
Parallel Algorithm Analysis and Design

CPS343

Parallel and High Performance Computing

Spring 2018

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 1 / 65



Outline

1 Foster’s Design Paradigm: PCAM Overview
Overview

2 Foster’s Design Paradigm: PCAM Details
Partitioning
Communication
Agglomeration
Mapping

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 2 / 65



Acknowledgements

Material used in creating these slides comes from “Designing and Building
Parallel Programs” by Ian Foster, Addison-Wesley, 1995. Available on-line
at http://www.mcs.anl.gov/~itf/dbpp/

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 3 / 65

http://www.mcs.anl.gov/~itf/dbpp/


Outline

1 Foster’s Design Paradigm: PCAM Overview
Overview

2 Foster’s Design Paradigm: PCAM Details
Partitioning
Communication
Agglomeration
Mapping

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 4 / 65



Foster’s model

In “Designing and Building Parallel Programs” Foster proposes a model
with tasks that interact with each other by communicating through
channels.

A task is a program, its local memory, and its communication inports
and outports.

A channel connects a task’s inport to another task’s outport.

Channels are buffered. Sending is asynchronous while receiving is
synchronous (receiving task is blocked until expected message
arrives).

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 5 / 65



Four-phase design process: PCAM

Partitioning. The computation that is
to be performed and the data operated
on by this computation are decomposed
into small tasks. Practical issues such
as the number of processors in the
target computer are ignored, and
attention is focused on recognizing
opportunities for parallel execution.

Communication. The communication
required to coordinate task execution is
determined, and appropriate
communication structures and
algorithms are defined.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 6 / 65



Four-phase design process: PCAM

Agglomeration. The task and
communication structures defined in the
first two stages of a design are
evaluated with respect to performance
requirements and implementation costs.
If necessary, tasks are combined into
larger tasks to improve performance or
to reduce development costs.

Mapping. Each task is assigned to a
processor in a manner that attempts to
satisfy the competing goals of
maximizing processor utilization and
minimizing communication costs.
Mapping can be specified statically or
determined at runtime by
load-balancing algorithms.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 7 / 65



Outline

1 Foster’s Design Paradigm: PCAM Overview
Overview

2 Foster’s Design Paradigm: PCAM Details
Partitioning
Communication
Agglomeration
Mapping

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 8 / 65



Partitioning

The partitioning stage of a design is intended to expose opportunities
for parallel execution.

Focus is on defining a large number of small tasks (fine-grained
decomposition).

A good partition divides both the computation and the data into
small pieces.

One approach is to focus first on partitioning the data associated with
a problem; this is called domain decomposition.

The alternative approach, termed functional decomposition,
decomposes the computation into separate tasks before considering
how to partition the data.

These are complementary techniques.

Seek to avoid replicating computation and data (may change this
later in process).

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 9 / 65



Domain decomposition

First partition data; ideally divide data into small pieces of
approximately equal size.

Next partition computation, typically by associating each operation
with the data on which it operates.

Focus first on the largest data structure or on the data structure that
is accessed most frequently.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 10 / 65



Domain decomposition example: 3-D cube of data

1-D decomposition: split cube into a 1-D array of slices (each slice is
2-D, coarse granularity)

2-D decomposition: split cube into a 2-D array of columns (each
column is 1-D)

3-D decomposition: split cube into a 3-D array of individual data
elements. (fine granularity)

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 11 / 65



Functional decomposition

Initial focus is on the computation that is to be performed rather than
on the data.

Divide computation into disjoint tasks.

Examine data requirements of tasks:
1 Requirements may be disjoint, in which case the partition is complete.
2 Requirements may overlap significantly, in which case considerable

communication will be required to avoid replication of data.
3 Second case is a sign that a domain decomposition approach should be

considered instead.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 12 / 65



Functional decomposition

Functional decomposition is valuable as a different way of thinking
about problems and should be considered when exploring possible
parallel algorithms.

A focus on the computations that are to be performed can sometimes
reveal structure in a problem, and hence opportunities for
optimization, that would not be obvious from a study of data alone.

Functional decomposition is an important program structuring
technique; can reduce the complexity of the overall design.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 13 / 65



Partitioning design checklist

Questions to consider before finishing the partitioning step:

1 Does your partition define at least an order of magnitude more tasks
than there are processors in your target computer?

