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Abstract

This paper describes a Bayesian approximation method &irobnline ranking algorithms for
games with multiple teams and multiple players. Recentiyriternet games large online ranking
systems are much needed. We consider game models in wkitdaan game is treated as several
two-team games. By approximating the expectation of teéonglayers’) performances, we derive
simple analytic update rules. These update rules, withootamical integrations, are very easy to
interpret and implement. Experiments on game data showthlieaaccuracy of our approach is
competitive with state of the art systems such as True3kitlthe running time as well as the code
is much shorter.

Keywords: Bayesian inference, rating system, Bradley-Terry modelir$tone-Mosteller model,
Plackett-Luce model

1. Introduction

Many have proposed online updating algorithms for paired comparis@riexgnts. These online
algorithms are especially useful when the number of teams to be rankedeamdhiber of games are
very large. For the ranking of many sports, possibly the most prominekingsystem in use today
is Elo (1986). The Elo ranking system has been used successfullydqyelearganized around two-
player games, such as world football league, the US Chess Federa8@jr the World Chess
Federation (FIDE), and a variety of others. Glickman (1999) proptiselicko updating system,
which improves over Elo by incorporating the variability in parameter estimateshd best of
our knowledge, Glicko is the first Bayesian ranking system. To beginr fiia rating period, a
player’s skill @) is assumed to follow a Gaussian distribution which can be characterizedoby tw
numbers: the average skill of the playgy &nd the degree of uncertainty in the player’s skaf).(
Then, Glicko models the game outcomes by the Bradley-Terry model (Bradteyerry, 1952) and
updates players’ skills after a rating period. Glickman (1999) also reghtint the Glicko system
performs best when the number of games per player is around 5-10 ting pariod. Though
the Elo and Glicko ranking systems have been successful, they are etk figriwo-player games.
In video games a game often involves more than two players or teams. Tesudliseproblem,
recently Microsoft Research developed TrueSkill (Herbrich et a0720a ranking system for Xbox
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Live. TrueSkill is also a Bayesian ranking system using a Gaussian loetefa player’s skill,
but it differs from Glicko in several ways. First, it is designed for multirtdaulti-player games,
and it updates skills after each game rather than a rating period. Sec@Gfidko assumes that
the performance difference follows the logistic distribution (the model is tetime@radley-Terry
model), while TrueSkill uses the Gaussian distribution (termed the Thur8iosé&ller model).
Moreover, TrueSkill models the draws and offers a way to measure #igygof a game between
any set of teams. The way TrueSkill estimates skills is by constructing aigedpiodel and using
approximate message passing. In the easiest case, a two-team gamee8idiupdate rules are
fairly simple. However, for games with multiple teams and multiple players, the updateare
not possible to write down as they require an iterative procedure.

The present paper concerns the ranking of players from outcormesltiple players or games.
We consider &-team game as a single match and discuss the possibility of obtaining efficient
update algorithms. We introduce a Bayesian approximation method to derivie simglytic rules
for updating team strength in multi-team games. These update rules avoid daaliméegration
and are easy to interpret and implement. Strength of players in a team atpttaad by assuming
that a team’s skill is the sum of skills of ts members. Our framework can be dgplieonsidering
various ranking models. In this paper, we demonstrate the use of the RBiteiky model, the
Thurstone-Mosteller model, and the Plackett-Luce model. Experiments ondgeshow that the
accuracy of our approach is competitive with the TrueSkill ranking sydbeirthe running time as
well as the code are shorter. Our method is faster because we emploticanptiate rules rather
than iterative procedures in TrueSkill.

The organization of this paper is as follows. In Section 2, we briefly redimyvmodeling of
ranked data. Section 3 presents our approximation method and givde epdations of using the
Bradley-Terry model. Update rules of using other ranking models aengjivSection 4. As Glicko
is also based on the Bradley-Terry model, for a comparison purposesesgiloe its approximation
procedures in Section 5. Experimental studies are provided in Sectioectios 7 concludes the
paper. Some notation is given in Table 1.

2. Review of M odels and Techniques

This section reviews existing methods for modeling ranked data and dis@gseximation tech-
nigues for Bayesian inference.

2.1 Modeling Ranked Data

Given the game outcome &fteams, we defing(i) as the rank of team If teamsiy, .. .,iq are tied
together, we have

and let the teang ranked next have
r(q) =r(iy)+d.
For example, if four teams participate in a game, their ranks may be
r(l)=2r(2)=2,r(3)=4,r(4) =1, (1)

where teams 1 and 2 are both ranked the second. Then team 3, whiel thakext, has(3) = 4.
We also need the “inverse” of so thatr (i) indicates the index of thigh ranked team. However, the
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Notation  Explanation

k number of teams participating in a game

n; number of players in teamn

6ij strength of theth player in team

N(wj,03) prior distribution of8;

Zjj standardized quantity &;; see (45)

6; strength of teani 6; = z?‘zl 0ij

B? uncertainty about the performance of team
Xi performance of tean(X; ~ N(8;, 3?) for Thurstone-Mosteller model)
N(w,0?)  prior distribution of6;

M 22:1 Mij

o? 310

Z; standardized quantity &; see (24)

r(i) rank of teani in a game; smaller is better; see Section 2.1

ri): index of theith ranked team; “inverse” af, see Section 2.1

€ draw margin (Thurstone-Mosteller model)

(0} probability density function of a standard normal distribution; see (66)
® cumulative distribution function of a standard normal distribution

(% probability density function of &-variate standard normal distribution

Dy cumulative distribution function of k-variate standard normal distribution
K a small positive value to avoio? becoming negative; see (28) and (44)

D the game outcome

E() expectation with respect to a random variable

Table 1: Notation

functionr is not one-to-one if ties occur, so the inverse is not directly available. Aveser to be
any one-to-one mapping frofd, ... k} to {1,...,k} satisfying

r({) < (i +1)), 9. @)
For example, if is as in Equation (1), thencould be
r_(l) = 4,|’_(2) =1, r_<3) =2, r_(4) =3.

We may have (2) = 2 andr(3) = 1 instead, though in this paper choosing arsatisfying (2) is
enough.

A detailed account of modeling ranked data is by Marden (1995). For siityplicthis section
we assume that ties do not occur though ties are handled in later sectiasoBvcommonly used
models for ranked data are the Thurstone-Mosteller model (Thurst®2é) &nd the Bradley-Terry
model. Suppose that each team is associated with a continuous but weobserdom variabli;,
representing the actual performance. The observed ordering that tgacomes in first, team(2)
comes in second and so on is then determined bythe

Xen) > Xy > - > Xew- 3)
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Thurstone (1927) invented (3) and proposed using the normal distrbdiee resulting likelihood
associated with (3) is

P(Xry) — X2 > 0,..., Xrk—1) — Xrw) > 0), (4)

whereXgi) — Xri+1) follows a normal distribution. In particular, K= 2 andX; follows N(6;,B2),
where®; is the strength of teamandp? is the uncertainty of the actual performangethen

P(X > Xg) = ® (ee“) , (5)

where® denotes the cumulative distribution function of a standard normal density.

Numerous papers have addressed the ranking problem using modeB)likdafvever, most
of them consider an off-line setting. That is, they obtain the likelihood udirayailable data and
maximize the likelihood. Such an approach is suitable if data are not largeenRaitempts to
extend this off-line approach to multiple players and multiple teams include Huaalg (2006).
However, for large systems which constantly have results being addpg#dt, an online approach
iS more appropriate.

The Elo system is an online rating scheme which models the probability of gamat ast(b)
with 3; = B4 and, after each game, updates the strefghty

6 < 6+ K(s— P(i wins)), (6)

whereK is some constant, argd= 1 if i wins and 0 otherwise. This formula is a very intuitive way
to update strength after a game. More discussions of (6) can be seen @xample, Glickman
(1999). The Elo system with the logistic variant corresponds to the Braaley model (Bradley
and Terry, 1952). The Bradley-Terry model for paired compari$@ssthe form

Vi
Vi+Vg

P(X >Xq) = ()
wherev; > 0 is the strength of tearn The model (7) dates back to Zermelo (1929) and can be
derived in several ways. For instance, it can be obtained from (33tbgg X follow a Gumbel
distribution with the cumulative distribution function

P(X < x) =exp(—exp(—(x—6y))), where6; = logv;.

