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Multilevel modeling allows researchers to understand whether relationships between lower-level 
variables (e.g., individual job satisfaction and individual performance, firm capabilities and per-
formance) change as a function of higher-order moderator variables (e.g., leadership climate, 
market-based conditions). We describe how to estimate such cross-level interaction effects and 
distill the technical literature for a general readership of management researchers, including a 
description of the multilevel model building process and an illustration of analyses and results with 
a data set grounded in substantive theory. In addition, we provide 10 specific best-practice recom-
mendations regarding persistent and important challenges that researchers face before and after 
data collection to improve the accuracy of substantive conclusions involving cross-level interaction 
effects. Our recommendations provide guidance on how to define the cross-level interaction effect, 
compute statistical power and make research design decisions, test hypotheses with various types 
of moderator variables (e.g., continuous, categorical), rescale (i.e., center) predictors, graph the 
cross-level interaction effect, interpret interactions given the symmetrical nature of such effects, test 
multiple cross-level interaction hypotheses, test cross-level interactions involving more than two 
levels of nesting, compute effect-size estimates and interpret the practical importance of a cross-
level interaction effect, and report results regarding the multilevel model building process.

Keywords: multilevel modeling; moderation; cross-level; interaction

478188JOMXXX10.1177/0149206313478188JOURNAL Of MANAGEMENT / MONTH 
XXXXAguinis et al. / Cross-Level Interactions
2013

Acknowledgments: We thank Fred Oswald and three Journal of Management anonymous reviewers for highly 
constructive feedback that allowed us to improve our article substantially. Also, we thank the more than 2,000 
members of the listservs RMNET (Research Methods Division of the Academy of Management) and MULTILEVEL 
for providing us with questions and challenges that we addressed in our article.

Corresponding author: Herman Aguinis, Department of Management and Entrepreneurship, Kelley School of 
Business, Indiana University, 1309 E. 10th Street, Bloomington, IN 47405-1701, USA.

E-mail: haguinis@indiana.edu

1490



Aguinis et al. / Cross-Level Interactions   1491

478188JOMXXX10.1177/0149206313478188JOURNAL Of MANAGEMENT / MONTH 
XXXXAguinis et al. / Cross-Level Interactions
2013

Integrating micro and macro levels of analysis is one of the biggest challenges in the field 
of management (Aguinis, Boyd, Pierce, & Short, 2011). Specifically, there is an interest in 
integrating theories that explain and predict phenomena at the individual, team, and organi-
zational levels of analysis (Bliese, 2000; Kozlowski & Klein, 2000; Liden & Antonakis, 
2009; Mathieu & Chen, 2011; Molloy, Ployhart, & Wright, 2011). When conducting 
research that includes variables measured at different levels of analysis, researchers explic-
itly recognize that lower-level entities such as individuals are nested within higher-level 
collectives such as teams. Note that lower-level entities do not have to be individuals. for 
example, lower-level entities can be organizations and higher-level collectives can be indus-
tries, countries, or economic blocks (e.g., MERCOSUR, European Union). Regardless of the 
specific definition of entities and the collectives within which they reside, the multilevel 
nature of the resulting data requires that dependence among observations be considered both 
conceptually and analytically (Snijders & Bosker, 2012). Of particular interest in terms of 
integrating micro and macro domains is whether the nature of a lower-level relationship 
depends on a higher-level factor—what we label a cross-level interaction effect. Conceptually, 
there is a need to consider theoretical reasons for expecting a cross-level interaction effect, 
and, analytically, the resulting data should be examined using appropriate tools.

Dependence is not solely a function of whether observations are formally clustered into 
larger units. As noted by Kenny and Judd (1996: 138), “[O]bservations may be dependent, 
for instance, because they share some common feature, come from some common source, 
are affected by social interaction, or are arranged spatially or sequentially in time.” Thus, 
dependence of observations also occurs when shared experiences and context affect lower-
level units such as firms in the same industry facing similar market-based challenges, differ-
ent branches of a bank being influenced by the same strategic priorities established for a 
particular geographic region, or employees within a team being similarly affected by the 
ineffective communication style of their supervisor. In other words, a higher-level variable 
may covary with relevant lower-level outcome variables, and entities within collectives may 
be more similar regarding certain variables compared to entities across collectives (Bliese & 
Hanges, 2004). Consequently, dependence may occur “even if the variable of interest makes 
no reference to the group” (Bliese, 2000: 358). Covariation between higher-level variables 
and lower-level outcomes leads to gross errors of prediction if a researcher uses statistical 
approaches such as ordinary least squares (OLS) regression, which are not designed to 
model data structures that include dependence due to clustering of entities (Bliese & Hanges, 
2004; Hox, 2010; Snijders & Bosker, 2012).

Although moderated multiple regression (MMR) is arguably the most popular data-
analytic approach for estimating interaction effects in management and related fields 
(Aguinis, Beaty, Boik, & Pierce, 2005), it is highly impractical in the presence of nested data 
structures (Davison, Kwak, Seo, & Choi, 2002). Moreover, although MMR could be used to 
understand whether situations conceptualized as categorical groupings or conditions interact 
with lower-level predictors, MMR forces the situation to be conceptualized as categorical 
differences (or “treatments”). Alternatively, a multilevel analytical approach allows for an 
investigation of influences, both direct and interactive, of continuous higher-level variables 
on lower-level outcomes (Mathieu, Aguinis, Culpepper, & Chen, 2012). So, multilevel mod-
eling offers a practical as well as substantive advantage regarding the estimation of cross-
level interaction effects compared to MMR.
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Much of the literature on multilevel modeling is quite specialized, including analytic 
work that is mathematically sophisticated as well as Monte Carlo simulations involving 
lengthy and complex procedures and results. Due to the nature of this research, much of this 
work is not easily accessible to researchers with the usual methodological and statistical 
background obtained from doctoral-level training in management and related fields. 
Accordingly, our article distills the technical literature for a general readership and includes 
10 specific best-practice recommendations that researchers will be able to implement in their 
own quest for interaction effects involving variables at different levels of analysis. Our arti-
cle makes a dual contribution. first, it offers a “one-stop-shopping experience” regarding 
multilevel modeling analysis in general, and, second, it also offers specific recommenda-
tions regarding the test and interpretation of cross-level interactions in particular. Regarding 
our article’s first contribution, we rely on several excellent books available (e.g., Hox, 2010; 
Kreft & De Leeuw, 1998; Raudenbush & Bryk, 2002; Snijders & Bosker, 2012), but we 
provide quicker access to useful recommendations and tools, specific examples and action-
able pointers, and a less technical treatment that, taken together, make the material accessi-
ble to a wider audience of researchers in management and related fields.

Next, we provide a conceptual and technical description of the steps involved in estimat-
ing cross-level interaction effects. The technical aspects of our presentation are necessary 
because they provide the foundation for the best-practice recommendations we offer in the 
following section. Although some of the material in the next section involves formulae with 
which some readers may not be very familiar, we provide an explanation of each and also 
accompany them with illustrations based on a realistic research situation. Moreover, we also 
offer graphs to enhance the pedagogical value of the technical material.

Estimating Cross-Level Interaction Effects Using Multilevel Modeling

We created a data file including N = 630 individuals nested in J = 105 teams patterned 
after a study by Chen, Kirkman, Kanfer, Allen, and Rosen (2007) to provide a realistic sce-
nario grounded in substantive theory. Specifically, Chen et al. investigated whether the qual-
ity of leader–member exchange (LMX) (X) predicts individual empowerment (Y) given data 
collected across teams that differ regarding leadership climate (W), and all three variables 
were measured using 7-point Likert-type scales. Overall, Chen et al.’s theoretical model 
predicted that employees who report higher LMX (i.e., a better relationship with their leader) 
will feel more empowered (i.e., they have the autonomy and capability to perform meaning-
ful work that can affect their organization). In addition, Chen et al.’s model included the 
hypothesis that the team-level variable leadership climate (i.e., ambient leadership behaviors 
directed at the team as a whole) would also affect individual-level empowerment positively. 
Moreover, Chen et al. hypothesized that the relationship between LMX and empowerment 
would be moderated by leadership climate such that the relationship would be stronger for 
teams with a better leadership climate. The data file and the annotated R code used to con-
duct all the analyses described in our article are available at http://mypage.iu.edu/~haguinis. 
The annotated R code is also included in Appendix A. The availability of the data file 
and R code will allow readers to replicate the illustrative analyses and results we describe 
throughout our article.
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In the context of multilevel modeling, it is possible to test hypotheses regarding three 
types of relationships or effects (note that for ease of presentation we use the term effect in 
the remainder of our article although in some studies causal relationships may not be clearly 
established due to the use of nonexperimental designs):

1. Lower-level direct effects. Does a lower-level predictor X (i.e., Level 1 or L1 predictor) have an 
effect on a lower-level outcome variable Y (i.e., L1 outcome)? Specifically regarding our illus-
tration, there is an interest in testing whether LMX, as perceived by subordinates, predicts 
individual empowerment. Note that LMX scores are collected for each individual worker (i.e., 
there is no aggregation of such scores for the purpose of testing the presence of a lower-level 
direct effect).

2. Cross-level direct effects. Does a higher-level predictor W (i.e., Level 2 or L2 predictor) have an 
effect on an L1 outcome variable Y? Specifically, we would like to assess whether L2 variable 
leadership climate predicts L1 outcome individual empowerment.

3. Cross-level interaction effects. Does the nature or strength of the relationship between two 
lower-level variables (e.g., L1 predictor X and L1 outcome Y) change as a function of a higher-
level variable W? Referring back to our substantive illustration, we are interested in testing the 
hypothesis that the relationship between LMX and individual empowerment may vary as a 
function of (i.e., is moderated by) the degree of leadership climate such that the relationship will 
be stronger for teams with more positive leadership climate and weaker for teams with less 
positive leadership climate.

Although our article’s specific goal is to discuss issues about cross-level interaction 
effects, as noted above, researchers using multilevel modeling are usually interested in 
assessing other effects as well. Overall, there is an interest in understanding factors that may 
explain three key sources of variance that parallel the three types of effects we just described: 
(1) What are the L1 factors that explain within-group variance (i.e., lower-level direct 
effects)? (2) What are the L2 factors that explain across-group variance in intercepts (i.e., 
cross-level direct effects)? and (3) What are the group-level factors that explain variance in 
across-group slopes (i.e., cross-level interaction effects)? These same three questions are the 
focus of multilevel analyses regardless of the nature of the constructs and the particular 
measurement approach adopted to measure them (e.g., multiple-indicator measures, multi-
dimensional constructs; Preacher, Zyphur, & Zhang, 2010).

To enhance the clarity of our presentation, we offer a visual representation of these three 
sources of variance—we will provide a more detailed analytic treatment after the graphical 
descriptions. The dashed lines in figure 1’s top and bottom panels show that we can estimate 
an OLS regression equation for the relationship between LMX and empowerment within 
each team. Thus, each team has its own regression line defined by its own intercept and 
slope. figure 1’s panels also show a solid line, which is a pooled regression line between 
LMX scores and empowerment across all teams. This pooled regression line is defined by 
its own intercept (i.e., g00; “gamma sub zero zero”) and slope (i.e., g10; “gamma sub one 
zero”). figure 1’s Panel (a) also shows that regression lines differ across teams in terms of 
both intercepts and slopes. As shown in figure 1’s Panel (a), the variance of intercepts across 
teams is denoted by t00 (“tau sub zero zero”) and the variance of slopes across teams is 
denoted by t11 (“tau sub one one”). In contrast, illustrating a different yet possible research 
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Figure 1
Illustration of Variance of Intercepts (t00) and Slopes (t11) Across Teams

scenario, figure 1’s Panel (b) shows that teams differ regarding slopes (i.e., t11 > 0), but not 
regarding intercepts (i.e., t00 = 0).

figure 2 includes a graphic depiction of individual data points within two teams only: 
Team 1 in Panel (a) and Team 2 in Panel (b). figure 2’s Panel (c) shows data for all indi-
viduals from both of these teams combined. Similar to figure 1, figure 2’s Panel (a) shows 
the OLS regression line for Team 1 (dashed line) as well as the pooled regression line for all 
teams (solid line). Also, Panel (a) shows the L1 residual or error scores ri1 (i.e., differences 
between observed and predicted score for empowerment based on LMX scores within Team 1). 
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Figure 2
Illustration of Within-Group Variance (σ2), and Level 2 

Intercept Variance (t00) and Slope Variance (t11) Across Teams

Note that the variance of these residual scores within teams is symbolized by σ2 in figure 2’s 
Panel (c). figure 2’s Panel (a) also shows the difference between the Team 1 intercept and 
the pooled (across all teams) intercept g00 (i.e., L2 residual), which is symbolized by u01. In 
addition, Panel (a) shows the difference between the Team 1 slope and the pooled (across all 
teams) slope g10 (i.e., L2 residual), which is symbolized by u11. That is u11 is nonzero when 
Team 1’s prediction equation has a different slope than the pooled line. Similarly, Panel 
(b) also shows the OLS regression line for this particular team, the pooled regression line 
(across all teams), and the L1 and L2 residuals.

