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Abstract

This paper describes a Bayesian approximation method to obtain online ranking algorithms for
games with multiple teams and multiple players. Recently for Internet games large online ranking
systems are much needed. We consider game models in which ak-team game is treated as several
two-team games. By approximating the expectation of teams’(or players’) performances, we derive
simple analytic update rules. These update rules, without numerical integrations, are very easy to
interpret and implement. Experiments on game data show thatthe accuracy of our approach is
competitive with state of the art systems such as TrueSkill,but the running time as well as the code
is much shorter.

Keywords: Bayesian inference, rating system, Bradley-Terry model, Thurstone-Mosteller model,
Plackett-Luce model

1. Introduction

Many have proposed online updating algorithms for paired comparison experiments. These online
algorithms are especially useful when the number of teams to be ranked and the number of games are
very large. For the ranking of many sports, possibly the most prominent ranking system in use today
is Elo (1986). The Elo ranking system has been used successfully by leagues organized around two-
player games, such as world football league, the US Chess Federation (USCF) or the World Chess
Federation (FIDE), and a variety of others. Glickman (1999) proposedthe Glicko updating system,
which improves over Elo by incorporating the variability in parameter estimates. To the best of
our knowledge, Glicko is the first Bayesian ranking system. To begin, prior to a rating period, a
player’s skill (θ) is assumed to follow a Gaussian distribution which can be characterized by two
numbers: the average skill of the player (µ) and the degree of uncertainty in the player’s skill (σ).
Then, Glicko models the game outcomes by the Bradley-Terry model (Bradleyand Terry, 1952) and
updates players’ skills after a rating period. Glickman (1999) also reported that the Glicko system
performs best when the number of games per player is around 5-10 in a rating period. Though
the Elo and Glicko ranking systems have been successful, they are designed for two-player games.
In video games a game often involves more than two players or teams. To address this problem,
recently Microsoft Research developed TrueSkill (Herbrich et al., 2007), a ranking system for Xbox
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Live. TrueSkill is also a Bayesian ranking system using a Gaussian beliefover a player’s skill,
but it differs from Glicko in several ways. First, it is designed for multi-team/multi-player games,
and it updates skills after each game rather than a rating period. Secondly,Glicko assumes that
the performance difference follows the logistic distribution (the model is termedthe Bradley-Terry
model), while TrueSkill uses the Gaussian distribution (termed the Thurstone-Mosteller model).
Moreover, TrueSkill models the draws and offers a way to measure the quality of a game between
any set of teams. The way TrueSkill estimates skills is by constructing a graphical model and using
approximate message passing. In the easiest case, a two-team game, the TrueSkill update rules are
fairly simple. However, for games with multiple teams and multiple players, the updaterules are
not possible to write down as they require an iterative procedure.

The present paper concerns the ranking of players from outcomes ofmultiple players or games.
We consider ak-team game as a single match and discuss the possibility of obtaining efficient
update algorithms. We introduce a Bayesian approximation method to derive simple analytic rules
for updating team strength in multi-team games. These update rules avoid a numerical integration
and are easy to interpret and implement. Strength of players in a team are thenupdated by assuming
that a team’s skill is the sum of skills of ts members. Our framework can be applied by considering
various ranking models. In this paper, we demonstrate the use of the Bradley-Terry model, the
Thurstone-Mosteller model, and the Plackett-Luce model. Experiments on gamedata show that the
accuracy of our approach is competitive with the TrueSkill ranking system,but the running time as
well as the code are shorter. Our method is faster because we employ analytic update rules rather
than iterative procedures in TrueSkill.

The organization of this paper is as follows. In Section 2, we briefly reviewthe modeling of
ranked data. Section 3 presents our approximation method and gives update equations of using the
Bradley-Terry model. Update rules of using other ranking models are given in Section 4. As Glicko
is also based on the Bradley-Terry model, for a comparison purpose we describe its approximation
procedures in Section 5. Experimental studies are provided in Section 6. Section 7 concludes the
paper. Some notation is given in Table 1.

2. Review of Models and Techniques

This section reviews existing methods for modeling ranked data and discusses approximation tech-
niques for Bayesian inference.

2.1 Modeling Ranked Data

Given the game outcome ofk teams, we definer(i) as the rank of teami. If teamsi1, . . . , id are tied
together, we have

r(i1) = · · ·= r(id),

and let the teamq ranked next have
r(q) = r(i1)+d.

For example, if four teams participate in a game, their ranks may be

r(1) = 2, r(2) = 2, r(3) = 4, r(4) = 1, (1)

where teams 1 and 2 are both ranked the second. Then team 3, which ranked the next, hasr(3) = 4.
We also need the “inverse” ofr, so that ¯r(i) indicates the index of theith ranked team. However, the
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Notation Explanation
k number of teams participating in a game
ni number of players in teami
θi j strength of thejth player in teami
N(µi j ,σ2

i j ) prior distribution ofθi j

Zi j standardized quantity ofθi j ; see (45)
θi strength of teami; θi = ∑ni

j=1 θi j

β2
i uncertainty about the performance of teami

Xi performance of teami (Xi ∼ N(θi ,β2
i ) for Thurstone-Mosteller model)

N(µi ,σ2
i ) prior distribution ofθi

µi ∑ni
j=1µi j

σ2
i ∑ni

j=1 σ2
i j

Zi standardized quantity ofθi ; see (24)
r(i) rank of teami in a game; smaller is better; see Section 2.1
r̄(i): index of theith ranked team; “inverse” ofr; see Section 2.1
ε draw margin (Thurstone-Mosteller model)
φ probability density function of a standard normal distribution; see (66)
Φ cumulative distribution function of a standard normal distribution
φk probability density function of ak-variate standard normal distribution
Φk cumulative distribution function of ak-variate standard normal distribution
κ a small positive value to avoidσ2

i becoming negative; see (28) and (44)
D the game outcome
E(·) expectation with respect to a random variable

Table 1: Notation

functionr is not one-to-one if ties occur, so the inverse is not directly available. We choose ¯r to be
any one-to-one mapping from{1, . . . ,k} to {1, . . . ,k} satisfying

r(r̄(i))≤ r(r̄(i+1)),∀i. (2)

For example, ifr is as in Equation (1), then ¯r could be

r̄(1) = 4, r̄(2) = 1, r̄(3) = 2, r̄(4) = 3.

We may have ¯r(2) = 2 and ¯r(3) = 1 instead, though in this paper choosing any ¯r satisfying (2) is
enough.

A detailed account of modeling ranked data is by Marden (1995). For simplicity, in this section
we assume that ties do not occur though ties are handled in later sections. Two most commonly used
models for ranked data are the Thurstone-Mosteller model (Thurstone, 1927) and the Bradley-Terry
model. Suppose that each team is associated with a continuous but unobserved random variableXi ,
representing the actual performance. The observed ordering that team r̄(1) comes in first, team ¯r(2)
comes in second and so on is then determined by theXi ’s:

Xr̄(1) > Xr̄(2) > · · ·> Xr̄(k). (3)
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Thurstone (1927) invented (3) and proposed using the normal distribution. The resulting likelihood
associated with (3) is

P(Xr̄(1)−Xr̄(2) > 0, . . . ,Xr̄(k−1)−Xr̄(k) > 0), (4)

whereXr̄(i)−Xr̄(i+1) follows a normal distribution. In particular, ifk = 2 andXi follows N(θi ,β2
i ),

whereθi is the strength of teami andβ2
i is the uncertainty of the actual performanceXi , then

P(Xi > Xq) = Φ




θi−θq
√

β2
i +β2

q



 , (5)

whereΦ denotes the cumulative distribution function of a standard normal density.
Numerous papers have addressed the ranking problem using models like (5). However, most

of them consider an off-line setting. That is, they obtain the likelihood using all available data and
maximize the likelihood. Such an approach is suitable if data are not large. Recent attempts to
extend this off-line approach to multiple players and multiple teams include Huang et al. (2006).
However, for large systems which constantly have results being added/dropped, an online approach
is more appropriate.

The Elo system is an online rating scheme which models the probability of game output as (5)
with βi = βq and, after each game, updates the strengthθi by

θi ← θi +K(s−P(i wins)), (6)

whereK is some constant, ands= 1 if i wins and 0 otherwise. This formula is a very intuitive way
to update strength after a game. More discussions of (6) can be seen in, for example, Glickman
(1999). The Elo system with the logistic variant corresponds to the Bradley-Terry model (Bradley
and Terry, 1952). The Bradley-Terry model for paired comparisonshas the form

P(Xi > Xq) =
vi

vi +vq
, (7)

wherevi > 0 is the strength of teami. The model (7) dates back to Zermelo (1929) and can be
derived in several ways. For instance, it can be obtained from (3) byletting Xi follow a Gumbel
distribution with the cumulative distribution function

P(Xi ≤ x) = exp(−exp(−(x−θi))), whereθi = logvi .

ThenXi−Xq follows a logistic distribution with the cumulative distribution function

P(Xi−Xq≤ x) =
eθq

eθi−x+eθq
. (8)

Usingx= 0 andP(Xi >Xq)= 1−P(Xi ≤Xq), we obtain (7). In fact, most currently used Elo variants
for chess data use a logistic distribution rather than Gaussian because it is argued that weaker players
have significantly greater winning chances than the Gaussian model predicts.1 Figure 1 showsi’s
winning probabilityP(Xi > Xq) against the skill differenceθi −θq for the two models (5) and (8).
The (β2

i + β2
q)

1/2 in (5) are set as 4/
√

2π ≈ 1.6 so that the two winning probability curves have
the same slope atθi = θq. Clearly, given that the two models closely match when two teams have
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Figure 1: Winning probabilityP(Xi > Xq). Solid (blue): Gaussian distribution (5), Dashed (black):
logistic distribution (8).

about the same skill levels, the logistic model gives a weak teami a higher winning chance than the
Gaussian model does.

In addition to Elo and Glicko, other online systems have been proposed. Forexample, Menke
and Martinez (2008) propose using Artificial Neural Networks. Though this approach can handle
multiple players per team, it aims to handle only two teams per game.

