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PCANet: A Simple Deep Learning Baseline for
Image Classification?

Tsung-Han Chan, Kui Jia, Shenghua Gao, Jiwen Lu, Zinan Zeng, and Yi Ma

Abstract—In this work, we propose a very simple deep learning network for image classification which comprises only the very
basic data processing components: cascaded principal component analysis (PCA), binary hashing, and block-wise histograms. In the
proposed architecture, PCA is employed to learn multistage filter banks. It is followed by simple binary hashing and block histograms
for indexing and pooling. This architecture is thus named as a PCA network (PCANet) and can be designed and learned extremely
easily and efficiently. For comparison and better understanding, we also introduce and study two simple variations to the PCANet,
namely the RandNet and LDANet. They share the same topology of PCANet but their cascaded filters are either selected randomly
or learned from LDA. We have tested these basic networks extensively on many benchmark visual datasets for different tasks, such
as LFW for face verification, MultiPIE, Extended Yale B, AR, FERET datasets for face recognition, as well as MNIST for hand-written
digits recognition. Surprisingly, for all tasks, such a seemingly naive PCANet model is on par with the state of the art features, either
prefixed, highly hand-crafted or carefully learned (by DNNs). Even more surprisingly, it sets new records for many classification tasks
in Extended Yale B, AR, FERET datasets, and MNIST variations. Additional experiments on other public datasets also demonstrate the
potential of the PCANet serving as a simple but highly competitive baseline for texture classification and object recognition.

Index Terms—Convolution Neural Network, Deep Learning, PCA Network, Random Network, LDA Network, Face Recognition,
Handwritten Digit Recognition, Object Classification.

F

1 INTRODUCTION

Image classification based on visual content is a very
challenging task, largely because there is usually large
amount of intra-class variability, arising from different
lightings, misalignment, non-rigid deformations, occlu-
sion and corruptions. Numerous efforts have been made
to counter the intra-class variability by manually design-
ing low-level features for classification tasks at hand.
Representative examples are Gabor features and local
binary patterns (LBP) for texture and face classification,
and SIFT and HOG features for object recognition. While
the low-level features can be hand-crafted with great suc-
cess for some specific data and tasks, designing effective
features for new data and tasks usually requires new do-
main knowledge since most hand-crafted features cannot
be simply adopted to new conditions [1], [2].

Learning features from the data of interest is con-
sidered as a plausible way to remedy the limitation of
hand-crafted features. An example of such methods is
learning through deep neural networks (DNNs), which
draws significant attention recently [1]. The idea of deep
learning is to discover multiple levels of representation,
with the hope that higher-level features represent more
abstract semantics of the data. Such abstract represen-
tations learned from a deep network are expected to
provide more invariance to intra-class variability. One
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key ingredient for success of deep learning in image
classification is the use of convolutional architectures [3]–
[10]. A convolutional deep neural network (ConvNet)
architecture [3]–[5], [8], [9] consists of multiple train-
able stages stacked on top of each other, followed by
a supervised classifier. Each stage generally comprises
of “three layers” – a convolutional filter bank layer, a
nonlinear processing layer, and a feature pooling layer.
To learn a filter bank in each stage of ConvNet, a variety
of techniques has been proposed, such as restricted
Boltzmann machines (RBM) [7] and regularized auto-
encoders or their variations; see [2] for a review and
references therein. In general, such a network is typically
learned by stochastic gradient descent (SGD) method.
However, learning a network useful for classification
critically depends on expertise of parameter tuning and
some ad hoc tricks.

While many variations of deep convolutional net-
works have been proposed for different vision tasks and
their success is usually justified empirically, arguably
the first instance that has led to clear mathematical
justification is the wavelet scattering networks (ScatNet)
[6], [10]. The only difference there is that the convolu-
tional filters in ScatNet are prefixed – they are simply
wavelet operators, hence no learning is needed at all.
Somewhat surprisingly, such a pre-fixed filter bank, once
utilized in a similar multistage architecture of ConvNet
or DNNs, has demonstrated superior performance over
ConvNet and DNNs in several challenging vision tasks
such as handwritten digit and texture recognition [6],
[10]. However, as we will see in this paper, such a
prefixed architecture does not generalize so well to tasks
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Fig. 1. Illustration of how the proposed PCANet extracts
features from an image through three simplest processing
components: PCA filters, binary hashing, and histogram.

such as face recognition where the intra-class variability
includes significant illumination change and corruption.

1.1 Motivations
An initial motivation of our study is trying to re-
solve some apparent discrepancies between ConvNet
and ScatNet. We want to achieve two simple goals:
First, we want to design a simple deep learning network
which should be very easy, even trivial, to train and to
adapt to different data and tasks. Second, such a basic
network could serve as a good baseline for people to
empirically justify the use of more advanced processing
components or more sophisticated architectures for their
deep learning networks.

The solution comes as no surprise: We use the most ba-
sic and easy operations to emulate the processing layers
in a typical (convolutional) neural network mentioned
above: The data-adapting convolution filter bank in each
stage is chosen to be the most basic PCA filters; the non-
linear layer is set to be the simplest binary quantization
(hashing); for the feature pooling layer, we simply use
the block-wise histograms of the binary codes, which is
considered as the final output features of the network.
For ease of reference, we name such a data-processing
network as a PCA Network (PCANet). As example, Figure
1 illustrates how a two-stage PCANet extracts features
from an input image.

At least one characteristic of the PCANet model seem
to challenge common wisdoms in building a deep learn-
ing network such as ConvNet [4], [5], [8] and ScatNet
[6], [10]: No nonlinear operations in early stages of the
PCANet until the very last output layer where binary
hashing and histograms are conducted to compute the
output features. Nevertheless, as we will see through

extensive experiments, such drastic simplification does
not seem to undermine performance of the network on
some of the typical datasets.

A network closely related to PCANet could be two-
stage oriented PCA (OPCA), which was first proposed
for audio processing [11]. Noticeable differences from
PCANet lie in that OPCA does not couple with hashing
and local histogram in the output layer. Given covariance
of noises, OPCA gains additional robustness to noises
and distortions. The baseline PCANet could also incor-
porate the merit of OPCA, likely offering more invari-
ance to intra-class variability. To this end, we have also
explored a supervised extension of PCANet, we replace
the PCA filters with filters that are learned from linear
discriminant analysis (LDA), called LDANet. As we will
see through extensive experiments, the additional dis-
criminative information does not seem to improve per-
formance of the network; see Sections 2.3 and 3. Another,
somewhat extreme, variation to PCANet is to replace
the PCA filters with totally random filters (say the filter
entries are i.i.d. Gaussian variables), called RandNet.
In this work, we conducted extensive experiments and
fair comparisons of these types of networks with other
existing networks such as ConvNet and ScatNet. We
hope our experiments and observations will help people
gain better understanding of these different networks.

