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a b s t r a c t

This tutorial introduces the reader to Gaussian process regression as an expressive tool to model, actively
explore and exploit unknown functions. Gaussian process regression is a powerful, non-parametric
Bayesian approach towards regression problems that can be utilized in exploration and exploitation
scenarios. This tutorial aims to provide an accessible introduction to these techniques. We will intro-
duce Gaussian processes which generate distributions over functions used for Bayesian non-parametric
regression, and demonstrate their use in applications and didactic examples including simple regression
problems, a demonstration of kernel-encoded prior assumptions and compositions, a pure exploration
scenario within an optimal design framework, and a bandit-like exploration–exploitation scenario where
the goal is to recommendmovies. Beyond that, we describe a situation modelling risk-averse exploration
in which an additional constraint (not to sample below a certain threshold) needs to be accounted
for. Lastly, we summarize recent psychological experiments utilizing Gaussian processes. Software and
literature pointers are also provided.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Whether we try to find a function that accurately describes
participants’ behaviour (Cavagnaro, Aranovich, McClure, Pitt, &
Myung, 2014), estimate parameters of psychologicalmodels (Wet-
zels, Vandekerckhove, Tuerlinckx, & Wagenmakers, 2010), try to
sequentially optimize the stimuli used in an experiment (Myung
& Pitt, 2009), ormodel how participants learn to interact with their
environment (Meder & Nelson, 2012), many problems require us
to assess unknown functions that map inputs to outputs. Often,
the shape of the underlying function is unknown, the function
might be hard to evaluate analytically, or other requirements
such as design costs might complicate the process of information
acquisition. In these situations, Gaussian process regression can
serve as a useful tool for performing inference both passively (for
example, describing a given data set as best as possible, allowing
one to also predict future data) as well as actively (for example,
learning while choosing input points to produce the highest pos-
sible outputs, cf Williams & Rasmussen, 2006). Gaussian process
regression is a non-parametric Bayesian approach (Gershman &
Blei, 2012) towards regression problems. It can capture a wide
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variety of relations between inputs and outputs by utilizing a
theoretically infinite number of parameters and letting the data
determine the level of complexity through the means of Bayesian
inference (Williams, 1998).

This tutorial will introduce Gaussian process regression as an
approach towards describing, and actively learning and optimizing
unknown functions. It is intended to be accessible to a general
readership and focuses on practical examples and high-level expla-
nations. It consists of six main parts: The first part will introduce
the mathematical underpinnings of Gaussian process regression.
The second part will show how different kernels can encode prior
assumptions about the underlying function. Next, we will show
how Gaussian processes can be used in problems of optimal ex-
perimental design, when the goal is pure exploration, i.e., to learn
a function as well as possible. The fourth part will describe how
Gaussian process-based Bayesian optimization (here defined as
an exploration–exploitation problem) works. In the fifth part, we
will talk about ways of utilizing Gaussian process exploration–
exploitation methods in situations with additional requirements
and show one example of ‘‘safe exploration’’, where the goal is to
avoid outputs below a certain threshold.Wewill conclude by sum-
marizing current research that treats Gaussian process regression
as a psychological model to assess human function learning.

As a tutorial like this can never be fully comprehensive, we
have tried to provide detailed references and software pointers
whenever possible.

https://doi.org/10.1016/j.jmp.2018.03.001
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Table 1
Overview of different Gaussian process methods (including their example applications) introduced in this tutorial.

Method Purpose Approach Example

Modelling Simple regression passive Mouse trajectories
Compositional modelling Find patterns within data passive Response time patterns
Exploration Learn function as quickly as possible active Learn simulated functions
Exploration–exploitation Optimize function active Movie recommendation
Safe exploration Optimize function while staying above a threshold active Cautious stimulus optimization

2. Gaussian processes — distributions over functions

2.1. Motivation

Let f denote an (unknown) function which maps inputs x to
outputs y: f : X → Y . Throughout the following examples, we
will use Gaussian process regression to accomplish either one of
three different goals:

By modelling a function f we mean mathematically represent-
ing the relation between inputs and outputs. An accurate model of
f allows us to predict the output for many possible input values.
In practice, this means collecting observations of both inputs and
outputs and on the basis of this generating accurate predictions
for newly observed points. As an example of this, we will use
Gaussian process regression to model mouse trajectories in a cat-
egorization experiment. Additionally, we will use compositional
Gaussian process regression to decompose temporal dependencies
in participants’ reaction times into interesting patterns.

By exploring a function we mean to actively choose the input
points for which to observe the outputs in order to accurately
model the function. In pure exploration problems, the only objec-
tive is to explore the underlying function well in order to learn
about it as quickly and accurately as possible. This set-up is closely
related to optimal experimental design scenarios as it equates to
adaptively selecting the input points based on what is already
known about the function and where knowledge can be improved.
In a simple simulation experiment, we will show how exploration
based on Gaussian process regression can recover underlying re-
sponse functions faster than other commonly used techniques.

In exploration–exploitation problems, the outcomes of chosen
inputs are accrued over time. The objective is to find inputs
that produce the highest outputs in order to maximize the total
reward accrued within a particular period of time. Exploration
solely serves the purpose of doing so most effectively. This set-
up is closely related to optimization problems as the goal is to
find the maximum of the function as efficiently as possible. It is
called exploration–exploitation as scenarios where the output of
the underlying function has to be optimized require us to both
sample uncertain areas in order to gain more knowledge about the
function (exploration) as well as sampling input points that are
likely to generate high outputs given the current knowledge of the
function (exploitation). As an example, wewill showhowGaussian
process-based exploration–exploitation quickly finds highly rated
items in a movie recommendation application. Moreover, we will
show how this method can be adapted to additional requirements
such as avoiding outputs below a given threshold.

Both exploration and exploration–exploitation tasks require
choosing useful inputs. Doing so requires two ingredients:

1. A model used to learn about the function f .
2. A method to select inputs based on the current knowledge

of f .

As a valid model of the underlying function f is crucial for all three
goals ofmodelling, exploration, and exploitation,wewill first focus
on Gaussian processes as a powerful and expressive method to
model unknown functions. We will focus on applying this tool
to exploration–exploitation scenarios afterwards. Table 1 provides
an overview of the different Gaussian process methods (and their
example applications) introduced in this tutorial.

Table 2
Observations for the regression example. Inputs xt and corresponding outputs yt
observed at 6 different times t = 1, . . . , 6.

t xt yt
1 0.9 0.1
2 3.8 1.2
3 5.2 2.1
4 6.1 1.1
5 7.5 1.5
6 9.6 1.2

2.2. Modelling functions: the weight space view

Let us start by considering a standard approach to model func-
tions: linear regression (here approached from a Bayesian view-
point). Imagine we have collected the observations shown in Ta-
ble 2 and that we want to predict the value of y for a new input
point x⋆ = 3. In linear regression (see Fig. 1), we assume that the
outputs are a linear function of the inputs with additional noise:

yt = f (xt ) + ϵi

= β0 + β1xt + ϵt ,

where the noise term ϵt follows a normal distribution

ϵt ∼ N (0, σ 2
ϵ )

with mean 0 and variance σ 2
ϵ . As this will be useful later, we can

also write this in matrix algebra as

yt = x⊤

t w + ϵi

defining the vectors

xt =

[
1
xt

]
, w =

[
β0
β1

]
.

