
Lecture 6: Computation of the differential

In this lecture we continue to work in the context of standard data (5.23). Henceforth we drop

the subscripts ‘V ’ and ‘W ’ on the norms, since it is clear from the context which we mean. We

also use the operator norm (5.8) on HompV,W q without explicit labeling.

Differentiability and continuity

A differentiable function is continuous, as we now prove.

Theorem 6.1. Suppose f is differentiable at p P U . Then f is continuous at p.

Proof. Let C “ }dfp} be the operator norm of the differential at p. Apply Definition 5.36 with ε “ 1

to produce δ0 ą 0 such that if }ξ} ă δ0, then (5.37) is satisfied. The triangle inequality implies

}fpp` ξq ´ fppq} ď }fpp` ξq ´ fppq ´ dfppξq} ` }dfppξq}

ă p1` Cq}ξ}.
(6.2)

Given ε ą 0 choose δ “ min
`

δ0, 1{p1` Cq
˘

to satisfy Definition 5.32 of continuity at p. �

If the differential of f exists at all points of U , then we can inquire about the continuity of the

differential as a map (5.45).

Definition 6.3. If f is differentiable on U and df : U Ñ HompV,W q is continuous, then we say

f is continuously differentiable.

Functions of one variable

A special case of our general context (5.23) is the situation studied in a first analysis course.

Then A “ R is the real line and U Ă R may as well be connected, in which case it is an open

interval pa, bq for some real numbers a ă b. Then g : pa, bq Ñ B is a function of one variable. The

simplest situation is B “ R, so one function of one variable; if B “ Am, then g “ pg1, . . . , gmq is

m functions of one variable. It is easier in terms of notation to take the codomain B to be an affine

space over an arbitrary normed linear space W , and we need this generality later anyhow. Recall

(Example 5.25) that we can interpret g as describing a motion in B.

For functions of one variable we define the derivative to be the limit of difference quotients. We

foreshadowed the following in (2.33).

Definition 6.4. We say g is old style differentiable at t0 P pa, bq if

(6.5) lim
hÑ0

gpt0 ` hq ´ gpt0q

h

exists, in which case we notate the limit as g1pt0q PW .
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In (6.5) the numerator is the displacement vector between two points of B, and it is scalar multiplied

by 1{t.

Proposition 6.6. If g : pa, bq Ñ B is old style differentiable at t0 P pa, bq, then it is differentiable

at t0 and

(6.7) dgt0phq “ hg1pt0q, h P R.

Any linear function RÑW is determined by its value at 1, which is a vector in W . The statement

is that for dgt0 that vector is g1pt0q. We leave the reader to formulate and prove the converse to

Proposition 6.6.

Proof. Given ε ą 0 use the existence of (6.5) to choose δ ą 0 such that pt0 ´ δ, t0 ` δq Ă pa, bq and

if 0 ă |h| ă δ then

(6.8)

›

›

›

›

gpt0 ` hq ´ gpt0q

h
´ g1pt0q

›

›

›

›

ă ε.

Now multiply through by |h| to deduce the estimate in Definition 5.36. (If h “ 0 that estimate is

trivial.) �

Computation of the differential

We say a motion γ : pa, bq Ñ A has constant velocity if it is differentiable and γ1ptq is independent

of t. In that case γ extends to an affine map RÑ A. Given p, ξ there is a unique constant velocity

motion t ÞÑ p` tξ with initial position p and velocity ξ.

Now return to our standard data (5.23) and fix p P U and ξ P V . Our task is to compute

dfppξq P W , assuming f is differentiable at p. The idea is to use the “tea kettle principle”1 to

reduce to the derivative of a function of one variable, since in that case the differential is computed

by the limit of a difference quotient (6.5), and then we have all the techniques and formulas of

one-variable calculus available. Let

(6.9)
γ : p´r, rq ÝÑ U

t ÞÝÑ p` tξ

be the indicated constant velocity motion, where r ą 0 is chosen sufficiently small so that the image

lies in the open set U Ă A.

Theorem 6.10. If f is differentiable at p, then f ˝ γ is old style differentiable at 0 and

(6.11) dfppξq “ pf ˝ γq
1p0q.

Figure 11 depicts the situation in the theorem. In the next lecture we prove a generalization in

which γ need not be a constant velocity motion; it need only have initial position p and initial

velocity ξ.

1A mathematician is asked to move a tea kettle from the stove to the sink, which is readily accomplished. The
next day the same mathematician is asked to move the tea kettle from the counter to the sink. Solution: move the
tea kettle to the stove, thereby reducing the problem to one previously solved.
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Figure 11. Computing the differential

Proof. We may assume ξ ­“ 0. Since f is differentiable at p, given ε ą 0 choose δ ą 0 so that if

η P V satisfies }η} ă δ, then p` η P U and

(6.12) }fpp` ηq ´ fppq ´ dfppηq} ď ε
}η}

}ξ}
.

Then for 0 ă |t| ă δ{}ξ},

(6.13)

›

›

›

›

fpp` tξq ´ fppq

t
´ dfppξq

›

›

›

›

ď ε.

This proves the limit of the difference quotient exists and equals dfppξq. �

Definition 6.14. We call

(6.15)
d

dt

ˇ

ˇ

ˇ

t“0
fpp` tξq

the directional derivative of f at p in the direction ξ and denote it as ξfppq.

