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ABSTRACT

The recent upsurge of diversified mobile 
applications, especially those supported by AI, 
is spurring heated discussions on the future evo-
lution of wireless communications. While 5G is 
being deployed around the world, efforts from 
industry and academia have started to look 
beyond 5G and conceptualize 6G. We envision 
6G to undergo an unprecedented transformation 
that will make it substantially different from the 
previous generations of wireless cellular systems. 
In particular, 6G will go beyond mobile Internet 
and will be required to support ubiquitous AI 
services from the core to the end devices of the 
network. Meanwhile, AI will play a critical role in 
designing and optimizing 6G architectures, pro-
tocols, and operations. In this article, we discuss 
potential technologies for 6G to enable mobile 
AI applications, as well as AI-enabled methodol-
ogies for 6G network design and optimization. 
Key trends in the evolution to 6G will also be 
discussed.

INTRODUCTION
The wireless communications industry is one of 
the few industry sectors that have kept a fast 
growing trend with creative features for a number 
of decades. The current 4G LTE networks have 
led to the thriving of mobile Internet, enabling 
various innovative applications, such as mobile 
shopping and payment, smart home/city, mobile 
gaming, and so on. The great success of mobile 
Internet has in turn been a driving force behind 
the evolution of wireless technologies. The 
upcoming 5G network will support a wide range 
of services, including eMBB (enhanced mobile 
broadband), uRLLC (ultra-reliable and low-latency 
communications), and mMTC (massive machine-
type communications) [1, 2].

While 5G is still at an initial stage, to maintain 
the sustainability and competitiveness of wireless 
communication systems, it is time for both the 
industry and academia to think about what 6G 
will be. There are already initiatives describing the 
roadmap toward 6G [3] along with the emerg-
ing trends and requirements, as well as various 
enabling techniques and architectures.

In contrast to previous generations, 6G will be 
transformative and will revolutionize the wireless 
evolution from “connected things” to “connected 

intelligence” with more stringent requirements 
specified as follows:
• Very high data rates, up to 1 Tb/s;
• Very high energy efficiency, with the ability 

to support battery-free IoT devices;
• Massive low-latency control (less than 1 msec 

end-to-end latency);
• Very broad frequency bands (e.g., 73GHz-

140GHz and 1THz-3THz [4]);
• Ubiquitous always-on broadband global net-

work coverage by integrating terrestrial wire-
less with satellite systems;

• Connected intelligence with machine learn-
ing capability.
6G will also require the support of three new 

service types beyond the eMBB, uRLLC, and 
mMTC services, as described below.

Computation Oriented Communications 
(COC): New smart devices call for distributed 
computation to enable the key functionalities, 
such as federated learning [5]. Instead of target-
ing classical quality of service (QoS) provision-
ing, CoC will flexibly choose an operating point in 
the rate-latency-reliability space depending on the 
availability of various communications resources 
to achieve a certain computational accuracy.

Contextually Agile eMBB Communications 
(CAeC): The provision of 6G eMBB services is 
expected to be more agile and adaptive to the 
network context, including the communication 
network context such as link congestion and net-
work topology; the physical environment context 
such as surrounding location and mobility; and 
the social network context such as social neigh-
borhood and sentiments.

Event Defined uRLLC (EDuRLLC): In contrast 
to the 5G uRLLC application scenario where 
redundant resources are in place to offset many 
uncertainties, 6G will need to support uRLLC in 
extreme or emergency events with spatially and 
temporally changing device densities, traffic pat-
terns, and spectrum and infrastructure availability.

