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Abstract—Nowadays, manufacturers want to collect the data of
their sold-products to the cloud, so that they can conduct analysis
and improve the operation, maintenance and services of their
products. Manufacturers are looking for a self-contained solution
for data transmission since their products are typically deployed
in a large number of different buildings, and it is neither feasible
to negotiate with each building to use the building’s network (e.g.,
WiFi) nor practical to establish its own network infrastructure.
ISPs are aware of this market. Since the readily available 3G/4G
is over costly for most IoT devices, ISPs are developing new
choices. Nevertheless, it can be expected that the choices from ISPs
will not be fine-grained enough to match hundreds or thousands
of requirements on different costs and data volumes from the
IoT applications. To address this problem, we for the first time
propose IoT communication sharing (ICS). We first clarify the
ICS scenarios. We then formulate the IoT communication sharing
(ICS) problem, and develop a set of algorithms with provable
performance. We further present our implementation of a fully
functioning system. Our evaluations show that ICS and our
algorithms can lead to a cost reduction of five times and eight
times respectively for the two real-world cases.

I. INTRODUCTION

One important value proposition of the Internet of Things
(IoT) is the data generated by the IoT devices (a.k.a, things) [1].
When sending such data to the cloud, with state-of-the-art data
mining techniques and the computational power of the cloud,
the adding value can be significant [2]. For example, it has
been shown that big building data (e.g., carbon dioxide (CO2)
data from the heating, ventilation and air conditioning (HVAC)
systems) can be exploited to predict traffic status of nearby
roads [3]. Smart After-sales Maintenance and Services (SAMS),
which will become the case study of this paper, is another exam-
ple. Manufacturers of air conditioners, pumps, elevators, etc.,
are now transforming their machinery into smart machinery.
When sending the data of their products to the cloud, SAMS
can operate in a trouble-preventing mode instead of trouble-
shooting mode. This can substantially improve the quality
and reduce the cost of the product maintenance. Moreover,
manufacturers can learn the usage patterns of their customers.
Thus, they can recommend other products and develop top-up
services based on such knowledge [4].

To fully realize the aforementioned applications, one key
question remains to be answered: how to transmit the data from
the things to the cloud, in an easy-to-use and cost-effective way?

The vendor may develop a WiFi network for the IoT ap-
plication. However, WiFi needs additional infrastructure, e.g., a
gateway that finally relays data to the cloud. This is not suitable
for SAMS. For example, a vendor would like to monitor all
its air conditioners in a region, installed in a large number

of buildings. The WiFi choice needs the deployment of the
WiFi networks on a building-by-building basis. In other words,
the vendor is developing a separated network infrastructure. If
using the existing WiFi networks in the buildings, there will be
policy and security concerns from buildings. Looking from the
buildings’ perspective, a building can easily have products from
tens of vendors. If each vendor wants its equipment to infiltrate
the WiFi network of the building, building operators need to
bear overwhelming liability. Simply-put, applications such as
SAMS are looking for an infrastructure-less (or self-contained)
solution.

The vendor may rely on the infrastructure of a service
provider (ISP) and subscribe a dedicated wireless communi-
cation channel for each IoT device [5] to support the thing-
to-cloud communication (TCC) links. Current choices for TCC
links are very limited. The readily available 3G/4G is over-
costly for the majority of IoT devices. The industry has realized
this problem and is actively developing less costly choices. User
Experience-Category (CAT) represents a group of technologies
with much smaller data rates and thus costs [6]. CAT1 was
released in 2016 and CATO is under deployment [7]. Neverthe-
less, we may expect tens of choices of communication channels
with different costs and data rates, yet we will face hundreds,
if not thousands, of heterogeneous requirements. In the SAMS
example, the cost of CAT1 might be justifiable for a chiller, yet
it may be too costly for a fan.

We see a clear gap between the possible choices of TCC
links, and the number of requirements on different costs and
data rates from the IoT applications. To address this issue,
we propose IoT communication sharing (ICS), where a greater
number of 10T devices, with heterogeneous data communication
requirements, share a fewer choices of TCC links, and transmit
their data to the cloud.

In this paper, we first present an analysis of an SAMS
application. We clarify the IoT communication sharing scenario
and model. We then study how to optimally share the IoT
communications. We formulate an IoT communication sharing
(ICS) problem and develop efficient algorithms. We study ICS
under a particular price model, the pay-as-you-go (PAYG)
model, ICS-PAYG. PAYG is usually adopted in the early stage
of a new business and is the current pricing model for CAT1.
We develop an approximation algorithm and a fast heuristic for
ICS-PAYG. We implement a functioning system and evaluate
ICS experimentally. In a larger scale, we evaluate ICS through
simulations using real-world cases. Our evaluation shows that
ICS and our algorithms can lead to a cost reduction of five and
eight times respectively for the two real-world cases.
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The contributions of the paper can be summarized as:

o Using SAMS as an example application, we clarify the
scenario and the model of IoT communication sharing
(ICS). To the best of our knowledge, we are the first to
propose and formalize the ICS model (Section II).

o We formulate the ICS optimization problem (Section III)

and develop efficient algorithms (Section IV). In particular,

we study ICS under the PAYG pricing model, the currently

adopted model in industry (Section V).