ThenX; — X, follows a logistic distribution with the cumulative distribution function
%

PXX= = g

(8)
Usingx=0andP(X > X;) = 1—P(X < Xg), we obtain (7). In fact, most currently used Elo variants
for chess data use a logistic distribution rather than Gaussian becausgitgd ¢hat weaker players
have significantly greater winning chances than the Gaussian modeltpredfigure 1 shows's
winning probabilityP(X; > Xy) against the skill differenc6; — 8, for the two models (5) and (8).
The (B + B3)Y/2 in (5) are set as A4/2m~ 1.6 so that the two winning probability curves have
the same slope & = 64. Clearly, given that the two models closely match when two teams have
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Figure 1: Winning probability?(X; > X;). Solid (blue): Gaussian distribution (5), Dashed (black):
logistic distribution (8).

about the same skill levels, the logistic model gives a weak feahigher winning chance than the
Gaussian model does.

In addition to Elo and Glicko, other online systems have been proposedxkomple, Menke
and Martinez (2008) propose using Artificial Neural Networks. Thotigs approach can handle
multiple players per team, it aims to handle only two teams per game.

For comparisons involving > 3 teams per game, the Bradley-Terry model has been generalized
in various ways. The Plackett-Luce model (Marden, 1995) is one df sumdels. This model,
motivated by &-horse race, has the form

eefl eefz eerk
o, B, < B o T B ©)
en+...+e"  e24...4 ek ek

P(r(1),...,r(k)) =

An intuitive explanation of this model is a multistage ranking in which one firsbshs the most
favorite, then chooses the second favorite out of the remaining, etc.

Whenk > 3, as theXgj) — Xii11)’'s in (4) are dependent, the calculation of the joint probabil-
ity (4) involves a(k — 1)-dimensional integration, which may be difficult to calculate. Therefore,
TrueSKill uses a factor graph and the approximate message passitgsgfsng et al., 2001) to
infer the marginal belief distribution over the skill of each team. In fact, somssages in the fac-
tor graph are non Gaussian and these messages are approximated via maiunhbintg, using the
Expectation Propagation algorithm (Minka, 2001).

2.2 Approximation Techniquesfor Bayesian I nference

From a Bayesian perspective, both the observed data and the modeigbars are considered
random quantities. LdD denote the observed data, ehthe unknown quantities of interest. The
joint distribution ofD and@ is determined by the prior distributid®8) and the likelihood®(D|0):

P(D,8) = P(D|B)P(8).

1. According tohttp://en.wikipedia.org/wiki/Elo_rating_system , USCF and FIDE use formulas based on the
logistic distribution.
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After observingD, Bayes theorem gives the distribution@fonditional onD:

~_P(6,D)  P(8,D)
POID) = P(D)  [P(6,D)d6

This is theposterior distributionof 8, which is useful for estimation. Quantities about the posterior
distribution such as moments, untiles, etc can be expressed in terms of postpectations of
some functiong(0); that is,
J9(8)P(6,D)d6
E9®)ID) = 56 0)d0 (10)
The probabilityP(D), calledevidenceor marginal likelihoodof the data, is useful for model selec-
tion. BothP(8|D) andP(D) are major objects of Bayesian inference.

The integrations involved in Bayesian inference are usually intractable approximation
techniques can be divided into deterministic and nondeterministic methods. ftletaoministic
method refers to the Monte Carlo integration such as Markov Chain Monte G&MC) methods,
which draw samples approximately from the desired distribution and formslsaaerages to
estimate the expectation. However, when it comes to sequential updating wittateg the MCMC
methods may not be computationally feasible, the reason being that it doasaketuse of the
analysis from the previous data; see, for example, Section 2.8 in Glickra88)(1

The popular deterministic approaches include Laplace method, variatiagasBexpectation
propagation, among others. The Laplace method is a technique for apptimg integrals:

k
2
[eax~ (?) |— 0Rf (xo) |30,

wherex is k-dimensionalnis a large numbefr : R — Ris twice differentiable with a unique global
maximum atxp, and| - | is the determinant of a matrix. By writing(6,D) = exp(logP(6,D)), one

can approximate the integrélP(6,D)d6. This method has been applied in Bayesian statistics; for
example, see Tierney and Kadane (1986) and Kass and Raftery) (1995

The variational Bayes methods are a family of techniques for approximatisg tihtractable
integrals. They construct a lower bound on the marginal likelihood andttizgen optimize this
bound. They also provide an approximation to the posterior distribution vighiabeful for estima-
tion.

The Expectation Propagation algorithm (Minka, 2001) is an iterative agprto approximate
posterior distributions. It tries to minimize Kullback-Leibler divergence betwthe true posterior
and the approximated distribution. It can be viewed as an extension ohadsiensity filtering to
batch situation. The TrueSkill system (Herbrich et al., 2007) is based®algorithm.

Now we review an identity for integrals in Lemma 1 below, which forms the bagsisiohpprox-
imation method. Some definitions are needed. A funcfioR< — Ris called almost differentiable
if there exists a functionl f : R¢ — R¥ such that

f(z+y)—f(z) = /OlyTDf(z+ty)dt (11)

for z,y € R¢. Of course, a continuously differentiable functiéris almost differentiable witt f
equal to the gradient, and (11) is the indefinite integral in multi-dimensional cas
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Givenh: R¢ — R, lethg = [h(z)d®y(z) be a constanty(z) = h(z),
hi(z.....z) = /Rk h(z,...,z,w)d®,_;(w), and (12)
—j
9i(zw,.... %) = 922/2/ (21 Zi— W) — (2, zg)]e " 2dw, (13)
Zj

for —0 < z,...,zx<ooandj=1,...,k. Then let

2 2mT
Uh=[g,....gJT and Vh—Uh+£Uh), (14)
whereU2h is thek x k matrix whosejth column isUg; andg; is as in (13).
Letl be a measure of the form:
dr(z) = f(z)e(z2)dz, (15)

wheref is a real-valued function (not necessarily non-negative) defind®on

Lemmal (W-Stein’s Identity) Suppose thak ds defined as in (15), where f is almost differen-
tiable. Let h be a real-valued function defined dh Rhen,

/h 2)dr(z /f 2)ddy(z /h 2)ddy(z +/ (Uh(2))TOf (2)ddy (2), (16)

provided all the integrals are finite.

Lemma 1 was given by Woodroofe (1989). The idea of this identity originfted Stein’s
lemma (Stein, 1981), but the latter considers the expectation with respecbtonalrdistribution
(i.e., the integral/ h(z)d®y(z)), while the former studies the integration with respect to a “nearly
normal distribution™ in the sense of (15). Stein’s lemma is famous and of interest because of its
applications to James-Stein estimator (James and Stein, 1961) and empiriealnBethods.

The proof of this lemma is in Proposition 1 of Woodroofe (1989). For seffyoleteness, we
sketch it for the 1-dimensional case in Appendix A. Essentially the procdsedh on exchanging
the order of integration (Fibini theorem), and it is the very idea for pro@tein’s lemma. Due to
this reason, Woodroofe termed (16) a version of Stein’s identity. Homvéwealistinguish it from
Stein’s lemma, here we refer to it as W-Stein’s identity.

Now we assume thaf /0z;, j =1,... ,k are almost differentiable. Then, by writing

(Uh(z Zlg.

and applying (16) withh and f replacing byg; anddf /dz, we obtain

/ gig;dd»k(z) ~ Oy(g / 5500 + Jwie) ( )dcbk() (17)

provided all the integrals are finite. Note tht(g;) in the above equation is a constant defined as

Du(g) = [ 6(2)a(2)dz
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By summing up both sides of (17) ove 1,...,k, we can rewrite (16) as
/h 2)d®y (2 /f 2)ddy(z /h 2)d®y(2) + (PUh) /Df )ddy(2)
+ / tr[(Vh(z)) 02 (2)] dPy(2); (18)

see Proposition 2 of Woodroofe and Coad (1997) and Lemma 1 of Wah§Vaondroofe (2000).
HeredUh = (®y(g1),..., Pr(gk))T, “tr” denotes the trace of a matrix, anéf f the Hessian matrix
of f. An extension of this lemma is in Weng (2010).

