
The Knowledge Engineering Review, Vol. 00:0, 1–24.c© 2004, Cambridge University Press
DOI: 10.1017/S000000000000000 Printed in the United Kingdom

An introduction to argumentation semantics

PIETRO BARONI1, MARTIN CAMINADA 2 and MASSIMILIANO GIACOMIN1

1 Univ. di Brescia, Dip. Ingegneria dell’Informazione, Via Branze 38, 25123 Brescia, Italy
E-mail: baroni@ing.unibs.it, giacomin@ing.unibs.it
2Univ. du Luxembourg, Fac. des Sciences, de la Technologie etde la Communication, 6, rue Richard Coudenhove-Kalergi L-1359
Luxembourg
E-mail: martin.caminada@uni.lu

Abstract

This paper presents an overview on the state of the art of semantics for abstract argumentation, covering
both some of the most influential literature proposals and some general issues concerning semantics
definition and evaluation. As to the former point the paper reviews Dung’s original notions of complete,
grounded, preferred, and stable semantics, as well as subsequently proposed notions like semi-stable,
ideal, stage, and CF2 semantics, considering both the extension-based and the labelling-based approaches
with respect to their definitions. As to the latter point the paper presents an extensive set of general
properties for semantics evaluation and analyzes the notions of argument justification and skepticism.
The final part of the paper is devoted to discuss some relationships between semantics properties and
domain specific requirements.

1 Introduction

The field of formal argumentation can be traced back to the work of Pollock (1992, 1995), Vreeswijk
(1993, 1997), and Simari and Loui (1992). The idea is that (nonmonotonic) reasoning can be performed
by constructing and evaluating arguments, which are composed of a number of reasons for the validity
of a claim. Arguments distinguish themselves from proofs bythe fact that they are defeasible, that is,
the validity of their conclusions can be disputed by other arguments. Whether a claim can be accepted
therefore depends not only on the existence of an argument that supports this claim, but also on the
existence of possible counter arguments, that can then themselves be attacked by counter arguments, etc.

Nowadays, much research on the topic of argumentation is based on the abstract argumentation theory
of Dung (1995). The central concept in this work is that of anargumentation framework, which is
essentially a directed graph in which the arguments are represented as nodes and the attack relation is
represented by the arrows. Given such a graph, one can then examine the question on which set(s) of
arguments can be accepted: answering this question corresponds to defining anargumentation semantics.
Various proposals have been formulated in this respect, andin the current paper we will describe some of
the mainstream approaches. It is, however, important to keep in mind that the issue of argumentation
semantics is only one specific aspect (although an importantone) in the overall theory of formal
argumentation. For instance, if one wants to use argumentation theory for the purpose of (nonmonotonic)
entailment, one can distinguish three steps (see Figure 1).First of all, one would use an underlying
knowledge base to generate a set of arguments and determine in which ways these arguments attack
each other (step 1). The result is then an argumentation framework, to be represented as a directed graph in
which the internal structure of the arguments, as well as thenature of the attack relation has been abstracted
away. Based on this argumentation framework, the next step is to determine the sets of arguments that can
be accepted, using a pre-defined criterion corresponding toan argumentation semantics (step 2). After
the set(s) of accepted arguments have been identified, one then has to identify the set(s) of accepted
conclusions (step 3), for which there exist various approaches.
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Figure 1 Argumentation for inference

In the current paper we mainly focus on step 2 of the above described argumentation process. We
do this not because the other steps are trivial (they are far from that), but simply because the issue of
argumentation semantics (step 2) has been the subject of much recent study, making it relatively well-
understood compared to the other steps.

One of the strengths of the argumentation approach is that itturns out to be powerful enough to model a
whole range of formalisms for nonmonotonic reasoning. For instance, default logic (Reiter, 1980) has been
reformulated in terms of formal argumentation (Dung, 1995). The same holds for Nute’s defeasible logic
(Nute, 1994), of which an argumentation based interpretation was given by Governatori et al. (2004), and
for logic programming under the stable model semantics (Gelfond and Lifschitz, 1988, 1991), of which
an argumentation based interpretation can be found in (Dung, 1995).

Argumentation, however, has more applications than just inference. The issue of argumentation based
decision making, for instance, has been studied by Amgoud (2009). Dung’s question of how to define a
semantics for an argumentation framework is in fact a very general one. In essence, the question is how
to reason in case of conflicts. The issue of argumentation semantics has also been applied with respect to
topics like coalition formation and the stable marriage problem (Dung, 1995). This is another reason for
focussing on the topic of argumentation semantics in the current paper.

The remaining part of this paper is structured as follows. First, in Section 2 we formally describe the
notion of an argumentation framework and present some of therelatively well-known and well-established
argumentation semantics, both in terms of argument extensions and in terms of argument labellings. Then,
in Section 3 we review several fundamental properties supporting a systematic semantics comparison,
and in Section 4 we provide a comprehensive treatment of the notions of argument justification and
skepticism, including skepticism comparison between the reviewed semantics. In Section 5 we round
off with a discussion of how different argumentation semantics may fit in different application contexts.
In particular, we discuss which kinds of design decisions may be suitable for which kinds of domains,
and how the issue of argument construction interacts with the issue of argumentation semantics. Finally
Section 6 quickly summarizes and concludes the paper.

2 An Overview of Argumentation Semantics

In this section we provide an overview of some well-known argumentation semantics, including Dung’s
original concepts of complete, stable, preferred and grounded semantics (Dung, 1995), as well as the
subsequently introduced ideal (Dung et al., 2007) and semi-stable (Verheij, 1996; Caminada, 2006a)
semantics.1 These semantics can be considered to be mainstream, since they share a basic property called

1Please notice that terms like “preferred semantics” or “ideal semantics” correspond to existing terminology in the
literature and do not imply any value judgements.
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Figure 2 A simple argumentation framework

admissibilityand have been subject to much study, including the specification of proof procedures and
of properties regarding computational complexity. We alsotreat two additional semantics, namely stage
(Verheij, 1996) and CF2 semantics (Baroni et al., 2005). Unlike the other semantics considered in this
paper, stage and CF2 semantics are not admissibility-based, but they have quite unique characteristics that
make them worthwhile to examine.

2.1 Basic concepts

Central to the theory of abstract argumentation is the notion of anargumentation framework, which, as
mentioned in the introduction, is essentially a directed graph in which the arguments are represented by
the nodes and the attack relation is represented by the arrows2. Given the tutorial nature of this paper, we
keep the presentation simple by restricting ourselves to finite argumentation frameworks. Some notes on
infinite argumentation frameworks are given in Section 4.4.

Definition 1 An argumentation frameworkis a pair (Ar , att) in whichAr is a finite set of arguments
andatt ⊆Ar ×Ar .

We say that argumentA ∈ Ar attacksargumentB ∈ Ar (or thatA is anattackerofB) iff (A, B) ∈ att .
If Args ⊆Ar andA ∈ Ar then we say thatA attacksArgs iff there existsB ∈ Args such thatA attacks
B. Likewise, we say thatArgs attacksA iff there existsB ∈ Args such thatB attacksA. ForA ∈ Ar

then we writeA− for {B | (B, A) ∈ att} andA+ for {B | (A, B) ∈ att}. Likewise, forArgs ⊆Ar we
writeArgs− for {B | ∃A ∈ Args : (B, A) ∈ att} andArgs+ for {B | ∃A ∈Args : (A, B) ∈ att}.

We will also need to consider the restriction of an argumentation framework to a subset of its
arguments.

Definition 2 Given an argumentation frameworkAF = (Ar , att) and a set of argumentsArgs ⊆Ar ,
the restriction ofAF to Args , denoted asAF↓Args is the argumentation framework(Args , att ∩

(Args ×Args)).

An argumentation framework encodes, through the attack relation, the existing conflicts within a set
of arguments. It is then interesting to identify the conflictoutcomes, which, roughly speaking, means
determining which arguments should be accepted (let’s say,“survive the conflict”) and which arguments
should be rejected (let’s say, “are defeated in the conflict”), according to some reasonable criterion.

Consider for instance the argumentation framework depicted in Figure 2. Which arguments are able to
survive the conflict? Is there only one possibility or are there several solutions available? While the reader
may resort to her/his personal intuition to devise a specificanswer in this simple case, it appears that
a well-defined systematic method is needed to deal with the case of arbitrarily complex argumentation
frameworks: such a formal method to identify conflict outcomes for any argumentation framework is
calledargumentation semantics.

Two main approaches to the definition of argumentation semantics are available in the literature: the
labelling-based approach and theextension-based approach.

The idea underlying thelabelling-based approach is to give each argument a label. A sensible (though
not the only possible) choice for the set of labels is:in, out or undec, where the labelin means the
argument is accepted, the labeloutmeans the argument is rejected and the labelundecmeans one abstains
from an opinion on whether the argument is accepted or rejected. Each argument then gets exactly one

2In Dung’s theory, attack is a one-to-one relationship, which deviates from earlier work of, for instance, Vreeswijk
(1993) which is centered around the notion ofcollective attack, meaning that a set of arguments is collectively
attacking another argument.
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label. In Figure 2, one might start assigning the labelin to argumentA, as it does not receive attacks,
then derive that the argumentB should beout, and then assume thatC should bein in turn. While this
labeling may sound reasonable, other choices are, at least in principle, available: e.g. one might assign
all arguments the labelin, but this seems incompatible with the existence of conflictsamong them, or
one might assign all arguments the labelundec, but this seems excessively cautious at least as far as the
unattacked argumentA is concerned. Thus, a specific labelling-based argumentation semantics provides a
way to select “reasonable” labellings among all the possible ones, according to some criterion embedded
in its definition.

The idea underlying theextension-based approach is to identify sets of arguments, called exten-
sions, which can survive the conflict together and thus represent collectively a reasonable position an
autonomous reasoner might take. Exemplifying with an incremental procedure for extension construction,
in Figure 2 one might start including the argumentA, as it does not receive attacks, then exclude the
argumentB, and then assume thatC should be included in turn, ending up with the extension{A, C}.
Also in this case other choices are available, at least in principle: e.g. one might consider the extension
{A, B, C}, but (again) this seems incompatible with the existing conflicts among arguments, or one might
consider the empty set as extension, but this seems excessively cautious since at leastA seems to deserve
inclusion in any extension. Thus, a specific extension-based argumentation semantics provides a way to
select “reasonable” sets of arguments among all the possible ones, according to some criterion embedded
in its definition.

Let us now turn to the formal counterpart of the notions exemplified above.
A generic labelling assigns to each argument of an argumentation framework a label taken from a

predefined set.

Definition 3 LetAF = (Ar , att) be an argumentation framework andΛ a set of labels. AΛ−labelling
is a total functionLab :Ar −→ Λ. The set of allΛ−labellingsofAF will be denoted asL(Λ, AF ).

A labelling-based semantics prescribes a set of labellingsfor any argumentation framework.

Definition 4 Given an argumentation frameworkAF = (Ar , att) and a set of labelsΛ, a labelling-
based semanticsS associates withAF a subset ofL(Λ, AF ), denoted asLS(AF ).

We will also need the notion of restriction of a labelling to aset of arguments.

Definition 5 Given an argumentation frameworkAF = (Ar , att), a set of labelsΛ, a Λ−labelling
Lab, and a set of argumentsArgs ⊆Ar , the restriction ofLab toArgs , denoted asLab↓Args is defined as
Lab ∩ (Args × Λ).

In this paper we focus on the caseΛ = {in, out, undec}, a sensible choice forΛ which has received
considerable attention in the literature (Caminada, 2006b, 2007a; Rahwan and Larson, 2008; Caminada
and Gabbay, 2009; Caminada and Pigozzi, 2011; Rahwan and Tohmé, 2010). An alternative approach
can be found in (Jakobovits and Vermeir, 1999), where a four-valued labelling is considered. The idea
of labelling can also be put in correspondence with the notion of status assignment in inference graphs
(Pollock, 1995). Connections between defeat status assignments and extensions in Dung’s argumentation
frameworks have been firstly investigated by Verheij (1996).

We will implicitly assume the use ofΛ = {in, out, undec}, when the reference to the label
set is omitted. In particular, given a labellingLab, we write in(Lab) for {A | Lab(A) = in},
out(Lab) for {A | Lab(A) = out} and undec(Lab) for {A | Lab(A) = undec}. A labelling can be
represented as a set of pairs. For instance, the labelling exemplified above for Figure 2 can be
described as{(A, in), (B, out), (C, in)}. Sometimes we will also represent a labellingLab as the
triple (in(Lab), out(Lab), undec(Lab)). The same labelling for Figure 2 can thus be represented as
({A, C}, {B}, ∅).

As an extension is simply a set of arguments, we can directly introduce the notion of extension-based
semantics.
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Figure 3 An argumentation framework with mutual attack

Definition 6 Given an argumentation frameworkAF = (Ar , att), an extension-based semanticsS

associates withAF a subset of2Ar , denoted asES(AF ).

Some observations concerning the relations between the labelling and extension-based approaches are
worth remarking. First, as set membership can be formulatedin terms of a simple binary labelling, e.g.
with Λ = {∈, /∈}, the extension-based approach can be regarded as a special case of the general labelling-
based approach. The latter is therefore more general, whilethe former, probably due to its simplicity, has
received by far more attention in previous literature.

Considering the three-valued labelling we focus on in this paper, a correspondence with the extension-
based approach can be drawn, so that a semantics based on thislabelling can be turned into an extension-
based one through a simple mapping. In fact, given a labelling of anAF , the labelsin can be understood
as identifying the members of an extension. This kind of correspondence can be easily identified in the
exemplification concerning Figure 2 given above and is formally expressed by the following definitions.

Definition 7 Given an argumentation frameworkAF = (Ar , att) and a labellingLab the correspond-
ing set of argumentsLab2Ext(Lab) is defined asLab2Ext(Lab) = in(Lab).

Definition 8 Given an argumentation frameworkAF = (Ar , att) and a labelling-based semanticsS,
the set of extensions corresponding toLS(AF ) is given byES(AF ) = {Lab2Ext(Lab) | Lab ∈ LS(AF )}.

On the other hand, given a set of argumentsE it is possible to define a corresponding three-valued
labelling by distinguishing the arguments belonging toE, those attacked by some member ofE, and
those which neither belong toE nor are attacked byE. As this correspondence is well-defined only ifE

satisfies some basic conditions, we defer its formal definition to Section 2.2 (Definition 14).

We now introduce some notions which are common to both approaches.

First it can be noted that both approaches encompass (in general) the existence of a set of alternatives
(either labellings or extensions) for a single argumentation framework. It may be the case, however, that
a semanticsS is defined so that a univocal outcome is prescribed for each argumentation framework
(formally for any argumentation frameworkAF , |LS(AF )| = 1 or |ES(AF )|= 1). In this case, the
semantics is said to belong to theunique-status(or single-status) approach, while in the general case
it is said to belong to themultiple-statusapproach.

Consider the argumentation framework of Figure 3 representing a mutual attack. A unique-status
approach may prescribe the{(A, undec), (B, undec)} labelling or analogously a single empty extension,
corresponding to an explicit abstention from decision. On the other hand, a multiple-status approach may
encompass the two alternative labellings{(A, in), (B, out)} and{(A, out), (B, in)} or analogously
the extensions{A} and{B} corresponding to two opposite ways of solving the conflict.