2 Does your partition avoid redundant computation and storage
requirements?

3 Are tasks of comparable size?

4 Does the number of tasks scale with problem size?

5 Have you identified several alternative partitions?

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 14 / 65



Outline

1 Foster’s Design Paradigm: PCAM Overview
Overview

2 Foster’s Design Paradigm: PCAM Details
Partitioning
Communication
Agglomeration
Mapping

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 15 / 65



Communication

Conceptualize a need for communication between two tasks as a
channel linking the tasks, on which one task can send messages and
from which the other can receive.

Channel structure links tasks that require data (consumers) with tasks
that possess those data (producers).

Definition of a channel involves an intellectual cost and the sending of
a message involves a physical cost — avoid introducing unnecessary
channels and communication operations.

We want to distribute communication operations over many tasks.

We want to organize communication operations in a way that permits
concurrent execution.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 16 / 65



Communication in domain and functional decomposition

Communication requirements can be difficult to determine in domain
decomposition problems.

First partition data structures into disjoint subsets and then associate
with each datum those operations that operate solely on that datum.

Often there are operations that require data from several tasks; these
must be dealt with separately.

Organizing the resulting communication in an efficient manner can be
challenging.

Communication requirements in parallel algorithms obtained by functional
decomposition are often straightforward as they usually correspond to the
data flow between tasks.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 17 / 65



Patterns of communication

Foster categorizes communication patterns along four loosely orthogonal
axes:

1 local ↔ global

2 structured ↔ unstructured

3 static ↔ dynamic

4 synchronous ↔ asynchronous

local: each task communicates with
a small set of other tasks.

global: requires each task to
communicate with many tasks.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 18 / 65



Patterns of communication

Foster categorizes communication patterns along four loosely orthogonal
axes:

1 local ↔ global

2 structured ↔ unstructured

3 static ↔ dynamic

4 synchronous ↔ asynchronous

structured: a task and its neighbors
form a regular structure, such as a
tree or grid.

unstructured: networks may be
arbitrary graphs.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 18 / 65



Patterns of communication

Foster categorizes communication patterns along four loosely orthogonal
axes:

1 local ↔ global

2 structured ↔ unstructured

3 static ↔ dynamic

4 synchronous ↔ asynchronous

static: the identity of communication
partners does not change over time.

dynamic: the identity of
communication partners may be
determined by data computed at
runtime and may be highly variable.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 18 / 65



Patterns of communication

Foster categorizes communication patterns along four loosely orthogonal
axes:

1 local ↔ global

2 structured ↔ unstructured

3 static ↔ dynamic

4 synchronous ↔ asynchronous

synchronous: producers and
consumers execute in a coordinated
fashion, with producer/consumer
pairs cooperating in data transfer
operations.

asynchronous: may require a
consumer to receive data without the
cooperation of the producer.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 18 / 65



Local communication

A local communication structure is obtained when an operation
requires data from a small number of other tasks.

Easy to define channels that link consumer task (needs the data) with
the producer tasks (have the data).

Example: Finite differences with Jacobi iteration.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 19 / 65



Local communication: Jacobi finite differences

Finite differences is a method used to solve certain differential
equation problems.

In the Jacobi iteration, a multidimensional grid is repeatedly updated
by replacing the value at each point with a weighted average of the
values at a small, fixed number of neighboring points.

Set of values required to update a single grid point is called that grid
point’s stencil.

For example,

X
(t+1)
i ,j =

X
(t)
i−1,j + X

(t)
i ,j−1 + 4X

(t)
i ,j + X

(t)
i+1,j + X

(t)
i ,j+1

8

uses a five-point stencil to update each element Xi ,j of a
two-dimensional grid X . The variable t indicates the time step and i
and j denote the grid locations.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 20 / 65



Local communication: Jacobi finite differences

The communications channels for a
particular node are shown by the arrows
in the diagram on the right.

Assume that the domain decomposition results in a distinct task for
each point in the two-dimensional grid. The task allocated to Xi ,j

must compute the sequence X
(1)
i ,j ,X

(2)
i ,j ,X

(3)
i ,j , . . .