For comparisons involvingk≥ 3 teams per game, the Bradley-Terry model has been generalized
in various ways. The Plackett-Luce model (Marden, 1995) is one of such models. This model,
motivated by ak-horse race, has the form

P(r̄(1), . . . , r̄(k)) =
eθr̄1

eθr̄1 + · · ·+eθr̄k
× eθr̄2

eθr̄2 + · · ·+eθr̄k
×·· ·× eθr̄k

eθr̄k
. (9)

An intuitive explanation of this model is a multistage ranking in which one first chooses the most
favorite, then chooses the second favorite out of the remaining, etc.

Whenk≥ 3, as theXr̄(i)−Xr̄(i+1)’s in (4) are dependent, the calculation of the joint probabil-
ity (4) involves a(k−1)-dimensional integration, which may be difficult to calculate. Therefore,
TrueSkill uses a factor graph and the approximate message passing (Kschischang et al., 2001) to
infer the marginal belief distribution over the skill of each team. In fact, some messages in the fac-
tor graph are non Gaussian and these messages are approximated via momentmatching, using the
Expectation Propagation algorithm (Minka, 2001).

2.2 Approximation Techniques for Bayesian Inference

From a Bayesian perspective, both the observed data and the model parameters are considered
random quantities. LetD denote the observed data, andθ the unknown quantities of interest. The
joint distribution ofD andθ is determined by the prior distributionP(θ) and the likelihoodP(D|θ):

P(D,θ) = P(D|θ)P(θ).

1. According tohttp://en.wikipedia.org/wiki/Elo_rating_system , USCF and FIDE use formulas based on the
logistic distribution.
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After observingD, Bayes theorem gives the distribution ofθ conditional onD:

P(θ|D) =
P(θ,D)

P(D)
=

P(θ,D)∫
P(θ,D)dθ

.

This is theposterior distributionof θ, which is useful for estimation. Quantities about the posterior
distribution such as moments, untiles, etc can be expressed in terms of posterior expectations of
some functionsg(θ); that is,

E[g(θ)|D] =

∫
g(θ)P(θ,D)dθ∫

P(θ,D)dθ
. (10)

The probabilityP(D), calledevidenceor marginal likelihoodof the data, is useful for model selec-
tion. BothP(θ|D) andP(D) are major objects of Bayesian inference.

The integrations involved in Bayesian inference are usually intractable. The approximation
techniques can be divided into deterministic and nondeterministic methods. The nondeterministic
method refers to the Monte Carlo integration such as Markov Chain Monte Carlo (MCMC) methods,
which draw samples approximately from the desired distribution and forms sample averages to
estimate the expectation. However, when it comes to sequential updating with new data, the MCMC
methods may not be computationally feasible, the reason being that it does notmake use of the
analysis from the previous data; see, for example, Section 2.8 in Glickman (1993).

The popular deterministic approaches include Laplace method, variational Bayes, expectation
propagation, among others. The Laplace method is a technique for approximating integrals:

∫
en f(x)dx≈

(
2π
n

) k
2

|−∇2 f (x0)|−
1
2 en f(x0),

wherex is k-dimensional,n is a large number,f : Rk→R is twice differentiable with a unique global
maximum atx0, and| · | is the determinant of a matrix. By writingP(θ,D) = exp(logP(θ,D)), one
can approximate the integral

∫
P(θ,D)dθ. This method has been applied in Bayesian statistics; for

example, see Tierney and Kadane (1986) and Kass and Raftery (1995).
The variational Bayes methods are a family of techniques for approximating these intractable

integrals. They construct a lower bound on the marginal likelihood and thentry to optimize this
bound. They also provide an approximation to the posterior distribution whichis useful for estima-
tion.

The Expectation Propagation algorithm (Minka, 2001) is an iterative approach to approximate
posterior distributions. It tries to minimize Kullback-Leibler divergence between the true posterior
and the approximated distribution. It can be viewed as an extension of assumed-density filtering to
batch situation. The TrueSkill system (Herbrich et al., 2007) is based on this algorithm.

Now we review an identity for integrals in Lemma 1 below, which forms the basis ofour approx-
imation method. Some definitions are needed. A functionf : Rk→R is called almost differentiable
if there exists a function∇ f : Rk→ Rk such that

f (z+y)− f (z) =
∫ 1

0
yT∇ f (z+ ty)dt (11)

for z,y ∈ Rk. Of course, a continuously differentiable functionf is almost differentiable with∇ f
equal to the gradient, and (11) is the indefinite integral in multi-dimensional case.
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Givenh : Rk→ R, let h0 =
∫

h(z)dΦk(z) be a constant,hk(z) = h(z),

h j(z1, . . . ,zj) =
∫

Rk− j
h(z1, . . . ,zj ,w)dΦk− j(w), and (12)

g j(z1, . . . ,zk) = ez2
j /2

∫ ∞

zj

[h j(z1, . . . ,zj−1,w)−h j−1(z1, . . . ,zj−1)]e
−w2/2dw, (13)

for −∞ < z1, . . . ,zk < ∞ and j = 1, . . . ,k. Then let

Uh= [g1, . . . ,gk]
T and Vh=

U2h+(U2h)T

2
, (14)

whereU2h is thek×k matrix whosejth column isUg j andg j is as in (13).
Let Γ be a measure of the form:

dΓ(z) = f (z)φk(z)dz, (15)

where f is a real-valued function (not necessarily non-negative) defined onRk.

Lemma 1 (W-Stein’s Identity) Suppose that dΓ is defined as in (15), where f is almost differen-
tiable. Let h be a real-valued function defined on Rk. Then,

∫
h(z)dΓ(z) =

∫
f (z)dΦk(z) ·

∫
h(z)dΦk(z)+

∫
(Uh(z))T∇ f (z)dΦk(z), (16)

provided all the integrals are finite.

Lemma 1 was given by Woodroofe (1989). The idea of this identity originatedfrom Stein’s
lemma (Stein, 1981), but the latter considers the expectation with respect to a normal distribution
(i.e., the integral

∫
h(z)dΦk(z)), while the former studies the integration with respect to a “nearly

normal distribution”Γ in the sense of (15). Stein’s lemma is famous and of interest because of its
applications to James-Stein estimator (James and Stein, 1961) and empirical Bayes methods.

The proof of this lemma is in Proposition 1 of Woodroofe (1989). For self-completeness, we
sketch it for the 1-dimensional case in Appendix A. Essentially the proof is based on exchanging
the order of integration (Fibini theorem), and it is the very idea for provingStein’s lemma. Due to
this reason, Woodroofe termed (16) a version of Stein’s identity. However, to distinguish it from
Stein’s lemma, here we refer to it as W-Stein’s identity.

Now we assume that∂ f/∂zj , j = 1, . . . ,k are almost differentiable. Then, by writing

(Uh(z))T∇ f (z) =
k

∑
i=1

gi(z)
∂ f (z)

∂zi

and applying (16) withh and f replacing bygi and∂ f/∂zi , we obtain

∫
gi

∂ f
∂zi

dΦk(z) = Φk(gi)
∫ ∂ f

∂zi
dΦk(z)+

∫
(U(gi))

T∇
(

∂ f
∂zi

)

dΦk(z), (17)

provided all the integrals are finite. Note thatΦk(gi) in the above equation is a constant defined as

Φk(gi) =
∫

gi(z)φk(z)dz.
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By summing up both sides of (17) overi = 1, . . . ,k, we can rewrite (16) as
∫

h(z) f (z)dΦk(z) =
∫

f (z)dΦk(z) ·
∫

h(z)dΦk(z)+(ΦkUh)T
∫

∇ f (z)dΦk(z)

+
∫

tr
[
(Vh(z))∇2 f (z)

]
dΦk(z); (18)

see Proposition 2 of Woodroofe and Coad (1997) and Lemma 1 of Weng and Woodroofe (2000).
HereΦkUh= (Φk(g1), ...,Φk(gk))

T , “tr” denotes the trace of a matrix, and∇2 f the Hessian matrix
of f . An extension of this lemma is in Weng (2010).

Let Z = [Z1, . . . ,Zk]
T be ak-dimensional random vector with the probability density

Cφk(z) f (z), (19)

where

C=

(∫
φk(z) f (z)dz

)−1

is the normalizing constant. Lemma 1 can be applied to obtain expectations of functions ofZ in the
following corollary.

Corollary 2 Suppose thatZ has probability density (19). Then,
∫

f dΦk =C−1 and Eh(Z) =
∫

h(z)dΦk(z)+E

[

(Uh(Z))T ∇ f (Z)
f (Z)

]

. (20)

Further, (18)and (20) imply

Eh(Z) =
∫

h(z)dΦk(z)+(ΦkUh)TE

[
∇ f (Z)
f (Z)

]

+E

[

tr

(

Vh(Z)
∇2 f (Z)

f (Z)

)]

. (21)

In particular, if h(z) = zi , then by (14) it followsUh(z) = ei (a function fromRk to Rk); and if
h(z) = zizj and i < j, thenUh(z) = zie j , where{e1, · · · ,ek} denote the standard basis forRk. For
example, ifk = 3 andh(z) = z1z2, thenUh(z) = [0,z1,0]T andU2h(z) is the matrix whose(1,2)
entry is 1 and the rest entries are zeros; see Appendix B for details. With these specialh functions,
(20) and (21) become

E[Z] = E

[
∇ f (Z)
f (Z)

]

, (22)

E[ZiZq] = δiq +E

[
∇2 f (Z)

f (Z)

]

iq
, i,q= 1, . . . ,k, (23)

whereδiq = 1 if i = q and 0 otherwise, and[·]iq indicates the(i,q) component of a matrix.
In the current context of online ranking, since the skillθ is assumed to follow a Gaussian distri-

bution, the update procedure is mainly for the mean and the variance. Therefore, (22) and (23) will
be useful. The detailed approximation procedure is in the next section.

3. Method

In this section, we first present our proposed method for updating team and individual skills. Then,
we give the detailed derivation for the Bradley-Terry model.
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3.1 Approximating the Expectations

Let θi be the strength parameter of teami whose ability is to be estimated. Bayesian online rating
systems such as Glicko and TrueSkill start by assuming thatθi has a prior distributionN(µi ,σ2

i )
with µi andσ2

i known, next model the game outcome by some probability models, and then update
the skill (by either analytic or numerical approximations of the posterior mean and variance ofθi)
at the end of the game. These revised mean and variance are consideredas prior information for the
next game, and the updating procedure is repeated.