As evident from the previous example, a semanticsS does not provide, in general, the “last word” about
the status of an argumentA. In factS may prescribe both a labelling whereA is labelledin and another
whereA is labelledout (or, analogously, an extension includingA and another one not). In the view of
producing a synthetic evaluation for each argument, one hasthen to consider questions like “Is beingin in
all labellings significantly different from beingin only in some of them?” or “If an argument is notin in
all labellings should it being labelledout or undec in the remaining labellings make some difference?”.
Analogous questions may arise for the extension-based approach. It emerges that the assessment of a
syntheticjustification statusfor each argument of an argumentation framework is a furtherdistinct (and
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not trivial) step after the identification of labellings or extensions. This will be dealt with in Section 4
where the related issue of skepticism comparison between semantics will also be examined.

In the subsections 2.3-2.10 we will examine several argumentation semantics proposed and widely
studied in the literature. The presentations of the varioussemantics roughly follow a common line: first, the
underlying intuitive idea is introduced, then the semantics formal definition is given according to both the
labelling and the extension-based approach, finally the presentation is completed by discussing illustrative
examples and examining additional important formal properties and inter-semantics relationships. As
to examples, the relatively simple ones provided in Figures4-6 will be used as a common reference
throughout this section, adding other more specific and/or complex ones where necessary. We invite
the reader to give a look to Figures 4-6 in order to set up a “personal view” on how the conflict they
encode might be resolved, and then comparing this view with those emerging from the various semantics
proposals analyzed in the following. Before dealing directly with semantics we need however to examine
in the next subsection two general properties, which underlie most of them, namely admissibility and
conflict-freeness.

2.2 Admissibility and conflict-freeness

To introduce the notion of admissibility let us start from a very simple principle: for every argumentA
one accepts (or rejects) an explanation of why it is accepted(or rejected) should be available, in relation
with acceptance or rejection of other arguments connected to A through the attack relation. This concept
lends itself to slightly different, though converging,declinations in the labelling and in the extension-based
approach.

In the labelling-based approach, assigning thein label to an argumentA can be explained by having
assigned theout label to all its attackers (or byA being attacked by no argument) so thatA is not affected
by any attack, while assigning theout label toA can be explained by having assigned thein label to one
of its attackers, which enablesA to be rejected.

This is expressed by the following definitions.
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Definition 9 LetLab be a labelling of argumentation framework(Ar , att).

• Anin-labelled argument is said to belegallyin iff all its attackers are labelledout.
• Anout-labelled argument is said to belegallyout iff it has at least one attacker that is labelledin

Definition 10 Let AF = (Ar , att) be an argumentation framework. Anadmissible labellingis a
labellingLab where eachin-labelled argument is legallyin and eachout-labelled argument is legally
out.

Note that, according to this definition, for any argumentation framework a labelling where all
arguments areundec is admissible. Let us now examine admissible labellings in the reference examples.
Considering Figure 4, it is evident thatA, having no attackers, can only be labelled legallyin or undec.
Considering the latter case,B can only be labelledundec, which implies thatC can not be legallyin.
If C is labelledundec thenD is undec too, otherwiseC is labelledout entailing thatD is labelled
in. This yields two admissible labellings, the trivial one(∅, ∅, {A, B, C, D}) and({D}, {C}, {A, B}).
The case whereA is labelledin leaves two alternatives forB. If B is labelledundec we have the same
options as above forC andD yielding the two additional admissible labellings({A}, ∅, {B, C, D}) and
({A, D}, {C}, {B}). Finally if B is labelledout, three alternatives are left open forC andD: they can
be both labelledundec orC can be legally labelledin if D is labelledout and vice versa, yielding other
three labellings:({A}, {B}, {C, D}), ({A, C}, {B, D}, ∅), ({A, D}, {B, C}, ∅).

In Figure 5, with a similar reasoning as in the previous example it can be noted thatA andB can
be both labelledundec or onein and the otherout. The first case yields only the trivial labelling
(∅, ∅, {A, B, C, D}), in the other casesC may be labelledundec, yieldingD undec, or out leaving for
D both the optionsundec andin. In summary there are seven admissible labellings whose enumeration
is left to the reader.

In Figure 6 no admissible labellings besides the trivial one(∅, ∅, {A, B, C}) are possible.
Turning now to the extension-based approach, the inclusionof an argumentA in an extensionE can

be supported by the fact thatE rules out all the attackers ofA by in turn attacking them (if any). To put it
in other words,E “defends”A. This is formalized in the following definitions.

Definition 11 Let AF = (Ar , att) be an argumentation framework andArgs ⊆Ar . The setArgs

defends3 A ∈Ar iff ∀B ∈ A−∃C ∈ Args : C attacks B. The functionF : 2Ar −→ 2Ar such that
F (Args) = {A | Args defendsA} is called the characteristic function ofAF .

An example of defense is given in Figure 7. Here we have an argumentA that has three attackers:B1,
B2 andB3. Args defendsA because it attacks all these attackers.

Having introduced the notion of defense, a basic requirement for a set of arguments is the capability
to defend all its elements. It is however natural to require also that the set of arguments features a sort of
“internal coherence”: no conflict should be allowed within aset of arguments which are considered able
to survive the conflicttogether. This leads to the definition of conflict-free set.

Definition 12 LetAF = (Ar , att) be an argumentation framework andArgs ⊆Ar . The setArgs is
conflict-freeiff ¬∃A, B ∈ Args :A attacksB.

Note that this definition also rules out sets containing self-attacking arguments (in the caseA=B).
An admissible set (Dung, 1995) is required to be both internally coherent and able to defend its

elements.

Definition 13 Let AF = (Ar , att) be an argumentation framework. A setArgs ⊆Ar is called an
admissible set iffArgs is conflict-free andArgs ⊆ F (Args).

As evident from this definition, the empty set is admissible for any argumentation framework.
Apart from this trivial case, let us examine conflict-free and admissible sets in the reference examples.

3The original terminology in (Dung, 1995) was that an argument A is acceptablew.r.t. a set of argumentsArgs .
However, we find it more intuitive to say that an argumentA is defendedby a set of argumentsArgs .
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Figure 7 Args defends argumentA

Considering Figure 4, one can observe that the non empty conflict-free sets are{A}, {B}, {C}, {D},
{A, C}, {A, D}, {B, D}. Among them,{A}, having no attackers, is admissible (actuallyF ({A}) =

{A}). The sets{B} and{C} are not admissible (B does not defend itself fromA andC does not defend
itself fromB), while {D} is, as it defends itself fromC (in particularF ({D}) = {A, D}). Moreover the
sets{A, C} and{A, D} are admissible (in the former caseC defends itself from the attack byD and is
defended byA againstB, in the latter bothA andD are able to defend themselves), while{B, D} is not
(a defense forB againstA is lacking). Applying analogous considerations in Figure 5, it can be seen that
the non empty admissible sets are{A}, {B}, {A, D} and{B, D}. On the other hand, in Figure 6 only
the empty set is admissible since the non empty conflict-freesets are just the singletons{A}, {B}, {C}

but no argument defends itself from the attack it receives.
As probably noticed by the reader, the above examples point out a correspondence between admissible

labellings and admissible sets. Before stating this correspondence in the general case, we need to provide
the mapping from sets of arguments to labellings that was notintroduced in previous section since it is
well-defined only for conflict-free sets of arguments4.

Definition 14 Given an argumentation frameworkAF = (Ar , att) and a conflict-free set of argu-
ments Args ⊆Ar the corresponding labellingExt2Lab(Args) is defined asExt2Lab(Args) =

(Args ,Args+, Ar \ (Args ∪Args+)).

Let us call an extension-based semantics conflict-free if all its extensions are conflict-free sets. We can
then extend the above definition to sets of extensions.

Definition 15 Given an argumentation frameworkAF = (Ar , att) and a conflict-free extension-based
semanticsS, the set of labellings corresponding toES(AF ) is given byLS(AF ) = {Ext2Lab(E) | E ∈

ES(AF )}.

The correspondence between admissible labellings and admissible sets stated by Proposition 1 has
been proved in (Caminada and Gabbay, 2009).

Proposition 1 For any argumentation frameworkAF = (Ar , att)

• if Args is an admissible set thenExt2Lab(Args) is an admissible labelling;
• if Lab is an admissible labelling thenLab2Ext(Lab) is an admissible set.

It can be noted that the correspondence is not bijective, since different admissible labellings may
give rise to the same admissible set. For instance, in the argumentation framework of Figure 4

4If a setArgs of arguments is not conflict-freeArgs ∩ Args+ is not empty, i.e. some argument would be labelled
bothin andout according toExt2Lab(Args).
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both ({A}, {B}, {C, D}) and({A}, ∅, {B, C, D}) are admissible labellings, whose set ofin-labelled
arguments yields the same admissible set{A}.

To complete the correspondence it is also possible to define anotion of conflict-free labelling which
parallels the one of conflict-free set5.

Definition 16 LetLab be a labelling of an argumentation frameworkAF = (Ar , att). Lab is conflict-
freeiff for eachA ∈Ar it holds that:

1. if A is labelledin then it does not have an attacker that is labelledin

2. if A is labelledout then it has at least one attacker that is labelledin

When comparing a conflict-free labelling to an admissible labelling it can be noticed that the condition
onout labelled arguments (second bullet) is essentially the same. However, the condition forin-labelled
arguments (first bullet) is weaker for conflict-free labellings than for admissible labellings. It then follows
that every admissible labelling is also a conflict-free labelling (just like every admissible set is also a
conflict-free set by definition).

2.3 Complete Semantics

Complete semantics can be regarded as a strengthening of thebasic requirements enforced by the idea
of admissibility. Intuitively, while admissibility requires one to be able to give reasons for accepted and
rejected arguments but leaves one free to abstain about any argument, complete semantics also requires
one to abstain only if there are no good reasons to do otherwise. That is, if one abstains from having an
opinion on whether the argument is accepted or rejected, then one should have insufficient grounds to
accept the argument (meaning that not all its attackers are rejected) and insufficient grounds to reject the
argument (meaning that it does not have an attacker that is accepted). Note in particular that, while the
trivial solution of leaving anything undecided is always admissible, it is not always complete since there
can be arguments one has good reason not to abstain about.

In the labelling-based approach, the intuition described above corresponds to extending Definition 9 in
order to encompass a notion of an argument beinglegally undecided.

Definition 17 LetLab be a labelling of an argumentation framework(Ar , att).

• Anundec-labelled argument is said to belegallyundec iff not all its attackers are labelledout and
it doesn’t have an attacker that is labelledin.

Definition 18 A complete labellingis a labelling where everyin-labelled argument is legallyin, every
out-labelled argument is legallyout and everyundec labelled argument is legallyundec.

It is clear from Definitions 18 and 10 that every complete labelling is an admissible labelling (but the
reverse does not hold in general).

An alternative characterization of a complete labelling can be provided (Caminada and Pigozzi, 2011).

Proposition 2 Let Lab be a labelling of an argumentation framework(Ar , att). Lab is a complete
labelling iff for each argumentA ∈Ar it holds that:

1. A is labelledin iff all its attackers are labelledout, and
2. A is labelledout iff it has at least one attacker that is labelledin.

Although Proposition 2 does not explicitly mentionundec, it follows that each argument that is labelled
undec does not have all its attackersout (otherwise it would have to be labelledin by point 1) and it
does not have an attacker that is labelledin (otherwise it would have to be labelledout by point 2).
Therefore, eachundec-labelled argument is legallyundec. A formal proof of Proposition 2 can be found
in (Caminada and Gabbay, 2009).

5We use the Definition of (Caminada, 2011). Note that clause 2.is needed for defining stage labellings (see Section
2.9).
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Turning to the extension-based approach, a complete extension is a conflict-free set which includes
precisely those arguments it defends. That is, if an argument is defended by the set it should be in the set,
and if an argument is not defended by the set, it should not be in the set. Technically this means that a
complete extension is a conflict-free fixed point of the characteristic function, as stated in the following
definition (Dung, 1995).

Definition 19 Let (Ar , att) be an argumentation framework. A setArgs ⊆Ar is called acomplete
extensioniff Args is conflict-free andArgs = F (Args).

It is clear from Definitions 19 and 13 that every complete extension is an admissible set (but the reverse
does not hold in general).

Let us now provide some examples to illustrate the notion of complete semantics. In Figure 4, one
can observe that, among the seven admissible labellings,({A}, {B}, {C, D}), ({A, C}, {B, D}, ∅), and
({A, D}, {B, C}, ∅) are complete. In particular, note thatA is legallyin in all labellings because all its
attackers areout (trivially, because it has no attackers).B is legallyout in all labellings because it has
an attacker (A) that isin. On the other hand,C andD can be both legallyundec, or one legallyin and
the other legallyout. Analogously, in the same figure it can be noted that{A} is a complete extension (A
has no attackers and is therefore trivially defended by any set,A defendsC fromB but not fromD), and
{A, C} and{A, D} are complete extensions too.

In Figure 5, the trivial labelling(∅, ∅, {A, B, C, D}) is complete, as well as({A, D}, {B, C}, ∅)

and({B, D}, {A, C}, ∅). Analogously,∅ is a complete extension (no unattacked arguments exist, which
would be the only arguments defended by the empty set) as wellas{A, D} and{B, D}, while {A} and
{B} are not complete extensions since they both defend also argumentD.

In Figure 6 the only complete labelling is the trivial one(∅, ∅, {A, B, C}) and analogously the only
complete extension is∅ (as it was the case for admissible labellings/sets).

As the above examples also show, there is a direct mapping between complete labellings and complete
extensions: it has been proved in (Caminada and Gabbay, 2009) that this correspondence is bijective as
stated in the following proposition.

Proposition 3 For any argumentation framework(Ar , att), Lab is a complete labelling iff there is a
complete extensionArgs such thatLab = Ext2Lab(Args).

2.4 Grounded Semantics

If one regards each complete labelling (or complete extension) as a reasonable position one can take in
the presence of the conflicting information expressed in theargumentation framework, then a possible
question is to examine what is the most “grounded” position one can take, namely the position which is
least questionable. The idea is then to accept only the arguments that one cannot avoid to accept, to reject
only the arguments that one cannot avoid to reject, and abstaining as much as possible. This gives rise to
the most skeptical (or least committed) semantics among those based on complete extensions.

This idea has a straightforward formal counterpart in termsof a minimality requirement6.

Definition 20 LetAF = (Ar , att) be an argumentation framework. The grounded labelling ofAF is
a complete labellingLab wherein(Lab) is minimal (w.r.t. set inclusion).

Definition 21 LetAF = (Ar , att) be an argumentation framework. The grounded extension ofAF is
a minimal (w.r.t. set inclusion) complete extension ofAF (i.e. a minimal conflict-free fixed point of the
characteristic functionF ).

As we have already seen complete labellings and extensions in the examples of Figures 4-6, one can
identify those featuring the minimality property requiredby the above definitions. In the example of Figure
4, the grounded labelling is({A}, {B}, {C, D}) while the grounded extension is{A}. In both Figures 5

6Definition 21 is not literally the same as the one originally given by Dung (1995). We provide this equivalent version
as more coherent with our presentation line.
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and 6 the grounded labelling is the trivial one ((∅, ∅, {A, B, C, D}) and(∅, ∅, {A, B, C}) respectively),
and analogously the grounded extension is the empty set in both cases.

The uniqueness of the grounded labelling and extension in these examples is not accidental. Consider-
ing the grounded extension, sinceF is monotonic it follows from the Knaster-Tarski theorem that F has
a unique smallest fixed point. It can then be proved that this fixed point is also conflict-free (Dung, 1995).