This computation requires in turn the four corresponding sequences
which are produced by the four neighboring tasks:

X
(1)
i−1,j ,X

(2)
i−1,j ,X

(3)
i−1,j , . . . , X

(1)
i ,j−1,X

(2)
i ,j−1,X

(3)
i ,j−1, . . . ,

X
(1)
i+1,j ,X

(2)
i+1,j ,X

(3)
i+1,j , . . . , X

(1)
i ,j+1,X

(2)
i ,j+1,X

(3)
i ,j+1, . . .

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 21 / 65



Local communication: Jacobi finite differences

Define channels linking each task that requires a value with the task
that generates that value.

Each task then executes the following logic:

for t = 0 to T − 1

send X
(t)
i ,j to each neighbor

receive X
(t)
i−1,j , X

(t)
i ,j−1, X

(t)
i+1,j , and X

(t)
i ,j+1 from neighbors

compute X
(t+1)
i ,j

endfor

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 22 / 65



Global communication

In contrast to local communication, a global communication
operation is one in which many tasks must participate.

When such operations are implemented, it may not be sufficient
simply to identify individual producer/consumer pairs.

May result in too many communications or may restrict opportunities
for concurrent execution.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 23 / 65



Global communication

Consider a parallel reduction operation, that is, an operation that
reduces N values distributed over N tasks using a commutative
associative operator such as addition: S =

∑
Xi .

If a single “manager” task requires the result S we can define a
communication structure that allows each task to communicate its
value to the manager independently.

Because the manager can receive and add only one number at a time,
this approach takes O(N) time to sum N numbers—not a very good
parallel algorithm!

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 24 / 65



Global communication

Two general problems that can prevent efficient parallel execution of
an algorithm:

1 The algorithm is centralized: it does not distribute computation and
communication. A single task (in this case, the manager task) must
participate in every operation.

2 The algorithm is sequential: it does not allow multiple computation
and communication operations to proceed concurrently.

Both of these problems must be addressed to develop a good parallel
algorithm.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 25 / 65



Distributing communication and computation

One way we can distribute the summation of the N numbers is by making
each task i , where 0 < i < N − 1, compute the sum: Si = Xi + Si−1:

Communication requirements associated with this algorithm can be
satisfied by connecting the N tasks in a one-dimensional array.

Task N − 1 sends its value to its neighbor in this array.

Tasks 1 through N − 2 each wait to receive a partial sum from their
right-hand neighbor, add this to their local value, and send the result
to their left-hand neighbor.

Task 0 receives a partial sum and adds this to its local value to obtain
the complete sum.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 26 / 65



Distributing communication and computation

This approach distributes the N − 1 communications and additions,
but is still sequential if only a single sum is required.

If multiple multiple summation operations are to be performed then
parallelism can configuring the array of tasks as a pipeline, through
which flow partial sums.

Each summation still takes N − 1 steps, but if there are multiple
sums, many of these steps can be overlapped.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 27 / 65



Uncovering concurrency: Divide and conquer

To parallelize this problem for a single summation, we can to partition
it into two or more simpler problems of roughly equivalent size (e.g.,
summing N/2 numbers).

This process is applied recursively to produce a set of subproblems
that cannot be subdivided further (e.g., summing two numbers).

This divide-and-conquer technique is effective in parallel computing
when the subproblems generated by problem partitioning can be
solved concurrently.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 28 / 65



Divide and conquer algorithm

divide and conquer()
if base case then

solve problem
else

partition problem into subproblems L and R
solve problem L using divide and conquer()
solve problem R using divide and conquer()
combine solutions to problems L and R

endif
end

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 29 / 65



Divide and conquer analysis

Assuming that N is a power of 2, the decomposition can be carried
out until the base problem is the sum of two numbers.

The operations on each level can be done simultaneously, so the
summation can be carried out in log N steps rather than N steps.

If N is not a power of 2 then the operation requires dlog Ne steps.

We have distributed the N − 1 communication and computation
operations required to perform the summation, and

We have modified the order in which these operations are performed
so that they can proceed concurrently.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 30 / 65



Unstructured and dynamic communication

Foster’s example comes from
finite elements, where the
finite element mesh is
composed of triangles and
the number of edges incident
to a vertex is not constant.

Channel structure representing communication partners can irregular,
data-dependent and can change over time.

Unstructured communication complicates the tasks of agglomeration
and mapping.

