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Abstract. The Parallel Ocean Program (POP) is used inlow-resolution models in which the effects of eddies are
many strongly eddying ocean circulation simulations. Ide-parametrized. For example, it leads to a much better simu-
ally it would be desirable to be able to do thousand-year-lation of the different oceanic boundary currents, in particu-
long simulations, but the current performance of POP pro-lar the separation of the Gulf Stream in the Atlantic. Also,
hibits these types of simulations. In this work, using a newthe degree to simulate the surface kinetic energy distribu-
distributed computing approach, two methods to improvetion, which can be compared with satellite data, markedly
the performance of POP are presented. The first is a blockimproves Emith et al, 2000 Maltrud et al, 2010.
partitioning scheme for the optimization of the load balanc- The use of the strongly eddying models is, even on the
ing of POP such that it can be run efficiently in a multi- supercomputing platforms currently available, still computa-
platform setting. The second is the implementation of parttionally expensive, and simulations have a long turn-around
of the POP model code on graphics processing units (GPUs}ime. Typical performances are from one to a few model
We show that the combination of both innovations also leadsyears per 24 h using thousands of cof@er{nis 2007). Con-
to a substantial performance increase when running POP skidering the fact that it takes at least 1000 yr to reach a near-
multaneously over multiple computational platforms. statistical-equilibrium state, innovations to increase the per-

formance of these models and to efficiently analyse the data

from the simulations have a high priority.

Today many traditional cluster systems are equipped with

1 Introduction graphics processing units (GPUs) because of their ability

to process computationally intensive workloads at unprece-
Physical oceanography is currently undergoing a paradignjented throughput and power efficiency rates. Existing soft-
shift in the understanding of the processes controlling theyare requires modifications such as the expression of fine-
global ocean circulation. Two factors have contributed to thisgrained parallelism before it may benefit from the added pro-
shift: (i) the now about 20yr long record of satellite data cessing power that GPUs offer.
and (i) the possibility to simulate the ocean circulation using GpUs have been used to successfully accelerate numeri-
models which include processes on the Rossby deformatiogg| simulations before. For exampldjchalakes and Vach-
radius (10-50 km). Resolving this scale captures the i”Stab”harajani(ZOOE) used GPUs to improve the performance of
ity processes that lead to ocean eddies which subsequentiye Weather Research and Forecast (WRF) model. Similarly,

interact and affect the large-scale ocean flv@i{s, 2009. Bleichrodt et al (2012 implemented a numerical solver for
The level of realism (in relation to available observa- the parotropic vorticity equation for a GPU.

tions) in simulating the ocean with high-resolution, strongly
eddying models substantially increases compared to the
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268 B. van Werkhoven et al.: Improving the performance of the Parallel Ocean Program

However, it is currently not well known which specific Each block is surrounded by a halo region (Fidp)
parts of ocean models can benefit the most from executiorthat contains a copy of the information of the neighbour-
on GPUs, how the existing software should be revised to efing blocks. These halos allow the calculations on each block
ficiently use GPUs, and what impact the use of GPUs willto be performed relatively independently of its neighbour
have on performance. In this paper, we aim to answer thesblocks, thereby improving parallel performance. Neverthe-
questions. less, the data in the halo regions need to be updated reg-

We present two innovations to improve the performanceularly. This requires a data exchange between the blocks,
of the Parallel Ocean Program (POP). POP is also used ashich leads to communication between the MPI tasks, the
the ocean component of the much used Community Earttamount of data depending on the width of the halo, the size
System Model (CESM). We have applied our modifications of the blocks, and the block distribution over the MPI tasks.
to a standalone version of POP (v2.1). However, we have In POP, the halo width is typically set to 2. For an ex-
confirmed through source code inspection that all of ourample block size of 6& 60, the number of elements that
changes are also applicable to and fully compatible withneed to be exchanged per block in every halo exchange is
the latest release of CESM (v1.2.0). The main issue is howdx (60x 2)+4x 4 = 496. This number may need to be multi-
to adapt POP such that it can run simultaneously (and efplied by the number of vertical levels, depending on the data
ficiently) on multiple GPU clusters. First, we address al- structure on which the halo exchange is performed. Some
ternative domain decomposition schemes and hierarchicallata structures, like the horizontal velocity, store a value for
load-balancing strategies which enable multi-platform sim-every grid point at every depth level. As a result, a 3-D halo
ulations such that further scaling can be achieved. Secondxchange is required that exchanges elements from every
we show how POP can be adapted to run on GPUs andepth level. Others data structures, such as surface pressure,
study the effect of GPU usage on its performance. The sourcenly consist of a single level. There, a 2-D halo exchange is
code of our modified version of POP can be obtained fromsufficient.
https://github.com/NLeSC/eSalsa-POP/ For neighbouring blocks that are assigned to the same MPI

task, the data exchange is implemented by an internal copy
) and no MPI communication is required. Also, no data need
2 Load balancing to be exchanged with (or between) land elements. Therefore,
F)the amount of data that needs to be communicated between
MPI tasks depends heavily on the way the blocks are dis-
tributed over the MPI tasks.

The model considered here is the global version of PO
(Dukowicz and Smith1994) developed at Los Alamos Na-
tional Laboratory. We consider the strongly eddying config-
uration, indicated byRg 1, as used in recent high-resolution
ocean model simulationd/@ltrud et al, 201Q Weijer et al,
2012. This version has a nominal horizontal resolution of
0.2° using a 3600« 2400 horizontal grid with a tripolar grid

layout, having poles in Canada and Russia. The model has Guet and Dekeysed999, and space-filling curvediennis

hon equidistant levels, increasing in thlpkness from 10m 2007. The Cartesian algorithm starts by organizing the tasks
just below the upper boundary to 250 m just above the lower . : . .
» - in a two-dimensional grid. Next, the blocks are assigned to

boundary at 6000 m depth. In addition, bottom topography is : : o )
. : X : . these tasks according to their position in the domain. If the
discretized using partial bottom cells, creating a more accu-

. . number of MPI tasks does not divide the number of blocks
rate and smoother representation of topographic slopes. L . : :
evenly in either dimension, some tasks may receive more

blocks than others. In addition, some tasks may be left with
less work (or even no work) if one or more blocks assigned

POP supports parallelism on distributed memory computerdo it only contain land. As shown iBennis(2007), load im-
through the message passing interface (MPI). To distributdalance between tasks can significantly degrade the perfor-
the computation over the processors, POP uses a thre#dance of high-resolution ocean simulations.

dimensional mesh, sketched in Fitp. The domain is de- The rake algorithm attempts to improve the load balance
composed into equal-sized rectangular blocks in the horiby redistributing the blocks over the tasks. Note that this
zontal direction. Each block also contains several layers inrequires that the number of blocks is significantly larger
the vertical direction (depth). The blocks are then distributedthan the number of MPI tasks. The rake algorithm starts
over the available MPI tasks, where each task receives on®ith a Cartesian distribution and the corresponding two-
or more blocks. Blocks consisting only of land points may dimensional MPI task grid. First, the average number of
be discarded from the computation. Below we will assumeblocks per task is computed. Then, for each row in the task

that a single MPI task is assigned to a processor core (unlesd#id, the algorithm takes the first task in the row and de-
stated otherwise). termines whether the number of blocks exceeds the aver-

age. If so, the excess blocks are passed on to the next task.

