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Dirichlet Processes
Start with Dirichlet distributions

A Dirichlet distribution is a distribution over the K -dimensional
probability simplex:

∆K =
{
(π1, . . . , πK ) : πk ≥ 0,

∑
k πk = 1

}
We say (π1, . . . , πK ) is Dirichlet distributed,

(π1, . . . , πK ) ∼ Dirichlet(α1, . . . , αK )

with parameters (α1, . . . , αK ), if

p(π1, . . . , πK ) =
Γ(
∑

k αk )∏
k Γ(αk )

K∏
k=1

παk−1
k
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Dirichlet Processes
Examples of Dirichlet distributions
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Dirichlet Processes
Definition

A Dirichlet Process (DP) is a distribution over probability
measures.
A DP has two parameters:

Base distribution H, which is like the mean of the DP.
Strength parameter α, which is like an inverse-variance of the DP.

We write:

G ∼ DP(α, H)

if for any partition (A1, . . . , An) of X:

(G(A1), . . . , G(An)) ∼ Dirichlet(αH(A1), . . . , αH(An))
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Dirichlet Processes
Cumulants

A DP has two parameters:
Base distribution H, which is like the mean of the DP.
Strength parameter α, which is like an inverse-variance of the DP.

The first two cumulants of the DP:

Expectation: E[G(A)] = H(A)

Variance: V[G(A)] =
H(A)(1− H(A))

α + 1

where A is any measurable subset of X.
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Dirichlet Processes
Existence of Dirichlet processes

A probability measure is a function from subsets of a space X to
[0, 1] satisfying certain properties.

A DP is a distribution over probability measures such that
marginals on finite partitions are Dirichlet distributed.

How do we know that such an object exists?!?

Kolmogorov Consistency Theorem: if we can prescribe consistent
finite dimensional distributions, then a distribution over functions
exist.

de Finetti’s Theorem: if we have an infinite exchangeable
sequence of random variables, then a distribution over measures
exist making them independent. Pòlya’s urn, Chinese restaurant
process.

Stick-breaking Construction: Just construct it.
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Dirichlet Processes
Representations

Distribution over probability measures.

(G(A1), . . . , G(An)) ∼ Dirichlet(αH(A1), . . . , αH(An))

Chinese restaurant process/Pòlya’s urn scheme.

P(nth customer sit at table k) = nk
n−1+α

P(nth customer sit at new table) = α
i−1+α

Stick-breaking construction.

G =
∞∑

k=1

πkδθ∗k
πk = βk

k−1∏
l=1

(1− βk ) βk ∼ Beta(1, α)
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Pòlya’s Urn Scheme

A draw G ∼ DP(α, H) is a random probability measure.

Treating G as a distribution, consider i.i.d. draws from G:

θi |G ∼ G

Marginalizing out G, marginally each θi ∼ H, while the conditional
distributions are,

θn|θ1:n−1 ∼
∑n−1

i=1 δθi + αH
n − 1 + α

This is the Pòlya urn scheme.
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Pòlya’s Urn Scheme

Pòlya’s urn scheme produces a sequence θ1, θ2, . . . with the
following conditionals:

θn|θ1:n−1 ∼
∑n−1

i=1 δθi + αH
n − 1 + α

Imagine picking balls of different colors from an urn:
Start with no balls in the urn.
with probability ∝ α, draw θn ∼ H, and add a ball of
that color into the urn.
With probability ∝ n − 1, pick a ball at random from
the urn, record θn to be its color, return the ball into
the urn and place a second ball of same color into
urn.
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Exchangeability and de Finetti’s Theorem

Starting with a DP, we constructed Pòlya’s urn scheme.

The reverse is possible using de Finetti’s Theorem.

Since θi are i.i.d. ∼ G, their joint distribution is invariant to
permutations, thus θ1, θ2, . . . are exchangeable.

Thus a distribution over measures must exist making them i.i.d..