LetZ = [Z3,...,Z]" be ak-dimensional random vector with the probability density

Cx(2)f(2), (19)

_ < / @(z)f(z)dz) -

is the normalizing constant. Lemma 1 can be applied to obtain expectations of Asnatidin the
following corollary.

where

Corallary 2 Suppose that has probability density (19). Then,

/ fdde—C L and EHZ) = / h(2)d®(2) + E [(u h(z))" fo(zz” . (20)

Further, (18) and (20) imply

/h 2)d®y(2) + (PU)TE [fo((zi)]+E[tr<Vh(Z)D:{Z(§)>]. 21)

In particular, ifh(z) = z, then by (14) it followsUh(z) = & (a function fromR to R); and if
h(z) = zz; andi < j, thenUh(z) = zej, where{ey,--- &} denote the standard basis f&f. For
example, itk = 3 andh(z) = z1z, thenUh(z) = [0,z;,0]" andU?h(z) is the matrix whosé1, 2)
entry is 1 and the rest entries are zeros; see Appendix B for details. Wik #peciah functions,

(20) and (21) become

B Of(z)

E[Z] = E [f(Z)} : (22)

0% (2)
f(Z)

ElZzZg = éiq+E[ } , L,g=1,...,k (23)
iq

wheredq = 1 if i = g and 0 otherwise, and]iq indicates thei,q) component of a matrix.

In the current context of online ranking, since the sRiié assumed to follow a Gaussian distri-
bution, the update procedure is mainly for the mean and the variance fdieei@2) and (23) will
be useful. The detailed approximation procedure is in the next section.

3. Method

In this section, we first present our proposed method for updating tedrmdividual skills. Then,
we give the detailed derivation for the Bradley-Terry model.
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3.1 Approximating the Expectations

Let 6; be the strength parameter of teamehose ability is to be estimated. Bayesian online rating
systems such as Glicko and TrueSkill start by assuming@&hlas a prior distributioN(;, 6?)
with  anda? known, next model the game outcome by some probability models, and thete upda
the skill (by either analytic or numerical approximations of the posterior madrvariance oB;)
at the end of the game. These revised mean and variance are conaslprast information for the
next game, and the updating procedure is repeated.

Equations (22) and (23) can be applied to online skill updates. To stpppse that tearnhas a
strength parametd; and assume that the prior distribution@pfis N(1;,6?). Upon the completion
of a game, their skills are characterized by the posterior mean and vadb®iee[0,...,6]. Let
D denote the result of a game aAd= [Zy,...,Z]" with

N (24)

wherek is the number of teams. The posterior density afiven the game outconi2 is

P(z|D) =Ci(2)f(2),

where f(z) is the probability of game outconf®D|z). Thus,P(z|D) is of the form (19). Subse-
quently we omitD in all derivations.

Next, we shall update the skill as the posterior mean and variarceEmfuations (22), (23) and
the relation betweeHd; and®6; in (24) give that

W =E[6] = i + GiE[Z]

- [" f <fz(>z/)azi} (25)

and

(o"®™)2 —Var(g;] = 02Var[Z.}

~of (E[Z?) - E[2/)
oo EF?IS)L—E{“&?%"Z‘T)- &

The relation between the current and the new skills are explained belovehd@y rule and the
definition ofZ; in (24), the second term on the right side of (25) can be written as

which is the average of the relative rate of changd d¢the probability of game outcome) with
respect to strength;. For instance, suppose that team 1 beats team 2. Then, the @angeithe
more likely we have such an outcome. Hen€ds increasing irB1, and the adjustment to team
1's skill is the average of the relative rate of change of team 1’'s winninbability with respect
to its strengttB;. On the other hand, a larg8s is less likely to result in this outcome; hendeis
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decreasing 9, and the adjustment to team 2’s skill will be negative. Similarly, we can write the
last two terms on the right side of (26) as

(e[, o)<

which is the average of the rate of chang@@bg f)/06; with respect t;.
We propose approximating expectations in (25) and (26) to obtain the updiede

VI VE S O (27)
02 « o?max1l—AK), (28)
where
Q-0 0f(z)/0z (29)
f(Z) z=0
and
_ %f(2)/9°z

> 2
z=0

N =

01(2) /07
o ( f(2)

f(2)

d <6f(z)/azi> 0)

T\ f)

z=0

We setz = 0 so thatf is replaced by Such a substitution is reasonable as we expect that the
posterior density 08 to be concentrated gn Then the right-hand sides of (27)-(28) are functions
of pandao, so we can use the current values to obtain new estimates. Due to theiaggiiox (30),

1— A may be negative. Hence in (28) we set a small positive lower bauadwoid a negative?.
Further, we find that the prediction results may be affected by how fastitienceo? is reduced

in (28). More discussion on this issue is in Section 3.5.

3.2 Error Analysisof the Approximation

This section discusses the error induced by evaluating the expectatid iand (26) at a single
z =0, and then suggests a correction by including the prior uncertainty ofiskifie variance
of the actual performance. For simplicity, below we only consider a two-tgame using the
Thurstone-Mosteller model. Another reason of using the Thurstongellersmodel is that we can
exactly calculate the posterior probability. To begin, suppose that theneariith team’s actual
performance i§?. Then, for the Thurstone-Mosteller model, the joint posterior densitp0B,)

is proportional to
91—“1) (92—H2> 01—6>
o —= .
(p< 01 ¢ 02 /§+B%
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and the marginal posterior density@fis proportional to
© 91-“1) <92—M2> 81—62
/c( 0 ® | =22 | de,
—o00 01 02 B%_i_ B%
_ 00 _ €] _ (y-6p)?
= cp(eloul) / ‘P<ezo uz> / 1 - e 2% dyae,
RN N Ty

01— Ll1> ( 01— )
20 ® , (1)
01 \/ B2+ B3+ 03
where the last two equalities are obtained by writing the funct¢n as an integral op (see (66))

and then interchanging the orders of the double integral. From (31)pterr mean 08; given
Dis

e 91 Hl ® B1—1b de
v = f (p(el lll) ( 61—k )d6; )
V508
Again, by writing the functior®(-) as an integral and interchanging the orders of the integrals, we
obtain that the numerator and the denominator of the right side of (32)speatively

CD< i o )(u1+ of (p(\/z. B2+02))
) (

Ha—Ho
y2,(B2+0?

SE1(BE+0?) o zﬁzl(ﬁﬁmi?))

® M1 — Lo .
S2,(BE+0?)

Therefore, the exact posterior mearbefis

and

’ (P< 2111 2 )
2 (B2ia2
E(el) _ l.l1+ = 012 - ZI:l(B| +0|) ) (33)
< (B¢ + o M1 —H2
Z'1([3'*_')(D< ﬁmﬂ@)
Now we check our estimation. According to (25), (27), and (29),
B 0f(Z2)/0z,
E(6) = +01E [f(Z)] (34)
2)/0z
A+ 01— — 0f(2)/0z ; (35)
f( ) z=0

where

Ha¢(ele2)amz&MJL2

\/ BE -+ B3
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The derivation later in (93) shows that (35) leads to the following estimatioB f@; ):

[0) M1 —H2

o? /BE+B3
/a2 | 2 _ '

-|-[3 [0) p1—H2
rore <\/B%+B%>

The only difference between (33) and (36) is that the former gges33 + 02 + 3, while the latter
hasB%+ B%. Therefore, the approximation from (34) to (35) causes certain biasai correct the
error by substituting? with 37 4- 67 when using our approximation method. In practice, we use
B? = B?+ o?, wherep? is a constant.

The above arguments also apply to the Bradley-Terry model. We leavettiks de Appendix
C.

My + (36)

3.3 Moddling Game Outcomes by Factorization

To derive update rules using (27)-(30), we must defif® and then calculat®;,A;. Suppose that
there arek teams in a game. We shall consider models for whichfitz¢ in (19) can be factorized
as

(@) =[] @7)
g=1

for somem> 0. If fo(z) involves only several elements nfthe above factorization may lead to an
easier gradient and Hessian calculation in (22) and (23). The expectatithe right side of (22)
involves the following calculation:

of /0z ologMgty fa(z) 2 alogfy(2)
f 0z, 0z
M 3fq/0z

:qu

d=1

a=1

: (38)

Then all we need is to ensure that calculatﬂ% is feasible.