To predict the output for x⋆, we need to estimate the weights from
the previous observations

Xt =

⎡⎢⎢⎣
1 0.9
1 3.8
...

...

1 9.6

⎤⎥⎥⎦ , yt =

⎡⎢⎢⎣
0.1
1.2
...

1.2

⎤⎥⎥⎦ .

Adopting a Bayesian framework, we do so through the posterior
distribution over the weights. If we use a Gaussian prior over the
weights p(w) = N (0,Σ) and theGaussian likelihood p(yt |Xt ,w) =

N (X⊤
t w, σ 2

ϵ I), then this posterior distribution is

p(w|yt ,Xt ) ∝ p(yt |Xt ,w)p(w)

= N
(

1
σ 2

ϵ

A−1
t Xtyt ,A−1

t

)
(1)

where At = Σ−1
+ σ−2

ϵ XtX⊤
t (see also Williams, 1998).

As inference is performed over the weights (i.e., we try to find
the best estimate for the β-weights given the data), this is also
sometimes referred to as ‘‘the weight space view of regression’’.
To predict the output y⋆ at a new test point x⋆, we can average out
the error term and focus on the expected value which is provided
by the function f , predicting f⋆ = y⋆ − ϵ⋆ = f (x⋆). In the predictive



E. Schulz et al. / Journal of Mathematical Psychology 85 (2018) 1–16 3

Fig. 1. Example of performing Bayesian linear and cubic regression. Grey lines indicate predictions for different sampled posterior weights. Black dots mark empirical
observations. Dark grey lines mark the current mean posterior predictions. The red triangle shows the prediction for a new data point x⋆ = 3.

distribution of f⋆, we average out our uncertainty regarding the
weights

p(f⋆|x⋆,Xt , yt ) =

∫
p(f⋆|x⋆,w)p(w|Xt , yt )dw

= N
(

1
σ 2

ϵ

x⊤

⋆ A
−1
t Xtyt , x⊤

⋆ A
−1
t x⋆

)
. (2)

You can also imagine generating this posterior predictive distri-
bution over f⋆ by first sampling weights from the posterior distri-
bution over weights (see Eq. (1)), and then using these sampled
weights to generate predictions for the new input points.

A good point prediction of y⋆ is the mean of this predictive
distribution. Comparing the mean in (2) to the mean in (1), we see
that we can simply multiply the posterior mean ofwwith the new
input x⋆, resulting in the prediction 0.56 + 3 × 0.12 = 0.92.

While linear regression is often chosen to model functions, it
assumes the function has indeed a linear shape. However, only few
relations in the real world are truly linear, and we need a way to
model non-linear dependencies as well. One possible adjustment
is to use a mapping of the inputs x onto a ‘‘feature space’’, i.e. by
transforming the inputs with a non-linear function φ(x), resulting
in an n-dimensional vector of numerical features representing the
transformed input. After transformation, we can again perform
linear Bayesian regression, but now on the transformed input. A
common mapping is to use polynomials, resulting in polynomial
regression. Take cubic regression as an example, which assumes a
function f (x) = β0 + β1x + β2x2 + β3x3. Deriving the posterior for
this model is similar to the linear regression described before, only
that the input matrix Xt is replaced by the mapping:

Φt = φ(Xt ) =

⎡⎢⎢⎣
1 0.9 0.81 0.729
1 3.8 14.44 54.872
...

...
...

...

1 9.6 92.16 884.736

⎤⎥⎥⎦ .

In our example –and again using the posteriormean of theweights
– thiswould result in the prediction f⋆ = −0.67+0.98×3−0.13×

32
+ 0.01 × 33

= 1.37.
Mapping input variables into a feature space offers considerably

more flexibility and allows one to model functions of any shape.
However, this flexibility is also a drawback. There are infinitely
many mappings possible and we have to choose one either a

priori or by model comparison within a set of possible mappings.
Especially if the problem is to explore and exploit a completely
unknown function, this approach will not be beneficial as there is
little guidance to which mapping we should try. Gaussian process
regression, to which we turn next, offers a principled solution to
this problem in which mappings are chosen implicitly, effectively
letting ‘‘the data decide’’ on the complexity of the function1 .

2.3. Modelling functions: the function space view

In the weight space view of the previous section, we focused on
distributions over weights. As each set of weights implies a par-
ticular function, a distribution over weights implies a distribution
over functions. In Gaussian process regression,we focus directly on
such distributions over functions.

A Gaussian process defines a distribution over functions such
that, if we pick any two or more points in a function (i.e., different
input–output pairs), observations of the outputs at these points
follow a joint (multivariate) Gaussian distribution. More formally,
a Gaussian process is defined as a collection of random variables,
any finite number of which have a joint (multivariate) Gaussian
distribution.

In Gaussian process regression, we assume the output y of a
function f at input x can be written as

y = f (x) + ϵ (3)

with ϵ ∼ N (0, σ 2
ϵ ). Note that this is similar to the assump-

tion made in linear regression, in that we assume an observation
consists of an independent ‘‘signal’’ term f (x) and ‘‘noise’’ term
ϵ. In Gaussian process regression, however, we assume that the
signal term is also a random variable which follows a particular
distribution. This distribution is subjective in the sense that the
distribution reflects our uncertainty regarding the function. The
uncertainty regarding f can be reduced by observing the output of
the function at different input points. The noise term ϵ reflects the
inherent randomness in the observations, which is always present
no matter how many observations we make. In Gaussian process

1 We will see later that it is in fact not only the data that determines the
complexity of the Gaussian process, but also the chosen kernel.
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regression,we assume the function f (x) is distributed as aGaussian
process:

f (x) ∼ GP
(
m(x), k(x, x′)

)
.

A Gaussian process GP is a distribution over functions and is
defined by a mean and a covariance function. The mean function
m(x) reflects the expected function value at input x:

m(x) = E[f (x)],

i.e. the average of all functions in the distribution evaluated at
input x. The priormean function is often set tom(x) = 0 in order to
avoid expensive posterior computations and only do inference via
the covariance function. Empirically, setting the prior to 0 is often
achieved by subtracting the (prior)mean fromall observations. The
covariance function k(x, x′) models the dependence between the
function values at different input points x and x′:

k(x, x′) = E
[
(f (x) − m(x))(f (x′) − m(x′))

]
.

The function k is commonly called the kernel of the Gaussian
process (Jäkel, Schölkopf, & Wichmann, 2007). The choice of an
appropriate kernel is based on assumptions such as smoothness
and likely patterns to be expected in the data. A sensible assump-
tion is usually that the correlation between two points decays with
the distance between the points. This means that closer points are
expected to behave more similarly than points which are further
away from each other. One very popular choice of a kernel fulfilling
this assumption is the radial basis function kernel, which is defined
as

k(x, x′) = σ 2
f exp

(
−

∥x − x′
∥
2

2λ2

)
.

The radial basis function provides an expressive kernel to model
smooth and stationary functions. The two hyper-parameters λ
(called the length-scale) and σ 2

f (the signal variance) can be varied
to increase or reduce the a priori correlation between points and
consequentially the variability of the resulting function.

Once a mean function and kernel are chosen, we can use the
Gaussian process to draw a priori function values, as well as poste-
rior function values conditional upon previous observations.

