
■ The primary revolution in automated planning in
the last decade has been the very impressive scale-
up in planner performance. A large part of the
credit for this can be attributed squarely to the
invention and deployment of powerful reachabili-
ty heuristics. Most, if not all, modern reachability
heuristics are based on a remarkably extensible
data structure called the planning graph, which
made its debut as a bit player in the success of
GraphPlan, but quickly grew in prominence to
occupy the center stage. Planning graphs are a
cheap means to obtain informative look-ahead
heuristics for search and have become ubiquitous
in state-of-the-art heuristic search planners. We
present the foundations of planning graph heuris-
tics in classical planning and explain how their
flexibility lets them adapt to more expressive sce-
narios that consider action costs, goal utility,
numeric resources, time, and uncertainty.

Synthesizing plans capable of achieving an
agent’s goals has always been a central
endeavor in AI. Considerable work has

been done in the last 40 years on modeling a
wide variety of plan-synthesis problems and
developing multiple search regimes for driving
the synthesis itself. Despite this progress, the
ability to synthesize reasonable length plans
under even the most stringent restrictions
remained severely limited. This state of affairs
has changed quite dramatically in the last
decade, giving rise to planners that can rou-
tinely generate plans with hundreds of actions.
This revolutionary shift in scalability can be
attributed in large part to the use of sophisti-
cated reachability heuristics to guide the plan-
ners’ search.

Reachability heuristics aim to estimate the

cost of a plan between the current search state
and the goal state. While reachability analysis
can be carried out in many different ways
(Bonet and Geffner 1999, McDermott 1999,
Ghallab and Laruelle 1994), one particular
way—involving planning graphs—has proven
to be very effective and extensible. Planning
graphs were originally introduced as part of the
GraphPlan algorithm (Blum and Furst 1995)
but quickly grew in prominence once their
connection to reachability analysis was recog-
nized.

Planning graphs provide inexpensive but
informative reachability heuristics by approxi-
mating the search tree rooted at a given state.
They have also proven to be quite malleable in
being adapted to a range of expressive plan-
ning problems. Planners using such heuristics
have come to dominate the state of the art in
plan synthesis. Indeed, 12 out of 20 teams in
the 2004 International Planning Competition
and 15 out of 22 teams in the 2006 Interna-
tional Planning Competition used planning
graph–based heuristics. Lack of search control
for domain-independent planners has, in the
past, made most planning applications be writ-
ten with a knowledge-intensive planning
approach—such as hierarchical task networks.
However, the effectiveness of reachability
heuristics has started tilting the balance back
and is giving rise to a set of applications based
on domain-independent planners (Ruml, Do,
and Fromherz 2005; Boddy et al. 2005).

This article1 aims to provide an accessible
introduction to reachability heuristics in plan-
ning. While we will briefly describe the plan-
ning algorithms to set the context for the
heuristics, our aim is not to provide a compre-
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hensive introduction to planning algorithms.
Rather, we seek to complement existing sources
(see, for example, Ghallab, Nau, and Traverso
[2004]) by providing a complete introduction
to reachability heuristics in planning.

As outlined in figure 1, we discuss the classi-
cal planning model along with several exten-
sions (in clockwise order). Naturally, as the
planning model becomes more expressive, the
planning graph representation and heuristics
change. We start with classical planning to lay
an intuitive foundation and then build up
techniques for handling additional problem
features. We concentrate on the following fea-
tures independently, pointing out where they
have been combined. Action costs are uniform
in the classical model, but we later describe
nonuniform costs. Goal satisfaction is total in
the classical model but can be partial in gener-
al (that is, the cost of satisfying all goals can
exceed the benefit). Resources are described
only by Boolean variables in the classical mod-
el but can be integer or real-valued variables.
Time is atomic in the classical model, but is

durative in general (that is, actions can have
different durations). Uncertainty is nonexist-
ent in the classical model but can generally
result through uncertain action effects and par-
tial (or no) observability. While there are many
additional ways to extend the classical model,
we hold some features constant throughout
our discussion. The number of agents is
restricted to only one (the planning agent),
execution takes place after plan synthesis, and
with the exception of temporal planning, plans
are sequential (no actions execute concurrent-
ly).

We will use variations on the following run-
ning example to illustrate how several plan-
ning models can address the same problem and
how we can derive heuristics for the models:

Example 1 (Planetary Rover)
Ground control needs to plan the daily activi-
ties for the rover Conquest. Conquest is current-
ly at location alpha on Mars, with partial pow-
er reserves and some broken sensors. The
mission scientists have objectives to obtain a
soil sample from location alpha, a rock core
sample from location beta, and a photo of the
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Planning with Resources
- Unit Cost Actions
- Real-valued Variables
- Atomic Time 
- Known State
- Deterministic Actions  
- Fully Satisfy Goals   

Classical Planning
- Unit Cost Actions
- Boolean-valued Variables
- Atomic Time 
- Known State
- Deterministic Actions 
- Fully Satisfy Goals  

Cost-Based Planning 
- Nonunit Cost Actions
- Boolean-valued Variables
- Atomic Time 
- Known State
- Deterministic Actions 
- Fully Satisfy Goals  Partial Satisfaction Planning  

- Nonunit Cost Actions
- Boolean-valued Variables
- Atomic Time 
- Known State
- Deterministic Actions 
- Partially Satisfy Goals 

Temporal Planning
- Unit Cost Actions
- Boolean-valued Variables
- Durative Time
- Known State
- Deterministic Actions 
- Fully Satisfy Goals  

Planning Under Uncertainty
- Unit Cost Actions
- Boolean-valued Variables
- Atomic Time 
- Partially-Known State

Uncertain Actions
- Fully Satisfy Goals  
-

Figure 1. Taxonomy of Planning Models.



lander from the hilltop location gamma—each
objective having a different utility. The rover
must communicate any data it collects to have
the objectives satisfied. The driving time and
cost from one location to another vary depend-
ing on the terrain and distance between loca-
tions. Actions to collect soil, rock, and image
data incur different costs and take various
times. Mission scientists may not know which
locations will have the data they need, and the
rover’s actions may fail, leading to potential
sources of uncertainty. 

History of Reachability and 
Planning Graph Heuristics
Given the current popularity of heuristic
search planners, it is somewhat surprising to
note that the interest in the reachability heuris-
tics in AI planning is a relatively new develop-
ment. Ghallab and his colleagues were the first
to report on a reachability heuristic in IxTeT
(Ghallab and Laruelle 1994) for doing action
selection in a partial-order planner. However
the effectiveness of their heuristic was not ade-
quately established. Subsequently the idea of
reachability heuristics was independently
(re)discovered by Drew McDermott (1996,
1999) in the context of his UNPOP planner.
UNPOP was one of the first domain-indepen-
dent planners to synthesize plans containing
up to 40 actions. A second independent redis-
covery of the idea of using reachability heuris-
tics in planning was made by Blai Bonet and
Hector Geffner (1999). Each rediscovery is the
result of attempts to speed up plan synthesis
within a different search substrate (partial-
order planning, regression, and progression).

The most widely accepted approach to com-
puting reachability information is embodied
by GraphPlan. The original GraphPlan planner
(Blum and Furst 1995) used a specialized com-
binatorial algorithm to search for subgraphs of
the planning graph structure that correspond
to valid plans. It is interesting to note that
almost 75 percent of the original GraphPlan
paper was devoted to the specifics of this com-
binatorial search. Subsequent interpretations
of GraphPlan recognized the role of the plan-
ning graph in capturing reachability informa-
tion. Subbarao Kambhampati, Eric Lambrecht,
and Eric Parker (1997) explicitly characterized
the planning graph as an envelope approxima-
tion of the progression search tree (see figure 3
of his work and the associated discussion).
Bonet and Geffner (1999) interpreted Graph-
Plan as an IDA* search with the heuristic
encoded in the planning graph. XuanLong
Nguyen and Subbarao Kambhampati (2000)
described methods for directly extracting
heuristics from the planning graph. That same
year, FF (Hoffmann and Nebel 2001), a planner

using planning graph heuristics placed first in
the International Planning Competition. Since
then there has been a steady stream of devel-
opments that increased both the effectiveness
and the coverage of planning graph heuristics.

Classical Planning
In this section we start with a brief background
on how the classical planning problem is rep-
resented and why the problem is difficult. We
follow with an introduction to planning graph
heuristics for state-based progression search
(extending plan prefixes). In the Heuristics in
Alternative Planning Strategies section, we cov-
er issues involved with using planning graph
heuristics for state-based regression and plan
space search. 

Background
The classical planning problem is defined as a
tuple <P, A, SI, G>, where P is a set of proposi-
tions, A is a set of actions, SI is an initial state,
and G is a set of goal propositions. Throughout
this article we will use many representational
assumptions (described later) consistent with
the STRIPS language (Fikes and Nilsson 1971).
While STRIPS is only one of many choices for
action representation, it is very simple, and
most other action languages can be compiled
down to STRIPS (Nebel 2000). In STRIPS a state
s is a proper subset of the propositions P, where
every proposition p � s is said to be true (or to
hold) in the state s. Any proposition p � s is
false in s. The initial state is specified by a set of
propositions I � P known to be true (the false
propositions are inferred by the closed-world
assumption), and the goal is a set of proposi-
tions G � P that must be made true in a state s
for s to be a goal state. Each action a � A is
described by a set of propositions pre(a) for
execution preconditions, a set of propositions
that it causes to become true eff+(a), and a set
of propositions it causes to become false eff–(a).
An action a is applicable appl(a, s) to a state s if
each precondition proposition holds in the
state, pre(a) � s. The successor state s� is the
result of executing an applicable action a in
state s, where s� = exec(a, s) = s\ eff– (a) � eff+(a).
A sequence of actions {a1, … an}, executed in
state s, results in a state s�, where s� = exec(an,
exec(an–1, … exec(a1, s)…)) and each action is
executable in the appropriate state. A valid
plan is a sequence of actions that can be exe-
cuted from sI and results in a goal state. For
now we assume that actions have unit cost,
making the cost of a plan equivalent to the
number of actions.

We use the planning domain description
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language (PDDL) (McDermott 1998) to
describe STRIPS planning problems. Figure 2 is
a PDDL formulation of the rover problem for
classical planning.2 On the left is a domain
description and on the right is a problem
instance. The domain description uses predi-
cates and action schemas with free variables to
abstractly define a planning domain. The prob-
lem instance defines objects, an initial state,
and a goal. Through a process called grounding
we use the objects defined in the problem
description to instantiate predicates and action
schemas. Grounding involves using every com-
bination of objects to replace free variables in
predicates to obtain propositions and in action
schemas to obtain ground actions. The prob-
lem instance in figure 2 denotes that the initial
state is:

SI = {at(alpha), avail(soil, alpha), 
avail(rock, beta), avail(image, gamma)},

and that the goal is:
G = {comm(soil), comm(image), comm(rock)}.

The domain description in figure 2 lists three
action schemas for driving between two loca-
tions, communicating data, and obtaining data
by sampling. For example, the drive action
schema can be instantiated with the alpha and

beta location objects to obtain the ground
action drive(alpha, beta) where its precondition
is {at(alpha)}, and it causes {at(beta)} to become
true and {at(alpha)} to become false. Executing
drive(alpha, beta) from the initial state results
in the state:

s� = exec(drive(alpha, beta), sI)
= {at(beta), avail(soil, alpha), 

avail(rock, beta), avail(image, gamma)}, 

because at(beta) becomes true and at(alpha)
becomes false. A valid plan for the problem in
figure 2 is following sequence of actions:

{sample(soil, alpha), commun(soil), 
drive(alpha, beta), sample(rock, beta), 
commun(rock), drive(beta, gamma), 
sample(image, gamma), commun(image)}

Reachability Heuristics
Classical planning can be viewed as finding a
path from an initial state to a goal state in a
state-transition graph. This view suggests a sim-
ple algorithm that constructs the state-transi-
tion graph and uses a shortest path algorithm
to find a plan in O(n log n) time. However,
practical problems have a very large number of
states n. In the example, there are a total of 18
propositions, giving n = 218 = 2.6 � 105 states
(which may be feasible for a shortest path). By
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(define (domain rovers_classical)

(:requirements :strips :typing)

(:types location data)

(:predicates

 (at ?x - location)

 (avail ?d - data ?x - location)

 (comm ?d - data)

 (have ?d - data))

(:action drive

 :parameters (?x ?y - location)

 :precondition (at ?x)

 :effect (and (at ?y) (not (at ?x))))

(:action commun

 :parameters (?d - data)

 :precondition (have ?d)

 :effect (comm ?d))

(:action sample

 :parameters (?d - data ?x - location)

 :precondition (and (at ?x) (avail ?d ?x))

 :effect (have ?d))

)

(define (problem rovers_classical1)

 (:domain rovers_classical)

 (:objects

   soil image rock - data

   alpha beta gamma - location)

 (:init (at alpha)

        (avail soil alpha)

        (avail rock beta)

        (avail image gamma))

 (:goal (and (comm soil)

             (comm image)

             (comm rock)))

)

Figure 2. PDDL Description of Classical Planning Formulation of the Rover Problem.



making the problem more realistic, adding 17
more locations (a total of 20), 12 additional
types of data (a total of 15), and another rover,
there are 420 propositions and n = 2420 = 2.7 �
10126 states.3 With approximately 1087 particles
in the universe, explicitly representing and
searching a state-transition graph of this size is
impractical.

Instead of an explicit graph representation,
it is possible to use a search algorithm and a
propositional representation to construct
regions of the state-transition graph, as need-
ed. However, in the worst case, it is still possi-
ble to construct the entire transition graph.
Heuristic search algorithms, such as A* search,
can “intelligently” search for plans and, we
hope, avoid visiting large regions of the transi-
tion graph. The critical concern of such heuris-
tic search algorithms is the design of a good
heuristic.

To illustrate heuristic search for plans, con-
sider the most popular search formulation, pro-
gression (also known as forward chaining). The
search creates a projection tree rooted at the
initial state sI by applying actions to leaf nodes
(representing states) to generate child nodes.
Each path from the root to a leaf node corre-
sponds to a plan prefix, and expanding a leaf
node generates all single-step extensions of the
prefix. A heuristic estimates the “goodness” of
each leaf node, and in classical planning this
can be done by measuring the cost to reach a
goal state (hence the terminology reachability
heuristics). With the heuristic estimate, search
can focus effort on expanding the most prom-
ising leaf nodes.

