

and hence

[ foo(X) —X|p < [X|pp~>.

We note that the left-hand side of this inequality represém distance between the initial point
x and an arbitrary point of its orbit.
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7.5 Section5

Solution 1:

The fixed points are roots of the polynomial
D(X) = F(X) — X=X —2X+2.
We find
®(3) = d(4) =0(mod 5); ®'(3) = 4(mod 5; ®'(4) = 1(mod 5.
From Hensel's lemma, the polynom#@lhas two distinct root$, 6> in Zs, with
61 =3(mod 5 6, =4(mod 5.

We compute
01=3+1.54+2-5°+...  G=4+3.542.524...

Thus
6,=58(mod5) 6, =69(mod5).

The corresponding multipliersy = f/(8) are
w = f'(61) =115(mod )  wp = f'(6:) =12(mod 5).

Thus the fixed poin®, is an attractorjw |, = 1/p, while 6, is indifferent, |wp|, = 1.

In particular, iterating in the vicinity ob1, we converge t®; (see problem 4). For example, the
orbit through the poinkg = 3, which is near td, is given by

(3,8,58,3308...)
and we recover the approximatiéa ~ 58(mod %) found above.
Solution 2:

We solve Schroder functional equation

L(f(x)) = wL(X)

LX) =S bpx".

As in the proof of Theorem 7.1, we finoh = 0, andb; arbitrary; hence we sdi; = 1. The
recursion relations for the coefficiertts reads

for the power series

by = — ml mil bn( n )wznmlam” m> 1.
wh—1__ /2] 2n—m
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Sincem > 1, the quantityw™ — 1 is a unit, from proposition 4.4. L&, be the coefficient ob,
in the above sum, namely
n 2n—m—1_m—n
Ch= W a
" <2n — m)

and letc, = 0 for 0 < n < [m/2]. Considering that, is a p-adic integer, we find

m-1

bnc
nzlnn

Hence allb, are integers, and the series fohas a non-zero radius of convergence. We see the
radius of convergence @f is not smaller than 1; in particular, the (semi)-conjugaoids in the
closed disc of radius /Ip.

Ibjm= < max (|bncnlp) < max (|by|).
0<n<m O<n<m
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7.6 Section 6

Solution 1:

Sinceq is co-prime top, then@ is a unit. The congruend@= 0(mod p") shows thaté| p<p "
To prove equality, use, say, Newton’s method (see next propl

Solution 2:

The Newton mags — 65,1 is given by

f(6s) 05— p™
(6) 26s—q°

95+1 = es—

Iterating this with initial conditiorfy = 0, we find

p2n - q2 p2n . p4n
g q(q? —2p™)’
etc. To get a power series, we note that

1 1 1

P-2p2 @ 1-2p%/
Since|2p? /| p < 1, we may expand the rightmost fraction in power series

1 B 2p2n 4p4n
o @ T T

etc. Iterating Newton’s map once more, we obtain the expansi® modulop®".
The expansion of is dealt with similarly.

Solution 3:

The root8 is known with 2 digit accuracy. To obtain 16 digits accuraityguffices to iterate
Newton’s method three times, since the accuracy doubleschtieerations. We obtain

52,
119

where the last congruence is obtained either with Euclitfjprithm, or —if you feel lazy—
with Maple. Expanding 56724 in base 2 gives the desired digitg (with the digits written
backwards!).

0= mod 2) = 56724(mod 29
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Solution 4:

This statement follows at once from the factorizatiorf @K) modulop into two distinct factors.

Because the norm ¢¥¥ is p¥, and the smallest positive integer containe®fris p* (lestP and

P would not be distinct), we conclude that thebasis ofPk must be of the given form, for some
s¢ to be determined modulp¥. The congruence class of sf is determined by noting that the
local imal(z:]e ofA is 8, and that the local image of each basis element must be cemigizero
modulop®.
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