2.3.1. Sampling functions from a GP
Although Gaussian processes are continuous, sampling a func-

tion from a Gaussian process is generally done by computing the
function values of a selected set of input points. Theoretically, a
function can be represented as a vector of infinite size; however,
as we only have to make predictions for finitely many points in
practice, we can draw outputs for these points by using a mul-
tivariate normal distribution with a covariance matrix generated
by the kernel. Let X⋆ be a matrix with on each row a new input
point x⋆

i , i = 1, . . . , n. To sample a function, we first compute the
covariances between all inputs in X⋆ and collect these in an n × n
matrix:

K (X⋆,X⋆) =

⎡⎢⎢⎢⎢⎣
k(x⋆

1, x
⋆
1) k(x⋆

1, x
⋆
2) . . . k(x⋆

1, x
⋆
n)

k(x⋆
2, x

⋆
1) k(x⋆

2, x
⋆
2) . . . k(x⋆

2, x
⋆
n)

...
...

. . .
...

k(x⋆
n, x

⋆
1) k(x⋆

n, x
⋆
2) . . . k(x⋆

n, x
⋆
n)

⎤⎥⎥⎥⎥⎦ .

Choosing the usual prior mean function m(x) = 0 to simplify the
matrix algebra shown in Eq. (4), we can then sample values of f
at inputs X⋆ from the GP by sampling from a multivariate normal
distribution

f⋆ ∼ N (0, K (X⋆,X⋆))

where we use the notation f⋆ = [f (x⋆
1), . . . , f (x

⋆
n)]

⊤. Note that f⋆
is a sample of the function values. To sample observations y⋆, we

would have to add an additional and independent sample of the
noise term ϵ.

2.3.2. Posterior predictions from a GP
Suppose we have collected observations Dt = {Xt , yt} and

we want to make predictions for new inputs X⋆ by drawing f⋆
from the posterior distribution p(f |Dt ). By definition, previous
observations yt and function values f⋆ follow a joint (multivariate)
normal distribution. This distribution can be written as[
yt
f⋆

]
∼ N

(
0,
[
K (Xt ,Xt ) + σ 2

ϵ I K (Xt ,X⋆)
K (X⋆,Xt ) K (X⋆,X⋆)

])
where K (Xt ,Xt ) is the covariance matrix between all observed
points so far, K (X⋆,X⋆) is the covariancematrix between the newly
introduced points as described earlier, K (X⋆,Xt ) is the covariance
matrix between the new input points and the already observed
points and K (Xt ,X⋆) is the covariance matrix between the ob-
served points and the new input points. Moreover, I is an identity
matrix (with 1’s on the diagonal, and 0’s elsewhere) and σ 2

ϵ is the
assumed noise level of observations (i.e. the variance of ϵ). Using
standard results (see for example Rasmussen & Nickisch, 2010),
the conditional distribution p(f⋆|Xt , yt ,X⋆) is then a multivariate
normal distribution with mean

K (X⋆,Xt )
[
K (Xt ,Xt ) + σ 2

ϵ I
]−1yt

and covariance matrix

K (X⋆,X⋆) − K (X⋆,Xt )
[
K (Xt ,Xt ) + σ 2

ϵ I
]−1

K (Xt ,X⋆).

Note that this posterior is also a GP with mean function

mt (x) = K (x,Xt )
[
K (Xt ,Xt ) + σ 2

ϵ I
]−1yt (4)

and kernel

kt (x, x′) = k(x, x′) − K (x,Xt )
[
K (Xt ,Xt ) + σ 2

ϵ I
]−1

K (Xt , x′). (5)

This means that calculating the posterior mean and covariance of
a GP involves first calculating the 4 different covariance matrices
above and then combining them according to Eqs. (4)–(5). In order
to aid the understanding of the matrix algebra involved in these
calculations, the different matrices are represented visually in
Fig. 2.

To predict f⋆, we can simply use the mean function in (4), or
sample functions from the GP with this mean function and the
kernel in (5), as described in the previous section.

Fig. 3 shows an example of samples from a GP prior with a
radial basis function kernel (with λ = 0.5), and samples from
the posterior mean functions after the data in Table 2 has been
observed.

2.3.3. Switching back to the weight view
We can rewrite the mean function in (4) as

mt (x) =

t∑
i=1

wik(xi, x)

where each xi is a previously observed input value in Xt and the
weights are collected in the vector w =

[
K (Xt ,Xt ) + σ 2

ϵ I
]−1yt .

This equation shows that Gaussian process regression is equivalent
to a linear regression model using basis functions k to project the
inputs into a feature space. To make new predictions, every output
yt is weighted by how similar its associated input xt is to the to-be-
predicted point x by a similarity measure induced by the kernel.
This results in a simple weighted sum to make predictions for new
points.2 Therefore, a conceptually infinite parameter space boils

2 In fact, simple Bayesian linear regression can be recovered by using a linear
kernel k(x, x′) = σ 2

b +σ 2
f (x−c)(x′

−c), whichmeans that for 0-mean, k(x, x′) = x⊤x′ .
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Fig. 2. Visual representation of calculating the GP posterior mean and covariance given the example points from Table 2. Lighter colours indicate higher values. For the
posterior mean, the covariance between all observed points is multiplied by the inverse of the sum of the covariance of the observed points and the noise matrix, as well as
by the observations of the dependent variable. For the posterior covariance, the overall covariance between all possible input points is calculated and afterwards the product
of the covariance between the observed points and all possible input points, the inverse of the sum between the covariance of the observed points and the noise matrix, as
well as the covariance between all possible input points and the observed points, is subtracted. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 3. Samples from a Gaussian process prior and posterior. Grey lines indicate samples from the GP. Black dots mark empirical observations. The dark grey line marks the
current mean of the GP. The red triangle shows the prediction for the new input point.

down to a finite sum when making predictions.3 This sum only
depends on the chosen kernel k and the data Dt observed thus
far (Kac & Siegert, 1947). This is why Gaussian process regression
is referred to as a non-parametric technique. It is not the case
that this regression approach has no parameters; actually, it has
theoretically as many parameters w as there are observations.
However, making predictions involves only a finite sum over all
past observations. Details for generating a prediction for x⋆ = 3
given a radial basis function kernel with length scale λ = 1,

3 This is also sometimes referred to as the ‘‘kernel trick’’.

observation variance σ 2
ϵ = 0.01, and signal variance σ 2

f = 1 are
provided in Table 3.

2.4. Optimizing hyper-parameters

The kernel usually contains hyper-parameters such as the
length-scale, signal variance, and noise variance, which are un-
known and need to be inferred from the data. As the posterior
distribution over the hyper-parameters is non-trivial to obtain, full
Bayesian inference of the hyper-parameters is not frequently used
in practice. Instead, commonpractice is to obtain point estimates of
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Table 3
Example of generating a prediction using a Gaussian process with a radial basis
function kernel. wi =

[
K (X, X) + σ 2

ϵ I
]−1yi; x⋆ = 3;.

t xt yt wt k(xt , x⋆) wtk(xt , x⋆)