Panel (c) in figure 2 shows individuals from Team 1 and Team 2 combined. for clarity, 
this panel includes only Team 1 and Team 2 from the many teams in figure 1. This panel 
shows the three sources of variance that we are interested in understanding using multilevel 
modeling: variance of the L1 residuals rij (i.e., σ2, within-group variance), variance of the L2 
residuals u0j (i.e.,t00, intercept variance across teams), and variance of the L2 residuals u1j 
(i.e.,t11, slope variance across teams).

Analytically, figure 2’s Panel (c) can be described by the following L1 model (Raudenbush 
& Bryk, 2002; Singer, 1998):
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(1)

Equation 1 takes on the familiar OLS regression equation form because it includes a 
predictor and a criterion residing at the same level of analysis (i.e., L1 in this case). 
Specifically, Yij is the predicted empowerment score for the ith person in team j, b0j is the 
intercept parameter for team j, b1j is the slope parameter for team j, Xij is the individual LMX 
for the ith person in team j and is rescaled (i.e., “centered”) by the team average     . As 
discussed later in our article, this type of rescaling, called “group mean-centering” or 
“within-cluster centering,” is one of two approaches available. The term rij is the L1 residual 
term (i.e., randomly distributed error), reflecting individual-level differences in empower-
ment around the predicted empowerment score for employees within each team. As men-
tioned earlier, our interest does not focus on the residual scores per se, but in the variance of 
rij, denoted by σ2, which represents the amount of within-group variance for the criterion 
scores (i.e., individual empowerment). Note that σ2 is analogous to MSwithin in analysis of 
variance (ANOVA), and, as discussed earlier, it is illustrated graphically in figure 2’s Panel (c).

The interpretation of the parameter b0j depends on the scaling of the predictor Xij. To 
establish a meaningful interpretation of this parameter, Equation 1 rescales the predictor by 
each team’s mean. Consequently, the mean of             is zero within teams and b0j is inter-
preted as the predicted level of empowerment for a typical (i.e., mean) LMX of members 
of a given team. Note that instead of rescaling by the group mean, we could rescale Xij by 
any other value for LMX, say 4.5 on a 5-point scale. So, if we rescale by 4.5, b0j would be 
interpreted as the predicted level of empowerment for individuals in a given team with a 
team average LMX score of 4.5. finally, based on Equation 1, the parameter b1j is inter-
preted as the predicted increase in individual empowerment associated with a 1-unit increase 
in LMX for individuals within the jth team.

The multilevel model building process usually involves a sequence including four steps. 
The first step involves what is labeled an unconditional means, one-way random-effects 
ANOVA, or null model. The second step involves what is called a random intercept and fixed 
slope model. The third step involves the random intercept and slope model. finally, the 
fourth step involves the cross-level interaction model. Although our best-practice recom-
mendations are particularly relevant to the third and fourth steps, next we provide a descrip-
tion of each of the steps involved in the model building process.

Step 1: Null Model

The null model begins with specifying the following relationship,

Null model (Level 1):                                                      (2)

which is identical to Equation 1 but excludes the L1 predictor. Due to the nested nature of 
the data, it is possible that both the intercept and slope in Equation 1 vary across teams. 
Specifically, it is likely that teams differ in average empowerment (i.e., b0j differs across 
the J teams) and individual team members’ LMX levels may relate differently to empowerment 

Y X X rij j j ij j ij= + −( ) +β β0 1

X j

Y rij j ij= +β0 ,

X Xij j-
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across teams (i.e., b1j differs across the J teams). This situation is illustrated in Panel (a) of 
figure 1. However, in this first step in the model building process, we omit predictors and 
only allow intercepts to vary across teams. formally stated,

                                            Null model (Level 2):                       , (3)

In Equation 3, the team intercepts are shown to be a function of the grand mean (i.e., 
averaged across all teams) intercept g00 and a residual term u0j that describes how team inter-
cepts deviate from the grand mean intercept. Substituting Equation 3 into Equation 2 leads 
to the following combined model:

                                     Null model (Combined): (4)

Referring back to our substantive illustration, the combined null model in Equation 4 
shows that individual empowerment is a function of the grand mean LMX (i.e., g00) across-
group differences in individual empowerment scores (i.e., L2 residuals u0j), and within-
group differences in individual empowerment scores (i.e., L1 residuals rij). As noted earlier, 
the variance of u0j, denoted by t00, quantifies the degree of heterogeneity in intercepts across 
teams and the variance of  rij, denoted by σ2, quantifies the within-group variance. Thus, in 
comparison to an ANOVA framework, σ2 is analogous to MSwithin and t00 is analogous to 
MSbetween. In terms of our illustration, t00 quantifies the variation in mean empowerment 
scores across teams. A key difference between ANOVA and multilevel modeling, however, 
is that multilevel modeling conceptualizes the teams as a random sample from a larger 
population of teams (i.e., a random factor), whereas ANOVA conceptualizes the teams as 
being qualitatively different (i.e., a fixed factor). furthermore, as we will reiterate later in 
our article, the label fixed effects is reserved for multilevel modeling estimates that are con-
stant across L2 units, such as g00, and the label random effects is used to denote the model 
estimates that vary across L2 units (e.g., u0j).

As part of the first step in the model building process, we compute the intraclass correla-
tion (ICC), which quantifies the proportion of the total variation in individual empowerment 
accounted for by team differences. An alternative interpretation is that the ICC is the 
expected correlation between empowerment scores for two individuals who are in the same team. 
ICC =                      and it ranges from 0 to 1. A value near zero suggests that a model 
including L1 variables only is appropriate, and, hence, there may be no need to use multi-
level modeling. Instead, a simpler OLS regression approach may be more parsimonious. On 
the other hand, ICC > 0, even as small as .10 (Kahn, 2011), suggests that there may be a L2 
variable W (e.g., leadership climate) that explains heterogeneity of empowerment scores 
across teams (i.e., b0j). Moreover, OLS standard errors and significance tests may be com-
promised in the presence of even smaller ICCs. Based on a review of articles published in 
Journal of Applied Psychology between 2000 and 2010, Mathieu et al. (2012) found that 
ICC values reported in multilevel studies usually range from .15 to .30. Similarly, based on 
the educational literature, Hedges and Hedberg (2007) concluded that ICC values typically 
range from .10 and .25, and, based on the school psychology literature, Peugh (2010) 
reported a range of ICCs from .05 to .20. These results may be indicative that higher-level 

β γ0 00 0j ju= +

Y u rij j ij= + +γ00 0

τ τ σ00 00
2/ [ ]+
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influences are more common than typically assumed, or even considered, in management 
research (Liden & Antonakis, 2009).

We conducted analyses pertaining to the first step in the model building process using our 
illustrative data file. Results included in Table 1 indicate that ICC = .117, which means that 
differences across teams account for about 11.7% of the variability in individuals’ empower-
ment levels. As shown in Table 1, the across-team variance in individual empowerment is t00 = 
.095 and the within-team variance is .714. In short, results provide evidence for a nested data 
structure that requires multilevel modeling rather than a single-level data analytic approach. 
Table 1 also shows additional results pertaining to the combined null model. We will describe 
the interpretation of all of the results included in Table 1 in subsequent sections of our article.

Step 2: Random Intercept and Fixed Slope Model

As a second step in the model building process, we may be interested in understanding 
the factors that explain σ2 and t00. This second step involves creating what is labeled a ran-
dom intercept and fixed slope model (RIfSM), which begins with the following equation,

Table 1
Results of Multilevel Modeling Analysis With Illustrative Data

Level and Variable

Model

Null (Step 1)

Random 
Intercept and 
fixed Slope 

(Step 2)

Random 
Intercept and 

Random Slope 
(Step 3)

Cross-Level 
Interaction 

(Step 4)

Level 1  
 Intercept (g00) 5.720** (0.045) 5.720** (0.038) 5.720** (0.038) 5.720** (0.038)
 LMX (g10) 0.279** (0.023) 0.270** (0.028) 0.269** (0.027)
Level 2  
 Leadership climate (g01) 0.351** (0.055) 0.356** (0.055) 0.351** (0.055)
Cross-level interaction  
 LMX leadership climate (g11) 0.104** (0.037)
Variance components  
 Within-team (L1) variance (σ2) 0.714 0.563 0.514 0.516
 Intercept (L2) variance (τ00) 0.095 0.060 0.068 0.068
 Slope (L2) variance (τ11) 0.025 0.019
 Intercept-slope (L2) covariance (τ01) 0.004 -0.004
Additional information  
ICC 0.117  
–2 log likelihood (fIML) 1,637 1,478** 1,469* 1,462**
Number of estimated parameters 3 5 7 8
Pseudo R2 0 .23 .23 .24

Note: fIML = full information maximum likelihood estimation; L1 = Level 1; L2 = Level 2. L1 N = 630 and L2 
sample size = 105. Values in parentheses are standard errors; t-statistics were computed as the ratio of each regres-
sion coefficient divided by its standard error. The data and annotated R code used for producing the results reported 
in this table are available at http://mypage.iu.edu/~haguinis.
*p < .05. **p < .01.
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RIfSM (Level 1):                                             ,                        (5)

which is identical to Equation 1. The next step in the process of building the RIfSM involves 
adding the L2 equations as follows (Enders & Tofighi, 2007; Hofmann & Gavin, 1998),1

                                RIfSM (Level 2):                                              ,                                  (6)

where the team intercepts are shown to be a function of the grand mean (i.e., averaged across 
all teams) intercept g00 and a residual term u0j that describes how teams deviate from the 
grand mean, after controlling for team leadership. Also, g01 is interpreted as the amount of 
change in a team’s average empowerment score associated with a 1-unit increase in leader-
ship climate. In this model the slopes are not allowed to vary across teams and, hence,

RIfSM (Level 2):               ,                                        (7)

which leads to the following combined model:

RIfSM (Combined):                                                                                      (8)

Note that Equation 8 is called a RIfSM because it allows intercepts (i.e., mean scores) to 
vary across teams by the inclusion of u0j. However, as shown in Equation 7, slopes are not 
allowed to vary across teams. Rather, as shown in Equation 8, one fixed value for the slope 
of empowerment on LMX scores (i.e., g10) is used for all individuals regardless of team 
membership. In other words, the relationship between LMX and empowerment is assumed 
to be identical across all teams (similar to the assumption in ANCOVA; Culpepper & 
Aguinis, 2011). In sum, Equation 8 predicts individual empowerment scores based on a 
common intercept, g00, individual LMX scores (L1 predictor) reflected by the coefficient g10, 
and leadership climate (L2 predictor) reflected by the coefficient g01. In other words, g01 

assesses the possible presence of a cross-level direct effect (i.e., effect of leadership climate 
on individual empowerment) controlling for individual-level LMX scores and, therefore, 
explains at least part of t00 identified in the first step of the model building process.

In Equation 8, g00 represents mean empowerment for a team with a leadership climate 
score at the mean   , g01 is the amount of change in a team’s average empowerment score 
associated with a 1-unit increase in leadership climate, and u0j is a residual term (i.e., errors) 
in predicting teams’ average empowerment after controlling for L2 variable leadership cli-
mate. Note that Wj is rescaled by the average team leadership climate (   ) to interpret g00 in 
reference to    . As was the case in Equation 1, we can rescale Wj using other values, which 
would lead to a different interpretation for g00. In our particular situation, g01 is the predicted 
slope for regressing empowerment on leadership climate for teams with a mean leadership 
climate score of     .