The above service types represent emerging 
driving applications of 6G. They can hardly be 
offered by 5G, not only because of their stringent 
requirements for higher data rates, lower latency, 
denser connection, and so on, but also due to 
their extreme demand for new performance met-
rics that have never been considered in 5G, for 
example, delay jitter, context awareness, UAV/
satellite compatibility, and so on. Inspired by 
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these trends, in this article, we attempt to con-
ceptualize 6G as an intelligent information system 
that is both driven by and a driver of the modern 
AI technologies. A roadmap for 6G is depicted 
in Fig. 1, which is plotted based on the strategic 
plans of various standards bodies and is also pro-
jected based on the 5G status. Key performance 
indicators (KPIs) and service types are also illus-
trated. Meanwhile, a potential network architec-
ture for 6G is shown in Fig. 2. We envision that 
AI will greatly enhance the situational awareness 
of the network operators, and enable closed-loop 
optimization to support the new service types as 
mentioned above. As such, 6G will unleash the 
full potential of mobile communications, comput-
ing, and control in a host of exciting applications, 
including smart cities, autonomous driving, UAVs 
[6], seamless virtual and augmented reality, Inter-
net of Vehicles, space-air-ground integrated net-
works [7], and much more.

THE ARCHITECTURE OF 6G NETWORKS
In this section, we introduce a potential architec-
ture for 6G as shown in Fig.2, in which network 
intelligentization, subnetwork evolution, and intel-
ligent radio are embraced. 

FROM NETWORK SOFTWARIZATION TO  
NETWORK INTELLIGENTIZATION

We envision that 6G will take network soft-
warization to a new level, namely toward net-
work intelligentization. In 5G, the “non-radio” 
aspect has become more and more important, 
and has been the key driver behind the recent 
efforts on “softwarization”. More specifically, 
two key 5G technologies are Software-De-
fined Networking (SDN) and Network Func-
tions Virtualization (NFV), which have moved 
modern communications networks toward soft-
ware-based virtual networks. They also enable 
network slicing, which can provide a powerful 
virtualization capability to allow multiple virtual 
networks to be created atop a shared physical 
infrastructure.

Nevertheless, as the network is becoming 
more complex and more heterogeneous, soft-
warization is not going to be sufficient for 6G. In 
particular, to support AI-based applications, the 
network entities have to support diverse capa-
bilities, including communications, content cach-
ing, computing, and even wireless power transfer. 
Furthermore, 6G will embrace new radio access 
interfaces such as THz communications and intel-

Figure 1. The roadmap of 6G. Explicit performance comparisons between 5G and 6G requirements are listed.
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Figure 2. The architecture of 6G.
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ligent surfaces. It will also need to support more 
advanced IoT functionalities including sensing, 
data collection, analytics, and storage. All of the 
aforementioned challenges call for an architec-
ture that is flexible, adaptive, and more important-
ly, intelligent. Existing technologies, such as SDN, 
NFV, and network slicing will need to be further 
improved to meet these challenges. By enabling 
fast learning and adaptation, AI-based methods 
will render network slicing much more versatile 
in 6G.

The design of the 6G architecture shall fol-
low an “AI native” approach where intelligenti-
zation will allow the network to be smart, agile, 
and able to learn and adapt itself according to 
the changing network dynamics. It will evolve into 
a “network of subnetworks,” allowing more effi-
cient and flexible upgrades, and a new framework 
based on intelligent radio and algorithm-hardware 
separation to cope with the heterogeneous and 
upgradable hardware capabilities. Both of these 
two features will exploit AI techniques, as further 
illustrated in the following subsections.

A NETWORK OF SUBNETWORKS:  
LOCAL VS GLOBAL EVOLUTION

Given its expected ultra-high heterogeneity, one 
key feature of 6G will be its capability to exploit 
a flexible subnetwork-wide evolution to effec-
tively adapt to the local environments and user 
demands, thereby resulting in a “network of sub-
networks.” In particular, local subnetworks in 6G 
may evolve individually to upgrade themselves. 
The local evolution may happen in a few neigh-
boring cells in order to flexibly apply cutting-edge 
developments on new waveforms, coding, and 
multi-access protocols in subnetworks without 
extensive time-consuming tests. In contrast to the 
global evolution from 1G to 5G, in which both 
hardware and software of all the cells are upgrad-
ed simultaneously, there is no need to find a one-
size-fit-all solution for all the cells and rebuild the 
whole system when local evolution is exploited. 
To achieve this goal, we need to address the fol-
lowing three challenges:
• Each subnetwork should collect and analyze 

its local data, which may include the wireless 
environments, user requests, mobility pat-
terns, and so on, and then exploit AI meth-
ods to upgrade itself locally and dynamically.