For instance, consider the empty plan prefix
(starting at the initial state sI) in our example.
Possible extensions of the plan prefix include
driving to other locations or sampling soil at
the current location. While each of these
extensions contain actions relevant to sup-
porting the goals, they have different comple-
tion costs. If the rover drives to another loca-
tion, then at some point it will need to come
back and obtain the soil sample. It would be
better to obtain the soil sample now to avoid
extra driving later. A reachability heuristic
should be able to measure this distinction.

Exact and Approximate 
Reachability Information
An obvious way to compute exact reachability
information is to compute the full projection
tree rooted at the initial state. The projection
tree for our example is depicted in figure 3a.
The projection is represented as states in dark
boxes connected through edges for actions.
The propositions holding in each state are list-

ed (except for the avail propositions, which are
in all states).4 Within this tree, the exact reach-
ability cost for each node is the minimal length
path to reach a state satisfying the goal. For
example, the cost of reaching at(beta) is 1, and
the cost of reaching have(rock) is 2. It is easy to
see that access to such exact reachability infor-
mation can guide the search well.

Expecting exact reachability information is
impractical, as it is no cheaper than the cost of
solving the original problem! Instead, we have
to explore more efficient ways of computing
reachability information approximately. Of
particular interest are “optimistic” (or lower-
bound) approximations, as they can provide
the basis for admissible heuristics. It turns out
that the planning graph data structure suits our
purpose quite well. Figure 3b shows the plan-
ning graph for the rover problem in juxtaposi-
tion with the exact projection tree. The plan-
ning graph is a layered graph structure with
alternating action and proposition layers (with
the former shown in rectangles). There are
edges between layers: an action has its precon-
ditions in the previous layer and its effects in
the next layer. For instance, the sample(soil,
alpha) action, which is applicable at every lev-
el, has incoming edges from its precondition
propositions avail(soil, alpha) and at(alpha), and
an outgoing edge for its effect have(soil). In
addition to the normal domain actions, the
planning graph also uses “persistence” actions
(shown by the dotted lines), which can be seen
as noops that take and give back specific propo-
sitions. It is easy to see that unlike the projec-
tion tree, the planning graph structure can be
computed in polynomial time.

There is an obvious structural relationship
between planning graphs and projection trees:
the planning graph seems to correspond to an
envelope over the projection tree. In particular,
the action layers seem to correspond to the
union of all actions at the corresponding depth
in the projection tree, and the proposition lay-
ers correspond to the union of all the states at
that depth (with the states being treated as
“sets” of propositions). The envelope analogy
turns out to be more than syntactic—the
proposition and action layers can be viewed as
defining the upper bounds on the feasible
actions and states in a certain formal sense.
Specifically, every legal state s at depth d in the
projection tree must be a subset of the proposi-
tion layer at level d in the planning graph. The
converse however does not hold. For instance,
P1 contains the propositions at(beta) and
have(soil), but they do not appear together in
any state at depth 1 of the search graph. In oth-
er words, planning graph data structure is pro-
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viding optimistic reachability estimates.
We can view the planning graph as the exact

projection tree for a certain relaxation of the
domain. The relaxation involves ignoring the
interactions between and within action effects
during graph expansion. Two axioms capture
these interactions and distinguish state expan-
sion in the projection tree versus proposition
layer expansion in the planning graph. In the
projection tree, the first axiom expresses that
the state (set of propositions) resulting from
applying action a1 is exclusive of the state
resulting from applying a2. For example, at
depth 1 of the projection tree applying sam-
ple(soil, alpha) to state s1 makes have(soil) true
in only state s13; have(soil) is not true in the
other states. The second axiom states that the
effect propositions of each action must hold
together in the resulting state (that is, they are
coupled). Applying drive(alpha, beta) to state s1
makes at(gamma) true and at(alpha) false in
state s11; without coupling the effects, the state
would allow both at(gamma) and at(alpha) to
be true. Expanding a proposition layer also
involves applying several actions, but with
modifications to the two axioms above. The
first modified axiom states that the set of
propositions resulting from applying a1 is inde-
pendent of the propositions resulting from

applying as meaning that they are neither
exclusive nor coupled. Consider how both
at(gamma) and have(soil) appear in the first
proposition layer P1 of the planning graph
(suggesting that the state {at(gamma),
have(soil)} is reachable at depth 1). The second
modified axiom states that the effect proposi-
tions of each action are also independent. For
example, the first proposition layer P1 contains
both at(gamma) and at(alpha) through the
independence within the effect of drive(alpha,
gamma); the assumption allows ignorance of
how drive(alpha, gamma) makes at(alpha) false.
The projection tree maintains state barriers and
couplings between effect propositions, where
the planning graph removes both constraints.
With an intuitive structural interpretation, the
formal definitions of the planning graph and
the heuristics that it encodes follow quite easi-
ly.

Planning Graphs
We start by formalizing planning graphs and
follow with a description of several planning
graph–based reachability heuristics. Tradition-
ally, progression search uses a different plan-
ning graph to compute the reachability heuris-
tic for each state s. A planning graph PG(s, A),
constructed for the state s and the action set A,
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Figure 3. Progression Search Graph (a) and Planning Graph (b) for the Rover Problem.



is a leveled graph, captured by layers of vertices
(P0(s), A0(s), P1(s), A1(s), ..., Ak(s), Pk+1(s)),
where each level i consists of a proposition lay-
er Pi(s) and an action layer Ai(s). In the fol-
lowing, we simplify our notation for a plan-
ning graph to PG(s), assuming that the entire
set of actions A is always used. The notation for
action layers Ai and proposition layers Pi also
assumes that the state s is implicit. 

The first proposition layer, P0, is defined as
the set of propositions in the state s. An action
layer Ai consists of all actions that have all of
their precondition propositions in Pi. A proposi-
tion layer Pi, i > 0, is the set all propositions giv-
en by the positive effect5 of an action in Ai–1. It
is common to use implicit actions for proposi-
tion persistence (also known as noop actions)
to ensure that propositions in Pi–1 persist to Pi.
A noop action ap for proposition p is defined as
pre(ap) = eff+(ap) = p. 

Planning graph construction can continue
until one of the following conditions holds: (1)
the graph has leveled off (that is, two subse-
quent proposition layers are identical), or (2)
the goal is reachable (that is, every goal propo-
sition is present in a proposition layer). 

In figure 3a the planning graph has all of the
goal propositions {comm(soil), comm(rock),
comm(image)} in P3 and will level off at P4. It
is also possible to truncate planning graph con-
struction at any level. If the goal is not reach-
able before truncation, then the number of lev-
els is still a lower bound on the number of steps
to reach the goal. However, if the goal is not
reachable before the graph has leveled off, then
the goal is not reachable and there is no plan. 

Heuristic Estimates of Plan Cost
Planning graph heuristics are used to estimate
the plan cost for a transition between two
states, a source state and a destination state.
The source state is always the state that defines
P0, and the destination state is one of poten-
tially many goal states. 

There are two fundamental types of plan-
ning graph heuristics, level-based and relaxed
plans (Nguyen, Kambhampati, and Nigenda
2002). The most obvious level-based heuristic,
called the set-level heuristic, estimates the plan
cost to reach a goal state by finding the first lev-
el where the proposition layer includes all of
the propositions in the goal. This level index is
used as the heuristic. Other level-based heuris-
tics compute a cost c(s, g) to reach each propo-
sition g � G from the state s and then numeri-
cally aggregate the costs, through max-
i mization (maxg�G c(s, g)) or summation (�g�G
c(s, g)). The heuristics are level based because
the cost of each proposition p is determined by

the index of the first proposition layer in which
it appears, c(s, p) = mini:p�Pi i. For instance, the
goal proposition comm(soil) first appears in P2,
meaning it has a cost of 2. If a proposition does
not appear in any proposition layer of a lev-
eled-off planning graph, then its cost is �. Oth-
erwise, if the planning graph has k levels but
has not leveled off, the cost of such missing
propositions is at least k. Unlike level-based
heuristics that relate level to cost, relaxed plans
identify the actions needed to causally support
all goals (while ignoring negative interactions).
We explore both types of heuristics in detail. 

To illustrate the different heuristics, we will
use three goals: G = {comm(soil), comm(image),
comm(rock)} (the original goal in the example),
G1 = {at(beta), have(rock)}, and G2 = {at(beta),
have(soil)}. Table 1 lists the cost estimates made
by different heuristics for each goal. The table
also lists the true optimal plan cost for each
goal. The following discussion uses these goals
to explain the properties of each heuristic. 

Level-Based Heuristics
The level-based heuristics make a strong
assumption about the cost of reaching a set of
propositions: namely, that achievement cost is
related to the level where propositions first
appear. Depending on how we assess the cost
of the set of propositions, we make additional
assumptions. 

The set-level heuristic is defined as the index
of the first proposition layer where all goal
propositions appear. For example, the cost of
G1 is 2, because both propositions first appear
together in P2. The set-level heuristic assumes
that the subplans to individually achieve the
goal propositions positively interact, which is
appropriate because the rover must be at(beta)
in order to have(rock). Positive interaction cap-
tures the notion that actions taken to achieve
one goal will simultaneously help achieve
another goal. Positive interaction is not always
the right assumption: the cost to reach G2 is 1
because both propositions appear in P1 but
they require different actions for support. The
set-level heuristic for the cost to reach G is 3
because the goal propositions are not reachable
together until P3 of PG(sI). The set-level heuris-
tic never overestimates the cost to achieve a set
of propositions and is thus admissible. As we
will see in the next section, we can adjust the
set-level heuristic with mutexes to incorporate
negative interactions and strengthen the
heuristic. 

As an alternative to the set-level heuristic,
cost can be assigned to each individual propo-
sition in the goal. Aggregating the cost for each
proposition provides a heuristic. Using a max-
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imization assumes that the actions used to
achieve the set of propositions will positively
interact, like the set-level heuristic. For exam-
ple, with G1 it is possible to achieve at(beta) in
P1 defining c(sI, at(beta)) = 1, and achieve have
(rock) in P2, defining c(sI, have(rock)) = 2. Tak-
ing the maximum of the costs max(1, 2) = 2 to
achieve each proposition avoids counting the
cost of drive(alpha, beta) twice. The max heuris-
tic for reaching the original goal G from sI is 3,
because max(c(sI, have(soil)), c(sI, have(rock)),
c(sI, have(image))) = max(2,3,3) = 3. At this
point, the set-level and max heuristics are iden-
tical. We will see in the next section how set-
level more readily incorporates negative inter-
actions between goal propositions to improve
the heuristic (making it different from the max
heuristic). Conversely, in the section on cost-
based planning, we will see how the max
heuristic and sum heuristic (described next)
generalize easily because they are already
defined in terms of proposition costs. 

Using a summation to aggregate proposition
costs assumes that the subplans to achieve the
set of propositions will be fully independent.
Independence captures the notion that actions
taken to achieve one goal will neither aid nor
prevent achievement of another goal. For
example, with G2 it is possible to achieve
at(beta) in P1, defining c(sI, at(beta)) = 1, and
achieve have(soil) in P1, defining c(sI, have(soil))
= 1. Taking the summation of the costs 1 + 1 =
2 accurately measures the plan cost as 2
(because the required actions were independ-
ent), whereas taking a maximization would
under-estimate the plan cost as 1. The sum

heuristic for reaching the original goal G is 8
because c(sI, have(soil)) + c(sI, have(rock))+ c(sI,
have(image)) = 2 + 3 + 3 = 8. In practice the sum
heuristic usually outperforms the max heuris-
tic, but gives up admissibility. 

The primary problem with level-based
heuristics is that they assume that the proposi-
tion layer index is equal to the cost of achiev-
ing a proposition. Because planning graphs
optimistically allow multiple parallel actions
per step, using level to define cost can be mis-
leading. Consider a goal proposition that first
appears in P2: its cost is 2. In reality the propo-
sition may be supported by a single action with
100 precondition propositions, where each
proposition must be supported by a different
action. Thus, a plan to support the goal would
contain 101 actions, but a level-based heuristic
estimates its cost as 2. One can overcome this
limitation by using a relaxed plan heuristic
(described next), by using cost propagation
(described in the Cost-Based Planning section),
or by using a serial planning graph (described
in the next section). 

Relaxed Plan Heuristics
Many of the problems with level-based heuris-
tics came from ignoring how multiple actions
per level execute in parallel. The reachability
heuristic should better estimate the number of
actions in a plan. Through a simple back-
chaining algorithm (figure 4) called relaxed plan
extraction, it is possible to identify the actions
in each level that are needed to support the
goals or other actions. 

Relaxed plans are subgraphs (P0
RP, A0

RP, P1
RP,

..., An–
RP

1, Pn
RP) of the planning graph, where

each layer corresponds to a set of vertices.
Where appropriate, we represent relaxed plans
by their action layers (omitting noop actions
and empty action layers) and omitting all
proposition layers. A relaxed plan satisfies the
following properties: (1) every proposition p �
Pi

RP, i > 0, in the relaxed plan is supported by
an action a � Ai–

RP
1 in the relaxed plan, and (2)

every action a � Ai
RP in the relaxed plan has its

preconditions pre(a) � Pi
RP) in the relaxed plan.

A relaxed plan captures the causal chains
involved in supporting the goals but ignores
how actions may conflict. For example, a
relaxed plan extracted from PG(sI) may contain
both drive(alpha, beta) and drive(alpha, gamma)
in A0

RP because they both help support the goal,
despite conflicting. 

Figure 4 lists the algorithm used to extract
relaxed plans. Lines 2–4 initialize the relaxed
plan with the goal propositions. Lines 5–13 are
the main extraction algorithm that starts at the
last level of the planning graph n and proceeds
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Heuristic G G1 G2

Set-Level 3 2 1

Max 3 2 1

Sum 8 3 2

Relaxed Plan 8 2 2

True Cost 8 2 2

Table 1. Heuristic Estimates and True Cost to Achieve 
Each Goal from the Initial State. 