Once again, we used our illustrative data file and the annotated R code to produce results 
pertaining to this second step in the model building process. Note that the data file includes 
the raw (i.e., original) as well as rescaled (i.e., centered) scores. As described earlier, we 

Y X X rij j j ij j ij= + − +( )β β0 1

β γ γ0 00 01 0j j jW uW= + −( ) +

β γ1 10j =

Y X X W W u rij ij j j j ij= + −( ) + −( ) + +γ γ γ00 10 01 0

W

W
W

W
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used rescaled scores for our analyses. As shown in Table 1, results indicate that mean 
empowerment for a team with a leadership climate score at the mean    is g00 = 5.72. Table 1 
also shows that a 1-unit increase in leadership climate is associated with a g01 = .351 increase 
in a team’s average empowerment score. Also, Table 1 shows that the predicted slope 
regressing empowerment on LMX is g10 = .279. In short, results provide evidence in support 
of a direct single-level effect (i.e., individual LMX on individual empowerment) as well as 
a direct cross-level effect (i.e., team-level leadership climate on individual-level empowerment).

Step 3: Random Intercept and Random Slope Model

As a third step in the model building process, we are interested in understanding whether 
the third key source of variance, the variance of slopes across groups (i.e., t11), is different 
from zero. In other words, we would like to answer the question of whether the relationship 
between LMX scores and empowerment varies across teams. There is no point in examining 
which particular moderators may explain slope variance across teams if such variance is 
nonexistent. To do so, we build a random intercept and random slope model (RIRSM) that 
adds a random slope component so that b1j is allowed to vary across teams.

first, as usual, we begin the model building process with the L1 equation (identical to 
Equation 1):

RIRSM (Level 1):                                             .                       (9)

Then, we allow both intercepts and slopes to vary across teams as follows:

RIRSM (Level 2):                                                                       (10)

RIRSM (Level 2):                                                                       (11)

In Equation 11, the slope of empowerment on LMX scores is a function of the grand 
mean (i.e., estimated across all teams) slope g10 and a residual term u1j that describes how 
team slopes differ from the pooled slope across teams. Substituting Equations 10 and 11 into 
Equation 9 yields the combined RIRSM as follows:

RIRSM (Combined): (12)

A comparison of the combined RIfSM (Equation 8) with the RIRSM (Equation 12) 
seems to suggest that the only difference is that in the latter we allow the slope of empower-
ment on LMX to vary across teams by the inclusion of u1j and its variance t11. However, 
there is one additional parameter estimate that is not explicit in the model: the covariance 
between intercepts and slopes, which is denoted by t01. Thus, the RIRSM includes two 
parameters that are not part of the RIfSM: t11 and t01. Referring back to our substantive 
illustration, a positive value of t01 means that teams with steeper slopes (i.e., stronger rela-
tionship) of empowerment on LMX tend to have higher team empowerment levels.

W

Y X X rij j j ij j ij= + −( ) +β β0 1

β γ γ0 00 01 0j j jW uW= + −( ) +
β γ1 10 1j ju= + .

Y W W X X u u X X rij j ij j j j ij j ij= + −( ) + −( ) + + −( ) +γ γ γ00 01 10 0 1
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Based on Equation 12, we can examine the standard error estimate, which is standard 
output in most software packages such as HLM and SAS, to answer the question of whether 
the variance of the residuals u1j (i.e., t11) is nonzero (Bliese, 2002). Specifically, the output 
file in some software packages includes a confidence interval, computed based on the stand-
ard error, for the estimate of t11. If the lower bound does not include zero, then we conclude 
that the slope of empowerment on LMX scores varies across teams. However, in spite of its 
availability in many software packages, creating a confidence interval around t11 can lead to 
incorrect conclusions. There are two reasons for this. first, standard errors for the variance 
components of the model, such as t11, are usually inaccurate. As concluded by Maas and 
Hox (2004: 437) based on an extensive simulation study, “The estimates of the variances are 
unbiased, but the standard errors are not always accurate.” Second, a confidence interval is 
created by adding and subtracting the same value, such as 1.96 for a 95% interval, and, 
therefore, the assumption is that the parameter estimate is normally distributed, which is 
“doubtful for estimated variances; for example, because these are necessarily nonnegative” 
(Snijders & Bosker, 2012: 100). Accordingly, a better alternative for creating a confidence 
interval around t11 is to implement a nonparametric residual bootstrap procedure as described 
by Carpenter, Goldstein, and Rasbash (2003). Our recommendation regarding the use of this 
type of confidence interval is also supported by theoretical evidence regarding its accuracy 
as described by field and Welsh (2007).

A second option in terms of understanding whether t11 is different from zero is to com-
pute a −2 log likelihood ratio between Equation 12 (i.e., model with a random slope compo-
nent) and Equation 8 (i.e., model without a random slope component; Bliese, 2002). A 
log-likelihood value quantifies the probability that the model being estimated produced the 
sample data (Peugh, 2010). Multiplying the log likelihood value by −2 yields a value labeled 
“deviance,” which can be used to compare the relative fit of two competing models. Note 
that, when full information maximum likelihood (fIML) is used, the deviance value shows 
how well the variance-covariance estimates (i.e., t00, t01, and t11) and the regression coeffi-
cients fit the sample data. However, when restricted maximum likelihood (REML) is used, 
the deviance value shows how well only the variance estimates fit the data and the regression 
coefficients play no role in this computation (Peugh, 2010). So, either fIML or REML can 
be used to assess whether t11 is nonzero, but fIML should be used if there is an interest in 
comparing models regarding coefficients in addition to variance components.

Referring back to our particular illustration, we implemented the nonparametric bootstrap 
procedure using our data and including 1,500 replications (i.e., 1,500 samples from our data 
with replacement). The annotated R code included in Appendix A incorporates the relevant 
command lines. Results indicated that the 95% bootstrap confidence interval for t11 excludes 
zero and ranges from .004 to .046. Also, results shown in Table 1 indicate that, based on 
fIML, the model at Step 3 fits the data better than the model at Step 2, also suggesting a 
nonzero t11 (i.e., deviance of 1,477.6−1,469.5 = 8.1; p < .05). for the sake of completeness, 
Table 1 also includes deviance statistics comparing the model at Step 2 with the one at Step 
1 (i.e., deviance of 1,637−1,478 = 159; p < .01), and the model at Step 4 compared to the 
model at Step 3 (i.e., deviance of 1,478−1,462 = 16; p < .01). We also computed deviance 
statistics using REML. As expected, values become smaller (i.e., better fit) as we progress 
through the models shown in Table 1 and are as follows: 1,641, 1,492, 1,483, and 1,481. 
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Also as expected, the deviance statistics are overall larger (i.e., worse fit) compared to fIML 
because REML estimates compute fit based on differences in variance components only.

Note that each of the aforementioned tests regarding the hypothesis that t11 is zero relies 
on null hypothesis significance testing. Thus, like all such tests of significance, statistical 
power is an important consideration. In other words, to be informative, such tests need to 
have sufficient levels of power so as to be able to detect an existing nonzero value of t11 in 
the population. Tests regarding t11 rely on degrees of freedom determined by the number of 
L2 units (e.g., teams), which is usually much smaller than a study’s total sample size regard-
ing lower-level units (e.g., individual employees). for example, Dalton, Aguinis, Dalton, 
Bosco, and Pierce’s (2012) Study 1 included a review of articles published in Journal of 
Applied Psychology, Personnel Psychology, and Academy of Management Journal and 
reported median L1 sample sizes of 198, 204, and 161, respectively. In contrast, a review by 
Mathieu et al. (2012) including 79 multilevel investigations published in the Journal of 
Applied Psychology between 2000 and 2010 indicated that the median L2 sample size was 
only 51. Given that most same-level research relying on degrees of freedom based on total 
sample size is notoriously underpowered (Aguinis et al., 2005; Maxwell, 2004) and that 
multilevel modeling is usually conducted with L2 sample sizes that are much smaller, we 
anticipate that many tests regarding t11 may also be underpowered. In other words, it is pos-
sible that in many situations there may be an incorrect conclusion that t11 is not different 
from zero due to insufficient statistical power. As noted by an anonymous reviewer, the 
default position should be that if t11 is not found to be different from zero, then one should 
not proceed with tests for possible specific cross-level interaction effects. However, to bal-
ance Type I and Type II error considerations, our recommendation is to proceed with the 
cross-level interaction test even when the null hypothesis of no slope variance is retained 
when there is a strong theory-based rationale for a particular hypothesis. Also, the fact that 
the null hypothesis that t11 is zero was not rejected should be acknowledged explicitly so that 
future research can attempt to replicate the results obtained.

Using a typical c2 critical value with two degrees of freedom (one for t11 and one for t01) 
to compare the models is overly conservative (i.e., likely to lead to a Type II error rate—not 
reject a false null hypothesis of no difference between the models). Accordingly, as a third 
option in terms of understanding whether t11 is different from zero, Stram and Lee (1994) 
argued that a more appropriate distribution for such tests is a mixture of two chi-square 
distributions. Subsequently, Crainiceanu and Ruppert (2004) developed a method that simu-
lates the deviance for the model with only a random intercept when testing whether the 
variance of slopes is significant and Scheipl, Greven, and Kuechenhoff (2008) demonstrated 
that the procedure is superior to competing tests (e.g., F-tests and tests that use critical values 
from a mixture of chi-square distributions) in terms of controlling Type I error rates and has 
similar statistical power. The procedure involves evaluating whether the variance compo-
nent differs from zero by calculating the proportion of simulated deviances that exceed the 
sample deviance (i.e., the p value). Appendix A includes an R function in the RLRsim pack-
age for testing the statistical significance of variance components (Scheipl et al., 2008). 
Using our illustrative data, results indicated that the p value is .0013 and the bootstrap resa-
mpling results indicated that the 95% confidence interval for t11 excludes zero and ranges 
from .004 to .046.
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In sum, results based on our illustrative data file suggest that the relationship between 
LMX and individual empowerment varies depending on team membership. More precisely, 
results summarized in Table 1 show that the variance in slopes across groups is t11 = .025, and 
results based on the bootstrap confidence interval, the −2 log-likelihood, and the Crainiceanu 
and Ruppert (2004) test suggest that this value is unlikely to be zero in the population. In our 
example, results provide evidence in support of team-level differences in the nature of the 
relationship between LMX and individual empowerment which suggest the need to under-
stand what may be the variable(s) that explain such variability. We address this issue next.

Step 4: Cross-Level Interaction Model

The fourth and final step in the model building process involves understanding whether a 
particular L2 variable is able to explain at least part of the variance in slopes across teams. 
Referring back to our substantive illustration, we would like to know whether leadership cli-
mate moderates the relationship between LMX and empowerment across teams. To do so, we 
begin building the cross-level interaction model with Equation 13 (identical to Equation 1):

Cross-Level Interaction Model (Level 1):                                                           (13)

Then, we allow both intercepts and slopes to vary across teams as follows:

Cross-Level Interaction Model (Level 2):                                                           (14)

Cross-Level Interaction Model (Level 2):                                                           (15)

The difference between Equation 15 (cross-level interaction model) and Equation 11 
(RIRSM) is that Equation 15 includes the L2 predictor hypothesized to play a moderating 
role. We are no longer solely interested in whether there is variance in slopes across teams—
that was the purpose of the previous step. Now, we are interested in understanding whether 
such variance can be explained by a particular L2 predictor (i.e., leadership climate).

In Equation 15, the moderating effect of leadership climate on the relationship between 
LMX and empowerment is captured by g11. Equivalently, g11 is the cross-level interaction of 
LMX and leadership climate on empowerment. That is, g11 represents the change in the slope 
of empowerment on LMX scores across teams when leadership climate increases by 1 point. 
for example, a result that g11 is positive indicates that LMX is more strongly related to 
empowerment in teams with more positive leadership climate compared to teams with less 
positive leadership climate.