2.2 Existing block-partitioning schemes

POP currently supports three algorithms for distributing the
4Blocks over the available MPI tasks, Cartesian, rdWart

2.1 Domain decompositions and block distributions
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Fig. 1. (a) Sketch of the block-wise subdivision of the domain in P@PThe halo regions of a block; image fro&mith et al.(2010.

a Hilbert curve ifP = 2", or by a meandering Peano curve if

> E’ P = 3", wheren andm are integers. By using combinations
L | ] | of different curves, the set of supported problem sizes can be
=+ extended.
U
_J__I _l 2.3 Hierarchical block partitioning

) . ) None of the load-balancing algorithms described in the pre-
Fig. 2. Examples of the space-filling-curve load-balancing algo- i, 5 section takes into account the inherent hierarchical na-
rithm, with th.e H|Ipert (left panel), mgandermg Pgano (middle ture of modern computing hardware. This typically consists
panel), and Cinco (right panel) curves; image frbennis(2007). . .

of multiple cores per processor, multiple processors per node,

multiple nodes per cluster, and even the availability of mul-

tiple clusters for a numerical simulation. The communica-
This process is repeated for all tasks in the row. The pro-ion performance drops as we go up in the hierarchy. The
cess is repeated for all columns of the task grid. As describedores in a processor share cache memory and can therefore
in Smith et al.(2010, the algorithm “can be visualized as communicate almost instantaneously, while communication
a rake passing over each node and dragging excess work infeetween processors has to go through main memory, which
the next available hole”. In an attempt to keep neighbouringis much slower. Communication between processors on dif-
blocks close together, constraints are placed on block moveferent nodes must go through an external network, which
ments that prevent blocks from moving too far from their di- is orders of magnitude slower, and communication between
rect neighbours. Unfortunately, there are instances where thelusters in different locations is again orders of magnitude
rake algorithm actually results in a worse load balance whereslower. Therefore, simply balancing the load for the individ-
blocks get raked into a corner. As a resbDiennis (2007 ual processors (or cores) is not sufficient. Instead, a hierar-
states that “we do not consider the current implementatiorchical load-balancing scheme must be used that takes both
of the rake algorithm. .. sufficiently robust.” processor load and the communication hierarchy of the target

The space-filling-curve algorithm described BPennis  machine into account. We suggest using a similar approach

(2007 uses a combination of Hilbert, meandering Peano, ando the one used in Zoltarz6ltan User Guide2013 Teresco
Cinco curves to partition the blocks (Fig). Conceptually, et al, 2005. However, where Zoltan suppordynamic load
it draws a single line that visits each of the blocks exactly balancing(where the work distribution may change during
once. It then splits this line into equal-sized segments, eaclthe application’s lifetime), we compute a singiatic solu-
segment visiting the same number of blocks. Due to the waytion before the application is started.
the line is drawn, the blocks in each segment are also contin- Our hierarchical load-balancing scheme, like the rake and
uous in the two-dimensional domain. This solution degradesspace-filling-curve algorithms described earlier, assumes that
slightly when the land-only blocks are discarded, which in- the number of blocks is significantly larger than the number
troduces “cuts” in the curve. Nevertheless, the space-filling-of processors. Instead of simply specifying the number of
curve algorithm significantly improves the load balance be-MPI tasks for which to create a partitioning, the user must
tween MPI tasks. A limitation of this approach is that each of now specify a sequence of partitionings. For example, a se-
the space-filling curves can only partition domains of a spe-quence 2 16: 8 indicates that the blocks must first be parti-
cific size. For example, a domaihx P can be partitioned by tioned into 2 sets (preferably of equal size), each of which is
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subset from each row until the desired number of subsets is
reached. Figur8 shows four example subdivisions, for val-
1 ues of N = 4,6, 8, and 10, that correspond to each of these
four cases. For our example domain we will use the rightmost
subdivision in Fig.3 for N =10 named[3, 3, 2, 2], which
represents the number of blocks in each column.
Fig. 3. Example subdivisions of a square intc48, and 10 rectan- Next, we compute the required number of blocks per col-
gular sections. umn using the average number of blocks per subset and
the selected subdivision. For our example, we will use the
[3,3,2,2] subdivision as in Fig3 and the 10 blocks per
then partitioned into 16 pieces, which are further divided intosubset average, which will result in columns containing
8 pieces. The sequence of partitionings relates directly to th30, 30, 20, 20] blocks. We then split the domain into sub-
hierarchy that is present in the computational platform. Forsets by traversing the blocks in a vertical zigzag fashion and
example, the 216: 8 partitioning can be used for an exper- selecting all non-land blocks until the desired number of
iment on two clusters, each containing 16 nodes of 8 cores. blocks for that column in reached. It should be noted that
Once the user has specified the desired partitioning, the althe partitioning scheme is not a flood-fill type of algorithm,
gorithm proceeds by repeatedly splitting the available blockswhich may skip over isolated points; instead, our partition-
into N (preferably equal-sized) subsets. We try to partitioning scheme simply skips over any land points encountered
the domain in such a way that the shape of each of the subwhile scanning in a certain direction, and continues scanning
sets is as close to a square as possible. This will reduce thig a zigzag fashion until the required number of ocean (i.e.
amount of communication out of each subset in relation tonon-land) points have been selected.
the amount of work inside each subset. The panels (a2—a6) in Fig. show how the example do-
When splitting a domain, multiple solutions may be avail- main is split into the four columns. We subsequently split
able which are equivalent from a load-balancing perspectiveeach of the columns in a horizontal zigzag fashion into the
However, the amount of communication required betweendesired number of subsets for that column. Panels b1-b5 of
subsets may vary between these solutions due to assignmenRig. 4 show an example for the first column, which needs to
of blocks to MPI tasks and the location of land-only blocks. be split into 3 subsets of 10 blocks. A similar subdivision is
Our algorithm therefore compares these solutions and selectgpplied to the other columns. The final block distribution for
the one which generates the least communication betweethe example domain is shown in F4g.
subsets. As explained above, the subdivision shown in panel (c)
To explain our algorithm in more detail, we use the sim- of Fig. 4 is only one out of a series of options. Several per-
plified example domain shown in the upper left panel (al)mutations of thd3, 3,2, 2] subdivision can be created that
of Fig. 4. This example domain contains 1200000 grid  are equivalent from a load-balancing perspective but require
elements. It is divided into blocks of 100100, resulting in  a different amount of communication. In addition, the sub-
12 x 10 blocks, of which 20 are land-only blocks. To divide division can also be rotated, thereby initially dividing the
this domain into 10 subsets, the algorithm starts by computdomain row-wise instead of column-wise. Finally, when se-
ing the required number of blocks per subset. The 100 nontecting the blocks in a zigzag fashion (as shown in Big.
land blocks must be divided into 10 subsets, resulting in 10a choice can be made as to which position to start the selec-
blocks per subset. Next, the algorithm tries to arrange thetion from: top or bottom, or left or right. In our algorithm we
desired number of subsets in a (roughly) rectangular gridsimply compute all unique permutations of the subdivision
The dimensions of this grid, consisting 8f subsets, is de- in all possible rotations, with all possible starting points. We