This is the DP.
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Chinese Restaurant Process

Draw θ1, . . . , θn from a Pòlya’s urn scheme.

They take on K < n distinct values, say θ∗1, . . . , θ
∗
K .

This defines a partition of 1, . . . , n into K clusters, such that if i is
in cluster k , then θi = θ∗k .

Random draws θ1, . . . , θn from a Pòlya’s urn scheme induces a
random partition of 1, . . . , n.

The induced distribution over partitions is a Chinese restaurant
process (CRP).
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Chinese Restaurant Process

Generating from the CRP:
First customer sits at the first table.
Customer n sits at:

Table k with probability nk
α+n−1 where nk is the number of customers

at table k .
A new table K + 1 with probability α

α+n−1 .

Customers ⇔ integers, tables ⇔ clusters.

The CRP exhibits the clustering property of the DP.
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Chinese Restaurant Process

To get back from the CRP to Pòlya’s urn scheme, simply draw

θ∗k ∼ H

for k = 1, . . . , K , then for i = 1, . . . , n set

θi = θ∗ki

where ki is the table that customer i sat at.

The CRP teases apart the clustering property of the DP, from the
base distribution.
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Stick-breaking Construction

But how do draws G ∼ DP(α, H) look like?
G is discrete with probability one, so:

G =
∞∑

k=1

πkδθ∗k

The stick-breaking construction shows that G ∼ DP(α, H) if:

πk = βk

k−1∏
l=1

(1− βl)

βk ∼ Beta(1, α)

θ∗k ∼ H

π

(4)π
(5)π

(2)π
(3)π

(6)π

(1)

We write π ∼ GEM(α) if π = (π1, π2, . . .) is distributed as above.
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Applications

Mixture Modelling.

Haplotype Inference.

Nonparametric relaxation of parametric models.
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Dirichlet Process Mixture Models

We model a data set x1, . . . , xn using the
following model:

xi ∼ F (θi) for i = 1, . . . , n

θi ∼ G

G ∼ DP(α, H)

Each θi is a latent parameter modelling xi , while
G is the unknown distribution over parameters
modelled using a DP.

This is the basic DP mixture model.

α G

i

xi

θ

H
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Dirichlet Process Mixture Models

Since G is of the form

G =
∞∑

k=1

πkδθ∗k

we have θi = θ∗k with probability πk .
Let ki take on value k with probability πk . We can equivalently
define θi = θ∗ki

.
An equivalent model is:

xi ∼ F (θ∗ki
) for i = 1, . . . , n

p(ki = k) = πk for k = 1, 2, . . .

πk = βk

k−1∏
i=1

(1− βi)

βk ∼ Beta(1, α)

θ∗k ∼ H
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Dirichlet Process Mixture Models

So the DP mixture model is a mixture
model with an infinite number of
clusters.

But only finitely clusters ever used.
The DP mixture model can be used
for clustering purposes.

The number of clusters is not known
a priori.
Inference in model returns a
posterior distribution over number of
clusters used to represent data.
An alternative to model
selection/averaging over finite
mixture models.

*

0α 0

kθ

G

8

π

zi

xi
n
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Haplotype Inference

A bioinformatics problem relevant to the study of the
evolutionary history of human populations.

Consider a sequence of M markers on a pair of
chromosomes.

Each marker marks the site where there is an
observed variation in the DNA in across the human
population.

A sequence of marker states is called a haplotype.

A genotype is a sequence of unordered pairs of
marker states.

0 1 1 1 0 1 1

0 1 0 1 1 0 1

{0,0} {1,1} {0,1} {1,1} {0,1} {0,1} {1,1}
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Haplotype Inference

Biological assays allow us to read the
genotype of an individual, not the two
haplotypes.

Problem: from the genotypes of a large
number of individuals, can we reconstruct
the haplotypes accurately?

Observation: only a very small number of
haplotypes are observed in human
populations.

Model the process as a mixture model.

Because the actual number of haplotypes in
the observed population is not known, we
use a DP mixture model.