• When the local PHY or MAC protocols are 
changed, the inter-subnetwork interaction is 
expected to maintain new inter-subnetwork 
coordination. One possible solution is to 
adopt game and learning approaches, which 
can assure the convergence of the subnet-
works upgrades.

• The local evolution of 6G requires a relatively 
stable control plane to support the evolution 
in the “network of subnetworks” level. One 
possible solution relies on the “learning from 
scratch” method developed in Alpha Zero [8].

TOWARD INTELLIGENT RADIO (IR)
The emerging hardware revolutions, for exam-
ple, in the RF and circuit systems, will drive 6G 
to track and fully exploit the fast upgrade of the 
device-level and base-station level hardware. We 
envision that an algorithm-hardware separation 
architecture will become essential in 6G. In partic-
ular, a transceiver algorithm will be able to auto-
matically estimate the capability of the transceiver 
hardware over which the protocol runs, then con-
figure itself based on the hardware capability.

This is in contrast to the systems from 1G to 
5G where the devices and transceiver algorithms 
are jointly designed. Conventionally, the hardware 
capabilities, for example, the number of anten-
nas, RF chains, the resolution and sampling rates 
of ADCs, and so on, have remained quasi-static. 
However, the recent state-of-the-art circuits and 
antennas advances are speeding up and signifi-
cantly improving the hardware capabilities, which 
make it possible for the 6G base station (BS) and 
handset to be diversified and upgradable. In other 
words, 6G will not be operating under the con-
ventional joint design, which fails in allowing agile 
adaptation to a diversified and upgradable hard-
ware.

To overcome the shortcoming of joint hard-
ware-algorithm design and reap the benefit of the 
algorithm-hardware separation architecture, we 
present an operating system (OS) between the 
device hardware and the transceiver algorithms, 
where we can regard a transceiver algorithm as a 
software running over the OS. The OS is capable 
of not only estimating the capabilities of local RF 
chains, phase shifters, ADCs, antennas, and so 
on, but also measuring their analog parameters 
automatically. Based on the hardware informa-

Table 1. Comparison of SDR, CR, and IR.

SDR CR IR

Frequency band Fixed Adapt to environment Adapt to environment and hardware

Spectrum sharing Fixed Opportunistic AI-enabled

Hardware capability Pre-claimed Pre-claimed Online estimated

Hardware upgradability No No Yes

PHY Tx/Rx module
Modulation/coding/detection/
estimation

Modulation/coding/detection/
estimation

Deep neural networks

Multiple access Predetermined Sensing based Distributed ML based

Protocols over Layer 3 Fixed Fixed Self-upgradable

Main steam apps Voice, data Multimedia, data AI, in-network computation

Given its expected 

ultra-high heterogeneity, 

one key feature of 6G 

will be its capability to 

exploit a flexible subnet-

work-wide evolution to 

effectively adapt to the 

local environments and 

user demands, thereby 

resulting in a “network 

of subnetworks.” In 

particular, local subnet-

works in 6G may evolve 

individually to upgrade 

themselves.