1 0.9 0.1 0.51 0.38 0.19
2 3.8 1.2 −3.88 0.87 −3.37
3 5.2 2.1 13.3 0.34 4.53
4 6.1 1.1 −12.55 0.12 −1.48
5 7.5 1.5 5.83 0.01 0.06
6 9.6 1.2 −0.34 0.00 0.00∑6

t=1wtk(xt , x⋆): −0.06

the hyper-parameters bymaximizing themarginal (log) likelihood.
This is similar to parameter estimation by maximum likelihood
and is also referred to as type-II maximum likelihood (ML-II,
cf Williams & Rasmussen, 2006). Given the data D = {X, y}
and hyper-parameters θ (e.g., θ = (λ, σ 2

f , σ 2
ϵ )), the log marginal

likelihood is

log p(y|X, θ) = −
1
2
y⊤K−1

y y −
1
2
log|Ky| −

n
2
log 2π (6)

where Ky = K (X,X) + σ 2
ϵ I is the covariance matrix of the noisy

output values y. The marginal log likelihood can be viewed as
a penalized fit measure, where the term −

1
2y

⊤K−1
y y measures

the data fit –that is how well the current kernel parametrization
explains the dependent variable– and −

1
2 log|Ky| is a complexity

penalization term. The final term −
n
2 log 2π is a normalization

constant. The marginal likelihood is normally maximized through
a gradient-ascent based optimization tool such as implemented in
Carl Rasmussen’s MATLAB function minimize.m.4 These routines
make use of the partial derivatives of (6) with respect to θ:

∂

∂θj
log p(y|X, θ) =

1
2
y⊤K−1

y y −
1
2
tr
(
K−1

y
∂Ky

∂θj

)
=

1
2
tr
(
(αα⊤

− K−1
y )

∂Ky

∂θj

)
with α = K−1

y y.
There are recent efforts to make hyper-parameter estimation

fully Bayesian, for example by using Stan (Flaxman et al., 2015),
which are promising to result in more robust estimates by addi-
tionally providing uncertainty estimates for the obtained parame-
ters.

3. Example: Modelling mouse trajectories

As an example of modelling functions, we consider mouse tra-
jectory data from Kieslich & Henniger (2017). Participants per-
formed a task in which they had to classify animals (for example, a
lion or a falcon) into different categories (for example, a mammal
or a bird) by using a computer mouse to move a cursor from a
start position (on the left of the screen) to the correct category
(on the right of the screen). Kieslich and Henniger tracked the
location of participants’ cursors at different time points, and these
discretized points can be summarized by functions describing
movement trajectories over the screen. Studying mouse trajectory
data can reveal additional real-time information about psycholog-
ical processes such as categorization and perception (see Freeman
& Ambady, 2010).

Gaussian process regression has been successfully applied to
such scenarios, where it is useful as the priors over different
functions can also be modelled hierarchically, thereby assess-
ing whether participants move the mouse differently for typical

4 A recent version of this function is available at http://learning.eng.cam.ac.uk/
carl/code/minimize.

(e.g., ‘‘monkey—mammal’’) or atypical (e.g., ‘‘penguin—bird’’) cate-
gory members, as described in more detail by Cox, Kachergis, and
Shiffrin (2012). Here, we simply want to test if Gaussian process
regression can be used as an appropriate smoothing technique for
such data. Smoothing mouse trajectory data is especially impor-
tant if one wants to make claims about the underlying shapes of
group-level trajectories, for example whether or not trajectories
look different for typical than for atypical exemplars. Additionally,
smoothing mouse trajectories by using Gaussian process regres-
sion comes with the additional benefit that possible posterior tra-
jectories can be sampled as the GP provides not only a descriptive
but also a generative model of the data.

We take participants’ raw trajectory data (their x–y-
coordinates) over time and assess how well Gaussian process
regression is able to predict left-out trajectory points. More specif-
ically, we use participants’ x coordinates as input, and the y coor-
dinates as output; for every trajectory, we randomly sample 80%
of the points and use them as a training set, and then predict the
left-out 20% trajectory points. In order to make meaningful claims
about GP’s usefulness, we compare its performance to two other
smoothing techniques. First, a polynomial regression with up to
5 degrees, where the order is chosen by Akaike’s ‘‘An Information
Criterion’’ (Akaike, 1974; Lee, 2004). Secondly, a cubic smoothing
spline with the degrees of freedom determined by cross validation
within the training set (Durrleman & Simon, 1989).

The left part of Fig. 4 shows the mean square error over 1000
runs including the attached standard error. We can see that Gaus-
sian process regression produces a lower out-of-sample predic-
tion error than either the polynomial regression or the spline
smoothing, thereby demonstrating that it is a useful tool formouse
trajectory modelling. The right part of Fig. 4 shows an example of
smooth lines generated by Gaussian process regression.

4. Encoding prior assumptions via the kernel

So farwehave only focused on the radial basis function kernel to
perform Gaussian process regression. However, other kernels are
possible and flexibility in choosing the kernel is one of the benefits
of Gaussian process regression. The kernel function k directly en-
codes prior assumptions about the underlying function such as its
smoothness and periodicity. Additionally, more complex kernels
can be created by combining simpler kernels through operations
such as addition or multiplication.

4.1. Encoding smoothness

The radial basis function kernel is a special case of a general
class of kernel functions called the Matérn kernel. The Matérn
covariance between two points with distance τ = |x − x′

| is

kν(τ ) = σ 2 2
1−ν

Γ (ν)

(
√
2ν

τ

ρ

)
Kν

(
√
2ν

τ

ρ

)
where Γ is the gamma function, Kv is the modified Bessel function
of the second kind, and ρ and ν are non-negative covariance
parameters. A GP with a Matérn covariance function has sample
paths that are ν − 1 times differentiable. When ν = p + 0.5, the
Matérn kernel can be written as a product of an exponential and a
polynomial of order p.

kp+0.5(τ ) = σ 2 exp

(
−

√
2ντ

ρ

)
Γ (p + 1)
(2p + 1)

×

p∑
i=0

(p + i)!
i!(p − i)!

(√
8ντ

ρ

)p−i

http://learning.eng.cam.ac.uk/carl/code/minimize
http://learning.eng.cam.ac.uk/carl/code/minimize
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Fig. 4. Modelling mouse trajectories. Left: Performance of Gaussian Process mouse trajectory smoothing as compared to Splines and polynomial regression. Error bars
represent the standard error of the mean. Right: Smoothing lines produced by Gaussian Process regression.

Here, p directly determines how quickly the covariance between
two points thins out in dependency of the distance between the
two points. If p = 0, then this leads to the Ornstein–Uhlenbeck
process kernel

k(τ) = σ 2
f exp

(
−

τ

λ

)
,

which encodes the prior assumption that the function is extremely
unsmooth (rough) and that observations do not provide a lot
of information about points that are anything but very close to
the points we have observed so far. In the limit as p → ∞,
the Matérn kernel becomes a radial basis function kernel. This
kernel expects very smooth functions for which observing one
point provides considerably more information than if we assume
very rough underlying functions. Fig. 5 shows prior and posterior
samples for both the Ornstein–Uhlenbeck process and the radial
basis function kernel. Notice how the prior samples are a lot more
‘‘rugged’’ for the former and very smooth for the later. We can also
see how encoding different prior smoothness assumptions leads
to different posterior samples after having observed the same set
of points (the points we used before). In particular, expecting very
rough functions a priori leads to posteriors that do not generalize
far beyond the encountered observations, whereas expecting very
smooth functions leads to posterior samples that generalize more
broadly beyond the encountered points.