1.2 Contributions

Although our initial intention of studying the simple
PCANet architecture is to have a simple baseline for
comparing and justifying other more advanced deep
learning components or architectures, our findings lead
to some pleasant but thought-provoking surprises: The
very basic PCANet, in fair experimental comparison,
is already quite on par with, and often better than,
the state-of-the-art features (prefixed, hand-crafted, or
learned from DNNs) for almost all image classification
tasks, including face images, hand-written digits, tex-
ture images, and object images. More specifically, for
face recognition with one gallery image per person, it
achieves 99.58% accuracy in Extended Yale B dataset,
and over 95% accuracy for across disguise/illumination
subsets in AR dataset. In FERET dataset, it obtains the
state-of-the-art average accuracy 97.25% and achieves
the best accuracy of 95.84% and 94.02% in Dup-1 and
Dup-2 subsets, respectively.1 In LFW dataset, it achieves
competitive 86.28% face verification accuracy under “un-
supervised setting”. In MNIST datasets, it achieves the
state-of-the-art results for subtasks such as basic, back-
ground random, and background image. See Section
3 for more details. Overwhelming empirical evidences
demonstrate the effectiveness of the proposed PCANet
in learning robust invariant features for various image
classification tasks.

1. The results were obtained by following FERET standard training
CD, and could be marginally better when the PCANet is trained on
MultiPIE database.
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The method hardly contains any deep or new tech-
niques and our study so far is entirely empirical.2 Never-
theless, a thorough report on such a baseline system has
tremendous value to the deep learning and visual recog-
nition community, sending both sobering and encouraging
messages: On one hand, for future study, PCANet can
serve as a simple but surprisingly competitive baseline
to empirically justify any advanced designs of multistage
features or networks. On the other hand, the empirical
success of PCANet (even that of RandNet) confirms
again certain remarkable benefits from cascaded feature
learning or extraction architectures. Even more impor-
tantly, since PCANet consists of only a (cascaded) linear
map, followed by binary hashing and block histograms,
it is now amenable to mathematical analysis and jus-
tification of its effectiveness. That could lead to funda-
mental theoretical insights about general deep networks,
which seems in urgent need for deep learning nowadays.

2 CASCADED LINEAR NETWORKS

2.1 Structures of the PCA Network (PCANet)
Suppose that we are given N input training images
{Ii}Ni=1 of size m × n, and assume that the patch size
(or 2D filter size) is k1 × k2 at all stages. The proposed
PCANet model is illustrated in Figure 2, and only the
PCA filters need to be learned from the input images
{Ii}Ni=1. In what follows, we describe each component
of the block diagram more precisely.

2.1.1 The first stage: PCA
Around each pixel, we take a k1 × k2 patch, and we
collect all (overlapping) patches of the ith image; i.e.,
xi,1,xi,2, ...,xi,mn ∈ Rk1k2 where each xi,j denotes the
jth vectorized patch in Ii. We then subtract patch mean
from each patch and obtain X̄i = [x̄i,1, x̄i,2, ..., x̄i,mn],
where x̄i,j is a mean-removed patch. By constructing
the same matrix for all input images and putting them
together, we get

X = [X̄1, X̄2, ..., X̄N ] ∈ Rk1k2×Nmn. (1)

Assuming that the number of filters in layer i is Li, PCA
minimizes the reconstruction error within a family of
orthonormal filters, i.e.,

min
V ∈Rk1k2×L1

‖X − V V TX‖2F , s.t. V TV = IL1 , (2)

where IL1
is identity matrix of size L1×L1. The solution

is known as the L1 principal eigenvectors of XXT . The
PCA filters are therefore expressed as

W 1
l

.
= matk1,k2

(ql(XXT )) ∈ Rk1×k2 , l = 1, 2, ..., L1, (3)

where matk1,k2
(v) is a function that maps v ∈ Rk1k2

to a matrix W ∈ Rk1×k2 , and ql(XXT ) denotes the
lth principal eigenvector of XXT . The leading principal

2. We would be surprised if something similar to PCANet or vari-
ations to OPCA [11] have not been suggested or experimented with
before in the vast learning literature.

eigenvectors capture the main variation of all the mean-
removed training patches. Of course, similar to DNN or
ScatNet, we can stack multiple stages of PCA filters to
extract higher level features.

2.1.2 The second stage: PCA

Almost repeating the same process as the first stage. Let
the lth filter output of the first stage be

Ili
.
= Ii ∗W 1

l , i = 1, 2, ..., N, (4)

where ∗ denotes 2D convolution, and the boundary
of Ii is zero-padded before convolving with W 1

l so
as to make Ili having the same size of Ii. Like the
first stage, we can collect all the overlapping patches
of Ili , subtract patch mean from each patch, and form
Ȳ l
i = [ȳi,l,1, ȳi,l,2, ..., ȳi,l,mn] ∈ Rk1k2×mn, where ȳi,l,j is

the jth mean-removed patch in Ili . We further define
Y l = [Ȳ l

1 , Ȳ
1
2 , ..., Ȳ

l
N ] ∈ Rk1k2×Nmn for the matrix col-

lecting all mean-removed patches of the lth filter output,
and concatenate Y l for all the filter outputs as

Y = [Y 1,Y 2, ...,Y L1 ] ∈ Rk1k2×L1Nmn. (5)

The PCA filters of the second stage are then obtained as

W 2
`

.
= matk1,k2

(q`(Y Y T )) ∈ Rk1×k2 , ` = 1, 2, ..., L2. (6)

For each input Ili of the second stage, we will have L2

outputs, each convolves Ili with W 2
` for ` = 1, 2, ..., L2:

Ol
i
.
= {Ili ∗W 2

` }
L2

`=1. (7)

The number of outputs of the second stage is L1L2. One
can simply repeat the above process to build more (PCA)
stages if a deeper architecture is found to be beneficial.

2.1.3 Output stage: hashing and histogram

For each of the L1 input images Ili for the second
stage, it has L2 real-valued outputs {Ili ∗W 2

` }
L2

`=1 from
the second stage. We binarize these outputs and get
{H(Ili ∗W 2

` )}L2

`=1, where H(·) is a Heaviside step (like)
function whose value is one for positive entries and zero
otherwise.

Around each pixel, we view the vector of L2 binary
bits as a decimal number. This converts the L2 outputs
in Ol

i back into a single integer-valued “image”:

T l
i

.
=

L2∑
`=1

2`−1H(Ili ∗W 2
` ), (8)

whose every pixel is an integer in the range
[
0, 2L2 − 1

]
.

The order and weights of for the L2 outputs is irrelevant
as we here treat each integer as a distinct “word.”

For each of the L1 images T l
i , l = 1, . . . , L1, we

partition it into B blocks. We compute the histogram
(with 2L2 bins) of the decimal values in each block, and
concatenate all the B histograms into one vector and
denote as Bhist(T l

i ). After this encoding process, the
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Fig. 2. The detailed block diagram of the proposed (two-stage) PCANet.

“feature” of the input image Ii is then defined to be
the set of block-wise histograms; i.e.,

fi
.
= [Bhist(T 1

i ), . . . ,Bhist(T L1
i )]T ∈ R(2L2 )L1B . (9)

The local blocks can be either overlapping or non-
overlapping, depending on applications. Our empiri-
cal experience suggests that non-overlapping blocks are
suitable for face images, whereas the overlapping blocks
are appropriate for hand-written digits, textures, and
object images. Furthermore, the histogram offers some
degree of translation invariance in the extracted features,
as in hand-crafted features (e.g., scale-invariant feature
transform (SIFT) [12] or histogram of oriented gradients
(HOG) [13]), learned features (e.g., bag-of-words (BoW)
model [14]), and average or maximum pooling process
in ConvNet [3]–[5], [8], [9].