Clearly the Plackett-Luce model (9) has the form of (37). However, tiarStone’s model
(3) with the Gaussian distribution can hardly be factorized into the form (¥R main reason
is that the probability (4) of a game outcome involvega- 1)-dimensional integration, which is
intractable. One may address this problem by modelikgesam game outcome és— 1) two-team
games (between all teams on neighboring ranks); that is,

k-1
f(z) = rl P(outcome between teams rankédand(i + 1)st). (39)
=
Alternatively, we may consider the game resulkaéams ak(k — 1) /2 two-team games. Then
k  k
f(z) = |_| |_| P(outcome between teanand teanm). (40)
i=1lg=i+1

Both (39) and (40) are of the form (37). In Section 3.5, we shall detmatesthe calculation to
obtain update rules. Subsequently we refer to (39) apdngal-pair approach, while (40) as the
full-pair approach.
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3.4 Individual Skill Update

Now, we consider the case where there are multiple players in each teapus8upat théth team
hasn; players, thejth player in theith team has strengt®;, and the prior distribution 08;; is

N (1 ,oﬁ-). Let 6; denote the strength of thth team. As in Huang et al. (2006) and Herbrich et al.
(2007), we assume that a team’s skill is the sum of its members’ skills. Thus,

N
0=\ 6 fori=1,....k (41)
i gl ij

and the prior distribution o§; is
2 o 2 < o
6 ~ N(W,07), wherey; = Y j ando = of. (42)
I i le J i gl i

Similar to (27)-(28), we propose updating the skill of ttile player in team by

o2
i
Wi < Mt (43)
|
2 2 cyi21'
o « O max(l— oizAi’K> , (44)
whereQ; and4; are defined in (29) and (30), respectively anig a small positive value to ensure
a positiveoﬁ-. Equations (43) and (44) say th@t, the mean skill change of teaimis partitioned

to n; parts with the magnitude proportionalaxﬁ. These rules can be obtained from the following
derivation. LetZ;; be the normalized quantity of the random variale that is,

Zij = (6ij — Hij)/Gij.- (45)
As in (27), we could updatg; by
0f(2)/0z;
Wj < Mj + 0] % K (46)
z=0

wheref (z) is the probability of game outcomes and
z= [lea e ngs - A, - -7ZkrdT-
Since we assume a team’s strength is the sum of its members’, from (24)(42),)and (45) we
have
6 —l _ 20ii4i.
Oj Oj '

Z = (47)

hence, it is easily seen thE(E) is simply a reparametrization dfz) (defined in Section 3.1):
Nk

f(z)=f (Z #Z # = f(2)

= =
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With (47),

of(z) 0f(z) 0z aijof(2)

0z; 0z 'azij_oi 07,

and (46) becomes
2
ofj _ 09f(2)/9z
Hij < Wij + — - Oi .
e T
Following the definition of}; in (29) we obtain the update rule (43), which says that within team
the adjustment tgy; is proportional tooizj. The update rule (44) for the individual variance can be

derived similarly.

3.5 Example: Bradley-Terry Model (Full-pair)

In this section, we consider the Bradley-Terry model and derive thatapdles using the full-pair
setting in (40). Following the discussion in Equations. (7)-(8), the diffege — Xy between two
teams follows a logistic distribution. However, by comparing the Thurstonstéler model (5)
and the Bradley-Terry model (7), clearly the Bradley-Terry modeldagkiance parametefg and
Bg, which account for the performance uncertainty. We thus extend th&legrderry model to
include variance parameters; see Appendix C. The resulting model is

eei /Ciq

~ B /oa 4 Paloa’ (48)

P(teami beatsq) = fig(2)

where
cly = B +B5 and®; = i +0iz.
The parametep; is the uncertainty about the actual performaXceHowever, in the model specifi-
cation, the uncertainty of; is not related ta;. Following the error analysis of the approximation in
Section 3.2 for the Thurstone-Mosteller model, we show in Appendix Cothean be incorporated
to
B =of + 57

wherep? is some positive constant.

There are several extensions to the Bradley-Terry model incorpgrigis. In Glicko (Glick-
man, 1999), a tie is treated as a half way between a win and a loss whenuctingtthe likelihood
function. That is,

P(i draws withg) = (P(i beatsq)P(q beats )2

(51)
=1/ fia(2) f4i(2).

By considering all pairs, the resultinfyz) is (40). To obtain update rules (27)-(28), we need to
calculated f /0z. We see that terms relatedzan the product form of (40) are

P(outcome of andq),vq=1,...,k,q#Ii. (52)
With (38) and (51),
aféazi (53)
0fqi/0z ofiq/0z 1 0f4i/0z 0fiq/0z
_ Z qil/ Z|+ Z qu/ Z|+§ ( qfl/ Z|+ |(11:/ Z|>.
grig<r@ 9 gr(@>r() 4 qr(a)=r(i).qA q q
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Algorithm 1 Update rules using the Bradley-Terry model with full-pair

1. Given a game result and the currﬂmoﬁ ,Vi,Vj. Givenp? andk > 0. Decide a way to set
Yq in (50)
2. Fori=1,...,k set
N 5 nj
W=> W, of=73 o
i= =1

3. Fori=1,... Kk,

3.1. Team skill update: obta@®@; and4; in (27) and (28) by the following steps.
3.1.1. Fomg=1,...,k,q#i,
gHi/Cig
gHi/Cia 4 gHa/Cia ’
5 1 if r(q) >r(i),
(o) N Oj\2. A . .
8q = ?(s_ Bia): Mg :yq(?) PiqPqi, Wheres= < 1/2 ifr(q)=r(i), (50)
'q 'q 0 if r(q) <r(i).

Cig= (02 +05+2p%)Y2,  Pg= (49)

3.1.2. Calculate

3.2. Individual skill update
Forj=1,....n;,

o2 o2
. W Mot 2 2 i A
MJ<—M,+?Q., Gij < 0} max 1—?A|,K .
| |

Using (24) and (48), it is easy to calculate that

. _ ei/Ci O, /Ci . T
AL : : qe‘; i z'a*elzjfiqfqi (54)
0z, Cig (€ i/Ca 4 g%/%a)2 0z Cig
and
afiq (eei/ciq 4 eeq/ciq)eei/ciq — ebi/ciqghi/ciq o
oo = s . -0) = — fig fgi.
0z, Ciq (eel/Clq + eeq/clq)2 Ciq
Therefore, an update rule following (27) and (29) is
M« M+ Qi (55)
where
Qi:0i2< > —Pa > Poi 1 (piq+'%">> (56)
gr=zri) G0 qrdsei) Ca 2qrfFiga \ Ga  Ca
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and

L gHi/Cq
Pa= Gieq 4 gialoa (57)
is an estimate oP(teami beats teanq|). Sincepiq + Pqi = 1, (56) can be rewritten as
o? ) 1 .if r(q) > r(?),
Qi = . .a(s— Biq), wheres= ¢ 5 if r(q) =r(i), (58)
a7 0 ifr(g) <r(i).
To apply (26) and (30) for updating, we use (53) to obtain
2 () L ) L )
4 ar(d=r(i) 9% gl ar(dr(i) 9% iq
1 0 [0fg/0z 0 [0fiq/0z
S Zyalon (M) (71
ar (@)=ri).g4 N4 al 2 9
From (54),
0 (0fqi/0z\ _ d(—fiq/Cq) _ of . .
_ = == —7 f|q fq|
0z fyi 0z i
and similarly
0 (0fiq/0z o?
— = ——fig fqi.

From (30), by setting = 0, A; should be the sum of (60) over &l i. However, we mentioned
in the end of Section 3.1 that controlling the reductiompis sometimes important. In particular,
o? should not be reduced too fast. Hence we introduce an additional paragso that the update
rule is

oi2<—oi2max<1— > quq,K>,

G

where
2

Eq = ?ipiq ﬁqi

|
is from (60) andyy < 1 is decided by users; further discussions on the choigg arfe in Section 6.
Algorithm 1 summarizes the procedure.

The formulas (55) and (58) resemble the Elo system. The Elo tBgais nonrandom and its
update rule is in (6):
6i < 6i +K(s—pjy),

whereK is a constant (e.gK = 32 in the USCF system for amateur players) and

10Pi/400
Pia = 7 0p./400 1 gpa/a00
is the approximate probability thabeatsqy; see Equations. (11) and (12) in Glickman (1999). Ob-
serve thapj, is simply a variance free and reparameterized versigoh (57). As for Glicko, itis

a Bayesian system but designed for paired comparisons over a ratiad. d@etailed comparisons
with Glicko are in Section 5.
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Algorithm 2 Update rules using the Bradley-Terry model with partial-pair
The procedure is the same as Algorithm 1 except Step 3:

3. Letr(a),a=1,...,k be indices of teams ranked from the first to the last
Fora=1,...,k

3.1. Team skill update: lét=r(a) and obtainQ; and4; in (27) and (28) by the following
steps.

3.1.1. Define a sdp as

{r(a+1)} ifa=1,
Q=4 {r(a—1)} if a=Kk, (61)
{r(a—1),r(a+1)} otherwise
Forge Q
Calculatedq, nq by the same way as (49)-(50) of Algorithm 1.