Equations (22) and (23) can be applied to online skill updates. To start, suppose that teami has a
strength parameterθi and assume that the prior distribution ofθi is N(µi ,σ2

i ). Upon the completion
of a game, their skills are characterized by the posterior mean and varianceof θ = [θ1, . . . ,θk]

T . Let
D denote the result of a game andZ = [Z1, . . . ,Zk]

T with

Zi =
θi−µi

σi
, i = 1, . . . ,k, (24)

wherek is the number of teams. The posterior density ofZ given the game outcomeD is

P(z|D) =Cφk(z) f (z),

where f (z) is the probability of game outcomeP(D|z). Thus,P(z|D) is of the form (19). Subse-
quently we omitD in all derivations.

Next, we shall update the skill as the posterior mean and variance ofθ. Equations (22), (23) and
the relation betweenZi andθi in (24) give that

µnew
i =E[θi ] = µi +σiE[Zi ]

=µi +σiE

[
∂ f (Z)/∂Zi

f (Z)

]

(25)

and

(σnew
i )2 =Var[θi ] = σ2

i Var[Zi ]

=σ2
i

(
E[Z2

i ]−E[Zi ]
2)

=σ2
i

(

1+E

[
∇2 f (Z)

f (Z)

]

ii
−E

[
∂ f (Z)/∂Zi

f (Z)

]2
)

. (26)

The relation between the current and the new skills are explained below. Bychain rule and the
definition ofZi in (24), the second term on the right side of (25) can be written as

σiE

[
∂ f (Z)/∂Zi

f (Z)

]

= E

[
∂ f (Z)/∂θi

f (Z)

]

= E

[
∂ log f (Z)

∂θi

]

,

which is the average of the relative rate of change off (the probability of game outcome) with
respect to strengthθi . For instance, suppose that team 1 beats team 2. Then, the largerθ1 is, the
more likely we have such an outcome. Hence,f is increasing inθ1, and the adjustment to team
1’s skill is the average of the relative rate of change of team 1’s winning probability with respect
to its strengthθ1. On the other hand, a largerθ2 is less likely to result in this outcome; hence,f is
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decreasing inθ2 and the adjustment to team 2’s skill will be negative. Similarly, we can write the
last two terms on the right side of (26) as

σ2
i

(

E

[
∇2 f (Z)

f (Z)

]

ii
−E

[
∂ f (Z)/∂Zi

f (Z)

]2
)

= E

[
∂2 log f (Z)

∂θ2
i

]

,

which is the average of the rate of change of∂(log f )/∂θi with respect toθi .

We propose approximating expectations in (25) and (26) to obtain the updaterules:

µi ← µi +Ωi , (27)

σ2
i ← σ2

i max(1−∆i ,κ), (28)

where

Ωi = σi
∂ f (z)/∂zi

f (z)

∣
∣
∣
∣
z=0

(29)

and

∆i =−
∂2 f (z)/∂2zi

f (z)

∣
∣
∣
∣
z=0

+

(
∂ f (z)/∂zi

f (z)

∣
∣
∣
∣
z=0

)2

=− ∂
∂zi

(
∂ f (z)/∂zi

f (z)

)∣
∣
∣
∣
z=0

. (30)

We setz = 0 so thatθ is replaced byµ. Such a substitution is reasonable as we expect that the
posterior density ofθ to be concentrated onµ. Then the right-hand sides of (27)-(28) are functions
of µ andσ, so we can use the current values to obtain new estimates. Due to the approximation (30),
1−∆i may be negative. Hence in (28) we set a small positive lower boundκ to avoid a negativeσ2

i .
Further, we find that the prediction results may be affected by how fast thevarianceσ2

i is reduced
in (28). More discussion on this issue is in Section 3.5.

3.2 Error Analysis of the Approximation

This section discusses the error induced by evaluating the expectations in (25) and (26) at a single
z = 0, and then suggests a correction by including the prior uncertainty of skillin the variance
of the actual performance. For simplicity, below we only consider a two-teamgame using the
Thurstone-Mosteller model. Another reason of using the Thurstone-Mosteller model is that we can
exactly calculate the posterior probability. To begin, suppose that the variance ofith team’s actual
performance isβ2

i . Then, for the Thurstone-Mosteller model, the joint posterior density of(θ1,θ2)
is proportional to

φ
(

θ1−µ1

σ1

)

φ
(

θ2−µ2

σ2

)

Φ




θ1−θ2
√

β2
1+β2

2



 ,
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and the marginal posterior density ofθ1 is proportional to

∫ ∞

−∞
φ
(

θ1−µ1

σ1

)

φ
(

θ2−µ2

σ2

)

Φ




θ1−θ2
√

β2
1+β2

2



dθ2

= φ
(

θ1−µ1

σ1

)∫ ∞

−∞
φ
(

θ2−µ2

σ2

)∫ θ1

−∞

1
√

2π(
√

β2
1+β2

2)
e
− (y−θ2)

2

2(β2
1+β2

2) dydθ2

= σ2φ
(

θ1−µ1

σ1

)

Φ




θ1−µ2

√

β2
1+β2

2+σ2
2



 , (31)

where the last two equalities are obtained by writing the functionΦ(·) as an integral ofφ (see (66))
and then interchanging the orders of the double integral. From (31), the posterior mean ofθ1 given
D is

E(θ1) =

∫ ∞
−∞ θ1φ(θ1−µ1

σ1
)Φ( θ1−µ2√

β2
1+β2

2+σ2
2

)dθ1

∫ ∞
−∞ φ(θ1−µ1

σ1
)Φ( θ1−µ2√

β2
1+β2

2+σ2
2

)dθ1
. (32)

Again, by writing the functionΦ(·) as an integral and interchanging the orders of the integrals, we
obtain that the numerator and the denominator of the right side of (32) are respectively

Φ




µ1−µ2

√

∑2
i=1(β2

i +σ2
i )







µ1+
σ2

1
√

∑2
i=1(β2

i +σ2
i )

φ( µ1−µ2√
∑2

i=1(β2
i +σ2

i )
)

Φ( µ1−µ2√
∑2

i=1(β2
i +σ2

i )
)





and

Φ




µ1−µ2

√

∑2
i=1(β2

i +σ2
i )



 .

Therefore, the exact posterior mean ofθ1 is

E(θ1) = µ1+
σ2

1
√

∑2
i=1(β2

i +σ2
i )

φ
(

µ1−µ2√
∑2

i=1(β2
i +σ2

i )

)

Φ
(

µ1−µ2√
∑2

i=1(β2
i +σ2

i )

) . (33)

Now we check our estimation. According to (25), (27), and (29),

E(θ) =µ1+σ1E

[
∂ f (Z)/∂Z1

f (Z)

]

(34)

≈µ1+σ1
∂ f (z)/∂z1

f (z)

∣
∣
∣
∣
z=0

, (35)

where

f (z) = Φ




θ1−θ2
√

β2
1+β2

2



 andzi =
θi−µi

σi
, i = 1,2.
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The derivation later in (93) shows that (35) leads to the following estimation for E(θ1):

µ1+
σ2

1
√

β2
1+β2

2

φ
(

µ1−µ2√
β2

1+β2
2

)

Φ
(

µ1−µ2√
β2

1+β2
2

) . (36)

The only difference between (33) and (36) is that the former usesβ2
1+β2

2+σ2
1+σ2

2, while the latter
hasβ2

1+β2
2. Therefore, the approximation from (34) to (35) causes certain bias. We can correct the

error by substitutingβ2
i with β2

i +σ2
i when using our approximation method. In practice, we use

β2
i = β2+σ2

i , whereβ2 is a constant.
The above arguments also apply to the Bradley-Terry model. We leave the details in Appendix

C.

3.3 Modeling Game Outcomes by Factorization

To derive update rules using (27)-(30), we must definef (z) and then calculateΩi ,∆i . Suppose that
there arek teams in a game. We shall consider models for which thef (z) in (19) can be factorized
as

f (z) =
m

∏
q=1

fq(z) (37)

for somem> 0. If fq(z) involves only several elements ofz, the above factorization may lead to an
easier gradient and Hessian calculation in (22) and (23). The expectation on the right side of (22)
involves the following calculation:

∂ f/∂zi

f
=

∂ log∏m
q=1 fq(z)

∂zi
=

m

∑
q=1

∂ log fq(z)
∂zi

=
m

∑
q=1

∂ fq/∂zi

fq
. (38)

Then all we need is to ensure that calculating∂ fq/∂zi

fq
is feasible.

Clearly the Plackett-Luce model (9) has the form of (37). However, the Thurstone’s model
(3) with the Gaussian distribution can hardly be factorized into the form (37). The main reason
is that the probability (4) of a game outcome involves a(k−1)-dimensional integration, which is
intractable. One may address this problem by modeling ak-team game outcome as(k−1) two-team
games (between all teams on neighboring ranks); that is,

f (z) =
k−1

∏
i=1

P(outcome between teams rankedith and(i+1)st). (39)

Alternatively, we may consider the game result ofk teams ask(k−1)/2 two-team games. Then

f (z) =
k

∏
i=1

k

∏
q=i+1

P(outcome between teami and teamq). (40)

Both (39) and (40) are of the form (37). In Section 3.5, we shall demonstrate the calculation to
obtain update rules. Subsequently we refer to (39) as thepartial-pair approach, while (40) as the
full-pair approach.
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3.4 Individual Skill Update

Now, we consider the case where there are multiple players in each team. Suppose that theith team
hasni players, thejth player in theith team has strengthθi j , and the prior distribution ofθi j is
N(µi j ,σ2

i j ). Let θi denote the strength of theith team. As in Huang et al. (2006) and Herbrich et al.
(2007), we assume that a team’s skill is the sum of its members’ skills. Thus,

θi =
ni

∑
j=1

θi j for i = 1, . . . ,k, (41)

and the prior distribution ofθi is

θi ∼ N(µi ,σ2
i ), whereµi =

ni

∑
j=1

µi j andσ2
i =

ni

∑
j=1

σ2
i j . (42)

Similar to (27)-(28), we propose updating the skill of thejth player in teami by

µi j ← µi j +
σ2

i j

σ2
i

Ωi , (43)

σ2
i j ← σ2

i j max

(

1−
σ2

i j

σ2
i

∆i ,κ

)

, (44)

whereΩi and∆i are defined in (29) and (30), respectively andκ is a small positive value to ensure
a positiveσ2

i j . Equations (43) and (44) say thatΩi , the mean skill change of teami, is partitioned
to ni parts with the magnitude proportional toσ2

i j . These rules can be obtained from the following
derivation. LetZi j be the normalized quantity of the random variableθi j ; that is,

Zi j = (θi j −µi j )/σi j . (45)

As in (27), we could updateµi j by

µi j ← µi j +σi j
∂ f̄ (z̄)/∂zi j

f̄

∣
∣
∣
∣
z̄=0

, (46)

where f̄ (z̄) is the probability of game outcomes and

z̄ = [z11, . . . ,z1n1, . . . ,zk1, . . . ,zknk]
T .

