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 Unmanned Aerial Vehicle (UAV): “A powered, aerial vehicle that does not 
carry a human operator,...” [Source: TheFreeDictionary.com]

 A brief history on UAV [Source: Wikipedia]
 1916: The earliest attempt at a UAV by A. M. Low
 World War I: Hewitt-Sperry Automatic Airplane
 1935: The first scaled remote pilot vehicle was developed
 World War II: Nazi Germany produced and used various UAVs
 1959: US Air Force began planning use UAV to reduce pilot loss
 1964: UAVs were firstly used for combat missions in Vietnam War
 As of 2012: US army employed 7494 UAVs

 Applications
 Military uses:  reconnaissance, armed attacks,  targets for military 

training,…
 Civilian uses: Cargo delivery, police operation, powerline and pipeline 

inspection, agriculture, search and rescue, communications,….

Rui Zhang, National University of Singapore

Unmanned Aerial Vehicles
UAV Introduction
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Total Unmanned Aircraft Systems Forecast 2015-2035

Source: US Department of Transportation, “Unmanned Aircraft System (UAS) Service Demand 2015–
2035: Literature Review & Projections of Future Usage,” tech. rep., v.0.1, DOT-VNTSC-DoD-13-01, Sept. 
2013. 

Rui Zhang, National University of SingaporeUAV Introduction
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UAV Classification: Fixed-Wing vs. Rotary-Wing
Rui Zhang, National University of SingaporeUAV Introduction

Fixed-Wing Rotary-Wing

Mechanism Lift generated using wings with 
forward airspeed

Lift generated using blades 
revolving around a rotor shaft

Advantages Simpler structure, usually higher 
payload, higher speed

Can hover, able to move in any 
direction, vertical takeoff and 
landing

Limitations Need to maintain forward 
motion, need a runway for 
takeoff and landing

Usually lower payload, lower 
speed, shorter range
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UAV Classification: By Weight
Rui Zhang, National University of SingaporeUAV Introduction

Source: US Department of Transportation, “Unmanned Aircraft System (UAS) Service Demand 2015–2035: 
Literature Review & Projections of Future Usage,” tech. rep., v.0.1, DOT-VNTSC-DoD-13-01, Sept. 2013. 
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UAV Classification: By Control Method

Rui Zhang, National University of SingaporeUAV Introduction

Remote human pilot Real-time control by remote pilot

Remote human operator Human provides the flight parameters to invoke 
the built-in functions for vehicle control

Semi-autonomous Human controlled initiation and termination, 
autonomous mission execution 

Autonomous Automated operation after human initiation 

Swarm control Cooperative mission accomplishment via control
among the vehicles
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Wireless Communications with UAVs

 Main advantages over terrestrial, satellite, or high-altitude platform (HAP)
 On demand deployment, fast response
 Low cost
 More flexible in reconfiguration and movement
 Short-distance line of sight (LoS) communication

Rui Zhang, National University of Singapore

CNPC: control and 
non-payload 
communication

Overview
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Wireless Communications with UAVs: Typical Use Cases (1)
 UAV-aided ubiquitous coverage

 Provide seamless coverage within the serving area
 Application scenarios: 

 fast service recovery after infrastructure failure  
 base station offloading at hotspot

 UAV-aided relaying
 UAV-aided information dissemination/data collection

Rui Zhang, National University of Singapore

UAV-aided ubiquitous coverage

Overview
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Wireless Communications with UAVs: Typical Use Cases (2)
 UAV-aided ubiquitous coverage
 UAV-aided relaying
 Connecting two or more distant users or user groups
 Application scenarios: 

 Military operation, e.g., between frontline and headquarter
 Dig data transfer between data centers 

 UAV-aided information dissemination/data collection

Rui Zhang, National University of Singapore

UAV-aided relaying

Overview
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Wireless Communications with UAVs: Typical Use Cases (3)
 UAV-aided ubiquitous coverage
 UAV-aided relaying

 UAV-aided information dissemination/data collection
 Application scenarios: periodic sensing, information multicasting 

Rui Zhang, National University of Singapore

UAV-aided information dissemination and data collection

Overview
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 Crucial control and non-payload communication (CNPC) link
 Support safety-critical functions:

 Command and control from ground to UAVs
 Aircraft status report from UAVs to ground
 Sense-and-avoid information between UAVs

 Stringent security and latency requirement, e.g., avoid ghost control
 Dedicated spectrum: L-band (960-977 MHz), C-band (5030-5091 MHz)

 Sparse and intermminent network connectivity: wireless backhaul, highly 
dynamic environment

 Size, weight and power (SWAP) constraint
 UAV swarm operation: inter-UAV coordination, interference mitigation, etc.

