
C S 5 6 1 - S P R I N G 2 0 1 2
W P I , M O H A M E D E LTA B A K H

PARALLEL & DISTRIBUTED
DATABASES

1

INTRODUCTION

•  In centralized database:
•  Data is located in one place (one server)
•  All DBMS functionalities are done by that server
•  Enforcing ACID properties of transactions
•  Concurrency control, recovery mechanisms
•  Answering queries

•  In Distributed databases:
•  Data is stored in multiple places (each is running a DBMS)
•  New notion of distributed transactions
•  DBMS functionalities are now distributed over many machines
•  Revisit how these functionalities work in distributed environment

2

WHY DISTRIBUTED DATABASES

•  Data is too large

•  Applications are by nature distributed
•  Bank with many branches
•  Chain of retail stores with many locations
•  Library with many branches

•  Get benefit of distributed and parallel processing
•  Faster response time for queries

3

PARALLEL VS. DISTRIBUTED DATABASES

•  Distributed processing usually imply parallel processing
(not vise versa)
•  Can have parallel processing on a single machine

•  Assumptions about architecture
•  Parallel Databases
•  Machines are physically close to each other, e.g., same server room
•  Machines connects with dedicated high-speed LANs and switches
•  Communication cost is assumed to be small
•  Can shared-memory, shared-disk, or shared-nothing architecture

•  Distributed Databases
•  Machines can far from each other, e.g., in different continent
•  Can be connected using public-purpose network, e.g., Internet
•  Communication cost and problems cannot be ignored
•  Usually shared-nothing architecture

4

PARALLEL DATABASE
&

PARALLEL PROCESSING

5

WHY PARALLEL PROCESSING

6

1 Terabyte

10 MB/s

 At 10 MB/s
1.2 days to scan

1 Terabyte

1,000 x parallel
1.5 minute to scan.

Bandwidth

•  Divide a big problem into many smaller ones to be solved in
parallel

•  Increase bandwidth (in our case decrease queries’ response
time)

DIFFERENT ARCHITECTURE

•  Three possible architectures for passing information

7

Shared-memory Shared-disk

Shared-nothing

1- SHARED-MEMORY ARCHITECTURE

•  Every processor has its own disk

•  Single memory address-space for
all processors
•  Reading or writing to far memory can

be slightly more expensive

•  Every processor can have its own
local memory and cache as well

8

2- SHARED-DISK ARCHITECTURE

•  Every processor has its own
memory (not accessible by others)

•  All machines can access all disks
in the system

•  Number of disks does not
necessarily match the number of
processors

9

3- SHARED-NOTHING ARCHITECTURE

•  Most common architecture nowadays

•  Every machine has its own memory and
disk
•  Many cheap machines (commodity

hardware)

•  Communication is done through high-
speed network and switches

•  Usually machines can have a hierarchy
•  Machines on same rack
•  Then racks are connected through high-

speed switches

10

•  Scales better
•  Easier to build
•  Cheaper cost

TYPES OF PARALLELISM

•  Pipeline Parallelism (Inter-operator parallelism)
•  Ordered (or partially ordered) tasks and different machines

are performing different tasks

•  Partitioned Parallelism (Intra-operator parallelism)
•  A task divided over all machines to run in parallel

11

Partition Sequential
 Sequential

Pipeline Sequential
 Sequential
 Sequential

Order between
them

IDEAL SCALABILITY SCENARIO

•  Speed-Up
•  More resources means

proportionally less time for
given amount of data.

•  Scale-Up
•  If resources increased in

proportion to increase in
data size, time is constant.

degree of ||-ism

X
ac

t/
se

c.

(t
hr

ou
gh

pu
t)

 Ideal

degree of ||-ism

se
c.