[2,2] [3,3] [3,3,2] [3,3,2,2]

termined as follows: then select the solution with the lowest average communi-
= floor(sqrt(N)): cation per subse_t. If multiple equn_/alent solut|0ns_ exist, we
c:= ceiling(sqrt(N)) select the one with the lowest maximum communication per
f =c we have found a square grid of [f x f ;ubset. Tablé shows the pe_st_ scoring resglts for all permuta-
if (f *c = N) we have found a rectangular grid of [f x c] tions of the[3, 3, 2, 2] subdivision. All solutions use the same
T T O have found & reciangdar gnid of {f x number of blocks per task, but the amount of communication
if (N >f «c) we have found a square grid of [c x c] varies per solution. Once a domain has been split into the de-
e sired number of subsets, the algorithm is repeated for each of

these subsets for the next split.
In the first two cases of the algorithm shown above,
a square or rectangular decomposition is available contain2.4 Hierarchical partitioning of tripole grids
ing exactly N subsets. In the last two cases, the decompo-
sition contains [ xc — N) or (cxc — N) subsets too many In the application of the hierarchical load-balancing scheme
respectively. To correct this, we repeatedly remove a singléo POP, the tripolar grid layout, where the North Pole is
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Fig. 4. Description of the hierarchical load-balancing scheme for an examplexflt2blocks, of which 20 are land-only blocks, as shown
in panel(al). The initial column-wise split is shown in panéi&2)(a6), the next row wise split in the pandlsl)-(b5), and the final results
is shown in pane{c).

replaced with two poles located (on land) in Canada and Rushierarchical load-balancing scheme, we add the additional
sia, needs special attention. Note that tripolar grids are fretripole communication to the communication requirements
quently used in ocean models because the grid spacing in thef the subset whenever a subset contains a tripole block. The
Arctic is much more uniform and the cell aspect ratios areextra communication will then be taken into account in the
closer to 1 when compared to traditional latitude—longitudesearch phase of the algorithm. Although this approach will
(dipole) grids Emith et al, 2010. In this case, additional improve the partitioning, the result will not be optimal. As
communication is required for the blocks located on the lineshown in Fig.5a, two communicating tripole blocks may
between these poles, as explainedSimith et al.(2010. be located on opposite sides of the grid. This makes it diffi-
These blocks are located on the upper boundary of the gridgult for our partitioning scheme to put these two blocks into
as shown in Figba. To support a tripolar grid layout in our the same subset. We overcome this problem by remapping
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Fig. 5. (a)A subdivision of the topography into 6640 blocks. The two tripoles are depicted by the red dots on the upper boundary. Note that
the leftmost and rightmost dots represent the same tripole; the tripole communication is (partially) shown by thé@rfovesnapping of
the grid that moves an area of 07 blocks. The original tripole boundary is shown as a red line.

Single Cluster POP Multi Cluster POP

MPI

MPI

cluster 1 cluster 2

Fig. 6. An example of POP running without the MPI wrapper on a single cluster (left panel) and with the MPI wrapper on a multi-cluster
(right panel).

the grid before we start the partitioning (Figh). By sim-
ply moving blocks from one side of the grid to the other,

Table 1. Permutations of the [3, 2, 2] example distribution show- we enabl_e o_ur partitioning al_gorithm tq opjcimize the tripole

ing the number of assigned blocks and the communication per tasfommunication. Note that this remapping is only performed

in grid points per level. The entries are sorted by average communi©Nn the grid used in our partitioning algorithm. No change to

cation per task. The topmost entry provides the best solution. POP is required, as POP only uses the result of the partition-
ing in which the original block numbering is maintained.

permutation  blocks  communication per task

per task (minfavg/max) 3 Results: load balancing
(3,3,2,2) 10 1440/2186/2888
(2,3.3,2) 10 1244/2187/2888 In this section we will compare the performance of our hier-
(2.2,3,3) 10 1240/2188/3100 archical algorithm to the Cartesian, rake, and space-filling-
(2,3,2,3) 10 1240/2188/3300 curve block-partitioning schemes. In our experiments we
(3.2,.2,3) 10 1240/2229/3720 carry out a 10-day simulation with thiy 1 version of POP, as
3,2,3,2) 10 1440/2265/2876

described at the beginning of Se2tand show performance
measures averaged over these 10 days.
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3.1 Hardware

‘ Huygen‘s (4x64)

200 |- Single Cluster DAS4 (32x8) I -
The Huygens Http://www.surfsara.nlis an IBM pSeries Tro GlsierDASE (eriore) M
575, a clustered SMP (symmetric multiprocessing) system.
Each node contains 16 dual-core IBM Power 6 processorsg
running at 4.7 GHz, resulting in 32 cores per node. As the 2
cores support simultaneous multi-threading (SMT), every 3 100
node appears to have 64 CPUs. Most applications will per- €
form better by using 64 MPI tasks per node (two MPI tasks
per processor core). Per node, 128 GB of memory is avail-
able (4GB per core). The nodes are connected using 8
(4x DDR) InfiniBand, resulting in a 160 Gbit$ inter-node 0
bandwidth.