We implement a fully functioning system of the ICS

model (Section VI) and comprehensively evaluate ICS

(Section VII).

II. THE SAMS NETWORK AND THE 10T COMMUNICATION
SHARING MODEL

We are working on a real SAMS on centralized HVAC
systems.! Since the SAMS applications are in the emerging
states, we first analyze a concrete example in the maintenance
of chillers, one core component of an HVAC system. We show
that the network supporting the SAMS applications should be
separated from other networks in a building. We then present
the IoT communication sharing model and related studies.

A. Chiller Maintenance: How SAMS Benefits

Current chiller maintenance consists of routine maintenance
and emergency repair, and their respective costs are USD
$897.12 and USD $5639.94 per time [8]. An optimal mainte-
nance plan is a balance of routine maintenance and emergency
repair. This is usually done by analyzing the degradation of
chillers. Intuitively, routine maintenance will be more frequent
if a certain type of chiller degrades faster. Chiller degradation
is affected by many factors, such as its intrinsic reliability and
the usage pattern of the chiller (e.g., the Freon level depends on
the intensity that the chiller is being used). Though the chiller
reliability can be extensively tested in labs, the usage pattern of
a chiller is determined by customers, and is difficult to know
at the time that this chiller is being manufactured. This is one
key reason that SAMS can become superior.

ISAMS emphasizes on commercial equipment rather than home equipment.
They are much more high-valued and the maintenance is vendor responsible.

Fig. 2: Smart After-Sales Maintenance
and Services (SAMS).

//\

//\\

mmmm nlsjulsls

S1 S22 Sz S4 Ss Se S7 Ss So Sio

<« —»LOClink «——TCClink ()N-node [ ] S-node

//\\

Fig. 3: The topology of Smart After-Sales
Maintenance and Services.

The key indicator for the performance (degradation) of a
chiller is Coefficient of Performance (COP) [9]. Maintenance
is needed if the COP of a chiller is below a certain threshold.”

To compare the current maintenance plan and SAMS, we
conduct an illustrative analysis by using four year data of ten
chillers in three buildings. We calculated the optimal plan for
current maintenance with a routine maintenance interval of 3.1
months (details in [10]), leading to a cost of USD $4052.64 per
chiller per year. For SAMS, we can collect the chiller data in
real time. The cost reduces to USD $2813.66, with an average
maintenance interval of 3.89 months. This leads to a 30.58%
saving. Note that this is only a baseline comparison. If we
consider joint maintenance of multiple equipment, a prediction
of equipment degradation, and that current maintenance plan
has to be conservative (e.g., shorter than 3.1 months), we can
expect a much greater gain from SAMS.

B. The Networks in Buildings and the SAMS Network

There are many networks in a modern building. Build-
ing equipment is controlled by building automation systems
(BAS) [11], [12]. BAS uses Ethernet to send data to a server
located in the building. The target of BAS is to manage
thousands of devices, from different vendors, within a building.
BAS vendors include Schneider, Siemens, John Control, etc,
which differ from equipment vendors in HVAC, elevator, etc.

There are WiFi or WAN networks in a building/campus,
and a gateway is used to connect the Internet. The target of
WiFi/WAN networks is to serve the network connection of
personal computers/devices. The WiFi/WAN is controlled by
building/campus owners.

The target of SAMS is to transmit the data of thousands
of IoT devices, of the same vendor, spread at hundreds of
buildings, to the cloud. The spread of the devices in buildings
controlled by different building owners or BAS companies
made it infeasible to use the BAS or WiFi network since
a building-by-building based agreement is needed. Logically,
the BAS network, the building WiFi network and the SAMS
network, should be different networks, see Fig. 1.

We also want to comment that networks to support emerging
home or office applications are also being developed, using
wireless communications of Bluetooth, ZigBee and LoRa. The

2A low COP does not mean a direct chiller failure, yet it indicates sensible
human comfort down grade and substantial energy usage inefficiency. The
current threshold imposed in Country/City Anonymity is 5.7.



administration of these networks is the local home or office
application owners. Again we cannot see the possibility that
they are willing to unanimously grant the access and usage of
their networks to all kinds of building equipment vendors.

C. The IoT Communication Sharing Model

We now present the IoT communication sharing (ICS) model
that can efficiently support applications such as SAMS. We will
present an implementation of this ICS model in Section VI

ICS is a three-tier network (see Figs. 2-3). The first tier
consists of the clouds (C-node). The second tier consists of
the network nodes (N-node). The links between the C-nodes
and N-nodes are the TCC links subscribed from ISPs, which
incur costs.> The third tier consists of the sensing nodes (S-
node). S-nodes extracts data from the equipment. N-nodes and
S-nodes form local networks (LOC) using free communication
channels. Short-range channels include Zigbee, Bluetooth, etc,
and longer-range channels include LoRa, SigFox, etc which can
well connect devices across floors or even buildings [13].

Note that N-nodes and S-nodes are logical and can be merged
and installed on the same equipment. If all N-nodes and S-nodes
are merged, it becomes a non-sharing network.