Since we assume a team’s strength is the sum of its members’, from (24), (41), (42), and (45) we
have

Zi =
θi−µi

σi
=

∑ j σi j Zi j

σi
; (47)

hence, it is easily seen that̄f (z̄) is simply a reparametrization off (z) (defined in Section 3.1):

f (z) = f

(
n1

∑
j=1

σ1 jz1 j

σ1
, . . . ,

nk

∑
j=1

σk jzk j

σk

)

= f̄ (z̄)
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With (47),
∂ f̄ (z̄)
∂zi j

=
∂ f (z)

∂zi
· ∂zi

∂zi j
=

σi j

σi

∂ f (z)
∂zi

and (46) becomes

µi j ← µi j +
σ2

i j

σ2
i

·σi
∂ f (z)/∂zi

f

∣
∣
∣
∣
z=0

.

Following the definition ofΩi in (29) we obtain the update rule (43), which says that within teami
the adjustment toµi j is proportional toσ2

i j . The update rule (44) for the individual variance can be
derived similarly.

3.5 Example: Bradley-Terry Model (Full-pair)

In this section, we consider the Bradley-Terry model and derive the update rules using the full-pair
setting in (40). Following the discussion in Equations. (7)-(8), the differenceXi −Xq between two
teams follows a logistic distribution. However, by comparing the Thurstone-Mosteller model (5)
and the Bradley-Terry model (7), clearly the Bradley-Terry model lacks variance parametersβ2

i and
β2

q, which account for the performance uncertainty. We thus extend the Bradley-Terry model to
include variance parameters; see Appendix C. The resulting model is

P(teami beatsq)≡ fiq(z) =
eθi/ciq

eθi/ciq +eθq/ciq
, (48)

where
c2

iq = β2
i +β2

q andθi = µi +σizi .

The parameterβi is the uncertainty about the actual performanceXi . However, in the model specifi-
cation, the uncertainty ofXi is not related toσi . Following the error analysis of the approximation in
Section 3.2 for the Thurstone-Mosteller model, we show in Appendix C thatσ2

i can be incorporated
to

β2
i = σ2

i +β2,

whereβ2 is some positive constant.
There are several extensions to the Bradley-Terry model incorporating ties. In Glicko (Glick-

man, 1999), a tie is treated as a half way between a win and a loss when constructing the likelihood
function. That is,

P(i draws withq) = (P(i beatsq)P(q beatsi))1/2

=
√

fiq(z) fqi(z).
(51)

By considering all pairs, the resultingf (z) is (40). To obtain update rules (27)-(28), we need to
calculate∂ f/∂zi . We see that terms related tozi in the product form of (40) are

P(outcome ofi andq),∀q= 1, . . . ,k,q 6= i. (52)

With (38) and (51),

∂ f/∂zi

f
(53)

= ∑
q:r(q)<r(i)

∂ fqi/∂zi

fqi
+ ∑

q:r(q)>r(i)

∂ fiq/∂zi

fiq
+

1
2 ∑

q:r(q)=r(i),q6=i

(
∂ fqi/∂zi

fqi
+

∂ fiq/∂zi

fiq

)

.
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Algorithm 1 Update rules using the Bradley-Terry model with full-pair

1. Given a game result and the currentµi j ,σ2
i j ,∀i,∀ j. Givenβ2 andκ > 0. Decide a way to set

γq in (50)

2. Fori = 1, . . . ,k, set

µi =
ni

∑
j=1

µi j , σ2
i =

ni

∑
j=1

σ2
i j .

3. Fori = 1, . . . ,k,

3.1. Team skill update: obtainΩi and∆i in (27) and (28) by the following steps.

3.1.1. Forq= 1, . . . ,k,q 6= i,

ciq = (σ2
i +σ2

q+2β2)1/2, p̂iq =
eµi/ciq

eµi/ciq +eµq/ciq
, (49)

δq =
σ2

i

ciq
(s− p̂iq), ηq = γq

( σi

ciq

)2
p̂iq p̂qi, wheres=







1 if r(q)> r(i),

1/2 if r(q) = r(i),

0 if r(q)< r(i).

(50)

3.1.2. Calculate

Ωi = ∑
q:q6=i

δq, ∆i = ∑
q:q6=i

ηq.

3.2. Individual skill update

For j = 1, . . . ,ni ,

µi j ← µi j +
σ2

i j

σ2
i

Ωi , σ2
i j ← σ2

i j max

(

1−
σ2

i j

σ2
i

∆i ,κ

)

.

Using (24) and (48), it is easy to calculate that

∂ fqi

∂zi
=

−eθi/ciqeθq/ciq

ciq(eθi/ciq +eθq/ciq)2
· ∂θi

∂zi
=
−σi

ciq
fiq fqi (54)

and
∂ fiq
∂zi

=
(eθi/ciq +eθq/ciq)eθi/ciq−eθi/ciqeθi/ciq

ciq(eθi/ciq +eθq/ciq)2
·σi =

σi

ciq
fiq fqi.

Therefore, an update rule following (27) and (29) is

µi ← µi +Ωi , (55)

where

Ωi = σ2
i

(

∑
q:r(q)<r(i)

−p̂iq

ciq
+ ∑

q:r(q)>r(i)

p̂qi

ciq
+

1
2 ∑

q:r(q)=r(i),q6=i

(−p̂iq

ciq
+

p̂qi

ciq

))

(56)
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and

p̂iq ≡
eµi/ciq

eµi/ciq +eµq/ciq
(57)

is an estimate ofP(teami beats teamq). Sincep̂iq + p̂qi = 1, (56) can be rewritten as

Ωi = ∑
q:q6=i

σ2
i

ciq
(s− p̂iq), wheres=







1 if r(q)> r(i),
1
2 if r(q) = r(i),

0 if r(q)< r(i).

(58)

To apply (26) and (30) for updatingσi , we use (53) to obtain

∂
∂zi

(
∂ f/∂zi

f

)

= ∑
q:r(q)<r(i)

∂
∂zi

(
∂ fqi/∂zi

fqi

)

+ ∑
q:r(q)>r(i)

∂
∂zi

(
∂ fiq/∂zi

fiq

)

(59)

+
1
2 ∑

q:r(q)=r(i),q6=i

(
∂

∂zi

(
∂ fqi/∂zi

fqi

)

+
∂

∂zi

(
∂ fiq/∂zi

fiq

))

.

From (54),
∂

∂zi

(
∂ fqi/∂zi

fqi

)

=
∂(− fiq/ciq)

∂zi
=−σ2

i

c2
iq

fiq fqi

and similarly
∂

∂zi

(
∂ fiq/∂zi

fiq

)

=−σ2
i

c2
iq

fiq fqi. (60)

From (30), by settingz = 0, ∆i should be the sum of (60) over allq 6= i. However, we mentioned
in the end of Section 3.1 that controlling the reduction ofσ2

i is sometimes important. In particular,
σ2

i should not be reduced too fast. Hence we introduce an additional parameterγq so that the update
rule is

σ2
i ← σ2

i max

(

1− ∑
q:q6=i

γqξq,κ

)

,

where

ξq =
σ2

i

c2
iq

p̂iq p̂qi

is from (60) andγq≤ 1 is decided by users; further discussions on the choice ofγq are in Section 6.
Algorithm 1 summarizes the procedure.

The formulas (55) and (58) resemble the Elo system. The Elo treatsθi as nonrandom and its
update rule is in (6):

θi ← θi +K(s− p∗iq),

whereK is a constant (e.g.,K = 32 in the USCF system for amateur players) and

p∗iq =
10θi/400

10θi/400+10θq/400

is the approximate probability thati beatsq; see Equations. (11) and (12) in Glickman (1999). Ob-
serve thatp∗iq is simply a variance free and reparameterized version of ˆpiq in (57). As for Glicko, it is
a Bayesian system but designed for paired comparisons over a rating period. Detailed comparisons
with Glicko are in Section 5.
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Algorithm 2 Update rules using the Bradley-Terry model with partial-pair
The procedure is the same as Algorithm 1 except Step 3:

3. Let r̄(a),a= 1, . . . ,k be indices of teams ranked from the first to the last

For a= 1, . . . ,k,

3.1. Team skill update: leti ≡ r̄(a) and obtainΩi and∆i in (27) and (28) by the following
steps.

3.1.1. Define a setQ as

Q≡







{r̄(a+1)} if a= 1,

{r̄(a−1)} if a= k,

{r̄(a−1), r̄(a+1)} otherwise.

(61)

Forq∈Q
Calculateδq,ηq by the same way as (49)-(50) of Algorithm 1.

3.1.2. Calculate
Ωi = ∑

q∈Q

δq and ∆i = ∑
q∈Q

ηq. (62)

3.2 Individual skill update: same as Algorithm 1.

4. Update Rules Using Other Ranking Models

If we assume different distributions of the team performanceXi or model the game results by other
ways than the Bradley-Terry model, the same framework in Sections 3.1-3.3 can still be applied. In
this section, we present several variants of our proposed method.