Proposition 4 For any argumentation framework(Ar , att), the following statements are equivalent:

1. Args is a minimal conflict-free fixed point ofF
2. Args is the smallest fixed point ofF

It follows that:

• the grounded extension is unique (i.e. grounded semantics belongs to the unique-status approach);
• the grounded extension is the least complete extension, in particular it is included in any complete

extension.

In virtue of the one-to-one correspondence between complete extensions and complete labellings
established in Section 2.3, it can be proved that the grounded labelling is unique and coincides with
Ext2Lab(Args) whereArgs is the grounded extension. Similarly, ifLab is the grounded labelling, then
Lab2Ext(Lab) is the grounded extension.

As a confirmation of the intuitive meaning stated at the beginning of the section, it turns out that the
grounded semantics can be described not only in terms of minimizing acceptance. In fact, the complete
labelling wherein(Lab) is minimal is also the complete labellingLab whereout(Lab) is minimal, and
the complete labellingLab whereundec(Lab) is maximal. This is stated in Proposition 5, whose proof is
based on Lemma 1 (see (Caminada, 2006b; Caminada and Gabbay,2009) for details).

Lemma 1 LetLab1 andLab2 be complete labellings of an argumentation framework(Ar , att). It holds
thatin(Lab1)⊆ in(Lab2) iff out(Lab1)⊆ out(Lab2).

Proposition 5 Let Lab be a complete labelling of an argumentation framework(Ar , att). The
following statements are equivalent.

1. Lab is the complete labelling wherein(Lab) is minimal (w.r.t. set inclusion)
2. Lab is the complete labelling whereout(Lab) is minimal (w.r.t. set inclusion)
3. Lab is the complete labelling whereundec(Lab) is maximal (w.r.t. set inclusion)

Given the bijective correspondence between complete labellings and complete extensions, the above
proposition can be equivalently formulated for the extension-based approach.

Proposition 6 LetE be a complete extension of an argumentation framework(Ar , att). The following
statements are equivalent.

1. E is the least (w.r.t. set inclusion) complete extension
2. E is the complete extension such thatE+ is minimal (w.r.t. set inclusion)
3. E is the complete extension such thatAr \ (E ∪ E+) is maximal (w.r.t. set inclusion)

Finally, an interesting property proved in (Dung, 1995) provides a useful “constructive” characteriza-
tion of grounded semantics for finite (and more generally finitary7) argumentation frameworks.

Proposition 7 The grounded extension of any finitary argumentation framework is equal to
∪i=1,...,∞F i(∅), whereF 1(∅) = F (∅) and fori > 1 F i(∅) = F (F i−1(∅)).

On the basis of Proposition 7 the grounded labelling (or equivalently extension) can be obtained
incrementally by first labellingin those arguments which do not receive attacks. Then the arguments

7An argumentation framework is finitary if every argument receives a finite number of attacks.
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attacked by those labelledin are labelledout. The same steps are iterated considering only those
arguments which have not been labelled yet, namely repeating the procedure on an argumentation
framework obtained by suppressing the already labelled arguments. In particular, this corresponds to
labelling in those unlabelled arguments which only receive attacks fromarguments labelledout, and
then labellingout those attacked by the newly labelledin arguments. The procedure is then iterated until
an iteration does not produce any newlyin orout labelled argument. Then, any still unlabelled arguments
are labelledundec.

It can be noted that the first iteration corresponds to labelling in the arguments inF 1(∅) andout
the arguments attacked byF 1(∅), the second iteration labellingin the arguments inF 2(∅) andout the
arguments attacked byF 2(∅), and so on. This procedure can be applied to the examples and shows that
the grounded extension includes those and only those arguments whose defense is “rooted” in unattacked
arguments (see (Baroni and Giacomin, 2007) for a formal treatment of this notion, calledstrong defense).

If the aim is not so much to compute the entire grounded extension (labelling) but merely to examine
whether or not an argument is in the grounded extension (labelled in by the grounded labelling) then one
could also use the proof procedures described in (Modgil andCaminada, 2009).

2.5 Preferred Semantics

While grounded semantics takes a skeptical, or least-commitment, standpoint, one can also consider the
alternative view oriented at accepting as many arguments asreasonably possible. This may give rise to
mutually exclusive alternatives for acceptance: for instance a mutual attack can be reasonably resolved by
accepting either of the conflicting arguments, but clearly not both.

The idea of maximizing accepted arguments is expressed bypreferred semanticswhose description in
the labelling-based and extension-based approaches is given in the following definitions.

Definition 22 LetAF = (Ar , att) be an argumentation framework. A preferred labelling ofAF is a
complete labellingLab wherein(Lab) is maximal (w.r.t. set-inclusion) among all complete labellings.

Definition 23 LetAF = (Ar , att) be an argumentation framework. A preferred extension is a maximal
admissible set ofAF (w.r.t. set inclusion).

Considering the examples of Figures 4-6, the existence of multiple preferred labellings (or extensions)
immediately emerges. For instance, in Figure 4 two non-skeptical solutions exist for the mutual attack
betweenC andD, giving rise to the preferred labellings({A, C}, {B, D}, ∅) and({A, D}, {B, C}, ∅).
Similarly, two preferred extensions exist, namely{A, C} and{A, D}.

In Figure 5 again two alternative non-skeptical solutions exist for the mutual attack betweenA and
B. In both cases,C is then rejected andD accepted. This intuitive description corresponds to the two
preferred labellings({A, D}, {B, C}, ∅) and ({B, D}, {A, C}, ∅) and, analogously, to the preferred
extensions{A, D} and{B, D}.

In Figure 6 instead, no non-trivial solutions to the conflictare available under the constraint of
admissibility, as the reader may remember from previous subsections. It then follows that the unique
preferred labelling in this case is(∅, ∅, {A, B, C}) and, similarly, the only preferred extension is∅.

As usual, the evident correspondences in the above examplesare not accidental: it can be proved that an
analogous version of Proposition 3 holds for preferred semantics, i.e. there is a bijective correspondence
between preferred labellings and preferred extensions through theExt2Lab (andLab2Ext) functions.

It turns out that the complete labellings with maximalin are the same as the complete labellings with
maximalout, as stated in Proposition 8 whose proof is based on Lemma 1.

Proposition 8 Given an argumentation frameworkAF = (Ar , att) the following statements are
equivalent.

1. Lab is a complete labelling wherein(Lab) is maximal (w.r.t. set inclusion) among all complete
labellings.
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2. Lab is a complete labelling whereout(Lab) is maximal (w.r.t. set inclusion) among all complete
labellings.

An analogous formulation of Proposition 8 for the extension-based approach could be provided in a
straightforward way.

Relationships of preferred extensions with other semantics notions have been analyzed in (Dung,
1995). Preferred extensions can for instance equivalentlybe characterized as maximal complete exten-
sions.

Proposition 9 LetAF = (Ar , att) be an argumentation framework and letArgs ⊆Ar . The following
statements are equivalent.

1. Args is a maximal (w.r.t. set inclusion) admissible set ofAF

2. Args is a maximal (w.r.t. set inclusion) complete extension ofAF

This in particular implies that the grounded extension is included in any preferred extension, as it is
in any complete extension. By definition, the grounded extension coincides with the intersection of all
complete extensions: one may then wonder whether this holdsalso for preferred extensions. The answer
is negative, as shown for instance by the example of Figure 5 where the grounded extension is∅ while the
intersection of the preferred extensions is{D}. Again, this fact can be easily translated in the labelling-
based approach referring to thein-labelled arguments.

An algorithm that produces all preferred labellings (and therefore also produces all preferred exten-
sions) is described in (Caminada, 2007a; Modgil and Caminada, 2009). If the aim is merely to determine
whether an argument is in at least one preferred extension (labelledin by at least one preferred labelling)
then one could also use the proof procedures described in (Vreeswijk and Prakken, 2000; Vreeswijk, 2006;
Verheij, 2007; Modgil and Caminada, 2009; Caminada and Wu, 2009). Proof procedures for determining
whether an argument is in every preferred extension (labelledin by every preferred labelling) are provided
in (Cayrol et al., 2003; Modgil and Caminada, 2009).

2.6 Stable Semantics

So far we have discussed semantics according to the intuitive idea that an argument can be accepted,
rejected or left undecided. One can however prefer more committed evaluations, in which there is no
room for neutrality or shades of gray and everything is just black or white. This means that undecided
arguments are simply “forbidden” as in statements like “you’re either with us or against us.”

This clear-and-strong view has a direct formulation in boththe labelling-based and extension-based
approach.

Definition 24 Let Lab be a labelling of argumentation frameworkAF = (Ar , att). Lab is a stable
labellingofAF iff it is a complete labelling withundec(Lab) = ∅.

Definition 25 Let AF = (Ar , att) be an argumentation framework. Astable extensionof AF is a
conflict-free setArgs such thatArgs ∪ Args+ =Ar .

In the example of Figure 4 there are two stable labellings, namely ({A, C}, {B, D}, ∅) and
({A, D}, {B, C}, ∅). Similarly, two stable extensions exist, namely{A, C} and{A, D}. In Figure 5
the labellings({A, D}, {B, C}, ∅) and({B, D}, {A, C}, ∅) are stable and, analogously, there are two
stable extensions, namely{A, D} and{B, D}.

Figure 6 shows that the strong view underlying stable semantics can not be universally applied. In
fact, no labelling nor extension complying with the definition can be identified (the requirements of
conflict-freeness and ability to attack all other argumentsare incompatible in this case). This can be
regarded as a limitation of stable semantics as “stable extensions do not capture the intuitive semantics
of every meaningful argumentation system” (Dung, 1995). Looking at this fact from another perspective,
differently from other semantics reviewed so far, in the case of stable semantics the trivial labelling (or
extension) does not represent the “default” conflict resolution one can resort to when nothing else is
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Figure 8 An argumentation framework where preferred and stable semantics differ

reasonable. It follows that, using a terminology from (Baroni and Giacomin, 2009b), stable semantics
is notuniversally defined, since there are argumentation frameworks where it is intrinsically impossible
to apply its “in-or-out” view. No other argumentation semantics considered in the literature shows this
limitation.

Apart from this critical case, the reader may have noticed that the stable labellings (extensions)
coincide with the preferred ones in the other two cases. One may then wonder whether stable semantics
(leaving apart critical cases) coincides with preferred semantics. The answer is negative, as shown
by the argumentation framework of Figure 8. Here one can verify that there are three complete
labellings, namely(∅, ∅, {A, B, C, D, E}), ({A}, {B}, {C, D, E}) and ({B, D}, {A, C, E}, ∅), and,
correspondingly, three complete extensions. Two of the three labellings (extensions) are preferred, namely
({A}, {B}, {C, D, E}) and({B, D}, {A, C, E}, ∅), but clearly only the last one is stable.

Let us now generalize this and possibly related observations, examining properties of stable semantics
in general.

First it is possible to characterize the concept of a stable labelling in other terms. In particular note
that the difference between a complete labelling and an admissible labelling is that a complete labelling
has the additional requirement that everyundec-labelled argument is legallyundec. However, if, as
in Definition 24, there are noundec-labelled arguments in the first place, then this extra requirement
becomes superfluous. Moreover, the fact that anything that is not labelledin is labelledout ensures that
every stable labelling is also preferred (but not viceversa, as we have already seen). These considerations
are summarized in Proposition 10 (notice that point 3 of Proposition 10 coincides with Definition 24).

Proposition 10 LetLab be a labelling of an argumentation frameworkAF = (Ar , att). The following
statements are equivalent:

1. Lab is a conflict-free labelling withundec(Lab) = ∅

2. Lab is an admissible labelling withundec(Lab) = ∅

3. Lab is a complete labelling withundec(Lab) = ∅

4. Lab is a preferred labelling withundec(Lab) = ∅

On the other hand, it is immediate to see that a stable extension is an admissible set, hence the
equivalent characterizations given in Proposition 11 (again, note that point 1 of Proposition 11 coincides
with Definition 25).

Proposition 11 Let AF = (Ar , att) be an argumentation framework andArgs ⊆Ar a set of argu-
ments. The following statements are equivalent:

1. Args is a conflict-free set withArgs ∪ Args+ =Ar

2. Args is an admissible set such thatArgs ∪Args+ =Ar

3. Args is a complete extension such thatArgs ∪ Args+ =Ar

4. Args is a preferred extension such thatArgs ∪ Args+ =Ar

5. Args+ =Ar\Args

As probably evident from above, the bijective labellings-extensions correspondence throughExt2Lab

(andLab2Ext) holds for stable semantics too as proved in (Caminada and Gabbay, 2009).
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An algorithm that produces all stable labellings (and therefore also all stable extensions) is described in
(Caminada, 2007a; Modgil and Caminada, 2009). If the aim is merely to determine whether an argument
is in at least one stable extension (labelledin by at least one stable labelling) then one could also use
the proof procedures described in (Caminada and Wu, 2009). Proof procedures for determining whether
an argument is in every stable extension (labelledin by every stable labelling) are also provided in
(Caminada and Wu, 2009).

2.7 Semi-Stable Semantics

As illustrated in the previous section, the requirement of “forbidding” undecided arguments turns out to
yield no results in some cases. A more sophisticated idea consists in expressing a definite opinion on the
largest possible set of arguments, while restricting as much as possible (but not necessarily avoiding) those
which are left undecided. This intuition lies at the basis ofsemi-stablesemantics, which can be defined as
follows.

Definition 26 LetLab be a labelling of an argumentation frameworkAF = (Ar , att). Lab is a semi-
stablelabelling ofAF iff Lab is a complete labelling whereundec(Lab) is minimal (w.r.t. set inclusion)
among all complete labellings.

Definition 27 Let AF = (Ar , att) be an argumentation framework. A semi-stable extension ofAF

is a complete extensionArgs whereArgs ∪Args+ is maximal (w.r.t. set inclusion) among all complete
extensions.

It follows directly that each stable labelling is also a semi-stable labelling and that semi-stable
labellings coincide with stable labellings when the latterexist. This is because a stable labelling is a
complete labelling with an empty set ofundec-labelled arguments. Hence, it is a complete labelling where
the set ofundec-labelled arguments is minimal (so a semi-stable labelling). Furthermore, if there exists
at least one stable labelling then the set ofundec-labelled arguments has to be empty in any complete
labelling with a minimal set ofundec-labelled arguments (semi-stable labelling) and hence anysuch a
labelling has to be stable. The same relationship holds between stable and semi-stable extensions: each
stable extension is a semi-stable extension, and semi-stable extensions coincide with stable extensions
when the latter exist. Accordingly, we already know, from previous section, the behavior of semi-stable
semantics in the examples of Figures 4 and 5.

Even in situations where stable extensions/labellings do not exist, the existence of semi-stable
labellings (or extensions) is anyway guaranteed, since they are selected among the (always existing)
complete ones. In particular, in the example of Figure 6 the only semi-stable labelling (extension) is
(again) the trivial one.

The maximization requirement imposed by semi-stable semantics is intuitively similar, but clearly
different, from the maximization requirement in the definition of preferred semantics. One may wonder
whether these different maximisations actually lead to thesame results. The answer is negative (see also
Verheij, 2003) as shown by the example of Figure 8, where there are two preferred labellings (and then
two corresponding extensions) namely({A}, {B}, {C, D, E}) and({B, D}, {A, C, E}, ∅), but only the
latter is semi-stable (as well as stable).

Equivalent characterizations of semi-stable semantics interms of admissible labellings/sets and of pre-
ferred labellings/extensions are available (see for instance Caminada and Gabbay, 2009) as summarized
in the following propositions.

Proposition 12 LetLab be a labelling of an argumentation frameworkAF = (Ar , att). The following
statements are equivalent.