The goals are G = {comm(soil), comm(image), comm(rock)}, G1 = {at(beta),
have(rock)}, and G2 = {at(beta), have(soil)}. 



to level 1. Lines 6–9 find an action to support
each proposition in a level. Choosing actions
in 7 is the most critical step in the algorithm.
We will see in later sections, such as the section
on cost-based planning, that it is possible to
supplement the planning graph with addition-
al information that can bias the action choice
in line 7. Lines 10–12 insert the preconditions
of chosen actions into the relaxed plan. The
algorithm ends by returning the relaxed plan.
The relaxed plan heuristic is the total number
of non-noop actions in the action layers. The
relaxed plan to support the goal G from sI is
depicted in figure 3b in bold. Each of the goal
propositions is supported by a chosen action,
and each of the actions has its preconditions
supported. There are a total of eight actions in
the relaxed plan, so the heuristic is 8. In line 7
of figure 4, it is common to prefer noop actions
for supporting a proposition (if possible)
because the relaxed plan is likely to include
fewer extraneous actions. For instance, a
proposition may support actions in multiple
levels of the relaxed plan; by supporting the
proposition at the earliest possible level, it can
persist to later levels. 

The advantage of relaxed plans is that they
capture both positive interaction and inde-
pendence of subplans used to achieve the
goals, rather than assuming one or the other.
The goals G1 and G2 have the respective relaxed
plans: 

(A0
RP = {drive(alpha, beta)},

A1
RP = {sample(rock, beta)}), and 

(A0
RP = {sample(soil, alpha), drive(alpha, beta)}). 

In these, the relaxed plan heuristic is equiva-
lent to the max heuristic for the positively
interacting goal propositions in G1, and it is
equivalent to the sum heuristic for the inde-
pendent goal propositions in G2. Relaxed plans
measure both action independence and posi-
tive interaction, making them a compromise
between the max and sum heuristics (which
measure one or the other). 

Relaxed plan extraction can be quite fast,
mostly due to the fact that the extraction can
be done by a backtrack free choice of actions at
each level. It is possible to find the optimal
relaxed plan by using line 7 in figure 4 as a
backtrack point in a branch and bound
scheme. In general, finding an optimal relaxed
plan is NP-hard. Recent work (Do, Benton, and
Kambhampati 2006) has noticed that, like the
original GraphPlan search for plans, finding
relaxed plans can be posed as combinatorial
search, solvable by optimizing or satisficing
algorithms. While the procedural approach
(described above) is practical in classical plan-
ning, using combinatorial search may better

incorporate cost, utility, and other factors
described in later sections. Nevertheless, we
will see that procedural relaxed plan extraction
can be biased in several ways to handle addi-
tional problem constraints, such as action
costs. As with all heuristics, the quality and
computation time play competing roles, leav-
ing the dominance of procedural versus com-
binatorial algorithms, as yet, unsettled. Regard-
less of the extraction algorithm, relaxed plans
tend to be very effective in practice and form
the basis for most modern heuristic search
planners. 

Related Work
Level-based heuristics were first introduced by
Nguyen and Kambhampati (2000, 2001), while
relaxed plan heuristics became popular with
the success of the FF planner (Hoffmann and
Nebel 2001). There are a number of improve-
ments and alternatives that can be made
beyond the basic ideas on planning graph con-
struction and heuristic extraction. One com-
mon extension is to limit the branching factor
of search using actions occurring in the plan-
ning graph or relaxed plan. The idea is to
restrict attention to only those actions whose
preconditions can be satisfied in a reachable
state. A conservative approach would allow
search to use only actions appearing in the last
action layer of a leveled-off planning graph (a
complete strategy). The actions that do not
appear in these layers will not have their pre-
conditions reachable and are useless. A less
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RPExtract(PG(s), G)

1: Let n be the index of the last level of PG(s)

2: for all p∈ G ∩Pn do /* Initialize Goals */

3: P RP
n ← PRP

n ∪ p

4: end for

5: for i = n ... 1 do

6: for all p∈ PRP
i do /* Find Supporting Actions */

7: Find a ∈A such that p ∈ eff +(a)

8: ARP←ARP
i−1∪ a

9: end for

10: for all a ∈ARP , p ∈ pre(a) do/* Insert Preconditions */ 

11: P RP← PRP ∪ p

12: end for

13: end for

14: return (P RP
0 ,ARP

0 , PRP
1 , ...,ARP

n−1 , P RP
n )

i−1

i−1

i−1

i−1

i−1

Figure 4. Relaxed Plan Extraction Algorithm. 



conservative approach uses only those actions
in the layer preceding the layer where the goals
are supported (an incomplete strategy)
(Nguyen, Kambhampati, and Nigenda 2002).
An even more aggressive and incomplete strat-
egy called “helpful actions” (Hoffmann and
Nebel 2001) involves applying only those
actions that have effects similar to actions cho-
sen for the first step of the state’s relaxed plan.
In the rover example, search with helpful
actions would only apply actions to sI that
have at least one of the propositions {have(soil),
at(beta), at(gamma)} in their effect because
these propositions appear in P1

RP. 
Another use for relaxed plans is to derive

macro actions (plan fragments). The YAHSP
planner (Vidal 2004) encodes relaxed plans
into a CSP to resolve action conflicts, creating
a macro action. This often leads to search mak-
ing very few (albeit expensive) choices. 

While the planning graph was originally
introduced as part of the GraphPlan search
algorithm and subsequently used for heuristics
in state-based search, GraphPlan-based search
has been revived in the search employed by
LPG (Gerevini, Saetti, and Serina 2003). LPG
uses local search on the planning graph to
transform a relaxed plan into a feasible plan.
LPG uses relaxed plan heuristics to evaluate
potential plan repairs that add and remove
actions. 

Adjusting for 
Negative Interactions 

We noted that the proposition layers in the
planning graph are an upper bound approxi-
mation to the states in the projection tree.
Specifically, while every legal state is a subset of
the proposition layer, not every subset of the
proposition layer corresponds to a legal state.
Because of the latter, the reachability estimates
can be too optimistic in scenarios where there
are negative interactions between the actions.
There is a natural way to tighten the approxi-
mation—mark subsets of the proposition lay-
ers that cannot be present together in any legal
state. Any subset of the proposition layer that
subsumes one of these “mutual exclusion” sets
will not correspond to a legal state (and thus
should not be considered reachable by that lev-
el). The more mutual exclusion sets we can
mark, the more exact we can make the plan-
ning graph–based reachability analysis. Intu-
itively, if all mutual exclusion sets of all arity
are marked, then the planning graph proposi-
tion layers correspond exactly to the projection
tree states. The important point is that the
marking procedure does not need to be all or

nothing. As long as the markup is “sound” (in
that any subset marked mutually exclusive is
indeed mutually exclusive), the planning
graph continues to provide an optimistic (low-
er-bound) estimate on reachability. 

The question is whether it is possible to mark
such mutual exclusions efficiently. It turns out
that it is indeed feasible to compute a large sub-
set of the binary mutual exclusions (hence-
forth called “mutexes”) in quadratic time using
a propagation procedure. Mutexes arise in
action layers, where they record which of the
actions cannot be executed in parallel (because
they disagree on whether a proposition should
be positive or negative in an effect or precon-
dition). Mutex propositions result from mutex-
es among supporting actions when there is no
set of nonmutex actions supporting the propo-
sitions.6

To illustrate, figure 5 shows mutexes for the
first two levels of the planning graph PG(sI).
Mutexes are denoted by the arcs between
actions and between propositions. Notice that
the two drive actions in A0 are mutex with all
other actions and the persistence of at(alpha).
Both drive actions make at(alpha) false, inter-
fering with each action requiring that at(alpha)
be true. This results in proposition mutexes
between have(soil) and both at(beta) and
at(gamma) in P1. Mutexes capture the fact that
the rover cannot be at(beta) and have(soil) after
one step. However, notice that it is possible
after two steps for the rover to be at(beta) and
have(soil). Mutexes effectively reduce the opti-
mism about which states are reachable, tight-
ening the approximation of the progression
search graph. 

A stronger interpretation and computation
of mutex propagation takes place in the previ-
ously mentioned serial planning graphs, which
remove all notion of action parallelism by forc-
ing each action to be mutex with every other
action (except for noop actions). The serial
planning graph has the advantage of improv-
ing level-based heuristics by more tightly cor-
relating level and cost. However, serial plan-
ning graphs are not often used in practice
because they require a large number of addi-
tional mutexes (and also make the planning
graph achieve level-off much later). In the
remainder of this section, we describe the “nor-
mal” planning graph with mutexes, where
action parallelism is allowed. 

Heuristic Adjustments
It is possible to improve the quality of planning
graph heuristics by adjusting them to make up
for ignoring negative interactions. We started
with a relaxation of the projection tree that
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ignored all negative interactions, in favor of
causal support, to estimate the achievement
cost of subgoals. While this relaxation works
well for many problems and search strategies,
there are ways to either strengthen or adjust the
heuristic relaxation to better guide search. For
instance, it is possible to strengthen the set-lev-
el heuristic because it is defined as the index of
the first level where all goal propositions
appear reachable. If any pair of the goal propo-
sitions is mutex in a level, then even if all goal
propositions are present the goal is not reach-
able. Set level is still admissible with mutexes,
and becomes a better lower bound on the cost
to reach the goal. What is perhaps more inter-
esting is that admissibility depends only on the
soundness but not the completeness of mutex
propagation. We can thus be lazy in propagat-
ing mutexes. For example, consider the set-lev-
el heuristic for G2 = {at(beta), have(soil)} with
and without mutexes. With mutexes the
heuristic value is 2 because the propositions do
not appear together without a mutex until P2,
whereas without using mutexes the heuristic
value is 1. This illustrates the difference
between the max and set-level heuristics
because without mutexes the max heuristic is
equal to the set-level heuristic and with mutex-
es they are different. 

Alternatively we can adjust the relaxed plan
heuristic, to get the adjusted sum heuristic, by
adding a penalty factor to account for ignoring
negative interactions. One penalty factor can
be the difference between the set-level heuris-
tic and the max heuristic: indicating how
much extra work is needed to achieve the goals
together. While the adjusted sum heuristic is
costly because it involves computing a relaxed
plan, set level, and max heuristic, it guides
search very well and improves performance on
large problems (especially in regression search,
described in the next section).

The notion of adjusting heuristics to account
for ignored constraints is called phased relax-
ation. As we will see in later sections, including
more problem features makes it more difficult
to include everything in planning graph con-
struction. Phased relaxation allows us to get a
very relaxed heuristic and make it stronger. 

Related Work
Mutexes were originally introduced in Graph-
Plan (Blum and Furst 1995), but Nguyen and
Kambhampati (2000) realized their application
to adjusting heuristics. Helmert (2004)
describes another way to include negative
interactions in reachability heuristics. Plan-
ning domains best expressed with multivalued
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Figure 5. Classical Planning Graph with Binary Mutexes. 



variables (as in the SAS+ language [Backstrom
and Nebel 1995]) are often described in the
classical planning formalism with Boolean
variables (such as the at(?x) predicate in the
example). By representing an inherently multi-
valued variable as Boolean, information about
negative interactions is lost (for example, that
at(alpha) and at(beta) are impossible together),
where it is readily available in the multivalued
encoding (for example, at = alpha or at = beta
because at can have only one value). By trans-
lating a Boolean encoding of a problem to a
multivalued encoding, it is possible to solve
different relaxed planning tasks (which incor-
porate these negative interactions). As yet,
there is no decisive result indicating whether
Boolean or multivalued variable encodings are
best, much as there still exists the same ques-
tion with respect to SAT and CSP. 

Another recent work (Yoon, Fern, and Givan
2006) automatically learns adjustments for
relaxed plan heuristics. The idea is to learn a
linear regression function from training plans
that reflect the difference in relaxed plan
length and the actual cost to reach the goal. 

Heuristics in Alternative 
Planning Strategies 

Planning graph heuristics can be used for many
different types of search, including regression
and plan space search. Regression and plan
space search are similar, in that both use
means-ends reasoning to find actions that are
relevant to supporting the goals. We have pre-
sented planning graph heuristics in terms of
progression search, where we estimate the cost
of a plan to transition between two sets of
propositions (a search state and the goal). We
can use the same technique for means-ends
reasoning by carefully redefining the two sets
of propositions. The initial state replaces the
search state, and regression states replace the
goal. 

Regression Search
Regression search (or back chaining) constructs
plan suffixes starting from the goal. Because
the planning problem defines a goal by a set of
propositions instead of a state, there may be
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Figure 6. State Space and Plan Space Regression. 



several goal states. Rather than individually
search for a plan for each goal state, it is com-
mon to search for all goal states at once in the
space of partial states. Each partial state is char-
acterized by a set of propositions that are
known to be true and a set of propositions that
are known to be false, assuming all other
propositions are unknown. Since each proposi-
tion is true, false, or unknown, there are 3|P|

partial states. Regression in the space of partial
states identifies plan suffixes that will reach a
goal state. The regression tree is rooted at the
partial goal state, and leaf nodes are partial
states. The path from a leaf node to the root is
a plan suffix that guarantees any state consis-
tent with the leaf node can reach a goal state by
executing the plan suffix. A valid plan starts
with a partial state that is satisfied by the initial
state. 

Figure 6 illustrates a regression search path
(figure 6a) and two partial plan space plans (fig-
ures 6b and 6c), described later in the section,
for the rover example. The regression search
trace starts on the right with a partial state
comprised of the goal propositions. Each par-
tial state is generated by reasoning about what
must be true in the previous state for the
applied action to make the latter state exist. For
example, s1 is the partial state resulting from
regressing the partial goal state sG with com-
mun(image). Because commun(image) does not
make any proposition in sG false and it makes
comm(image) true, it is applicable to sG. To con-
struct s1, regression removes the positive effect
comm(image) and adds the precondition
have(image). 

Heuristics for Regression
Planning graphs can estimate the cost of a plan
to transition between a complete state and a
partial state. In progression, search encounters
several complete states (each requiring a plan-
ning graph), and each must reach a partial goal
state. In regression, search generates several
partial states, and each must be reached from
the complete initial state (requiring a single
planning graph). Planning graphs are single-
source, multiple-destination relaxations of the
projection tree. In progression, the source is
constantly changing, depending on the search
state, and the destination is always the goal. In
regression, the source is constant, but the des-
tination changes, depending on the regressed
partial state. While it may seem to the reader
that regression has a definite advantage
because it needs only one planning graph, we
will shortly see that the situation is more com-
plex. 