4.1 Bradley-Terry Model (Partial-pair)

We now consider the partial-pair approach in (39). With the definition of ¯r in (2), the functionf (z)
can be written as

f (z) =
k−1

∏
a=1

f̄r̄(a)r̄(a+1)(z), (63)

where we definēfr̄(a)r̄(a+1)(z) as follows:

i ≡ r̄(a), q≡ r̄(a+1),

f̄iq =

{

fiq if r(i)< r(q),
√

fiq fqi if r(i) = r(q).
(64)

Note that fiq and fqi are defined in (48) of Section 3.5. Since the definition of ¯r in (2) ensures
r(i)≤ r(q), in (64) we do not need to handle the case ofr(i)> r(q). By a derivation similar to that
in Section 3.5, we obtain update rules in Algorithm 2. Clearly, Algorithm 2 differs from Algorithm
1 in only Step 3. The reason is that∂ f (z)/∂zi is only related to game outcomes between ¯r(a) and
teams of adjacent ranks, ¯r(a−1) and ¯r(a+1). In (61), we letQ be the set of these teams. Thus,
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Q contains at most two elements, andΩi and∆i in (62) are calculated usingδq andηq with q∈ Q.
Details of the derivation are in Appendix D.

4.2 Thurstone-Mosteller Model (Full-pair and Partial-pair)

In this section, we consider the Thurstone-Mosteller model by assuming thatthe actual performance
of teami is

Xi ∼ N(θi ,β2
i ),

whereβ2
i = σ2

i +β2 as in Section 3.5. The performance differenceXi−Xq follows a normal distri-
butionN(θi−θq,c2

iq) with c2
iq = σ2

i +σ2
q+2β2. If one considers partial pairs

P(teami beats teamq) = P(Xi > Xq) = Φ
(

θi−θq

ciq

)

and uses (51) to obtainP(i draws withq), then a derivation similar to that for the Bradley-Terry
model leads to certain update rules. Instead, here we follow Herbrich et al. (2007) to letε be the
draw margin that depends on the game mode and assume that the probabilities that i beatsq and a
draw occurs are respectively

P(teami beats teamq) = P(Xi > Xq+ ε) = Φ
(

θi−θq− ε
ciq

)

and

P(teami draws withq) = P(|Xi−Xq|< ε)

=Φ
(

ε− (θi−θq)

ciq

)

−Φ
(−ε− (θi−θq)

ciq

)

.
(65)

We can then obtainf (z) using the full-pair setting (40). The way to derive update rules is similar to
that for the Bradley-Terry model though some details are different. We summarize the procedure in
Algorithm 3. Detailed derivations are in Appendix E.

Interestingly, ifk = 2 (i.e., two teams), then the update rules (ifi beatsq) in Algorithm 3 are
reduced to

µi ←µi +
σ2

i

ciq
V

(
µi−µq

ciq
,

ε
ciq

)

,

µq←µq−
σ2

q

ciq
V

(
µi−µq

ciq
,

ε
ciq

)

,

where the functionV is defined in (67). These update rules are the same as the case ofk = 2
in the TrueSkill system (seehttp://research.microsoft.com/en-us/projects/truesk ill/
details.aspx ).

As a comparison, we note that TrueSkill considers partial-pair and obtainsplayers’ skills by a
factor graph and the approximate message passing. In fact, some messages in the factor graph are
non Gaussian and these messages are approximated via moment matching, usingthe Expectation
Propagationalgorithm (Minka, 2001). Their algorithm is effective, but simple update rules are not
available for the cases of multiple teams/players.
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Algorithm 3 Update rules using Thurstone-Mosteller model with full-pair
The procedure is the same as Algorithm 1 except Step 3.1.1:

3.1.1 Forq= 1, . . . ,k;q 6= i,

δq =
σ2

i

ciq
×







V(
µi−µq

ciq
, ε

ciq
) if r(q)> r(i),

Ṽ(
µi−µq

ciq
, ε

ciq
) if r(q) = r(i),

−V(
µq−µi

ciq
, ε

ciq
) if r(q)< r(i),

ηq =
( σi

ciq

)2×







W(
µi−µq

ciq
, ε

ciq
) if r(q)> r(i),

W̃(
µi−µq

ciq
, ε

ciq
) if r(q) = r(i),

W(
µq−µi

ciq
, ε

ciq
) if r(q)< r(i),

where

ciq = (σ2
i +σ2

q+2β2)1/2,

φ(x) =
1√
2π

e−x2/2, Φ(x) =
∫ x

−∞
φ(u)du, (66)

V(x, t) = φ(x− t)/Φ(x− t), W(x, t) =V(x, t)(V(x, t)+(x− t)), (67)

Ṽ(x, t) =− φ(t−x)−φ(−t−x)
Φ(t−x)−Φ(−t−x)

, (68)

W̃(x, t) =
(t−x)φ(t−x)− (−(t +x))φ(−(t +x))

Φ(t−x)−Φ(−t−x)
+Ṽ(x, t)2. (69)

4.3 Plackett-Luce Model

We now discuss the situation of using the Plackett-Luce model. If ties are not allowed, an extension
of the Plackett-Luce model (9) incorporating variance parameters is

f (z) =
k

∏
q=1

fq(z) =
k

∏
q=1

(

eθq/c

∑s∈Cq
eθs/c

)

, (70)

where

zi =
θi−µi

σi
,c=

(
k

∑
i=1

(σ2
i +β2)

)1/2

andCq = {i : r(i)≥ r(q)}.

Instead of the samec in eθq/c, similar to the Bradley-Terry model, we can definecq to sum upσ2
i , i ∈

Cq. However, here we take the simpler setting of using the samec. Note that fq(z) corresponds
to the probability that teamq is the winner among teams inCq. In (9), f (z) is represented using
r̄(1), . . . , r̄(k), but (70) is a reformulation usingr(1), . . . , r(k).
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We extend this model to allow ties. If teamsi1, . . . , id are tied together, thenr(i1) = · · ·= r(id).
A generalization of the tie probability (51) gives the likelihood based on thesed stages as:

(

eθi1/c

∑s:r(s)≥r(i1)eθs/c
×·· ·× eθid/c

∑s:r(s)≥r(id)eθs/c

)1/d

. (71)

We can explain (71) as follows. Nowd factors in (71) all correspond to the likelihood of the same
rank, so we multiply them and take thedth root. The newf (z) becomes

f (z) =
k

∏
q=1

fq(z) =
k

∏
q=1

(

eθq/c

∑s∈Cq
eθs/c

)1/Aq

, (72)

where

Aq = |{s : r(s) = r(q)}| and fq(z) =

(

eθq/c

∑s∈Cq
eθs/c

)1/Aq

, q= 1, . . . ,k.

If ties do not occur,Aq = 1, so (72) goes back to (70). By calculations shown in Appendix F, the
update rules are in Algorithm 4.

5. Description of Glicko

Since our Algorithm 1 and the Glicko system are both based on the Bradley-Terry model, it is of
interest to compare these two algorithms. We describe the derivation of Glickoin this section. Note
that notation in this section may be slightly different from other sections of this paper.

Consider a rating period of paired comparisons. Assume that prior to a rating period the dis-
tribution of a player’s strengthθ is N(µ,σ2), with µ andσ2 known. Assume that, during the rating
period, the player playsn j games against opponentj, where j = 1, . . . ,m, and that thejth oppo-
nent’s strengthθ j follows N(µj ,σ2

j ), with µj andσ2
j known. Letsjk be the outcome of thekth game

against opponentj, with sjk = 1 if the player wins,sjk = 0.5 if the game results in a tie, andsjk = 0
if the player loses. LetD be the collection of game results during this period. The interest lies in the
marginal posterior distribution ofθ givenD:

P(θ|D) =
∫
· · ·

∫
P(θ1, . . . ,θm|D)P(θ|θ1, . . . ,θm,D)dθ1 · · ·dθm, (75)

whereP(θ|θ1, . . . ,θm,D) is the posterior distribution ofθ conditional on opponents’ strengths,

P(θ|θ1, . . . ,θm,D) ∝ φ(θ|µ,σ2)P(D|θ,θ1, . . . ,θm). (76)

HereP(D|θ,θ1, . . . ,θm) is the likelihood for all parameters. The approximation procedure is de-
scribed in steps (I)-(V) below, where step (I) is from Section 3.3 of Glickman (1999) and steps
(II)-(IV) are summarized from his Appendix A.

(I) Glickman (1999) stated that “The key idea is that the marginal posterior distribution of a
player’s strength is determined by integrating out the opponents’ strengthsover theirprior distri-
bution rather than over their posterior distribution.” That is, the posterior distribution of opponents’
strengthsP(θ1, . . . ,θm|D) is approximated by the prior distribution

φ(θ1|µ1,σ2
1) · · ·φ(θm|µm,σ2

m).
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Algorithm 4 Update rules using the Plackett-Luce model
The procedure is the same as Algorithm 1 except Step 3:

3. Find and store

c=

(
k

∑
i=1

(σ2
i +β2)

)1/2

,

Aq = |{s : r(s) = r(q)}|, q= 1, . . . ,k

∑
s∈Cq

eθs/c,q= 1, . . . ,k, whereCq = {i : r(i)≥ r(q)}.

For i = 1, . . . ,k,

3.1. Team skill update: obtainΩi and∆i in (27) and (28) by the following steps.

3.1.1. Forq= 1, . . . ,k,

δq =
σ2

i

cAq
×







1− p̂i,Cq if q= i,

−p̂i,Cq if r(q)≤ r(i),q 6= i,

0 if r(q)> r(i),

ηq =
γqσ2

i

c2Aq
×
{

p̂i,Cq(1− p̂i,Cq) if r(q)≤ r(i),

0 if r(q)> r(i),

where

p̂i,Cq =
eθi/c

∑s∈Cq
eθs/c

.

3.1.2 Same as Algorithm 1.

3.2 Same as Algorithm 1.

Then, together with (75) and (76) it follows that, approximately

P(θ|D) ∝ φ(θ|µ,σ2)
∫
· · ·

∫
φ(θ1|µ1,σ2

1) · · ·φ(θm|µm,σ2
m)P(D|θ,θ1, . . . ,θm)dθ1 · · ·dθm

∝ φ(θ|µ,σ2)
m

∏
j=1

{∫ [ n j

∏
k=1

(

(10(θ−θ j )/400)sjk

1+10(θ−θ j )/400

)

φ(θ j |µj ,σ2
j )

]

dθ j

}

︸ ︷︷ ︸

P(D|θ)

, (77)

where the last line follows by treating terms in the likelihood that do not depend on θ (which
correspond to games played between other players) as constant. We denote a term in (77) asP(D|θ)
for subsequent analysis.