LETAIEF_LAYOUT.indd   86 8/9/19   12:45 PM



IEEE Communications Magazine • August 2019 87

tion and AI methods, the OS will then be capa-
ble of configuring its own transceiver algorithms 
via an interface language. We shall refer to this 
framework as intelligent radio (IR). In contrast to 
the learning based intelligent PHY layer discussed 
later, IR is a much broader concept relying on 
the algorithm-hardware separation architec-
ture. In Table 1, we compare key features of IR, 
software-defined radio (SDR), and cognitive radio 
(CR) [9]. IR can be regarded as a further extension 
of these existing approaches, in which the cutting 
edge AI techniques are deeply involved. The con-
ventional modulation/coding modules in SDR/CR 
will be replaced by deep neural networks (DNNs) 
in IR, which can in an intelligent way adapt to the 
environment and hardware. More specifically, IR 
will first train its DNNs in both the transmitter and 
receiver side by sending labeled training data, 
and then transmit information bits once it meets 
a target performance requirement. In practice, 
IR provides a low-cost and flexible solution for 
6G, because AI-chips have undergone a dramatic 
improvement most recently. An AI chip is capable 
of implementing DNNs in low power, thereby 
benefiting the DNN-based IR and leading to a 
paradigm-shift hardware architecture of 6G trans-
ceivers. IR also takes into account the protocols 
over layer 3, which are self-upgradable to support 
various AI applications.

By exploiting IR, 6G is expected to evaluate 
the contributions of various hardware compo-
nents and identify their bottlenecks, which in turn 
helps the device manufacturers in optimizing the 
budget allocation of the hardware costs. As a 
result, the application of IR will help 6G enjoy a 
much reduced implementation time and a signifi-
cant reduction in the cost of new algorithms and 
hardware, thereby speeding up its own evolution.

AI-ENABLED TECHNOLOGIES FOR 6G
The unprecedented transformation of wireless 
networks will make 6G substantially different 
from the previous generations, as it will be char-
acterized by a high degree of heterogeneity in 
multiple aspects, such as network infrastructures, 
radio access technologies, computing and stor-
age resources, application types, and so on. In 
addition, the wide range of new applications will 
mandate an intelligent use of communications, 
computing, control, and storage resources from 
the network edge to the core. Last but not least, 
the volume and variety of data generated in wire-
less networks are growing significantly. This opens 
up great opportunities for data-driven network 
planning and operation to achieve real-time addi-
tivity to dynamic network environments in 6G, to 
be elaborated in this section.

BIG DATA ANALYTICS FOR 6G
The first natural application of AI is big data 
analytics. There are four types of analytics that 
can be applied to 6G, namely descriptive ana-
lytics, diagnostic analytics, predictive analytics, 
and prescriptive analytics. Descriptive analytics 
mine historical data to get insights on network 
performance, traffic profile, channel conditions, 
user perspectives, and so on. It greatly enhanc-
es the situational awareness of network opera-
tors and service providers. Diagnostic analytics 
enable autonomous detection of network faults 

and service impairments, identify the root causes 
of network anomalies, and ultimately improve the 
network reliability and security. Predictive analytics 
use data to predict future events such as traffic 
patterns, user locations, user behavior and pref-
erence, and resource availability. Prescriptive ana-
lytics take advantage of the predictions to suggest 
decision options for resource allocation, network 
slicing and virtualization, cache placement, edge 
computing, and so on. It is worth noting that har-
vesting and analyzing a large amount of data raise 
concerns about data security, privacy, ethics, and 
ownership. Hence, the 6G architecture and proto-
cols shall be designed in a way that protects data 
security, privacy and integrity. At the same time, it 
is equally important that laws and regulations are 
established to address data ethics and ownership 
in the context of 6G, bearing in mind the need for 
a proper balance between risk and benefit.