Rui Zhang, National University of Singapore

Wireless Communications with UAVs: New Challenges
Overview
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 UAV-ground channel
 Usually line-of-sight (LoS) links, but may be occasionally blocked by terrain, 

buildings, or airframe itself 
 Probabilistic LoS model: LoS probability increases with elevation angle 𝜃𝜃

 Multi-path: usually less scattering than terrestrial channels
 Rician fading: typical Rician factor 15 dB for L-band and 28 dB for C-band in 

hilly terrain
 Two-ray model over desert or sea

 UAV-UAV channel
 Dominant LoS component
 High Doppler due to relative movement

Rui Zhang, National University of Singapore

Main Channel Characteristics
Overview
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 UAV deployment and path planning
 Aimed to shorten average communication distance
 Challenging in general, various constraints: connectivity, fuel 

limitation, collision and terrain avoidance, etc.
 Approximate path optimization with mixed integer linear 

programming (MILP)
 UAV deployment for ubiquitous coverage (aerial BS):

 Tradeoff in UAV altitude: higher altitude, larger path loss, but also 
higher probability for LoS link, and vice versa

Rui Zhang, National University of Singapore

Main Design Considerations (1)
Overview
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 Energy-aware deployment and operation 
 Sequential energy replenishment via inter-UAV cooperation
 Exploit the dynamic load patterns for energy scheduling
 Wireless-powered UAVs (by e.g. lasers, microwave beams)
 Energy-efficient operation

 Energy-efficient mobility: e.g., avoid unnecessary vehicle maneuvering or 
ascending

 Energy-efficient communication: maximize bits/Joule 

Rui Zhang, National University of Singapore

Main Design Considerations (2)
Overview

Laser-powered UAV 
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 MIMO for UAV
 MIMO: improve spectral efficiency/diversity
 Practical considerations for MIMO in UAV communications 

 Poor scattering environment: limited spatial multiplexing gain
 High signal processing complexity, high hardware and power 

consumption costs versus the limited SWAP constraint
 Acquisition of channel state information (CSI) in UAV systems

 Potential solutions:
 Achieve spatial multiplexing even in LoS channels 
 Multi-user MIMO
 Millimeter wave MIMO:  reap large MIMO array gain

Rui Zhang, National University of Singapore

Main Design Considerations (3)
Overview

rank( ) min( , )M N=H rank( ) 1=H
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 UAV-enabled mobile relaying
 Conventional relay:  static, fixed locations due to limited mobility, wired 

backhauls, etc.
 Mobile relay: relays mounted on high-speed vehicles, such as UAVs, AGVs
 Additional degree of freedom for performance enhancement: mobility 

control, joint communication and movement scheduling 

 D2D-enhanced UAV information dissemination
 Exploit both D2D communication and UAV controlled mobility
 Energy saving for UAV and performance enhancement

Rui Zhang, National University of Singapore

A New Wireless Communication Paradigm: Exploiting the 
Interplay of UAV Controlled Mobility and Communication 

Overview
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Rui Zhang, National University of Singapore

UAV-Enabled Mobile Relaying: Toy Example
Overview

 UAV closer to source: receiving 
 UAV closer to destination: relaying

 Always enjoy smaller path loss 
than static relaying

 Better channel in average for 
higher UAV maximum speed
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Rui Zhang, National University of Singapore

UAV-Enabled Mobile Relaying : Throughput vs. Delay
Overview
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Rui Zhang, National University of Singapore

D2D Enhanced UAV Information Dissemination
Overview

 Objective: deliver a bulky common file to a massive number of ground 
terminals scattered in a wide area

 Direct UAV multicasting: intensive UAV load
 D2D enhanced information dissemination 
 Phase I: limited UAV multicasting  while flying, each terminal is likely to 

receive a (different) portion of the file
 Phase II: file sharing among ground terminals via D2D
 Advantages: offload UAV, saves flying time and energy, enhanced performance

 Design problem: D2D file sharing and UAV path/speed optimization  
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Rui Zhang, National University of Singapore

UAV-Enabled Mobile Relaying: Joint Communication and 
Trajectory Optimization

UAV-Enabled Mobile Relaying

 Relay moves at a constant altitude H, FDD communication 
 Relay mobility constraints: (i) Maximum speed; (ii) Initial and final location
 S-R and R-D channels vary with the relay location (x(t),y(t))
 Adaptive rate/power transmission by source and relay based on the time-

varying (mobility-controlled) channels
 Objective: maximize the end-to-end throughput via joint transmit 

power/rate allocation and trajectory design
23



Rui Zhang, National University of Singapore

UAV-Enabled Mobile Relaying: Problem Formulation
UAV-Enabled Mobile Relaying

 Relay mobility constraints: 

 Channel model: assume line of sight (LoS), perfect Doppler compensation

 Information-causality constraints at UAV: only information that has been 
received from the source can be forwarded to the destination 

0 0

:  maximum speed
: slot index

( , ) :  initial location;
( , ) :  final locationF F

V
n
x y
x y
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Rui Zhang, National University of Singapore

Problem Formulation
UAV-Enabled Mobile Relaying

aggregate rate at 
destination

information-
causality constraint

power constraint

initial location constraint

speed constraint

final location constraint
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Rui Zhang, National University of Singapore