Substituting the L2 Equations 14 and 15 into the L1 Equation 13 leads to a combined 
model as follows:

Cross-Level Interaction Model (Combined):

(16)

Y X X rij j j ij j ij= + −( ) +β β0 1

β γ γ0 00 01 0j j jW uW= + −( ) +
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Equation 16 resembles the more familiar MMR model, which also includes the constitu-
ent linear terms. However, in contrast to the MMR model, Equation 16 includes the terms 
involving u0j and u1j, which vary across L2 units, and, as mentioned earlier, this is why they 
are labeled random effects. On the other hand, g00, g01, g10, and g11 are constant across L2 
units, so they are labeled fixed effects.

Results using our illustrative data provide evidence in support of the cross-level interac-
tion effect we tested. Table 1 shows that the slope of individual empowerment on LMX is 
expected to equal g10 = 0.269 for teams with an average leadership climate. However, the 
relationship between individual LMX and individual empowerment becomes stronger, by  
g11 = 0.104 units, as a team’s leadership climate increases by one unit.

finally, an issue to consider is the possibility that as a result of implementing Step 2, 
results may suggest a nonsignificant L1 relationship between X and Y (i.e., g10 = 0). In such 
instances, researchers may be hesitant to proceed with Step 3 and investigate possible cross-
level interactions. However, there could be variability in group slopes although g10 = 0. 
Accordingly, if there is a theory-based rationale for examining cross-level interaction 
effects, we recommend proceeding with Step 3 regardless of the statistical significance of 
the direct effect for X. Moreover, standard practice when estimating interactions is to include 
lower-level effects, regardless of statistical significance, and this is a correct practice for the 
following reason. Consider the L2 equation for slopes for Step 3 (see Equation 11 above). 
In Equation 11, a nonsignificant relationship between X and Y implies that b1j = u1j (i.e., on 
average the relationship is zero, but groups deviate from zero by u1j). Now, consider 
Equation 15, where the cross-level interaction effect is estimated by including        . In 
Equation 15, g11 is the cross-level interaction effect and g10 is the relationship between X and 
Y for groups with            . It is possible that g10 = 0 for Model 3 in Equation 11, but g10 ≠ 0 
after Wj is included in the equation and centered by the mean or some other value. Consequently, 
leaving X out of Step 4 will force g10 = 0 at the point where            . Accordingly, we recom-
mend including X in the model to account for the fact that the relationship between X and Y 
may not be zero for the value at which Wj is centered.

Multilevel Modeling Assumptions

Although not specific to tests of cross-level interaction effects, there are several assump-
tions that underlie multilevel modeling in general, which parallel the usual OLS regression 
assumptions. Violating these assumptions can have consequences in terms of the validity of 
the inferences made from the results. Specifically, violating assumptions can lead to model 
misspecification—a misrepresentation of relationships among variables. Thus, it is impor-
tant to assess compliance with these assumptions by using methods described by Raudenbush 
and Bryk (2002) and Snijders and Bosker (2012).

first, function forms are assumed to be correctly specified at each level (e.g., a linear, 
quadratic, or higher-order polynomial). for example, if there is a pattern of curvilinearity 
such that very high levels of LMX scores are associated with a decrease in empowerment 
scores (i.e., inverted U-shaped form), not including quadratic terms in the equation would 
preclude the identification of such nonlinear relationship and, likely, result in interventions 
with detrimental consequences for individuals and organizations (Pierce & Aguinis, 2013). 

W Wj -
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Second, there are several assumptions regarding residuals: (a) L1 residuals (i.e., rij) are 
assumed to be normally distributed and have a mean of zero, (b) L2 residuals (i.e., u0j and 
u1j) are assumed to conform to a multivariate normal distribution and also have means of 
zero, (c) L1 residual variance is assumed to be constant (i.e., homoscedasticity) both within 
and between L2 units, and (d) L1 residuals and L2 residuals are assumed to be uncorrelated. 
In addition to the overall concern about model misspecification, violating residual-based 
assumptions can lead to invalid hypothesis tests because standard errors may be grossly mis-
specified (Snijders & Bosker, 2012); so, there are alternatives that allow researchers to relax 
some assumptions regarding L1 and L2 residuals and prevent such errors (e.g., Culpepper, 
2010). finally, violating the assumption that L1 residuals and L2 residuals are uncorrelated 
implies the possibility of crossover relationships. for example, individuals could be influ-
enced by more than one leader (i.e., crossover leadership influences), resulting in a “cross-
classified” situation. Such crossover influences may be more common than presently 
acknowledged (Han, 2005; Mathieu & Chen, 2011). Accordingly, Han (2005) proposed 
methods for considering crossover influences and modeling them. The presence of such 
crossover influences may not only affect the accuracy of tests of cross-level interaction 
hypotheses, but lead to overall model misspecification in general.

Best-Practice Recommendations

Although there is increasing awareness regarding the need for multilevel modeling in 
management research, there are important questions about what researchers should do prior 
and after data collection to improve the accuracy of substantive conclusions regarding cross-
level interaction effects. We compiled a list of the most persistent and challenging questions 
by conducting a systematic review using the entire archives of two listservs: RMNET 
(Research Methods Division of the Academy of Management) and MULTILEVEL (list 
specifically devoted to multilevel analysis). At the time of this writing, RMNET includes 
approximately 1,000 members and MULTILEVEL includes more than 1,400 members. The 
goal of our review was to gather all the questions posted on these listservs that are directly 
or indirectly related to the estimation and interpretation of cross-level interaction effects in 
multilevel modeling. In other words, our review provided us with information on the most 
frequent and challenging issues faced by researchers in their attempts to test hypotheses 
about cross-level interaction effects.

We conducted our search using the terms cross-level, interaction, multilevel, moderator, 
moderate, and moderating. Next, we discuss issues for which there is sufficient evidence to 
support a particular best-practice recommendation. We offer recommendations for actions 
researchers can take prior to data collection and recommendations researchers can imple-
ment after data have been collected. Table 2 offers a list of these recommendations, which 
we describe in more detail next.

Pre–Data Collection Recommendations

Issue 1: What is the operational definition of a cross-level interaction effect? A frequently 
asked question regarding cross-level interaction effects refers to the very definition of this effect. 
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Table 2
Summary of Best-Practice Recommendations for Estimating  
Cross-Level Interaction Effects Using Multilevel Modeling

Pre–Data Collection Recommendations
•  Recommendation 1: Defining the Cross-Level Interaction Effect. Clearly and unambiguously identify 

and define the cross-level interaction effect. In the combined Level 1 and Level 2 equation, the 
cross-level interaction effect is the coefficient associated with the product term between the Level 1 
and Level 2 predictors.

•  Recommendation 2: Calculating Statistical Power. Design the multilevel study so that it will have 
sufficient statistical power to detect an existing cross-level interaction effect. Use the R code 
provided by Mathieu et al. (2012) and available at http://mypage.iu.edu/~haguinis to understand 
trade-offs in research design and measurement choices and allocate resources accordingly. 
Compute power after data collection if the cross-level interaction effect is not found. If power was 
sufficient, then one can have confidence that the effect does not exist in the population; if power 
was insufficient, then report the power value obtained and report that results are inconclusive 
because of the possibility that the population effect exists but was not detected in the sample.

•  Recommendation 3: Testing Hypotheses About Different Types of Moderator Variables. Plan to test 
hypotheses about cross-level interaction effects involving Level 2 continuous or categorical 
variables, but be aware of resulting differences in how to interpret the observed effect.

Post–Data Collection Recommendations
•  Recommendation 4: Rescaling (i.e., Centering) Predictor Variables. In most cases, center the Level 1 

predictor by team mean scores (i.e., group-mean centering) to improve the interpretation of the 
cross-level interaction effect. However, theory-based considerations should dictate the chosen 
approach to rescaling.

•  Recommendation 5: Graphing the Cross-Level Interaction. Graph the cross-level interaction effect 
to understand its nature and direction. However, do not use the graph to draw conclusions about 
the size or importance of the effect.

•  Recommendation 6: Interpreting Cross-Level Interaction Effects. Interpret the Level 1 predictor or 
the Level 2 predictor as the moderator based on substantive and conceptual interests because the 
cross-level interaction effect is symmetrical in nature. In most cases, the Level 2 (or higher-level) 
predictor will serve the role of the moderator variable.

•  Recommendation 7: Estimating Multiple Cross-Level Interaction Effects. Include all cross-level 
interaction effects as part of the same model when testing more than one cross-level interaction 
effect. However, strong theory-based considerations as well as other situations (e.g., models may 
not converge, they may crash, or run out of degrees of freedom) may justify conducting a separate 
test with each interaction effect.

•  Recommendation 8: Testing Cross-Level Interactions Involving Three or More Levels of Analysis. 
Conduct tests of three-way and higher-order cross-level interaction effects following the same 
procedures as those for two-way interactions, but be mindful that adequate sample sizes will be 
required for each of the levels involved.

•  Recommendation 9: Assessing Practical Significance. Compute the size of the cross-level 
interaction effect based on its predictive power as well as its explanatory power and place resulting 
effect sizes within context to understand their importance for theory and practice.

•  Recommendation 10: Reporting Results. Report complete results regarding each of the steps of the 
multilevel model building process including all coefficients and their standard errors as well as 
variance components—see Table 1 for a template.

first, there is a question of whether t11 (i.e., the variance of slopes across groups) is the cross-
level interaction effect. Second, there is a question of whether g11 in the hierarchical linear model 
in Equation 15 can truly be called an interaction effect given that it is associated with a term that 
does not involve a product between two variables, but with one variable only (i.e., W).
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first, let’s consider t11. As mentioned earlier, a nonzero t11 means that the slope of the L1 
criterion on the L1 predictor varies across higher-level units (e.g., teams). Referring back to 
our substantive example, a nonzero t11 means that the effect of LMX on empowerment is not 
homogeneous across teams. However, this heterogeneity may be due to one or more poten-
tial L2 moderators. In our particular example, we tested the potential moderating effect of 
leadership climate. However, we could have considered additional moderators, instead or in 
addition to, leadership climate. Thus, similar to the assessment of moderating effects in the 
context of meta-analysis, the presence of heterogeneity is an indication that the search for 
particular moderators is warranted, but this is not the interaction effect per se (Aguinis, 
Gottfredson, & Wright, 2011).

Now, let’s consider the meaning of g11 in the context of two extreme situations. first, 
assume that g11 in Equation 15 is zero. This would mean that L2 variable W does not explain 
variance in the slope of the L1 Y outcome on the L1 X predictor across teams. Thus, for every 
unit increase in the higher-order variable (W), the relationship (slope) between L1 X and L1 
Y remains unchanged. Now, assume that g11 in Equation 15 is a very large and positive num-
ber, which implies that a small change in the value of W is associated with a large change in 
the slope of L1 outcome Y on L1 predictor X across teams. Thus, a nonzero g11 means that 
the L1 effect of X on Y is distributed across L2 units—and this is the reason why Raudenbush 
and Bryk (2002) used the term distributive effect to refer to the cross-level interaction effect.

The fact that g11 represents the cross-level interaction effect, also labeled the moderating 
effect of W on the X-Y relationship, is perhaps seen more easily by referring to the combined 
Equation 16. In Equation 16, which has a familiar form that closely matches that of MMR, 
g11 is associated with the product term between rescaled L1 predictor X and rescaled L2 
predictor W. In contrast, in the L2 Equation 15, g11 is a coefficient predicting slope values, 
which is a model not as familiar to management researchers compared to a model that pre-
dicts criterion Y scores.

In sum, the coefficient g11 is interpreted as the cross-level interaction effect regardless of 
whether it is obtained by using Equation 15 (i.e., predicting b1j based on               ) or Equation 16
(i.e., predicting gij based on                                ). The variance of slopes across groups t11 
is not the cross-level interaction effect because, although it provides information on the 
extent to which the slope of the L1 criterion on the L1 predictor varies across higher-level 
units (e.g., teams), it does not provide information on the particular variable(s) that are asso-
ciated with this variability. The specific interpretation regarding the meaning of the cross-
level interaction effect g11 will depend on the approach adopted regarding rescaling, which 
is in turn dictated by theory-based considerations. We describe rescaling in more detail in 
our discussion of Issue 4.