G

xi

H

α

hh1i 2i
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Nonparametric Relaxation

If G ∼ DP(α, H), then G → H as α →∞, in the sense that for any
function f , ∫

f (θ)G(θ)dθ →
∫

f (θ)H(θ)dθ

We can use G as a nonparametric relaxation of H.
Example: generalized linear models.

Observed data {x1, y1, . . . , xn, yn} where , modelled as:

xi ∼ H(f−1(λ>yi))

where H(η) is an exponential family distribution with parameter η
and f is the link function.
If we do not believe that H(f−1(λ>y)) is the true model, then we
can relax our strong parametric assumption as:

G(yi) ∼ DP(α(w>yi), H(f−1(λ>yi)))

xi ∼ G(yi)
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Generalizations

Pitman-Yor processes.

General stick-breaking processes.

Normalized inversed-Gaussian processes.
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Pitman-Yor Processes

Pitman-Yor Processes are also known as Two-parameter
Poisson-Dirichlet Processes.

Chinese restaurant representation:

P(nth customer sit at table k , 1 ≤ k ≤ K ) = nk−d
n−1+α

P(nth customer sit at new table) = α+dK
i−1+α

where 0 ≤ d < 1 and α > −d .

When d = 0 the Pitman-Yor process reduces to the DP.

When α = 0 the Pitman-Yor process reduces to a stable process.

When α = 0 and d = 1
2 the stable process is a normalized

inverse-gamma process.

There is a stick-breaking construction for Pitman-Yor processes
(later), but no known analytic expressions for its finite dimensional
marginals, except for d = 0 and d = 1

2 .
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Pitman-Yor Processes

Two salient features of the Pitman-Yor process:
With more occupied tables, the chance of even more tables
becomes higher.
Tables with smaller occupancy numbers tend to have lower chance
of getting new customers.

The above means that Pitman-Yor processes produce Zipf’s Law
type behaviour.
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Pitman-Yor Processes

Draw from a Pitman-Yor process
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General Stick-breaking Processes

We can relax the priors on βk in the stick-breaking construction:

G =
∞∑

k=1

πkδθ∗k
πk = βk

k−1∏
l=1

(1− βl)

θ∗k ∼ H βk ∼ Beta(ak , bk )

We get the DP if ak = 1, bk = α.

We get the Pitman-Yor process if ak = 1− d , bk = α + kd .

To ensure that
∑∞

k=1 πk = 1, we need βk to not go to 0 too quickly:

∞∑
k=1

πk = 1 almost surely iff
∞∑

k=1

log(1 + ak/bk ) = ∞
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Normalized Inverse-Gaussian Processes

The inverse-Gaussian distribution with parameter α has density:

p(ν) =
α√
2π

ν−3/2 exp
(
−1

2

(
α2

ν
+ ν

)
+ α

)
ν ≥ 0

0 1 2 3 4 5

!a^.5

0

a^.5

Additive property of inverse-Gaussian variables: if ν1 ∼ IG(α1)
and ν2 ∼ IG(α2) then ν1 + ν2 ∼ IG(α1 + α2).
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Normalized Inverse-Gaussian Processes

The normalized inverse-Gaussian is a distribution over the
m-simplex obtained by normalizing m inverse-Gaussian variables,
and has density:

p(w1, . . . , wm|α1, . . . , αm)

=
e

Pm
i=1 αi+log αi

2m/2−1πm/2
K−m/2

(√∑m
i=1

α2
i

wi

)(∑m
i=1

α2
i

wi

)−m/4 m∏
i=1

w−3/2
i

Agglomerative property: if {J1, . . . , Jm′} is a partition of {1, . . . , m},(∑
i∈J1

wi , . . . ,
∑

i∈Jm′
wi

)
∼ NIG

(∑
i∈J1

αi , . . . ,
∑

i∈Jm′
αi

)
We can now define a normalized inverse-Gaussian process
(NIGP) analogously to a Dirichlet process. G ∼ NIGP(α, H) if for
all partitions (A1, . . . , Am) of X:

(G(A1), . . . , G(Am)) ∼ NIG(αH(A1), . . . , αH(Am))
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Normalized Inverse-Gaussian Processes

There is a tractable Pòlya urn scheme corresponding to the NIGP.
The DP, the Pitman-Yor with d = 1

2 , and the NIG process are the
only known normalized random measure with analytic finite
dimensional marginals.
The NIGP have wider support around its modes than does the DP:
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Hierarchical Dirichlet Processes

Grouped Clustering Problems.