The planning graph in figure 3b can be used

to compute the heuristic for any regressed par-
tial state in the example. To compute a level-
based heuristic for s3, we find comm(soil) first
appears in P2, avail(rock, beta) appears in P0,
have(image) appears in P2, and at(beta) appears
in P1. Using the level-based sum heuristic to
measure its cost provides 2 + 0 + 2 + 1 = 5. Sim-
ilarly, for state s4, the same heuristic provides 2
+ 0 + 0 + 1 + 1 = 4. 

The reader should notice that the s4 regres-
sion state in figure 6 is inconsistent because it
asserts that the rover is at two locations at
once. Regression search allows inconsistent /
unreachable states. The heuristic measure of
this inconsistent state is 4, but it should be �
because it cannot be reached from the initial
state. The search may continue fruitlessly and
explore through this state unaware that it will
never become a valid solution. One can correct
this problem by propagating mutexes on the
planning graph and using the set-level heuris-
tic. With set level there is no level where
at(beta) and at(gamma) are not mutex, so the
heuristic value is �. Nguyen and Kambhampati
(2001) show that the adjusted sum heuristic
discussed earlier—which adds a penalty based
on negative interactions to the relaxed plan
heuristic—does quite well in regression search.
However, this analysis increases the computa-
tional cost of planning graph construction. 

Progression Versus Regression
Table 2 summarizes the many important dif-
ferences between progression and regression
from the point of view of reachability heuris-
tics. In progression, the search encounters sev-
eral complete states (at most 2|P|), and one of
them must reach a partial goal state. Regression
search encounters several partial states (at most
3|P|), and one of them must be reached from the
complete initial state. Progression requires a
planning graph for each encountered state,
whereas regression requires a single planning
graph for the initial state of the problem.
Mutexes play a larger role in regression by
improving the ability of search to prune incon-
sistent partial states. However, binary mutex
analysis is often not enough to rule out all
inconsistent states, and considerably costlier
higher-order mutex propagation may be
required. Progression states are always consis-
tent and mutexes only help adjust the heuris-
tic. Thus, there is a trade-off between searching
in the forward direction constructing several
inexpensive planning graphs and searching in
the backward direction with a single costly
planning graph. Current planner performance
indicates that progression works better. 
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Plan Space Search
Plan space search (also known as partial-order
or causal-link planning) shares many similari-
ties with regression search and it too can bene-
fit from planning graph heuristics. Both plan
space and regression search reason backward
from the goal to the initial state, but plan space
search does not maintain an explicit notion of
state. Rather, plan space search algorithms rea-
son about which actions causally support the
conditions of other actions or the goals. 

Any partial plan space plan can be charac-
terized in terms of its open conditions: those
preconditions or goals that do not yet have
causal support. The open conditions may nev-
er all need to hold in a single state at the same
time, but we can think of them as an approxi-
mate regression state. In particular, by assum-
ing that negative interactions do not exist, it is
always possible to achieve all conditions in the
beginning of the plan and persist them to
where they are needed. With this approximate
state, we can measure its reachability cost from
the initial state just as in regression search
(Nguyen and Kambhampati 2001; Younes and
Simmons 2003). 

In figure 6b and 6c, each plan space plan is
represented by a set of steps, causal links, and
ordering relations. Each step has an associated
action with preconditions and effects. We
denote each step by a rectangle, with the pre-
conditions on the left and effects on the right.
The open conditions are contained in ovals.
The regression state s3 contains every proposi-
tion that is an open condition in the plan space
plan in figure 6b, and likewise for the s4 and
plan space plan in figure 6c. The heuristic val-
ues for the plan space plans in figure 6 are the
same as the analogous regression states because
their open conditions are identical to the
propositions that hold in the regression states. 

Related Work
Planning graph heuristics in regression search
were first considered by Nguyen and Kamb-
hampati (2000, 2001). Their application to par-
tial-order planning was first considered by
Nguyen and Kambhampati (2001) and subse-
quently by Younes and Simmons (2003). 

GraphPlan itself also benefits from planning
graph heuristics. By adopting the view that
GraphPlan solves a constraint satisfaction
problem where variables are propositions and
values are supporting actions, planning graph
heuristics help define variable and value order-
ing heuristics. The GraphPlan value ordering
heuristic is to consider only those supporters of
a proposition that appear in the previous
action layer. Many works have improved upon
the GraphPlan search algorithm by using
heuristics similar to those just described. For
instance, Kambhampati and Sanchez (2000)
recognized how level-based heuristics can be
used in the ordering heuristics in GraphPlan.
Defining proposition cost as before, it is prefer-
able to support the most costly propositions
first to extract plans starting at later levels.
Extracting plans at earlier levels first can lead
to costly backtracking. Defining action cost as
the aggregate cost of its precondition proposi-
tions, it is preferable to support a proposition
with the least costly actions first. As we will see
in the next section, these heuristics are related
to our intuitions for propagating cost in the
planning graph. The PEGG planner (Zimmer-
man and Kambhampati 2005) uses similar
planning graph heuristics in its search. PEGG
links GraphPlan search with state space search
by identifying the states consistent with the
steps in a partial GraphPlan solution. Using the
identified states, PEGG can get better heuristics
to rank partial solutions and guide GraphPlan
search. 

Some less-traditional GraphPlan algorithms

Articles

60 AI MAGAZINE

Feature Progression Regression

Search Nodes Complete/Legal States Incomplete/Possibly Inconsistent

Search Space Size 2|P| 3|P|

Number of Planning
Graphs

O(2|P|) 1

Mutexes Marginally Helpful Extremely Helpful

Table 2. Comparison of Planning Graphs for Progression and Regression Search. 



also use reachability heuristics. Least Commit-
ment Graph-Plan (LCGP) (Cayrol, Regnier, and
Vidal 2000) uses heuristics similar to Kamb-
hampati and Sanchez (2000) in a GraphPlan
algorithm that alters the structure of the plan-
ning graph. LCGP reduces the number of levels
in the planning graph by allowing more paral-
lelism; mutex actions can appear in the same
level if there is a feasible serialization. The
advantage of LCGP is in using fewer levels to
find the same length plan, thus reducing the
cost of constructing the planning graph. The
work of Hoffmann and Geffner (2003) exploits
the connection between GraphPlan and con-
straint satisfaction problems to find alternative
branching schemes in the BBG planner. BBG
allows action selection at arbitrary planning
graph layers until a consistent plan is found.
BBG guides its search with a novel level-based
heuristic. Each partial plan is a set of action
choices in different planning graph layers, so
the heuristic for each partial plan constructs a
planning graph respecting the partial plan
action choices. For instance, BBG would
exclude all actions that are mutex with a cho-
sen action from the planning graph, favoring
its commitments. The number of levels in the
resulting planning graph is the heuristic merit
of the partial plan. 

We mentioned that a key difference between
progression and regression is the number of
planning graphs required. The backward plan-
ning graph (Refanidis and Vlahavas 2001)
allows progression search to use a single plan-
ning graph, similar to regression. The backward
planning graph reverses the planning graph by
identifying states reachable by regression
actions from the goal. In practice, the reverse
planning graph suffers from the difference
between the initial state and goal descriptions:
the former is complete (that is, consistent with
a single state), while the latter is partial (that is,
consistent with many states). Because there are
multiple goal states, reachability analysis is
weakened, having fewer propositions to which
actions are relevant. 

Planning graph heuristics can be computed
in alternative ways that were originally discov-
ered in the context of partial-order planning
and regression. IxTeT (Ghallab and Laruelle
1994) and UNPOP (McDermott 1996, 1999)
compute the reachability heuristics on demand
using a top-down procedure that does not
require a planning graph. Given a state s whose
cost to reach the goal needs to be estimated,
both IxTeT and UNPOP perform an approxi-
mate version of regression search (called
“greedy regression graphs” in UNPOP) to esti-
mate cost of that state. The approximation

involves making an independence assumption
and computing the cost of a state s as the sum
of the costs of the individual literals compris-
ing s. When a proposition p is regressed using
an action a to get a set of new subgoals s�, s� is
again split into its constituent propositions.
UNPOP also has the ability to estimate the cost
of partially instantiated states (that is, states
whose predicates contains variables). 

HSP (Bonet and Geffner 2000a) and HSP-r
(Bonet and Geffner 1999) use a bottom-up
approach for computing the cost measures,
again without the use of a planning graph.
They use an iterative fixed-point computation
to estimate the cost of reaching every literal
from the given initial state. The computation
starts by setting the cost of the propositions
appearing in the initial state to 0, and the cost
of the rest of the propositions to �. The costs
are then updated using action application until
a fixed point is reached. The updating scheme
uses independence assumptions in the follow-
ing way: if there is an action a that gives a
proposition p, and a requires the preconditions
p1, p2, ..., pi, then the cost of achieving p is
updated to be the minimum of its current cost,
and the sum of the cost of a and the sum of the
costs of achieving p1, p2, ..., pi. 

Once this updating is done to the fixed
point, estimating the cost of a state s involves
summing the costs of the propositions com-
posing s. In later work, Haslum and Geffner
(2000) point out that this bottom-up fixed-
point computation can be seen as an approxi-
mate dynamic programming procedure, in
which the cost of a state s is estimated as the
maximum of the costs of its k-sized subsets of
propositions. 

These approaches can be related to planning
graph heuristics. Planning graph heuristics can
be seen as a bottom-up computation of reach-
ability information. As discussed in Nguyen,
Kambhampati, and Nigenda (2002, section
6.3), basing the bottom-up computation on
the planning graph rather than on an explicit
dynamic programming computation can offer
several advantages, including the access to
relaxed plans and help in selecting actions. 

Cost-Based Planning 
The rover problem is coarsely modeled in the
classical planning framework because there are
many seemingly similar quality plans that are
actually quite different. The first limitation we
lift is the assumption that actions have unit
costs. In the rover example with unit cost
actions, there are two equivalent plans to
achieve the goal G. The first visits beta then
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gamma, and the second visits gamma then
beta. However, with the cost model illustrated
in figure 7, there is a difference between these
two plans. Figure 7 graphically depicts the cost
(used here) and duration (used later) of each
action. Driving to gamma then beta is 15 units
costlier than driving to beta then gamma. 

The extension to planning graph heuristics
to consider nonuniform action costs is to prop-
agate cost functions in the planning graph.
Where previously cost was measured using the
planning graph–level index, cost is now less
correlated with the level index, thus requiring
cost functions. Reachability heuristics measure
the cost of achieving a set of propositions with
the cost functions. This requires explicitly
tracking the cost of achieving a proposition at
each layer. Shortly, we will describe how heuris-
tics change, but we consider first how one can
propagate cost functions in the planning
graph. 

Cost Functions
Cost functions capture the distinction between
reachability cost and proposition-layer indices

by propagating the best cost to achieve each
proposition at each level. Figure 8 illustrates
the planning graph PG(sI) with cost functions.
The cost above each proposition indicates its
achievement cost, and the cost above each
action is the cost to support and execute the
action. Notice that it takes only one level to
achieve at(gamma), but it requires the
drive(alpha, gamma) action whose cost is 30.
The cost functions allow a possibly different
cost for a proposition at different levels. For
instance, at(gamma) has cost 30 in P1 and cost
25 in P1 because it can be achieved with a dif-
ferent, lower cost in two levels. With unit-cost
actions, achieving a proposition in fewer levels
is usually best, but with non-unit-cost actions,
a least cost plan may use more levels. 

Cost functions are computed during plan-
ning graph expansion with a few simple prop-
agation rules. Propositions in the initial propo-
sition layer have a cost of zero. Each action in
a level is assigned the sum of its execution cost
and its support cost. An action’s support cost
reflects the cost to reach its set of precondition
propositions. It is typical to define the cost of a
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Figure 7. Costs ($) and Durations ([]) for Actions. 



set of propositions with a maximization (used
in max-propagation) or summation (used in
sum-propagation) of the individual proposi-
tion costs (similar to the max and sum heuris-
tics). Finally, the cost to reach a proposition is
the same as its least cost supporting action
from the previous level. 

Figure 8 depicts the planning graph with cost
functions propagated from the initial state,
using max-propagation. The goals comm(soil)
and comm(rock) have minimum cost in the
proposition layer where they first appear (P2
and P3, respectively), but comm(image) does not
have minimum cost until one extra layer, P4,
after it first appears in P3. The comm(image)
goal proposition becomes less costly after
another level because it is more costly to drive
directly to gamma from alpha (one step), than
it is to drive from alpha to beta and beta to
gamma (two steps). 

Notice that costs monotonically decrease
over time. Since cost propagation always
chooses the cheapest supporter for a proposi-
tion and the set of supporters monotonically
increases, it is only possible for cost to decrease
or remain constant. The cost of every proposi-
tion in figure 8 decreases, and eventually
remains constant, leading us to several strate-
gies for ending cost propagation. 

Ending Cost Propagation
The original termination criterion for planning
graph construction is no longer sufficient
because the cost of each proposition may
decrease at each level. Stopping when the goal

propositions first appear may overestimate
plan cost when they have lower costs at later
levels. Stopping when two proposition layers
are identical (the graph is leveled off) does not
prevent an action’s cost from dropping in the
last action layer, making a goal proposition
have lower cost. To allow costs to stabilize, we
can generalize the leveling-off condition to use
�-lookahead by extending the planning graph
until proposition costs do no change. In some
cases, using �-lookahead may be costly
because costs do not stabilize for several levels.
An approximation to �-lookahead is to use k-
lookahead by extending the planning graph an
additional k levels after the goal propositions
first appear. The example, depicted in figure 8
uses 1-lookahead (extending the planning
graph one level past the first appearance of all
goal propositions). 

Cost-based Heuristics
Level-based heuristics no longer accurately
model the cost to reach the goal propositions
because actions are no longer unit cost. Cost-
based heuristics generalize level-based heuris-
tics by using cost functions instead of level
indices to define proposition reachability costs.
With cost functions the heuristics care about
the minimum cost to achieve a proposition
instead of its first level. The minimum cost is
always the cost at the last level of the planning
graph because costs decrease monotonically. In
the example depicted in figure 8, at(gamma)
has cost 30 after one step because it can only be
supported by drive(alpha, gamma), but after
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comm(soil) comm(rock) comm(image) Cost Utility Net Benefit

0 0 0

35 20 -15

40 60 20

65 80 15

25 50 25

60 70 10

65 110 45

90 130 40

Table 3. The Net Benefit for Each Goal Subset with Respect to an Optimal Cost Plan for the Subset. 