The DAS-4 fttp:/iwww.cs.vu.nl/dasidis a six-cluster, Fig. 7. Performance comparison of POP using Cartesian, rake,
wide-area distributed system. DAS-4 is heterogeneous in despace-filling curve, and hierarchical block-partitioning schemes on
sign, but in this experiment we will use dual quad-core com-three different hardware configurations, each using 256 MPI tasks.
pute nodes containing Intel E5620 CPUs running at 2.4 GHz,
resulting in eight cores per node. The nodes contain 24 GB of
memory (3 GB per core). Nodes are connected using QDRS|USters. However, compute nodes cannot directly communi-
InfiniBand, resulting in a 20 Gbitd bandwidth. We use Cate with compute nodes in other clusters.

DAS-4 in a single-cluster and two-cluster experiment. In the
two-cluster experiment, the clusters are connected using a in3'3 Performance

temet link with a maximum bandwidth of 1 Gbit& The av- Table2 shows the configurations of the partitioning schemes.

erage round-trip time between clusters is 2.6 ms. As the ”nkFor each experiment we use 256 MPI tasks. The Cartesian
is shared with other users, the available bandwidth and roum(j;iistribution uses a 225 150 block size, resulting in exactly

trip latency may vary over time. one block per MPI task (no land blocks are discarded). Both
rake and the space-filling curve use a block size ok @D

3.2 Using MPI for multiple clusters and discard 628 of 2400 blocks (i.e. 26 %). The table also
shows the minimum, average, and maximum communica-

For POP to run on multiple clusters, an MPI implementationion per MPI task, as well as the amount of traffic gener-
is required that is capable of communicating both within and@ted between the clusters for the two-cluster experiment. We
between clusters. This is far from trivial, as clusters are oftenWill discuss these below. As can be seen from Tabléhe
protected by a firewall that disallows any incoming commu- hierarchical dqmam distribution significantly decreases the
nication into the cluster. Also, it is common for the compute @mount of traffic between the clusters compared to rake and
nodes to be configured such that they can only communicatée space-filling curve. As aresult, the performance overhead
with the cluster frontend, but not directly with the outside Of Using two clusters is limited. o
world, as explained iMaassen and B#P007). To solve this The performance results of POP are shown in Fign
problem, we created wrapper code that is capable of intermodel day*. On Huygens and single-cluster DAS-4, the
cepting the MPI calls in POP. For each intercepted call, the'@ke and space-filling curve block distribution clearly im-
MPI wrapper decides whether it should be forwarded to theProve the performance over the Cartesian dlstrlbutlon_. On
local MPI implementation or whether it should be sent to Huygens, the performance improvement of the space-filling
another cluster. To use the MPI wrapper code, POP needSUrve is close to the amount of work discarded (23% vs.
to be recompiled using a different MPI library; however, no 26 %). On DAS-4 the improvement is much greater (54 %
changes to the POP code itself are required. vS. 26 %) due to the better cache behaviour of smaller blocks.
To communicate between clusters, one or more Suppor-trhe space-filling curve distribution outperforms the rake dis-
processes, so-called hubs, are used. Each hub typically rurfgbution in all cases, due to the better load-balancing char-
on the cluster frontend, and serves as a gateway to the oth@Cteristics, as shown in Takie Figure7 also shows that the
clusters. If necessary, multiple hubs can be connected toPerformance degrades in the two-cluster DAS-4 experiments.
gether to circumvent communication restrictions caused bynterestingly, the performance reduction for Cartesian is only
firewalls. In Fig.6, the left panel shows a traditional POP 10 %, while the space-filling curve (41 %) and rake (44 %)
run on a single machine, while the right image illustrates '€ much more affected. This difference is caused by the in-
how a hub is used in DAS-4 to connect two clusters together.C_reased communication caused by these two block distribu-
Only a single hub is needed, as all compute nodes in DASHONS, as shown in Tabl2
4 can communicate with all head nodes, even those of other

155

)
re]

144
145
146

150

N
<

50

cartesian 225x150  rake 60x60 sfc 60x60 hierarchical 60x60
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Table 2. Configuration of the Cartesian, rake, and space-filling curve, and hierarchical distributions.

algorithm block blocks blocks communication communication
size per core discarded per task between clusters
(min/max) (min/avg/max) (messages/volume)
Cartesian 225150 1/1 0 (of 256) 0/1267.4/2408 22.3M/99.0GB
rake 60x 60 5/8 628 (of 2400)  748/1940.5/3936 77.9M/337.4GB
space-filling curve 66 60 6/7 628 (of 2400) 1007/1707.7/2960  41.0M/212.7 GB
hierarchical 60« 60 6/7 628 (of 2400)  504/1394.9/2584 20.0M/82.5GB

Table 3. Speed-up on DAS-4 for one- and two-cluster configura- 4 Execution on GPUs
tions using a hierarchical domain distribution.
This section discusses the main challenges that exist when

configuration performance speed-up moving parts of the computation in POP to a GPU. We
(modeldays day?) use the CUDA programming modeNyidia, 2013 in or-

1 cluster, 16 nodes 82 10 :ietr to ha(;/ti f|ge—grba}|n(ted conltr_ol ovt(ajr.our GPU m;plemen—

1 cluster, 32 nodes 155 19 ation and to be able to explain and improve performance

2 clusters. 16 nodes each 142 1.7 results. Many different software tools, libraries, (directive-
based) parallelization tools, and compilers aim to assist in
the development of GPU code. However, it is our goal to gain

Although rake and the space-filing curve both decreasea deep understanding of the performance behaviour of POP,

the amount of work per MPI task, they also significantly which requires more control over the implementation and in

. L I;i)articular how data are transferred between the host mem-
increase the amount of communication between tasks. O .
ory and GPU device memory. We are currently not aware of

S“p‘?rco'ff!p“ters’ wh.ere POP is traditio_nally run, this prot.)'the capability to implement GPU kernels that overlap GPU
lem is .mltlgated by.hlgh-speed ngtwork |nt'erconnects, but Incomputation with CPU-GPU communication in any of the
?e:2uggf;ﬁéiraeg\&rt?;nrziﬂt’I;h_?a';lt;;neeéglltl:n?ﬁ[\g)enewnnSI_US' existing directive-based parallelization tools for GPUs. How-
nication between clusters"‘ clearly shows that compared toever, if this were possible, it would require a collection of
Cartesian. rake causes an increage of 3.4 times in thg Commd_irectives similar to the collection of calls to the CUDA run-

L ' . X fime that are currently responsible for achieving this overlap-
nication between clusters. The increase caused by the space- : ARSI o
- . A ping behaviour. While directive-based parallelization tools
filling curve is smaller, a factor of 2.1, but still significant.