Issue 2: What is the statistical power to detect an existing cross-level interaction effect?. 
A second pre–data collection question that has appeared frequently refers to research design 
and statistical power. Specifically, researchers are interested in understanding how large a 
sample size should be to detect existing cross-level interaction effects. Statistical power is a 
complex issue in the context of cross-level interaction effects and tools such as Optimal 
Design (Raudenbush, 1997; Spybrook, Raudenbush, Congdon, & Martinez, 2009) and Power 

W Wj -
( )( )X X W Wij j j- -



1508   Journal of Management / September 2013

IN Two-level designs (PINT; Bosker, Snijders, & Guldemond, 2003) do not provide power 
estimates for cross-level interaction tests. In fact, Snijders (2005: 1572) noted that “for the 
more general cases, where there are several correlated explanatory variables, some of them 
having random slopes, such clear formulae are not available.” Accordingly, Scherbaum and 
ferreter (2009: 363) concluded that “estimates of statistical power of cross-level interactions 
are much more complex than the computations for simple main effects or variance compo-
nents . . . and there is little guidance that can be provided in terms of simple formulas.”

Because of a lack of analytic solutions, Mathieu et al. (2012) conducted a Monte Carlo 
simulation to understand the impact of various factors that affect the power of cross-level 
interaction tests. Results of their study revealed that the power to detect cross-level interac-
tions is determined primarily by the magnitude of the cross-level interaction effect, the 
variance of L1 slopes across L2 units, and by L1 and L2 sample sizes. Researchers usually 
do not have control over the size of the cross-level interaction effect or the variance of L1 
slopes across L2 units. On the other hand, although there may be practical and resources-
related constraints, researchers may be able to increase L1 and L2 sample sizes to increase 
power. As concluded by Raudenbush and Liu (2000), L1 sample size is most relevant for the 
statistical power to detect L1 direct effects and L2 sample size is most relevant for the sta-
tistical power to detect L2 direct effects. Thus, researchers interested in both types of direct 
effects face a difficult dilemma in terms of the allocation of the research budget, which is 
typically limited and may not allow for the allocation of resources to increase both L1 and 
L2 sample sizes.

for the particular case of power to detect cross-level interaction effects, Mathieu et al.’s 
results revealed that the average L1 sample size has a relative premium of about 3:2 as com-
pared to the L2 sample size. Moreover, Mathieu et al.’s results indicated that

both levels’ sample sizes interacted significantly with the magnitude of the cross-level interac-
tion, and with the variability of the Level 1 slopes. . . . Ultimately, the decision as to focus on 
maximizing Level 1 versus Level 2 sample sizes may come down to what other parameters are 
of interest in an investigation. . . . [I]f besides the cross-level interaction a researcher is inter-
ested in testing a lower-level direct effect, then perhaps Level 1 sample sizes are most important. 
Alternatively, if the researcher is also interested in testing cross-level direct effects, that may 
suggest emphasizing the number of units that are sampled. (Mathieu et al., 2012: 960)

In addition to the simulation, Mathieu et al. (2012) conducted a power analysis based on 
articles published in Journal of Applied Psychology from 2000 to 2010 and found that power 
has been quite low. Specifically, at the α = .05 level, the average power was .40, and at α = 
.01, the average statistical power value was only .22. Thus, statistical power to detect cross-
level interactions is substantially below the conventional .80 level, and researchers interested 
in testing interaction effects in the context of multilevel modeling should indeed be con-
cerned about statistical power. In other words, given an existing population cross-level 
interaction effect, the typical probability of actually detecting the effect is less than the flip 
of a coin. Although there is no way to know whether a particular population effect exists, 
low statistical power means that it is likely that many researchers have erroneously con-
cluded that a cross-level interaction effect is not different from zero.
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Based on these results, Mathieu et al. (2012) created a computer program available online 
at http://mypage.iu.edu/~haguinis/crosslevel.html that allows researchers to estimate the 
power of their cross-level interaction test prior to data collection. The program can be used 
to gather important information in terms of solving a possible dilemma regarding the deci-
sion to increase the number of L1 compared to L2 units. for example, a researcher can use 
the program under two different scenarios. Hypothetical Scenario A would involve the pos-
sibility of increasing the number of individuals per team by 5. Hypothetical Scenario B 
would involve holding the number of individuals per team constant but, instead, increasing 
the number of teams from 50 to 80. Using these different values as input in the power cal-
culator allows for an understanding of the statistical power associated with each of these 
scenarios, and results can be used for design planning and as a guide in making more 
informed and better decisions about how to allocate research resources prior to data collec-
tion. In addition, the power calculator can also be used to make better-informed decisions 
about substantive conclusions. Specifically, if a cross-level interaction effect hypothesis is 
not supported and the power calculator suggests that power was sufficient, then one can have 
confidence that the effect does not exist in the population. On the other hand, if power was 
insufficient, then researchers need to report the power value obtained and, unfortunately, 
report that results are inconclusive because of the possibility that the population effect exists 
but was not detected in the sample.

In sum, given the possible trade-offs between L1 and L2 sample sizes as well as interac-
tive effects of the various factors on power (e.g., size of the cross-level interaction effect, 
variance of L1 slopes across L2 units), our recommendation is to abandon popular rules of 
thumb such as the “30-30 rule” (i.e., having at least 30 upper-level units with at least 30 
lower-level entities in each; Kreft & De Leeuw, 1998). Also, researchers should not assume 
that a particular sample size is sufficient to detect an existing effect—for example, Liden and 
Antonakis (2009: 1599) asserted that “30-50 [i.e., at least 30 upper-level units and at least 
50 lower-level entities in each] . . . should be sufficient to estimate multilevel models cor-
rectly.” Instead, researchers should use the Mathieu et al. (2012) power calculator a priori to 
make decisions about research design features and also post hoc to understand whether 
published studies reached sufficient levels of statistical power to detect existing effects.

As an illustration, we used Mathieu et al.’s (2012) power calculator with our own data 
set. Necessary input includes L1 and L2 sample sizes, ICC, and several of the parameter 
estimates in Equation 16. As noted earlier, the program can be used a priori with various 
sample sizes to understand what particular combination of L1 and L2 sample size would lead 
to a desired power level (e.g., .80). Alternatively, the program can also be used after a study 
is conducted to understand the probability that the particular L1 and L2 sample sizes used 
allowed for a detection of an existing cross-level interaction effect of a particular size.

Appendix B includes the annotated R code we used for our power calculation (this code 
is also available at http://mypage.iu.edu/~haguinis). We used Chen et al.’s (2007) estimates 
to guide us on reasonable values for the ICC of Xij (i.e., .12), intercept variance between 
teams (roughly .1), and within-team variance in individual empowerment (approximately 
.8). Last, we also needed estimates for the grand mean relationship between Xij and Yij, the 
variability of slopes, and the magnitude of the cross-level interaction effect. We chose mod-
est values (compared to typical values found in published articles and reported by Mathieu 
et al., 2012) for the relationship between Xij and Yij (.4) and the standard deviation of slopes 
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(.1). We may not have any indication as to the expected size of the cross-level interaction 
effect, so we could use the calculator with a moderate effect (also, in relationship to values 
reported by Mathieu et al., 2012). We emphasize that the choice for a particular targeted 
effect size should be guided by theoretical (i.e., What does past research show regarding the 
size of the effect?) as well as practical (i.e., What is a sufficiently large effect worth detect-
ing?) considerations. However, given the pedagogical and illustrative nature of our power 
analysis, we simplified the process of selecting our targeted effect size. Entering these values 
into the power calculator provides evidence that the power to detect a moderate effect for 
our proposed study design was .82.

Issue 3: Is it possible to test for cross-level interaction effects involving a categorical L2 
or standardized predictor? A third issue that has been frequently raised refers to the possibil-
ity that the multilevel model may include a L2 variable that is not continuous in nature but, 
rather, has discrete categories (e.g., old vs. new compensation system). In other words, the 
question is whether a researcher can test a hypothesis about cross-level interaction effects 
involving a L2 predictor that is categorical. fortunately, this is possible. However, similar to 
the use of categorical predictors in the context of MMR (Aguinis, 2004), the interpretation 
of the cross-level interaction effect is in reference to differences in relationships between two 
or more groups. Based on our discussion so far, and specifically referring to Equation 16, g11 
is interpreted as a change in the slope of Y on X across teams associated with a 1-unit change 
in W. Now, assume that W is a binary variable that was coded as 1 = new compensation 
system and 0 = old compensation system. The hypothesis is that the relationship between 
LMX scores and empowerment across teams will vary as a function of compensation sys-
tem. If g11 = 1.5, its interpretation is that the slope of Y on X is 1.5 points larger for teams in 
the new compensation system (i.e., coded as 1) compared to teams in the old compensation 
system (i.e., coded as 0). In other words, there is a stronger relationship between LMX and 
empowerment for individuals working in teams under the new compensation system. If the 
binary moderator is group-mean centered, the mean is a proportion of the category scored 1, 
but the interpretation is similar in the sense that the coefficient refers to changes in the slope 
of Y on X for teams coded as 1 compared to teams coded as 0.

When the categorical L2 predictor includes more than k = 2 values, it is necessary to cre-
ate k – 1 dummy codes, which are added to Equation 16. The process is similar to creating 
dummy codes in the context of MMR (see Aguinis, 2004, chap. 8). Assuming a L2 predictor 
with k = 3, the two dummy codes        (e.g., comparison of category 1 vs. 2) and         (e.g., 
comparison of category 1 vs. 3) are included in Equation 16 as follows:

(17)

Note that, similar to the situation involving two categories only, the interpretation of the 
cross-level interaction effect coefficients must consider which category was coded as 1 and 
0 for each dummy variable. So, for example, assuming that the categories are three locations: 
(a) Colorado, (b) Indiana, and (c) Texas, and that         involves a comparison of Colorado 
(coded as 1) and Texas (coded as 0). A statistically significant g11 (1) = 2 would mean that the 

Wj 1()

Wj 1()

Wj 2( )

Y W W W W X Xij j j ij j= + −( ) + −( ) + −( )
+

( ) ( ) ( ) ( ) ( ) ( )γ γ γ γ00 01 1 1 1 01 2 2 2 10

γγ γ11 1 1 1 11 2 2 2

0

( ) ( ) ( ) ( ) ( ) ( )−( ) −( ) + −( ) −( )
+

X X W W X X W W

u

ij j j ij j j

j ++ −( ) +u X X rj ij j ij1



Aguinis et al. / Cross-Level Interactions   1511

slope of empowerment on LMX is 2 points larger for teams in Colorado compared to teams 
in Texas.

finally, some researchers choose to standardize predictors (i.e., rescale raw scores so they 
have a mean of zero and standard deviation of one) to be able to interpret results referring 
to SD units instead of the units used in the original scales (e.g., 7-point Likert-type scales). 
In fact, this is precisely what Chen et al. (2007) did in their study. In such situations, refer-
ring back to Equation 16, g11 is the expected change in the size of the slope of LMX on 
empowerment in SD units that is associated with a 1-SD unit increase in the L2 predictor 
(i.e., leadership climate).

Post–Data Collection Recommendations

Issue 4: How should I rescale (i.e., center) predictors and why? As noted earlier, rescal-
ing predictors is common when conducting multilevel analyses to help in the interpretation 
of results (Dalal & Zickar, 2012). The two main rescaling approaches are group-mean cen-
tering (which we used in our article) and grand-mean centering (Enders & Tofighi, 2007). A 
third option is to not rescale predictors at all, but this is not recommended because in many 
situations the resulting parameter estimates will be uninterpretable. Specifically, if we use 
raw (i.e., uncentered) scores instead of rescaled scores, b0j in Equation 1 represents the pre-
dicted level of empowerment for a LMX score of zero. But, this would be a meaningless 
interpretation because the LMX scale ranges from 1 to 7 and does not include zero as a pos-
sible value. Moreover, a LMX score of zero may not be meaningful at the construct level 
because it is possible to have a low or high LMX, but it is not possible to have no LMX at 
all. Most organizational behavior and human resource management measures do not have a 
true zero value because they are not ratio in nature. Similarly, many measures often used in 
entrepreneurship research (e.g., entrepreneurship orientation; Covin & Wales, 2012) and 
strategy (e.g., firm resources and capabilities; Barney, Ketchen, & Wright, 2011) also do not 
have a true zero value. Thus, rescaling is needed in most studies in these domains. 
Alternatively, some financial measures used in strategy do have a meaningful zero point 
(e.g., return on assets, return on investment; Dalton & Aguinis, 2013), so, in these cases, 
rescaling may not be needed.