The optimal net benefit is shown in bold. 



two steps its cost is 25 because it can be sup-
ported by drive(beta, gamma). The cost of the
at(gamma) proposition is 25 for the rest of the
planning graph, thus appearing with mini-
mum cost in the last level. By knowing the
minimum cost of each goal proposition it is
possible to use max or sum heuristic to meas-
ure reachability cost. For example, the max
heuristic for G is max(c(sI, comm(soil)), c(sI,
comm(rock)), c(sI, comm(image))) = max(25, 40,
35) = 40, and the sum heuristic for G is 25 + 40
+ 35 = 100. The set-level heuristic is no longer
meaningful with cost functions because the
level index is not directly related to cost. 

It is possible to get an admissible cost-based
heuristic when actions have nonuniform cost.
The heuristic must never overestimate the
aggregate cost of a set of propositions, mean-
ing that both the cost of a set of precondition
propositions and the goal propositions are
aggregated by maximization. This corresponds
to using max-propagation within a planning
graph using �-lookahead and the max heuris-
tic. 

Cost-Sensitive Relaxed Plan Heuristics
Relaxed plan heuristics change in a significant
way with cost functions. When there are sever-
al supporting actions for a proposition, it is
best to bias the action choice toward one that
supports with minimal cost (corresponding to
the choice in line 7 of figure 4). It is not always
enough to choose the action that is least cost-
ly; it is also important to consider the cost to
support the preconditions of the action. The
relaxed plan, as depicted in bold in figure 8,
chooses supporting actions that have the least
propagated cost among the possible support-
ers. For instance, comm(image) is supported at
level 4 with the commun(image) action (cost
35) instead of the noop from level 3 (cost 40).
Using propagated cost functions provides a
look-ahead capability to the greedy extraction
scheme that often results in low-cost relaxed
plans. The relaxed plan heuristic is the sum of
the execution costs of the actions in the action
layers, providing 90 as the reachability heuris-
tic for G. As mentioned earlier, extracting least
cost relaxed plans is NP-hard. 
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Related Work
The Sapa planner (Do and Kambhampati 2003)
introduced the ideas for cost propagation in
metric-temporal planning problems. In metric-
temporal planning problems it is common for
planners to trade off the cost of a plan with its
makespan (duration). We will discuss how to
handle the temporal aspects of planning prob-
lems shortly. The “Hybrid Planning Graphs”
section describes how temporal planning com-
bines with cost-based planning. 

The POND planner (Bryce and Kambhampati
2005) also makes use of cost propagation on a
planning graph called the LUG (described in
the nondeterministic planning section) for
conditional planning problems. In conditional
planning problems, the planner must often
trade off the cost of sensing with the cost of
acting. The ideas developed by our earlier work
(Bryce and Kambhampati 2005) describe how
to propagate costs over multiple planning
graphs used for search in belief space. 

Partial Satisfaction 
(Oversubscription) Planning 

In the previous section we described handling
action costs in the planning graph to guide
search toward low-cost plans that achieve all of
the goal propositions. However, as often hap-
pens in reality, the benefit of a plan that
achieves all goals does not always justify the
cost of the plan. In the rover example, the rover
may expend considerable cost (power) in order
to obtain an image while the benefit of having
the image is low. However, it should get the
image if the additional residual cost of obtain-
ing the image is not too high. By balancing goal
utility and plan cost one can satisfy a subset of
the goals to maximize net benefit of the plan.
Net benefit assumes that plan cost and goal util-
ity are expressed in the same currency, such
that net benefit is total goal utility minus plan
cost.7 The cost-sensitive heuristics discussed in
the previous section can be applied to guide
search toward plans with high net benefit by
augmenting them to consider goal utility. 

In the example, the utility function over the
goal propositions is set such that comm(soil)
has utility 50, comm(rock) has utility 60, and
comm(image) has utility 20. We will assume an
additive utility for the goals. Inspecting the
optimal cost plans to achieve each subset of
these goal propositions identifies that the opti-
mal net benefit is 45 for the plan to achieve
{comm(soil), comm(rock)}. Table 3 lists the asso-
ciated cost, utility, and net benefit of the opti-
mal plan for each goal subset. 

Picking Goal Sets
The simplest way to handle partial satisfaction
problems is to first pick the goal propositions
that should be satisfied and then use them in a
reformulated planning problem, as described
by Van den Briel et al. (2004). The reformulat-
ed problem removes the goal utilities and
retains action costs to find a cost-sensitive plan
for the chosen subset of goal propositions. The
trick is to decide which of the possible 2|G| goal
subsets to use in the reformulation. One way to
reformulate the problem is to iteratively build
a goal subset G� accounting for positive inter-
actions between goals. Each iteration considers
adding one proposition g � G\G� to G� based
on how it changes the estimated net benefit of
G�. 

The algorithm starts by initializing G� with
the most beneficial goal, by estimating the net
benefit of each goal proposition with its utility
minus its minimum propagated cost in the
planning graph. In the example, the goal
propositions have the following net benefits: 

comm(soil) is utility 50 and cost 25 for net 
benefit 25, 

comm(rock) is utility 60 and cost 40 for net 
benefit 20, and 

comm(image) is utility 20 and cost 35 for net 
benefit –15. 

The costs to achieve these goal propositions
are, coincidentally, the same in both the plan-
ning graph (figure 8) and the true optimal plan
in table 3, but this is not true in general. The
algorithm chooses comm(soil) to initialize the
goal set. Upon choosing the initial goal set G,
the algorithm improves the estimate of its net
benefit by extracting a relaxed plan (which will
come in handy later). The relaxed plan for
comm(soil) is: 

(A0
RP = {sample(soil, alpha)},

A1
RP = {commun(soil)}),

which costs 25—the same as propagated cost. 
After picking the initial goal proposition for

the parent goal set G, the algorithm iterates
through possible extensions of the goal set
until the total net benefit stops increasing. The
cost of each candidate extension is measured in
terms of the cost of a relaxed plan to support
the candidate goal. To measure as much posi-
tive interaction as possible, the relaxed plan for
the candidate goal is biased to reuse actions in the
relaxed plan for the parent goal set. 

The candidate goal {comm(rock)} or the can-
didate goal {comm(image)} can be used to
extend G�. The biased relaxed plan for
{comm(soil), comm(rock)} is: 

(A0
RP = {sample(soil, alpha), drive(alpha, beta)},

A1
RP = {commun(soil), sample(rock, beta)},

A2
R = {commun(rock)}),
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with utility 110 and cost 65 for net benefit 45.
Similarly, {comm(soil), comm(image)} has the
relaxed plan:

(A0
RP = {sample(soil, alpha), drive(alpha, beta)},

A1
RP = {commun(soil), drive(beta, gamma)},

A2
RP = {sample(image, gamma)},

A3
R = {commun(image)}),

with utility 70 and cost 60 for net benefit 10.
The candidate goal {comm(rock)} increases net
benefit the most (by 25), so it is added to G�. 

The only extension of the new goal set is the
entire set of goals {comm(soil), comm(rock),
comm(image)}, which has the relaxed plan: 

(A0
RP = {sample(soil, alpha), drive(alpha, beta)},

A1
RP = {commun(soil), sample(rock, beta), 

drive(beta, gamma)},
A2

RP = {sample(image, gamma), commun(rock)},
A3

RP = {commun(image)})

with utility 130 and cost 100 for net benefit 30.
This decreases net benefit by 15 from 45, so the
additional goal is not added. The reformulated
planning problem for the chosen goal subset
{comm(soil), comm(rock)} is solved by ignoring
goal utility. Any of the cost-sensitive planning
heuristics can be used to solve the subsequent
problem. In order to guarantee an optimal net
benefit plan, it may be necessary to find the
optimal cost-sensitive plan for every goal sub-
set and select the plan with highest net benefit. 

Related Work
Partial satisfaction planning was first suggested
as a generalization to classical planning by
Smith (2002). The described techniques rely on
the work of Van den Briel et al. (2004). Since
this work, several algorithmic improvements
and problem generalizations have appeared.
The recent International Planning Competi-
tion (Gerevini, Bonet, and Givan 2006) includ-
ed a track specifically to encourage and evalu-
ate work on partial satisfaction planning. 

One of the first extensions improves iterative
goal set selection. Sanchez and Kambhampati
(2005) develop methods for measuring nega-
tive interaction between goals in addition to
the positive interaction described above. The
approach involves using mutexes to measure
the conflict between two goals and adjusting
the heuristic measure of cost. This is another
way of adjusting the heuristic to make up for
relaxations as we discussed earlier. 

Do, Benton, and Kambhampati (2006) dis-
cuss a generalization where the goal utilities
have dependencies (for example, achieving
comm(soil) and comm(rock) together is signifi-
cantly more useful than achieving either in iso-
lation). The ideas described above can be
extended to handle these more expressive
problems. Do, Benton, and Kambhampati

(2006) use an integer linear program to
improve the quality of relaxed plans by better
accounting for utility dependencies. 

An alternative to preselecting goal sets is to
search for the best goal set (Do and Kambham-
pati 2004). Using progression search, it is pos-
sible to approximately determine when a plan
suffix cannot improve net benefit. Using tech-
niques similar to those just described, it is pos-
sible to estimate the remaining net benefit that
is reachable in a possible plan suffix. Since it is
possible to quickly find plans that satisfy some
of the goals, an any-time search algorithm can
return plans with increasing net benefit. 

Another approach (Smith 2004) to oversub-
scription planning uses similar planning graph
heuristics to derive an abstraction of the plan-
ning problem, called the orienteering problem.
The solution to the orienteering problem pro-
vides a heuristic to guide search. Through a
sensitivity analysis in the planning graph,
through proposition and action removal, it is
possible to identify propositions and actions
that have the most influence on the cost of
achieving goals, and these are used in the
abstract problem. 

Planning with Resources 
(Also Known as Numeric 

State Variables) 
Planning with resources involves state vari-
ables that have integer and real values (also
termed functions or numeric variables).
Actions can, in addition to assigning a specific
value to a variable, increment or decrement the
value of a variable. Actions also have precondi-
tions that, in addition to equality constraints,
involve inequalities. 

We augment our example, as shown in fig-
ure 9, to describe the rover battery power with
the power function. Each action consumes
power, except for a recharge action that allows
the rover to produce battery power (through
proper alignment of its solar panels). The rover
starts with partial power reserves, that are not
enough to achieve every goal. Thus, the rover
needs a plan that is not much different from
the classical formulation but adds some appro-
priately inserted recharge actions. 

Planning graphs require a new generaliza-
tion to deal with numeric variables. Previously,
it was simple to represent the reachable values
of variables because they were only Boolean
valued. With numeric variables there is a pos-
sibly infinite number of reachable values.
Depending on whether a variable is real or
integer, there may be continuous or contiguous
ranges of values that are reachable, which are
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best represented as intervals. Tracking intervals
in the planning graph helps determine when a
particular enabling resource threshold can be
crossed (for example, if the rover has enough
power to perform an action). Because of the
rich negative interactions surrounding re -
sources, it is generally quite difficult to exactly
characterize the resource intervals. The ap -
proach taken in many works is simply to rep-
resent the upper and lower bounds for possible
values. Recall that the planning graph is opti-
mistic in terms of reachability, so it is reason-
able to represent only the upper and lower
bounds even though some intermediate values
are not in fact reachable. 

Tracking Bounds
Consider the planning graph, shown in figure
10, for the initial state of the problem described
in figure 9. The power variable is the only
numeric variable whose value changes, and it is
annotated with an interval of its possible val-
ues. In the first proposition layer, the possible
values of the power variable are [25, 25], as giv-
en in the initial state. This makes only some of

the actions applicable in the first action layer;
notice that drive(alpha, gamma) is not applica-
ble because it requires 30 power units. The sec-
ond proposition layer has the power bounds set
to [–5, 50]. The lower bound is –5 because in
the worst case all consumers are executed in
parallel—sample(soil, alpha) consumes 20 units
of power and drive(alpha, beta) consumes 10
units, so 25 – (10 + 20) = –5. Notice that deter-
mining the bounds on a numeric variable this
way may provide loose bounds because many
of the actions cannot really be executed in par-
allel. For instance, the lower bound on power
in the second proposition layer is –5. Ignoring
interactions between actions will prevent
noticing that executing both sample(soil, alpha)
and drive(alpha, beta) in parallel uses more
power than is available (even though they indi-
vidually have enough power to execute). Like-
wise, in the best case all producers execute in
parallel: recharge as well as the persistence for
power each produce 25 units of power, so 25 +
25 = 50. 
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(define (problem rovers_resource1)
 (:domain rovers_resource)
 (:objects
 soil image rock - data
 alpha beta gamma - location)
 (:init (at alpha)
        (avail soil alpha)
        (avail rock beta)
        (avail image gamma)
        (= (effort alpha beta) 10)
        (= (effort beta alpha) 5)
        (= (effort alpha gamma) 30)
        (= (effort gamma alpha) 5)
        (= (effort beta gamma) 15)
        (= (effort gamma beta) 10)
        (= (effort soil) 20)
        (= (effort rock) 25)
        (= (effort image) 5)
        (= (power) 25))
 (:goal (and (comm soil)
             (comm image)
             (comm rock)))
)

(define (domain rovers_resource)
(:requirements :strips :typing)
(:types location data)
(:predicates (comm ?d - data)
             (have ?d - data)
             (at ?x - location)
             (avail ?d - data ?x - location))
(:functions (power)
            (effort ?x ?y - location)
            (effort ?d - data))
(:action drive
 :parameters (?x ?y - location)
 :precondition (and (at ?x)
               (>= (power) (effort ?x ?y)))
 :effect (and (at ?y) (not (at ?x))
              (decrease (power) (effort ?x ?y))))
(:action commun
 :parameters (?d - data)
 :precondition (and (have ?d) (>= (power) 5))
 :effect (and (comm ?d) (decrease (power) 5)))
(:action sample
 :parameters (?d - data ?x - location)
 :precondition (and (at ?x) (avail ?d ?x)
                    (>= (power) (effort ?d)))
 :effect (and (have ?d) (decrease (power) (effort ?d))))
(:action recharge
 :parameters ()
 :precondition (and)
 :effect (and (increase (power) 25)))

)

Figure 9. PDDL Description of Resource Planning Formulation of the Rover Problem. 