It is often nontrivial to determine an agglomeration strategy that both
creates tasks of nearly equal size and minimizes communication
requirements by creating the least number of intertask edges.

Image source: http://atlas.gcsc.uni-frankfurt.de/~ug/ddd/tutorial/fe.html

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 31 / 65

http://atlas.gcsc.uni-frankfurt.de/~ug/ddd/tutorial/fe.html


Asynchronous communication

In this case, tasks that possess data (producers) are not able to
determine when other tasks (consumers) may require data

Consumers must explicitly request data from producers

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 32 / 65



Communication checklist

Questions to consider before finishing the communication analysis step:

1 Do all tasks perform about the same number of communication
operations?

2 Does each task communicate only with a small number of neighbors?

3 Are communication operations able to proceed concurrently?

4 Is the computation associated with different tasks able to proceed
concurrently?

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 33 / 65



Outline

1 Foster’s Design Paradigm: PCAM Overview
Overview

2 Foster’s Design Paradigm: PCAM Details
Partitioning
Communication
Agglomeration
Mapping

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 34 / 65



Agglomeration

At this point we’ve broken down our problem enough that we
understand the individual tasks and the necessary communication
between tasks.

The goal now is to being making the parallel solution practical and as
efficient as possible.

There are two main questions:
1 is it useful to combine, or agglomerate, tasks to reduce the number of

tasks?
2 is it worthwhile to replicate data and/or computation?

The number of tasks yielded by the agglomeration phase, although
reduced, may still be greater than the number of processors.
Resolution is deferred to the mapping phase.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 35 / 65



Agglomeration: Conflicting goals

Three sometimes-conflicting goals guide decisions concerning
agglomeration and replication:

1 reducing communication costs by increasing computation and
communication granularity,

2 retaining flexibility with respect to scalability and mapping decisions,
and

3 reducing software engineering costs.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 36 / 65



Increasing granularity

A large number of fine-grained tasks does not necessarily produce an
efficient parallel algorithm.

Communication costs and task creation costs are overhead that can
be reduced by increasing granularity.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 37 / 65



Increasing granularity: Fine grained version

Fine-grained
partition of 8× 8
grid.

Partitioned into 64
tasks.

Each task responsible
for a single point.

64× 4 = 256
communications are
required, 4 per task.

Total of 256 data
values transferred.

Outgoing messages are dark shaded and
incoming messages are light shaded.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 38 / 65



Increasing granularity: Coarse grained version

Coarse-grained
partition of 8× 8
grid.

Partitioned into 4
tasks.

Each task responsible
for 16 points.

4× 4 = 16
communications are
required.

total of 16× 4 = 64
data values
transferred.

Outgoing messages are dark shaded and
incoming messages are light shaded.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 39 / 65



Surface-to-volume effects

This reduction in communication costs is due to a surface-to-volume
effect.

The communication requirements of a task are proportional to the
surface of the subdomain on which it operates, while the computation
requirements are proportional to the subdomain’s volume.

In a two-dimensional problem, the “surface” scales with the problem
size while the “volume” scales as the problem size squared.

The communication/computation ratio decreases as task size
increases.

From the viewpoint of efficiency it is usually best to increase
granularity by agglomerating tasks in all dimensions rather than
reducing the dimension of the decomposition.

Designing an efficient agglomeration strategy can be difficult in
problems with unstructured communications.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 40 / 65



Replicating computation

Sometimes it’s more efficient for a task to compute a needed quantity
rather than to receive it from another task where it is already known
or has been computed.

Alternatively, sometimes communication and computation can be
overlapped to reduce the number of communication cycles necessary
to distribute computed data.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 41 / 65



Replicating computation example

Sum followed by broadcast: N tasks each have a value that must be
combined into a sum and made available to all tasks.

1 Task receives a partial sum from neighbor, updates sum, and passes
on updated value. Task 0 completes the sum and sends it back. This
requires 2(N − 1) communication steps.

2 Alternative: Reduction and broadcast sequence that requires only
2 log N communication steps.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 42 / 65



Replicating computation example

These algorithms are optimal in the sense that they do not perform
any unnecessary computation or communication.

To improve the first summation, assume that tasks are connected in a
ring rather than an array, and all N tasks execute the same algorithm
so that N partial sums are in motion simultaneously. After N − 1
steps, the complete sum is replicated in every task.