Group-mean centering changes the mean and correlation structure of the data, causing the 
L1 predictors to be uncorrelated with the L2 predictors (Enders & Tofighi, 2007). Also, in the 
first section of our article we used group-mean centering for the L1 predictor scores to inter-
pret the resulting coefficients in reference to team-level average LMX scores. Alternatively, 
grand-mean centering involves using the mean of all scores at a particular level. So, going 
back to our example, grand-mean centering the L1 predictor would involve using the mean 
LMX scores across all 630 individuals and grand-mean centering the L2 predictor would 
involve using the mean team leadership score across all 105 teams. An important concern 
regarding the use of grand-mean centering for the L1 predictor is that g11 (i.e., cross-level 
interaction effect coefficient) conflates the between-team and within-team effects. In other 
words, using grand-mean centering for the L1 predictor leads to a cross-level interaction 
effect coefficient that is a “mixed bag” of two separate effects: (a) a true cross-level interac-
tion involving the upper-level moderator and the within-group variance of the lower-level 
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predictor (which is what we are interested in estimating) and (b) a between-level interaction 
(i.e., an interaction between the upper-level moderator and the between-group variance of the 
lower-level predictor). Thus, Enders and Tofighi (2007) argued that if a researcher uses 
grand-mean centering for the L1 predictor, it is not possible to make an accurate, or even 
meaningful, interpretation of the cross-level interaction effect. Accordingly, Hofmann and 
Gavin (1998) concluded that group-mean centering leads to the most accurate estimates of 
within-group slopes and minimizes the possibility of finding spurious cross-level interaction 
effects. Similarly, Preacher et al. (2010) used the label “unconflated model” in referring to a 
model based on group-mean centered L1 predictors.

Although group-mean centering has been recommended, overall, as the best strategy in 
the context of testing cross-level interaction hypotheses, it is important to recognize that 
such a choice needs to reflect theoretical processes related to deviations from a group aver-
age (e.g., social comparison effects in team research). Moreover, Bliese (2002: 433) noted 
that “spurious cross-level interactions are rare, so one can generally use . . . grand-mean-
centered variables to test for cross-level interactions as long as one runs an additional model 
with group-mean-centered variables to check for spurious interaction effects.” The alterna-
tive grand mean centering strategy would involve controlling for between-group variance by 
estimating the interaction between the L2 predictor and the group averages for the L1 con-
stituent linear terms. One advantage of group-mean centering is that, because there is no 
need to control for across-group variance (i.e., group-mean centering addressing this issue), 
the resulting model includes fewer parameter estimates. However, estimating cross-level 
interactions using group-mean centering has a different substantive interpretation than esti-
mating interactions using grand-mean centering. As noted by an anonymous reviewer, using 
group-mean centering suggests that testing interactions needs to reflect theoretical processes 
addressing deviations from a group average such as in frog pond/social comparison effects 
in studies of teams. However, not all theories specifically refer to deviations from group 
averages or have reached that level of sophistication. In some situations, it may be more 
appropriate to use grand-mean centering with across-group variance controlled because a 
theory may address raw differences between L1 entities, not differences relative to a group 
average.

In short, group-mean centering the L1 predictor is the recommended approach in most 
situations when there is an interest in testing hypotheses about cross-level interaction effects. 
However, in some situations it may be more appropriate to use grand-mean centering with 
across-group variance controlled because a particular conceptualization may address raw 
differences between L1 entities rather than differences relative to a group average. Thus, the 
choice for a rescaling approach must be accompanied by a theory-based justification regard-
ing the underlying process that is being modeled.

Issue 5: How can I graph a cross-level interaction effect? Another question often posted 
on the listservs refers to how to produce graphs to illustrate a cross-level interaction effect. 
Similar to the single-level context, graphs can be used to illustrate the nature of the interac-
tion effect, but should not be used to draw conclusions about the size or importance of the 
effect (Aguinis, 2004). Considering the combined model in Equation 16, the expected value 
of gij conditioned on values of Xij and Wj can be written as:
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(18)

(19)

In Equation 19, the relationship between Xij and Yij is represented by the term preceding,

             , namely                             . If Wj is a continuous variable, Equation 19 can be used to

plot the X-Y relationship for any value for Wj. The equation describing the relationship 
between X and Y for a specific value of Wj is called a simple regression equation and the 
slope of Y on X at a single value of Wj is called a simple slope. Preacher, Curran, and Bauer 
(2006) provided specific examples as well as a description of computer programs in SAS, 
SPSS, and R that allow for the creation of plots to more easily understand the nature of the 
interaction effect, including the plotting of simple slopes. The Preacher et al. programs also 
allow for plotting regions of significance, which are values of W between which the simple 
slope of Y on X is statistically significant.

Equation 19 can also be used to plot the interaction effect in cases where Wj is a binary 
L2 variable that takes on the values of 0 and 1. Also, if Wj is a binary variable, it is easier to 
interpret the model coefficients if Wj is not rescaled. Consequently, the predicted values of 
Yij for the two groups defined by Wj are

(20)

(21)

Now, the X-Y relationship can be plotted for each group. To do so, we can use values of 
one standard deviation below the mean, the mean, and one standard deviation above the 
mean for X. Using these particular values is recommended because they allow for an under-
standing of the nature of the relationship across a wide range of X scores (Aiken & West, 
1991). Moreover, it may also be useful to choose additional values that may be informative 
in specific contexts.

The plots included in figure 3 show the cross-level interaction effect in our illustrative 
data. One important issue to consider concerns the axis for the Y scale. In many published 
articles, researchers use reduced scales for the Y axis (e.g., 4 scale points instead of 7). Such 
reduction in the scale gives the false impression that the effect is more important because the 
slopes seem steeper and also more different from each other. So, it is acceptable to reduce 
the length of the axis to understand the nature of the interaction, as we have done in figure 3’s 
Panel (a) (Panel (b) includes the same plot with the full Y scale represented along the axis). 
But it is not acceptable to do so and then make statements about how “important” an effect 
is given the degree of steepness of the slope on the graph. The annotated R code in Appendix A 
also includes the necessary commands to create the plots included in figure 3.

Issue 6: Are cross-level interaction effects symmetrical? Another issue related to the 
interpretation of cross-level interaction effects refers to whether such effects are symmetrical. 
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In other words, can we say that the L2 variable moderates the effect of the L1 predictor on 
the L1 criterion and, also, that the L1 predictor moderates the effect of the L2 predictor on 
the L1 criterion? from a statistical standpoint, it is just as appropriate to label the L2 predictor 
as the moderator of the effect of the L1 predictor X on the L1 outcome Y as it is to label the 
L1 predictor X as the moderator of the effect of the L2 predictor W on the L1 outcome Y 
because cross-level interactions are symmetrical. In multilevel modeling, it is usually the case 
that L2 is labeled as the moderator because, conceptually, it seems more appropriate to frame 
the higher-level variable as the contextual factor that affects the relationship between lower-
level variables. Specifically, in our discussion regarding how to graph cross-level interaction 
effects, we used the L2 variable as the moderator. However, referring back to Equation 16,

the value for g11 is obviously the same whether it is associated with                                or 

with                                 . Thus, the choice to interpret W or X as the moderator is based 

on conceptual reasons.
Referring back to our substantive illustration, we could have chosen to state the cross-

level interaction effect hypothesis using either of the following forms:

Hypothesis 1a—L2 moderator: The effect of individual LMX on individual empowerment will be 
moderated by leadership climate such that higher levels of leadership climate will lead to a 
stronger LMX–empowerment relationship compared to lower values of leadership climate.

Hypothesis 1b—L1 moderator: The effect of leadership climate on individual empowerment will 
be moderated by individual LMX such that higher levels of LMX will lead to a stronger leadership 
climate–empowerment relationship compared to lower values of LMX.

Figure 3
Plots of Moderating Effect of L2 Variable Leadership Climate on the Relationship 

Between L1 Variable Quality of Leader-Member Exchange (LMX) and L1 Variable 
Individual Empowerment

Note. Panel a: reduced y-axis scale; Panel b: entire y-axis scale

( )( )X X W Wij j j- -

( )( )W W X Xj ij j- -
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In short, a substantive interest in studying either the L2 or the L1 predictor as a moderator 
dictates how a researcher will conceptualize the nature of the cross-level interaction effect, 
but L2 is usually labeled as the moderator due to conceptual reasons. Choices about how to 
phrase the cross-level interaction effect hypothesis as well as graph the resulting effect will 
follow directly from the choice of which variable is labeled the moderator.

Issue 7: How can I estimate more than one cross-level interaction effect? Also related to 
post–data collection issues are questions about more complex models. for example, assume 
we are interested in testing two cross-level interactions: (a) interaction between L2 predictor 
W and L1 predictor X on Y and (b) interaction between L2 predictor Z and L1 predictor X on 
Y. A frequent question is whether testing these hypotheses should be done sequentially in 
separate models or simultaneously in one single model including both 
and                              .

Overall, the recommendation is to test both interaction effects as part of one combined 
model so that each estimated effect is adjusted for all the theoretically relevant components. 
If the hypothesized cross-level interaction effects are evaluated in separate models, it is pos-
sible that these effects will be upwardly biased due to possible nonzero intercorrelations 
between the various interaction effects. However, given that most cross-level interaction 
tests are likely to be insufficient regarding statistical power (see Issue 2), a strong theory-
based rationale for the presence of such effects may justify conducting the tests separately. 
from the perspective of a trade-off between Type I (i.e., false positive) and Type II (i.e., 
false negative) statistical errors, this approach would be equivalent to conducting follow-up 
comparisons in ANOVA without first conducting an omnibus test.

An additional consideration in implementing our recommendation to test both interaction 
effects as part of one combined model is that complex models may not converge, they may 
crash, or run out of degrees of freedom. In such situations, and absent a strong theory-based 
rationale for testing models separately, our recommendation is to proceed with testing mod-
els separately but then report results in a transparent and open manner (Aytug, Rothstein, 
Zhou, & Kern, 2012). In other words, it is necessary to be clear about this limitation (i.e., 
models were tested separately), the reason why (e.g., the combined model crashed), and 
consequences of the limitation (i.e., the need to replicate results in future research due to a 
possible inflation of Type I error rates; Brutus, Aguinis, & Wassmer, 2013).

finally, an issue related to complex models in general is that they may not converge. 
There are several reasons that may lead to this situation. for example, a model may not 
converge when certain algorithms are used (Wolfinger & O’Connell, 2007), the random 
effects are highly correlated, or the model is misspecified (e.g., the model may be too com-
plex for the data). There are several possible courses of action when models do not converge. 
An initial course of action is to use a different software program. If the model still does not 
converge, a second alternative is to center predictors because centering can help reduce cor-
relations among random intercepts and slopes (Gelfand, Sahu, & Carlin, 1995). Ultimately, 
the source of the problem may be that the model is misspecified or too complex for the data 
in hand. In such cases, the only solution may be to simplify the random effects structure of 
the model.

X X W Wij j j−( ) −( )
X X Z Zij j j−( ) −( )
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Issue 8: How can I estimate cross-level interaction effects involving variables at three 
different levels of analysis? Another issue regarding more complex models involves the pos-
sibility of testing cross-level interactions involving more than two levels of nesting. As one 
illustration, a researcher may be interested in testing a three-level interaction effect of LMX 
(Level 1, X), leadership climate (Level 2, W), and organizational culture (Level 3, Q) on 
individual empowerment. In such three-level models, team-level relationships are allowed 
to vary across higher-level units (e.g., organizations, geographic regions). Other situations 
that may involve three levels of analysis are studies that rely on experience sampling meth-
odology or other types of diaries (e.g., Uy, foo, & Aguinis, 2010). In such situations, there 
are observations of individuals over time (i.e., observations are nested within individuals) 
and individuals are nested within units (e.g., teams). So, in this situation there are three lev-
els of analysis with two levels of nesting. In other words, individual growth trajectories 
reside at L1, differences in growth rates across individuals within teams compose the L2 
model, and the variation across teams is the L3 model (Raudenbush & Bryk, 2002, chap. 8).