Level-Based Heuristics
Level-based heuristics can be changed to
accommodate resource intervals. The first level
where a resource takes on a given value is the
first level where the resource interval contains
the value. For instance, if the goal were to have
(> (power) 55), then the set-level heuristic esti-
mates the cost to be 2, since power has the
interval [–115, 75] in P2. As before, it is possi-
ble to aggregate the cost of several goal propo-
sitions to define a level-based heuristic. 

Relaxed Plan Heuristics
Extracting a relaxed plan in the presence of
numeric variables is a little more involved
because multiple supporters may be needed for
each subgoal.8 A resource subgoal may need
multiple supporters because its bounds are
computed assuming that multiple actions pro-
duce or consume the resource. In the example,
the power variable is a precondition of every
action. Including an action in the relaxed plan
requires that there be enough power. By ignor-
ing interactions between actions, when several
actions require power, the relaxed plan need
only have enough power for the action that

requires the maximum amount of power. Con-
sider the number listed below the power vari-
able in figure 10. This number denotes the
maximum amount of power needed to support
an action chosen for the relaxed plan. In P2

RP

and P3
RP the power requirement is 5 because the

actions chosen for the respective A2
RP and A3

RP

have a maximum power requirement of 5 (this
includes persistence actions). The relaxed plan
can support the respective power requirements
by persistence from the previous proposition
layer because the maximum power is greater
than the requirements. In P1

RP, the power
requirement is 30 because drive(alpha, gamma)
in A1

RP requires 30 units of power. Persistence
alone cannot support the needed 30 units of
power and the relaxed plan must use both the
persistence of power and the recharge action to
support the requirement. 

Related Work
Planning graph heuristics for numeric state
variables were first described by Hoffmann
(2003), tracking only upper bounds. Sanchez
and Mali (2003) describe an approach for track-
ing intervals. Benton, Do, and Kambhampati
(2005) adapt planning graph heuristics to par-
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tial satisfaction planning scenarios where the
degree of satisfaction for numeric goals
changes net benefit. The technique propagates
costs for the resource bounds. As the bounds
change over time, they track a cost for the cur-
rent upper and lower bounds. Where cost prop-
agation usually updates the cost of each value
of a variable, with resources, the number of
variable values is so large that only the costs of
upper and lower bounds are updated. 

Temporal Planning 
To this point we have discussed planning mod-
els that have atomic time and are sequential—
a single action is executed at each step. In tem-
poral planning, actions have real duration and
may execute concurrently. In the rover exam-
ple (adapted from the classical model in figure
2 to have the durations depicted in figure 7), it
should be possible for the rover to communi-
cate data to the lander while it is driving.

9

Where the planning objective was previously
plan length (or cost), with durative actions it
becomes makespan (the total time to execute
the plan). As such, temporal reachability
heuristics need to estimate makespan. While
temporal planning can have actions with cost,
goal utility, and resources, we omit these fea-
tures to concentrate solely on handling dura-
tive actions. 

We adopt the conventions used by the Sapa
planner (Do and Kambhampati 2003) to illus-
trate temporal reachability heuristics. Sapa
constructs a temporal plan by adding actions
to start at a given time. Sapa uses progression
search, meaning that after adding some num-
ber of actions to start at time t, it will only add
actions to time t� such that t� > t. The search
involves two types of choices, either concur-
rently add a new action to start at time t (fat-
ten) or advance the time t for action selection
(advance). With concurrency and durative
actions, the search state is no longer character-
ized by just a set of propositions. Each chosen
action may have its effects occur at some time
in the future. So the state is not just what is
true now but also what the plan commits to
making true in the future (delayed effects).
With this extended state and temporal actions,
temporal planning graph construction and
heuristic extraction must explicitly handle
time. 

Temporal Planning Graph
Without durative actions the planning graph is
constructed in terms of alternating proposition
and action layers. The most important infor-
mation is the “first level” where a proposition

is reachable (with this information and the
action descriptions, it is possible to construct
relaxed plans). In the temporal planning
graph, heuristics are concerned with the “first
time point” a proposition is reachable. Consid-
er the temporal planning graph in figure 11 for
the initial state. The temporal planning graph
is the structure above the dashed line that
resembles a Gantt chart. Each action is shown
only once, denoting the first time it is exe-
cutable and its duration. The propositions that
are given as effects are denoted by the vertical
lines; each proposition is shown only at the
first time point it is reachable. The planning
graph shows that comm(soil) is first reachable
at time 11, comm(image) is first reachable at
time 34, and comm(rock) is first reachable at
time 76. In the temporal planning graph there
is no explicit level because actions can span
any duration and give effects at any time with-
in their duration. In general, a durative action
can have an effect at any time ta � t � ta +
dur(a), where ta is the time the action executes,
t is the time the effect occurs, and dur(a) is the
action’s duration. In the rover example, each
action gives its effect at the end of its execu-
tion. For example, a = drive(alpha, gamma)
starts at ta = 0, and gives its positive effect
at(gamma) at time ta + dur(a) = 0 + 30 = 30. For
an action to execute at a given time point t, it
must be the case that all of its preconditions
are reachable before t. In the example, sam-
ple(image, gamma) cannot execute until time
30 even though avail(image, gamma) is reached
at time 0 because its other precondition propo-
sition at(gamma) is not reachable until time 30.
If the state includes past commitments to
actions whose effects have not yet occurred
(that is, the delayed effects discussed earlier),
then the planning graph includes these actions
with their start time possibly offset before the
relative starting time of the planning graph. 

It is also possible to compute mutexes in the
temporal planning graph, but they require gen-
eralization to deal with concurrent actions that
have different durations. Following Temporal
GraphPlan (Smith and Weld 1999), in addition
to tracking proposition/proposition and
action/action mutexes, it becomes necessary to
find proposition/action mutexes explicitly.
While we refer the reader to Smith and Weld
(1999) for a complete account, proposition/
action mutexes capture when it is impossible
for a proposition to hold in any state while a
given action executes. In nontemporal plan-
ning, these mutexes were captured by mutexes
between actions and noops. 
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Temporal Planning Graph Heuristics
The temporal planning graph for the initial
state of the rover example shows that every
goal proposition is reached by time 76, provid-
ing a lower bound on the makespan of a valid
plan. This is an estimate of makespan that is
similar to the set-level heuristic in classical
planning. Instead of finding the level where
the goal propositions are reachable, the heuris-
tic finds the time point where they are reach-
able. Analogous to their role in classical plan-
ning, mutexes can help improve makespan
estimates by reducing optimism in the plan-
ning graph. 

In addition to makespan estimates, it is often
convenient to use temporal relaxed plans to
estimate the plan cost. Similar to level-based
heuristics, relaxed plans use time points in the
place of levels. Recall that a classical relaxed
plan is a set of propositions and actions that are
indexed by the level where they appear. Tem-
poral relaxed plans use a similar scheme but
index the propositions and actions by time.

Extracting a temporal relaxed plan involves
starting from the time point where all goals are
reachable and recursively supporting each goal
as shown in figure 4. The main difference is
that instead of decrementing levels across the
recursions, it decrements the time by which
subgoals are needed. Figure 11 shows the
relaxed plan in bold below the dashed line. It
supports all of the goals at time 76. To support
a proposition at a time t, the relaxed plan
chooses an action a and sets its start time to t −
dur(a) (that is, the action starts as late as possi-
ble). For instance, commun(image) is used to
support comm(image) at time 76 by starting at
time 75. Each chosen action has its precondi-
tion propositions supported at the time the
action starts. The commun(image) action starts
at time 75, so its precondition proposition
have(image) must be supported by time 75. If
the state includes commitments to actions
with delayed effects, then relaxed plan extrac-
tion can bias or force selection of such actions
to support propositions. 
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Figure 11. Temporal Planning Graph (top) and Relaxed Plan (bottom) for the Initial State.



Related Work
Temporal GraphPlan (Smith and Weld 1999)
was the first work to generalize planning
graphs to temporal planning, while Sapa (Do
and Kambhampati 2003) was the first to
extract heuristics from this type of planning
graph. 

There are many extensions of GraphPlan to
temporal planning. The temporal planning
graph, as we and Smith and Weld (1999) have
presented, is implemented with unique data-
structure called a bilevel planning graph (Long
and Fox 1999; Smith and Weld 1999). The
bilevel planning graph is a simple data struc-
ture that has two layers: an action layer and a
proposition layer, which are connected with
arcs corresponding to preconditions and
effects. Bilevel planning graph expansion
involves propagating lower bounds on the
times to reach propositions and actions with-
out physically generating extra levels. Bilevel
planning graphs can also be used in nontem-
poral planning to save memory. 

TPSys (Garrido, Onaindia, and Barber 2001)
is another GraphPlan-like planner that uses a
different generalization of planning graphs in
temporal planning. Instead of removing all
notion of level to accommodate actions with
different durations, TPSys associates time
stamps with proposition layers and allows
durative actions to span several levels. For
example, the proposition layer after one step is
indexed by the end time of the shortest dura-
tion action, and it contains this action’s effects.
The explicit proposition layers can aid mutex
propagation, allowing TPSys to compute more
mutexes than Temporal GraphPlan (Garrido,
Onaindia, and Barber 2001). The TPSys plan-
ning graph has not yet been used for comput-
ing reachability heuristics. 

Another approach for using GraphPlan in
temporal planning, in the LPGP planner (Long
and Fox 2003), uses a classical planning graph
to maintain logical reachability information
and a set of linear constraints to manage time.
By decoupling the planning graph and time,
LPGP supports a richer model of durative
actions. The manner in which LPGP uses the
planning graph, for plan search, has not yet
been extended to computing reachability
heuristics. 

Many of the techniques discussed in classical
planning show up in temporal planning. For
instance, Sapa adjusts its heuristic to account
for negative interactions by using mutexes to
reschedule its temporal plan to minimize
conflicts, resulting in a better makespan esti-
mate. Sapa also uses cost functions to estimate
cost in addition to makespan. 

The LPG planner (Gerevini, Saetti, and Seri-
na 2003) generalizes from classical planning by
using a temporal planning graph (most similar
to Temporal GraphPlan) to perform local
search in the planning graph. LPG uses tempo-
ral relaxed plan heuristics, similar to those
described above, to guide its search. 

Another interesting and recent addition to
PDDL allows for timed initial literals. These are
propositions that will become true at a
specified time point (a type of exogenous
event). Integrating timed initial literals into the
temporal planning graph is easy because there
are implicit exogenous actions that give the lit-
eral as an effect. However, heuristics change
considerably because the planner no longer has
direct choice over every state it reaches. Many
of the existing techniques to handle timed ini-
tial literals adjust relaxed plans with common
scheduling heuristics (Gerevini, Saetti, and
Serina 2005)—another example of adjusting
heuristics to make up for relaxation. 

Nondeterministic Planning 
None of the planning models we have consid-
ered to this point allow uncertainty. Uncer-
tainty can arise in multiple ways: a partially
observable state, noisy sensors, uncertain
action effects, or uncertain action durations.
We first concentrate on the simplest uncertain-
ty, an unobservable and uncertain state. This
falls into the realm of nondeterministic con-
formant planning with deterministic actions
(discussed later). Later in this section, we dis-
cuss how the nondeterministic conformant
planning heuristics extend to conditional (sen-
sory) planning. In the next section we consid-
er stochastic planning with uncertain actions. 

Background
The conformant planning problem starts with
an uncertain state and a set of actions with
conditional effects. The uncertain state is char-
acterized by a belief state b (a set of possible
states), such that b � 2P. Actions with condi-
tional effects are common in conformant plan-
ning because the executed actions must be
applicable to all states in the belief state.
Instead of requiring strict execution precondi-
tions, it is common to move the conditions
into secondary preconditions that enable con-
ditional effects. This way actions are executable
in belief states, but their effect depends on the
true state in the belief state. Since the true state
is not known, the plan becomes conformant
(that is, the plan should work no matter which
state in the belief state is the true state). 

Consider a modification to the rover exam-
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ple, listed in figure 12. The sample action has a
conditional effect, so that sampling works only
if a sample is available; otherwise it has no
effect. The initial state is uncertain because it is
unknown where the rover can obtain a soil
sample (the terrain is quite hard and rocky),
but it is available at one of locations alpha,
beta, or gamma. The initial belief state is
defined: 

bI = {{at(alpha), avail(soil, alpha)}, 
{at(alpha), avail(soil, beta)}, 
{at(alpha), avail(soil, gamma)}}. 

To simplify the example, the only goal propo-
sition is comm(soil). At this point, the rover
cannot determine whether it has the soil sam-
ple because its sensor has broken. The solution
to this problem is to go to each location and
sample to be sure the rover has the soil sample,
and then communicate the data back to the
lander: 

{sample(soil, alpha), drive(alpha, beta),
sample(soil, beta), drive(beta, gamma), 
sample(soil, gamma), commun(soil)},

resulting in the belief state:
{{at(gamma), avail(soil, alpha), have(soil),
comm(soil)},

{at(gamma), avail(soil, beta), have(soil),
comm(soil)}, 

{at(gamma), avail(soil, gamma), have(soil),
comm(soil)}}, 

where the goal comm(soil) is satisfied in every
possible state. 

To clarify the semantics for applying actions
to belief states, consider applying sample(soil,
alpha) to bI. The action is applicable because its
precondition at(alpha) is satisfied by every state
in the belief state. The resulting belief state b� is
the union of the successors obtained by apply-
ing the action to every state in bI:

b� = {{at(alpha), avail(soil, alpha), have(soil)},
{at(alpha), avail(soil, beta)},
{at(alpha), avail(soil, gamma)}}. 

The first state is the only state that changes
because it is the only state where the condi-
tional effect is enabled. Applying the
drive(alpha, beta) action to b results in:

b��= {{at(beta), avail(soil, alpha), have(soil)},
{at(beta), avail(soil, beta)},
{at(beta), avail(soil, gamma)}}.

Every state in b�� changes because the action
applies to every state.