The model parameters of PCANet include the filter
size k1, k2, the number of filters in each stage L1, L2, the
number of stages, and the block size for local histograms
in the output layer. PCA filter banks require that k1k2 ≥
L1, L2. In our experiments in Section 3, we always set
L1 = L2 = 8 inspired from the common setting of
Gabor filters [15] with 8 orientations, although some
fine-tuned L1, L2 could lead to marginal performance
improvement. Moreover, we have noticed empirically
that two-stage PCANet is in general sufficient to achieve
good performance and a deeper architecture does not
necessarily lead to further improvement. Also, larger
block size for local histograms provides more translation
invariance in the extracted feature fi.

2.1.4 Comparison with ConvNet and ScatNet
Clearly, PCANet shares some similarities with ConvNet
[5]. The patch-mean removal in PCANet is reminiscent of
local contrast normalization in ConvNet.3 This operation
moves all the patches to be centered around the origin of
the vector space, so that the learned PCA filters can bet-
ter catch major variations in the data. In addition, PCA
can be viewed as the simplest class of auto-encoders,
which minimizes reconstruction error.

3. We have tested the PCANet without patch-mean removal and the
performance degrades significantly.

The PCANet contains no non-linearity process be-
tween/in stages, running contrary to the common wis-
dom of building deep learning networks; e.g., the abso-
lute rectification layer in ConvNet [5] and the modulus
layer in ScatNet [6], [10]. We have tested the PCANet
with an absolute rectification layer added right after the
first stage, but we did not observe any improvement
on the final classification results. The reason could be
that the use of quantization plus local histogram (in
the output layer) already introduces sufficient invariance
and robustness in the final feature.

The overall process prior to the output layer in
PCANet is completely linear. One may wonder what
if we merge the two stages into just one that has an
equivalently same number of PCA filters and size of
receptive field. To be specific, one may be interested in
how the single-stage PCANet with L1L2 filters of size
(k1 +k2−1)× (k1 +k2−1) could perform, in comparison
to the two-stage PCANet we described in Section 2.1. We
have experimented with such settings on faces and hand-
written digits and observed that the two-stage PCANet
outperforms this single-stage alternative in most cases;
see the last rows of Tables 2, 9, and 10. In comparison
to the filters learned by the single-stage alternative, the
resulting two-stage PCA filters essentially has a low-
rank factorization, possibly having lower chance of over-
fitting the dataset. As for why we need the deep struc-
ture, from a computational perspective, the single-stage
alternative requires learning filters with L1L2(k1+k2−1)2

variables, whereas the two-stage PCANet only learns
filters with totally L1k

2
1 +L2k

2
2 variables. Another benefit

of the two-stage PCANet is the larger receptive field as
it contains more holistic observations of the objects in
images and learning invariance from it can essentially
capture more semantic information. Our comparative
experiments validates that hierarchical architectures with
large receptive fields and multiple stacked stages are
more efficient in learning semantically related represen-
tations, which coincides with what have been observed
in [7].
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2.2 Computational Complexity
The components for constructing the PCANet are ex-
tremely basic and computationally efficient. To see how
light the computational complexity of PCANet would
be, let us take the two-stage PCANet as an example. In
each stage of PCANet, forming the patch-mean-removed
matrix X costs k1k2 + k1k2mn flops; the inner product
XXT has complexity of 2(k1k2)2mn flops; and the com-
plexity of eigen-decomposition is O((k1k2)3). The PCA
filter convolution takes Lik1k2mn flops for stage i. In
the output layer, the conversion of L2 binary bits to a
decimal number costs 2L2mn, and the naive histogram
operation is of complexity O(mnBL2 log 2). Assuming
mn � max(k1, k2, L1, L2, B), the overall complexity of
PCANet is easy to be verified as

O(mnk1k2(L1 + L2) + mn(k1k2)2).

The above computational complexity applies to training
phase and testing phase of PCANet, as the extra compu-
tational burden in training phase from testing phase is
the eigen-decomposition, whose complexity is ignorable
when mn� max(k1, k2, L1, L2, B).

In comparison to ConvNet, the SGD for filter learn-
ing is also a simple gradient-based optimization solver,
but the overall training time is still much longer than
PCANet. For example, training PCANet on around
100,000 images of 80×60 pixel dimension took only half a
hour, but CNN-2 took 6 hours, excluding the fine-tuning
process; see Section 3.1.1.D for details.

2.3 Two Variations: RandNet and LDANet
The PCANet is an extremely simple network, requiring
only minimum learning of the filters from the training
data. One could immediately think of two possible vari-
ations of the PCANet towards two opposite directions:

1) We could further eliminate the necessity of training
data and replace the PCA filters at each layer with
random filters of the same size. Be more specific,
for random filters, i.e., the elements of W 1

l and W 2
l ,

are generated following standard Gaussian distri-
bution. We call such a network Random Network,
or RandNet as a shorthand. It is natural to won-
der how much degradation such a randomly cho-
sen network would perform in comparison with
PCANet.

2) If the task of the learned network is for classifica-
tion, we could further enhance the supervision of
the learned filters by incorporating the information
of class labels in the training data and learn the
filters based on the idea of multi-class linear dis-
criminant analysis (LDA). We called so composed
network LDA Network, or LDANet for ease of
reference. Again we are interested in how much
the enhanced supervision would help improve the
performance of the network.

To be more clear, we here describe with more details
how to construct the LDANet. Suppose that the N

training images are classified into C classes {Ii}i∈Sc ,
c = 1, 2, ..., C where Sc is the set of indices of images in
class c, and the mean-removed patches associated with
each image of distinct classes X̄i ∈ Rk1k2×mn, i ∈ Sc

(in the same spirit of X̄i in (1)) are given. We can first
compute the class mean Γc and the intra-class variability
Σc for all the patches as follows,

Γc =
∑
i∈Sc

X̄i/|Sc|, (10)

Σc =
∑
i∈Sc

(X̄i − Γc)(X̄i − Γc)
T /|Sc|. (11)

Each column of Γc denotes the mean of patches around
each pixel in the class c, and Σc is the sum of all the
patch-wise sample covariances in the class c. Likewise,
the inter-class variability of the patches is defined as

Φ =

C∑
c=1

(Γc − Γ)(Γc − Γ)T /C, (12)

where Γ is the mean of class means. The idea of LDA
is to maximize the ratio of the inter-class variability
to sum of the intra-class variability within a family of
orthonormal filters; i.e.,

max
V ∈Rk1k2×L1

Tr(V TΦV )

Tr(V T (
∑C

c=1 Σc)V )
, s.t. V TV = IL1 , (13)

where Tr(·) is the trace operator. The solution is known
as the L1 principal eigenvectors of Φ̃ = (

∑C
c=1 Σc)

†Φ,
where the superscript † denotes the pseudo-inverse. The
pseudo inverse is to deal with the case when

∑C
c=1 Σc is

not of full rank, though there might be another way of
handling this with better numeric stability [16]. The LDA
filters are thus expressed as W 1

l = matk1,k2
(ql(Φ̃)) ∈

Rk1×k2 , l = 1, 2, ..., L1. A deeper network can be built
by repeating the same process as above. .