Hierarchical Dirichlet Processes.

Representations of Hierarchical Dirichlet Processes.

Applications in Grouped Clustering.

Extensions and Related Models.
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Grouped Clustering Problems
Example: document topic modelling

Information retrieval: finding useful information from large
collections of documents.

Example: Google, CiteSeer, Amazon...

Model documents as “bags of words”.
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Grouped Clustering Problems
Example: document topic modelling

We model documents as coming from an underlying set of topics.
Summarize documents.
Document/query comparisons.
Do not know the number of topics a priori—use DP mixtures
somehow.
But: topics have to be shared across documents...
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Grouped Clustering Problems
Example: document topic modelling

Share topics across documents in a collection, and across
different collections.

More sharing within collections than across.

Use DP mixture models as we do not know the number of topics a
priori.
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Grouped Clustering Problems
Example: haplotype inference

Individuals inherit both ancient haplotypes dispersed across
multiple populations, as well as more recent population-specific
haplotypes.
Sharing of haplotypes among individuals in a population, and
across different populations.
More sharing within populations than across.
Use DP mixture models as we do not know the number of
haplotypes.
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Hierarchical Dirichlet Processes

Use a DP mixture for each group.

Unfortunately there is no sharing of clusters
across different groups because H is
smooth.

Solution: make the base distribution H
discrete.

Put a DP prior on the common base
distribution.

H

1i

1ix

θ

G1 G

x

θ

2

2i

2i
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Hierarchical Dirichlet Processes

A hierarchical Dirichlet process:

G0 ∼ DP(α0, H)

G1, G2|G0 ∼ DP(α, G0)

Extension to deeper hierarchies is
straightforward. 1i

1ix

θ

G1 G

x

θ

G

H

0

2

2i

2i
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Hierarchical Dirichlet Processes

Making G0 discrete forces shared cluster between G1 and G2
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Representations of Hierarchical Dirichlet Processes
Stick-breaking construction

We shall assume the following HDP hierarchy:

G0 ∼ DP(γ, H)

Gj |G0 ∼ DP(α, G0) for j = 1, . . . , J

The stick-breaking construction for the HDP is:

G0 =
∑∞

k=1 π0kδθ∗k
θ∗k ∼ H

π0k = β0k
∏k−1

l=1 (1− β0l) β0k ∼ Beta
(
1, γ
)

Gj =
∑∞

k=1 πjkδθ∗k

πjk = βjk
∏k−1

l=1 (1− βjl) βjk ∼ Beta
(
αβ0k , α(1−

∑k
l=1 β0l)

)
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Representations of Hierarchical Dirichlet Processes
Hierarchical Pòlya urn scheme

Let G ∼ DP(α, H).

We can visualize the Pòlya urn scheme as follows:

2

1θ θ θ θ θ θ

θ∗θ∗θ∗θ∗θ∗
1θ∗ . . . . .

. . . . .θ2 3 4 5 6 7

6543

where the arrows denote to which θ∗k each θi was assigned and

θ1, θ2, . . . ∼ G i.i.d.

θ∗1, θ
∗
2, . . . ∼ H i.i.d.

(but θ1, θ2, . . . are not independent of θ∗1, θ
∗
2, . . .).
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Representations of Hierarchical Dirichlet Processes
Hierarchical Pòlya urn scheme

Let G0 ∼ DP(γ, H) and G1, G2|G0 ∼ DP(α, G0).