In most real world applications, practitioners choose the radial
basis function kernel and then optimize its length-scale in order
to account for potential mismatches between prior smoothness
assumptions and the observed data. The main reason for this is
that the radial basis function kernel is easy to specify and also com-
putationally convenient as one only has to evaluate an exponenti-
ated distance instead of a product between a polynomial and an
exponent as is the case for the Matèrn kernel. Within exploration–
exploitation scenarios, another frequent choice is to use a Matérn
kernel with p = 5 as an intermediate solution to encode the
expectation of ‘‘smooth but not too smooth’’ functions. However,
instead of relying on suchdefault choices, itwill be usually better to
choose the level of smoothness by considering the expected prop-
erties of the underlying function, in order to avoid mismatched
priors (Schulz, Speekenbrink, Hernández-Lobato, Ghahramani, &
Gershman, 2016). For example, whereas mouse trajectories are

normally smooth and therefore might lend themselves well to
using a radial basis function kernel, other processes such as eye
movements might be less smooth and therefore modelled more
precisely with an Ornstein–Uhlenbeck kernel (Engbert & Kliegl,
2004).

4.2. Composing kernels

Another advantage of Gaussian process regression is that differ-
ent kernels can be combined, thereby creating a rich set of inter-
pretable and reusable building blocks (Duvenaud, Lloyd, Grosse,
Tenenbaum, & Ghahramani, 2013). For example, adding two ker-
nels together models the data as a superposition of independent
functions. Multiplying a kernel with a radial basis function kernel,
locally smooths the predictions of the first kernel.

Take the data set of atmospheric concentration of carbon
dioxide over a forty year horizon as shown in Fig. 6. We can
immediately see a pattern within this data, which is that the
CO2-concentration seems to increase over the years, that there
seems to be some periodicity by which at some times within
each year the CO2 emission is higher, and that this period may
not be perfectly replicated every year. Using a Gaussian process
regression framework, we can combine different kernels as build-
ing blocks in the attempt to explain these patterns. Fig. 6 shows
posterior mean predictions for different kernel combinations.

The first one shows a radial basis function alone, the second a
sum of a radial basis function kernel and a linear kernel, k(x, x′) =

(x−c)(x′
−c), and the third one the sumbetween a linear kernel and

the product between a radial basis function kernel and a periodic
kernel, k(x, x′) = θ2

1 exp
(
−

2sin2(π |x−x′|θ2)
λ2

)
. As the radial basis

function kernel tends to reverse back to themean over time, it does
not do a good job capturing the linear trend of the data. Therefore,
adding a linear kernel to the radial basis function kernel already
seems to improve predictions. Finally, multiplying the radial basis
function kernel with a periodic kernel to create a locally smoothed
periodic kernel, which is then combined with an increasing trend
by adding a linear kernel seems to predict the data best. This shows
that the kernel can also be used to encode structural assumptions
about the underlying function more explicitly, especially when
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Fig. 5. Samples from differently smooth Gaussian process priors and posteriors after having observed the same set of points. Grey lines indicate samples from the GP. Black
dots mark empirical observations. The dark grey line marks the current mean of the GP. The red triangle shows the prediction for the new data point.

Fig. 6. Example of composing kernels by combining simpler kernels in order to
explain a complex function. Data were mean-centred before fitting the Gaussian
process and predictions were transformed back afterwards. Grey lines show ob-
served CO2 emissions. Red lines show posterior predictions of Gaussian process
regressions with different kernels: RBF is a radial basis function kernel, RBF+Lin is a
kernel composed by adding a RBF and a linear kernel, RBF×Per + Lin is a kernel
composed by multiplying a radial basis and periodic kernel and adding a linear
kernel. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

one wants to cover more complex patterns than just interpolat-
ing smooth functions. Lloyd, Duvenaud, Grosse, Tenenbaum, and
Ghahramani (2014) show how compositional Gaussian process
regression can be used to create an ‘‘automatic statistician’’ which
generates a full descriptive report when provided with a time
series.

4.3. Example: Temporal dependencies in response time analysis

Compositional Gaussian process regression is most useful if the
underlying function is supposed to show some inherent structure.
One application for which structural patterns have been discussed
in the literature is the analysis of long distance dependencies of
response time patterns (Van Zandt & Townsend, 2014; Wagen-
makers, Farrell, & Ratcliff, 2004). In particular, previous investiga-
tion suggest that response times overmultiple trials are dependent
based on an auto-regressive term (i.e., previous response times can
predict the following) and a moving average term (i.e., the average
response time can shift over trials). Here, we use compositional
Gaussian Process regression in order to see what kind of patterns
it can extract from participants long distance response time trials.
For this, we analyse 4 participants of Wagenmakers et al. (2004)
original study investigating long distance dependencies.We do not
think that this analysis can supplant the more detailed approaches
described in the literature, but nonetheless think it is interesting
to probe such data sets for compositional patterns.

The results of a compositional Gaussian process regression
modelling response times over 500 trials are shown for each par-
ticipant individually in Fig. 7.

Interestingly, all of the participants are best described by the
same compositional components which are a Periodic × Linear +

RBF (see Fig. 7) which indicates a repeating patternwith increasing
amplitude and an overall smooth inter-dependency between trials.
This means that participants might be going through stages of
shorter and longer response trials while the biggest effect is that
trials are predicted by previous trials in a smooth way, similar to
what has been found in the literature before.

5. General set-up for exploration–exploitation problems

Having found a powerful way to model functions, we can now
focus on ways to cleverly explore and exploit unknown functions.
Within the Gaussian process approach both pure exploration and
exploration–exploitation can be treated in a similar manner. Both
useGaussian process regression tomodel the underlying function5

and estimate the utility of available queries (candidate input points

5 In this context, a Gaussian process regression is sometimes also referred to as
a ‘‘surrogate model’’ (see Gramacy & Lee, 2008).
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Fig. 7. Response time data from Wagenmakers et al. Grey line shows raw
log-response times. Coloured lines are created by the compositions extracted by
compositional Gaussian Process regression.

to sample next) through what is called an acquisition function. An
acquisition function V can be seen as measuring the usefulness
(or utility) of candidate input points in terms of allowing one to
learn the function as best as possible (exploration) or producing
the best possible output (exploitation). The approach then goes on
to choose as the next input the one that promises to produce the
highest utility. The way this works is shown in Algorithm 1.

Algorithm 1 General GP optimization algorithm
Require: Input space X ; acquisition function Vt ; GP-prior for f

with mean functionm(x) and kernel k(x, x′)
for t = 1, 2, . . . do

Choose x⋆
t = argmaxx∈X Vt (x)

Sample yt = f (x⋆
t ) + ϵt

end for

This algorithm starts out with a Gaussian process distribution
over functions, then assesses the usefulness of the available sam-
ples by utilizing the acquisition function and selects the point
that currently maximizes this function. The value of the utility
function Vt (x) thereby always depends on the current posterior
of the Gaussian process at time point t (it can change on every
trial). Afterwards, the new output at the chosen sample point is
observed, the Gaussian process is updated, and the process starts
anew. We will use a simple radial basis function kernel to model
the unknown functions for all of the remaining examples. This
choice is reasonable as in this setting, we need to choose an input
from a bounded range of possible input points. As we do not have
to extrapolate beyond the lower and upper bound of this range,
modelling the function mostly consists of interpolation.

6. Gaussian process active learning

The goal in a active learning setting is to learn an unknown
function as accurately and quickly as possible. In a psychological
setting this could mean for example to try and find out what a
participant-specific forgetting curve might look like and choosing

retention intervals adaptively in order to optimally learn about this
function on each subsequent trial of an experiment (e.g., Myung,
Cavagnaro, & Pitt, 2013).