3 EXPERIMENTS

We now evaluate the performance of the proposed
PCANet and the two simple variations (RandNet and
LDANet) in various tasks, including face recognition,
face verification, hand-written digits recognition, texture
discrimination, and object recognition in this section.

3.1 Face Recognition on Many Datasets

We first focus on the problem of face recognition with
one gallery image per person. We use part of MultiPIE
dataset to learn PCA filters in PCANet, and then apply
such trained PCANet to extract features of new subjects
in MultiPIE dataset, Extended Yale B, AR, and FERET
datasets for face recognition.
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3.1.1 Training and Testing on MultiPIE Dataset.

Generic faces training set. MultiPIE dataset [17] con-
tains 337 subjects across simultaneous variation in pose,
expression, and illumination. Of these 337 subjects, we
select the images of 129 subjects that enrolled all the four
sessions. The images of a subject under all illuminations
and all expressions at pose −30◦ to +30◦ with step size
15◦, a total of 5 poses, were collected. We manually select
eye corners as the ground truth for registration, and
down-sample the images to 80×60 pixels. The distance
between the two outer eye corners is normalized to be
50 pixels. This generic faces training set comprises around
100,000 images, and all images are converted to gray
scale.

We use these assembled face images to train the
PCANet and together with data labels to learn LDANet,
and then apply the trained networks to extract fea-
tures of the new subjects in Multi-PIE dataset. As men-
tioned above, 129 subjects enrolling all four sessions
are used for PCANet training. The remaining 120 new
subjects in Session 1 are used for gallery training and
testing. Frontal view of each subject with neutral ex-
pression and frontal illumination is used in gallery,
and the rest is for testing. We classify all the possible
variations into 7 test sets, namely cross illumination,
cross expression, cross pose, cross expression-plus-pose,
cross illumination-plus-expression, cross illumination-
plus-pose, and cross illumination-plus-expression-and-
pose. The cross-pose test set is specifically collected over
the poses −30◦, −15◦, +15◦, +30◦.

A. Impact of the number of filters. Before comparing
RandNet, PCANet, and LDANet with existing methods
on all the 7 test sets, we first investigate the impact of
the number of filters of these networks on the cross-
illumination test set only. The filter size of the networks
is k1 = k2 = 5 and their non-overlapping blocks is of size
8×6. We vary the number of filters in the first stage L1

from 2 to 12 for one-stage networks. When considering
two-stage networks, we set L2 = 8 and vary L1 from 4
to 24. The results are shown in Figure 3. One can see
that PCANet-1 achieves the best results for L1 ≥ 4 and
PCANet-2 is the best for all L1 under test. Moreover, the
accuracy of PCANet and LDANet (for both one-stage
and two-stage networks) increases for larger L1, and the
RandNet also has similar performance trend. However,
some performance fluctuation is observed for RandNet
due to the filters’ randomness.

B. Impact of the the block size. We next examine the
impact of the block size (for histogram computation) on
robustness of PCANet against image deformations. We
use the cross-illumination test set, and introduce artificial
deformation to the testing image with a translation, in-
plane rotation or scaling; see Figure 4. The parameters
of PCANet are set to k1 = k2 = 5 and L1 = L2 = 8. Two
block sizes 8×6 and 12×9 are considered. Figure 5 shows
the recognition accuracy for each artificial deformation.
It is observed that PCANet-2 achieves more than 90
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Fig. 3. Recognition accuracy of PCANet on MultiPIE
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the first stage. (a) PCANet-1; (b) PCANet-2 with L2 = 8.
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percent accuracy with translation up to 4 pixels in all
directions, up to 8◦ in-plane rotation, or with scale
varying from 0.9 to 1.075. Moreover, the results suggest
that PCANet-2 with larger block size provides more
robustness against various deformations, but a larger
block side may sacrifice some performance for PCANet-
1.

C. Impact of the number of generic faces training samples.
We also report the recognition accuracy of the PCANet
for differen number of the generic faces training images.
Again, we use cross-illumination test set. We randomly
select S images from the generic training set to train the
PCANet, and varies S from 10 to 50, 000. The parameters
of PCANet are set to k1 = k2 = 5, L1 = L2 = 8,
and block size 8×6. The results are tabulated in Table
1. Surprisingly, the accuracy of PCANet is less-sensitive
to the number of generic training images. The perfor-
mance of PCANet-1 gradually improves as the number
of generic training samples increases, and PCANet-2
keeps perfect recognition even when there are only 100
generic training samples.

D. Comparison with state of the arts. We compare the

TABLE 1
Face recognition rates (%) of PCANet on MultiPIE
cross-illumination test set, with respect to different

amount of generic faces training images (S).

S 100 500 1,000 5,000 10,000 50,000
PCANet-1 98.01 98.44 98.61 98.65 98.70 98.70
PCANet-2 100.00 100.00 100.00 100.00 100.00 100.00
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Fig. 5. Recognition rate of PCANet on MultiPIE cross-illumination test set, for different PCANet block size and
deformation to the test image. Two block sizes [8 6] and [12 9] for histogram aggregation are tested. (a) Simultaneous
translation in x and y directions. (b) Translation in x direction. (c) Translation in y direction. (d) In-plane rotation. (e)
Scale variation.

Fig. 6. The PCANet filters learned on MultiPIE dataset.
Top row: the first stage. Bottom row: the second stage.

RandNet, PCANet, and LDANet with Gabor4 [15], LBP5

[18], and two-stage ScatNet (ScatNet-2) [6]. We set the
parameters of PCANet to the filter size k1 = k2 = 5,
the number of filters L1 = L2 = 8, and 8×6 block size,
and the learned PCANet filters are shown in Figure 6.
The number of scales and the number of orientations
in ScatNet-2 are set to 3 and 8, respectively. We use
the nearest neighbor (NN) classifier with the chi-square
distance for RandNet, PCANet, LDANet and LBP, or
with the cosine distance for Gabor and ScatNet. The NN
classifier with different distance measure is to secure the
best performances of respective features.

We also compare with CNN. Since we could not find
any work that successfully applies CNN to the same face
recognition tasks, we use Caffe framework [19] to pre-
train a two-stage CNN (CNN-2) on the generic faces
training set. The CNN-2 is fully-supervised network
with filter size 5×5; 20 channels for the first stage and 50

4. Each face is convolved with a family of Gabor kernels with 5
scales and 8 orientations. Each filter response is down-sampled by a
3× 3 uniform lattice, and normalized to zero mean and unit variance.