The objective is to compute the subscription plans of the TCC
links given certain pricing models and the N-node locations
so as to transmit the data of all S-nodes, with a minimiza-
tion of the overall monetary cost. SAMS works on vendor-
responsible commercial equipment. Therefore, the vendor has
the knowledge of all its responsible equipment in a region and
can optimize in a centralized fashion. As the very first work,
we assume in this paper that 1) our context is one vendor
only, 2) N-nodes will not relay traffic for other N-nodes, 3)
S-nodes will not relay traffic for other S-nodes, and 4) there is
no in-network processing of the traffic. We plan to study routing
of other forms, intermediate traffic caching, coding, etc., and
multi-vendor joint optimization in our future work.

D. Related Work

With the emerging IoT applications such as SAMS, we are
the first to propose the ICS model. There are studies on network
multiplexing/sharing in other context. On the ISP-side, there
are resource managements for 3G traffic flows, in particular
for multimedia data traffic. There are caching [14], prefetch-
ing [15], framing [16], etc., to serve requests in some forms
of aggregation. The computation is in the e-nodeB managed
by the ISPs. In the ICS model, the optimization is managed
by the vendor facing certain ISP pricing models. On the client
side, the hotspot function is occasionally used to share 3G data,
primarily for convenience. Family plans also exist. These client
side sharing are spontaneous, and there is barely any intentional
coordination, which is needed in our context.

We further comment on two foundational networking
paradigm Wireless Sensor Networks (WSN) [17] and Fog Com-
puting [18], [19]. In WSN, since wireless sensors are energy

3In some regions, ISPs are developing WiFi networks. Note that such network
cannot be free either. ISPs will not develop free infrastructure to serve hundreds
of commercial vendors in large scale. As such, such networks are to be
subscribed and can be considered as TCC links as well.

constrained and communication dominates energy consumption,
the optimization objective is on all communication links within
the WSN. The constraint in the SAMS network model is the
TCC links between the things and clouds. Thus, we differ from
WSN in the optimization objective. In addition, the pricing
model of the TCC links also differs from the cost model of
the WSN links. The idea of Fog Computing is to relocate
functions to the edge, either for a fast response or for cost
saving. Fog Computing is a conceptual framework. SAMS
represents concrete application scenarios and can be regarded
as one instance of Fog Computing.

III. PROBLEM FORMULATION AND COMPLEXITY ANALYSIS

In this section, we first present the network settings. Then
we formulate the ICS problem as a cost minimization problem.
Finally, we analyze the problem complexity.

A. Network Topology

The considered network includes m S-nodes and g N-nodes.
Let V' = {n1, ng, ..., n, } denote the set of N-nodes. An N-node
can be either installed or vacant. Let f; denote the indicator,
ie., f; = 1 if installed; f; = 0 if vacant. We define f =
(f1, f2,..., fq). f is a decision variable to be optimized.

Let S = {s1, 52, ..., 5m } be the set of S-nodes. Let S; denote
the subset of S-nodes, which can reach N-node n;. We define
S £ {851,8,,.. .Sy} Here, the term “reach” means that it is
possible for the S-node to deliver its data to the N-node through
some LOC links. We assume that ngl S; =S, ie, each S-
node can reach at least one N-node. One of our design aims is
to install a subset of N-nodes to cover all S-nodes, i.e.,

U si=s. (1)

Jifi=1

In the network, the thing-to-cloud communication (TCC)
links connect N-nodes and the cloud, which are charged by
ISPs. LOC links connect S-node and N-nodes, which are free.

B. Load Constraint Modeling

In this subsection, we discuss how each N-node is able to
accommodate the data usage from its connected S-nodes. In
each billing cycle (e.g., one month), S-node s; requires to
upload a data volume of wu; to the cloud. The S-node’s data
volume is split to be transferred via one or more N-nodes.
We define u £ (up,us,...,un). Let v;; be the split data
volume of s; transferred via n;. We define v £ (v;; : Vi =
1,2,...m,¥j = 1,2,...,q). In this paper, u is given as a
priori, and v is to be optimized. We assume that u; and v;;
values are integers (e.g., in kilobytes).

For the given u; for S-node s;, v;; are decision variables to
be designed. Since s;’s data are transferred via its connected
installed N-nodes, we have

D v =uVi=1,2,...,m. )

Jif;=1



The data of s; cannot be uploaded via N-nodes that are vacant
or out of its communication range. Therefore, we have

UijZO,VZ',ij}:O\/Si%Sj. 3)

In each billing cycle, by paying to the ISP, each N-node could
purchase a data volume allowed to upload to the cloud via its
TCC link. Let d; denote the data volume purchased by n;. We
define d £ (dy,ds,...,d,). d is a decision variable. If n; is
installed, the load w; at the TCC link of n; is the accumulated
data amount uploaded by its connected S-nodes. Therefore, we
have w; =3, . s, vij. wj = 0 if n; is vacant. The load w;
at the TCC link of node n; cannot exceed the purchased data
volume d;. Therefore, we have

> v <dVi=12,...,q 4)

i:8;€S;