Assuming that the three levels are individuals, teams, and organizations, a three-level 
model requires a subscript k to distinguish various organizations. for instance, Xijk is the 
LMX score for the ith individual who is a member of team j within organization k. Similarly,  
Wjk is the leadership climate score for team j in organization k, and Qk is the organizational 
culture value for organization k. This inclusion of a third-level variable also entails the addi-
tion of an additional residual value: (n0k). This implies the potential of additional third-level 
variance components: intercept variance (ϕ00), slope variance (ϕ11), and intercept-slope 
covariance (ϕ01).

This inclusion of additional variance components allows for several kinds of ICCs to be 
calculated (Hox, 2010; Snijders & Bosker, 2012). first, is the proportion of total variance 
explained by the L3 variable, which is                                    . Similar ICCs can be calculated 
for each level. Second, is the proportion of total variance explained by the L3 and L2 vari-
ables, which is [                                       . Third, is the proportion of variance shared by 
the L3 and L2 variables, which is                        .

In addition to a variety of ICCs, there are a number of different regressions that can be 
performed when conducting a three-level analysis. for example, for each L1 variable, there 
are three different types of regressions: within-L2 regression, within-L3/between-L2 regres-
sion, and between-L3 regression (Snijders & Bosker, 2012).

Testing for complex models, such as three-level cross-level interactions involves 
expanding Equation 16 to include all first-order effects, all two-way cross-level interaction 
effects, and finally the term carrying information about the three-level interaction effect: 

                                             . All issues we discussed earlier regarding two-way cross-
level interactions apply to the three-level interaction context (Hox, 2010; Snijders & Bosker, 
2012). for example, model building and centering the variables can all be generalized from 
a two-level model. furthermore, there should be a clear definition of the cross-level interac-
tion effect, all constituent terms should be included in the equation, and so forth.

A challenge regarding tests of three-way cross-level interaction effects is that it will be 
necessary to collect data from multiple higher-level units to capture possible variability of 
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L1 and L2 intercepts and slopes across L3 units. In fact, in many cases researchers may 
abandon hypotheses involving three-level interaction effects due to insufficient evidence 
regarding variation in intercepts and/or slopes at the third level. for example, Raudenbush, 
Rowan, and Cheong (1993) conducted a study involving the following three levels: (L1) 
classes, (L2) teachers, and (L3) schools. However, “because the number of schools was 
small and because there was little evidence of school-to-school variation, no level-3 predic-
tors were specified” (Raudenbush & Bryk, 2002: 237).

We are not aware of a tool that would allow for the estimation of statistical power to 
detect three-level interaction effects. Although Konstantopolous (2008a, 2008b) addressed 
statistical power in the context of three-level models, this work refers to statistical power 
computations specifically for a dummy-coded treatment effect (i.e., main effect), but it does 
not address computations regarding three-level cross-level interaction effects. Nevertheless, 
given the increased level of complexity of the model tested and results regarding the impor-
tance of the lower-level sample size regarding power reported by Mathieu et al. (2012), other 
things equal, statistical power for detecting a three-level interaction effect is unlikely to be 
greater than the power to detect a two-level cross-level interaction effect. Thus, our recom-
mendation is to use the Mathieu et al. power calculator in making research design decisions 
to make sure there is sufficient power to detect each of the two-level cross-level interaction 
effects. Although this will not guarantee sufficient power, this will at least produce some 
evidence about the probability of detecting a three-level interaction effect. Moreover, there 
should be a strong theory-based rationale to posit such a complex interaction effect. Clearly, 
there is a need for future work regarding the statistical power of the three-level interaction 
effect test.

Issue 9: What is the practical significance of the cross-level interaction effect? An issue 
also related to the interpretation of results refers to the practical significance of a cross-level 
interaction effect. A necessary step for understanding the practical significance of the cross-
level interaction effect is to estimate the strength of the effect (Aguinis, Werner, Abbott, 
Angert, Park, & Kohlhausen, 2010). When using OLS regression, researchers usually esti-
mate effect sizes based on the extent to which a variable predicts outcomes of interest (i.e., 
regression coefficient associated with the product term) or based on fit (i.e., proportion of 
variance explained by the interaction effect, usually assessed using R2; Aguinis, 2004). 
Similar options are available in the context of multilevel modeling, and each one has advan-
tages and disadvantages. Next, we describe each of these options by relying mainly on work 
by Hox (2010), Roberts, Monaco, Stovall, and foster (2011), and Snijders and Bosker (2012).

The first option is to focus on the extent to which the cross-level interaction predicts the 
outcome of interest, which is indicated by g11. This is a useful indicator because it refers to 
the original metric used in collecting the data. However, the other side of the coin is that, 
precisely because the coefficient is scale specific, its size depends on the measures used to 
assess X, Y, and W. for example, referring back to our illustration, if a researcher uses a 
100-point scale for empowerment, the resulting cross-level interaction effect g11 will be 
much larger than if a researcher uses a 7-point scale. Because g11 provides information 
regarding the prediction of Y scores, it is considered an index of an interaction’s predictive 
power.
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A second option for assessing effect size that has the advantage of scale-independence 
consists of focusing on the cross-level interaction’s explanatory power: the proportion of the 
total variability of the slope of Y on X across teams that is explained by the L2 predictor W. 
To do so, we refer back to Equation 16, in which u1j is the error term and its variance, 
denoted by t11, represents the total across-team variance in slopes. Equation 15 shows also 
the error term u1j (i.e., the portion of b1j that is independent of Wj). Note that u1j in Equation 16 
is what is left unexplained after controlling for the effect of W, and we use the symbol t11w 
to refer to the variance of this error term. Accordingly, we can calculate the proportion of 
total across-team variance in slopes explained specifically by W as follows:

(22)

We computed the proportion of the total slope variance explained by the moderating 

effect of leadership climate using results shown in Table 1. We found that =                 = 

                  = .24. In other words, W accounts for 24% of  the total variance of b1j across 

teams. This is a useful indicator of practical significance because it can be used to under-
stand the relative importance of effects within one study and also across studies given that 
the metric is proportion of variance explained.

A third, commonly used, option is to estimate the effect size using a “pseudo R2” metric. 
In multilevel modeling, we can obtain a pseudo R2 value for each of the steps in the model 
building process, which we have done and reported in Table 1 using our illustrative data. for 
example, for Step 2, which involves the RIfSM, predicted criterion scores are obtained as 
follows,

(23)

which is the same as Equation 8, but excluding the error terms u0j and rij. As shown in Table 1, 
pseudo R2 increased from no variance explained by the null model to 23% of variance 
explained by the RIfSM. In other words, the addition of the coefficient associated with the 
L2 predictor increased variance explained by another 23%. The computation of pseudo R2 
for Step 3, which involves the RIRSM, involves calculating the squared correlation between 
observed and predicted Yij scores based on Equation 12 and excluding the error terms

                            , and rij as follows:

(24)

Note that, because we do not use the variance component terms in predicting Yij scores, 
Equations 23 and 24 are identical, although they predict Yij scores for different steps in the 
model building process. This is why pseudo R2 values are nearly identical for Steps 2 and 3, 
although a comparison of Equations 8 and 12 shows that these models are quite different. 
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The exclusion of variance components from the computation of pseudo R2 values explains 
why some results can be counterintuitive, such as pseudo R2 values becoming smaller when 
predictors are added to the model. Thus, this is the reason why Snijders and Bosker (2012: 
109) noted that the computation of pseudo R2 values “now and then leads to unpleasant 
surprises.”

Table 1 also shows that the addition of the cross-product term in Step 4 leads to an 
increase of about 1% of variance explained. Once again, however, note that predicted Yij 
scores are obtained using an equation that excludes terms involving variance components as 

follows (which is Equation 16 without the variance component terms,                                  , 
and + rij):

(25)

So, this result means that there is an additional 1% of variance explained by adding the 
g11 coefficient to the model, but there is no information regarding variance components and 
their effects on the proportion of variance explained in Yij scores. A primary advantage of 
multilevel modeling is the decomposition of various sources of variance based on the level 
at which each source of variance resides. However, the computation of pseudo R2 values 
does not take these different sources of variance into account. In other words, pseudo R2 
values are based on the fixed portion of the models only and ignore the random terms. This 
is why “the estimated values for R2 usually change only very little when random regression 
coefficients are included in the model” (Snijders & Bosker, 2012: 113). Another weakness 
to this approach is that there is the potential for one to obtain a negative pseudo R2 value, but 
this likely means that the model is misspecified (Hox, 2010; Snijders & Bosker, 2012). In 
sum, although we report pseudo R2 values in Table 1 and our annotated R code includes the 
appropriate commands for all computations, it is important to understand the meaning and 
interpretation of these values specifically in the context of multilevel modeling.

In sum, each of the three options we described for reporting effect sizes and interpreting 
the practical significance of a cross-level interaction effect has advantages and disadvan-
tages. So, our recommendation is that researchers report all three, together with statements 
about how each one should be interpreted. This recommendation follows the principle of full 
disclosure and, following a customer-centric approach (Aguinis et al., 2010), also allows 
readers the opportunity to interpret the meaningfulness of results themselves. Moreover, also 
related to the customer-centric approach to reporting significant results (Aguinis et al., 
2010), we emphasize that effect sizes should be interpreted within specific contexts and the 
fact that if an effect seems small in terms of the proportion of variance explained, it does not 
automatically mean that it is unimportant in terms of theory or practice.

Issue 10: What information should be reported based on multilevel modeling analyses?  
The field of management lacks clear reporting standards regarding multilevel modeling. 
There is wide variability in terms of the type of information that researchers choose to 
present in their tables—and how that information is presented. In contrast, the American 
Psychological Association is quite clear regarding what type of information should be 

u u XXj j jij0 1, ( )-

Y W W X X X X W Wij j ij j ij j j
 = + −( ) + −( ) + −( ) −( )γ γ γ γ00 01 10 11
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reported when a study includes popular and long-established techniques such as multiple 
regression and ANOVA (APA Publications and Communications Board Working Group on 
Journal Article Reporting Standards, 2008). Although the 250-plus-page APA Publication 
Manual does not refer to multilevel modeling at all, it does include a “Sample Multilevel 
Model Table” (Table 5.15) that can be used when reporting multilevel modeling results 
(American Psychological Association, 2009: 147-148). Unfortunately, the APA Publication 
Manual does not include any text or rationale for why each piece of information should be 
included in this table, and, moreover, the proposed template is not sufficiently comprehen-
sive. for example, the APA template does not include information on ICC, number of esti-
mated parameters, and pseudo R2. As mentioned earlier, ICC information is needed for 
readers to understand whether the use of multilevel modeling was in fact justified. Including 
the number of estimated parameters is also useful so that readers can quickly and accurately 
understand the nature of the model. Also as mentioned earlier, pseudo R2 information is also 
a useful, albeit imperfect, effect size metric. In addition, our proposed table is also more 
comprehensive than its APA counterpart because it includes sample size and clear labels for 
each model. Overall, reporting the information included in Table 1 is important because, 
absent this information, results based on multilevel modeling can be perceived as lacking 
transparency.

Our Table 1 can be used as a template for the type of information that needs to be reported 
when conducting a multilevel study regardless of the particular focus—L1 direct effects, L2 
direct effects, cross-level interactions. This table includes clear labels regarding which are 
the variables at which level and the sample size for each level as well as the coefficients for 
each effect—including their standard errors and statistical significance. This table also 
includes a crucial piece of information that is often missing from published multilevel 
research: complete information regarding the size of each variance component. This infor-
mation is important for several reasons. first, as statistical software programs become 
increasingly available and easy to use, there are instances in which users may not fully 
understand the resulting output. Routinely reporting variance components will allow 
researchers to become more familiar with their data, results, and interpretation of results. 
Second, given increasing concerns about ethical violations and data “massaging” (Bedeian, 
Taylor, & Miller, 2010), reporting variance components can allow a skeptical scientific audi-
ence to double check results and possible instances of misreporting (either by error or inten-
tion). Overall, multilevel research can benefit from a greater degree of standardization and 
openness in terms of the information that is reported so our recommendations will be useful 
in this regard. finally, Table 1 also shows all of this information for each of the steps in the 
model building process.