5. Each face is divided into several blocks, each of size the same
as PCANet. The histogram of 59 uniform binary patterns is then com-
puted, where the patterns are generated by thresholding 8 neighboring
pixels in a circle of radius 2 using the central pixel value.

channels for the second stage. Each convolution output
is followed by a rectified linear function relu(x) =
max(x, 0) and 2×2 max-pooling. The output layer is a
softmax classifier. After pre-training the CNN-2 on the
generic faces training set, the CNN-2 is also fine-tuned
on the 120 gallery images for 500 epochs.

The performance of all methods are given in Table
2. Except for cross-pose test set, the PCANet yields
the best precision. For all test sets, the performance of
RandNet and LDANet is inferior to that of PCANet, and
LDANet does not seem to take advantage of discrimina-
tive information. One can also see that whenever there
is illumination variation, the performance of LBP drops
significantly. The PCANet overcomes this drawback and
offers comparable performance to LBP for cross-pose
and cross-expression variations. As a final note, ScatNet
and CNN seem not performing well.6 This is the case
for all face-related experiments below, and therefore
ScatNet and CNN are not included for comparison in
these experiments. We also do not include RandNet and
LDANet in the following face-related experiments, as
they did not show performance superior over PCANet.

The last row of Table 2 shows the result of PCANet-
1 with L1L2 filters of size (k1 + k2 − 1) × (k1 + k2 − 1).
The PCANet-1 with such a parameter setting is to mimic
the reported PCANet-2 in a single-stage network, as
both have the same number of PCA filters and size
of receptive field. PCANet-2 outperforms the PCANet-1
alternative, showing the advantages of deeper networks.
Another issue worth mentioning is the efficiency of
the PCANet. Training PCANet-2 on the generic faces

6. The performance of CNN could be further promoted if the model
parameters are more fine-tuned.
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0% occlusion 40% occlusion 80% occlusion

Fig. 7. Illustration of varying level of an occluded test face
image.

TABLE 3
Recognition rates (%) on Extended Yale B dataset.

Percent occluded 0% 20% 40% 60% 80%
LBP [18] 75.76 65.66 54.92 43.22 18.06
P-LBP [21] 96.13 91.84 84.13 70.96 41.29
PCANet-1 97.77 96.34 93.81 84.60 54.38
PCANet-2 99.58 99.16 96.30 86.49 51.73

training set (i.e., around 100,000 face images of 80×60
pixel dimension) took only half a hour, but CNN-2 took
6 hours, excluding the fine-tuning process.

3.1.2 Testing on Extended Yale B Dataset.

We then apply the PCANet with the PCA filters learned
from MultiPIE to Extended Yale B dataset [20]. Extended
Yale B dataset consists of 2414 frontal-face images of
38 individuals. The cropped and normalized 192×168
face images were captured under various laboratory-
controlled lighting conditions. For each subject, we select
frontal illumination as the gallery images, and the rest
for testing. To challenge ourselves, in the test images,
we also simulate various levels of contiguous occlusion,
from 0 percent to 80 percent, by replacing a randomly
located square block of each test image with an unre-
lated image; see Figure 7 for example. The size of non-
overlapping blocks in the PCANet is set to 8×8. We
compare with LBP [18] and LBP of the test images being
processed by illumination normalization, P-LBP [21].
We use the NN classifier with the chi-square distance
measure.

The experimental results are given in Table 3. One can
see that the PCANet outperforms the P-LBP for different
levels of occlusion. It is also observed that the PCANet is
not only illumination-insensitive, but also robust against
block occlusion. Under such a single sample per per-
son setting and various difficult lighting conditions, the
PCANet surprisingly achieves almost perfect recognition
99.58%, and still sustains 86.49% accuracy when 60%
pixels of every test image are occluded! The reason could
be that each PCA filter can be seen as a detector with
the maximum response for patches from a face. In other
words, the contribution from occluded patches would
somehow be ignored after PCA filtering and are not
passed onto the output layer of the PCANet, thereby
yielding striking robustness to occlusion.

TABLE 4
Recognition rates (%) on AR dataset.

Test sets Illum. Exps. Disguise Disguise + Illum.
LBP [18] 93.83 81.33 91.25 79.63
P-LBP [21] 97.50 80.33 93.00 88.58
PCANet-1 98.00 85.67 95.75 92.75
PCANet-2 99.50 85.00 97.00 95.00

3.1.3 Testing on AR Dataset.
We further evaluate the ability of the MultiPIE-learned
PCANet to cope with real possibly malicious occlusions
using AR dataset [22]. AR dataset consists of over 4,000
frontal images for 126 subjects. These images include
different facial expressions, illumination conditions and
disguises. In the experiment, we chose a subset of the
data consisting of 50 male subjects and 50 female sub-
jects. The images are cropped with dimension 165×120
and converted to gray scale. For each subject, we select
the face with frontal illumination and neural expression
in the gallery training, and the rest are all for testing.
The size of non-overlapping blocks in the PCANet is set
to 8×6. We also compare with LBP [18] and P-LBP [21].
We use the NN classifier with the chi-square distance
measure.

The results are given in Table 4. For test set of
illumination variations, the recognition by PCANet is
again almost perfect, and for cross-disguise related test
sets, the accuracy is more than 95%. The results are
consistent with that on MultiPIE and Extended Yale
B datasets: PCANet is insensitive to illumination and
robust to occlusions. To the best of our knowledge, no
single feature with a simple classifier can achieve such
performances, even if in extended representation-based
classification (ESRC) [23]!

3.1.4 Testing on FERET Dataset.
We finally apply the MultiPIE-learned PCANet to the
popular FERET dataset [24], which is a standard dataset
used for facial recognition system evaluation. FERET
contains images of 1,196 different individuals with up
to 5 images of each individual captured under different
lighting conditions, with non-neural expressions and
over the period of three years. The complete dataset
is partitioned into disjoint sets: gallery and probe. The
probe set is further subdivided into four categories: Fb
with different expression changes; Fc with different light-
ing conditions; Dup-I taken within the period of three to
four months; Dup-II taken at least one and a half year
apart. We use the gray-scale images, cropped to image
size of 150×90 pixels. The size of non-overlapping blocks
in the PCANet is set to 15×15. To compare fairly with
prior methods, the dimension of the PCANet features are
reduced to 1000 by a whitening PCA (WPCA),7 where
the projection matrix is learned from the features of

7. The PCA projection directions are weighted by the inverse of their
corresponding square-root energies, respectively.
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TABLE 2
Comparison of face recognition rates (%) of various methods on MultiPIE test sets. The filter size k1 = k2 = 5 are set

in RandNet, PCANet, and LDANet unless specified otherwise.

Test Sets Illum. Exps. Pose Exps.+Pose Illum.+Exps. Illum.+Pose Illum.+Exps.+Pose
Gabor [15] 68.75 94.17 84.17 64.70 38.09 39.76 25.92
LBP [18] 79.77 98.33 95.63 86.88 53.77 50.72 40.55
ScatNet-2 [6] 20.88 66.67 71.46 54.37 14.51 15.00 14.47
CNN-2 [8] 46.71 75.00 73.54 57.50 23.38 25.05 18.74
RandNet-1 80.88 98.33 87.50 75.62 46.57 42.80 31.85
RandNet-2 97.64 97.50 83.13 75.21 63.87 53.50 42.47
PCANet-1 98.70 99.17 94.17 87.71 72.40 65.76 53.80
PCANet-2 100.00 99.17 93.33 87.29 87.89 75.29 66.49
LDANet-1 99.95 98.33 92.08 82.71 77.89 68.55 57.97
LDANet-2 96.02 99.17 93.33 83.96 65.78 60.14 46.72
PCANet-1 (k1 = 9) 100 99.17 89.58 81.46 75.74 67.59 56.95

TABLE 5
Recognition rates (%) on FERET dataset.