The hierarchical Pòlya urn scheme to generate draws from G1, G2:

θ θ θ θ θ

θ∗θ∗θ∗θ∗θ∗θ∗ . . . . .

. . . . .θ

11 12 13 14 15 16

11 12 13 14 15 θ16 17
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Representations of Hierarchical Dirichlet Processes
Hierarchical Pòlya urn scheme

Let G0 ∼ DP(γ, H) and G1, G2|G0 ∼ DP(α, G0).

The hierarchical Pòlya urn scheme to generate draws from G1, G2:

21θ θ θ θ θ

θ∗θ∗θ∗θ∗θ∗θ∗ . . . . .

. . . . .θ

11 12 13 14 15 16

11 12 13 14 15 θ16 17

θ∗θ∗θ∗θ∗θ∗θ∗ . . . . .21 22 23 24 25 26

θ∗θ∗θ∗θ∗θ∗θ∗ . . . . .01 02 03 0504 06

θ θ θ θ . . . . .θ θ θ272625242322
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Representations of Hierarchical Dirichlet Processes
Chinese restaurant franchise

Let G0 ∼ DP(γ, H) and G1, G2|G0 ∼ DP(α, G0).

The Chinese restaurant franchise describes the clustering of data
items in the hierarchy:

3
. . .1

3
4

6 7

52
. . .

7
6

4
1

2
5
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Representations of Hierarchical Dirichlet Processes
Chinese restaurant franchise

Let G0 ∼ DP(γ, H) and G1, G2|G0 ∼ DP(α, G0).

The Chinese restaurant franchise describes the clustering of data
items in the hierarchy:
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Representations of Hierarchical Dirichlet Processes
Chinese restaurant franchise

Let G0 ∼ DP(γ, H) and G1, G2|G0 ∼ DP(α, G0).

The Chinese restaurant franchise describes the clustering of data
items in the hierarchy:

E
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Application: Document Topic Modelling

Compared against latent Dirichlet allocation, a parametric version
of the HDP mixture for topic modelling.
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Application: Document Topic Modelling

Topics learned on the NIPS corpus.
Documents are separated into 9 subsections.
Model this with a 3 layer HDP mixture model.

Shown are the topics shared between Vision Sciences and each
other subsections.
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Infinite Hidden Markov Models

A hidden Markov model consists of a dis-
crete latent state sequence v1:T and an observation sequence x1:T .

v1 v

2

2

1x x

vT

Tx

The transition and observation probabilities are:

P(vt = k |vt−1 = l) = πkl

p(xt |vt = k) = f (xt |θ∗k )

l

k πkl

In finite HMMs, we can place priors on the parameters easily:

(π1l , . . . , πKl) ∼ Dirichlet(α/K , . . . , /alpha/K )

θ∗k ∼ H
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Infinite Hidden Markov Models

v1 v

2

2

1x x

vT

Tx

l

k πkl

P(vt = k |vt−1 = l) = πkl

(π1l , . . . , πKl) ∼ Dirichlet(α/K , . . . , α/K )

Can we take K →∞?
Probability of transitioning to a previously unseen state always 1...
Say vt1 = l and this is first time we are in state l . Then

P(vt = k |vt−1 = l) = 1/K → 0

for all k .
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Infinite Hidden Markov Models

v1 v

2

2

1x x

vT

Tx

l

k πkl

P(vt = k |vt−1 = l) = πkl

(π1l , . . . , πKl) ∼ Dirichlet(α/K , . . . , α/K )

Can we take K →∞? Not just like that!
Probability of transitioning to a previously unseen state always 1...
Say vt1 = l and this is first time we are in state l . Then

P(vt = k |vt−1 = l) = 1/K → 0

for all k .
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Infinite Hidden Markov Models

Previous issue is that there is no sharing of possible next states
across different current states.