The hierarchical scheme performs slightly better than thedo leave thg kernel code m_the same Iangu:_:\ge as the prlglr_1al,
- : understanding the underlying architecture is still required in
space-filling curve scheme on Huygens and single-cluster

DAS-4 (Fig. 7). This is to be expected, as the communica- order to modify that parallelized code and assess its correct-

; . ess. In the following sections, we use CUDA terminology
tion overhead is small on these systems due to the fast loc‘%\lvidia 2013, although our methods could just as easily ap-
network interconnects. On two-cluster DAS-4, however, the . '

hierarchical domain distribution provides a significant per- ply to OpenC_L Khronos Group2013. A
. - : POP consists of a large Fortran 90 codebase, and in this
formance improvement over the existing algorithms. When

) aper we therefore limit ourselves to the most compute-
running on two clusters, the performance drop compared t .
: : ; . . _Intensive parts of the program and only offload those com-
a single-cluster run is only 8% for the hierarchical domain

distribution, compared to 10 % for Cartesian, 41 % for the putations tothe GPU. The main challenge with this approach
s ace-fillin, curve. and 44 % for rake ' is to overcome the PCle bus bottleneck. Whenever compu-
pTabIe3 s?wows tr;e Speed-ljp on DAS-4 compared to a 16_tations are to be performed on the GPU, the input and out-
node run on a single cluster. The speed-up on 32 nodes o ut data have to be transferred from host memory through
: he PCle bus to GPU device memory and vice versa. The

a single cluster is, with a factor of about 1.9, almost perfect. chieved bandwidth to GPUs connected through the PCle

Although the speed-up on two-clusters (of 16 nodes ea(_:hgo bus is approximately 5.7 GB$from host to device and
is slightly lower, about a factor of 1.7, the performance 9ain o ~5'<1 from device to host. This is significantly lower

compared to a single cluster is still significant. These results[han the bandwidth between host memory and a CPU and
clearly demonstrate that using multiple clusters can be bene—he bandwidth between GPU device mem)cgry and the GPU
ficial,. especial-ly to increase the number of machines beyon herefore, it is crucial that we maximize the overlap of data.
the size of a single cluster. transfers to the GPU with computation and with transfers

from the GPU back to the host.
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Table 4. List of the most compute-intensive functions in POP, covering 76.48 % of the total computation time. The reported time does not

include time spent in functions called by this function.

% time function module #calls computes

15.09 state state_mod 29562112 density of water and derivatives

6.69 hdiffu_del4 hmix_del4 4865280 horizontal diffusion of momentum

5.79 advu advection 4865280  advection of momentum

5.33 bldepth vmix_kpp 115840 ocean boundary layer depth

5.25 hdifft_del4 hmix_del4 4865280 horizontal diffusion of tracers

4.62 chrongear pop_solversmod 115840 preconditioned conjugate-gradient solver
4.07 ri_iwmix vmix_kpp 115840 viscosity and diffusivity coefficients

3.83 vmix_coeffs_kpp  vmix_kpp 115840 vertical mixing coefficients

3.66 impvmixt_correct  vertical_mix 115840 implicit vertical mixing corrector step

3.34 blmix vmix_kpp 115840 mixing coefficients within boundary layer
3.27 impvmixt vertical_mix 231680 implicit vertical mixing of tracers

3.27 clinic baroclinic 4865280  forcing terms of baroclinic momentum

3.17 advt_centered advection 4865280  tracer advection using centred differencing
3.12 btropoperator pop_solversmod 14705152 applies operator for the barotropic solver
3.10 baroclinic_driver  baroclinic 115840 integration of velocities and tracers

2.88 ddmix vmix_kpp 115840 add double-diffusion diffusivities

To overlap GPU communication and computation we needimit ourselves to analysing the performance of the baroclinic
fine-grained control over how data are transferred to thesolver.

GPU. There are several alternative techniques for moving Table 4 gives an overview of the most time-consuming
data between host and device using the CUDA programmindunctions in POP. These profiling results of are obtained from
model. The most commonly used approach is to simply useone month of simulation using they 1 version (see begin-
explicit memory copy statemeritstransfer large blocks of ning of Sect. 2) on the DAS-4 cluster (described in SEXt.
memory to and from the GPU. For this experiment we have used a Cartesian distribution

Alternatively, CUDA streamsnay be used to separate the with blocks of size 255 300 and 8 processes per node on
computation into distinct streams that may execute in par-16 nodes.
allel. This way, communication from one stream can be Table 4 lists the percentage of the total execution time
overlapped with computation and communication in otherspent in this function, not including subfunctions. All
streams. GPUs with 2 copy engines, such as Nvidia’'s Tesldunctions in Table4, except those from the module pop
K20, can use the PCle bus in full duplex with explicit mem- solversmod, belong to the baroclinic solver. Our profiling re-
ory copies in different streams. This way, communication sults indicate that the baroclinic solver does not contain any
and computation from different streams can be fully over-true computational hotspots; that is, no individual function
lapped. consumes a major part of the computation time.

Finally, the mapped memonapproach uses no explicit However, the density computations from the equation of
copies, but maps part of the host memory into device memstate are requested by several different parts both within the
ory space. Whether this approach is feasible depends obaroclinic solver and at the end of each time step. The com-
the memory access pattern of the kernel. Typically, mappegutation of water densities is required so frequently by the
memory can only be used efficiently if each input and outputmodel that their computation time consumes 15.09 % of the
element is read or written only once by the GPU function, total execution time on average.
calledkernel Although this approach results in very clean  The functions from the vmix_kpp module in Tableare
host code, requiring no explicit copy statements, it requirespart of the computation of the vertical mixing coefficients
complex kernel implementations with intricate memory ac- for the KPP mixing schemeLérge et al. 1994, which in

cess patterns to ensure high performance. total consumes about 35.3 % of the total execution time. We
_ _ therefore focus on obtaining a GPU implementation for the
4.1 Targets for GPU implementation equation of state and for the computation of vertical mix-

) ) ing coefficients, in particular the three function states, buoy-
To determine which part of POP to port to the GPU, we mustyit (the computation of buoyancy differences) and ddmix.
first get an impression of where the most time is spent. ltyye focus on buoydiff() and ddmix() since they are among

is well known that the three-dimensional baroclinic solver is the most compute intensive functions and are responsible for
the most computationally intensive part of PGkebyson g4 994 of the calls to state().