Probe sets Fb Fc Dup-I Dup-II Avg.
LBP [18] 93.00 51.00 61.00 50.00 63.75
DMMA [25] 98.10 98.50 81.60 83.20 89.60
P-LBP [21] 98.00 98.00 90.00 85.00 92.75
POEM [26] 99.60 99.50 88.80 85.00 93.20
G-LQP [27] 99.90 100 93.20 91.00 96.03
LGBP-LGXP [28] 99.00 99.00 94.00 93.00 96.25
sPOEM+POD [29] 99.70 100 94.90 94.00 97.15
GOM [30] 99.90 100 95.70 93.10 97.18
PCANet-1 (Trn. CD) 99.33 99.48 88.92 84.19 92.98
PCANet-2 (Trn. CD) 99.67 99.48 95.84 94.02 97.25
PCANet-1 99.50 98.97 89.89 86.75 93.78
PCANet-2 99.58 100 95.43 94.02 97.26

gallery samples. The NN classifier with cosine distance
is used. Moreover, in addition to PCANet trained from
MultiPIE database, we also train PCANet on the FERET
generic training set, consisting of 1,002 images of 429
people listed in the FERET standard training CD.

The results of the PCANet and other state-of-the-
art methods are listed in Table 5. Surprisingly, both
simple MultiPIE-learned PCANet-2 and FERET-learned
PCANet-2 (with Trn. CD in a parentheses) achieve the
state-of-the-art accuracies 97.25% and 97.26% on average,
respectively. As the variations in MultiPIE database are
much richer than the standard FERET training set, it is
nature to see that the MultiPIE-learned PCANet slightly
outperforms FERET-learned PCANet. More importantly,
PCANet-2 breaks the records in Dup-I and Dup-II.

Conclusive remarks on face recognition. A prominent
message drawn from the above experiments in sections
3.1.1, 3.1.2, 3.1.3, and 3.1.4 is that training PCANet from
a face dataset can be very effective to capture the abstract
representation of new subjects or new datasets. After
the PCANet is trained, extracting PCANet-2 feature for
one test face only takes 0.3 second in Matlab. We can
anticipate that the performance of PCANet could be
further improved and moved toward practical use if
the PCANet is trained upon a wide and deep dataset
that collect sufficiently many inter-class and intra-class
variations.

3.2 Face Verification on LFW Dataset

Besides tests with laboratory face datasets, we also
evaluate the PCANet on the LFW dataset [31] for un-
constrained face verification. LFW contains 13,233 face
images of 5,749 different individuals, collected from the
web with large variations in pose, expression, illumi-
nation, clothing, hairstyles, etc. We consider “unsuper-
vised setting”, which is the best choice for evaluating
the learned features, for it does not depend on metric
learning and discriminative model learning. The aligned
version of the faces, namely LFW-a, provided by Wolf
et al. [32] is used, and the face images were cropped
into 150 × 80 pixel dimensions. We follow the standard
evaluation protocal, which splits the View 2 dataset into
10 subsets with each subset containing 300 intra-class
pairs and 300 inter-class pairs. We perform 10-fold cross
validation using the 10 subsets of pairs in View 2. In
PCANet, the filter size, the number of filters, and the
(non-overlapping) block size are set to k1 = k2 = 7,
L1 = L2 = 8, and 15×13, respectively. The performances
are measured by averaging the 10-fold cross validation.
We project the PCANet features onto 400 and 3,200
dimensions using WPCA for PCANet-1 and PCANet-2,
respectively, and use NN classifier with cosine distance.

Table 6 tabulates the results.8 Note that PCANet fol-
lowed by sqrt in a parentheses represents the PCANet
feature taking square-root operation. One can see that
the square-root PCANet outperforms PCANet, and
this performance boost from square-root operation has
also been observed in other features for this dataset
[33]. Moreover, the square-root PCANet-2 that achieves
86.28% accuracy is quite competitive to the current
state-of-the-art methods. This shows that the proposed
PCANet is also effective in learning invariant features
for face images captured in less controlled conditions.

In preparation of this paper, we are aware of two
concurrent works [34], [35] that employ ConvNet for
LFW face verification. While both works achieve very
impressive results on LFW, their experimental setting

8. For fair comparison, we only report results of single descriptor.
The best known LFW result under unsupervised setting is 88.57% [33],
which is inferred from four different descriptors.
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differs from ours largely. These two works require some
outside database to train the ConvNet and the face
images have to be more precisely aligned; e.g., [34]
uses 3-dimensional model for face alignment and [35]
extracts multi-scale features based on detected landmark
positions. On the contrary, we only trained PCANet
based on LFW-a [32], an aligned version of LFW images
using the commercial alignment system of face.com.

TABLE 6
Comparison of verification rates (%) on LFW under

unsupervised setting.

Methods Accuracy
POEM [26] 82.70±0.59
High-dim. LBP [36] 84.08
High-dim. LE [36] 84.58
SFRD [37] 84.81
I-LQP [27] 86.20±0.46
OCLBP [33] 86.66±0.30
PCANet-1 81.18 ± 1.99
PCANet-1 (sqrt) 82.55 ± 1.48
PCANet-2 85.20 ± 1.46
PCANet-2 (sqrt) 86.28 ± 1.14

3.3 Digit Recognition on MNIST Datasets

We now move forward to test the proposed PCANet,
along with RandNet and LDANet, on MNIST [4] and
MNIST variations [38], a widely-used benchmark for
testing hierarchical representations. There are 9 classi-
fication tasks in total, as listed in Table 8. All the images
are of size 28 × 28. In the following, we use MNIST
basic as the dataset to investigate the influence of the
number of filters or different block overlap ratios for
RandNet, PCANet and LDANet, and then compare with
other state-of-the-art methods on all the MNIST datasets.

3.3.1 Impact of the number of filters

We vary the number of filters in the first stage L1 from
2 to 12 for one-stage networks. Regarding two-stage
networks, we set L2 = 8 and change L1 from 4 to 24.
The filter size of the networks is k1 = k2 = 7, block
size is 7×7, and the overlapping region between blocks
is half of the block size. The results are shown in Figure
8. The results are consistent with that for MultiPIE face
database in Figure 3; PCANet outperforms RandNet and
LDANet for almost all the cases.

3.3.2 Impact of the block overlap ratio

The number of filters is fixed to L1 = L2 = 8, and the
filter size is again k1 = k2 = 7 and block size is 7×7.
We only vary the block overlap ratio (BOR) from 0.1 to
0.7. Table 7 tabulates the results of RandNet-2, PCANet-
2, and LDANet-2. Clearly, PCANet-2 and LDANet-2
achieve their minimum error rates for BOR equal to 0.5
and 0.6, respectively, and PCANet-2 performs the best
for all conditions.