Single Planning Graphs
There are many ways to use planning graphs
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(define (problem rovers_conformant1)
 (:domain rovers)
 (:objects
 soil image rock - data
 alpha beta gamma - location)
 (:init (at alpha)
        (oneof (avail soil alpha)
        (avail soil beta)
        (avail soil gamma)))
 (:goal (comm soil))
)

(define (domain rovers_conformant)
(:requirements :strips :typing)
(:types location data)
(:predicates
 (at ?x - location)
 (avail ?d - data ?x - location)
 (comm ?d - data)
 (have ?d - data))
(:action drive
 :parameters (?x ?y - location)
 :precondition (at ?x)
 :effect (and (at ?y) (not (at ?x))))
(:action commun
 :parameters (?d - data)
 :precondition (have ?d)
 :effect (comm ?d))
(:action sample
 :parameters (?d - data ?x - location)
 :precondition (at ?x)
 :effect (when (avail ?d ?x) (have ?d)))

)

Figure 12. PDDL Description of Conformant Planning Formulation of Rover Problem. 



for conformant planning (Bryce, Kambham-
pati, and Smith 2006a). The most straightfor-
ward approach is to ignore state uncertainty.
There is nothing about classical planning
graphs that requires defining the first proposi-
tion layer as a state; every other proposition
layer already represents a set possibly reachable
of states. One could union the propositions in
all states of the belief state to create an initial
proposition layer, such as: 

P0= {at(alpha), avail(soil, alpha), 
avail(soil, beta), avail(soil, gamma)} 

for the initial belief state. The planning graph
built from the unioned proposition layer has
the goal appear after two levels, and the relaxed
plan would be:

(A0
RP = {sample(soil, alpha), commun(soil)}) 

which gives 2 as the heuristic (greatly underes-
timating plan cost). Alternatively, one could
sample a single state from the belief state to use
for the planning graph (which may also lead to

an underestimate). Using either of these
approaches results in a heuristic that measures
the cost to reach the goal from one (or some
intersection) of the states in a belief state. This
is typically an underestimate because a confor-
mant plan must reach the goal from all of the
states in a belief state. 

Multiple Planning Graphs
A more systematic approach to using planning
graphs involves constructing a planning graph
for each state in the belief state, extracting a
heuristic estimate from each planning graph,
and aggregating the heuristics. Similar to the
level-based heuristics in classical planning that
aggregate proposition costs, it is possible to
aggregate the heuristic for each possible state
by assuming full positive interaction (maxi-
mization) or full independence (summation)
between the states. In the example there is pos-
itive interaction between the possible initial
states because they can all benefit from using

Articles

SPRING 2007   73

at( )

sample(soil, α)

avail(soil, α)

at(α)

avail(soil, α)

at(β)

at(γ)

have(soil)

at(α)

avail(soil, )

at(α)

avail(soil, β)

at(β)

at(γ)

at(α)

avail(soil, β)

at(β)

at(γ)sample(soil,  β)

have(soil)

at(α)

avail(soil, γ)

at(α)

avail(soil, )

at(β)

at(γ)

at(α)

avail(soil, γ)

at(β)

at(γ)
sample(soil, γ)

have(soil)

at(α)

avail(soil, β)

at(β)

at(γ)
sample(soil, β)

have(soil)

commun(soil)
comm(soil)

commun(soil) comm(soil)

sample(soil, α)

at(α)

avail(soil, α)

at(β)

at(γ)

have(soil)

at(α)

avail(soil, β)

at(β)

at(γ)
sample(soil, γ)

have(soil)

commun(soil)
comm(soil)

A
1

A
0

A
2

P
1

P
0

P
2

P
3

drive(α, β)

drive(α, β) drive(α, β)

drive(α, β)

drive(α, β)drive(α, β)

drive(α, β)

drive(α, γ) drive(α, γ) drive(α, γ)

drive(α, γ)

drive(α, γ)

drive(α, γ)

drive(β, γ) drive(β, γ)

drive(β, γ)
drive(β, γ)

drive(α, β)

drive(β, α) drive(β, α)

drive(β, α) drive(β, α)

drive(γ, α)

drive(γ, α)

drive(γ, α)

drive(γ, α)

drive(γ, β) drive(γ, β)

drive(γ, β) drive(γ, β)

drive(α, γ)

drive(α, γ)

Figure 13. Conformant Planning Graphs.



the commun action at the end of the plan.
There is also independence between the initial
states because sampling works only at one loca-
tion for each. Relaxed plans that do not simply
numerically aggregate individual relaxed plan
heuristics can capture (in)dependencies in the
heuristic for the belief state, as was possible for
goal propositions in classical planning. Numer-
ic aggregation loses information about posi-
tively interacting and independent casual
structure that is used in common across the
relaxed plans. Taking the union of the relaxed
plans to get a unioned relaxed plan will better
measure these dependencies. 

To see how to capture both positive interac-
tion and independence between states in a
belief state, consider figure 13. We illustrate the
planning graph for each state in the initial
belief state and a relaxed plan (in bold) to sup-
port the goal. There are three relaxed plans that
must be aggregated to get a heuristic measure
for the initial belief state bI. Using the maxi-
mum cost of the relaxed plans gives 3 as the
heuristic, and using the summation of costs
gives 8 as the heuristic. Neither of these is very
accurate because the optimal plan length is 6.
Instead, one can step-wise union the relaxed
plans. The intuition is that if an action appears
in the same layer for several of the relaxed
plans, then it is likely to be useful for several
states in the belief state, meaning the plans for
states positively interact. Likewise, actions that
do not appear in multiple relaxed plans in the
same layer are used by the states independent-
ly. Taking the step-wise union of the relaxed
plans gives the unioned relaxed plan: 

(A0
RP = {sample(soil, alpha), drive(alpha, beta), 

drive(alpha, gamma)},

A1
RP = {commun(soil), sample(soil, beta), 

sample(soil, gamma)},
A2

RP = {commun(soil)}).

The unioned relaxed plan contains seven
actions, which is closer to the optimal plan
length. The unioned relaxed plan can be poor
when the individual relaxed plans are not well
aligned, that is, they contain many common
actions that appear in different layers. In the
next approach, it is possible to overcome this
limitation. 

Labeled Planning Graphs
While the multiple planning graph approach
to obtain unioned relaxed plans is informed, it
has two problems. First, it requires multiple
planning graphs, which can be quite costly
when there are several states in the belief state;
plus, there is a lot of repeated planning graph
structure among the multiple planning graphs.
Second, the relaxed plans used to obtain the

unioned relaxed plan were extracted inde-
pendently and do not actively exploit positive
interactions (like we have seen in previous sec-
tions). For example, the unioned relaxed plan
has commun(soil) in two different action layers
where, intuitively, it is needed to execute only
once. 

The solution to both these problems is
addressed with the labeled (uncertainty) plan-
ning graph (LUG). The LUG represents multi-
ple explicit planning graphs implicitly. Figure
14 shows the labeled planning graph represen-
tation of the multiple planning graphs in fig-
ure 13. The idea is to use a single planning
graph skeleton to represent proposition and
action connectivity and to use labels to denote
which portions of the skeleton are used by
which of the explicit multiple planning graphs.
Each label is a propositional formula whose
models correspond to the propositions used in
the initial layers of the explicit planning
graphs. In figure 14, there is a set of shaded cir-
cles above each proposition and action to rep-
resent labels (ignore the variations in circle size
for now). The black circles represent the plan-
ning graph for the first state {at(alpha),
avail(soil, alpha)} in bI, the grey circles are for the
state {at(alpha), avail(soil, beta)}, and the white
circles are for the state {at(alpha), avail(soil, gam-
ma)}. The initial proposition layer has at(alpha)
labeled with every color because it holds in
each of the states, and the other propositions
are labeled to indicate their respective states. 

The LUG is constructed by propagating
labels (logical formulas) a layer at a time. The
intuition behind label propagation is that
actions are applicable in every explicit plan-
ning graph where their preconditions are sup-
ported, and that propositions are supported in
every explicit planning graph where they are
given as an effect. For example, sample(soil,
alpha) in A0 is labeled only with black to indi-
cate it has an effect in the explicit planning
graph only for state {at(alpha), avail(soil, alpha)}
(inspecting the explicit planning graphs in fig-
ure 13 will confirm this). Similarly, have(soil) is
supported in P1 only for the state {at(alpha),
avail(soil, alpha)}. More formally, if the labels
refer to sets of states (but are represented by
Boolean formulas), then an action is labeled
with the intersection (conjunction) of its pre-
conditions’ labels, and a proposition is labeled
with the union (disjunction) of its supporters’
labels. The goal is reachable in the LUG when
every goal proposition has a label with every
state in the source belief state. In the example,
the goal comm(soil) is first reached by a single
source state {at(alpha), avail(soil, alpha)} in P2
and is reached by every state in P3. 
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Labeled Relaxed Plans
With a succinct, implicit representation of the
multiple planning graphs it is possible to
extract a relaxed plan. From the LUG one can
extract the relaxed plan for all states simulta-
neously and exploit positive interaction. The
labeled relaxed plan extraction is similar to the
classical planning relaxed plan, but with one
key difference. A proposition may need support
from more than one action (such as when using
resources in the planning with resources sec-
tion) because it needs support from several source
states, each requiring a supporter. Like relaxed
plans for resources, there is some additional
bookkeeping needed for the labeled relaxed
plan. Specifically, the relaxed plan tracks which
of the source states require the inclusion of a
particular action or proposition. Notice the cir-
cles in figure 14 that are slightly larger than the
others: these indicate the source states where
the given action or proposition is needed. For
instance, at(gamma) in P1

RP is used only for the

source state {at(alpha), avail(soil, gamma)} (the
white circle). Supporting a proposition is a set
cover problem where each action covers some
set of states (indicated by its label). For exam-
ple, have(soil) in P2

RP needs support in the
source states where it supports commun(soil).
There is no single action that supports it in all
of these states. However, a subset of the sup-
porting actions can support it by covering the
required source states. For example, to cover
have(soil) in P2

RP with supporters, the relaxed
plan selects the noop for have(soil) for support
from state {{at(alpha), avail(soil, alpha)} (the
black circle), sample(soil, beta) for support from
state {at(alpha), avail(soil, beta)} (the gray circle),
and sample(soil, alpha) for support from state
{at(alpha), avail(soil, gamma)} (the white circle).
Using the notion of set cover, it easy to exploit
positive interactions with a simple greedy
heuristic (which can be used to bias action
choice in line 7 of figure 4): an action that sup-
ports in several of the explicit planning graphs
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is better than an action that supports in only
one. Notice that the labeled relaxed plan con-
tains the commun(soil) action only once as
opposed to twice in the unioned relaxed plan.
The labeled relaxed plan gives a heuristic meas-
ure of 6, which is the optimal cost of the real
plan. 

Related Work
Our discussion is based our previous work on
planning graph heuristics for nondeterministic
planning (Bryce, Kambhampati, and Smith
2006a; Bryce and Kambhampati 2004). 

Another approach is developed in the Con-
formant and Contingent FF planners (Hoff-
mann and Brafman 2004; Brafman and Hoff-
mann 2005). Both planners do not explicitly
represent belief states; rather they keep track of
the initial belief state and an action history to
characterize plan prefixes. From a set of propo-
sitions that must hold at the end of the action
history, a planning graph is constructed. The
initial belief state, the action history, and the
planning graph are translated to a satisfiability
instance. The solution to the satisfiability prob-
lem identifies a relaxed sequence of actions
that will make the goal reachable. Rather than
directly propagating belief state information
over the planning graph, as with the labeled
planning graph, this technique allows the
satisfiability solver to propagate belief state
information from the initial belief state. 

A further extension of the LUG has been
used to develop the state agnostic planning
graph (SAG) (Cushing and Bryce 2005). We
previously mentioned that planning graphs are
single source and multiple destination struc-
tures. The SAG is a multiple source planning
graph, which like the LUG represents multiple
planning graphs implicitly. The SAG represents
every planning graph that progression search
will require, making heuristic evaluation at
every search node amortize the cost of con-
structing the SAG. 

The GPT planner (Bonet and Geffner 2000b)
and the work of Rintanen (2004) offer alterna-
tive reachability heuristics for nondeterminis-
tic planning. GPT relies on a relaxation of non-
deterministic planning to full observability. For
instance, GPT measures the heuristic for a
belief state to reach a goal by finding the opti-
mal deterministic plan for each state in the
belief state. The maximum cost deterministic
plan among the states in the belief state is a
lower bound on the cost of a nondeterministic
plan. Rintanen (2004) generalizes the GPT
heuristic by finding the optimal nondetermin-
istic plan for every size n subset of states in a
belief state. The maximum cost nondetermin-

istic plan for a size n set of states is a better low-
er bound on the optimal nondeterministic
plan for the belief state. 

It is possible to use the conformant planning
heuristics, described above, to guide search for
conditional (sensory) plans. Conditional plans
branch based on execution time feedback
because of negative interactions. If, for exam-
ple, the sample action will break the sampling
tool if no soil sample is available (because the
ground is otherwise rocky), then the rover
must sense before sampling. Breaking the sam-
pling tool will introduce a negative interaction
that prevents finding a conformant plan. Cre-
ating a plan branch for whether the location is
rocky can avoid breaking the tool (and the neg-
ative interaction it introduces). Since many
heuristics work by ignoring negative interac-
tions, conformant planning heuristics will
work by ignoring the observations and the neg-
ative interactions they remove. This is the
approach taken by Bryce, Kambhampati, and
Smith (2006a) and Brafman and Hoffmann
(2005) to a reasonable degree of success. The
reason using conformant relaxed plans is not
overly detrimental is that while search may
need to generate several conditional plan
branches, the total search effort over all such
branches is related to the number of actions in
the relaxed plan. The conformant relaxed plan
simply abstains from separating the chosen
actions into conditional branches. The benefit
of further incorporating negative interactions
and observations into conditional planning
heuristics is currently an open issue. 