1. Lab is a complete labelling whereundec(Lab) is minimal (w.r.t. set inclusion) among all complete
labellings

2. Lab is an admissible labelling whereundec(Lab) is minimal (w.r.t. set inclusion) among all
admissible labellings
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3. Lab is a preferred labelling whereundec(Lab) is minimal (w.r.t. set inclusion) among all preferred
labellings

Proposition 13 LetAF = (Ar , att) be an argumentation framework, and letArgs ⊆Ar . The follow-
ing statements are equivalent.

1. Args is a complete extension whereArgs ∪Args+ is maximal (w.r.t. set inclusion) among all
complete extensions

2. Args is an admissible set whereArgs ∪ Args+ is maximal (w.r.t. set inclusion) among all admissible
sets

3. Args is a preferred extension whereArgs ∪Args+ is maximal (w.r.t. set inclusion) among all
preferred extensions

Finally, the usual bijective labellings-extension correspondence holds for semi-stable semantics too
(see Caminada, 2007a; Caminada and Gabbay, 2009). An algorithm that produces all semi-stable
labellings (and therefore also all semi-stable extensions) is described in (Caminada, 2007a; Modgil and
Caminada, 2009).

The concept of semi-stable semantics can be traced back to the notion of admissible stage extensions
(see Section 2.9) introduced by Verheij (1996). Although there are differences in the basic formalisation
(Verheij for instance does not use the standard extension-based approach) it can be proved that Verheij’s
approach is equivalent to that of Caminada, who, independently from Verheij, rediscovered the same
concept under the name of semi-stable semantics (Caminada,2006a).

2.8 Ideal Semantics

The notion ofideal semanticscan perhaps be best explained using a description concerning a judgement
aggregation context (Caminada and Pigozzi, 2011). Assume agroup of people who all try to accept as
much as possible, examine what they all agree on, and check whether this position is still defensible: if
not, water it down (by abstaining from some arguments instead of accepting or rejecting them) until it
becomes defensible. The result is theideal labelling/extension.

In order to formally define the concept of the ideal labelling, we first need to treat some preliminaries
(see Caminada and Pigozzi, 2011).

Definition 28 Let Lab1 and Lab2 be labellings of an argumentation frameworkAF = (Ar , att).
We say thatLab2 is more or equally committedthan Lab1 (Lab1 ⊑ Lab2) iff in(Lab1)⊆ in(Lab2)

and out(Lab1)⊆ out(Lab2). We say thatLab2 is compatiblewith Lab1 (Lab1 ≈ Lab2) iff in(Lab1) ∩
out(Lab2) = ∅ andout(Lab1) ∩ in(Lab2) = ∅.

It holds that “⊑” defines a partial order (reflexive, anti-symmetric, transitive) on the labellings of
an argumentation framework. We can therefore talk about a labelling being “bigger” or “smaller” than
another labelling with respect to “⊑”. The relation “≈”, although reflexive and symmetric, is not an
equivalence relation, since it does not satisfy transitivity.8 It holds that “⊑” is at least as strong as “≈”;
that is, ifLab1 ⊑ Lab2 thenLab1 ≈ Lab2.9

The idea of “⊑” is to define what it means for a labelling to be more committedthan another labelling
(this is a special case of skepticism comparison, an issue which will be dealt with systematically in Section
4). For instance, the grounded labelling is the least committed labelling among all complete labellings.
The idea of “≈” is to define when a labelling of one person might still be acceptable to another person. To
see this, first consider that by requiring thatin(Lab1) ∩ out(Lab2) = ∅ andout(Lab1) ∩ in(Lab2) = ∅,
the relation “≈” does not allow for conflicts betweenin andout. That is, if there is an argument that

8As a counterexample, consider an argumentation frameworkAF = ({A, B}, {(A, B), (B, A)}). Let Lab1 =
({A}, {B}, ∅), Lab2 = (∅, ∅, {A, B}) andLab3 = ({B}, {A}, ∅). It holds thatLab1 ≈ Lab2 andLab2 ≈ Lab3 but
Lab1 6≈ Lab3.
9This is becauseLab1 ≈ Lab2 iff in(Lab1)⊆ in(Lab2) ∪ undec(Lab2) and out(Lab1)⊆ out(Lab2) ∪
undec(Lab2).
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is accepted by agentA but rejected by agentB (or vice versa) then their labellings are not compatible.
However, it is less problematic to have conflicts betweenin andundec, or betweenout andundec. Thus,
compatibility provides an indication of how easy or difficult it is to share a position that is not one’s own.
It is easier to do this for a labelling that is compatible thanfor a labelling that is not compatible. In the
former case the worst that can happen is that one has to abstain from something one accepts or rejects (or
have to accept or reject something where one did not have an explicit opinion about). In the latter case,
however, one has to make statements that go directly againstone’s private position.

To come back to the informal description of ideal semantics,we assume a meeting in which every
preferred labelling is represented. The meeting then discusses each argument, one by one, with the aim
to define aninitial labelling. If everybody agrees that the argument is labelledin (that is, the argument
is labelledin in every preferred labelling) then the argument is also labelled in in the initial labelling. If
everybody agrees that the argument is labelledout (that is, the argument is labelledout in every preferred
labelling) then the argument is labelledout in the initial labelling. In all other cases, the argument is
labelledundec in the initial labelling. After this process is over, and theinitial labelling has been finished,
the meeting goes to the second phase, in which the initial labelling is “watered down” in order to become
an admissible labelling. This is done by iteratively relabelling each argument that is illegallyin or illegally
out to undec. When there are no more arguments left that are illegallyin or illegally out, the result is
theideal labelling. It was proved in (Caminada and Pigozzi, 2011) that this process results in constructing
the most committed (“biggest”) labelling that is less or equally committed than each preferred labelling.
This leads to the following definition of ideal semantics.

Definition 29 LetAF = (Ar , att) be an argumentation framework. The ideal labelling ofAF is the
biggest admissible labelling that is smaller or equal to each preferred labelling.

The uniqueness of the ideal labelling10 and the fact that the ideal labelling is a complete labelling
have been proved in (Caminada and Pigozzi, 2011). Since the grounded labelling is the smallest complete
labelling (w.r.t. “⊑”) it directly follows that the ideal labelling is bigger or equal to the grounded labelling.

Proposition 14 Let (Ar , att) be an argumentation framework, letLabgrounded be its grounded
labelling andLabideal be its ideal labelling. It holds thatLabgrounded ⊑ Labideal.

There are several ways of describing the ideal labelling (Caminada, 2011).

Proposition 15 LetLab be a labelling of an argumentation frameworkAF = (Ar , att). The following
statements are equivalent.

1. Lab is the biggest admissible labelling that is smaller or equalto each preferred labelling
2. Lab is the biggest admissible labelling that is compatible witheach admissible labelling
3. Lab is the biggest admissible labelling that is compatible witheach complete labelling
4. Lab is the biggest admissible labelling that is compatible witheach preferred labelling

The concept of ideal semantics was originally introduced interms of extensions in (Dung et al., 2007),
drawing inspiration from the analogous concept of ideal sceptical semantics in extended logic programs
(Alferes et al., 1993).

Definition 30 LetAF = (Ar , att) be an argumentation framework. An admissible setArgs is called
ideal iff it is a subset of each preferred extension. The ideal extension ofAF is a maximal (w.r.t. set-
inclusion) ideal set.

It turns out that the ideal extension is unique (which implies that it is also the biggest ideal set) and
that it is also a complete extension (Dung et al., 2007). It then follows directly that the ideal extension is
a superset of the grounded extension.

10The idea is to perform the sceptical judgment aggregation procedure of (Caminada and Pigozzi, 2011) on all
preferred labellings.
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Figure 9 The ideal labelling can be less skeptical than the grounded labelling

Proposition 16 Let (Ar , att) be an argumentation framework, letArgsgrounded be its grounded
extension andArgs ideal be its ideal extension. It holds thatArgsgrounded ⊆Args ideal.

There are several ways of describing the ideal extension.

Proposition 17 LetAF = (Ar , att) be an argumentation framework, and letArgs ⊆Ar . The follow-
ing statements are equivalent.

1. Args is the biggest admissible set that is a subset of each preferred extension
2. Args is the biggest admissible set that is not attacked by any admissible set
3. Args is the biggest admissible set that is not attacked by any complete extension
4. Args is the biggest admissible set that is not attacked by any preferred extension

In Proposition 17 the equivalence between points 1 and 2 follows from (Dung et al., 2007, Theorem
3.3). The equivalence between points 2, 3 and 4 follows from the fact that an argument (or set) is attacked
by an admissible set iff it is attacked by a complete extension iff it is attacked by a preferred extension.

The bijective labellings-extensions correspondence through Ext2Lab (andLab2Ext) also holds for
ideal semantics (Caminada, 2011).

Ideal semantics is similar to grounded semantics in the sense that it always yields a unique labelling
(extension). Actually it can be seen that the ideal labelling (extension) coincides with the grounded
labelling (extension) in the examples of Figures 4, 5 and 6. In particular, referring to extensions, in Figure
4 the intersection of preferred extensions{A} coincides with the grounded extension; in Figure 5 the
intersection of preferred extensions{D} is not admissible and its only admissible subset is the empty
set (coinciding with the grounded extension); in Figure 6 there is only one (empty) preferred extension,
which coincided with the grounded and ideal extension.

However, as shown in Propositions 14 and 16, in general idealsemantics tends to be less skeptical than
grounded semantics. As an example, in the argumentation framework of Figure 9 the grounded labelling
is (∅, ∅, {A, B}) (the grounded extension is∅) whereas the ideal labeling is({A}, {B}, ∅) (the ideal
extension is{A}).

To determine whether an argument is an element of the ideal extension, point 2 of Proposition 17
implies that it is sufficient to determine whether it is an element of an admissible set that is not attacked
by any admissible set. Proof procedures for this are straightforward and have been described in (Dung
et al., 2007).

An alternative approach that is very close to ideal semantics is that ofeager semantics(Caminada,
2007b). Where the ideal extension is the (unique) biggest admissible (and complete) subset of each
preferred extension, the eager extension is the (unique) biggest admissible (and complete) subset of each
semi-stable extension. The eager extension is a superset ofthe ideal extension, making eager semantics
(to the best of our knowledge) the most credulous unique status semantics that has been proposed in the
literature. The eager extension and the associated eager labelling can be computed by first calculating all
semi-stable labellings (using for instance the algorithm of (Caminada, 2007a)) and subsequently applying
the judgement aggregation operators specified in (Caminadaand Pigozzi, 2011).

2.9 Stage Semantics

The concept of stage semantics has been introduced in (Verheij, 1996) and further developed in (Verheij,
2003) in different formal settings with respect to the ones considered in this paper. Precise (and rather
straightforward) correspondences can be anyway drawn so that we can describe stage semantics in terms
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of labellings and extensions, as for all other semantics in this paper. In essence, a stage labelling is
a conflict-free labelling whereundec is minimal, whereas a stage extension is a conflict-free set of
argumentsArgs , whereArgs ∪ Args+ is maximal.

Definition 31 Let AF = (Ar , att) be an argumentation framework. A labellingLab is called a
stage labellingof AF iff it is a conflict-free labelling whereundec(Lab) is minimal (w.r.t. set-inclusion)
among all conflict-free labellings.

Definition 32 Let AF = (Ar , att) be an argumentation framework. A stage extension ofAF is a
conflict-free setArgs ⊆Ar whereArgs ∪ Args+ is maximal (w.r.t. set inclusion) among all conflict-free
sets.

It holds that every stable labelling (extension) is also a stage labelling (extension).

Theorem 1 LetLab be a labelling of an argumentation frameworkAF = (Ar , att). If Lab is a stable
labelling ofAF thenLab is also a stage labelling ofAF .

Theorem 2 LetAF = (Ar , att) be an argumentation framework andArgs ⊆Ar . If Args is a stable
extension ofAF thenArgs is also a stage extension ofAF .

If there exists at least one stable labelling (extension), then each stage labelling (extension) is also a
stable labelling (extension).

Theorem 3 Let AF = (Ar , att) be an argumentation framework. If there exists at least one stable
labelling ofAF then every stage labelling is also a stable labelling.

Theorem 4 Let AF = (Ar , att) be an argumentation framework. If there exists at least one stable
extension ofAF then every stage extension is also a stable extension.

There also exists an alternative way to describe the conceptof stage semantics. In essence, a stage
labelling is a stable labelling of a maximal subgraph of the argumentation framework that has at least
one stable labelling, augmented withundec labels for the arguments that did not make their way into
the subgraph. Similarly, what a stage extension does is taking a maximal subgraph of the argumentation
framework that has at least one stable extension. A stage extension is then a stable extension of such a
maximal subgraph.

Theorem 5 LetLab be a labelling of an argumentation frameworkAF = (Ar , att). The following two
statements are equivalent.

1. Lab is a conflict-free labelling whereundec(Lab) is minimal (w.r.t. set inclusion) among all conflict-
free labellings

2. Args = in(Lab) ∪ out(Lab) is a maximal subset ofAr such thatAF↓Args has a stable labelling,
andLab↓Args is a stable labelling ofAF↓Args .

Theorem 6 LetAF = (Ar , att) be an argumentation framework andArgs ⊆Ar . The following two
statements are equivalent.

1. Args is a conflict-free set whereArgs ∪Args+ is maximal (w.r.t. set inclusion) among all conflict-
free sets.

2. Args ∪Args+ is a maximal subset ofAr such thatAF↓Args∪Args+ has a stable extension, andArgs

is a stable extension ofAF↓Args∪Args+ .

The bijective labellings-extensions correspondence through Ext2Lab (andLab2Ext) also holds for
stage semantics, as proved in (Caminada, 2011). An algorithm that produces all stage labellings (and
therefore also all stage extensions) is described in (Caminada, 2010).

To exemplify stage labellings (extensions) let us refer as usual to the examples of Figures 4-6. Stage
labellings (extensions) coincide with stable labellings (extensions), when the latter exist, as in the case
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Figure 10 Stage semantics differs from semi-stable semantics

of Figures 4 and 5. On the other hand, in the case of Figure 6, differently from all other semantics
examined so far, stage semantics prescribes three non-trivial labellings, namely({A}, {B}, {C}),
({B}, {C}, {A}), ({C}, {A}, {B}) (and of course the corresponding three non-empty extensions,{A},
{B}, and{C}).

Using the technical properties and the examples described above, we are now ready to describe the
intuition behind stage semantics. In essence, stage semantics shares with stable semantics a sort of
preference for strongly committed evaluations with respect to the undecided ones. As already seen, such an
attitude is not universally applicable: the solution of stage semantics is to consider the maximal restrictions
where this attitude is still applicable. In other terms, stage semantics can be read as the attempt to identify
and then ignore the minimal amounts of information that prevent the application of a black-and-white
view of the world. Note that different information can be ignored in different labellings (extensions), for
instance in the example of Figure 6 argumentsA, B, andC are alternatively ignored.