C. The Cost of TCC Sharing

For TCC links, let C = {c1, ¢, ..., ¢} be the set of available
plans provided by ISPs, where k& denotes the number of plans.
The monetary cost for data volume x of plan¢; (1 = 1,2,...,1)
can be presented as a function ¢;(r).*

Let c;- € C denote the plan adopted by N-node n;. We
define ¢’ £ (¢}, ch, ..., cy)- Once a plan is selected, it cannot
be changed within the billing cycle. For the N-node n; with
purchased data volume d;, the communication cost of n; can
be present as cj(d;). Thus, the total communication cost for ¢
N-node locations is given as:

q
Tootat = Y ¢ (d;) .- (5)

Jj=1

D. IoT Communication Sharing Problem Formulation

The goal of the IoT Communication Sharing (ICS) problem
in this paper is to minimize the overall monetary cost of the
TCC links, given a set of available plans, the network topology,
and the possible locations for S-nodes and N-nodes. Hence,
the overall monetary cost of the TCC links is the objective
function. The decision variables are the installation indicators f,
the adopted cost function ¢’, the subscribed data volume d and
the data volume v from each S-node s; uploaded from each N-
node n;. The constraints are shown in Sections III-A and III-B.
In summary, we have the following optimization problem:

Problem 1. (ICS) Given S, N, u and C, determine f, ¢/, d
and v, subject to constraints (1), (2), (3) and (4), to minimize

Ttotal = Z?:l C_,j (d]) .

4For different pricing models, the form of cost functions are different. For
example, the monthly plan (MP) pricing model, ISPs provide a set of monthly
data plans. For data plan m;, let ¢; denote the price charged for the fixed
amount of cap usage(denoted as k; ). If the data usage hits this cap then a
higher price c is charged for each per data usage unit above the cap, the cost
function can be presented as

e, (2) = t; v < ki
i - ti—i-c(x—ki) ,x > k.

The pay-as-you-go pricing model is discussed in Section V.

J=1
Fig. 4: Illustration of conversion to minimum
cost flow problem.

E. Problem analysis
Theorem 1. Problem ICS is NP-complete.

Proof. We prove this theorem by transforming the problem
into the minimum set cover problem. Consider a special case
that u; = 1,Vi = 1,2,...,m. Let the monetary cost at each
N-node be a if it is installed, be O if vacant. Therefore, we
aim to minimize the number of installed N-nodes. As a result,
Problem 1 is equivalent to an optimal set cover problem: to
select a minimum number of sets from {S1,Ss,...,S,} that
covers all elements in the S. O

IV. THE ICS ALGORITHM

In this section, we solve the ICS problem. However, ICS
problem is NP-complete, it is unrealistic to find a globally
optimal solution within polynomial time. We design Mini-
mize Communication Cost algorithm (denoted as MCC) which
achieves a locally optimal solution. The rationale to develop
MCC is as follows. We need to determine 1) the purchasing
strategy, i.e., ¢/ and d values, and 2) the data upload scheme
v. Accordingly, we develop two sub-functions: best-Plan ()
and best-Upload(). Given the data upload scheme v,
best-Plan () will search for the minimized cost purchasing
strategy i.e., ¢ and d. Given c and d, best-Upload () will
find an even better data upload scheme v. best-Plan ()
and best-Upload() are then conducted alternatively to
gradually improve the overall cost.

Given the data upload scheme v, finding the best purchas-
ing strategy (i.e, best-Plan()) can be optimally solved.
best-Plan () first computes the data usage of each N-node
according to v. Then, knowing the data usage, it can find the
minimized cost purchased strategy for each N-node by simply
searching within all plans in C.

Given the purchasing strategy (i.e., ¢’ and d), finding the
best data upload scheme v (i.e., best-Upload()) can be
converted to the minimum cost flow problem. We illustrate the
conversion in Fig. 4. We construct a graph which contains ¢
N-nodes, m S-nodes and one auxiliary S-node as the vertices.
If s; € S;, then an edge is added between s; and n;. For the
auxiliary S-node, we add edges between it and all N-nodes. For
N-node n;, we attach the (positive) purchased data volume d;
to it. For each S-node s;, we attach the (negative) data usage
—u; to it. For the auxiliary S-node s,, we attach the negative



data usage >, u; — Y_j_, d; to it. For the edges connected

to n;, the attached unit delivery costs are %ﬁm. Our problem
now is equivalent to obtaining the minimum cost flow through
the network. The N-nodes are “sources” for the flow entering
the system and the S-nodes are “sinks” where flow leaves the
system. Brenner’s algorithm [20] is used in best-Upload ()
to solve the minimum cost flow problem with the computational
complexity of O(g(logq)?(m + 1)?).

Algorithm 1 Minimize Communication Cost, MCC (S, N, S, u,C).