6.1. Acquisition function

In Bayesian inference, learning about a function means that
the posterior distribution over possible functions becomes more
certain (e.g., less dispersed). A useful measure of the uncertainty
about a random variable Y with probability distribution p is the
differential entropy

H(Y ) = −

∫
p(y) log p(y) dy = E[log p(Y )].

The information that an input x provides about the random vari-
able,whichwe call the information gain, is the reduction in entropy
due to observing the input and corresponding output

I(Y ; x) = H(Y ) − H(Y |x)

= −

∫
p(y) log p(y) + p(y, x) log p(y, x) dy.

For example, if Y follows a d-variate Gaussian distribution with
mean µ and covariance Σ , then the entropy is

H(Y ) =
1
2
log(2πe)d|Σ |.

In our setting, we want to learn about the function, i.e. reduce
the entropy in the distribution p(f ). In Gaussian process regression,
we can write the information gain as

I(f ; y) =
1
2
log|I + σ−2K|, (7)

where K = [k(x, x′)].
Even though finding the overall information gain maximizer is

NP-hard, it can be approximated by an efficient greedy algorithm
based on Gaussian process regression. If F (A) = I(f ; yA) is the
information about the function f after having observed a set of
points A, then this algorithm picks xt = argmax F (At−1 ∪ {x}), that
is greedily querying the point whose predicted output is currently
most uncertain.
Here, uncertainty is measure by the variance of f at input x.

Vt (x) = kt−1(x, x′). (8)

This algorithm starts with a Gaussian process prior for f and at
each time t = 1, . . . , T , sequentially samples those input points
where the current posterior predictive distribution p(f |Dt−1) eval-
uated at x shows the highest variance, i.e. the highest predictive
uncertainty. This is a ‘‘greedy’’ algorithm in the sense that it focuses
onminimizing the current uncertainty, rather than looking further
ahead into the future. Even though this algorithm, sometimes also
called uncertainty sampling in statistics, looks naïve at first, it can
actually be shown to obtain at least a constant fraction of the max-
imum information gain reachable using at most T samples (see
Krause, Singh, & Guestrin, 2008 for more details):

F (AT ) ≥

(
1 −

1
e

)
max
|A|⊆T

F (A) (9)

where F (AT ) measures the information about f at time point t
within the set A and e is Euler’s number. This is based on two
properties of the acquisition function called submodularity and
monotonicity (Krause & Golovin, 2012). Intuitively, submodularity
here corresponds to a diminishing returns property of the acquisi-
tion function by which newly sampled points will add less and less
information about the underlying function. Monotonicity means
that information never hurts (it is always helpful to observe more
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Fig. 8. GP-uncertainty reduction example. The dark grey line marks the current mean of the GP. The dashed line shows the mean plus the standard deviation. The light grey
lines are samples from the GP. The red triangle marks the current candidate point with the highest attached uncertainty.

Table 4
Functions used in the Gaussian process exploration simulation.

Function Equation

linear f (x) = x
quadratic f (x) = x2 + x
cubic f (x) = x3 − x2 + x
sine f (x) = x × sin(x)

non-stationary f (x) =

{
sin(πx) + cos(πx), if x < 8
x, otherwise

points). Both properties are crucial to show that the greedy algo-
rithm can be successful. A simple example of the Gaussian process
uncertainty reduction sampler is shown in Fig. 8 below. We have
used the same set of observations as before and let the algorithm
select a newobservation by picking as the next observation the one
that currently has the highest predictive uncertainty attached.

6.2. Example: Learning unknown functions

In order to demonstrate how Gaussian process-based explo-
ration works, we will show how the algorithm learns a set of un-
known functions and compare it to other algorithms. The objective
is to learn an unknown function as quickly and accurately as possi-
ble. For simplicity, we will focus on a function f which takes a one-
dimensional and discretized input x ∈ [0, 0.01, 0.02, . . . , 10.00]
and to which it maps an output y.

As GP regression is considered to learnmany different functions
well, we will test the algorithm on a number of different functions
that are frequently encountered in psychology: a linear, quadratic,
cubic, logarithmic, sine, and a non-stationary6 function. The func-
tions are summarized in Table 4.

In addition to a GP regression model, we also used models that
explicitly assume the function has a particular parametric form.
These latter models learn the parameters (the weights) defining
the function directly and were defined as a Gaussian process with
a polynomial kernel with fixed degrees of freedom, i.e. performing
Bayesian linear regression. All of the models were set up to learn
the underlying function by picking as the next observation the one

6 A non-stationary function for our purpose is a function that changes its para-
metric form over different parts of the input space.

that currently has the highest uncertainty (standard deviation of
the predicted mean) from within the input space x = [0, 10].

We let eachmodel run 100 times over 40 trials for each underly-
ing function and averaged the mean squared error over the whole
discretized input space for each step. We tested two different ver-
sions of learning the underlying functions with a Gaussian process
regression, one which selected input points at random, i.e. uni-
formly from within the input space (GP-Random), and the uncer-
tainty reduction sampler described above, which learns actively
by choosing input points based on their predictive variance (GP-
Active). For allmodels, on each trial, the hyper-parameters (e.g., the
length-scale of the RBF kernel) were optimized by maximizing the
marginal log likelihood of the observations thus far. Results are
shown in Fig. 9.

It can be seen that the Gaussian process model learns all func-
tions efficiently. Even when the inputs are sampled at random,
the error always goes down for a Gaussian process regression.
However, the error generally goes down faster when inputs are
selected actively. The other models only occasionally learn better
than the GP models, when the assumed parametric form matches
the true underlying form (for example, using a linear function to
learn an underlying linear function). In some cases, using a cubic
Bayesian regression seems to result in overfitting which leads to
the overall error increasing again. In such cases, itmight sometimes
be better to select input points at random first. Overall, the results
indicate that Gaussian process regression is especially useful in
cases where the underlying function is not known.

7. Exploration–exploitation and Bayesian optimization

In an exploration–exploitation scenario the goal is to find the
input to a function that produces the maximum output as quickly
as possible.

x⋆
= argmax

x∈D
f (x) (10)

where x⋆ is the input that produces the highest output. One way
to measure the quality of this search process is to quantify regret.
Regret is the difference between the output of the currently chosen
argument and the best output possible

r(x) = f (x∗) − f (x). (11)



E. Schulz et al. / Journal of Mathematical Psychology 85 (2018) 1–16 11

Fig. 9. GP-uncertainty reduction example. GP-produced error always goes down. Linear model not always shown due to poor performance.

The cumulative regret is the sum of the regret over all trials, and
the goal in an exploration–exploitation scenario is to minimize the
cumulative regret:

RT =

T∑
t=1

r(xt ). (12)

Again, finding the strategy that chooses the inputs to minimize
the expected cumulative regret is NP-hard. That is, determining
the sequence of queries (i.e. input choices) that lead to the lowest
total regret is impossible for all but themost trivial cases. However,
there is again a greedy trick one can apply in this scenario, which
starts by reinterpreting the function maximization – or regret
minimization–problemas amulti-armedbandit task (cf Katehakis
& Veinott Jr., 1987). In a bandit task there are multiple options
(arms) with unknown probability of producing a reward and the
goal is to choose the best arm in order to maximize the overall
reward (the name stems from the one armed bandits that can
be found in casinos). In the current situation, we can view the
discretized input points as the arms of a multi-armed bandit, and
the output of the function at those points as the unknown rewards
that are associated to each arm. What distinguishes the current
situation from traditional bandit tasks is that the rewards of the
arms are correlated in dependency of the underlying covariance
kernel. Nevertheless, viewing the task as a multi-armed bandit
allows us to use strategies that have been devised for traditional
bandit tasks. One popular strategy is called the upper confidence
bound (UCB) algorithm, which relies on the following acquisition

function:

Vt (x) = mt−1(x) + ωt
√
st−1(x), (13)

where
√
st−1(x) is the predictive standard deviation at a point

x, and mt is the posterior mean function (4) and the posterior
variance is st = kt (x, x) (5). Finally, ωt is a free parameter that
determines the width of the confidence interval. For example,
setting ωt = 1.96, results in a 95% confidence interval for a single
value x given a Gaussian distribution.