Thus if f is differentiable in U , then given ξ we can differentiate at every point in the direction ξ

(using the global parallelism of affine space) to obtain a function

(6.16) ξf : U Ñ R.

Remark 6.17. Theorem 6.10 asserts that if f is differentiable at p, then all directional derivatives

at p exist. In the next lecture we prove a converse statement—if directional derivatives exist then

f is differentiable—but with restrictions: we assume the domain is finite dimensional and that

directional derivatives exist in a neighborhood of p.

Now suppose the domain U is an open subset of the standard affine space A “ An for some n P

Zą0. Recall (2.24) the standard affine coordinate functions xi : An Ñ R. In this situation we

denote the standard basis elements of the vector space Rn of translations as

(6.18)
B

Bx1
, . . . ,

B

Bxn
.
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The notation is set up so that the directional derivative in the direction of a basis element

(6.19)
B

Bxj
f “

Bf

Bxj
: U Ñ R

is the partial derivative in the jth coordinate direction. If the codomain B “ Am is also a standard

finite dimensional affine space, then we write f “ pf1, . . . , fmq for functions f i : U Ñ R, and then

at each p P U obtain a matrix2

(6.20)

ˆ

Bf i

Bxj
ppq

˙

of partial derivatives. It is the matrix which represents the linear map dfp : Rn Ñ Rm in the

standard bases.

The operator d and explicit computation

To compute the differential explicitly we observe that the operator d obeys the usual rules

of differentiation, as follows from Theorem 6.10 and standard theorems of one-variable calculus.

Namely,

(1) d is linear: dpf1 ` f2q “ df1 ` df2
(2) d obeys the Leibniz rule: dpf1 ¨ f2q “ df1 ¨ f2 ` f1 ¨ df2

Notice that we do not exchange the order of the product, which is a good habit since for non-

commutative products, as of matrix-valued functions, the same formula applies and one cannot

permute factors. Then, after the application of d, we can collect terms and permute factors as

allowed. The other basic rule for computing d is the chain rule, which we prove in the next lecture,

though of course we already know it for functions of one variable. Using these rules we have a good

algorithmic technique and can compute without thinking.

As an example we take U “ A “ B “ A2, label the standard affine coordinates pr, θq in the

domain and px, yq in the codomain, and define a function f : A2
pr,θq Ñ A2

px,yq by the formulas

(6.21)
x “ r cos θ

y “ r sin θ

We could have written fpr, θq “ pr cos θ, r sin θq, but (6.21) is set up for easy computation without

thinking, and there are fewer symbols: ‘f ’ does not appear. So simply follow your nose and apply d:

(6.22)
dx “ dr cos θ ` r dpcos θq

“ cos θdr ´ r sin θ dθ

2The superscript j in the denominator is an overall subscript, so i is a superscript and j a subscript. As a matrix
i is the row number and j the column number.



Multivariable Analysis (Lecture 6) 5

The equality dpcos θq “ ´ sin θ dθ follows from the chain rule applied to the composition

(6.23) A2 θ
ÝÝÑ R cos

ÝÝÝÑ R,

but one gets used to computing without thinking through these justifications. (Do think through

them at the beginning!) In the end, applying d to (6.21), we obtain the equations

(6.24)
dx “ cos θdr ´ r sin θ dθ

dy “ sin θdr ` r cos θ dθ

Recall from Remark 5.43 that the differentials dr, dθ : A2 Ñ pR2q˚ of the affine functions r, θ : A2 Ñ

R are constant on A2, and they form a basis of pR2q˚. As in (6.18) the dual basis of R2 is

denoted B{Br, B{Bθ. Evaluate (6.24) on B{Br to see that the image of the vector B{Br under the

differential of f at pr, θq is the vector

(6.25) cos θ
B

Bx
` sin θ

B

By
,

and the image of the vector B{Bθ under the differential of f at pr, θq is the vector

(6.26) ´ r sin θ
B

Bx
` r cos θ

B

By
.

Remark 6.27. It is worth contemplating this example in some detail to extract some general lessons.

We might be tempted to take the image of the (constant) vector field B{Br under df to construct

a vector field on A2. But that is not possible. Observe that fp0, θq “ p0, 0q for all θ P R, so to

define the value of the supposed image vector field at p0, 0q in the codomain we have many choices

of which preimage point to use. And (6.25) shows that the vector we obtain is not independent of

the choice of θ. So there is no well-defined image vector field. If restrict the domain of f to r ą 0,

then each px, yq ­“ p0, 0q in the codomain has a collection of preimage points pr, θq in which any two

have the same value of r and values of θ differing by an integer multiple of 2π. Put differently, the

preimage is a Z-torsor (Definition 2.22) for the action n : pr, θq Ñ pr, θ ` 2πnq of Z on A2
pr,θq. Now

formula (6.25) shows that the image vector is independent of the choice of preimage, and so there

is a well-defined image vector field. We depict the image of B{Br in Figure 12.

Another observation is that the transpose of the differential, which for our general data is a map

df˚p : W ˚ Ñ V ˚ or df˚ : U Ñ HompW ˚, V ˚q, is what is globally defined always and is what one

computes directly. That is one interpretation of (6.24): the right hand side at each pr, θq is the

value of df˚
pr,θq on dx, dy, respectively.
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Figure 12. Image of the vector field B{Br
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