TABLE 7
Error rates (%) of PCANet-2 on basic dataset for varying

block overlap ratios (BORs).

BOR 0.1 0.2 0.3 0.4 0.5 0.6 0.7
RandNet-2 1.31 1.35 1.23 1.34 1.18 1.14 1.24
PCANet-2 1.12 1.12 1.07 1.06 1.06 1.02 1.05
LDANet-2 1.14 1.14 1.11 1.05 1.05 1.05 1.06

3.3.3 Comparison with state of the arts

We compare RandNet, PCANet, and LDANet with Con-
vNet [5], 2-stage ScatNet (ScatNet-2) [6], and other ex-
isting methods. In ScatNet, the number of scales and the
number of orientations are set to 3 and 8, respectively.
Regarding the parameters of PCANet, we set the filter
size k1 = k2 = 7, the number of PCA filters L1 = L2 = 8;
the block size is tuned by a cross-validation for MNIST,
and the validation sets for MNIST variations9. The over-
lapping region between blocks is half of the block size.
Unless otherwise specified, we use linear SVM classifier
for ScatNet and RandNet, PCANet and LDANet for the
9 classification tasks.

The testing error rates of the various methods on
MNIST are shown in Table 9. For fair comparison, we
do not include the results of methods using augmented
training samples with distortions or other information,
for that the best known result is 0.23% [39]. We see
that RandNet-2, PCANet-2, and LDANet-2 are compa-
rable with the state-of-the-art methods on this standard
MNIST task. However, as MNIST has many training
data, all methods perform very well and very close –
the difference is not so statistically meaningful.

Accordingly, we also report results of different meth-
ods on MNIST variations in Table 10. To the best of our
knowledge, the PCANet-2 achieves the state-of-the-art
results for four out of the eight remaining tasks: basic,
bg-img, bg-img-rot, and convex. Especially for bg-img, the
error rate reduces from 12.25% [40] to 10.95%.

Table 10 also shows the result of PCANet-1 with L1L2

filters of size (k1 + k2− 1)× (k1 + k2− 1). The PCANet-1
with such a parameter setting is to mimic the reported
PCANet-2 in a single-stage structure. PCANet-2 still
outperforms this PCANet-1 alternative.

Furthermore, we also draw the learned PCANet filters
in Figure 9 and Figure 10. An intriguing pattern is
observed in the filters of rect and rect-img datasets. For
rect, we can see both horizontal and vertical stripes,
for these patterns attempt to capture the edges of the
rectangles. When there is some image background in
rect-img, several filters become low-pass, in order to
secure the responses from background images.

9. Using either cross-validation or validation set, the optimal block
size is obtained as 7×7 for MNIST, basic, rec-img, 4×4 for rot, bg-img,
bg-rnd, bg-img-rot, 14×14 for rec, and 28×28 for convex.
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TABLE 8
Details of the 9 classification tasks on MNIST and MNIST variations.

Data Sets Description Num. of classes Train-Valid-Test
MNIST Standard MNIST 10 60000-0-10000
basic Smaller subset of MNIST 10 10000-2000-50000
rot MNIST with rotation 10 10000-2000-50000
bg-rand MNIST with noise background 10 10000-2000-50000
bg-img MNIST with image background 10 10000-2000-50000
bg-img-rot MNIST with rotation and image background 10 10000-2000-50000
rect Discriminate between tall and wide rectangles 2 1000-200-50000
rect-img Dataset rect with image background 2 10000-2000-50000
convex Discriminate between convex and concave shape 2 6000-2000-50000

TABLE 10
Comparison of testing error rates (%) of the various methods on MNIST variations.

Methods basic rot bg-rand bg-img bg-img-rot rect rect-img convex
CAE-2 [45] 2.48 9.66 10.90 15.50 45.23 1.21 21.54 -
TIRBM [46] - 4.20 - - 35.50 - - -
PGBM + DN-1 [40] - - 6.08 12.25 36.76 - - -
ScatNet-2 [6] 1.27 7.48 12.30 18.40 50.48 0.01 8.02 6.50
RandNet-1 1.86 14.25 18.81 15.97 51.82 0.21 15.94 6.78
RandNet-2 1.25 8.47 13.47 11.65 43.69 0.09 17.00 5.45
PCANet-1 1.44 10.55 6.77 11.11 42.03 0.15 25.55 5.93
PCANet-2 1.06 7.37 6.19 10.95 35.48 0.24 14.08 4.36
LDANet-1 1.61 11.40 7.16 13.03 43.86 0.15 23.63 6.89
LDANet-2 1.05 7.52 6.81 12.42 38.54 0.14 16.20 7.22
PCANet-1 (k1 = 13) 1.21 8.30 6.88 11.97 39.06 0.03 13.94 6.75
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Fig. 8. Error rate of PCANet on MNIST basic test set for
varying number of filters in the first stage. (a) PCANet-1;
(b) PCANet-2 with L2 = 8.

Fig. 9. The PCANet filters learned on MNIST dataset. Top
row: the first stage. Bottom row: the second stage. The
filter size k1 = k2 = 7 are set in RandNet, PCANet, and
LDANet unless specified otherwise.

3.4 Texture Classification on CUReT Dataset
The CUReT texture dataset contains 61 classes of image
textures. Each texture class has images of the same
material with different pose and illumination conditions.
Other than the above variations, specularities, shad-
owing and surface normal variations also make this
classification challenging. In this experiment, a subset of
the dataset with azimuthal viewing angle less than 60

TABLE 9
Comparison of error rates (%) of the methods on MNIST,
excluding methods that augment the training data. The
filter size k1 = k2 = 7 are set in RandNet, PCANet, and

LDANet unless specified otherwise.

Methods MNIST
HSC [41] 0.77
K-NN-SCM [42] 0.63
K-NN-IDM [43] 0.54
CDBN [7] 0.82
ConvNet [5] 0.53
Stochastic pooling ConvNet [44] 0.47
Conv. Maxout + Dropout [3] 0.45
ScatNet-2 (SVMrbf ) [6] 0.43
RandNet-1 1.32
RandNet-2 0.63
PCANet-1 0.94
PCANet-2 0.66
LDANet-1 0.98
LDANet-2 0.62
PCANet-1 (k1 = 13) 0.62

degrees is selected, thereby yielding 92 images in each
class. A central 200×200 region is cropped from each of
the selected images. The dataset is randomly split into
a training and a testing set, with 46 training images for
each class, as in [47]. The PCANet is trained with filter
size k1 = k2 = 5, the number of filters L1 = L2 = 8,
and block size 50×50. We use linear SVM classifier. The
testing error rates averaged over 10 different random
splits are shown in Table 11. We see that the PCANet-
1 outperforms ScatNet-1, but the improvement from
PCANet-1 to PCANet-2 is not as large as that of ScatNet.
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Fig. 10. The PCANet filters learned on various MNIST datasets. For each dataset, the top row shows the filters of the
first stage; the bottom row shows the filters of the second stage.