The idea of minimizing the set ofundec-labelled arguments or, alternatively, of maximizing the range
(Args ∪Args+) of extensions is common to stage and semi-stable semantics. However, where semi-
stable semantics aims to maximize the range under the condition of admissibility, stage semantics tries
to maximize the range under the weaker condition of conflict-freeness. As shown above, this amounts
to taking the stable labellings (extensions) of the biggestsubframework that has at least one stable
labelling (extension). Hence, the approach of stage semantics is comparable with the approach of handling
inconsistent knowledge bases, where one can select maximalconsistent subsets of the knowledge base,
and then examine what holds in all of them (in the intersection of all their models). That is, it is as if stage
semantics interprets the absence of stable labellings/extensions as some form of “inconsistency”, which
needs to be handled taking the “maximal consistent subframeworks”. On the other hand, in semi-stable
semantics as well as in most other semantics all arguments play a role in all extensions/labellings. In
particular, an undecided argument keeps the capability to cause other arguments to be undecided, while
this is not the case in stage semantics. An example is shown inFigure 10. Here, any other semantics
considered in this paper yields a single labelling(∅, ∅, {A, B}) corresponding to the extension∅, whereas
stage semantics yields a single labelling({B}, ∅, {A}) corresponding to the extension{B}. In essence,
what stage semantics does is to ignore argumentA, since this argument causes the framework not to have
any stable labelling/extension.

Another example to illustrate the difference between stagesemantics and semi-stable semantics is
given in Figure 11. Here, semi-stable semantics yields a single extension{A}, corresponding to a labelling
({A}, {B}, {C}). Stage semantics yields two extensions, the first one being equivalent to the one yielded
by semi-stable semantics, the second one being{B}, corresponding to a labelling({B}, {C}, {A}). The
first stage extension (labelling) is the result of ignoring argumentC, the second stage extension (labelling)
is the result of ignoring argumentA. For both possibilities, the remaining argumentation framework is a
maximal one that has at least one stable extension (labelling). It can therefore be observed that under stage
semantics, even an argument without any attackers (like argumentA in Figure 11) is not always labelled
in. With any other semantics considered in this paper, however, an argument without any attackers is
alwayslabelledin.

2.10 CF2 semantics

With the exception of stage semantics, all semantics reviewed so far are admissibility-based, i.e. the
labellings (extensions) they prescribe are admissible. Moreover they are compatible with the basic
skeptical view represented by grounded semantics, in the sense that in any of their labellings (extensions)
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Figure 11 A peculiar case for stage semantics

the accepted arguments are a superset of those accepted by the grounded semantics. Focusing now on
those of these semantics which are multiple-status (namelycomplete, preferred, stable and semi-stable),
one can notice that odd-length unidirectional attack cycles cause a sort of singularity in their behavior. For
instance, considering the example of Figure 6 only the trivial labelling (extension) is prescribed and, in
the case of stable semantics, no labelling (extension) at all exists. This gives rise to a sort of unbalanced
treatment of even-length and odd-length unidirectional attack cycles: non-trivial labellings (extensions)
exist for the former ones, while they do not exist for the latter. This has been regarded as problematic
by Pollock (2001), since in some contexts an “equal” treatment of cycles, independently of their length,
can be more appropriate11. It is evident that this requires giving up the property of admissibility, as no
non-trivial admissible labellings (extensions) exist forthe example of Figure 6. In fact, the behavior of
stage semantics goes in that direction, since in the exampleof Figure 6 it prescribes three non-trivial
labellings, namely({A}, {B}, {C}), ({B}, {C}, {A}), ({C}, {A}, {B}), or, analogously, three non-
empty extensions, namely{A}, {B}, {C}. Stage semantics however shows a peculiar behavior and
strongly departs from grounded semantics in some cases. As already commented in Section 2.9 a stage
labelling (or extension) may even exclude from acceptance an unattacked argument (A in the example of
Figure 11) while including an argument attacked by it (B in the same example). This kind of behavior
has no parallel in all other semantics considered in this paper and, as such, appears rather hard to justify.
Then the question arises as to whether it is possible to definea multiple-status semantics which is not
admissibility-based, treats in an “equal” way odd and even-length unidirectional attack cycles, while
preserving compatibility with the grounded semantics in any case.

CF2 semantics (Baroni and Giacomin, 2003; Baroni et al., 2005) satisfies the above requirements.
In fact, to achieve this objective a relatively sophisticated semantics definition scheme has been devised
calledSCC-recursiveness. The SCC-recursive scheme is based on the graph theoreticalnotion of strongly
connected component (SCC). In a nutshell, strongly connected components provide a unique partition of a
directed graph into disjoint parts where all nodes are mutually reachable (it is assumed that reachability is
a reflexive relation). Formally, strongly connected components are the equivalence classes induced by the
path equivalence (i.e. mutual reachability) relation between nodes. To illustrate this notion, in the example
of Figure 4 there are three SCCs, namely{A}, {B}, and{C, D}, in Figure 5 there are three SCCs too,
namely{A, B}, {C}, and{D}, while the argumentation framework of Figure 6 consists of aunique SCC,
namely{A, B, C}. As another example, in the argumentation framework of Figure 8 there are two SCCs,
namely{A, B} and{C, D, E}.

An important property of the SCC decomposition is that the graph obtained considering SCCs as
single nodes is acyclic, i.e. the attack relation induces a partial order between the SCCs. The SCC-
recursive scheme exploits this property and can be intuitively regarded as a constructive procedure to
incrementally build extensions (or labellings) followingthe partial order of SCCs. In a nutshell, one
“locally” applies some extension selection criterion to the initial SCCs, i.e. those not receiving attacks
from other ones. Then, for each possible choice identified inthe initial SCCs, one accordingly suppresses
some arguments from the initial argumentation framework and the procedure is recursively applied to the
new argumentation framework resulting from this modification, until no remaining arguments are left to

11Pollock (2001) discusses odd-length attack cycles in the context of a set of “reference” inference graphs for testing
the intuitive validity of justification status assignments. Actually, the paper where the problem is raised (Pollock,
2001) is mainly focused on an approach to reasoning with variable degrees of justification and does not provide an
explicit “solution” to this problematic example.
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process. In the case of CF2 semantics, the “local” selectioncriterion12 applied to SCCs is quite simple and
is similar to the intuition underlying stage semantics: allmaximal conflict free sets are selected. However
embedding this criterion within the SCC recursive scheme gives rise to different results.

We now provide a formal definition of CF2 semantics in terms ofextensions (as this is its original
and easier to follow formulation), exemplify its behavior and review its properties. For further details and
more extensive explanations of the SCC-recursive scheme the reader may refer to (Baroni et al., 2005).
A labelling-based formulation of CF2 semantics has not beenpreviously considered in the literature and
will be examined at the end of the section.

Definition 33 Given an argumentation frameworkAF = (Ar , att), a setArgs ⊆Ar is an extension
ofCF2 semantics if and only if

• Args ∈MCF(AF ) if |SCCSAF |= 1

• ∀S ∈ SCCSAF (Args ∩ S) ∈ ECF2(AF↓UPAF (S,Args)) otherwise

where

• MCF(AF ) denotes the set of maximal conflict-free sets ofAF

• SCCSAF denotes the set of strongly connected components ofAF

• for anyArgs , S ⊆Ar , UPAF (S,Args) = {A ∈ S | ∄B ∈ Args \ S : (B, A) ∈ att}.

Definition 33 is quite complicated and its detailed illustration is beyond the scope of the paper. We
remark only that the recursion is well-founded since, in thesecond branch of Definition 33, CF2 semantics
itself is applied to a set of restricted (and disjoint) argumentation frameworks, each including a strictly
lesser number of arguments with respect to the original one.This ensures that the base case, namely the
application of CF2 semantics to an argumentation frameworkconsisting of a single SCC (first branch of
Definition 33) is reached in a finite number of steps. Note in particular that an argumentation framework
including 0 or 1 arguments necessarily consists of a single SCC.

In spite of technical complications, the idea underlying CF2 semantics is relatively simple and can
be illustrated with reference to our examples. In Figure 4 there is one initial SCC, namely{A}, and of
course it contains only one maximal conflict-free set, namely {A} itself, which is selected for extension
building. The subsequent (according to the partial order induced by the attack relation) SCC, namely{B},
is suppressed as its only element is attacked by the already selected argumentA. The last SCC, namely
{C, D}, then remains unaffected by previously selected elements and we can select its maximal conflict-
free subsets{C} and{D} to be combined with the previous selection, leading to the CF2 extensions
{A, C} and{A, D}.

In Figure 5 there is one initial SCC, namely{A, B}, whose maximal conflict-free sets are{A} and
{B}, each representing a starting point for further extension construction. As a matter of fact, in both
cases the subsequent SCC, namely{C} is suppressed, leaving the remaining SCC,{D}, unaffected and
providing{D} itself as maximal conflict-free subset. It turns out that there are two CF2 extensions, namely
{A, D} and{B, D}.

The argumentation framework of Figure 6 consists of only oneSCC and therefore its CF2 extensions
coincide with its maximal conflict-free subsets{A}, {B} and{C}.

In the example of Figure 8, the application of CF2 semantics definition is more articulated. The
(again unique) initial SCC is{A, B}, which, as in the previous case, yields{A} and{B} as starting
points for further extension construction. Considering{A}, we have thatB is attacked by the extension
and the subsequent SCC{C, D, E} is left unaffected. As a consequence, all its maximal conflict-free
subsets{C}, {D} and{E} are available, yielding the three CF2 extensions{A, C}, {A, D} and{A, E}.
Considering{B}, bothA andC are attacked by the extension and therefore suppressed. Therestriction of
the argumentation framework to the set{D, E} then remains to be evaluated. As{D} is the initial SCC
of this restricted argumentation framework, it is selectedand then the subsequent SCC{E} is entirely
suppressed, yielding a further CF2 extension{B, D}.

12It can be remarked that all Dung’s original semantics can be equivalently characterized using SCC-recursive
definitions similar to Definition 33, as proved in (Baroni et al., 2005).
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Table 1 Describing admissibility based semantics in terms of complete labellings

restriction on complete labelling resulting semantics

no restrictions complete semantics
emptyundec stable semantics
maximalin preferred semantics
maximalout preferred semantics
maximalundec grounded semantics
minimalin grounded semantics
minimalout grounded semantics
minimalundec semi-stable semantics
maximal w.r.t.⊑ while compatible with each complete labellingideal semantics

Finally, in the example of Figure 11 a unique CF2 extension isidentified, namely{A}, yielding
agreement with grounded semantics.

Having exemplified the behavior of CF2 semantics, we summarize in Proposition 18 some of its known
properties in relation to the other semantics notions considered in the paper.

Proposition 18 For any argumentation frameworkAF = (Ar , att)

• ECF2(AF )⊆MCF(AF ) (any CF2 extension is a maximal conflict-free set ofAF );
• the grounded extension is included in any CF2 extension;
• for any preferred extensionE there is a CF2 extensionE′ such thatE ⊆ E′;
• any stable extension is also aCF2 extension.

As mentioned above, CF2 has been conceived and defined in the extension-based setting. The same
semantic notion can however be expressed using the SCC-recursive scheme in the labelling context.

Definition 34 Given an argumentation frameworkAF = (Ar , att), a labellingLab is a CF2 labelling
if and only if

• if |SCCSAF |= 1, Lab is a conflict-free labelling with maximalin(Lab) among conflict-free
labellings and such thatA ∈ in(Lab)⇒A+ ⊆ out(Lab);

• otherwise,∀S ∈ SCCSAF Lab↓UPAF (S,Args) is a CF2 labelling ofAF↓UPAF (S,Args) and all
arguments inS \ UPAF (S,Args) are labelledout.

where all notations are as in Definition 33.

By inspection of Definitions 33 and 34, it can be seen that the bijective labellings-extensions
correspondence throughExt2Lab (andLab2Ext) holds for CF2 semantics.

2.11 Roundup

We now provide an overview of how the semantics that have beentreated until now are related. In Figure
12 we graphically depict what can be seen as an ontology of argumentation semantics. The figure shows
for instance that every stable labelling is also a stage labelling, a semi-stable labelling and a CF2 labelling,
that every semi-stable labelling is also a preferred labelling, etc. The same relations of Figure 12 also hold
for the extension-based approach. In Table 1 we provide an overview of how the admissibility-based
semantics can be expressed in terms of complete labellings.

3 Properties of Argumentation Semantics

As evidenced by the review carried out in Section 2, different argumentation semantics rely on different
(though sometimes related) intuitions, which can be expressed in terms of formal properties of extensions
or labellings. Given the variety of the proposals availablein the literature (and of those to come in
the future) the issue of comparing and assessing different semantics in a systematic way assumes
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Figure 12 Relations among alternative labelling notions

special importance. Evidencing differences in semantics outcomes on specific cases may be useful to
support intuition in grasping the actual manifestation andpractical meaning of different definitions, but a
comparison solely based on examples is not satisfactory, asit lacks generality, reusability and extensibility.
As a consequence, the issue of identifying general formal properties which can be used for a principled
evaluation and comparison of different semantics has been considered in the literature both at the level
of abstract argumentation (Baroni and Giacomin, 2007) and of more concrete formalisms (Caminada and
Amgoud, 2007). In this section we review and discuss severalgeneral properties of abstract argumentation
semantics, most of which have been originally introduced inthe context of the extension-based approach,
and consider their definition also in the context of the labelling-based approach.

3.1 Fundamental principles

A basic standpoint of abstract argumentation consists in the fact that semantics evaluation should
only depend on the topology of the argumentation framework (i.e. on the attack relation between
arguments) while being totally independent of any propertyof arguments at the underlying language
level, which is abstracted away. Formally, thislanguage independenceprinciple corresponds to the
fact that argumentation frameworks which are isomorphic give rise to the same semantics outcome
(modulo the isomorphism relation). First, let us introducea (quite natural) isomorphism relation between
argumentation frameworks.

Definition 35 Two argumentation frameworksAF1 = (Ar1, att1) andAF2 = (Ar2, att2) are isomor-
phic if and only if there is a bijective mappingm :Ar1 → Ar2, such that(A, B) ∈ att1 if and only if
(m(A), m(B)) ∈ att2. This is denoted asAF1 ⊜m AF2.

Then we can express the language independence principle forextension-based semantics in a
straightforward way by requiring extension correspondence through the bijective mapping.
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Definition 36 An extension-based semanticsS satisfies the language independence principle if and
only if for any argumentation frameworksAF1 = (Ar1, att1) andAF2 = (Ar2, att2), AF1 ⊜m AF2 ⇒

ES(AF2) = {M(E) |E ∈ ES(AF1)}, whereM(E) = {B ∈ Ar2 | ∃A ∈ E, B =m(A)}.

The formulation for labellings is conceptually similar andformally just a bit more articulated.

Definition 37 A labelling-based semanticsS with set of labelsΛ satisfies the language independence
principle if and only if for any argumentation frameworksAF1 = (Ar1, att1) andAF2 = (Ar2, att2),
AF1 ⊜m AF2 ⇒LS(AF2) = {M ′(Lab) | Lab ∈ LS(AF1)}, whereM ′ is a function fromL(Λ, AF1) to
L(Λ, AF2) such thatLab ′ =M ′(Lab) if and only if∀A ∈ Ar1 Lab

′(m(A)) = Lab(A).

The language independence principle lies at the heart of thenotion itself of abstract argumentation
semantics and is satisfied by all literature semantics we areaware of.

Another basic standpoint in abstract argumentation concerns the fact that the attack relation represents
a situation of “incompatibility” between arguments, so that two arguments can not stand together if there
is an attack (either unidirectional or mutual) between them. This leads to the fundamentalconflict-free
principle which states that any extension or labelling prescribed by a semantics should be conflict-free,
according to Definitions 12 and 16 respectively. Its straightforward formulation is given below and, again,
as to our knowledge, it is satisfied by all semantics proposedin the literature.

Definition 38 An extension-based semanticsS satisfies theconflict-freeprinciple if and only if for
any argumentation frameworkAF , ∀E ∈ ES(AF ) E is conflict-free (Definition 12). A labelling-based
semanticsS satisfies theconflict-freeprinciple if and only if for any argumentation frameworkAF ,
∀Lab ∈ LS(AF ) Lab is conflict-free (Definition 16).