The UCB algorithm chooses the arm for which the upper confi-
dence bound is currently the highest. The upper confidence bound
is determined by two factors: the current estimate of the mean
of f at a particular point (the higher the estimate, the higher the
bound) and the uncertainty attached to that estimate (the higher
the uncertainty, the higher the bound). Therefore, the UCB algo-
rithm trades off naturally between expectation and uncertainty. An
example of how the UCB algorithm works, using the same data as
before, is shown in Fig. 10.

Even though the greedy UCB strategy is naïve, it can be shown
that its regret is sublinear for suitable choices of ωt , again using
an argument that relies on the submodularity and monotonic-
ity of the overall information gain Srinivas, Krause, Kakade, and
Seeger (2009). Sublinear regret here just means that the regret
per round goes down in expectation, thereby guaranteeing that
the algorithm picks better points over time. These regret bounds
are known even for the agnostic case in which the underlying
function is unknown (but lies in the RKHS norm, see Srinivas
et al., 2009). However, trying to optimize an underlying function
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Fig. 10. GP-UCB example. The dark grey line marks the current mean of the GP. The dashed line marks the GP’s upper confidence bound. The light grey lines are samples
from the GP. The red triangle marks the point that currently produces the highest UCB.

with the wrong prior kernel can lead to a noticeable increase in
regret (Schulz, Speekenbrink et al., 2016).

7.1. GP-UCB example: Recommending movies

As an example of applying Gaussian Process upper confidence
bound sampling (GP-UCB) to exploration–exploitation problems,
wewill use it in amovie recommendation scenario, where the task
is to recommend the best movies possible to a user with unknown
preferences. This involves both learning how different features of
movies influence the liking of a movie and recommending the
movies thatwill be liked themost. For this application,we sampled
5141 movies from the IMDb database and recorded their features
such as the year they appeared, the budget that was used to make
them, their length, as well as how many people had evaluated the
movie on the platform, number of facebook likes of different actors
within themovie, genre of themovie, etc. As a proxy for howmuch
a person would enjoy the movie, we used the average IMDb score,
which is based on the ratings of registered users. As there were
27 features in total, we performed a Principal Component Analysis
extracting 8 components that together explained more than 90%
of the variance within the feature sets. These components were
then used as an input for the optimization routine. We used a GP-
UCB with a radial basis function kernel, set ω = 3 in the UCB
acquisition function to encourage exploration,7 initialized the GP
with 5 randomly sampled observations, and then let the algorithm
pick 20movies sequentially. This procedurewas repeated 50 times.
Even though recommender systems normally try to recommend
the best movie for a particular user, this approach can be seen as
recommending movies to an average user.

Results are shown in Fig. 11. It can be seen that the algorithm
quickly starts choosing movies that produce high scores which
results in the overallmean score to go up and the regret to go down
over time. Moreover, the variance of the picked movies also goes
downover time asGP-UCB almost exclusively samples highly rated
movies later on. Whereas the 10 most frequently sampled movies
within the first 5 samples seem to be sampled closely to random,

7 Running the algorithm with ω = 2 or setting ω dynamically leads to similar
results.

the most frequently sampled movies within the last 5 trials are
movies that are generally highly rated. In the end, the algorithm
has explored the input spacewell, learned the unknownpreference
function of the average user rather well, and returned movies that
are on average highly rated. When we let the GP-UCB algorithm
run over 200 trials, it frequently starts sampling the movie ‘‘The
Shawshank Redemption’’, which is the highest rated movie on the
internet movie database.

8. Safe exploration–exploitation

Sometimes an exploration–exploitation scenario may come
with additional requirements. For example, one such requirement
can be to avoid certain outputs. Consider excitatory stimulation
treatment, where the task is to stimulate the spinal chord in such a
way that certain movements are achieved (Desautels et al., 2015).
Here, it is important to stimulate the spinal chord such that optimal
recovery is obtained, but not toomuch as thismight lead to painful
reactions for the patients.

Again, Gaussian process optimization methods can be used to
learn the underlying function of what stimulation leads to which
strength of reaction. However, an additional requirement now is
to avoid particularly reactions that result in pain. An algorithm
that balances exploration and exploitation whilst avoiding cer-
tain outputs is called Safe Optimization (Sui, Gotovos, Burdick,
& Krause, 2015). This algorithm adapts the Upper Confidence
Bound approach described earlier to accommodate this additional
requirement. It works by trading-off two different goals: Firstly,
it keeps track of a set of safe options it considers to be above a
given safe threshold (points currently showing a high likelihood of
being above the threshold) and tries to expand this set as much
as it can. Secondly, it maintains a set of potential maximizers
(points likely to produce high outcomes) that, if used as an input,
would potentially achieve the highest output. It then chooses as
the next input a point within the intersection of these two sets,
that is a safe point that is either a maximizer or an expander that
has the highest predictive variance and potentially expands the
set of maximizers. This algorithm can also be adapted to separate
the objective function from a set of constraints as described by
Berkenkamp, Krause, and Schoellig (2016).
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Fig. 11. Recommending movies with a GP-UCB algorithm. The score (upper left, error bars represent the standard error of the mean) goes up over all runs and plateaus very
quickly at around the highest value possible (9.3). Vice versa, the overall regret (upper right) goes down over trials and quickly approaches 0. Within the first 5 samples,
movies aremostly picked at random and no clear pattern of movies seems to dominate (bottom right). However, within the last 5 trials GP-UCB preferentially samples highly
rated movies (bottom right).

More formally, a safe set of possible inputs that are likely to
provide outputs above the threshold is defined and then further
separated into a set of maximizers (inputs that promise to provide
the maximum output) and expanders (inputs that promise to ex-
pand the safe set). This algorithm uses the upper and lower bounds
of a confidence interval as described in Eq. (13) above, i.e. by either
setting ω to 3 or −3 for the upper and lower confidence bound
respectively. Using these bounds, it is possible to define the safe
set as all the input points in the set of available inputs whose lower
confidence bound is above the provided threshold. This is intuitive
as one would expect these points to be above the threshold in 0.1%
of the cases. The set of potentialmaximizers contains all safe inputs
that promise to obtain the maximum output value; these are the
safe inputs for which their upper confidence bound is above the
highest lower bound within the input set, i.e. points with an upper
bound better than the best lower bound. The set of expanders is
normally found by forward simulations, where it is assessed if the
safe set is –in expectation – expanded by sampling a given point.
For further technical details, we refer the interested reader to Sui
et al. (2015).