This strategy avoids the need for a subsequent broadcast operation,
but at the expense of (N − 1)2 redundant additions and (N − 1)2

unnecessary (but simultaneous) communications.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 43 / 65



Replicating computation example

The tree summation algorithm can be modified so that after log N
steps each task has a copy of the sum. When the communication
structure is a butterfly structure there are only O(N log N)
operations. In the case that N = 8 this looks like:

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 44 / 65



Avoiding communication

Agglomeration is almost always beneficial if analysis of communication
requirements reveals that a set of tasks cannot execute concurrently.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 45 / 65



Preserving flexibility

It is important when agglomerating to avoid making design decisions
that limit unnecessarily an algorithm’s scalability.

Don’t assume during the design that the number of processors will
always be limited to the currently available number.

Good parallel algorithms are designed to be resilient to changes in
processor count.

It can be advantageous to map several tasks to a processor. Then, a
blocked task need not result in a processor becoming idle, since
another task may be able to execute in its place.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 46 / 65



Reducing software engineering costs

An additional concern, which can be particularly important when
parallelizing existing sequential codes, is the relative development
costs associated with different partitioning strategies.

The most useful strategies may be those that avoid extensive code
changes, can make use of existing code, or are required by other
constraints (e.g. interface to other software products)

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 47 / 65



Agglomeration design checklist

Questions to consider before finishing the agglomeration step:

1 Has agglomeration reduced communication costs by increasing
locality?

2 If agglomeration has replicated computation, have you verified that
the benefits of this replication outweigh its costs, for a range of
problem sizes and processor counts?

3 If agglomeration replicates data, have you verified that this does not
compromise the scalability of your algorithm by restricting the range
of problem sizes or processor counts that it can address?

4 Has agglomeration yielded tasks with similar computation and
communication costs?

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 48 / 65



Agglomeration design checklist (continued)

5 Does the number of tasks still scale with problem size?

6 If agglomeration eliminated opportunities for concurrent execution,
have you verified that there is sufficient concurrency for current and
future target computers?

7 Can the number of tasks be reduced still further, without introducing
load imbalances, increasing software engineering costs, or reducing
scalability?

8 If you are parallelizing an existing sequential program, have you
considered the cost of the modifications required to the sequential
code?

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 49 / 65



Outline

1 Foster’s Design Paradigm: PCAM Overview
Overview

2 Foster’s Design Paradigm: PCAM Details
Partitioning
Communication
Agglomeration
Mapping

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 50 / 65



Mapping

At this point we have a set of tasks and we need to assign them to
processors on the available machine.

The mapping problem does not arise on uniprocessors or on
shared-memory computers that provide automatic task scheduling.

General-purpose mapping mechanisms have yet to be developed for
scalable parallel computers.

Our goal in developing mapping algorithms is normally to minimize
total execution time. We use two strategies to achieve this goal:

1 We place tasks that are able to execute concurrently on different
processors, so as to enhance concurrency.

2 We place tasks that communicate frequently on the same processor, so
as to increase locality.

The general-case mapping problem is NP-complete.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 51 / 65



Mapping

Considerable knowledge has been gained on specialized strategies and
heuristics and the classes of problem for which they are effective.

When domain decomposition is used there is often a fixed number of
equal-sized tasks and structured local and global communication.

If, instead, there are variable amounts of work per task and/or
unstructured communication patterns, we might use load balancing
algorithms that seek to identify efficient agglomeration and mapping
strategies.

The time required to execute these algorithms must be weighed
against the benefits of reduced execution time. Probabilistic
load-balancing methods tend to have lower overhead than do
methods that exploit structure in an application.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 52 / 65



Mapping

When either the number of tasks or the amount of computation or
communication per task changes dynamically during program
execution we might use dynamic load-balancing strategy in which a
load-balancing algorithm is executed periodically to determine a new
agglomeration and mapping.

If functional decomposition is used we can use task-scheduling
algorithms which allocate tasks to processors that are idle or that are
likely to become idle.

We will now examine these load-balancing strategies and task
scheduling algorithms more carefully.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 53 / 65



Load balancing

Recursive Bisection

Local Algorithms

Probabilistic Methods

Cyclic Methods

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 54 / 65



Recursive bisection

Partition a domain into subdomains of approximately equal
computational cost while attempting to minimize the number of
channels crossing task boundaries.