Alternating Power and Trajectory Optimization

UAV-Enabled Mobile Relaying

 (P1) is not jointly convex w.r.t. power and relay trajectory
 Can be approximately solved with alternating optimization 
 Fix trajectory, power allocation is convex
 Fix power, trajectory optimization is still non-convex, but can be 

approximately solved by successive convex optimization

26



Rui Zhang, National University of Singapore

Optimal Power Allocation with Fixed Trajectory
UAV-Enabled Mobile Relaying

 E.g., UAVs primarily deployed for surveillance, opportunistic relaying 
 For any fixed trajectory, power allocation is convex

 Staircase waterfilling with non-increasing water 
level at source

 Staircase waterfilling with non-decreasing water 
level at relay
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Rui Zhang, National University of Singapore

Unidirectional Trajectory From Source to Destination
UAV-Enabled Mobile Relaying

 Special trajectory case: UAV moves unidirectionally from source to 
destination

 Optimal power allocation reduces to classic WF with constant water levels
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Rui Zhang, National University of Singapore

Trajectory Optimization with Fixed Power
UAV-Enabled Mobile Relaying

 Successive convex optimization 
based on rate lower bound

 Main idea: optimize the 
trajectory incremental in each 
iteration

Lower bound is concave w.r.t. 
incremental [ ], [ ]l ln nδ ξ
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Rui Zhang, National University of Singapore

Jointly Optimal Solution with Free Initial/Final Relay Location
UAV-Enabled Mobile Relaying

 If no constraint on the relay’s initial/final location, jointly optimal 
power and trajectory can be analytically obtained

 Two-level (max. or zero) speed is optimal: hovering only above source 
and/or destination, and move at maximum speed in between
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Rui Zhang, National University of Singapore

Simulation Setup
UAV-Enabled Mobile Relaying

 Source and destination separated by D=2000 m
 Maximum UAV speed: 50 m/s
 Source and relay average transmission power: 10 dBm 
 Simulation scenarios:

 Optimized power with fixed trajectory
 Optimized trajectory with fixed power
 Jointly optimized power and trajectory
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Rui Zhang, National University of Singapore

Optimal Power Allocation with Fixed Trajectory
UAV-Enabled Mobile Relaying

 Trajectory 1: unidirectionally towards destination
 Trajectory 2: unidirectionally towards source
 Trajectory 3: cyclic between source and destination

(a): power allocation at source for trajectory 2 

(b): power allocation at relay for trajectory 2 

Decreasing water level at source

Increasing water level at relay
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Rui Zhang, National University of Singapore

Throughput Comparison for Different Trajectories
UAV-Enabled Mobile Relaying

 Mobile relaying significantly outforms static relaying, if UAV trajectory is 
properly designed

 With inappropriate flying path, mobile relaying may even perform worse 
than static relaying
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Rui Zhang, National University of SingaporeUAV-Enabled Mobile Relaying

 Trajectories after different iterations of the proposed successive convex 
optimization algorithm

source 
node

destination 
node

final relay locationinitial relay location

Optimized Trajectory with Fixed Constant Power Allocation
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Rui Zhang, National University of SingaporeUAV-Enabled Mobile Relaying

Optimized Speed

 Two-level (max. or zero) speed after convergence
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Rui Zhang, National University of SingaporeUAV-Enabled Mobile Relaying

Convergence

 Fast convergence for the trajectory optimization algorithm
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Rui Zhang, National University of SingaporeUAV-Enabled Mobile Relaying

Joint Power and Trajectory Design via Alternating Optimization   
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Rui Zhang, National University of SingaporeUAV-Enabled Mobile Relaying

Joint Power and Trajectory Design via Alternating Optimization 
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Summary

 UAVs have promising applications in future wireless communication
 On-demand deployment, fast response, cost-effective
 Flexible in deployment and reconfiguration
 Short-distance LoS channels 

 Three typical use cases
 UAV-aided ubiquitous coverage
 UAV-aided relaying 
 UAV-aided information dissemination/data collection  

 Main design challenges 
 Crucial control links for safety-critical functions
 Sparse and intermittent network connectivity 
 Size, weight, and power (SWAP) limitations
 Swarm operation and coordination 

 New opportunities: exploiting UAV controlled-mobility
 Joint adaptive communication and mobility design 
 Example: joint power and trajectory optimization in UAV-enabled relaying 

Rui Zhang, National University of Singapore
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Rui Zhang, National University of Singapore

Future Directions

 UAV swarm operation and communications

 Aerial base station, e.g., mobile LTE BS/relay

 UAV information dissemination/collection  

 UAV-ground channel models 

 UAV communication with limited buffer size/energy storage  

 Throughput-delay trade-off in UAV communications 

 UAV deployment/movement optimization 

 MIMO communication in UAV

 Wireless-powered/energy-harvesting-enabled UAVs

 Energy-efficient UAV communications

 …..
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