and Jone2005 Worley and Levesque003. We therefore
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_ Itis well known tha_t kernel-level optimizations focused on Explicit implementation (uses explicit copy statements)
increasing computation thrc_)ugh_put are generally noF wprth— CPU-GPU Comm. | .
while when memory bandwidth is the primary factor in lim- A —
iting performance Ryoo et al, 2009. A frequently used SV comPutaton
tool for performance analysis on multi- and many-core hard- - implicit implementation (uses device-mapped host memory)
ware using the Roofline modeWlliams et al, 2009 is CPU-GPU Comm.
the arithmetic intensity For example, the Nvidia Tesla K20 oy computation | (TS —.
GPU has a theoretical peak performance of 1173 GFLOP s
for double DFECiSiOH and a theoretical peak global mem- - Streams implementation (uses CUDA Streams and explicit copy statements)
ory bandwidth of 208 GBS, However, in practice the = o com | [ I NN ) [
achieved memory bandwidth is (roughly) 160 GB'sasre-  GPU Computation [ [
ported by the bandwidthTest tool in the Nvidia CUDA SDK.
A rough estimation tells us that an arithmetic intensity of Fig. 8. Schematic of the three different implementatiorSxplicit,
at least 7.3 FLOP byté is required for the kernel to be- Implicit, Qnd Streams- tha’F shlows the potential overlap between
come compute-bound. Thus, if the arithmetic intensity is lesscomPutation and communication.
than 7.3 FLOP bytel, then we know the kernel is memory-
bandwidth-bound when executed on the K20. a0 _

The arithmetic intensity of the state() function is computed =
as follows. Although POP supports various implementations
for the equation of state, we focus on the 25-term equation
of state McDougall et al, 2003 because it is the most com-
monly used implementation. The state() function requires the
temperature and salinity tracers as inputs as well as 25 coef<
ficients, of which 6 depend on the water pressure and the resg
are constant. The state() function outputs the density of wa-
ter and optionally also outputs the derivatives of the water
density with respect to temperature and salinity. When only
the density of water is computed, state() performs 40 float-
ing point operations per grid point with an arithmetic inten-
sity of 2.5 FLOP byte?l, assuming that all 25 coefficients can 0
be stored in on-chip caches and can be fully reused. When

all outputs are requested, 89 floating point operations ar(?:ig. 9. Performance results for the three POP functions on a GPU

executed per grid point, resulting in an arithmetic intensity \yith three different implementations as obtained on the Tesla K20
of 5.56 FLOP byte!. With an arithmetic intensity of either GpuU with a 229« 304 block size.

2.5 or 5.56, the state() kernel is memory bandwidth-bound.
Therefore, we focus on optimizing the time spent on com-
munication between host and device rather than kernel-level Explicit is a bulk-synchronous implementation that uses

25

o

state buoydiff ddmix

optimizations. explicit memory copy statements to copy all the required
input data to GPU and from the GPU for the entire three-
4.2 Efficient integration of GPU code dimensional grid. The kernel used kixplicit creates a two-

dimensional array of threads, i.e. one thread for each hori-
We now describe how POP should be revised to efficientlyzontal grid point, which iterate the grid points in the vertical
use GPUs. For our discussion, we focus on three functionglimension.Implicit uses mapped memory and therefore re-
in POP state(), buoydiff(), and ddmix(). Due to a lack in quires no explicit memory copy statements. Instead, data are
GPU performance models that consider asynchronous PCleequested by the GPU directly from the host memory and
transfers, it is currently impossible to predict what kind of sent over the PCle bus. The performance of accessing the
implementation will be the most efficient. For each function memory in this way is very sensitive to the order in which
we have therefore implemented three different versions thatlata are requested, and care must be taken not to create gaps
we call Explicit, Implicit, andStreamsWe first describe the or misalignments from the mapping between threads and
three versions in general and then discuss the specific imedata. Thereforelmplicit uses a kernel implementation that
plementations for state(), buoydiff(), and ddmix() in detail. creates a one-dimensional array of threads with size equal
Figure8 provides a schematic overview of the three different to the number of grid points in the three-dimensional grid.
implementations with regard to the way GPU computationEach thread then computes its three-dimensional index from
(shown in green) and CPU-GPU communication (shown inits one-dimensional thread ID to direct itself to the correct
blue) could be overlapped. part of the computation. Thetreamsmplementation creates
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one stream for each vertical level and uses explicit copy statefor all levels. However, before the execution of the kernel
ments to copy the corresponding vertical level of the inputin streamk can start, the memory copies in streank 4; 1,

and output variables to and from the GPU. If the computa-andk need to be complete. The kernel executing in stream
tion of one vertical level requires input from multiple verti- k outputs to different vertical levels for different variables.
cal levels, CUDA events are used to delay the computatioriTherefore, some of the memory copies from device to host
until all inputs have been moved to the device and vice versain streamk have to wait for the kernel in streain—1 to

The kernel used irstreamss similar to the kernel used in complete. We use the CUDA event management functions
Explicit except for the fact that the kernel only computes theto guarantee that no computations or memory transfers start
grid points of one vertical level. prematurely.

The three different implementations are very different in  In the ddmix function, the computation of diffusivities at
terms of code and the effort to create them. All three imple-level k requires the derivatives of density with respect to tem-
mentations use very distinctive host codes as well as modperature and salinity at levél andk — 1; that is, the com-
ified GPU kernels. For example, thmplicit implementa-  putation of levelk reuses the derivatives that were used to
tion barely requires any host code, whereas3treamsm- compute levelk — 1. At a first glance, it would seem that
plementation requires multiple loops of memory copy oper-the computation of all vertical levels cannot be parallelized.
ations and kernel invocations with advancing offsets. NoteThe sequential approach prevents these values having to be
that, except for the differences described here, the kernels deecomputed, but inhibits the ability to overlap communica-
not contain any architecture-specific optimizations. tion and computation of different vertical levels. Therefore,

While the state() function computes the density of waterour implementation also parallelizes the computation in the
at a certain vertical levet, the function is mostly used di- vertical dimension by introducing double work. The cost of
rectly surrounded by a loop over all vertical levels. Thesecomputing the derivatives twice is significantly less than the
code blocks can safely be replaced by a call to a single funcinability to overlap computation and communication. Simi-
tion that directly computes the water densities for all verti- larly to the buoyancy differences computation, the kernel ex-
cal levels. OuiExplicit implementation uses explicit copies ecuting in streant requires the memory copies of stream
to move the three-dimensional grid of tracer values betweerandk — 1 to be complete. Again, CUDA event management
host and device and creates one thread for each horizontéilinctions are used to guarantee that no data are copied from
grid point, which computes all outputs in the vertical direc- the GPU back to the host before GPU computations have fin-
tion. However, this approach is unable to overlap communi-ished.
cation to and from the device with GPU computation. It is
possible to also parallelize the computation of different ver-
tical levels using CUDA streams. O@treamsmplementa- 5 performance of POP on GPUs
tion ensures that GPU computation can be overlapped with
GPU communication of different vertical levels and thus al- In this section, we will describe the performance of fig
leviates the PCle bus bottleneck to a large extent. Becausgersion of POP on a single cluster and on multiple GPU
of the simple access pattern in state(), where each input anglusters. In the first subsection below, we focus on the per-
output element is read or written only once, it is also a goodformance impact on individual POP subroutines when using
candidate for the highly parall&hplicit implementation. a GPU. In the second subsection, we address the performance