8.1. Example: Cautious stimulus optimization

As an illustration of the Safe Optimization algorithm, we apply
it to a situation in which the objective is to choose inputs x in
order to learn about the underlying function in a two-dimensional
space such that –eventually– points that produce high outputs in
y will be sampled whilst avoiding to choose inputs that produce
an output below 0. To simplify presentation, we sampled the
underlying function from a Gaussian process parametrized by a
radial basis function kernel. This can be seen as similar to the
case where one wants to present stimuli to participants, but make
sure that participants never react with an intensity below a certain
threshold.

Results are shown in Fig. 12. It can be seen that the Safe Op-
timization algorithm explores the function exceptionally well in
its attempt to expand the space of possible safe inputs. At the
same time, the algorithm does not at any time choose inputs from
the white area (producing output values below 0). This algorithm
could be applied to optimal design settings that require additional
constraints.
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Fig. 12. GP-Safe Optimization example showing samples after 1, 10, 50 and 100 samples.White represents areas below0. The black crosses showwhere the Safe Optimization
algorithm has sampled. Lighter areas represent higher scores. The algorithm efficiently explores other safe areas. It never samples points within the surrounding white area
as these are below the threshold.

9. Gaussian processes and cognition

We have seen that Gaussian process regression is a powerful
tool to model, explore, and exploit unknown functions. However,
Gaussian process regression might also be applied in a different,
more psychological context, namely as amodel of human cognition
in general and function learning in particular. Recently, Lucas,
Griffiths, Williams, and Kalish (2015) have proposed to use Gaus-
sian process regression as a rational model of function learning
that can explain various effects within the literature of human
function learning. Schulz, Tenenbaum, Reshef, Speekenbrink, and
Gershman (2015) used Gaussian processes to assess participants’
judgements of the predictability of functions in dependency of the
smoothness of the underlying kernel. As many different kernels
can be used to model function learning, Wilson, Dann, Lucas, and
Xing (2015) tried to infer backwards what the human kernel might
look like by using a non-parametric kernel approach to Gaussian
process regression. As explained above, kernels can also be added
together and multiplied to build more expressive kernels, which
led (Schulz, Tenenbaum, Duvenaud, Speekenbrink, & Gershman,
2016) to assess if participants’ functional inductive biases can
be described as made up of compositional building blocks. In a

slightly different context, Gershman, Malmaud, Tenenbaum, and
Gershman (2016) modelled participants’ utility of combinations of
different objects by a Gaussian process parametrized by a tree-like
kernel.

Within an exploration–exploitation context, Borji and Itti
(2013) and Wu, Schulz, Speekenbrink, Nelson, and Meder (2017)
showed that Gaussian process-based optimization can explain
how participants actively search for the best output when
trying to optimize one-dimensional functions. Schulz, Kon-
stantinidis, and Speekenbrink (2017) used Gaussian process
exploration–exploitation algorithms to model behaviour in tasks
that combine function learning and decision making (contextual
multi-armed bandit tasks). Lastly, Schulz, Huys, Bach, Speeken-
brink, and Krause (2016) applied the safe optimization algorithm
described here to scenarios in which participants had to cautiously
optimize functions while never sampling below a given threshold.

10. Discussion

This tutorial has introduced Gaussian process regression as a
general purpose technique tomodel, explore and exploit unknown
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Table 5
Gaussian process packages.

Name Algorithm Language Author

GPML GP Toolbox Matlab Rasmussen and Nickisch (2010)
SFO Optimization Matlab Krause (2010)
GPy GP Toolbox Python Sheffield ML group (since 2012)
GPflow TensorFlow GP library Python Matthews et al. (2017)
GPstuff GP Toolbox Matlab Vanhatalo et al. (2013)
tgp Tree GPs, GP regression R Gramacy et al. (2007)

functions. We have mainly focused on Gaussian process regres-
sion with a radial basis function kernel, but many other kernels
and kernel combinations are possible and –as we have indicated
above – many standard Bayesian regression approaches can be
re-parametrized to be equivalent to Gaussian process regression,
given specific assumptions about the kernel (Duvenaud et al.,
2013).

Of course a tutorial like this can never be fully comprehensive.
For example,many other acquisition functions than the ones intro-
duced here (uncertainty sampling and UCB) exist. For pure explo-
ration, another commonly used acquisition function attempts to
minimize the expected variance over the whole input space (Gra-
macy & Apley, 2014). This method tends to sample less on the
bounds of the input space, but can be hard to compute, especially if
the input space is large. There also exist many different acquisition
functions in the exploration–exploitation context, that are mostly
discussed under the umbrella term Bayesian optimization (de Fre-
itas, Smola, & Zoghi, 2012). Two other acquisition functions that
are frequently applied here are the probability of improvement and
the expected improvement (Močkus, 1975), which choose inputs
that have a high probability to produce a better output than the
input that is currently estimated to be best, or that produce an
output which is expected to surpass the expected outcome of
the input currently thought best. Thompson sampling (May, Ko-
rda, Lee, & Leslie, 2012; Thompson, 1933) is another acquisition
function, which chooses an action that maximizes the expected
outcomewith respect to a randomly drawn belief, and has recently
gained popularity because of its competitive empirical perfor-
mance (Chapelle & Li, 2011).

Another situation in which Gaussian processes are frequently
applied is called ‘‘global optimization’’, in which the goal is finding
the overall maximumof a function as quickly as possible, but with-
out worrying about the outputs that were produced in the search
process. Parameter estimation is an example of such a problem
and again different algorithms have been proposed, in particular
the proposal by Hennig and Schuler (2012) to maximize the
information gain about the location of the maximum. There is also
a growing community of researchers who apply Gaussian process-
based algorithms to return uncertainty estimates of traditional
computational methods such as optimization, quadrature, or solv-
ing differential equations under the umbrella term ‘‘probabilistic
numerics’’ (Hennig, Osborne, & Girolami, 2015).

Gaussian process regression does have some drawbacks. One
such drawback, as compared to traditional regression models, is
that parameter-based interpretations such as ‘‘if x increases by 1, y
increases by 2’’ are not directly possible. However, as different ker-
nels encode different assumptions about the underlying functions,
assessing which kernel describes the underlying function best can
be used as a basis to interpret the modelled function (Lloyd et
al., 2014). Choosing the appropriate kernel is a difficult problem.
General solutions to this are to constructmore complicated kernels
from a set of relatively simple base kernels (as shown above) and
to search the kernel space by proposing and checking new kernel
combinations (Duvenaud et al., 2013), or to define the kernel in
a non-parametric manner by using a non-parametric approach
towards estimating the kernel itself (Wilson & Adams, 2013).
Possibly the biggest drawback of Gaussian process regression is its

poor scaling. As inferring the posterior involves inverting the ma-
trix [K (Xt ,Xt )+σ 2

ϵ I], inference scales cubicallywith the number of
observations.8 Speeding up inference for Gaussian process regres-
sion therefore is a topic of ongoing research. Some methods that
have beenproposed are to sparsely approximate inputs (Lawrence,
Seeger, & Herbrich, 2003) or to bound the computational cost of
thematrix inversion by projecting into a pre-defined finite basis of
functions drawn from the eigen-spectrum of the kernel (Rahimi &
Recht, 2007).

We hope to have shown some interesting examples of Gaussian
process regression as a powerful tool for many applied situations,
specifically exploration–exploitation scenarios, and hope that this
tutorial will inspire more scientists to apply these methods in the
near future. Currently available software that can assist in this is
listed in Table 5.
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