3.1.2. Calculate

Qi = Zgéq and A = %nq. (62)
qe qe

3.2 Individual skill update: same as Algorithm 1.

4. Update Rules Using Other Ranking M odels

If we assume different distributions of the team performaxjaar model the game results by other
ways than the Bradley-Terry model, the same framework in Sections 3.3 &itt be applied. In
this section, we present several variants of our proposed method.

4.1 Bradley-Terry Model (Partial-pair)

We now consider the partial-pair approach in (39). With the definitioninf(2), the functionf (z)
can be written as

=[] a2 63
where we defindq,)a1)(2) as follows:
i =r( q= (a.+ 1),
{f.q if r(i) <r(q), (64)
Vigfa ifr(i) =r(q).

Note thatfiq and fg; are defined in (48) of Section 3.5. Since the definitiorr @ (2) ensures
r(i) <r(q), in (64) we do not need to handle the case(®f > r(qg). By a derivation similar to that
in Section 3.5, we obtain update rules in Algorithm 2. Clearly, Algorithm 2 diffesm Algorithm
1in only Step 3. The reason is thé#(z)/0z is only related to game outcomes betweés) and
teams of adjacent ranks,a— 1) andr(a-+1). In (61), we letQ be the set of these teams. Thus,
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Q contains at most two elements, adand4; in (62) are calculated usiny andng with g € Q.
Details of the derivation are in Appendix D.

4.2 Thurstone-Mosteller Model (Full-pair and Partial-pair)

In this section, we consider the Thurstone-Mosteller model by assuminéhattual performance
of teami is

Xi ~ N(8i. BY),
wheref? = 02 + 2 as in Section 3.5. The performance differed¢e- Xq follows a normal distri-
butionN(6; — 8¢, ¢5,) with ¢, = o7 + 03 + 2B2. If one considers partial pairs

: 6, — 6,
P(teami beats teany) = P(X; > Xq) = @ <Icq>
iq
and uses (51) to obtaiR(i draws withq), then a derivation similar to that for the Bradley-Terry
model leads to certain update rules. Instead, here we follow Herbridh (@087) to lete be the
draw margin that depends on the game mode and assume that the probabilitidsetiag and a
draw occurs are respectively

P(teami beats teany) = P(X; > Xq+€) = ® (6.—C9q—e>
iq
and

P(teami draws withq) = P(|X — Xq| <€)
—o <8<99q>> o (8(9%)) | (65)

We can then obtairfi(z) using the full-pair setting (40). The way to derive update rules is similar to
that for the Bradley-Terry model though some details are different. \Wergrize the procedure in
Algorithm 3. Detailed derivations are in Appendix E.

Interestingly, ifk = 2 (i.e., two teams), then the update rulesi (ifeatsq) in Algorithm 3 are
reduced to

2 _

2
o} i — g €
|Jq<_|Jq_7qV <l'“1q,> ,

where the functiorV is defined in (67). These update rules are the same as the cése 2f
in the TrueSkill system (sedtp://research.microsoft.com/en-us/projects/truesk il/
details.aspx ).

As a comparison, we note that TrueSkill considers partial-pair and oljgkigers’ skills by a
factor graph and the approximate message passing. In fact, some nsegsthgefactor graph are
non Gaussian and these messages are approximated via moment matchinthelSkpgctation
Propagationalgorithm (Minka, 2001). Their algorithm is effective, but simple updatesare not
available for the cases of multiple teams/players.
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Algorithm 3 Update rules using Thurstone-Mosteller model with full-pair
The procedure is the same as Algorithm 1 except Step 3.1.1:

3.1.1 Forg=1,...,k;q#1,

%:fx W%ﬁ;>lﬂw—um
Tl vesE e ifr(e) <r(),
o, [WESEE) Hr@>r)
Na=(o1)"x AWt 2 if r(q) =ri),
T witsE gy ifr(g) <),
where
Ciq = (02 + 03+ 2p%) Y2,
<P(X):12T[exz/2, D(x) = _X o(u)du, (66)
V(x,t) =@x—t)/d(x—t), W(xt)=V(xt)(V(xt)+ (x—t)), (67)
Gty At—X) —@(—t—X)
VY =~ — o=’ (68)
Wity — E00E0 — ()00 g ©9)

Dt —x) —P(—t—X)

4.3 Plackett-Luce M odel

We now discuss the situation of using the Plackett-Luce model. If ties ardlmwed, an extension
of the Plackett-Luce model (9) incorporating variance parameters is

o=1

(@ =Tt@ =% ), (70)
g=1 ZSGCq C

where

0 — L k 12
7= '_M’C:(;(oi%rﬁz)) andCq={i:r(i) >r(q)}.

Instead of the samein €%/C, similar to the Bradley-Terry model, we can defigeo sum upo?,i €
Cq. However, here we take the simpler setting of using the sanfote thatfy(z) corresponds
to the probability that tearqg is the winner among teams @,. In (9), f(z) is represented using
r(1),...,r(k), but (70) is a reformulation using1),...,r(k).

285



WENG AND LIN

We extend this model to allow ties. If teams...,iq are tied together, theriy) = --- =r(iq).
A generalization of the tie probability (51) gives the likelihood based on thesages as:
efin/c a/C e (71)
- X “ e X —_—_— .
2 sr(s)>r(iy) eds/c 2 sr(s)>r(ig) ebs/c

We can explain (71) as follows. Nod/factors in (71) all correspond to the likelihood of the same
rank, so we multiply them and take théh root. The newf (z) becomes

k Hosc | VA
f(z) = ] fq(2) =[] <> 7 (72)

where

1/Aq
A= [{5:7(8) = (@)} and @) = | = L.k
=|{s:r(s)=r(q)} an )= —5—= , g=1,...,k
! 2 seCq ebs/C
If ties do not occurAq = 1, so (72) goes back to (70). By calculations shown in Appendix F, the
update rules are in Algorithm 4.

5. Description of Glicko

Since our Algorithm 1 and the Glicko system are both based on the Bradhey-fiodel, it is of
interest to compare these two algorithms. We describe the derivation of @lithis section. Note
that notation in this section may be slightly different from other sections of #peip

Consider a rating period of paired comparisons. Assume that prior to g adiiod the dis-
tribution of a player’s strengt8 is N(i, 6%), with u ando? known. Assume that, during the rating
period, the player plays; games against opponeptwherej = 1,...,m, and that thejth oppo-
nent’s strengtt®; follows N(u,-?o]?), with ; andoj2 known. Letsjx be the outcome of thith game
against opponent, with sjx = 1 if the player winssjx = 0.5 if the game results in a tie, aisgk = 0
if the player loses. LeD be the collection of game results during this period. The interest lies in the
marginal posterior distribution & givenD:

P(6|D) — /.-./P(el,...,em|D)P(e|el,...,em,D)del-.-dem, (75)

whereP(0|01,...,0m, D) is the posterior distribution d conditional on opponents’ strengths,
P(elela"weva) U @(9|U702)P(D|9761;--wem)- (76)

HereP(D|6,61,...,6m) is the likelihood for all parameters. The approximation procedure is de-
scribed in steps (1)-(V) below, where step (1) is from Section 3.3 of Gligk (1999) and steps
(IN-(1V) are summarized from his Appendix A.

(1) Glickman (1999) stated that “The key idea is that the marginal posterior distribof a
player’s strength is determined by integrating out the opponents’ streagéngheirprior distri-
bution rather than over their posterior distribution.” That is, the postersbrilution of opponents’
strengthd?(64, ...,0m|D) is approximated by the prior distribution

@(61]p1,0%) - - O(Brm|im, O
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Algorithm 4 Update rules using the Plackett-Luce model
The procedure is the same as Algorithm 1 except Step 3:

3. Find and store

" 1/2
c= (21(0%62)) :

Ag=s:r(9 =r(@}, a=1,...k
ques/c,q_l,...,k, whereCq = {i : r(i) >r(q)}.

Fori=1,...,k

3.1. Team skill update: obtai; and4; in (27) and (28) by the following steps.
3.1.1. Fomg=1,... Kk,

0?2 1-Pic, ifa=i,
b= cp X\ By i@ <r().a#i
0 if r(q) >r(i),

, Yo [P (1-pig) i r(a) <r(i),
AT 0 if r(q) > r(i),

where
R eei/C

Picy = Sec, s/c
3.1.2 Same as Algorithm 1.
3.2 Same as Algorithm 1.