(II) P(D|θ) in (77) is the likelihood integrated over the opponents’ prior strength distribution.
Then, (77) becomes

P(θ|D) ∝ φ(θ|µ,σ2)P(D|θ). (78)
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Algorithm 5 Update rules of Glicko with a single game

1. Given a game result and the currentµ1,µ2,σ2
1,σ2

2. Set

q=
log10
400

. (73)

2. Fori = 1,2

g(σ2
i ) =

1
√

1+ 3q2σ2
i

π2

. (74)

3. Fori = 1,2, set j 6= i and

p∗j =
1

1+10−g(σ2
j )(µi−µj )/400

, (δ2
i )
∗ =

[
q2(g(σ2

j ))
2p∗j (1− p∗j )

]−1
.

4. Update rule: Fori = 1,2, set j 6= i

µi ← µi +
q

1
σ2

i
+ 1

(δ2
i )
∗
g(σ2

j )(si j − p∗j ), wheresi j =







1 if i wins,

1/2 if draw,

0 if i loses,

σ2
i ←

(
1

σ2
i

+
1

(δ2
i )
∗

)−1

.

In this step,P(D|θ) is approximated by a product of logistic cumulative distribution functions:

P(D|θ) ≈
m

∏
j=1

n j

∏
k=1

∫
(10(θ−θ j )/400)sjk

1+10(θ−θ j )/400
φ(θ j |µj ,σ2

j )dθ j . (79)

(III) In this step,P(D|θ) is further approximated by a normal distribution. First, one approxi-
mates each logistic cdf in the integrand of (79) by a normal cdf with the same meanand variance so
that the integral can be evaluated in a closed form to a normal cdf. This yields the approximation

∫
(10(θ−θ j )/400)sjk

1+10(θ−θ j )/400
φ(θ j |µj ,σ2

j )dθ j ≈

(

10g(σ2
j )(θ−µj )/400

)sjk

1+10g(σ2
j )(θ−µj )/400

,

whereg(σ2
j ) is defined in (74). Therefore, the (approximate) marginal likelihood in (79) is

P(D|θ) ≈
m

∏
j=1

n j

∏
k=1

(

10g(σ2
j )(θ−µj )/400

)sjk

1+10g(σ2
j )(θ−µj )/400

. (80)

Second, by central limit theorem we approximate this marginal likelihood (80) bya normal den-
sity φ(θ|θ̂,δ2), whereθ̂ is the mode of this marginal likelihood andδ2 is minus of inverse of Hessian
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of the log marginal likelihood evaluated atθ̂. Then, together with (78) we obtain an approximation:

P(θ|D) ∝ φ(θ|µ,σ2)φ(θ|θ̂,δ2)

∝ φ

(

θ
∣
∣

µ
σ2 +

θ̂
δ2

1
σ2 +

1
δ2

,

(
1

σ2 +
1
δ2

)−1
)

.

Therefore, the update ofµ andσ2 (i.e., posterior mean and variance) is:

σ2 ←
(

1
σ2 +

1
δ2

)−1

and µ ←
µ

σ2 +
θ̂
δ2

1
σ2 +

1
δ2

= µ+
1
δ2

1
σ2 +

1
δ2

(θ̂−µ). (81)

Note that we obtain̂θ by equating the derivative of logP(D|θ) to zero, and approximatingδ2 by
substitutingµ for θ̂. The expression of approximation forδ2 is

δ2≈
(
q2

m

∑
j=1

n j(g(σ2
j ))

2p j(µ)(1− p j(µ))
)−1

, (82)

whereq is defined in (73),g(σ2
j ) is defined in (74) and

p j(µ) =
1

1+10−g(σ2
j )(µ−µj )/400

, (83)

which is an approximate probability that the player beats opponentj.
(IV) Finally, θ̂−µ in (81) is approximated as follows. From (80) it follows that

d
dθ

logP(D|θ)≈
m

∑
j=1

n j

∑
k=1

log10
400

{

g(σ2
j )

(

sjk−
1

1+10−g(σ2
j )(θ−µj )/400

)}

. (84)

If we define

h(θ) =
m

∑
j=1

n j

∑
k=1

g(σ2
j )

1+10−g(σ2
j )(θ−µj )/400

, (85)

then setting the right-hand side of (84) to zero gives

h(θ̂) =
m

∑
j=1

n j

∑
k=1

g(σ2
j )sjk. (86)

Then, a Taylor series expansion ofh(θ) aroundµ gives

h(θ̂)≈ h(µ)+(θ̂−µ)h′(µ), (87)

where

h′(µ) = q
m

∑
j=1

n j

∑
k=1

(g(σ2
j ))

2p j(µ))(1− p j(µ)) = q
m

∑
j=1

n j(g(σ2
j ))

2p j(µ))(1− p j(µ)) (88)
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Game type # games # players BT-full BT-partial PL TM-full TrueSkill
Free for All 5,943 60,022 30.59% 32.40% 31.74% 44.65% 30.82%
Small Teams 27,539 4,992 33.97% 33.97% 33.97% 36.46% 35.23%
Head to Head 6,227 1,672 32.53% 32.53% 32.53% 32.41% 32.44%
Large Teams 1,199 2,576 37.30% 37.30% 37.30% 39.37% 38.15%

Table 2: Data description and prediction errors by various methods. The method with the smallest
error is bold-faced. The column “TrueSkill” is copied from a table in Herbrich et al. (2007). Note
that we use the same way as TrueSkill to calculate prediction errors.

Game type BT-full PL TM-full
Free for All 31.24% 31.73% 33.13%
Small Teams 33.84% 33.84% 36.50%
Head to Head 32.55% 32.55% 32.74%
Large Teams 37.30% 37.30% 39.13%

Table 3: Prediction errors usingγq = 1/k in (50), wherek is the number of teams in a game.

with p j(µ) defined in (83). Using (86),h(µ) by (85), and (88), we can apply (87) to obtain an
estimate of̂θ−µ. Then with (82), (81) becomes

µ ← µ+
q

1
σ2 +

1
δ2

m

∑
j=1

n j

∑
k=1

g(σ2
j )(sjk− p j(µ)).

However, when there is only one game,P(D|θ) in (80) would have just one term (because
m= 1 andn1 = 1), and it is a monotone function. Therefore, the modeθ̂ of P(D|θ) would be
either∞ or −∞ and the central limit theorem can not be applied. Although this problem seems to
disappear when the approximation in step (IV) is employed, the justification of the whole procedure
may be weak. In fact, the Glicko system treats a collection of games within a “rating period” to
have simultaneous occurrences, and it works best when the number of games in a rating period is
moderate, say an average of 5-10 games per player in a rating period.2 The Glicko algorithm for a
single game is in Algorithm 5.

6. Experiments

We conduct experiments to assess the performance of our algorithms and TrueSkill on the game
data set used by Herbrich et al. (2007). The data are generated by Bungie Studios during the beta
testing of the Xbox title Halo 2.3 The set contains data from four different game types:
• Free for All: up to 8 players in a game. Each team has a single player.
• Small Teams: up to 12 players in 2 teams.4

• Head to Head: 2 players in a game. Each player is considered as a team.
• Large Teams: up to 16 players in 2 teams.

2. According tohttp://math.bu.edu/people/mg/glicko/glicko.doc/glic ko.html .
3. Credits for the use of the Halo 2 Beta Data set are given to Microsoft Research Ltd. and Bungie.
4. Herbrich et al. (2007) indicate that for “Small Teams,” each team has no more than 4 players, and for “Large Teams,”

each has no more than 8. However, we find a few exceptions.
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The numbers of games and players are given in Table 2. In the following, let BT, TM, and PL denote
Bradley-Terry, Thurstone-Mosteller, and Plackett-Luce models, respectively; BT-full and BT-partial
denote BT with full-pair and partial-pair, and similarly for TM-full and TM-partial. The TrueSkill
code is obtained athttp://blogs.technet.com/apg/archive/2008/06/16/tru eskill-in-f.
aspx .

6.1 Implementation and Evaluation

Below we discuss initial values and parameters. Generally we follow the settingin Herbrich et al.
(2007).
• Initial µi = 25 andσ2

i = (25/3)2, ∀i.
• The additional variance of performanceβ2 = (25/6)2.
• ε = 0.1 is the draw margin in (65) for the Thurstone-Mosteller model.
• κ = 0.0001 is the positive lower bound in (28) to avoid negativeσ2

i . The result is insensitive
to this parameter as in general 1−∆i is larger thanκ.
• γq in (50) is set asσi/ciq for BT-full. The sameγq is applied to BT-partial and TM-full. For

PL, we useγq = σi/c. The use ofγq is further discussed later in this section.
The update rules for the Thurstone-Mosteller model need to calculate the cumulative distribution

functionΦ(x), which is not available in most programming languages. We adopt the same wayas
in TrueSkill to implement the functionΦ(x). Moreover, if the Thurstone-Mosteller model is used,
some numerical difficulties may occur. Whenx− t in (67) is small,

φ(x− t)≈ 0 andΦ(x− t)≈ 0, (89)

so the calculation ofV(x, t) via φ(x− t)/Φ(x− t) is inaccurate. We employ the same safeguard as
in TrueSkill:

If Φ(x− t)≤ 2.222758749×10−162, thenV(x, t) is assigned as−x+ t.

Note that−x+ t is the limit ofV(x, t) whenx− t→−∞. We also need some safeguards in calculat-
ing Ṽ andW̃.

We implement our methods in both C and F#. The F# code is used for the runningtime compar-
ison with TrueSkill, which is also written in F#. On the same computer, TrueSkill takes 13 seconds
to run the “Free for All” data, but BT-full needs only 1.2 seconds. Our method is more efficient
because it uses analytic update rules. In contrast, TrueSkill requires an iterative procedure. More-
over, it is simpler to implement our update rules. Using F#, our code takes lessthan 100 lines, but
TrueSkill needs more than 500 lines. Sources used for experiments in this paper are available at

http://www.csie.ntu.edu.tw/ ˜ cjlin/papers/online_ranking

For the evaluation of prediction results, following Herbrich et al. (2007),we consider the error
of using the currentµ to predict the outcome of the next game. We check only team pairs whose
ranks are different. For example, if there are three teamsA, B, andC and the rank of one game
is (1,1,2), then only the two pairs(A,C) and(B,C) count. Further, if before the game we have
µA = µC and the game output shows rank(A) < rank(C), it is considered a wrong prediction. This
situation seldom happens asµ is a real-valued vector, but it does occur in early games because all
players’µ were set equally in the beginning. We have confirmed with TrueSkill authorsthat these
detailed settings are the same as what they used in Herbrich et al. (2007). The prediction error rate
is the fraction of total team pairs (from the second to the last game) that are wrongly predicted.
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Game type BT-full BT-partial PL TM-full TrueSkill
Free for All 35.44% 36.70% 36.31% 46.11% 35.58%

Table 4: Prediction errors (difficult cases). Team pairs with rank differences no more than two are
considered. We consider only “Free for All” because the TrueSkill code provided by authors does
not handle multi-player teams and we have not conducted suitable modifications. Moreover, under
our selection rule, all games in “Head to Head” will be selected and results are the same as Table 2.
Hence this set is not included either.