3.2 Defense-related properties

The notion of defense of an argumentA against its attackers by a set of arguments (possibly including
A itself) is quite intuitive in the extension-based approachand has been formalized in Definition 11. One
might then argue that defense against attackers is anecessarycondition for extension membership: an
argument which is not defended by an extension can not have citizenship there. This corresponds to the
admissibilityproperty, which has an obvious formulation for both extension-based and labelling-based
semantics.

Definition 39 An extension-based semanticsS satisfies theadmissibilityproperty if and only if for
any argumentation frameworkAF , ∀E ∈ ES(AF ) E is an admissible set (Definition 13). A labelling-
based semanticsS satisfies theadmissibilityproperty if and only if for any argumentation framework
AF , ∀Lab ∈ LS(AF ) Lab is an admissible labelling (Definition 10).

The notion of defense plays a key role in Dung’s complete, grounded, preferred and stable semantics
which all satisfy the admissibility property. Subsequent proposals which are anyway related to Dung’s
ones, namely semi-stable and ideal semantics, also satisfyadmissibility, while stage and CF2 semantics,
relying on the more basic notion of conflict-freeness, do notrespect this property.

With a dual reasoning, one might also argue that defense against attackers is asufficientcondition for
extension membership: an argument which is defended by an extension should belong to the extension
itself. This property is calledreinstatementsince the acceptance status of an argument is “reinstated”
thanks to defense against attackers.

Definition 40 An extension-based semanticsS satisfies thereinstatementproperty if and only if for any
argumentation frameworkAF , ∀E ∈ ES(AF ) and for any argumentA it holds that:

(

∀B ∈ A−∃C ∈ (E ∩B−)
)

⇒ A ∈ E

or, equivalently,F (E)⊆ E.
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In the labelling-based approach the same idea can be expressed by requiring that if all attackers of an
argument are labelledout then the argument is labelledin.

Definition 41 A labelling-based semanticsS satisfies thereinstatementproperty if and only if for any
argumentation frameworkAF , ∀Lab ∈ LS(AF ) and for any argumentA it holds that:

(

∀B ∈ A−Lab(B) = out

)

⇒Lab(A) = in

By inspection of Definitions 13, 19 and 40 it is immediate to see that a complete extension is an
admissible set with the addition of the reinstatement property. On the other hand, examining Definitions
10, 18, and 41 one can note that the reinstatement property isnot sufficient to make an admissible labelling
complete. In fact in the labelling context we need also an explicit statement about rejection: an argument
which is attacked by an argument labelledin can not be undecided and must be explicitly rejected.

Definition 42 A labelling-based semanticsS satisfies therejectionproperty if and only if for any
argumentation frameworkAF , ∀Lab ∈ LS(AF ) and for any argumentA it holds that:

(

∃B ∈ A−Lab(B) = in

)

⇒Lab(A) = out

Thus, in the labelling context, completeness is equivalentto the conjunction of admissibility, reinstate-
ment, and rejection.

Reinstatement can be regarded as a further basic property inDung’s approach: it characterizes complete
semantics, as remarked above, and is featured also by grounded, preferred and stable semantics as their
extensions are complete. The same holds for semi-stable andideal semantics, while this is not the case
for stage and CF2 semantics. In the labelling approach it canbe observed, in an analogous way, that
grounded, preferred, stable, semi-stable and ideal13 labellings are also complete labellings, therefore they
satisfy both reinstatement and rejection properties. On the other hand stage and CF2 semantics do not
feature the reinstatement property while satisfying rejection.

3.3 Forbidding subsumption

Considering a set of outcomes (either extensions or labellings) prescribed by a given semantics the
question arises whether it is possible that one of the outcomes in the set is “subsumed” by another
one. Consider the example of Figure 3. Here one may consider a“resolute” stance whereA or B is
accepted (giving rise to two alternative labellings/extensions) or adopt a more “cautious” stance where
everything is left undecided (giving rise to the empty extension or trivial labelling). Mixing the resolute
and cautious stance in the same set of extensions/labellings produced by a reasoner may be considered
undesirable. Moreover, if argument acceptance requires membership to all extensions or to thein part
of all labellings14 the results of acceptance evaluation are determined only bythe labellings/extensions
corresponding to the cautious stance (in particular, if theempty set/trivial labelling is included in the set
of outcomes no argument can be accepted). In this case, the presence of extensions/labellings having no
effects on acceptance results (due to the subsumption relation) might be regarded as somewhat redundant.

One can then consider a property, calledI-maximality, requiring that there is no subsumption in the set
of outcomes.

In the extension-based approach, the I-maximality property simply states that no extension is a strict
subset of another one.

Definition 43 A set of extensionsE is I-maximal if and only if∀E1, E2 ∈ E , if E1 ⊆ E2 thenE1 = E2.
A semanticsS satisfies theI-maximality criterionif and only if for any argumentation frameworkAF
ES(AF ) is I-maximal.

13This observation is immediate for all the considered semantics but ideal. The proof that an ideal labelling is also
complete is given in (Caminada, 2011).
14This is commonly calledskeptical acceptanceas it will be better discussed in Section 4.
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Note that I-maximality is a property of the set of extensionsE per seand does not imply that maximality
is prescribed by the semantics-specific definition of what anextension is. For instance any unique-status
semantics (like grounded semantics) necessarily satisfiesI-maximality according to Definition 43, despite
the fact that (at least in the case of the grounded semantics)the unique extension is not maximal in any
sense.

In the labelling-based approach we can draw analogous considerations with the difference that both
arguments labelledin andout should be considered in the definition.

Definition 44 A set of labellingsL is I-maximal if and only if∀Lab1, Lab2 ∈ L, if Lab1 ⊑ Lab2 then
Lab1 = Lab2. A labelling-based semanticsS satisfies theI-maximality propertyif and only if for any
argumentation frameworkAF LS(AF ) is I-maximal.

Either in the extension-based or labelling-based version,it can be checked that all semantics considered
in this paper satisfy I-maximality, with the exception of complete semantics.

3.4 Allowing abstention

The considerations carried out about I-maximality are somewhat related to the assumption that a
set of extensions/labellings corresponds to the positionsof an individual reasoner adopting a definite
stance, either resolute or cautious. In other contexts, however, it may be considered desirable that a
set of extensions/labellings allows mixing both stances: this may even be necessary for applications
such as argumentation-based judgement aggregation (Caminada and Pigozzi, 2011). In this perspective,
considering again the argumentation framework of Figure 3,if a set of extensions/labellings encompasses
both the acceptance ofA (with rejection ofB) and the acceptance ofB (with rejection ofA) then it is
reasonable also to allow for the position where one simply abstains from having an explicit opinion onA
andB.

One can then consider a property ofallowing abstentionwhich can be expressed in a straightforward
way for the labelling-based approach.

Definition 45 Given an argumentation frameworkAF = (Ar , att), a set of labellingsL allows for
dilemma abstainingif and only if for every argumentA ∈Ar if there exist two labellingsLab1, Lab2 ∈ L

such thatLab1(A) = in andLab2(A) = out then there exists a labellingLab3 ∈ L such thatLab3(A) =
undec. A labelling-based semanticsS satisfies theallowing abstentionproperty if and only if for any
argumentation frameworkAF LS(AF ) allows for dilemma abstaining.

The same idea can be expressed in a slightly more complicatedway in the extension-based approach.

Definition 46 Given an argumentation frameworkAF = (Ar , att), a set of extensionsE allows for
dilemma abstainingif and only if for every argumentA ∈ Ar if there exist two extensionsE1, E2 ∈ E

such thatA ∈ E1 and A ∈E+
2 then there exists an extensionE3 ∈ E such thatA /∈ (E3 ∪E+

3 ). An
extension-based semanticsS satisfies theallowing abstentionproperty if and only if for any argumentation
frameworkAF ES(AF ) allows for dilemma abstaining.

It can be seen that only complete semantics satisfies this property, while all other multiple-status
semantics considered in this paper do not. Technically, unique-status semantics comply with the allowing
abstention property, because they simply do not admit dilemmas, but one might argue that assessing this
property only makes sense for multiple-status semantics.

3.5 Topology-related properties

As evidenced by the language-independence principle, semantics outcomes for an argumentation frame-
work actually depend on the attack relation only, i.e. on thetopology of the corresponding directed
graph. More specific relations between graph topology and semantics outcomes can then be considered,
according to the basic idea that attacks are the “channels” through which arguments affect each other.
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On this basis, a first elementary consideration suggests that if an argumentation framework can be
partitioned in several subgraphs which are not connected toeach other they should not affect each other
at the semantics level. In order to better specify and formalize this intuition we first need to introduce, in
the obvious way, the operation of union of (disjoint) argumentation frameworks.

Definition 47 Two argumentation frameworksAF1 = (Ar1, att1), AF2 = (Ar2, att2) are disjoint if
and only ifAr1 ∩ Ar2 = ∅. Given two disjoint argumentation frameworksAF1 = (Ar1, att1), AF2 =

(Ar2, att2) their union is defined asAF1 ⊎ AF2 , (Ar1 ∪Ar2, att1 ∪ att2).

Note that, by definition,AF1 ⊎ AF2 consists of at least two subgraphs not connected each other.Now,
a first basic semantics requirement, calledcrash resistance, consists in excluding that there are cases
of “contaminating” argumentation frameworks, namely argumentation frameworks which determine the
semantics outcomes for any union they are included in, as formally specified in Definition 48.

Definition 48 An argumentation frameworkAF ∗ is contaminating for an extension-based semanticsS

if for every argumentation frameworkAF disjoint fromAF ∗ it holds thatES(AF ∗ ⊎ AF ) = ES(AF ∗).
An argumentation frameworkAF ∗ is contaminating for a labelling-based semanticsS if for every
argumentation frameworkAF disjoint fromAF ∗ it holds thatLS(AF

∗ ⊎ AF ) = LS(AF
∗). A semantics

S satisfies thecrash resistanceproperty if there are no contaminating argumentation frameworks forS.

Clearly the existence of contaminating argumentation frameworks for a given semantics can be
regarded as undesirable and violates in the strongest possible way the intuition that disjoint subgraphs
should not affect each other. Stable semantics does not satisfy crash resistance as any argumentation
framework consisting of a simple self-attacking argument is contaminating and determines as outcome
an empty set of either labellings or extensions. All other semantics considered in this paper are crash
resistant.

Crash resistance excludes only the most “brutal” form of interference between disjoint subgraphs but
does not prevent them to affect each other in less drastic (but still counterintuitive) ways: a stronger
non interferencerequirement can then be considered. We formally define this concept by introducing
the notion of isolated set in Definition 49 and then requiringin Definitions 50 and 51 any isolated set
to be unaffected by other parts of the argumentation framework as far as extensions (or labellings) are
concerned.

Definition 49 Given an argumentation frameworkAF = (Ar , att), a set of argumentsArgs ⊆Ar is
isolated inAF if and only ifatt ∩ ((Args × (Ar \ Args)) ∪ ((Ar \ Args)×Args)) = ∅.

In words a set is isolated if it does not attack outside arguments nor receive attacks from them, i.e.
AF =AF↓Args ⊎ AF↓Ar\Args

Definition 50 An extension-based semanticsS satisfies thenon interferenceproperty if and only if for
any argumentation frameworkAF = (Ar , att), for any set of argumentsArgs isolated inAF it holds
thatAES(AF, Args) = ES(AF↓Args) whereAES(AF,Args), {(E ∩ Args) |E ∈ ES(AF )}.

In words, the intersection with an isolated setArgs of any extension prescribed byS for AF is equal
to one of the extensions prescribed byS for the restriction ofAF to Args , and vice versa. The same idea
is expressed by the corresponding formalization in the labelling-based approach.

Definition 51 A labelling-based semanticsS with set of labelsΛ satisfies thenon interferenceproperty
if and only if for any argumentation frameworkAF = (Ar , att), for any set of argumentsArgs isolated
in AF it holds thatALS(AF,Args) = LS(AF ↓Args) whereALS(AF, Args), {Lab ∩ (Args × Λ) |

Lab ∈ LS(AF )}.

It holds that non interference implies crash resistance. Itfollows that stable semantics does not satisfy
non interference. On the other hand it can be shown that all other semantics considered in this paper
feature the non interference property.
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Table 2 Satisfaction of general properties by argumentation semantics

CO GR PR ST SST ID ST A CF2

Admissibility Yes Yes Yes Yes Yes Yes No No
Reinstatement Yes Yes Yes Yes Yes Yes No No

Rejection Yes Yes Yes Yes Yes Yes Yes Yes
I-maximality No Yes Yes Yes Yes Yes Yes Yes

Allowing abstention Yes No No No No No No No
Crash resistance Yes Yes Yes No Yes Yes Yes Yes
Non interference Yes Yes Yes No Yes Yes Yes Yes

Directionality Yes Yes Yes No No Yes No Yes
Cardinality ≥ 1 1 ≥ 1 ≥ 0 ≥ 1 1 ≥ 1 ≥ 1

Making a step further, one can consider the fact that arguments can affect each other only following the
direction of attacks: if argumentA attacksB thenA affectsB but not vice versa. Then, the considerations
drawn above for isolated sets of arguments can be applied also to unattacked sets of arguments, which
should be unaffected by the remaining part of the argumentation framework: in a nutshell, this is the
directionalityproperty which is formalized in the following definitions.

Definition 52 Given an argumentation frameworkAF = (Ar , att), a setArgs ⊆Ar is unattackedin
AF if and only if 6 ∃(A, B) ∈ att such thatA ∈ (Ar \ Args), B ∈ Args .

Definition 53 An extension-based semanticsS satisfies thedirectionalityproperty if and only if for any
argumentation frameworkAF = (Ar , att), for any set of argumentsArgs unattacked inAF it holds that
AES(AF, Args) = ES(AF↓Args).

Definition 54 A labelling-based semanticsS satisfies thedirectionalityproperty if and only if for any
argumentation frameworkAF = (Ar , att), for any set of argumentsArgs unattacked inAF it holds that
ALS(AF, Args) = LS(AF ↓Args).

It is immediate to see that isolated sets are a special case ofunattacked sets and therefore directionality
implies non-interference. It is shown in (Baroni and Giacomin, 2007) that complete, grounded, preferred,
ideal and CF2 semantics satisfy the directionality property, while it can be seen that stable, semi-stable and
stage semantics do not. This is illustrated in the example ofFigure 8 where the set{A, B} is unattacked
and it holdsES(AF↓{A,B}) = {{A}, {B}} for stable, semi-stable and stage semantics while for the
same semanticsES(AF ) = {{B, D}} and henceAES(AF, {A, B}) = {{B}} 6= ES(AF↓{A,B}). The
counter-example runs in a fully analogous way in the labelling-based approach.

A synthetic view of the property satisfaction15 by the semantics considered in this paper is given in
Table 2, where complete, grounded, preferred, stable, semi-stable, ideal and stage semantics are denoted
respectively asCO, GR, PR, ST , SST , ID, ST A. The last row specifies the possible values of
the cardinality of the set of extensions/labellings (1 indicates a unique-status and universally defined
semantics,≥ 0 indicates multiple-status and not universally defined,≥ 1 indicates multiple-status and
universally defined).16

15Recall that the rejection property is defined only in the context of labelling-based approaches and that directionality
implies non interference which in turn implies crash resistance.
16A similar table is given in (Baroni and Giacomin, 2007), herewe add the treatment of stage semantics and the
properties of cardinality, rejection, allowing abstention, crash resistance, and non interference, while omitting prudent
semantics and some variants of admissibility and reinstatement properties.
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4 Argument Justification and Skepticism

4.1 The notion of justification status

Either labellings or extensions provide the basis for the evaluation of the justification status of arguments:
we assume, as in previous literature (Baroni and Giacomin, 2007, 2009a), that evaluating argument
justification is meaningful only when the set of labellings or extensions is not empty, otherwise the basis
for evaluation is lacking. For this reason we need to formally identify the argumentation frameworks
where the evaluation basis is not empty.