As multilevel modeling becomes a more popular approach in management and related 
fields, it is important that results from such analyses be reported in a detailed and compre-
hensive manner. Such clear and standardized reporting serves several purposes. first, it 
allows readers to have all the necessary information to fully understand and interpret results. 
Second, it allows for the possibility that future research can replicate the results of any one 
particular study. Third, it allows for the possibility of making results more useful and accu-
rate in terms of their future inclusion in subsequent literature reviews, both qualitative and 
quantitative (e.g., meta-analysis). finally, the availability of information regarding the 
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variability of slopes across groups allows for a more precise computation of statistical 
power, which is particularly important in cases when evidence seems to suggest the absence 
of a cross-level interaction effect.

Concluding Comments

Understanding the interplay between variables at different levels of analysis is a key 
substantive challenge in management research (Bliese, 2000). Thus, there is an increased 
interest in multilevel models—models that include variables at more than one level of 
analysis. for example, a review by Aguinis, Pierce, Bosco, and Muslin (2009) revealed that 
multilevel modeling was the third most popular data-analytic approach in articles published 
in Organizational Research Methods from 1998 to 2007 (behind multiple regression/correla-
tion and structural equation modeling). Moreover, Aguinis et al. (2009) documented that 
multilevel modeling has gained more popularity than any other data-analytic approach over 
this time period. One reason for the increased popularity is that such models allow for the 
assessment of whether relationships among entities are moderated by variables at the collec-
tive level within which these entities reside. Given the nature of organizational life in the 
21st century, and the fact that people work in increasingly interdependent environments, 
shared influences including leadership, policies, practices, and many other processes create 
dependence in the data regardless of whether nesting is formally established through organ-
izational structures (Cascio & Aguinis, 2008). Thus, data nonindependence is likely to be 
more pervasive than typically acknowledged.

Our review of questions posted on listservs suggests that researchers are mostly con-
cerned with issues related to data analysis and interpretation of results. In other words, 
researchers are more concerned with and interested in answering questions about how to 
handle the data that have been collected compared to how to plan and execute future data 
collection efforts. A similar emphasis on data analysis issues relative to research design 
and measurement issues has been documented by other reviews. for example, Aguinis  
et al. (2009: 106) concluded that “an implication of our study is that more attention is 
needed regarding the development of new as well as the improvement of existing research 
designs.” Although our article provides recommendations regarding actions researchers 
can take before and after data are collected, we believe that the most impactful decisions 
take place during the early stages of research including conceptualization, research design, 
and measurement. If models are misspecified (e.g., important L2 variables are not 
included in the study), research design is suboptimal (e.g., sample size is too small to 
detect existing cross-level interactions), and measures are not reliable (i.e., leading to 
measurement error), then issues around interpretation become less relevant because they 
can turn into attempts to fix unfixable design and measurement problems. In closing, 
drawing meaningful and accurate conclusions about cross-level interaction effects 
involves important decision points, and we hope our article will be a useful resource in 
this regard.
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Appendix A

Annotated R Code for Multilevel Analysis With Illustrative Data

Note: also available at http://mypage.iu.edu/~haguinis.

#Setting Working Directory and Reading Data File
library(‘lme4’)
library(‘RLRsim’)
setwd(‘C:/Documents/JOM’)
exdata=read.csv(‘JOM.csv’)

#STEP 1: Null Model
lmm.fit1=lmer(Y ~(1|l2id),data=exdata,REML=F)
summary(lmm.fit1)
 
 # Compute ICC
  iccy=VarCorr(lmm.fit1)$l2id[1,1]/(VarCorr(lmm.fit1)$l2id
[1,1]+attr(VarCorr(lmm.fit1),‘sc’)^2)]

 iccy

#STEP 2: Random Intercept and Fixed Slope Model
 lmm.fit2=lmer(Y ~(1|l2id)+Xc+I(Wj-mean(Wj) ), 
data=exdata,REML=F)
summary(lmm.fit2)
 
 # Computing pseudo R-squared
 yhat2=model.matrix(lmm.fit2)%*%fixef(lmm.fit2)
 cor(yhat2,exdata$Y)^2

#STEP 3: Random Intercept and Random Slope model
 lmm.fit3=lmer(Y ~Xc+(Xc|l2id)+I(Wj-mean(Wj) ), 
data=exdata,REML=F)
summary(lmm.fit3)
 
 # Print VC Estimates
 VarCorr(lmm.fit3)

 # Computing pseudo R-squared
 yhat3=model.matrix(lmm.fit3)%*%fixef(lmm.fit3)
 cor(yhat3,exdata$Y)^2
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  # Crainceanu & Ruppert (2004) Test of Slope Variance 
Component

 obs.LRT <- 2*(logLik(lmm.fit3)-logLik(lmm.fit2))[1]
 X <- lmm.fit3@X
 Z <- t(as.matrix(lmm.fit3@Zt))
 sim.LRT <- LRTSim(X, Z, 0, diag(ncol(Z)))
 (pval <- mean(sim.LRT > obs.LRT))

 # Nonparametric Bootstrap Function 
REMLVC=VarCorr(lmer(Y ~Xc+(Xc|l2id)+I(Wj-mean(Wj)
),data=exdata,REML=T))$l2id[1:2,1:2] U.R=chol(REMLVC)
 REbootstrap=function(Us,es,X,gs){
nj=nrow(Us)
idk=sample(1:nj,size=nj,replace=T)
Usk=as.matrix(Us[idk,])
esk=sample(es,size=length(es),replace=T)
S=t(Usk)%*%Usk/nj
U.S = chol(S)
A=solve(U.S)%*%U.R
Usk = Usk%*%A
datk=expand.grid(l1id = 1:6,l2id = 1:nj)
colnames(X)=c(‘one’,‘Xc’,‘Wjc’)
datk=cbind(datk,X)
 datk$yk = X%*%gs + Usk[datk$l2id,1]+Usk[datk$l2id,2]*X[,2
]+esk
lmm.fitk=lmer(yk ~Xc+(Xc|l2id)+Wjc,data=datk,REML=F)
tau11k = VarCorr(lmm.fitk)$l2id[2,2]
tau11k
}

# Implementing Bootstrap
 bootks=replicate(1500,REbootstrap(Us=ranef(lmm.
fit3)$l2id,es=resid(lmm.fit3),X=model.matrix(lmm.
fit3),gs=fixef(lmm.fit3)))quantile(bootks,prob
s=c(.025,.975))

#STEP 4: Cross-Level Interaction Model
 lmm.fit4=lmer(Y ~(Xc|l2id)+Xc*I(Wj-mean(Wj) ), 
data=exdata,REML=F)
summary(lmm.fit4)

 # Print VC Estimates
 VarCorr(lmm.fit4)

 # Computing pseudo R-squared
 yhat4=model.matrix(lmm.fit4)%*%fixef(lmm.fit4)
 cor(yhat4,exdata$Y)^2
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#Interaction Plots
 #Code creates graphs in pdf format in the same directory 
as the data file
gammas=fixef(lmm.fit4)

pdf(‘intplot.xw.pdf’,width=10,height=8)
 par(mar=c(3.25,3.25,.5,.5),cex=2,bty=‘l’,las=1,family=‘seri
f’,mgp=c(1.85,.5,0))

#Figure 3 Panel (a) - Full Y Scale
Wjs=c(0-sd(exdata$Wj),0,0+sd(exdata$Wj))
 xlb=mean(exdata$Xc)-sd(exdata$Xc);xub=mean(exdata$Xc)+sd(ex
data$Xc)
ylb=1;yub=7
 curve(0+1*x,xlb,xub,xlab=‘LMX’,ylab=‘Individual 
Empowerment’,lwd=2,type=‘n’,

ylim=c(ylb,yub))
for(i in 1:length(Wjs)){
B0j=gammas[1]+gammas[3]*Wjs[i]
B1j=gammas[2]+gammas[4]*Wjs[i]
 curve(B0j+B1j*x,xlb,xub,add=T,xlab=‘LMX’,ylab=‘Individual  
Empowerment’,lwd=2,lty=i)

}  
 labs=c(expression(W[j]==-1*~~SD),expression(W[j]==0*~~SD), 
expression(W[j]==1*~~SD))

 legend(xlb,5,legend=c("Leadership Climate",labs[1],labs[2],
labs[3]),bty=‘n’,lty=c(0:3))

#Figure 3 Panel (b) - Reduced Y Scale
ylb=5;yub=6.5
 curve(0+1*x,xlb,xub,xlab=‘LMX’,ylab=‘Individual 
Empowerment’,lwd=2,type=‘n’,

ylim=c(ylb,yub))
for(i in 1:length(Wjs)){
B0j=gammas[1]+gammas[3]*Wjs[i]
B1j=gammas[2]+gammas[4]*Wjs[i]
 curve(B0j+B1j*x,xlb,xub,add=T,xlab=‘LMX’,ylab=‘Individual  
Empowerment’,lwd=2,lty=i)

}
 labs=c(expression(W[j]==-1*~~SD),expression(W[j]==0*~~SD), 
expression(W[j]==1*~~SD))

 legend(xlb,6.5,legend=c("Leadership Climate",labs[1], 
labs[2],labs[3]),bty=‘n’,lty=c(0:3))

dev.off()
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Appendix B

Annotated R Code for Power Analysis From  
Mathieu et al. (2012) Using This Article’s Illustrative Data

Note: also available at http://mypage.iu.edu/~haguinis.

l2n = 105 #Level-2 sample size
l1n = 6 #Average Level-1 sample size
iccx = .12  #ICC1 for X
g00 = 0 #Intercept for B0j equation (Level-1 intercept)
g01 = 0 #Direct cross-level effect of average Xj on Y
g02 = 0 #Direct cross-level effect of W on Y
g03 = 0  #Between-group interaction effect between  

W and Xj on Y
g10 = 0.4  #Intercept for B1j equation (Level-1 effect 

of X on Y)
g11 = 0.15  #Cross-level interaction effect
vu0j = 0.01  #Variance component for intercept
vu1j = 0.1  #SD of Level-1 slopes
vresid = 0.8 #Variance component for residual, within variance
alpha = .05  #Rejection level
REPS = 1000   #Number of Monte Carlo Replications, 1000 

recommended

hlmmmr <-
function(iccx,l2n,l1n,g00,g01,g02,g03,g10,g11,vu0j,vu1j,al
pha){
require(lme4.0)
Wj = rnorm(l2n, 0, sd=1)
Xbarj = rnorm(l2n, 0, sd=sqrt(iccx)) ## Level-2 effects on x
b0 = g00 + g01*Xbarj+ g02*Wj + g03*Xbarj*Wj + rnorm(l2n,0,sd=sqrt(vu0j))
b1 = g10 + g11*Wj + rnorm(l2n,0,sd=sqrt(vu1j))
dat=expand.grid(l1id = 1:l1n,l2id = 1:l2n)
dat$X=rnorm(l1n*l2n,0,sd=sqrt(1-iccx))+Xbarj[dat[,2]]
dat$Xbarj=Xbarj[dat[,2]]
dat$Wj=Wj[dat[,2]]
dat$Y <- b0[dat$l2id]+ b1[dat$l2id]*(dat$X-dat$Xbarj)+rnorm 
(l1n*l2n,0,sd=sqrt(vresid))
dat$Xc=(dat$X - Xbarj[dat[,2]])
lmm.fit<- lmer(Y ~ Xc+Xbarj+Wj+Xbarj:Wj+Xc:Wj+(Xc|l2id),data=
dat)
fe.g <- fixef(lmm.fit)
fe.se <- sqrt(diag(vcov(lmm.fit)))
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ifelse(abs(fe.g[6]/fe.se[6])>qt(1-alpha/2,l2n-4),1,0)
}
simout=replicate(REPS,hlmmmr(iccx,l2n,l1n,g00,g01,g02,g03,g10, 
g11,vu0j,vu1j,alpha))
powerEST=mean(simout)
powerEST

Note

1. As noted by an anonymous reviewer, ICC greater than 0 implies that within-team dependence must be taken 
into account in computing standard errors. But ICC greater than 0 does not necessarily mean that there is a need to 
model the effect of W on b0j unless there is an interest in W as a substantive or control variable. However, as we 
describe later in our article, it is necessary to model W when there is an interest in a cross-level interaction between 
X and W.
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