Stochastic Planning 
Stochastic planning characterizes a belief state
with a probability distribution over states and
the uncertain outcomes of an action with a
probability distribution. Consider an extension
of the conformant version of the rover exam-
ple to contain probability and uncertain
actions, in figure 15. The sample and commun
actions have an uncertain outcome—they have
the desired effect or no effect at all. In the gen-
eral case, there may be multiple different out-
comes. The initial state is uncertain, as before,
but is now characterized by a probability dis-
tribution. Plans for this formulation will
require a number of repetitions of certain
actions in order to raise the probability of sat-
isfying the goal (which is required to be at least
0.5 in the problem). For example, executing
sample(soil, alpha), followed by commun(soil),
will result in only one state in the belief state
satisfying the goal comm(soil) (its probability is
0.4(0.9)0.8 = 0.29). However, executing an
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additional commun(soil) raises the probability
of the state where comm(soil) holds to
0.4(0.9)(0.8 + 0.8(0.2)) = 0.35. By only per-
forming actions at alpha, the maximum proba-
bility of satisfying the goal is 0.4, so the plan
should also perform some sampling at beta. 

Exact LUG Representation
It is possible to extend the LUG to handle prob-
abilities by associating probabilities with each
label. However, handling uncertain actions,
whether nondeterministic or stochastic, is
troublesome. With deterministic actions, labels
capture uncertainty only about the source
belief state, and the size of the labels is bound-
ed (there are only so many states in the belief
state). With uncertain actions, labels must cap-
ture uncertainty about the belief state and each
uncertain action at each level of the planning graph
because every execution of an action may have
a different result. In the LUG with uncertain
actions, labels can get quite large and costly to
propagate for the purpose of heuristics. 

Monte Carlo in Planning Graphs
One does not need to propagate labels for every
uncertain action outcome and possible state

because, as seen in the previous section, there
is usually considerable positive interaction in
the LUG. In order to include an action in the
relaxed plan, one need not know every uncer-
tain state or action that causally supports the
action, just the most probable. Thus, it
becomes possible to sample which uncertain
states and action outcomes enter the planning
graph. While it is possible to use a single (unla-
beled) planning graph by sampling only one
state and outcome of each action, using sever-
al samples better captures the probability dis-
tributions over states and action outcomes
encountered in a conformant plan. Each sam-
ple can be thought of as a deterministic plan-
ning graph. 

The Monte Carlo LUG (McLUG) represents
every planning graph sample simultaneously
using the labeling technique developed in the
LUG. Figure 16 depicts a McLUG for the initial
belief state of the example. There are four sam-
ples (particles), denoted by the circles and
square above each action and proposition.
Each effect edge is labeled by particles (some-
times with fewer particles than the associated
action). The McLUG can be thought of as
sequential Monte Carlo (SMC) (Doucet, de Fre-
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(define (problem rovers_stochastic1)
 (:domain rovers)
 (:objects
 soil image rock - data
 alpha beta gamma - location)
 (:init (at alpha)
 (probabilistic 0.4 (avail soil alpha)
                0.5 (avail soil beta)
                0.1 (avail soil gamma)))
 (:goal (comm soil) 0.5)
)

(define (domain rovers_stochastic)
(:requirements :strips :typing)
(:types location data)
(:predicates
 (at ?x - location)
 (avail ?d - data ?x - location)
 (comm ?d - data)
 (have ?d - data))
(:action drive
 :parameters (?x ?y - location)
 :precondition (at ?x)
 :effect (and (at ?y) (not (at ?x))))
(:action commun
 :parameters (?d - data)
 :precondition (have ?d)
 :effect (probabilistic 0.8 (comm ?d)))
(:action sample
 :parameters (?d - data ?x - location)
 :precondition (at ?x)
 :effect (when (avail ?d ?x)

         (probabilistic 0.9 (have ?d))))
)

Figure 15. PDDL Description of Stochastic Planning Formulation of the Rover Problem. 



itas, and Gordon 2001) in the relaxed planning
space. SMC is a technique used in particle
filters for approximating the posterior proba-
bility of a random variable that changes over
time. The idea is to draw several samples from
a prior distribution (a belief state) and then
simulate each sample through a transition
function (an action layer). Where particle
filters use observations to weight particles, the
McLUG does not. 

Returning to figure 16, there are four parti-
cles, the first two sampling the first state in the
belief state, and the latter two sampling the
second state. The third state, whose probabili-
ty is 0.1, is not sampled, thus avail(soil, gamma)
does not appear in P0. Every action that is sup-
ported by P0 is added to A0. In A0, sample(soil,
alpha) is labeled by two particles, but its effect
is labeled by only one. This is because each par-
ticle labeling an action samples an outcome of
the action. It happens that only one of the par-
ticles labeling sample(soil, alpha) samples the

outcome with an effect; the other particle sam-
ples the outcome with no effect. In each action
level, the McLUG must resample which parti-
cles label each effect because each execution of
an action can have a different outcome. Propa-
gation continues until the proportion of parti-
cles labeling the goal is no less than the goal
probability threshold. In P2, comm(soil) is
labeled with one particle, indicating its proba-
bility is approximately 1/4, which is less than
the threshold 0.5. In P3, comm(soil) is labeled
with three particles, indicating its probability
is approximately 3/4, which is greater than 0.5.
It is possible to extract a labeled relaxed plan
(described in the previous section) to support
the goal for the three particles that label it. The
labeled relaxed plan contains commun(soil)
twice, reflecting the need to repeat actions that
may fail to give their desired effect. The com-
mun(soil) action is used twice because in A2 the
black particle does not sample the desired out-
come. The black particle must support
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comm(soil) through persistence from the previ-
ous level, where it was supported by the desired
outcome of commun(soil). A plan using the
actions identified by the relaxed plan could sat-
isfy the goal with probability (0.4 (0.9) + 0.5
(0.9)) (0.8 + (0.2) 0.8) = 0.78, which exceeds the
probability threshold. Notice also that 0.78 is
close to the number of particles (3/4) reaching
the goal in the McLUG. 

Related Work
The discussion of the McLUG is based on the
work of Bryce, Kambhampati, and Smith
(2006b). 

The work on Conformant FF extends to the
probabilistic setting in Probabilistic FF
(Domshalk and Hoffmann 2006). Previously
the planner relied on SAT, and now it uses
weighted model counting in CNFs. The relaxed
plan heuristic is found in a similar fashion,
using a weighted version of the planning
graph. 

Where the McLUG uses labels and simula-
tion to estimate the probability of reaching the
goals, it is possible to directly propagate proba-
bility on the planning graph. Propagating a
probability for each proposition in order to
estimate the probability of a set of propositions
greatly underestimates the probability of the
set. The technique developed by Bryce and
Smith (2006) propagates a binary interaction
factor I(a, b) that measures the positive or neg-
ative interaction between two propositions,
actions, or effects. After computing I(a, b) =
Pr(a ∧ b) / Pr(a)P(b), having I(a, b) = 0 means
that a and b are mutex, having I(a, b) = 1 means
that a and b are independent, having 0 < I(a, b)
< 1 means that a and b negatively interact, and
having 1 < I(a, b) means that a and b positive-
ly interact. Consequently, the measure of inter-
action can be seen as a continuous mutex.
Propagating interaction can benefit nonproba-
bilistic planning also, for example, by defining
it in terms of cost I(a, b) = c(a, b) − (c(a) + c(b)). 

Hybrid Planning Graphs 
In many of the previous sections we largely
concentrated on how to adapt planning graphs
to handle a single additional feature over and
above classical planning. In this section we dis-
cuss a few works that have combined these
methods to handle more expressive planning
problems. The problems are metric-temporal
planning, partial satisfaction planning with
resources, temporal planning with uncertain
actions, and cost-based nondeterministic plan-
ning. 

Metric-Temporal Planning
In metric-temporal planning, the problem is
multiobjective because the planner must find a
plan with low makespan using nonuniform
cost actions. For instance, the rover may drive
at two different speeds, the faster speed costing
more than the slower. The rover can drive fast
and achieve the goals very quickly, but at high
cost. 

Recall from the “Temporal Planning” section
that the measure of makespan is identical with
level-based and relaxed plan heuristics. In met-
ric-temporal planning, level-based heuristics
measure makespan and relaxed plans measure
plan cost. To obtain a high-quality relaxed plan
when the actions have nonuniform cost, a
planning graph can propagate cost functions
over time (instead of levels) (Do and Kamb-
hampati 2003). Instead of updating the cost of
propositions or actions at every time point, it
updates only when they receive a new sup-
porter or the cost of a supporter drops. Then,
instead of supporting the goals when they are
first coreachable, the relaxed plan supports
them at the time where they have minimum
cost. With a heuristic measure of makespan
and cost, a user-supplied combination function
can help guide search toward plans matching
the user’s preference. 

Partial Satisfaction with Resources
In the “Planning with Resources” section we
mentioned planning for different degrees of
satisfaction for numeric goals (Benton, Do, and
Kambhampati 2005). The techniques for select-
ing goals for a reformulated planning problem
can be adapted to numeric goals. First, the
planning graphs need to propagate cost func-
tions for resources, and second, the relaxed
plan must decide at what resource level to sat-
isfy the (numeric) resource goals to maximize
net benefit. 

Since the planning graph propagates re -
sources in terms of upper and lower bounds, it
is easy to capture the reachable values of a
resource. However, the cost of each value of a
resource is much more difficult to propagate.
An exact cost function for all resource values in
the reachable interval can be nonlinear in gen-
eral. The approach taken by Benton, Do, and
Kambhampati (2005) is to track a cost for only
the upper and lower bounds of the resource.
The bound that enables an action is used to
define the cost of supporting the action. In
order to decide which level to satisfy a numer-
ic goal, the relaxed plan can use the propagat-
ed cost of the resource bounds or relaxed plans
to find the maximal net benefit value. 
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Temporal Planning with Uncertainty
The Prottle planner (Little, Aberdeen, and
Thiebaux 2005) addresses temporal planning
with uncertain actions whose durations are
also uncertain. Unlike the techniques for par-
tially observable problems described in the
nondeterministic planning section, Prottle
finds conditional plans for fully observable
problems (so there is no need to reason about
belief states). Prottle uses a planning graph to
provide a lower bound on the probability of
achieving the goal. The idea is to include an
extra layer at each level to capture the uncer-
tain outcomes of actions. Prottle back-propa-
gates the probability of reaching each goal
proposition on the planning graph to each
other proposition. To define the heuristic mer-
it of each state, Prottle uses the aggregate prob-
ability that each proposition reaches the goal
propositions. By using back-propagation, Prot-
tle is able to avoid building a planning graph
for each search node, but it must be able to
identify which planning graph elements to use
in the heuristic computation. 

Cost-Based Conditional Planning
In our previous work (Bryce and Kambhampati
2005), we developed a cost-based version of the
LUG, called the CLUG.The CLUG propagates
costs on the LUG to extract labeled relaxed
plans that are aware of action costs. The key
insight of the CLUG is to not propagate cost for
every one of the implicit planning graphs (of
which there may be an exponential number).
Rather, planning graphs are grouped together
and the propositions and actions they have in
common are assigned the same cost. With
costs, it is possible to extract labeled relaxed
plans that bias the selection of actions. 

Conclusion and Discussion
We have presented the foundations for using
planning graphs to derive reachability heuris-
tics for planning. These techniques have
enabled many planning systems with impres-
sive scalability. We have also shown several
extensions to the classical planning model that
rely on many of the same fundamental meth-
ods.

It is instructive to understand the broad rea-
sons why planning graph heuristics have
proven to be so widely useful. Reachability
heuristics based on planning graphs are useful
because they are forgiving, they can propagate
multiple types of information, they support
phased relaxation, they synergize with other
planner features, and above all they are versa-
tile. By forgiving, we mean that we can pick

and choose the features to compute (for exam-
ple, mutexes). As we saw, the planning graph
can propagate all types of information, such as
levels, subgoal interactions, time, cost, and
belief support. Phased relaxation allows us to
ignore problem features to get an initial heuris-
tic, which we later adjust to bring back the
ignored features. Planning graphs synergize
with search by influencing pruning strategies
(for example, helpful actions) and choosing
objectives (as in partial satisfaction planning).

Planning graphs are versatile because of their
many construction algorithms, the different
information propagated on them, the types of
problems they can solve, and the types of plan-
ners that employ them. We can construct seri-
al, parallel, temporal, or labeled planning
graphs. We can propagate level information,
mutexes, costs, and labels. We can (as of now)
solve classical, resource, temporal, conformant,
conditional, and stochastic planning prob-
lems. They can be used in regression, progres-
sion, partial order, and GraphPlan-style plan-
ners. To this day we are finding new and
interesting ways to use planning graphs.

As researchers continue to tackle more and
more expressive planning models and prob-
lems, we have no doubt that reachability
heuristics will continue to evolve to support
search in those scenarios. In the near term, we
expect to see increased attention to the devel-
opment of reachability heuristics for hybrid
planning models that simultaneously relax sets
of classical planning assumptions, as well as
models that support first-order (and lifted)
action and goal languages. We hope that this
survey will fuel this activity by unifying sever-
al views toward planning graph heuristics. As
the scalability of modern planners improves
through reachability heuristics, we are opti-
mistic about the range of real-world problems
that can be addressed through automated plan-
ning.
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Notes
1. Since this article is meant to be tutorial in nature,
we have also prepared a set of slides to aid the pres-
entation of this material. The slides are available at
rakaposhi.eas.asu.edu/pg-tutorial.

2. In the following, we will refer to the alpha, beta,
and gamma locations in the text, but use the related
symbols �, �, and � to simplify the illustrations.

3. As we will see, the number of states can also be
infinite (for example, when planning with
resources).

4. It is common to remove static propositions from
state and action descriptions because they do not
change value.

5. The reason that actions do not contribute their
negative effects to proposition layers (which contain
only positive propositions) is a syntactic conven-
ience of using STRIPS. Since action preconditions
and the goal are defined only by positive proposi-
tions, it is not necessary to reason about reachable
negative propositions. In general, action languages
such as ADL (Pednault 1994) allow negative proposi-
tions in preconditions and goals, requiring the plan-
ning graph to maintain “literal” layers that record
the all reachable values of propositions (Koehler et
al. 1997).

6. Since action layers contain noop actions, techni-
cally speaking, mutexes can also exist between
actions and propositions (through the associated
noop actions), but mutexes are marked only between
elements of the same layer.

7. With multiple objectives, it is necessary to find the
Pareto set of nondominated plans.

8. We will see that multiple supporters are also need-
ed for relaxed plans when there is uncertainty (see
the “Nondeterministic Planning” section that fol-
lows).

9. Or, while we did not model this in our example, it
is possible for the rover to warm up instruments used
for sampling while driving to a rock.
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