Definition 55 Given a labelling-based semanticsS, DLS = {AF : LS(AF ) 6= ∅}. Given an
extension-based semanticsS, DES = {AF : ES(AF ) 6= ∅}.

Even when an argumentation framework belongs toDES or DLS , the “final answer” on argument
justification is not directly determined. In fact, several choices are available as to the derivation of
justification status from a set of labellings or extensions.At a basic level two very simple (and, in a sense,
extreme) alternatives for the notion of justification can beconsidered:skeptical justificationrequires that
an argument is accepted in all labellings (or extensions), while credulous justificationrequires that an
argument is accepted in at least one labelling (or extension). This is formalized in the following definitions.

Definition 56 Given a labelling-based semanticsS and an argumentation frameworkAF ∈ DLS ,
an argumentA is skeptically justified(or skeptically accepted) if ∀Lab ∈ LS(AF ) Lab(A) = in; an
argumentA is credulously justified(or credulously accepted) if ∃Lab ∈ LS(AF ) : Lab(A) = in.

Definition 57 Given an extension-based semanticsS and an argumentation frameworkAF ∈ DES ,
an argumentA is skeptically justified(or skeptically accepted) if ∀E ∈ ES(AF ) A ∈ E; an argumentA
is credulously justified(or credulously accepted) if ∃E ∈ ES(AF ) :A ∈ E.

Clearly skeptical justification implies credulous justification, moreover a third justification status can
be derived: an argument isnot justified(or rejected) if it is not credulously justified (and hence also not
skeptically justified).

It can be noted that in any unique-status semantics skeptical and credulous acceptance coincide, so that
an argument can only be accepted or rejected. In this contextit is possible however to consider two levels
of rejection, in fact a rejected argument can be attacked or not by the unique extension (or, analogously,
can be labelledout or undec in the unique labelling). The former case corresponds to a stronger form of
rejection (these arguments have been sometimes calleddefeated outrightin the literature (Pollock, 1992))
while in the latter case rejection is clearly weaker (these arguments being calledprovisionally defeated
according to the same terminology).

While the brief remarks above correspond to the prevailing approaches to the notion of justification
status in the literature, one may observe that a more systematic treatment is possible, by combining the
ideas concerning the status of an argument with respect to a single labelling (or extension) and those
referring to a plurality of them. In fact, an argument can be in one of three possible states with respect
to a single labelling (namely,in, out or undec) and correspondingly can be accepted, defeated outright
or provisionally defeated with respect to a single extension. If a plurality of labellings (or extensions)
is considered, the argument can be in a given state in all, some or none of them. Excluding impossible
combinations (e.g. an argument isin in all labellings andout in some of them) seven justification states
arise. For the labellings approach, these are summarized inDefinition 58.

Definition 58 Given a labelling-based semanticsS and an argumentation frameworkAF = (Ar , att)

with AF ∈ DLS the possible justification states of an argumentA are defined by a functionJS :Ar →

2{in,out,undec} such thatJS(A) = {Lab(A) | Lab ∈ LS(AF )}.

If we assume a labelling-based semantics to specify the reasonable positions (labellings) one can take
in the presence of the conflicting information specified in the argumentation framework, then one can
give an intuitive interpretation of the concept of a justification status. For instance, the justification status
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of {in} means the argument has to be accepted in every reasonable position. Similarly, the justification
status{in, undec} means that in every reasonable position the argument is either accepted or abstained
from having an explicit opinion on, but the argument cannot be rejected. Such an interpretation of the
notion of justification status is for instance used in (Wu andCaminada, 2010).

It is also possible to define the notion of a justification status in terms of the extensions approach, as is
done in Definition 59.

Definition 59 Given an extension-based semanticsS and an argumentation frameworkAF =

(Ar , att) with AF ∈ DES the possible justification states of an argumentA are defined by the following
mutually exclusive conditions:

• ∀E ∈ ES(AF ) A ∈ E;
• ∀E ∈ ES(AF ) A ∈ E+;
• ∀E ∈ ES(AF ) A /∈ (E ∪ E+);
• ∃E ∈ ES(AF ) : A ∈ E+, ∃E ∈ ES(AF ) : A /∈ (E ∪ E+), and∄E ∈ ES(AF ) : A ∈ E;
• ∃E ∈ ES(AF ) : A ∈ E, ∃E ∈ ES(AF ) : A /∈ (E ∪ E+), and∄E ∈ ES(AF ) : A ∈ E+;
• ∃E ∈ ES(AF ) : A ∈ E, ∃E ∈ ES(AF ) : A ∈E+, and∄E ∈ ES(AF ) : A /∈ (E ∪ E+);
• ∃E ∈ ES(AF ) : A ∈ E, ∃E ∈ ES(AF ) : A ∈E+, and∃E ∈ ES(AF ) : A /∈ (E ∪ E+).

Correspondences with more “traditional” definitions of justification states can be easily drawn, but a
full adoption in the literature of the systematic Definitions 58 and 59 is still to come17.

4.2 Skepticism and skepticism relations

The termskepticismhas been used in the literature (often in an informal way) to discuss argumentation
semantics behavior, e.g. by observing that a semantics is “more skeptical” than another one. Intuitively,
a skeptical attitude tends to make less committed choices about the justification of the arguments, as
well exemplified by the traditional notions of skeptical andcredulous acceptance recalled in Section
4.1. In other words, a skeptical behavior tends to leave arguments in an “undecided” justification state
and to accept (or reject) as least arguments as possible, while a less skeptical (or more credulous)
behavior corresponds to more extensive acceptance (or rejection) of arguments. Note, in particular, that
the notion of commitment (or decidedness) of a justificationstate must be clearly distinguished from the
notion of acceptance: two justification states corresponding to definite acceptance and definite rejection,
though reflecting antithetical choices about the state of anargument, have both the same highest level of
commitment.

Which are the formal counterparts of these basic intuitions?

Starting from basic elements, we first need to define a criterion to compare extensions and labellings
with respect to skepticism. As to extensions, this is quite simple: an extensionE1 is “more skeptical” than
(to be precise, at least as skeptical as) an extensionE2 if E1 ⊆ E2, since thenE1 supports the acceptance
of no more arguments thanE2. As to labellings, we have to consider both thein andout labels as being
both more committed choices thanundec. We can then state that a labellingLab1 is at least as skeptical
as a labellingLab2 according to the inclusion of both the sets ofin andout labelled arguments. These
intuitions are formalized in Definition 60.

Definition 60 Given two extensionsE1 andE2 of an argumentation frameworkAF , E1 is at least as
skeptical asE2, denoted asE1 � E2 if and only ifE1 ⊆ E2. Given two labellingsLab1 andLab2 of an
argumentation frameworkAF , Lab1 is at least as skeptical asLab2, denoted asLab1 � Lab2, if and only
if Lab1 ⊑ Lab2 (see Definition 28).

17Note in particular that a partial order can be defined among different justification statuses both labelling-based and
extension-based, for example as specified in (Wu and Caminada, 2010; Baroni et al., 2004).
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While the above relations are sufficient to compare unique-status semantics, the next step is to introduce
skepticism relations between non-empty18 sets of extensions or labellings in order to compare multiple-
status semantics. As more extensively discussed in (Baroniand Giacomin, 2009a), several alternatives can
be considered for this issue.

As a first basic step, one can consider a comparison method based on inclusion of the sets of accepted
arguments, either according to skeptical or credulous acceptance. This gives rise to the skepticism relations
stated in the following definitions.

Definition 61 Given two non-empty sets of extensionsE1 andE2 of an argumentation frameworkAF ,
E1 �E

∩ E2 if and only if
⋂

E1∈E1
E1 ⊆

⋂

E2∈E2
E2.

Definition 62 Given two non-empty sets of extensionsE1 andE2 of an argumentation frameworkAF ,
E1 �E

∪ E2 if and only if
⋃

E1∈E1
E1 ⊆

⋃

E2∈E2
E2.

Definition 63 Given two non-empty sets of labellingsL1 andL2 of an argumentation frameworkAF ,
L1 �

L
∩ L2 if and only if

⋂

Lab1∈L1
in(Lab1)⊆

⋂

Lab2∈L2
in(Lab2).

Definition 64 Given two non-empty sets of labellingsL1 andL2 of an argumentation frameworkAF ,
L1 �L

∪ L2 if and only if
⋃

Lab1∈L1
in(Lab1)⊆

⋃

Lab2∈L2
in(Lab2).

To exemplify the above notions, consider first the example ofFigure 3. In the extension-based
approach, the grounded and ideal semantics prescribe the set of extensionsE1 = {∅} while all other
semantics prescribeE2 = {{A}, {B}}. Clearly,E1 �E

∩ E2, E2 �E
∩ E1, E1 �E

∪ E2, while it is not the case
thatE2 �E

∪ E1 (denoted asE2 �E
∪ E1). For the same example in the labelling-based approach grounded and

ideal semantics prescribe the set of labellingsL1 = {(∅, ∅, {A, B})} while all other semantics prescribe
L2 = {({A}, {B}, ∅), ({B}, {A}, ∅)}. Again, it can be seen thatL1 �

L
∩ L2,L2 �

L
∩ L1,L1 �

L
∪ L2, while

L2 �L
∪ L1.

Considering the example of Figure 5, in the extension-basedapproach the grounded and ideal semantics
prescribe the set of extensionsE1 = {∅} while all other semantics prescribeE2 = {{A, D}, {B, D}}.
It turns out thatE1 �E

∩ E2 and E1 �E
∪ E2, while E2 �E

∩ E1 and E2 �E
∪ E1. The case of labellings is

perfectly analogous withL1 = {(∅, ∅, {A, B, C, D})} for grounded and ideal semantics andL2 =

{({A, D}, {B, C}, ∅), ({B, D}, {A, C}, ∅)} for other semantics yieldingL1 �L
∩ L2 and L1 �L

∪ L2,
whileL2 �L

∩ L1 andL2 �L
∪ L1.

Figure 8 provides a more articulated case for comparison. Inthe extension-based approach grounded
and ideal semantics prescribeE1 = {∅}, preferred semantics prescribesE2 = {{A}, {B, D}}, CF2 seman-
tics prescribesE3 = {{A, C}, {A, D}, {A, E}, {B, D}}, while stable, semi-stable and stage semantics
prescribeE4 = {{B, D}}. It follows that for anyi, j ∈ {1, 2, 3} Ei �E

∩ Ej , while for anyi ∈ {1, 2, 3}

Ei �E
∩ E4 andE4 �E

∩ Ei. On the other hand, these sets are completely ordered according to �E
∪ since

E1 �E
∪ E4 �E

∪ E2 �E
∪ E3. Again, the case of labellings is perfectly analogous.

As a further step in the analysis of skepticism relations, one may observe that also explicitly rejected
arguments should be taken into account in a similar way as accepted arguments: this gives rise to the
following definitions.

Definition 65 Given two non-empty sets of extensionsE1 andE2 of an argumentation frameworkAF ,
E1 �E

∩→ E2 if and only ifE1 �E
∩ E2 and

⋂

E1∈E1
E+

1 ⊆
⋂

E2∈E2
E+

2 .

Definition 66 Given two non-empty sets of extensionsE1 andE2 of an argumentation frameworkAF ,
E1 �

E
∪→ E2 if and only ifE1 �E

∪ E2 and
⋃

E1∈E1
E+

1 ⊆
⋃

E2∈E2
E+

2 .

Definition 67 Given two non-empty sets of labellingsL1 andL2 of an argumentation frameworkAF ,
L1 �L

∩→ L2 if and only ifL1 �L
∩ L2 and

⋂

Lab1∈L1
out(Lab1)⊆

⋂

Lab2∈L2
out(Lab2).

18As recalled at the beginning of Section 4.1 we assume that an empty set of extensions/labellings does not support
any justification status evaluation and therefore can not beinvolved in skepticism comparison.
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A
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C

D

Figure 13 Cycle of three attacking arguments in turn attacking another argument

Definition 68 Given two non-empty sets of labellingsL1 andL2 of an argumentation frameworkAF ,
L1 �L

∪→ L2 if and only ifL1 �L
∪ L2 and

⋃

Lab1∈L1
out(Lab1)⊆

⋃

Lab2∈L2
out(Lab2).

Consider again the example of Figure 3, and for a set of extensionsE let us denote in the following
E+ = {E+ |E ∈ E}. Then, referring to the already mentioned sets of extensions E1 = {∅} and E2 =

{{A}, {B}} we haveE+
1 = {∅} andE+

2 = {{B}, {A}}. Clearly,E1 �E
∩→ E2, E2 �E

∩→ E1, E1 �E
∪→ E2

while E2 �E
∪→ E1. For the same example in the labelling-based approach, it can analogously be seen that

L1 �L
∩→ L2, L2 �L

∩→ L1, L1 �L
∪→ L2 andL2 �L

∪→ L1.
In the example of Figure 5, we refer again toE1 = {∅} andE2 = {{A, D}, {B, D}}, yieldingE+

1 =

{∅} andE+
2 = {{B, C}, {A, C}}. ThenE1 �E

∩→ E2 andE1 �E
∪→ E2, while E2 �E

∩→ E1 andE2 �E
∪→ E1.

The case of labellings is perfectly analogous withL1 �L
∩→ L2 andL1 �L

∪→ L2, while L2 �L
∩→ L1 and

L2 �L
∪→ L1.

Figure 8 provides again a more articulated case. Considering the sets of extensionsE1 = {∅}, E2 =
{{A}, {B, D}}, E3 = {{A, C}, {A, D}, {A, E}, {B, D}}, and E4 = {{B, D}} we haveE+

1 = {∅},
E+
2 = {{B}, {A, C, E}}, E+

3 = {{B, D}, {B, E}, {B, C}, {A, C, E}}, E+
4 = {{A, C, E}}. It follows

that for anyi, j ∈ {1, 2, 3} Ei �
E
∩→ Ej , while for anyi ∈ {1, 2, 3} Ei �

E
∩→ E4 andE4 �E

∩→ Ei. On the
other hand,E1 �E

∪→ E4 �E
∪→ E2 �E

∪→ E3. Again, the case of labellings is perfectly analogous.
To have an example where the relations of the�∩ kind differ from those of the�∩→ kind consider

the example of Figure 13. In the extension-based approach all semantics but stable19, CF2, and stage
semantics prescribe the set of extensionsE1 = {∅} with E+

1 = {∅}, while CF2 and stage semantics
prescribeE2 = {{A}, {B}, {C}} with E+

2 = {{D}}. It follows that E1 �E
∩ E2 and E2 �

E
∩ E1, while

E1 �
E
∩→ E2 butE2 �E

∩→ E1. Similar considerations apply in the labelling-based approach.
Definitions 61-68 treat sets of extensions or labellings “asa whole” by simply considering their

intersection or union: for instance, very different sets ofextensions are treated in the same way if they
have an empty intersection. In order to take account of how single extensions or labellings are defined,
a different kind of definition is needed: the skepticism relation between two sets (let sayX1 andX2)
of extensions or labellings should be based on some comparison between their individual elements. In
particular, according to a skeptical approach to argument justification, in order to state thatX1 is at least
as skeptical asX2, one may require that every element inX2 has a more skeptical counterpart inX1, while,
according to a credulous approach, one may require dually that every element inX1 has a less skeptical
counterpart inX2. This general idea is formalized by the following definitions, which resort to the basic
comparisons between single extensions and labellings identified in Definition 60.