Then, together with (75) and (76) it follows that, approximately

POID) O @02 [ [ @(BilH1,0) - @Brlkin, 0Z)P(DIB.6y,....)dBy -y

m N (10(6—9j)/400)sjk
O (P(9|I1a02)1|1{/ [,!1(1+m<991>/400 ®(8;|wj,0%) | d;j ¢, (77)

P(D[®)

where the last line follows by treating terms in the likelihood that do not depend @vhich
correspond to games played between other players) as constant. dte déerm in (77) aB(D|0)
for subsequent analysis.

(1) P(DI®) in (77) is the likelihood integrated over the opponents’ prior strength disiviu
Then, (77) becomes

P(6[D) O (6lu,0%)P(D|®). (78)
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Algorithm 5 Update rules of Glicko with a single game

1. Given a game result and the currgntil, 02, 03. Set

log10
- 4%0 ' (73)
2. Fori=12
1
9(0)) = NvET) (74)
1+

3. Fori=1,2,setj #iand

1

. 2v¢ _ T2(ala2\ 20 (1 — nF)] L

4. Update rule: For=1,2, setj #1i
1 if 1 wins,
Moo W +1L9(0,2)(sj —pj), wheresj = < 1/2  if draw,
Co 0 if i loses

o? « <1+ ! >_1
o leter)

In this step(D|0) is approximated by a product of logistic cumulative distribution functions:

m i (10(8-81)/400)sK

P(D|®) I_Lk | 1+10(e 5 /400(p

(6j[1;,0%)d8;. (79)
(I1) In this step,P(D|0) is further approximated by a normal distribution. First, one approxi-

mates each logistic cdf in the integrand of (79) by a normal cdf with the same anearariance so
that the integral can be evaluated in a closed form to a normal cdf. Thisyredapproximation

(1 1066 /400)sjk (103 )(B-k; /400)3”(
/1+10(9 8; /400@( ilbj,07)de;  ~ 1+ 1)) (6-p)/400 ’

whereg(o ) is defined in (74). Therefore, the (approximate) marginal likelihood i i&9
m o (10g JICEY /400)51k
P(DI6) ~ ,Elule 1+ 109076 1)/400

Second, by central limit theorem we approximate this marginal likelihood (8@)rfmymal den-
sity @(8/6, %), wheref is the mode of this marginal likelihood addis minus of inverse of Hessian

(80)
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of the log marginal likelihood evaluated &t Then, together with (78) we obtain an approximation:

P6ID) O @(6|1,0)e(6]8,8)
LE+g /1 1\1?
. (p<e}c,2+52 <02+52> )

Therefore, the update pfando? (i.e., posterior mean and variance) is:

02<—<1+1>1 and u<—"%+%—u+ & CE (81)
0@ g TETY

Note that we ob‘Eairé by equating the derivative of Id®(D|8) to zero, and approximatind’ by
substitutingu for 8. The expression of approximation 0% is

m

(Y mi(a(a?)py (W (2 Py (W) (82)

=1

62

Q

whereqis defined in (73)g(0J2) is defined in (74) and

Pi(k) = 1+ 1079(05) (k=h;)/400’ (83)
which is an apperximate probability that the player beats oppopent
(V) Finally, 8 — pin (81) is approximated as follows. From (80) it follows that
d m Y log10 o2 1
gg'°9P(I8) ~ Z . 400 { o) (S"‘ 1410 9@ O u,>/4oo> } (84)
If we define X
m o
Z o( ,) | (85)
&&1+10 9(0%)(8—4;)/400
then setting the right-hand side of (84) to zero gives
m nj
Then, a Taylor series expansiontgBb) aroundu gives
h(8) ~ h(w) + (6 — W' (W), (87)
where
g 2\\2 c 2\\2
(W) =q (9(0§)"Pi (W) (L= pj(W) =a Y ni(g(0) pi(W)(L—-pj(W)  (88)
j=1k=1 =1
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Game type \ # games #player$ BT-full BT-partial PL TM-full TrueSkKill
Free for All 5943 60,022 30.59% 32.40% 31.74% 44.65%  30.82%
Small Teams| 27,539 4,992 33.97% 33.97% 3397% 36.46%  35.23%
Head to Hea 6,227 1,672 32.53% 32.53% 32.53% 3241%  32.44%
Large Teams 1,199 2,576| 37.30% 37.30% 37.30% 39.37%  38.15%

Table 2: Data description and prediction errors by various methods. Tthedwith the smallest
error is bold-faced. The column “TrueSkill” is copied from a table in Hetbet al. (2007). Note
that we use the same way as TrueSkKill to calculate prediction errors.

Game type | BT-full PL TM-full

Free for All 31.24% 31.73% 33.13%
Small Teams | 33.84% 33.84% 36.50%
Head to Head 32.55% 32.55% 32.74%
Large Teams| 37.30% 37.30% 39.13%

Table 3: Prediction errors usityg = 1/k in (50), wherek is the number of teams in a game.

with pj(p) defined in (83). Using (86)a(1) by (85), and (88), we can apply (87) to obtain an
estimate 0B — . Then with (82), (81) becomes

m Nj
U P+ 9(07)(sik — Pj (W)
i2+52 lekz :

However, when there is only one ganf®D|0) in (80) would have just one term (because
m=1 andn; = 1), and it is a monotone function. Therefore, the médef P(D|8) would be
eitherco or —oo and the central limit theorem can not be applied. Although this problem seems to
disappear when the approximation in step (V) is employed, the justificatior efliole procedure
may be weak. In fact, the Glicko system treats a collection of games within adnaériod” to
have simultaneous occurrences, and it works best when the numbamekgn a rating period is
moderate, say an average of 5-10 games per player in a rating peftoel Glicko algorithm for a
single game is in Algorithm 5.

6. Experiments

We conduct experiments to assess the performance of our algorithmgwefskill on the game
data set used by Herbrich et al. (2007). The data are generatedngyeBstudios during the beta
testing of the Xbox title Halo 2.The set contains data from four different game types:

Free for All: up to 8 players in a game. Each team has a single player.

e Small Teams: up to 12 players in 2 teafns.

e Head to Head: 2 players in a game. Each player is considered as a team.

e Large Teams: up to 16 players in 2 teams.

2. According tohttp://math.bu.edu/people/mg/glicko/glicko.doc/glic ko.html .

. Credits for the use of the Halo 2 Beta Data set are given to Microsedeh Ltd. and Bungie.

4. Herbrich et al. (2007) indicate that for “Small Teams,” each teasmbamore than 4 players, and for “Large Teams,”
each has no more than 8. However, we find a few exceptions.

w
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The numbers of games and players are given in Table 2. In the followirT)& M, and PL denote
Bradley-Terry, Thurstone-Mosteller, and Plackett-Luce modelsectisely; BT-full and BT-partial
denote BT with full-pair and partial-pair, and similarly for TM-full and TM+gal. The TrueSkill

code is obtained éttp://blogs.technet.com/apg/archive/2008/06/16/tru eskill-in-f.

aspx .

6.1 Implementation and Evaluation

Below we discuss initial values and parameters. Generally we follow the satthgrbrich et al.
(2007).

Initial P = 25 ando? = (25/3)?2, Vi.

The additional variance of performangé= (25/6)2.

€ = 0.1 is the draw margin in (65) for the Thurstone-Mosteller model.

K = 0.0001 is the positive lower bound in (28) to avoid negatie The result is insensitive
to this parameter as in general-1y; is larger tharx.

e Yq in (50) is set amj/ciq for BT-full. The sameyy is applied to BT-partial and TM-full. For

PL, we useyq = 0j/c. The use ofyy is further discussed later in this section.

The update rules for the Thurstone-Mosteller model need to calculaterthéative distribution
function ®(x), which is not available in most programming languages. We adopt the samasway
in TrueSkill to implement the functio®(x). Moreover, if the Thurstone-Mosteller model is used,
some numerical difficulties may occur. When t in (67) is small,

@(x—t) ~ 0 andd(x—t) ~ 0, (89)

so the calculation o¥ (x,t) via @(x—t)/®(x—t) is inaccurate. We employ the same safeguard as
in TrueSkill:

If d(x—t) < 2.22275874% 10162, thenV (x,t) is assigned asx+t.

Note that—x+t is the limit of V(x,t) whenx—t — —c. We also need some safeguards in calculat-
ingV andW.