1: Initialize v <~ 0,f < 0,¢’ + 0,d + 0,v <+ 0
2: v ¢ init-Upload(S, NV, S, u)

3: repeat

4 Vv

5 [¢/,d] < best-Plan(C,V)

6 v < best-Upload(S,N,S,u,c’, d)

7: until v ==v
8: f < compute-Indicator(d)
9: return c,d,f,v

The overall algorithm MCC () is an iterative algorithm
shown in Algorithm 1. The overall algorithm first calls
init-Upload() (line 2) to initialize each v;; € v to u;
and then it calls best-Plan () (line 5) to determine the
purchasing strategy ¢ and d. Such ¢ and d are given to
best-Upload () (line 6). best-Upload () will adjust the
data upload scheme v according to the purchasing strategy.
Such v is returned to best-Plan (). The termination condi-
tion for iteration is that there is no change in the data upload
scheme v. Then MCC () calls compute-Indicator () to
compute the installed/vacant indicator of N-nodes (line 8)
according to d (if d; > 0, then f; = 1. Otherwise f; = 0).

We now analyze the convergence of MCC (). Let d,, denote
the purchased data volume d result of the best-Plan () in
the y-th round iteration. The maximum value of each entry
of d is limited to dy.x. According to Brenner’s algorithm,
dy4+1 X dy whenbest-Plan () is called. Since d is bounded
(ie., 0 % d), dy will converge after a finite number of
iterations. In each iteration at least one entry of d is decreased
by 1. Therefore, the algorithm will converge at most in r
rounds, to a local optimal, where r = qdpax. MCC () is a
polynomial-time algorithm with the computational complexity
of O(rq(log q)*(m + 1)% + rql).

V. ICS IN THE PAY-AS-YOU-GO PRICING MODEL

We now specifically consider the pay-as-you-go (PAYG)
pricing model. This is because PAYG is likely to be the primary
pricing model for IoT communication for this moment when the
IoT industry is still in its early stage. Looking into the history,
PAYG is always the pricing model in early stages of a new
business, e.g., pay per call, pay per megabyte of data. Monthly
plan (MP) emerges when the business becomes mature and as
a mean of price reduction when facing competition [21]. As a
matter of fact, in our experiment, the CAT1’s pricing model is
PAYG.

A. Problems

For the PAYG pricing model, C = {c;}, i.e., there is only
one plan for PAYG. The cost function is represented by Eq. (6).
This is a staircase function. Here z is the data usage; L is an
integer to denote the step size of pricing model. Let p; be the
price for the ¢-th step of L data volume. In practice, p; decreases
as the price step increases [22] and lim;—; oo Pi = Pmin, Where
Pmin 18 positive.

x

L

|
alx) = pi ©6)

i=1

i:5;€S;

The overall cost using PAYG is >-7_, ¢; (Z
we arrive the following problem:

Problem 2 (ICS-PAYG). Given S, N, S, u and ci, determine f,
d and v, subject to constraints (1), (2), (3) and (4), to minimize

— q ..
Tiotal = Zj:] 1 Zi:siesj Vij ) -

Uij) . ThllS,

In reality, we notice that many S-nodes can reach a limited
number of N-nodes. We therefore consider a case that the degree
of an S-node (i.e., the number of N-nodes an S-nodes can reach)
is limited to D. We have the following problem:

Problem 3 (ICS-D-PAYG). Given S, N, S, u, D and cy,

determine f, d and v, subject to constraints (1), (2), (3) and
q

(4), to minimize Tiotal = ijl c1 (Zmiesj vij ) -
Theorem 2. Problems ICS-PAYG and ICS-D-PAYG are both
NP-complete.

The proof is similar to the proof of Theorem 1. Intrinsi-
cally, the complexity comes from N-nodes covering S-nodes,
rather than the pricing model; thus, the complexity of NP-
completeness holds.

B. Algorithms

We develop Fast N-node Deployment (FND) algorithm for
the ICS-PAYG problem, and Layering N-node Deployment
(LND) algorithm for the ICS-D-PAYG problem.

The problem ICS-PAYG and ICS-D-PAYG can be divided
into three subproblems: N-node placement to cover all S-nodes
(i.e. to find f), the upload scheme (i.e. to find v) and data
volume subscription at each installed N-node (i.e. to find d).

FND and LND first solve the N-node placement to cover all
S-nodes and the upload scheme. The TCC link placement to
cover all S-nodes is a set cover problem. For the ICS-PAYG
problem, FND adopts the greedy set cover algorithm in [23].
For the ICS-D-PAYG problem, LND employs the layering set
cover algorithm in [21] which takes advantage of the degree
information of S-nodes. In this way, the greedy set cover
algorithm and the layering set cover algorithm select N-node
one by one. Whenever an N-node is selected, the newly covered
S-nodes will upload all their data volume via this N-node.

After the above steps to determine f and v for both FND and
LND, each installed N-node subscribes the closest data cap that
is greater than the data volume needed to be transferred via it,
so that d is determined.



Theorem 3. The approximation ratio of the algorithm FND for
ICS-PAYG is ﬁ(lnm + 2).

Proof. Let the cost of FND be 7¢, and the optimal cost of
ICS PAYG (denoted as OPT) be r,. Directly proving = <
(lnm + 2) is hard, we prove this by divide and Conquer
AS the cost is related to the number of installed N-node and the
number of purchased data volume steps under the PAYG pricing
model, we first prove the installed N-node number of FND
(denoted as k¢) and OPT (denoted as k,) meets kf <Ilnm+1,
then we prove the purchased steps of FND (denoted as t¢) and
OPT (denoted as t,) meets t; < t, + k¢. Based on these, we
can prove = < -P-(Inm + 2).

kf <Inm+1. Let ky;, be m1n1mum number

mm < 1 and

We first prove
of N-nodes that can cover all S-nodes. We have

algorlthm) Then we have kf <Ilnm+1.