AI-ENABLED CLOSED-LOOP OPTIMIZATION
Traditional methodologies for wireless network 
optimization may not be applicable in 6G, as the 
network will be extremely dynamic and complex 
due to the scale, density, and heterogeneity. Mod-
eling such systems is very hard, if not impossible. 
As such, traditional optimization approaches that 
rely heavily on mathematically convenient mod-
els will no longer be adequate [10]. Hence, the 
second major application of AI in 6G wireless sys-
tems is automated and closed-loop optimization. 
Problems in wireless networks are traditionally 
solved by applying sets of rules derived from sys-
tem analysis with prior domain knowledge and 
experience. However, in the complex 6G network 
environment, the mapping between a decision 
and its effect on the physical system is cost pro-
hibitive to define and may not be analytically avail-
able. Recent advances in AI technologies, such as 
deep reinforcement learning (DRL), can establish 
a feedback loop between the decision maker and 
the physical system, so that the decision maker 
can iteratively refine its action based on the sys-
tem’s feedback to reach optimality eventually. For 
example, the authors in [11] recently applied DRL 
to address several emerging issues in communica-
tion and networking, including adaptive modula-
tion, wireless caching, data offloading, and so on, 
as shown in Fig. 2.

INTELLIGENT WIRELESS COMMUNICATION
The PHY layer of wireless communication sys-
tems suffers from a wide variety of impairments, 
including hardware impairments such as amplifi-
er distortion, local oscillator leakage, and chan-
nel impairments such as fading, interference, and 
so on. To communicate reliably and efficiently 
with the combinations of hardware and channel 
impairments, a large number of design parame-
ters need to be controlled and optimized jointly. 
Noticeably, end-to-end optimization has never 
been practical in wireless systems due to the high 
complexity. Instead, existing approaches divide 
the full chain into multiple independent blocks, 
each with a simplified model that does not accu-
rately or holistically capture the features of real-
world systems.

AI technologies open up the possibilities in 
end-to-end optimization of the full chain of the 
physical layer, from the transmitter to the receiver. 
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We envision an “intelligent PHY layer” paradigm 
in 6G, where the end-to-end system is capable of 
self-learning and self-optimization by combining 
advanced sensing and data collection, AI tech-
nologies, and domain-specific signal processing 
approaches. Indeed, recent research has shown 
that a DNN can train the transmitter, channel, and 
receiver as an auto-encoder, so that the transmit-
ter and receiver can be jointly optimized.

6G FOR AI APPLICATIONS
With the ubiquitousness of smart mobile gad-
gets and the revival of AI, various AI-empowered 
mobile applications are emerging. In this section, 
we present how 6G will handle mobile AI appli-
cations.

TRENDS AND CHALLENGES
AI tasks are computationally intensive and mostly 
trained, developed, and deployed at data cen-
ters with custom-designed servers. Given the fast 
growth of smart mobile gadgets, it is expected 
that a large number of intelligent applications will 
be deployed at the edge of wireless networks. As 
such, the 6G wireless network will be designed to 
leverage advanced wireless communications and 
mobile computing technologies to support AI-en-
abled applications at various edge mobile devices. 
Notably, the capacity and latency of wireless links 
are the key bottlenecks of mobile AI applications 

due to three reasons. First, to protect privacy, 
some AI applications require data to be kept at 
the mobile devices instead of being uploaded to 
the cloud for model training. This has stimulated 
the recent research interest in on-device distrib-
uted training. Second, to overcome the resource 
limitation of edge devices, on-device distributed 
computing provides new opportunities by pooling 
the computation and storage resources of multi-
ple mobile devices. In this case, data shuffling is 
a key component for exchanging the computed 
intermediate values among mobile devices [12]. 
Last but not least, the heterogeneous mixture of 
the cloud, edge and end devices provides a dis-
persed computing environment for both training 
and inference of DNNs.

To enable ubiquitous and diversified mobile AI 
services, 6G is expected to provide flexible plat-
forms for developing advanced communication 
and computation technologies. 

COMMUNICATION FOR DISTRIBUTED MACHINE LEARNING
In this section, we illustrate how 6G will address 
the communication challenges for large-scale dis-
tributed machine learning for mobile AI applica-
tions.