More complex uses of the equation of state are foundofthe whole POP code on a single GPU and on multiple GPU
within the computation of the vertical mixing coefficients for clusters.
the KPP mixing schemelLérge et al. 19949, in particular
in the computation of buoyancy differences (buoydiff) and 5.1 Performance impact of GPU usage:
double-diffusion diffusivities (ddmix). In POP the vertical individual routines
mixing coefficients are sequentially computed for all verti-
cal levels. The computation of buoyancy differences at levelFirst we evaluate the performance of single functions that
k requires the density of both the surface level and level were taken out of POP for individual benchmarking. We test
displaced to levek, as well as the water density at level  our three implementation€Exkplicit, Implicit, and Stream$
These values can be computed for each level in parallel afor each discussed function of POP on a single node equipped
long as all the data are present on the GPU. Overlapping dataith a Nvidia Tesla K20 GPU in the DAS-4 cluster. The
movement from the host to the GPU with GPU computation Tesla K20 has 2496 CUDA cores running at 705 MHz, pro-
and data movement from the GPU to host becomes signifividing a theoretical peak double-precision performance of
cantly more difficult, because the tracers for levelg 4,1, 1173 GFLOP 5. The K20 has 5 GB of device memory and
andk need to be present on the GPU to compute the buoya theoretical peak memory bandwidth of 208 GB.sThe
ancy differences at levél TheStreamsmplementation first K20 is connected through a PCle 2.0 bus and has two copy
schedules memory copies to the GPU for all vertical levelsengines which enable full duplex use of the PCle bus for con-
in concurrent streams and then invokes GPU kernel launchesurrent explicit memory transfers. The grid dimensions used
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for the experiments discussed here are RBD4x 42. This  both StreamsandImplicit do outperform thdexplicit imple-
is the same block size as used to obtain our profiling resultsmnentation in terms of total execution time. Theplicit im-
with two ghost cells in both horizontal dimensions. The per- plementation again suffers from the fact that, although over-
formance results presented here are averaged execution timbgpped with communication and computation, data have to
of five distinct runs. The execution times of these individual be transferred multiple times through the PCle bus.
routines on the tested GPUs show minimal variance. In the GPU implementation of the POP we use in the next
For all three implementations, most of the execution timesubsection, thémplicit implementation for state() and the
is spent on transferring the data to and from the GPU. For exStreamsmplementation for buoydiff() and ddmix() are used.
ample, for theStreamsmplementation of state() only 10.3% As buoydiff() is executed before ddmix() as part of the com-
of the execution time is spent on GPU computation, and onlyputation of vertical mixing coefficients, ddmix() reuses the
19.4 and 13.3% for buoydiff() and ddmix(), respectively. tracers that have been copied to the GPU by buoydiff(). Ad-
Note that the reported times for buoydiff() and ddmix() in- ditionally, for all three functions, the execution on the GPU
clude the time spent within state() when called as a subfuncas well as all data transfers are overlapped with the computa-
tion. In fact, calls to state() from the GPU kernels of buoyd- tion of other functions on the CPU. Therefore, the CPU never
iff() and ddmix() are inlined to optimize the data access pat-has to wait for the results of GPU computations.
tern of these kernels.
Figure9 shows the performance results for all three func-5.2 Performance of POP on multiple (GPU) clusters
tions with three different GPU implementations. For the
state() function thémplicit implementation provides the best In this section, we evaluate the performance of the combina-
performance. Although the kernel implementation used bytion of the two approaches presented in this paper. The goal
Implicit is slightly less efficient than the kernel used by- of this evaluation is to assess whether the addition of a GPU
plicit, the total execution time is significantly less becauseis at all beneficial for performance on the application level.
a large part of the memory transfers between host and defhis is certainly not trivial, considering that large amounts
vice and computation is overlapped. Whreamsachieves  of data have to be moved back and forth between the differ-
overlapping behaviour similar tinplicit, it is more coarse- ent memories over a relatively slow PCle link. Additionally,
grained, with one vertical level at a time rather than individ- only a small number of functions are executed on the GPU
ual grid points. That explains whiynplicit outperforms the  and a single GPU is shared between the various CPU cores.
Streamsmplementation for the state() function. As such, we compare the performance of two versions of the
The buoydiff() function has a very low arithmetic inten- program: one that only uses CPUs and one that uses the avail-
sity and therefore the computation again accounts for onlyable CPUs as well as the GPU.
a small part of the total execution time. Thaplicit imple- We recognize that a truly fair comparison between the dif-
mentation is slower thaBxplicit because the access pattern ferent experimental setups is very hard to achieve. We take
in buoydiff() requires several input elements multiple times. the achieved performance in terms of the number of model
As a result, thdmplicit approach transfers more data than days per day of simulation as a measure for comparison. We
necessary over the PCle bus. Although these transfers can tteave chosen not to normalize these results using additional
overlapped with computation and with transfers in the oppo-metrics such as hardware costs or power consumption to keep
site direction, the performance penalty for transferring datathe experimental setup as simple as possible. Hardware costs
multiple times reduces the overall performance. Slreams  of both CPUs and GPUs are influenced by different factors in
approach again benefits from the fact that data transfers andddition to their performance capabilities. Power consump-
computation can be overlapped, but without the restrictiongion is an important factor in the operational costs for mod-
that come with thémplicit approach. The data access patternern supercomputers. However, as only a small fraction of the
in buoydiff() requires that operations in some streams maycode currently executes on the GPU, it is clear that with the
have to wait for operations in another stream to complete beeurrent state of the software, the GPU will be idle for a large
fore they can start. The overhead of these synchronizationfaction of the execution. Whether a complete GPU imple-
accounts for on average 3.26 % of the total execution time oimentation of POP is more efficient than a CPU-only imple-

the Streamsmplementation. mentation in terms of power consumption is an interesting
To parallelize the computation of ddmix() in the verti- issue, but it is outside the scope of this paper.
cal dimension, thdmplicit and Streamsimplementations For this evaluation we use the DAS-4 cluster (described

do some double work; that is, some values are computearlier in Sect3.1). First, eight compute nodes each contain-

twice by different threads operating at different vertical lev- ing two quad-core Intel E5620 CPUs (eight cores per node
els, whereas a thread in thHexplicit approach may reuse total) running at 2.4 GHz, 24 GB of memory, and a Nvidia

that value from the computation of a previous vertical level. GTX480 GPU are used. In addition, we also use 8 compute
Therefore, the time spent in computation fomplicit and nodes each containing two six-core Intel E5-2620 CPUs (12
Streamsds higher than that oExplicit. However, due to the cores per node total) running at 2.0 GHz, 64 GB of memory,
overlap of computation and PCle transfers in both directionsand a Nvidia Tesla K20 GPU each. As a reference for the
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Fig. 10. Performance of POP using eight compute nodes of theFi9- 11.Performance of POP using 16 compute nodes of the DAS-4
DAS-4 cluster, with and without GPUs, using hierarchical partition- cluster, on one or two clusters, using hierarchical partitioning with
ing with 60x 60 block size. 60 x 60 block size.