Implement sharing of next states using a HDP:

(τ1, τ2, . . .) ∼ GEM(γ)

(π1l , π2l , . . .)|τ ∼ DP(α, τ)

γ

v1 v

2

2

1

v0

x x

vT

Tx

τ

α

H *

π

8

l

θl
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Infinite Hidden Markov Models

A variety of trajectory characteristics can be modelled using
different parameter regimes.
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Nested Dirichlet Processes

The HDP assumes that data group structure
is observed.

The group structure may not be known in
practice, even if there is prior belief in some
group structure.

Even if known, we may still believe that some
groups are more similar to each other than to
other groups.

We can cluster groups using a second level
of mixture models.

Using a second DP mixture to model this
leads to the nested Dirichlet process.

1i

1ix

θ

G1 G

x

θ

G

H

0

2

2i

2i
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Nested Dirichlet Processes

The HDP assumes that data group structure
is observed.

The group structure may not be known in
practice, even if there is prior belief in some
group structure.

Even if known, we may still believe that some
groups are more similar to each other than to
other groups.

We can cluster groups using a second level
of mixture models.

Using a second DP mixture to model this
leads to the nested Dirichlet process.
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Nested Dirichlet Processes

Start with:

xji ∼ F (θji) θji ∼ Gj

Cluster groups. Each group j belongs to
cluster kj :

kj ∼ π π ∼ GEM(α)

Group j inherits the DP from cluster kj :

Gj = G∗
kj

Place a HDP prior on {G∗
k}:

G∗
k ∼ DP(β, G∗

0) G∗
0 ∼ DP(γ, H)

Gj

x

θji

ji
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Nested Dirichlet Processes

Start with:

xji ∼ F (θji) θji ∼ Gj

Cluster groups. Each group j belongs to
cluster kj :

kj ∼ π π ∼ GEM(α)

Group j inherits the DP from cluster kj :

Gj = G∗
kj

Place a HDP prior on {G∗
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Nested Dirichlet Processes

Start with:

xji ∼ F (θji) θji ∼ Gj

Cluster groups. Each group j belongs to
cluster kj :

kj ∼ π π ∼ GEM(α)

Group j inherits the DP from cluster kj :

Gj = G∗
kj

Place a HDP prior on {G∗
k}:

G∗
k ∼ DP(β, G∗

0) G∗
0 ∼ DP(γ, H)

Gj

H

x

θji

ji

jk

π

G*
k

0G*

Yee Whye Teh (Gatsby) DP and HDP Tutorial Mar 1, 2007 / CUED 50 / 53



Nested Dirichlet Processes

G∗
0 ∼ DP(γ, H)

Q ∼ DP(α, DP(β, G∗
0))

Gj ∼ Q

θji ∼ Gj

xji ∼ F (θji)

Gj

H

0G*

Q

x

θji

ji

α

β

γ
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Dependent Dirichlet Processes

The HDP induces a straightforward dependency among groups.
What if the data is smoothly varying across some spatial or
temporal domain?

Topic modelling: topic popularity and composition can both change
slowly as time passes.
Haplotype inference: haplotype occurrence can change smoothly
as function of geography.

a dependent Dirichlet process is a stochastic process {Gt}
indexed by t (space or time), such that each Gt ∼ DP(α, H) and if
t , t ′ are neighbouring points, Gt and Gt ′ should be “similar” to each
other.
Simple example:

π ∼ GEM(α) (θ∗tk ) ∼ GP(µ,Σ) for each k

Gt =
∞∑

k=1

πkδθ∗tk
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Summary

Dirichlet processes and hierarchical Dirichlet processes.

Described different representations:
distribution over distributions; Chinese restaurant process; Pòlya
urn scheme; Stick-breaking construction.

Described generalizations and extensions:
Pitman-Yor processes; General stick-breaking processes;
Normalized inverse-Gaussian processes; nested Dirichlet
processes; Dependent Dirichlet processes.

Described some applications:
Document mixture models; Topic modelling; Haplotype inference;
Infinite hidden Markov models.

I have not described inference schemes.

A rich and growing area, and much to be discovered and tried.
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