We then prove t; < t, + k¢. Let X denote the total data
usage of all S-nodes, and * = Lqg — r, where ¢ € N,0 <
r < L.qg<t; q<t, (otherwise the purchased data volume
of FND and OPT is smaller than total data usage x). Let z;
(3 =1,2,..., kr) denote the data usage of the installed N-node
J of FND, and z; = Le; — r;, where e; € N,0 < r; < L.
e; is the steps purchased by the installed N-node j, thus ¢y =

f 1eJ,x—qL—r—LZj 1 7—25 175, we have ty =

fo L7 kL
qg— 1+ ;a8 0 < rj < L, we have ty < g+~ = q+k;.
At last, We prove =t < P —(Inm + 2) based on the above

proof. The price of each step ranges from p; to puyin, thus

Tt S pltf and To Z p'mubt . % S pf‘li:iio S ;Dilm(% + %)7
each installed N-node must purchase at least one step, thus
to < ko, so 7t < B (1+kf)< P (lnm + 2). O

Theorem 4. The approximation ratio of the algorithm LND for
ICS-D-PAYG is p’%(D +1).

The difference between ICS-PAYG and ICS-D-PAYG comes
from TCC link placement to cover all S-nodes which is equiva-
lent to the minimum set cover problem. Different with the ICS-
PAYG problem, the maximum degree of S-nodes D is given
in the ICS-D-PAYG problem, thus the information about the
degree of S-nodes can be utilized to improve N-node placement.
Using the degree information, the number of installed N-nodes
selected by LND is at most D times to the minimum set cover,
while this ratio is Inm + 1 in FND for ICS-PAYG problem.

FND and LND are based on greedy algorithms. Though
they have bounded performance, they may not perform well in
some special cases. If that happens, we also develop a heuristic
MCC-PAYG () based on MCC (). As the pricing model is
determined, there is no need to search plans for N-nodes. Thus,
line 5 of MCC () can be replaced by computing the subscription
data volume directly. The complexity of MCC-PAYG () is
O(rq(log g)?(m +1)?).

VI. IMPLEMENTATION
A. Hardware and Communication Link Choices

For S-node and N-node, we use Raspberry Pi 3 Model B
as the hardware board (Fig. 5 and Fig. 6). We connect S-
node and a Fan. A Fan has a pulse width modulation (PWM)

interfaces that can be used to connect the digital I/O ports
of the Raspberry Pi using DuPont cables. The Fan data are
periodically sent to PWM, and then to the S-node. Other
equipment such as chillers and pumps have standard APIs to
output data from their embedded sensors. Using chiller as an
example, a chiller controller uses a ModBus RTU protocol with
an RS-485 interface. Modbus RTU protocol is a query-response
protocol. We implement an application in Raspberry Pi using
the standard library libmodbus [24] to query the chiller through
Modbus RTU protocol. The communication between USB port
of Raspberry Pi and RS485 need a USB/RS485 Converter
module as the electrical level difference.

For the LOC of both the S-node and N-node, we use a
Texas Instruments CC 2560 SimpleLink™ Wireless MCU for
the 802.15.4 radio interface. Then this module is connected to
Raspberry Pi using a USB-to-serial cable.

For the TCC side of the N-node, as the interface of Raspberry
Pi is TTL, while the interface provided by CAT1 is RS-232,
we use the MAX3232 as a converter. We rent CAT1 data plans
from Telecom Anonymity.

We rent a server in Cloud Anonymity with 8 cores of 2.5
GHz, and a total memory of 128 GB.

B. The Network Format Choice

We choose 6LoWPan (IPv6) as the network layer protocol.
We overcame two implementation challenges.

The first is that the ISP provided CAT1 only supports IPv4.
Moreover, it only provides application layer interfaces. Thus,
we develop an IPv6-IPv4 converter. It locates in the application
layer of the N-node, yet it emulates the network layer. It has two
functions: packet format transformation and IPv6-IPv4 address
mapping. For the IPv6 packet we get from the LOC network, we
remove all headers to get the application packet. Then we put
such packet to the CAT1 interface. The address mapping is done
by mapping a group of IPv6 address to an IPv4 address (the
address of CAT1) and a port number. Every N-node establishes
a translation table of the mapping. Each entry in this translation
table is automatically inserted when the first packet from the
S-node reaches the N-node, i.e., N-node allocates each S-node
connected to it a universal port number with the CAT1’s IPv4
address.

The second challenge is that in practice, an S-node should
have a fixed IP address. We do not have fixed IP addresses. In
our implementation, each S-node gets its IPv6 address from
N-node using the ulP library from Contiki, making the IP
address dynamic. Since the interaction between an S-node and
the cloud is bi-directional, the dynamic IP address can break the
interaction. To this end, in the application layer, we develop a
notification mechanism such that if the IP address of the S-node
changes, the S-node will notify the cloud.