Avg. Occurances Num. Pairs BT-full TrueSkill
≤5 23,567 38.74% 39.15%
≤10 69,145 36.22% 36.41%
≤20 148,654 34.54% 34.52%
≤40 276,203 32.64% 32.64%

No restriction 595,500 30.59% 30.74%

(a) Free for All

Num. Pairs BT-full TrueSkill
2,367 38.70% 38.36%
3,748 35.17% 34.61%
4,852 33.29% 33.02%
5,501 32.61% 32.61%
5,715 32.53% 32.49%

(b) Head to Head

Table 5: Prediction errors for competitions where players have only played few games. Games
with the average number of players’ past appearances no more than the value in the first column
are considered. The last row includes all games. The second column indicates the number of total
team pairs used for the evaluation. The 30.74% and 32.49% rates by TrueSkill are slightly different
from 30.82% and 32.44% in Table 2, respectively, because the former is from running the F# code
provided by TrueSkill authors, but the latter is copied from Herbrich et al. (2007).

6.2 Comparison on Prediction Errors

We report the prediction error in Table 2 and make the following observations. First, BT-full, BT-
partial, and PL have the same error rate except “Free for All.” This result is reasonable as when every
game involves only two teams, using full pairs, partial pairs or the Plackett-Luce model does not
make any difference. Second, when the number of teams is more than two (i.e.,Free for All), BT-
full is better than BT-partial. The same observation holds when comparing TM-full and TM-partial
(numbers not shown). A possible explanation is that the full-pair approach uses more information.
Third, using the Bradley-Terry model yields superior results to the Thurstone-Mosteller model. The
error of using TM-full on “Free for All” is very high. Besides, numerical problems discussed in
(89) do not occur for the Bradley-Terry model. Fourth, TM-full, whichuses the same likelihood
model as TrueSkill, is consistently worse than TrueSkill, indicating that the muchfaster, single-pass
approximation may come at the expense of less accurate prediction. Finally, our proposed method
for BT-full and PL is competitive with TrueSkill.

The reason why TM-full performs poorly for “Free for All” in Table 2 might be thatσi quickly
goes to zero andµi becomes a huge positive/negative value. The parameterγq in (50) can help to
control how fast the varianceσ2

i is reduced. In Table 2,γq is set asσi/ciq. Table 3 gives results of
usingγq = 1/k, wherek is the number of teams in a game. For “Free for All,”k is around 8, soγq

is quite small. Clearly, a slower reduction ofσ2
i significantly improves the performance of TM-full,

while the results of BT-full and PL do not change much.
We conduct a further comparison using only team pairs which are more difficult for prediction.

For “Free for All,” the team pairs whose ranks in a game are closer can beviewed as difficult cases
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for prediction. We take all pairs with rank differences no more than two andcompare the prediction
errors by our methods and TrueSkill. The results, shown in Table 4, are consistent with those in
Table 2.

After a team (or player) has played many games, the obtained ability becomes more accurate.
To check the performance when teams have only played few games, we select games where the
average number of players’ past appearances is small. We present results in Table 5. Clearly if
players in a game have only played few games, the prediction is more difficult.

We also implement the single game version of Glicko (Algorithm 5) for “Head to Head” and
find the prediction error to be 33.88%, a bit worse than those in Table 2. Such a result is expected
as Glicko is not designed to update skills after each single game.

Finally, we discuss how to apply our proposed technique in practice. Following the experimental
results and the numerical concerns, TM is not recommended. Further as BT-full is slightly better
than BT-partial, it seems that to factorize a multi-team game to several two-team games, we should
use as much information as possible. Therefore, in applying our approximation, BT-full and PL
may be the first choice. As TM-full uses the same likelihood as TrueSkill andperforms worse, our
approximation, while very simple, may be more sensitive to the likelihood used.

7. Discussion and Conclusions

Huang and Frey (2008) propose a graphical model, cumulative distributionnetwork (CDF), which
can be used for online ranking. They experiment with the same data used byHerbrich et al. (2007)
and report superior results. However, they use a full covariance matrix over all skills of all players.
This setting provides more information for accurate predictions, but may notbe practical for large-
scale systems.

Guiver and Snelson (2009) apply Power EP (expectation propagation) toperform Bayesian in-
ference for parameters of the Plackett-Luce model. They conduct experiments in an offline setting
on NASCAR 2002 car racing results and the MovieLens data set. It is worthstudying the perfor-
mance in online setting. We leave it for future work.

In summary, this paper approximates the expectation of teams’ performances toderive simple
update rules for online ranking. The proposed method is efficient and can be easily applied to large-
scale systems with multiple teams and multiple players. While the approximation of the expectation
is only a kind of heuristics, experiments show that its application to BT-full andPL models is com-
petitive with state of the art approaches such as TrueSkill. Further, the implementation is simpler
and the running time is shorter.
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Appendix A. A Sketch of the Proof for Lemma 1

We borrow a few lines from Woodroofe (1989) to sketch the proof for (16) in the 1-dimensional
case. Let′ denote the differentiation andΦh denote

∫
Rh(z)dΦ(z). By assumptions in Lemma 1, we
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have f (z) =
∫ z
−∞ f ′(y)dyand

∫
R

h(z)dΓ(z)−
∫

R
f (z)dΦ(z) ·

∫
R

h(z)dΦ(z)

=
∫

R
f (z)φ(z)[h(z)−Φh]dz =

∫
R

{∫ z

−∞
f ′(y)dy

}

φ(z)[h(z)−Φh]dz

=
∫

R

{∫ ∞

y
φ(z)[h(z)−Φh]dz

}

f ′(y)dy =
∫

R
Uh(y) f ′(y)φ(y)dy,

where the interchange of orders of integration is justified by assumed integrability conditions.

Appendix B. An Example on Calculating Uh and Vh in (14)

We takek= 3 andh(z) = z1z2 to illustrate the calculation ofUh andVh. First by (12) we obtain

h0 =
∫

z1z2dΦ3(z) = 0,

h1(z1) =
∫

h(z1,w1,w2)dΦ2(w1,w2) =
∫

z1w1dΦ2(w1,w2) = 0,

h2(z1,z2) =
∫

h(z1,z2,w)dΦ1(w) =
∫

z1z2dΦ(w) = z1z2,

h3(z1,z2,z3) = h(z1,z2,z3) = z1z2.

Next from (13) it follows that

g1(z) = ez2
1/2

∫ ∞

z1

[h1(w)−h0]e
−w2/2dw= 0,

g2(z) = ez2
2/2

∫ ∞

z2

[h2(z1,w)−h1(z1)]e
−w2/2dw= ez2

2/2
∫ ∞

z2

z1we−w2/2dw= z1,

g3(z) = ez2
3/2

∫ ∞

z3

[h3(z1,z2,w)−h2(z1,z2)]e
−w2/2dw= 0;

hence, by (14) we haveUh(z) = (g1,g2,g3)
T = (0,z1,0)T . Applying the same steps togi gives

Ug1 =Ug3 = [0,0,0]T andUg2 = [1,0,0]T . Therefore, by (14) we obtain

Vh=
1
2

(
U2h+(U2h)T)=

1
2









0 1 0
0 0 0
0 0 0



+





0 0 0
1 0 0
0 0 0







=





0 1
2 0

1
2 0 0
0 0 0



 .

Appendix C. A Bradley-Terry Model with Variance Parameters

Our approach is motivated by the relation between the normal model (5) and the Bradley-Terry
model (7). To begin, we reparametrizevi in (7) aseθi/c and similarly forvq so that (7) can be written
as

P(Xi > Xq) =
e(θi−θq)/c

1+e(θi−θq)/c
. (90)

Next, observe that the cumulative distribution function of a logistic distribution with mean 0 and
variance(cπ/

√
3)2 is

F(x) =
ex/c

(1+ex/c)
,
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which can be approximated by the cumulative distribution function of a normal distribution with the
same mean and variance. Therefore,

e(θi−θq)/c

1+e(θi−θq)/c
≈

∫ θi−θq

−∞

1√
2π(cπ)/

√
3

e−u2/(2(cπ/
√

3)2)du

= Φ
(

θi−θq

cπ/
√

3

)

. (91)

The idea of approximating the logistic distribution in an integral by a Gaussian one has appeared
in Aitchison and Begg (1976), Glickman (1993), and references therein. By comparing (91) with
(5), it suggests to takec2 ∝ (β2

i + β2
q) and then replacevi and vq in (7) with eθi/c and eθq/c. In

summary, we have shown that (90) can be obtained by assuming that each team has a performance
uncertainty parameterβ2

i , and that when teamsi andq compete, their actual performance follow
Gumbel distributions with cumulative distribution function

P(Xi ≤ x) = exp(−exp(−(x− θi

c
))),

wherec2 = β2
i +β2

q. Note that this model presumes that a team’s actual performance depends on the
team it competes with.

Regarding the error induced by evaluating the expectations in (25) and (26), we can apply the
same analysis in Section 3.2 to the Bradley-Terry model. Here we give details.By (48), the joint
posterior density of(θ1,θ2) is proportional to

φ
(

θ1−µ1

σ1

)

φ
(

θ2−µ2

σ2

)
eθ1/c12

eθ1/c12 +eθ2/c12
.