Communication-Efficient Distributed Train-
ing: The growing computation and storage power 
of devices provides opportunities for on-device 
distributed training by processing data locally. 
However, communicating over the volatile wire-
less channel becomes the significant bottleneck 
for distributed training on mobile devices. To 
strengthen data privacy and security, federated 
learning [5] allows the training data to be kept 
at each device, thereby learning a shared glob-
al model from distributed mobile devices. How-
ever, the limited bandwidth becomes the main 
bottleneck for global model aggregation from 
locally updated models computed at each mobile 
device. Over-the-air computation can be exploit-
ed to enable low-latency global model aggrega-
tion by exploiting the superposition property of a 
wireless multiple-access channel, as shown in Fig. 
3. This is achieved by joint device selection (i.e., 
maximizing the number of selected devices) and 
beamforming design (i.e., minimizing the global 
model aggregation error) to improve the conver-
gence rate in the distributed training process and 
the prediction accuracy in the inference process, 
respectively.

Communication-Efficient Distributed Infer-
ence: In 6G, intelligent services will span from 
cloud data centers to end-devices and IoT devic-
es, for example, self-driving cars, drones, and 
auto-robots. To overcome stringent computation, 
bandwidth, storage, power and privacy constraints 
on individual devices, increasing research interests 
are moving toward leveraging the dispersed com-
puting resources across the cloud, network edge 
and end-devices through the lens of mobile edge 
computing [13]. For example, for a DNN, the ini-
tial features can be extracted on the end devices, 
which are then sent to the edge and cloud com-
puting devices for further processing. However, 
with the heterogeneity in the computing capa-
bilities and communication bandwidths among 
the computing devices, it becomes extremely 
challenging to allocate the operations of the neu-
ral networks to the computing devices. Figure 4 

Figure 3. Over-the-air computation for on-device distributed federated learning.
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demonstrates the on-device distributed inference 
process, where each device locally computes the 
intermediate values based on the map function 
using the local data. The intermediate values are 
further shuffled across the devices assisted by a 
central radio access point. The inference process 
will be accomplished by collecting all the required 
intermediate values to construct the prediction 
results. A joint optimization of the uplink and 
downlink communication strategy was thus devel-
oped in [12] for shuffling the locally computed 
intermediate values across mobile devices.

HARDWARE-AWARE  
COMMUNICATIONS FOR 6G

As new radio access technologies emerge, and 
IoT devices become more pervasive, hardware 
constraints will play critical roles when designing 
6G networks. On one hand, as radio communica-
tion is moving toward millimeter-wave (mmWave) 
Terahertz bands, the high cost and power con-
sumption of hardware components will significant-
ly affect the transceiver architecture and algorithm 
design. On the other hand, IoT devices have 
limited storage, energy source, and computing 
power. Such resource-constrained platforms call 
for a holistic design of communication, sensing, 
and inference. In this section, we present a new 
design paradigm for 6G, namely hardware-aware 
communications, and discuss three promising new 
design principles. 

HARDWARE-ALGORITHM CO-DESIGN
The desire to communicate at ever higher data 
rates will never stop. To reach Terabytes per sec-
ond data rates, it is inevitable to operate at high-
er and higher frequency bands. Very large scale 
antenna arrays are needed to overcome the 
increased pathloss and other propagation phenom-
ena, which require the support of various hard-
ware components, including signal mixers, ADCs/
DACs, power amplifiers, and so on. The high cost 
and power consumption of these components at 
the mmWave and THz bands make it difficult to 
adopt conventional transceiver structures, which in 
turn will affect the design of signal processing algo-
rithms. To effectively design such complex systems, 
collaboration among the hardware and algorithm 
domains will be needed, that is, hardware-algo-
rithm co-design should be advocated. The target 
is to develop hardware-efficient transceiver struc-
tures that are also algorithm friendly. While such a 
hardware-algorithm co-design approach has been 
partly adopted in previous generations of cellular 
networks, it will play a more important role in 6G, 
assisted by AI-based methods.