C. The Routing Choice
In our IoT application context, data are routed from the S-
nodes to the cloud. We choose RPL [25] for routing. RPL is

a gradient routing technique that organizes nodes as a Direct
Acyclic Graph (DAG) rooted at the sink. RPL has an objective



Fig. 5: Fan with Raspberry
Pi S-node.

Fig. 6: The N-node.

function. The goal is to minimize the cost to reach the sink
from any node. This function has to be customized. Recall
that in our algorithm, we compute the amount of traffic an
S-node sends to each peering N-node. In our implementation,
the objective function maintains a “volume-N-node” table. The
table records the residual data volume of the S-node can be
transmitted through its peering N-node. The objective function
chooses the N-node with residual data volume in a round-robin
fashion. For each S-node, the initial data volume of its peering
N-nodes is computed by MCC () (in Section IV).

VII. PERFORMANCE EVALUATION
A. Evaluation by Experiments

1) System setup: The network topology is shown in Fig. 7.
There are three N-nodes and five S-nodes. The links are
configured as in the figure. We set the data traffic for S; and
So to be 200 bytes every three minutes, and the data traffic for
Ss, Sy and S5 to be 600 bytes every minute.”> We adopt the
PAYG model from TeleCom Anonymity. Each 40 MB costs $1,
ie., L =40, py =p2... = pnin = 1 in Eq. (6).

We compare three IoT communication sharing algorithms
MCC-PAYG, FND and LND with the exclusive channel oc-
cupation (ECO) algorithm, i.e., each device transmits its data
directly to the cloud via its dedicated purchased TCC link.

2) Experiment Results: The system is turned on for 6 hours
and the overall data usage is scaled to one month. We derive
the overall monthly cost of different algorithms. The results are
shown in Fig. 8. We can observe that under the PAYG model,
MCC-PAYG, FND and LND lead to a cost saving of 20%—40%
as compared with ECO. This matches our expectation since IoT
communication sharing will bring significant cost reductions.
Next, we will evaluate a variety set of network configurations
by trace-driven simulations, and we will see that the saving is
more significant when the network is larger.

B. Evaluation by Trace-driven Simulations

We now use trace-driven simulations to evaluate ICS. We
first present two real-world cases and price models employed
in the evaluation. We then show the result of the cost reduction
introduced by ICS. We also show how ICS effectively makes
use of the purchased data volume of TCC link, and the
performance of algorithms for the PAYG pricing model.

5Qur S-nodes and N-nodes do not connect to equipment, since 1) our IoT
communication sharing is general for all types of equipment, and 2) we admit
that we do not have enough Fans/Chillers for an eight-node experiment.
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Fig. 7: The network topology ~Fig. 8: The monthly cost of
of the experiments. different algorithms.

1) Simulation Setup: We evaluate ICS and algorithms by
simulation using two real-world cases.

Case 1: We work on a SAMS application and we collect data
of building group belong to Anonymity property Ltd (denoted
as B1). It consists of three buildings (denoted as Bl-one, B1-
two and Bl-three). We collect the data of chillers and pumps
which belong to a same vendor Anonymity. The chillers and
the pumps of each building are located in the plant room on
the top floor. The number of the chillers and the pumps of each
building of B1 is showed in Table I. Each equipment connects
to an S-node and can be regarded as a possible location of
N-node. The network topology of B1 is shown in Fig. 9.

We collected four types of data for the chiller to compute
COP (Section II), such as the supplying/returning chilled water
temperature. We collect data of the power input and the heat
transfer to circulating water for the pump to compute Water
Transfer Coefficient (WTC) ©. The data of the chillers and the
pumps were collected at 30 minute intervals. The monthly data
volume collected from each chiller and each pump are showed
in Table II.

Case 2: We also employ the publicly available data. We
use the data of a building (denoted as B2) located at Kuwait
University [26]. The data are from chillers, pumps, air handling
units (AHU) and cooling towers of B2. The number of each
kind of equipment is showed in Table I. Each equipment can
be regarded as an S-node and a possible location of N-node.
The network topology of B1 is shown in Fig. 10.

For the traffic of chiller, pump and cooling tower, we use
the real traffic collected in [27]. The data of chiller, pump and
cooling tower were collected at one minute intervals. The data
of chillers includes 8 types of data, such as work load, supply
temperature and return temperature. For the traffic of AHU,
we use the real traffic pattern described in [28], which also
collects data at one minute intervals. The data of AHU includes
14 features including air mass flow rate, room air temperature,
etc. The monthly data volume of the four types of equipment
is shown in Table II.

The pricing models: We study two pricing models: 1)
PAYG, the first 40 MB costs $1, i.e., L = 40, p; = 1, the prices
of the following 40 MB steps are $0.8, i.e., po = p3,... =
Pmin = 0.8 in Eq. (6); 2) MP, the monthly data plans are shown
in Table III with $0.6 charged for each 1 MB over the cap.