Fig. 11. The PCANet filters learned on CUReT database.
Top row: the first stage. Bottom row: the second stage.

TABLE 11
Comparison of error rates (%) on CUReT.

Methods Error rates
Textons [48] 1.50
BIF [49] 1.40
Histogram [50] 1.00
ScatNet-1 (PCA) [6] 0.50
ScatNet-2 (PCA) [6] 0.20
RandNet-1 0.61
RandNet-2 0.46
PCANet-1 0.45
PCANet-2 0.39
LDANet-1 0.69
LDANet-2 0.54

Note that ScatNet-2 followed by a PCA-based classifier
gives the best result [6].

3.5 Object Recognition on CIFAR10
We finally evaluate the performance of PCANet on
CIFAR10 database for object recognition. CIFAR10 is a
set of natural RGB images of 32×32 pixels. It contains
10 classes with 50000 training samples and 10000 test
samples. Images in CIFAR10 vary significantly not only

in object position and object scale within each class, but
also in colors and textures of these objects.

The motivation here is to explore the limitation of
such a simple PCANet on a relatively complex database,
in comparison to the databases of faces, digits, and
textures we have experimented with, which could some-
how be roughly aligned or prepared. To begin with, we
extend PCA filter learning so as to accommodate the
RGB images in object databases. In the same spirit of
constructing the data matrix X in (1), we gather the
same individual matrix for RGB channels of the images,
denoted by Xr,Xg,Xb ∈ Rk1k2×Nmn, respectively. Fol-
lowing the key steps in Section 2.1.1, the multichannel
PCA filters can be easily verified as

W r,g,b
l

.
= matk1,k2,3(ql(X̃X̃T )) ∈ Rk1×k2×3, (14)

where X̃ = [XT
r ,X

T
g ,X

T
b ]T and matk1,k2,3(v) is a func-

tion that maps v ∈ R3k1k2 to a tensor W ∈ Rk1×k2×3.
An example of the learned multichannel PCA filters is
demonstrated in Figure 12. In addition to the modifi-
cation above, we also connect spatial pyramid pooling
(SPP) [51]–[53] to the output layer of PCANet, with
the aim of extracting information invariant to large
poses and complex backgrounds, usually seen in object
databases. The SPP essentially helps object recognition,
but finds no significant improvement in the previous
experiments on faces, digits and textures.

We use linear SVM classifier in the experiments. In
the first experiment, we train PCANet on CIFAR10 with
filter size k1 = k2 = 5, the number of filters L1 =
40, L2 = 8, and block size equal to 8 × 8. Also, we
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Fig. 12. The PCANet filters learned on Cifar10 database.
Top: the first stage. Bottom: the second stage.

set the overlapping region between blocks to half of
the block size, and connected SPP to the output layer
of PCANet; i.e., the maximum response in each bin
of block histograms is pooled in a pyramid of 4×4,
2×2, and 1×1 subregions. This yields the 21 pooled
histogram feature of dimension L12L2 . The dimension
of each pooled feature is reduced to 1280 by PCA.

In the second experiment, we concatenate PCANet
features learned with different filter size k1 = k2 = 3 and
k1 = k2 = 5. All the processes and model parameters are
fixed identical to the single descriptor mentioned in last
paragraph, except L1 = 12 and L1 = 28 set for filter size
equal to 3 and 5, respectively. This is to ensure that the
combined features are of the same dimension with the
single descriptor, for fairness.

The results are shown in Table 12. PCANet-2 achieves
accuracy 77.14% and gains 1.5% improvement when
combining two features learned with different filter
sizes (marked with combined in a parenthesis). While
PCANet-2 has around 11% accuracy degradation in com-
parison to state-of-the-art method (with no data aug-
mentation), the performance of the fully unsupervised
and extremely simple PCANet-2 shown here is still
encouraging.

4 CONCLUSION

In this paper, we have proposed arguably the simplest
unsupervised convolutional deep learning network—
PCANet. The network processes input images by cas-
caded PCA, binary hashing, and block histograms. Like
the most ConvNet models, the network parameters such
as the number of layers, the filter size, and the number
of filters have to be given to PCANet. Once the pa-
rameters are fixed, training PCANet is extremely simple
and efficient, for the filter learning in PCANet does not
involve regularized parameters and does not require
numerical optimization solver. Moreover, building the

TABLE 12
Comparison of accuracy (%) of the methods on CIFAR10

with no data augmentation.

Methods Accuracy
Tiled CNN [54] 73.10
Improved LCC [55] 74.50
KDES-A [56] 76.00
K-means (Triangle, 4000 features) [57] 79.60
Cuda-convnet2 [58] 82.00
Stochastic pooling ConvNet [44] 84.87
CNN + Spearmint [59] 85.02
Conv. Maxout + Dropout [3] 88.32
NIN [60] 89.59
PCANet-2 77.14
PCANet-2 (combined) 78.67

PCANet comprises only a cascaded linear map, followed
by a nonlinear output stage. Such a simplicity offers
an alternative and yet refreshing perspective to con-
volutional deep learning networks, and could further
facilitate mathematical analysis and justification of its
effectiveness.

A couple of simple extensions of PCANet; that is,
RandNet and LDANet, have been introduced and tested
together with PCANet on many image classification
tasks, including face, hand-written digit, texture, and
object. Extensive experimental results have consistently
shown that the PCANet outperforms RandNet and
LDANet, and is generally on par with ScatNet and
variations of ConvNet. Furthermore, the performance
of PCANet is closely comparable and often better than
highly engineered hand-crafted features (such as LBP
and LQP). In tasks such as face recognition, PCANet also
demonstrates remarkable robustness to corruption and
ability to transfer to new datasets.

The experiments also convey that as long as the
images in databases are somehow well prepared; i.e.,
images are roughly aligned and do not exhibit diverse
scales or poses, PCANet is able to eliminate the image
variability and gives reasonably competitive accuracy.
In challenging image databases such as Pascal and
ImageNet, PCANet might not be sufficient to handle
the variability, given its extremely simple structure and
unsupervised learning method. An intriguing research
direction will then be how to construct a more compli-
cated (say more sophisticated filters possibly with dis-
criminative learning) or deeper (more number of stages)
PCANet that could accommodate the aforementioned
issues. Some preprocessing of pose alignment and scale
normalization might be needed for good performance
guarantee. The current bottleneck that keeps PCANet
from growing deeper (e.g., more than two stages) is that
the dimension of the resulted feature would increase ex-
ponentially with the number of stages. This fortunately
seems able to be fixed by replacing the 2-dimensional
convolution filters with tensor-like filters as in (14), and
it will be our future study. Furthermore, we will also
leave as future work to augment PCANet with a simple,
scalable baseline classifier, readily applicable to much
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larger scale datasets or problems.
Regardless, extensive experiments given in this paper

sufficiently conclude two facts: 1) the PCANet is a
very simple deep learning network, effectively extracting
useful information for classification of faces, digits, and
texture images; 2) the PCANet can be a valuable baseline
for studying advanced deep learning architectures for
large-scale image classification tasks.
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