Next, by an approximation like (91), the marginal posterior density ofθ1 is approximately propor-
tional to

φ
(

θ1−µ1

σ1

)∫
φ
(

θ2−µ2

σ1

)∫ θ1

−∞

1√
2π(αc12)

e
− y−θ2

2(αc12)
2 dydθ2

≈ φ
(

θ1−µ1

σ1

)

Φ




θ1−µ2

√

(αc12)2+σ2
2





≈ φ
(

θ1−µ1

σ1

)
eθ1/c′12

eθ1/c′12 +eθ2/c′12
,

whereα = π/
√

3 as in (91) and(c′12)
2 = α2c2

12+σ2
2. As in the previous paragraph, we can calculate

the posterior mean ofθ1, and again the result suggests that the bias induced by our approximation
method can be reduced by substitutingβ2

i with β2
i +σ2

i .

Appendix D. Derivations of Update Rules for the Bradley-Terry Model (Partial-pair)

To calculate∂ f/∂zi , if i = r̄(a), then in (63) there are only two terms related toi:

f̄r̄(a−1)r̄(a)(z) and f̄r̄(a)r̄(a+1)(z).

295



WENG AND L IN

DefineQ as in (61). Then,

∂ f/∂zi

f
= ∑

q:q∈Q,r(q)<r(i)

∂ fqi/∂zi

fqi
+

∑
q:q∈Q,r(q)>r(i)

∂ fiq/∂zi

fiq
+

1
2 ∑

q:q∈Q,r(q)=r(i),q6=i

(
∂ fqi/∂zi

fqi
+

∂ fiq/∂zi

fiq

)

.

Next,

∂
∂zi

(
∂ f/∂zi

f

)

= ∑
q:q∈Q,r(q)<r(i)

∂
∂zi

(
∂ fqi/∂zi

fqi

)

+ ∑
q:q∈Q,r(q)>r(i)

∂
∂zi

(
∂ fiq/∂zi

fiq

)

+
1
2 ∑

q:q∈Q,r(q)=r(i),q6=i

(
∂

∂zi

(
∂ fqi/∂zi

fqi

)

+
∂

∂zi

(
∂ fiq/∂zi

fiq

))

.

These two results are almost the same as (53) and (59) used for the full-pair case. Henceδq andηq

are calculated by the same way as in Algorithm 1, but forΩi and∆i , instead of taking the sum over
all q= 1, . . . ,k;q 6= i, in (62) we sum up only elements in the setQ.

Appendix E. Derivations of Update Rules for the Thurstone-Mosteller Model

Define

fiq(z)≡ P(teami beats teamq) = Φ
(

θi−θq− ε
ciq

)

and

f̄iq(z)≡ P(teami draws with teamq)

=Φ
(

ε− (θi−θq)

ciq

)

−Φ
(−ε− (θi−θq)

ciq

)

,

whereθi = σizi +µi . Then

P(outcome of teami andq) =







fiq(z) if r(i)> r(q),

fqi(z) if r(i)< r(q),

f̄iq(z) if r(i) = r(q).

Similar to the derivation for the Bradley-Terry model in (52) and (53),

∂ f/∂zi

f
= ∑

q:r(q)<r(i)

∂ fqi/∂zi

fqi
+ ∑

q:r(q)>r(i)

∂ fiq/∂zi

fiq
+ ∑

q:r(q)=r(i)

∂ f̄iq/∂zi

f̄iq
.

Using the relation betweenφ andΦ in (66),

∂
∂θi

Φ
(

θi−θq− ε
ciq

)

= φ
(

θi−θq− ε
ciq

)
1

ciq
. (92)

Therefore,

∂ fiq/∂zi

fiq
=

1
ciq

φ(θi−θq−ε
ciq

)

Φ(
θi−θq−ε

ciq
)
· ∂θi

∂zi
=

σi

ciq
V

(
θi−θq

ciq
,

ε
ciq

)

, (93)
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where the functionV is defined in (67). Similarly,

∂ fqi

∂zi
=
−σi

ciq
V

(
θq−θi

ciq
,

ε
ciq

)

.

For f̄iq(θ),

∂ f̄iq
∂zi

=
−σi

ciq

(

φ(
ε− (θi−θq)

ciq
)−φ(

−ε− (θi−θq)

ciq
)

)

,

so

∂ f̄iq/∂zi

f̄iq
=
−σi

ciq

φ( ε−(θi−θq)
ciq

)−φ(−ε−(θi−θq)
ciq

)

Φ(
ε−(θi−θq)

ciq
)−Φ(

−ε−(θi−θq)
ciq

)
=

σi

ciq
Ṽ

(
θi−θq

ciq
,

ε
ciq

)

, (94)

where the functioñV is defined in (68). Then the update rule is

µi ←µi +σi
∂ f (z)/∂zi

f

∣
∣
∣
∣
z=0

←µi +σ2
i

(

∑
q:r(q)<r(i)

−1
ciq

V

(
µq−µi

ciq
,

ε
ciq

)

+ ∑
q:r(q)>r(i)

1
ciq

V

(
µi−µq

ciq
,

ε
ciq

)

+ ∑
q:r(q)=r(i),q6=i

1
ciq

Ṽ

(
µi−µq

ciq
,

ε
ciq

))

.

To updateσ, similar to (59), we have

∂
∂zi

(
∂ f/∂zi

f

)

= ∑
q:r(q)<r(i)

∂
∂zi

(
∂ fqi/∂zi

fqi

)

+ ∑
q:r(q)>r(i)

∂
∂zi

(
∂ fiq/∂zi

fiq

)

+ ∑
q:r(q)=r(i),q6=i

∂
∂zi

(
∂ f̄iq/∂zi

f̄iq

)

.

Using (93) and the fact thatdφ(x)/dx=−xφ(x)

∂
∂zi

∂ fiq/∂zi

fiq

=
σi

ciq

∂(φ/Φ)

∂θi
· ∂θi

∂zi
=

σ2
i

ciq

Φ dφ
dθi
−φ dΦ

dθi

Φ2

=
σ2

i

ciq

(

−
(

θi−θq− ε
ciq

)

·V
(

θi−θq

ciq
,

ε
ciq

)
1

ciq
− 1

ciq
V

(
θi−θq

ciq
,

ε
ciq

)2
)

(95)

=− σ2
i

c2
iq

W

(
θi−θq

ciq
,

ε
ciq

)

,

where the functionW is defined in (67). Similarly,

∂
∂zi

∂ fqi/∂zi

fqi
=−σ2

i

ciq
W

(
θq−θi

ciq
,

ε
ciq

)

. (96)
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If r(i) = r(q), then we use (92) and (94) to calculate

∂
∂zi

(
∂ f̄iq/∂zi

f̄iq

)

=
−σ2

i

ciq

A−B
(

Φ(
ε−(θi−θq)

ciq
)−Φ(

−ε−(θi−θq)
ciq

)
)2 ,

where

A=
1

ciq

(

Φ(
ε− (θi−θq)

ciq
)−Φ(

−ε− (θi−θq)

ciq
)

)

×
(

ε− (θi−θq)

ciq
φ(

ε− (θi−θq)

ciq
)− −ε− (θi−θq)

ciq
φ(
−ε− (θi−θq)

ciq
)

)

and

B=
−1
ciq

(

φ(
ε− (θi−θq)

ciq
)−φ(

−ε− (θi−θq)

ciq
)

)2

.

Hence

∂
∂zi

(
∂ f̄iq/∂zi

f̄iq

)

=
−σ2

i

c2
iq





ε−(θi−θq)
ciq

φ( ε−(θi−θq)
ciq

)− −ε−(θi−θq)
ciq

φ(−ε−(θi−θq)
ciq

)

Φ(
ε−(θi−θq)

ciq
)−Φ(

−ε−(θi−θq)
ciq

)
+Ṽ

(
θi−θq

ciq
,

ε
ciq

)2


 (97)

=
−σ2

i

c2
iq

W̃

(
θi−θq

ciq
,

ε
ciq

)

,

where the functionW̃ is defined in (69). Combining (95), (96), and (97), the update rule forσ2
i is

σ2
i ←σ2

i

(

1−
(

∑
q:r(q)<r(i)

σ2
i

c2
iq

W(
µq−µi

ciq
,

ε
ciq

)+ ∑
q:r(q)>r(i)

σ2
i

c2
iq

W(
µi−µq

ciq
,

ε
ciq

)

∑
q:r(q)=r(i),q6=i

σ2
i

c2
iq

W̃(
µi−µq

ciq
,

ε
ciq

)

))

.

Appendix F. Derivations of Update Rules for the Plackett-Luce Model

Using f (z) and fq(z) defined in (72),

fq(z) =

(

eθq/c

∑s∈Cq
eθs/c

,

)1/Aq

,

so

∂ fq/∂zi

fq
=

∂ log fq
∂zi

=
1
Aq

(

∂(θq/c)

∂θi
−

∂ log(∑s∈Cq
eθs/c)

∂θi

)

∂θi

∂zi

=
σi

cAq







1− eθi/c

∑s∈Cq eθs/c if q= i,

− eθi/c

∑s∈Cq eθs/c if r(q)≤ r(i),q 6= i,

0 if r(q)> r(i).

(98)
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From (38), the update rule is
µi ← µi +Ωi ,

where

Ωi =σi

k

∑
q=1

∂ fq(z)/∂zi

fq(z)

∣
∣
∣
∣
z=0

=
σ2

i

c

(

1
Ai

(

1− eµi/c

∑s∈Ci
eµs/c

)

+ ∑
q:q6=i,r(q)≤r(i)

− 1
Aq

eµi/c

∑s∈Cq
eµs/c

)

.

To updateσ, similar to (59), we must calculate

∂
∂zi

(
∂ fq/∂zi

fq

)

,∀q. (99)

From (98), ifi ∈Cq, then

(99)=− σi

cAq

(

∂
∂θi

eθi/c

∑s∈Cq
eθs/c

)

· ∂θi

∂zi
=

σ2
i

c2Aq

(∑s∈Cq
eθs/c)eθi/c− (eθi/c)2

(∑s∈Cq
eθs/c)2

=
σ2

i

c2Aq

eθi/c

∑s∈Cq
eθs/c

(

1− eθi/c

∑s∈Cq
eθs/c

)

.

The update rule forσ2
i is

σ2
i ← σ2

i

(

1− ∑
q:r(q)≤r(i)

1
c2Aq

eµi/c

∑s∈Cq
eµs/c

(

1− eµi/c

∑s∈Cq
eµs/c

))

.
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