We implement our methods in both C and F#. The F# code is used for the rurmegompar-
ison with TrueSkill, which is also written in F#. On the same computer, TrueSkiktal8 seconds
to run the “Free for All" data, but BT-full needs only 1.2 seconds. Outhme is more efficient
because it uses analytic update rules. In contrast, TrueSkill requirgsrative procedure. More-
over, it is simpler to implement our update rules. Using F#, our code takethbes4.00 lines, but
TrueSkill needs more than 500 lines. Sources used for experiments irafies are available at

http:/iwww.csie.ntu.edu.tw/ ~ ¢jlin/papers/online_ranking

For the evaluation of prediction results, following Herbrich et al. (20@/& consider the error
of using the currenfi to predict the outcome of the next game. We check only team pairs whose
ranks are different. For example, if there are three teAnB, andC and the rank of one game
is (1,1,2), then only the two pair$A,C) and (B,C) count. Further, if before the game we have
Ma = Hc and the game output shows raAk rank(C), it is considered a wrong prediction. This
situation seldom happens pss a real-valued vector, but it does occur in early games because all
players’u were set equally in the beginning. We have confirmed with TrueSkill authatshese
detailed settings are the same as what they used in Herbrich et al. (20@7prdadiction error rate
is the fraction of total team pairs (from the second to the last game) thatranghy predicted.
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Gametype\ BT-full BT-partial PL TM-full TrueSkill
Free for All | 35.44% 36.70% 36.31% 46.11%  35.58%

Table 4: Prediction errors (difficult cases). Team pairs with rank idiffees no more than two are
considered. We consider only “Free for All” because the TrueSkilegmavided by authors does
not handle multi-player teams and we have not conducted suitable modificddlonsover, under
our selection rule, all games in “Head to Head” will be selected and reseltbasame as Table 2.
Hence this set is not included either.

Avg. Occurances Num. Pairs BT-full TrueSkill Num. Pairs| BT-full TrueSkill
<5 23,567| 38.74%  39.15% 2,367 | 38.70%  38.36%
<10 69,145| 36.22%  36.41% 3,748| 35.17%  34.61%
<20 148,654 34.54%  34.52% 4,852| 33.29%  33.02%
<40 276,203| 32.64%  32.64% 5501| 32.61%  32.61%

No restriction 595,500 30.59%  30.74% 5,715| 32.53%  32.49%

(a) Free for All (b) Head to Head

Table 5: Prediction errors for competitions where players have only ¢léswe games. Games
with the average number of players’ past appearances no more thaaltleeirv the first column
are considered. The last row includes all games. The second columatagitbe number of total
team pairs used for the evaluation. The 30.74% and 32.49% rates byKilraeSslightly different
from 30.82% and 32.44% in Table 2, respectively, because the formenisrfinning the F# code
provided by TrueSkill authors, but the latter is copied from HerbricH.¢2807).

6.2 Comparison on Prediction Errors

We report the prediction error in Table 2 and make the following obsensatibinst, BT-full, BT-
partial, and PL have the same error rate except “Free for All.” Thidtrisseasonable as when every
game involves only two teams, using full pairs, partial pairs or the Placke#-model does not
make any difference. Second, when the number of teams is more than twbr@efor All), BT-
full is better than BT-partial. The same observation holds when comparingullidnd TM-partial
(numbers not shown). A possible explanation is that the full-pair approses more information.
Third, using the Bradley-Terry model yields superior results to the ToonesMosteller model. The
error of using TM-full on “Free for All” is very high. Besides, numerigaoblems discussed in
(89) do not occur for the Bradley-Terry model. Fourth, TM-full, whiges the same likelihood
model as TrueSKill, is consistently worse than TrueSkill, indicating that the fiaistér, single-pass
approximation may come at the expense of less accurate prediction. Finalproposed method
for BT-full and PL is competitive with TrueSkill.

The reason why TM-full performs poorly for “Free for All” in Table 2 migbe thato; quickly
goes to zero angl; becomes a huge positive/negative value. The paramgtar(50) can help to
control how fast the variancm2 is reduced. In Table 3 is set ag;/ciq. Table 3 gives results of
usingyq = 1/k, wherek is the number of teams in a game. For “Free for Afljs around 8, sqy,
is quite small. Clearly, a slower reductiona significantly improves the performance of TM-fulll,
while the results of BT-full and PL do not change much.

We conduct a further comparison using only team pairs which are moreudiffic prediction.
For “Free for All,” the team pairs whose ranks in a game are closer careled as difficult cases

292



A BAYESIAN APPROXIMATION METHOD FORONLINE RANKING

for prediction. We take all pairs with rank differences no more than twacantgpare the prediction
errors by our methods and TrueSkill. The results, shown in Table 4,cargstent with those in
Table 2.

After a team (or player) has played many games, the obtained ability becomescnnirate.
To check the performance when teams have only played few games, we gatees where the
average number of players’ past appearances is small. We presehs tia Table 5. Clearly if
players in a game have only played few games, the prediction is more difficult.

We also implement the single game version of Glicko (Algorithm 5) for “Head tad@nd
find the prediction error to be 33.88%, a bit worse than those in Table 2 &tesult is expected
as Glicko is not designed to update skills after each single game.

Finally, we discuss how to apply our proposed technique in practice. Hotide experimental
results and the numerical concerns, TM is not recommended. Furthér-asl B slightly better
than BT-partial, it seems that to factorize a multi-team game to several two-&aesgwe should
use as much information as possible. Therefore, in applying our approeim&T-full and PL
may be the first choice. As TM-full uses the same likelihood as TrueSkilbanirms worse, our
approximation, while very simple, may be more sensitive to the likelihood used.

7. Discussion and Conclusions

Huang and Frey (2008) propose a graphical model, cumulative distribogiovork (CDF), which
can be used for online ranking. They experiment with the same data udderbsich et al. (2007)
and report superior results. However, they use a full covariancexnaaer all skills of all players.
This setting provides more information for accurate predictions, but malgenptactical for large-
scale systems.

Guiver and Snelson (2009) apply Power EP (expectation propagatipe)fiarm Bayesian in-
ference for parameters of the Plackett-Luce model. They conductiegs in an offline setting
on NASCAR 2002 car racing results and the MovieLens data set. It is warttying the perfor-
mance in online setting. We leave it for future work.

In summary, this paper approximates the expectation of teams’ performandesvio simple
update rules for online ranking. The proposed method is efficient andecaasily applied to large-
scale systems with multiple teams and multiple players. While the approximation of thetapn
is only a kind of heuristics, experiments show that its application to BT-fullRinchodels is com-
petitive with state of the art approaches such as TrueSkill. Further, thenmaptation is simpler
and the running time is shorter.
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Appendix A. A Sketch of the Proof for Lemma 1

We borrow a few lines from Woodroofe (1989) to sketch the proof 1) (n the 1-dimensional
case. Let denote the differentiation arddh denote/zh(z)d®(z). By assumptions in Lemma 1, we
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havef(z) = [, f'(y)dyand

/hzdl‘(z)—/fzdd)z-/hquaz
/f d)hdz_/ / #( 2)[h(2) — dhldz
_ / /(p - ohjdz} f dy_/Uh y)dy,

where the interchange of orders of integration is justified by assumedabitgrconditions.

Appendix B. An Example on CalculatingUh and Vhin (14)
We takek = 3 andh(z) = z;z, to illustrate the calculation df h andV h. First by (12) we obtain

ho = /lezdcbg(Z) =0,
hi(z1) = /h(Zl,Wl,Wz)d‘Dz(Wl,Wz) = /21W1d¢’2(W1,W2) =0,

ho(z1,2) / 21,25, W)d® (W) = /lezd‘D(W):ZlZz,
hs(z1,22,23) = h(21, 22, 23) = 7125.