Domain is first cut in one dimension to yield two subdomains.

Cuts are then made recursively in the new subdomains until we have
as many subdomains as we require tasks.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 55 / 65



Recursive bisection

Recursive coordinate bisection — normally applied to irregular grids
that have a mostly local communication structure.

Cuts made so that grid points in a subdomain all sit on one side of
some coordinate boundary.
Simple, but does not optimize communication well.

Unbalanced recursive bisection — attempts to reduce communication
costs by forming subgrids that have better aspect ratios.

Considers the P − 1 partitions obtained by forming pairs of unbalanced
subgrids with 1/P and (P − 1)/P of the load, with 2/P and (P − 2)/P
of the load, and so on
Chooses the partition that minimizes partition aspect ratio.

Recursive graph bisection — uses connectivity information to reduce
the number of grid edges crossing subdomain boundaries, and hence
to reduce communication requirements.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 56 / 65



Local algorithms

Above techniques are relatively expensive because they require global
knowledge of computation state.

Local load-balancing algorithms compensate for changes in
computational load using only information obtained from a small
number of neighboring processors.

Useful in situations in which load is constantly changing but less good
at balancing load than global algorithms

Can be slow to adjust to major changes in load characteristics.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 57 / 65



Probabilistic methods

Allocate tasks to randomly selected processors.

If the number of tasks is large, we expect that each processor will be
allocated about the same amount of computation.

Advantages are low cost and scalability.

Disadvantages are that off-processor communication is required for
virtually every task and that acceptable load distribution is achieved
only if there are many more tasks than there are processors.

The strategy tends to be most effective when there is relatively little
communication between tasks and/or little locality in communication
patterns.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 58 / 65



Cyclic mappings

Similar to probabilistic methods, but the pattern of task-to-processor
assignment is done cyclically and follows some specific enumeration.

Benefit of improved load balance must be weighed against increased
communication costs due to reduced locality.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 59 / 65



Task-scheduling algorithms

Task-scheduling algorithms can be used when a functional
decomposition yields many tasks, each with weak locality
requirements.

A centralized or distributed task pool is maintained, into which new
tasks are placed and from which tasks are taken for allocation to
processors.

We’ll examine three algorithms:
1 Manager/Worker
2 Hierarchical Manager/Worker
3 Decentralized Schemes

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 60 / 65



Manager/Worker

A central manager task is given responsibility for problem allocation.

Each worker repeatedly requests and executes a problem from the
manager.

Workers can also send new tasks to the manager for allocation to
other workers.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 61 / 65



Hierarchical Manager/Worker

This variant divides workers into disjoint sets, each with a
submanager.

Workers request tasks from submanagers.

Submanagers communicate periodically with the manager and with
other submanagers to balance overall load.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 62 / 65



Decentralized schemes

No central manager.

Separate task pool is maintained on each processor.

Idle workers request problems from other processors.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 63 / 65



Termination detection

No matter which scheme is used, we need a mechanism for
determining when a job is complete; otherwise, idle workers will never
stop requesting work from other workers.

Straightforward in centralized schemes, because the manager can
easily determine when all workers are idle.

It is more difficult in decentralized algorithms, because not only is
there no central record of which workers are idle, but also messages in
transit may be carrying tasks even when all workers appear to be idle.

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 64 / 65



Mapping design checklist

Questions to consider before finishing the Mapping step:

1 If considering an SPMD design for a complex problem, have you also
considered an algorithm based on dynamic task creation and deletion?

2 If considering a design based on dynamic task creation and deletion,
have you also considered an SPMD algorithm?

3 If using a centralized load-balancing scheme, have you verified that
the manager will not become a bottleneck?

4 If using a dynamic load-balancing scheme, have you evaluated the
relative costs of different strategies?

5 If using probabilistic or cyclic methods, do you have a large enough
number of tasks to ensure reasonable load balance?

CPS343 (Parallel and HPC) Parallel Algorithm Analysis and Design Spring 2018 65 / 65


	Foster's Design Paradigm: PCAM Overview
	Overview

	Foster's Design Paradigm: PCAM Details
	Partitioning
	Communication
	Agglomeration
	Mapping