Case Study: Consider mmWave hybrid beam-
forming as an example, which is a cost-effective 
approach for providing effective beamforming 
gains. It requires a small number of RF chains, and 
thus can significantly reduce hardware cost and 
power consumption. However, a large number 
of phase shifters are still needed for the existing 
hardware structure. Phase shifters at mmWave 
bands are still expensive, and thus their number 
needs to be reduced. A new hardware-efficient 
hybrid structure was recently proposed in [14], 
as shown in Fig. 5. It only requires a small num-
ber of phase shifters, each with a fixed phase. 

As such, hardware modification is only in the 
analog network and thus basic design principles 
for hybrid beamforming can still be applied. As 
shown in [14], this new structure can approach 
the performance of the fully digital beamforming, 
with much fewer phase shifters than other hybrid 
beamforming structures.

APPLICATION-AWARE COMMUNICATIONS FOR IOT DEVICES
Thanks to the recent development of IoT technol-
ogies, intelligent mobile applications will thrive, 
and many of them are powered by specialized 
low-cost, low-power devices. Such devices can 
only handle basic sensing and processing tasks, 
while relying on proximate edge servers or remote 
cloud data centers for computation-intensive pro-
cessing. Thus, effective communications between 
devices and servers will be essential. Rather than 
serving as a bit pipe for traditional data services 
and focusing on maximizing data rates, wire-
less communications for IoT applications should 
directly serve specific applications. One solution is 
illustrated below.

Joint Sampling, Communication, and Infer-
ence: IoT devices face serious challenges, that 
is, limited computing power, limited energy 
supply, limited storage space, and constrained 
communication capability. By jointly optimizing 
sampling, communication, and local processing, 
and accounting for the state of local processors, 
storage, and channel states, the overall perfor-
mance can be improved. The integration with 
edge computing [13] will play an important role, 
and joint edge-device processing techniques will 
play important roles.

INTELLIGENT COMMUNICATIONS FOR  
HETEROGENEOUS HARDWARE CONSTRAINTS

Wireless networks are getting more and more 
heterogeneous, with various types of access 
points and mobile terminals. Such heterogene-
ity has started from 4G LTE networks, and with 
the deployment of advanced techniques such as 
massive MIMO, the situation will further develop 
through 5G, and into 6G. This trend will compli-
cate the communication protocol and algorithm 

Figure 5. The comparison between three different hybrid beamforming struc-
tures. The conventional fully-connected and partially-connected structures 
suffer from high hardware complexity and significant performance loss, 
respectively. The new structure proposed in  [14] achieves performance 
close to fully digital beamforming, with a small number of fixed phase shifters. 
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design. Recently, adopting machine learning 
techniques to develop communication systems 
has demonstrated its effectiveness, and such 
approaches have the potential of leading to gen-
eral purpose intelligent communications that can 
adapt to heterogeneous hardware constraints. A 
particular approach is illustrated as follows.

Transfer Learning for Different Hardware Con-
straints: One complication brought by hardware 
heterogeneity is the excessive effort to redesign the 
system for different hardware settings. For exam-
ple, different transceiver architectures have been 
proposed for mmWave systems, including analog 
beamforming, hybrid beamforming, and 1-bit digi-
tal beamforming. The conventional approach relies 
on a hand-crafted design for each of them, which 
is very inefficient. These different types of transceiv-
ers will face the same physical system, and thus 
an algorithm well designed for one may also shed 
light on the design for another. Transfer learning is 
a promising technique that can help transfer the 
design of one architecture to others.

CONCLUSIONS
This article is a humble attempt to provide a for-
ward looking research roadmap for 6G. New 
features of the 6G evolution were identified, and 
enabling technologies were discussed. While a 
partial picture was presented, we hope our discus-
sion will spur interests and further investigations 
on the future evolution of cellular networks.
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