Next from (13) it follows that

ai(z) = ezz/z/ — hole™"*/2dw= 0,
Rz = eé/z/ [a(z1, W) — hy(z1)] e 2dw = ezé/z/ zwe "/2dw =z,
2

g3(Z> = 922/2/ h3 21,22, )—hz(Zl,Zz)]e_Wz/ZdW: 0;

hence, by (14) we haveh(z) = (91,92,93)" = (0,21,0)T. Applying the same steps @ gives
Ugr =Ugsz =[0,0,0]" andUg, = [1,0,0]". Therefore, by (14) we obtain

010 [0o00O 0
(U2h+(U2h)T):% 0 0O0+|100]=|3
000 [000 0

Appendix C. A Bradley-Terry Model with Variance Parameters

Vh=

l\)\l—\
O ONIER
= o O

Our approach is motivated by the relation between the normal model (5) an8r#uley-Terry
model (7). To begin, we reparametrizen (7) ase®/¢ and similarly forvg so that (7) can be written

as
el6i—6q)/c

P> X)) = T g7

Next, observe that the cumulative distribution function of a logistic distributidgh mean 0 and

variance(cr/v/3)? is

(90)

ex/c

F(X):m,
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which can be approximated by the cumulative distribution function of a noristaitzition with the
same mean and variance. Therefore,

eife i —
A LU e B ST Ve rSrvE O
1+ el8i—6q)/c —w  +/2m(cm)/V/3
= @ . 91
(cn/\/é 1)

The idea of approximating the logistic distribution in an integral by a Gaussiarhas appeared
in Aitchison and Begg (1976), Glickman (1993), and references theByircomparing (91) with
(5), it suggests to take? 0 (B2 + B3) and then replace; andvg in (7) with €%/¢ ande%/°. In
summary, we have shown that (90) can be obtained by assuming that eaachas a performance
uncertainty parametds?, and that when teamisandq compete, their actual performance follow
Gumbel distributions with cumulative distribution function

P(X < x) = exp(—exp(—(x— %)))7

wherec? = B2+ Ba. Note that this model presumes that a team’s actual performance deetihds o
team it competes with.

Regarding the error induced by evaluating the expectations in (25) &ydwe can apply the
same analysis in Section 3.2 to the Bradley-Terry model. Here we give dé#ilgl8), the joint
posterior density off1,6,) is proportional to

O - (G-t  eMom
¢ o1 ¢ 0> gb1/c12 | @f2/c12”
Next, by an approximation like (91), the marginal posterior densit§;d§ approximately propor-
tional to

91—“1)/ (92—L12> &1 1 —522,
- = e 2(acqyp) d CB
(P< 01 ¢ 01 —00 \/ZT(GClz) e
- (p<91;U1>¢ 81—
1 (aci2)2+ 03
01—y eP1/¢,
P\ "o, ) P el

wherea = 11/+/3 as in (91) andc),)? = a2c?,+ 03. As in the previous paragraph, we can calculate
the posterior mean d;, and again the result suggests that the bias induced by our approximation
method can be reduced by substitutfgwith 37 + o?.

Appendix D. Derivations of Update Rulesfor the Bradley-Terry Model (Partial-pair)

To calculated f /0z, if i =r(a), then in (63) there are only two terms related:to

fra—1)71a) (2) @nd fraymase) (2).
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DefineQ as in (61). Then,

of joz 0tq/0z
T qacaf<rn o
0fiq/07 , 1 (afqi /07 0 /az)
q:qu\%)N(i) fiq 2q:qu,r(Q):r(i),q¢i foi fig
Next,

d (0f/0z 9 [0fy/0z 3 [0fiq/0z
az\ )~ A G A A G
Z qaeQr@)<r(i) 74 a aeQI (@) >r (i) iq

e W) E5)
GqeQur (q=r(i),qi \%4 qi Z iq

These two results are almost the same as (53) and (59) used for theifulhpa Henc@q andng
are calculated by the same way as in Algorithm 1, buCipand4;, instead of taking the sum over
allg=1,...,k;q#1, in (62) we sum up only elements in the &t

Appendix E. Derivations of Update Rulesfor the Thurstone-M osteller M odel

Define

fiq(z) = P(teami beats teany) = ® <9|—fq—€>
iq

and
fiq(z) = P(teami draws with teant)

—o (8—<iq—9q>) _q,(—e—ieq—eq))

wheref; = 0;z + 1. Then
fiq(z) i r(i) >r(q),
f

() it r(i) <r(a),
fiq(z) ifr(i)=r(q).

Similar to the derivation for the Bradley-Terry model in (52) and (53),

P(outcome of teannandq) =

of /07 0ty /07 dfiq /07 dfiq /07
421: Z q1:/.zl+ Z |(;/Z|+ I(;-/Z.
qr(g<r@ @ gr(g>r(i) qr(@=r() '
Using the relation betweapand® in (66),
9% <9i _eq_8> _ (p(ei ‘eq_":) 1 (92)
006 Cig Cig Cig
Therefore,
6i—6q—¢
dfig/0z 1 P~ )_aei_oiv<ei—eq s) (©3)
fig Ciq Cb(ei_fq_e) 0z  Cgq Cq Cq/’
iq
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where the functioV is defined in (67). Similarly,
afqi:—v<9q 6 €>.
0z Cig Ciq Ciq

aifi.q _ —0j <(p(8—<ei—eq))(p(_s_(ei_eq))>’

07, Ciq Ciq Ciq

For f;(e),

SO

c — ei*e —&— ei—e
iafin —o W) g 0 (8i—8 &
Cig

Cig

where the functioV is defined in (68). Then the update rule is

0f(z)/0z
u;euﬂrci(f)/ 4

z= 0

€ €
gr(@)<r(i) C'q Ga G agr(@)>r(i) C'q

Clq Clq
+ 5 1\7<M_”q,8>>.
g (a)=r(i) a4 G Ca  Cig

To updateo, similar to (59), we have

a(af/az>_ s a<afqi/aa>+ s 6<6fiq/62,->
2N @\ T @ %2

g<r fig
(Of.q /az)
i Zina 02\ i

Using (93) and the fact thakp(x) /dx = —x@(X)

9 9fiq/0z

0 3(/P) 06 _ o? Py — O
Cqg 06 0z c.q P2

af _(ei—eq—s) (e. 8q s>1_1V<ei—eq s>2
Ciq Ciq Cq 'Cq/ Cq Cig Cq

__C-2W< Ci ’C‘)’
iq q Iq

where the functioWV is defined in (67). Similarly,

+

0z fyi Cig Cq Caq/
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If r(i) =r(q), then we use (92) and (94) to calculate

a(af;/aa> _—0? A-B
0z fig g (cb(s’(ii’eq))—cb(’e’(fi’eq))f’
where
1 €—(6,—0q) —£—(6i —06y)

€—(8—8g) €—(6i—6g), —€—(B—6g) —€—(6—6g)

< Ciq o Ciq ) Cig o Ciq ) >
e (6 8) (60 \2

_;1 €— (9 —0Uq _ —€— (Ui —Uq
o= Ciq (q)( Ciq )~ Ciq )> .

Hence

= (%)

S*(Sife ) s—(ei—e ) 787(ei79 ) 787(9i79 )
_—Giz Cig 4 ( Cig : ) - Ciq : (p( Ciq 4 ) +\7 ei — eq i 2 (97)
- C-2 £—(6i—06q) —£—(8;—6q) C e
2 (L) g 18 0 G
¢4 Cq Cq/’

where the functioWV is defined in (69). Combining (95), (96), and (97), the update rulefas

0i2<—0i2<1—<q(z G—?W(”q_u i)+ > ij(p@—pq i)

) )

r(@)<r(i) G4 CGog  CGa  qr(d=ri cl Cg  Cig
o2~ MW—Hg €
or(@)=T(i). a4 i ig  Ciq

Appendix F. Derivations of Update Rulesfor the Plackett-L uce M odel
Using f(z) and f4(z) defined in (72),

Se O\ VA
fq(z) = Wa ;

0fy/0z ologfqy 1 (0(8g/c) 010g(Ssec,€™/%) 96i
fq 0z Aq\ 08, 26, 0z
6i/c . .

:CZ —5 o @ <ri)a#i )

0 if r(q) >r(i).

SO
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From (38), the update rule is
Mi < M + Qi>
where

< 0fy(2)/02
o= qzl fq(Z) z=0

o’ (1 gh/e 1 eHle
= la\tsoaee) T 2 TAS. e
CAAN 2@ qoufoer) Ao Xsec,®"

To updateo, similar to (59), we must calculate

0 [0fq/0z
M( 5 ),Vq. (99)

From (98), ifi € Cq, then

i s 8i/c _ (B
(99):_ Oj < 0 eel/C > ael O.i2 (ZSéqu /C)e /c (e /C)Z

% 08 25cCq e5s/c | 9z N c?Aq (Zsecq efs/c)2

B o-|2 eei/C 1 eei/C
7C2Aq ZSEquBS/C ZSEqueS/C .

The update rule foo? is

1 ghi/c ghi/c

2 2

or o (1_ > C2Aq T sec, €9/C (1_ 3 eus/c>>'
qr(a)<r(i) seCq scCq
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