CPU-only version of POP we use the original POP code withimportant to understand that this would not have been possi-
the hierarchical partitioning scheme described in S2@&. ble with larger block sizes because of the limited size of the
Comparisons against other load-balancing schemes can BePU memory. As such, the two approaches presented in this
derived from Fig.7. All configurations in this section use Paper work in concert to improve the performance of POP.
a block size of 60« 60. As a final experiment, we study the performance of POP
Figure 10 shows the performance of POP using 4, 8, andon multiple platforms including GPUs. For this experiment,
12 MPI tasks per node, with and without GPU. Note that onlywe use eight-core DAS-4 compute nodes with an Nvidia
a single GPU is available in each node. Therefore, the GPUSTX480 GPU (described in Sec&l1and5.2).
is shared between the multiple MPI tasks on a single node. Figurellcompares the performance of a 16-node single-
For the eight-core DAS-4 nodes, the performance gained bygluster run with a Z 8-node two-cluster run. Results are
using the GPU is approximately 20 %, both when using fourshown for CPU-only and CPHUGPU experiments. The re-
or eight MPI tasks. This directly corresponds with the execu-sults show a performance increase of 15% on one cluster
tion time consumed by POP code that has been ported to th@nd 13 % on two clusters when using the GPUs. The perfor-
GPU. The figure also shows that the scalability of POP itselfmance loss when changing from one to two clusters is 5%
is far from perfect. Running on eight MPI task per node, only for the CPU-only version and 6 % for the CRGPU ver-
provides a speed-up of 1.4 compared to four MPI tasks pefion. These results clearly indicate that running POP on mul-
node, both for the CPU-only and GPU versions. tiple GPU clusters is feasible and also beneficial in terms of
For the 12-core DAS-4 nodes, the performance gained byperformance. Moreover, it allows users with access to multi-
using the GPU is approximately 15% when using 4 MPI ple smaller GPU clusters to scale up to well beyond the size
tasks per node, and 13 % when using 8 or 12 MPI tasks pe@f a single GPU cluster.
node. Although this relative performance gain is lower that
for the eight-core nodes, the absolute performance gain is
much higher due to the better performance offered by the6 Summary, discussion, and conclusions
(newer) six-core CPU and K20 GPUs. In addition, the scal-
ability of POP on the 12-core nodes is also much betterHigh-resolution ocean and climate models are becoming
achieving a speed-up of 1.9 on 8 cores and 2.6 on 12 corea very important tool in climate research. It is crucially im-
(both relative to the 4-core experiment). portant that multi-century simulations with these models can
The results show that it is possible to combine the hier-be performed efficiently. In this paper, we presented a new
archical partitioning scheme with GPU execution and still distributed computing approach to increase the performance
obtain a performance increase. This is a remarkable resulpf the POP model.
as the hierarchical partitioning scheme prefers small block First of all, we have shown that it is possible to optimize
sizes, such as 6060, to eliminate as many land-only blocks the load balancing of POP such that it can run successfully
as possible and distribute load evenly among MPI tasksjn a multi-platform setting. The hierarchical load-balancing
while the GPU code would prefer larger-sized blocks to in- scheme was shown to perform much better than the existing
crease GPU utilization. However, GPU utilization is already load-balancing schemes (Cartesian, rake, and space-filling
increased by the fact that all MPI tasks running on a singlecurve), mainly due to the reduction in communication be-
node share a single GPU for all their GPU computations. It istween the MPI tasks. In the future, we plan to take advantage
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of the Zoltan library in order to extend our load-balancing computations were done on the Huygens IBM Power6 at SURFsara
scheme so as to also take performance differences betweeémAmsterdamyww.surfsara.nl Use of these computing facilities
machines into account. Secondly, it was demonstrated that ivas sponsored by the Netherlands Organisation for Scientific
is advantageous to port part of POP to GPUs (and get a pe,Research (NWO) under the project SH244-.13. .Support from NWO
formance increase), even though POP itself does not contail9 cover the costs of this open access publication is also gratefully
any real hotspots and is therefore not an obvious candidat8°k"oWledged.

for using GPUs.

In the experiments shown, only three functions in POP
were implemented on a GPU. Another substantial portion of
the execution time is spent computing the advection of mo-
mentum and the horizontal diffusion of momentum and trac-References
ers. Obtaining a GPU implementation for these functions is
deferred to future work. The advection of tracers also usedleichrodt, F., Bisseling, R., and Dijkstra, H. A.: Accelerating a
the equation of state to compute the potential density refer- barotropic ocean model using a GPU, Ocean Model., 41, 16-21,
enced to the surface layer, which is used to compute a variet%e‘:]c:izslo'ﬁmﬁﬂjOT:\:‘;?Sdézgtzggﬁﬁ%liuwe variitioning of &
_of time-averaged fields. Currently, most of the exgcut_lon time global ocean model, IPDPS 2007, IEEE International, 1, 1-10,
is spent on PCle transfers. When more computathn is mov_ed d0i10.1109/IPDPS.2007.37021Z007.
to the GPU, more data can be reused, an.d some Ir]termed'af?ukowicz, J. K. and Smith, R. D.: Implicit free-surface method
data structures that result from computation may even never ¢ the Bryan-Cox-Semtner ocean model, J. Geophys. Res., 99,
have to leave the GPU. In that case, some PCle transfers can 7991-8014, doi:0.1029/93JC03453994.
be eliminated completely. In future work we hope to produceKerbyson, D. J. and Jones, P. W.: A performance model of the
a complete GPU implementation of the vertical mixing part parallel ocean program, Int. J. High Perform. C., 19, 261-2786,
of POP. doi:10.1177/10943420050561,12005.

The software presented in this paper has the same portabikhronos Group: OpenCL, available etttp://www.khronos.org/
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