/X
ac

t
(r

es
po

ns
e

tim
e)

Ideal

PARTITIONING OF DATA

13

A...E F...J K...N O...S T...Z A...E F...J K...N O...S T...Z A...E F...J K...N O...S T...Z

To partition a relation R over m machines

Range partitioning Hash-based partitioning Round-robin partitioning

•  Shared-nothing architecture is sensitive to partitioning

•  Good partitioning depends on what operations are
common

PARALLEL ALGORITHMS FOR
DBMS OPERATIONS

14

PARALLEL SCAN σc(R)

•  Relation R is partitioned over m machines
•  Each partition of R is around |R|/m tuples

•  Each machine scans its own partition and applies the selection
condition c

•  If data are partitioned using round robin or a hash function (over
the entire tuple)
•  The resulted relation is expected to be well distributed over all nodes
•  All partitioned will be scanned

•  If data are range partitioned or hash-based partitioned (on the
selection column)
•  The resulted relation can be clustered on few nodes
•  Few partitions need to be touched

15

•  Parallel Projection is also straightforward
•  All partitions will be touched
•  Not sensitive to how data is partitioned

PARALLEL DUPLICATE ELIMINATION

•  If relation is range or hash-based partitioned
•  Identical tuples are in the same partition
•  So, eliminate duplicates in each partition independently

•  If relation is round-robin partitioned
•  Re-partition the relation using a hash function
•  So every machine creates m partitions and send the ith

partition to machine i
•  machine i can now perform the duplicate elimination

16

•  Same idea applies to Set Operations (Union, Intersect,
Except)

•  But apply the same partitioning to both relations R & S

PARALLEL JOIN R(X,Y) ⋈ S(Y,Z)

•  Re-partition R and S on the join attribute Y (natural join) or (equi join)
•  Hash-based or range-based partitioning

•  Each machine i receives all ith partitions from all machines (from R

and S)
•  Each machine can locally join the partitions it has

•  Depending on the partitions sizes of R and S, local joins can be
hash-based or merge-join

17

Original Relations
(R then S)

OUTPUT

2

B main memory buffers Disk Disk

INPUT
1

hash
function

h
B-1

Partitions

1
2

B-1
. . .

PARALLEL SORTING

•  Range-based
•  Re-partition R based on ranges into m partitions
•  Machine i receives all ith partitions from all

machines and sort that partition
•  The entire R is now sorted
•  Skewed data is an issue
•  Apply sampling phase first
•  Ranges can be of different width

•  Merge-based
•  Each node sorts its own data
•  All nodes start sending their sorted data (one

block at a time) to a single machine
•  This machine applies merge-sort technique as

data come

18

COMPLEX PARALLEL QUERY PLANS

19

A B R S

Sites 1-4 Sites 5-8

Sites 1-8

•  All previous examples are intra-operator parallelism

•  Complex queries can have inter-operator parallelism
•  Different machines perform different tasks

PERFORMANCE OF PARALLEL
ALGORITHMS

•  In many cases, parallel algorithms reach their expected lower
bound (or close to)
•  If parallelism degree is m, then the parallel cost is 1/m of the sequential cost
•  Cost mostly refers to query’s response time

•  Example
•  Parallel selection or projection is 1/m of the sequential cost

20

degree of ||-ism

X
ac

t/
se

c.

(t
hr

ou
gh

pu
t)

 Ideal

degree of ||-ism

se
c.

/X
ac

t
(r

es
po

ns
e

tim
e)

Ideal

PERFORMANCE OF PARALLEL
ALGORITHMS (CONT’D)

•  Total disk I/Os (sum over all machines) of parallel algorithms can
be larger than that of sequential counterpart
•  But we get the benefit of being done in parallel

•  Example
•  Merge-sort join (serial case) has I/O cost = 3(B(R) + B(S))
•  Merge-sort join (parallel case) has total (sum) I/O cost = 5(B(R) + B(S))
•  Considering the parallelism = 5(B(R) + B(S)) / m

21

Number of pages
of relations R and S

OPTIMIZING PARALLEL ALGORITHMS

•  Best serial plan != the best parallel one

•  Trivial counter-example:
•  Table partitioned with local secondary index at

two nodes
•  Range query: all data of node 1 and 1% of

node 2.
•  Node 1 should do a scan of its partition.
•  Node 2 should use secondary index.

22

N..Z

Table
Scan

A..M

Index
Scan

•  Different optimization algorithms for parallel plans (more
candidate plans)

•  Different machines may perform the same operation but using
different plans

SUMMARY OF PARALLEL DATABASES

•  Three possible architectures
•  Shared-memory
•  Shared-disk
•  Shared-nothing (the most common one)

•  Parallel algorithms
•  Intra-operator
•  Scans, projections, joins, sorting, set operators, etc.

•  Inter-operator
•  Distributing different operators in a complex query to different nodes

•  Partitioning and data layout is important and affect the
performance

•  Optimization of parallel algorithms is a challenge
23