Evaluation Criteria: We evaluate ICS employing MCC
algorithm and ECO with the settings of in Casel and Case2

SWTC is a performance index of the pump. The pump should be maintained
before the WTC under a threshold.
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Equipment B1 B2
number one | two | three
Chiller 6 5 6 5
Pump 13 11 15 4
AHU - - - 6
Tower - - - 11

>,

©® AHU O Cooling Tower

TABLE I: The number of equipment
at Bl and B2.

Fig. 9: Illustration of the topology of B1. Fig. 10: Illustration of the topology of B2.

TABLE II: Monthly data usage of different equipment.

Chiller Pump AHU Tower
B1 | 6.62 MB | 4.25 MB - -
B2 | 926 MB | 3.65 MB | 12.45 MB | 3.90 MB

under the two pricing models. We also run MCC-PAYG, FND
and LND algorithms for PAYG pricing model.

We evaluate the data transmission cost of ICS and ECO. We
introduce underutilized ratio for TCC link. The underutilized
ratio of TCC link is the ratio between the unused purchased
data volume and the purchased data volume of TCC link. The
underutilized ratio can indicate how effectively the purchased
data volume of TCC link has been used. We evaluate the
underutilized ratio of TCC link of ICS and ECO. We also
evaluate the data transmission cost of MCC-PAYG, FND and
LND under PAYG pricing model.

2) Results: Data Transmission Cost Reduction: We first
compare ECO and ICS under two pricing models at Bl in
Figs. 11-12. We see that ICS shows a higher cost saving com-
pared with experimental results. This matches our expectation
since the advantage of sharing becomes more significant when
there are more S-nodes to share. For the PAYG pricing model,
the cost of ECO is 4.8 times, 8 times and 4.4 times to that
of ICS at Bl-one, Bl-two and Bl-three respectively. For the
MP pricing model, the cost of ECO is 3.2 times, 3.2 times
and 2.4 times to that of ICS at B1-one, B1-two and B1-three
respectively, a slightly less than that of PAYG. This is because,
in MP pricing model, the cost gap between two adjacent plans is
bigger, thus if the data volume of one monthly data plan cannot
meet the requirement of an N-node, the N-node has to purchase
the other one whose price is much higher so that purchased data
are underutilized, while in the PAYG model, the TCC link can
purchase steps which are cheaper one by one.

In Fig. 13, we also compare the cost of ECO and ICS under
the PAYG and MP pricing models at B2. We see cost savings
of 78% and 71% on PAYG and MP respectively. This further
confirms that ICS significantly outperform ECO.

The underutilized ratio of TCC link: We compare the un-
derutilized ratio of TCC links under ECO and ICS. Please note
that the higher underutilized ratio indicates the customer waste
more data volume which has been paid. High underutilized data
volume ratio discourages customers.

In Figs. 14-15, we show the cumulative distribution function
(CDF) of TCC links’ underutilized ratio of ECO and ICS at B1

and B2 under the PAYG pricing model where L = 10 MB. In
Fig. 14, we can observe that 20% TCC link’s underutilized ratio
of ICS at B1 is 0% which means the data volume of these TCC
links has been used up without waste. No TCC links’ purchase
can be fully used under ECO. We can also observe that the
underutilized ratio of all TCC links of ICS is under 23%. For
the ECO, the underutilized ratios of TCC links could be as
much as 57%.

The underutilized ratio gap between ECO and ICS is even
greater at B2, shown in Fig. 15. We can see that 50% TCC
links’ underutilized ratio is 0%, while this value is still O for
ECO. We can also observe that the underutilized ratio of all
TCC links of ICS is under 18%. For the ECO, the underutilized
ratio of TCC links could be as much as 61%. This illustrates
that through IoT communication sharing, the purchased data
volume of TCC link can be made better use of compared with
ECO. This is also the reason why ICS can lead to a substantial
cost reduction compared with ECO.

The performance of algorithms for PAYG: We compare
our MCC-PAYG algorithm with FND and LND algorithms for
the PAYG pricing model.

In Figs. 16-17, we show the monthly cost of MCC-PAYG,
FND and LND at B1 and B2 respectively. We notice that
MCC-PAYG, FND and LND have a cost saving of 76%—-88%
compared with ECO (the costs of ECO at three building of Bl
shown in Fig. 11 are $19, $16 and $21 respectively, and $26 at
B2 shown in Fig. 13). These results illustrate that MCC-PAYG,
FND and LND work effectively compared with ECO under the
PAYG pricing model.

We see that MCC-PAYG outperforms FND and LND in
these two situations. We also see that MCC-PAYG and FND
outperform LND. Compared with LND, FND has cost saving
from 26% to 50%. This is because, at B1 and B2, the maximum
degree of S-nodes range from 5 to 8, and LND is suitable for
the scenario where the degree of S-nodes is small.

VIII. CONCLUSION

In this paper, we carefully analyzed the emerging IoT ap-
plications such as smart after-sales maintenance and services.
We showed that a separate IoT network is needed to serve their
requirement of sending the data to the cloud. A core obstacle
is the high costs of communication choices. We proposed IoT
communication sharing (ICS), which can effectively reduce cost
in an order. We then presented a comprehensive study of the ICS
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problem, with problem formulation, algorithms, implementation
and evaluation using experiments and trace-driven simulations

for

two real world cases.
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