Definition 69 Given two non-empty sets of extensionsE1 andE2 of an argumentation frameworkAF ,
E1 �E

∩+ E2 if and only if∀E2 ∈ E2 ∃E1 ∈ E1 :E1 � E2.

Definition 70 Given two non-empty sets of extensionsE1 andE2 of an argumentation frameworkAF ,
E1 �E

∪+ E2 if and only if∀E1 ∈ E1 ∃E2 ∈ E2 :E1 � E2.

19The set of stable extensions is empty in this case.
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Definition 71 Given two non-empty sets of labellingsL1 andL2 of an argumentation frameworkAF ,
L1 �L

∩+ L2 if and only if∀Lab2 ∈ L2 ∃Lab1 ∈ L1 : Lab1 � Lab2.

Definition 72 Given two non-empty sets of labellingsL1 andL2 of an argumentation frameworkAF ,
L1 �L

∪+ L2 if and only if∀Lab1 ∈ L1 ∃Lab2 ∈ L2 : Lab1 � Lab2.

Let us exemplify these relations.
In the example of Figure 3, referring to the already mentioned sets of extensionsE1 = {∅} andE2 =

{{A}, {B}} we haveE1 �E
∩+ E2 but, differently from the previously considered relations, E2 �E

∩+ E1.
On the other hand,E1 �E

∪+ E2 andE2 �E
∪+ E1. As usual, analogous relations hold for the labelling-based

approach.
Similarly, in the example of Figure 5, withE1 = {∅} andE2 = {{A, D}, {B, D}} it holds E1 �E

∩+

E2 andE1 �E
∪+ E2, while E2 �E

∩+ E1 andE2 �E
∪+ E1. It goes without saying that the same holds in the

labelling-based approach.
Finally consider the case of Figure 8 with sets of extensionsE1 = {∅}, E2 = {{A}, {B, D}}, E3 =

{{A, C}, {A, D}, {A, E}, {B, D}}, and E4 = {{B, D}}. We can first observe that fori ∈ {2, 3, 4}

E1 �E
∩+ Ei and (differently from previous relations)Ei �E

∩+ E1. Then we can note thatE2 �E
∩+ E4 and

E3 �E
∩+ E4 since the only element ofE4 (namely{B, D}) is a superset of (actually coincides with) an

element of eitherE2 or E3. Also E2 �E
∩+ E3 since the elements{A, C}, {A, D}, and{A, E} of E3 are

supersets of{A} in E2 and{B, D} is present both inE3 andE2. With similar observations it can be
seen thatE3 �E

∩+ E2, E4 �E
∩+ E2, andE4 �E

∩+ E3. Turning to the relation corresponding to the credulous
perspective, it is immediate to note that fori ∈ {2, 3, 4} E1 �E

∪+ Ei andEi �E
∪+ E1. Also, E2 �E

∪+ E3
since{A} is included in some elements ofE3 and{B, D} is present both inE2 andE3. On the other hand,
E3 �E

∪+ E2. Differently from the skeptical perspective,E4 �E
∪+ E2 andE4 �E

∪+ E3 (the only element of
E4, namely{B, D} is present both inE2 andE3) while it can be easily seen thatE2 �E

∪+ E4 ({A} is not
included in any element ofE4) andE3 �E

∪+ E4 (as above for sets{A, C}, {A, D}, {A, E}). Again, the
case of labellings is perfectly analogous.

A stronger skepticism relation, unifying the skeptical andcredulous perspectives, can be obtained by
combining together the relations�∩+ and�∪+ .

Definition 73 Given two non-empty sets of extensionsE1 andE2 of an argumentation frameworkAF ,
E1 �E

⊕ E2 if and only ifE1 �E
∩+ E2 andE1 �E

∪+ E2.

Definition 74 Given two non-empty sets of labellingsL1 andL2 of an argumentation frameworkAF ,
L1 �L

⊕ L2 if and only ifL1 �L
∩+ L2 andL1 �L

∪+ L2.

As also evident from their definitions, the various skepticism relations introduced above are related
each other by implication. In particular, two implicationschains can be identified in correspondence with
the skeptical or credulous perspective. In fact, given two sets of extensionsE1 andE2 of an argumentation
frameworkAF , it holds that:

E1 �
E
⊕ E2 ⇒E1 �

E
∩+ E2 ⇒E1 �

E
∩→ E2 ⇒E1 �

E
∩ E2 (1)

E1 �
E
⊕ E2 ⇒E1 �

E
∪+ E2 ⇒E1 �

E
∪→ E2 ⇒E1 �

E
∪ E2 (2)

The only nontrivial implications in (1) and (2) concern the fact that�E
∩+ implies�E

∩→ , and, similarly,
�E

∪+ implies�E
∪→ : they have been proved in (Baroni and Giacomin, 2009a).

Using Definitions 63, 64, 67, 68, 71, 72, 74, and the same kind of reasoning it is possible to prove that
the analogous relations hold in the labelling based approach. In fact, given two sets of labellingsL1 and
L2 of an argumentation frameworkAF , it holds that:

L1 �
L
⊕ L2 ⇒L1 �

L
∩+ L2 ⇒L1 �

L
∩→ L2 ⇒L1 �

L
∩ L2 (3)

L1 �
L
⊕ L2 ⇒L1 �

L
∪+ L2 ⇒L1 �

L
∪→ L2 ⇒L1 �

L
∪ L2 (4)
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Turning to the comparison between semantics, for a given generic relation� concerning either
extensions or labellings it is quite natural to define an induced relation of skepticism between two
semanticsS1 andS2, by requiring that� holds for their sets of extensions or labellings. As it may happen
that eitherS1 or S2 prescribes an empty set of extensions (or labellings) in some cases, the induced
relation has to refer to a set of argumentation frameworks where bothS1 andS2 prescribe non-empty sets
of extensions (or labellings).

Definition 75 Let �E be a skepticism relation between sets of extensions,S1 andS2 be extension-
based argumentation semantics, andS be a set of argumentation frameworks withS ⊆ (DES1

∩ DES2
).

The skepticism relation�SE induced by�E betweenS1 andS2 with reference toS is defined as follows:
S1 �SE S2 if and only if∀AF ∈ S ES1

(AF )�E ES2
(AF ).

Definition 76 Let�L be a skepticism relation between sets of labellings,S1 andS2 be labelling-based
argumentation semantics, andS be a set of argumentation frameworks withS ⊆ (DLS1

∩ DLS2
). The

skepticism relation�SL induced by�L betweenS1 andS2 with reference toS is defined as follows:
S1 �SL S2 if and only if∀AF ∈ S LS1

(AF )�L LS2
(AF ).

Focusing on the extension-based approach, while Definition75 applies to any set of argumentation
frameworksS ⊆ (DES1

∩DES2
), clearly the most interesting case is whenS = (DES1

∩ DES2
). Then,

when considering a skepticism comparison concerning more than two semanticsS1, S2, . . . , SN it is
reasonable to consider a common referenceS =

⋂

i=1...N DESi
. As to the semantics discussed in this

paper, only stable semantics may prescribe an empty sets of extensions/labellings. Therefore two reference
sets can be considered: the universe of all argumentation frameworks if stable semantics is not involved in
the comparison, orDEST otherwise. Clearly the same considerations hold in the labelling-based approach
by replacingDE with DL.

It is worth noting that, in general, two semanticsS1 andS2 may not be comparable with respect to
skepticism. For instance, it may be the case that there are two argumentation frameworksAF1 andAF2

such thatS1 behaves more skeptically thanS2 in the case ofAF1 butS2 behaves more skeptically than
S1 in the case ofAF2, or that the two semantics yield incomparable sets of extensions for some given
argumentation framework. Furthermore, the order between two semantics may be different according to
the credulous or skeptical perspective.

A detailed analysis of skepticism relations between extension-based semantics (except stage semantics,
whose consideration is anyway not problematic and is added in this paper) has been carried out in
(Baroni and Giacomin, 2009a) to which the reader may refer for details: we report here only the resulting
partial orders, graphically presented as Hasse diagrams. As mentioned above, distinct Hasse diagrams are
presented for the case where stable extensions exist and forthe general one.

The partial orders20 induced by all the relations corresponding to the skepticalperspective, namely
�SE

∩+ , �SE
∩→ and�SE

∩ coincide. The Hasse diagram corresponding to the general case is shown in Figure
14: grounded semantics is the most skeptical one and since the grounded extension is the least complete
extension it turns out thatGR �SE

∩+ CO andCO �SE
∩+ GR. Ideal, preferred, and semi-stable semantics are

all comparable among them and orderly less skeptical. CF2 semantics is comparable withGR andCO but
not with the other ones, while stage semantics is not comparable with any other, also due to its peculiar
behavior in some cases, exemplified in the argumentation framework of Figure 11.

The Hasse diagram for�SE
∩+ , �SE

∩→ and�SE
∩ considering only the argumentation frameworks where

stable extensions exist (and then coincide with semi-stable and stage extensions) is shown in Figure 15.
It can be noted that in this context CF2 semantics is comparable with (and less skeptical than) stable
semantics.

Turning to skepticism relations based on the credulous perspective, namely�SE
∪+ , �SE

∪→ and�SE
∪ , the

Hasse diagram corresponding to the general case is shown in Figure 16. An almost complete ordering

20The skepticism relations described in the following have been analyzed in (Baroni and Giacomin, 2009a) for the
extension-based approach. Due to the one-to-one correspondence between extensions and labellings holding for all
the semantics involved in the comparison, it is possible to prove that the skepticism relations hold also in the labelling-
based approach.
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SST

PR

ID CF2

GR = COSTA

Figure 14 �SE

∩+ , �SE
∩→ and�SE

∩ relations for any argumentation framework

ID CF2

PR

ST = SST = STA

GR = CO

Figure 15 �SE

∩+ , �SE
∩→ and�SE

∩ relations for argumentation frameworks inDEST (DLST )

is achieved where, due to the change of perspective. In particular, complete semantics is in mutual
relation with preferred semantics:PR�SE

∪+ CO andCO �SE
∪+ PR since preferred extensions are maximal

complete extensions. Moreover one can note thatCF2 is now comparable with any other one (and is
actually the least skeptical semantics) and that the ordering betweenPR andSST is inverted with respect
to Figure 14.

The Hasse diagram for�SE
∪+ , �SE

∪→ and�SE
∪ considering only the argumentation frameworks where

stable extensions exist is shown in Figure 17: here a total order is achieved, which obeys the same relations
as the general case but where stable, semi-stable and stage semantics coincide.

Finally, the Hasse diagrams for the relations arising from the conjunction of the skeptical and credulous
perspective are shown in Figures 18 and 19, for the general case and for argumentation frameworks where
stable extensions exist respectively. As obvious, stronger relations entail lesser comparability between
semantics, but one can note in particular that the role ofGR as “bottom” skeptical reference with respect
to all other semantics (butST A) is confirmed.

4.3 Backwards compatibility

Another kind of relation between semantics concerns the ability of a semanticsS2 to “extend” the behavior
of another semanticsS1 to cases whereS1 has problems, while remaining identical toS1 otherwise. This
relation, calledbackwards compatibility, can be regarded as a special kind of skepticism comparison:on
one hand it considers also cases where one of the compared semantics “crashes”, on the other hand it
requires equality (rather than�) between extensions (labellings).
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GR 

CO

PR CF2SST

ID

STA

Figure 18 �SE
⊕ relation for any argumentation framework.

Definition 77 An extension-based semanticsS2 is backwards compatiblewith an extension-based
semanticsS1 iff for each argumentation frameworkAF that is not contaminating forS1, it holds that
ES2

(AF ) = ES1
(AF ).
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GR 

PR CF2ST = SST = STA

COID

Figure 19 �SE
⊕ relation for argumentation frameworks inDEST (DLST )

Definition 78 A labelling-based semanticsS2 is backwards compatiblewith a labelling-based seman-
tics S1 iff for each argumentation frameworkAF that is not contaminating forS1, it holds that
LS2

(AF ) = LS1
(AF ).

It holds that both semi-stable semantics and stage semantics are backwards compatible with stable
semantics. This is because for argumentation frameworks where at least one stable extension (labelling)
exists, the semi-stable extensions (labellings) and the stage extensions (labellings) are the same as the
stable extensions (labellings).

4.4 A note on infinite argumentation frameworks

As explicitly stated in Section 2.1, this paper is focused onfinite argumentation frameworks and the
analysis of semantics properties we have carried out relieson this assumption. One may wonder what is
the impact of this restriction and what would be the implications of considering also infinite frameworks.
While providing a full answer to this question is beyond the scope of this paper, we observe in particular
that in infinite frameworks the notion of maximality w.r.t set inclusion is less immediate than in finite
frameworks and the existence of maximal sets of arguments respecting some criterion, which is guaranteed
in finite frameworks, may fail to be achieved in infinite ones.As an example of the consequences of this
fact, a semantics which is universally defined in the contextof finite frameworks may not be so when
considering also infinite ones, implying (among other consequences) that the skepticism comparison we
have carried out does not extend directly to the infinite case. As a matter of fact, we are not aware of
any systematic literature analysis of argumentation semantics properties in the infinite case. Concerning
in particular the issue of universal definition, we may recall that the existence of complete, grounded, and
preferred extensions is guaranteed also in the infinite case(Dung, 1995; Caminada and Verheij, 2010).
Similarly it can be proved that existence of the ideal extension can be guaranteed in the infinite case21.
On the other hand, there are examples of infinite frameworks where semi-stable, the eager, and stage
extensions do not exist (see Verheij, 1996, 2003; Caminada and Verheij, 2010); finally whether CF2
semantics is universally defined in the infinite case is, as toour knowledge, an open question.

5 Applying Argumentation Semantics

The existence of various argumentation semantics, each with its own properties, raises the question of
which semantics to choose. That is, which semantics is “the best”? One has to keep in mind, however, that
this a notoriously difficult question, on which currently noclear consensus exists within the community
of argumentation researchers. One might even argue that this is an ill-posed question since different
semantics are appropriate in different contexts. Without the ambition to provide any definite answer, in

21Since the empty set is an ideal set and the union of two ideal sets is an ideal set, as proved in (Dung et al., 2007),
it follows that the set of ideal sets is a non-empty partiallyordered (wrt. inclusion) set whose totally ordered subsets
have an upper bound (their union). Then by Zorn’s lemma the set of ideal sets contains at least one maximal element.
The maximal element is unique, since supposing that there are two distinct maximal ideal sets would contradict the
fact that their union is an ideal set too.
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the current paper we draw some considerations on which semantics would be most appropriate in which
kinds of domains.

One of the first questions one could ask when selecting an argumentation semantics concerns the nature
of the domain of reasoning, and especially the nature of the information in the knowledge base (step 1 in
Figure 1). Here we focus on two application domains: (1) constraint satisfaction and (2) reasoning with
imperfect “rules of thumb”.

5.1 Semantics for Constraint Satisfaction

The application domain of constraint satisfaction is mostly predominant in the field of logic programming
and answer set programming (Gelfond and Lifschitz, 1988, 1991). Here, the idea is to provide a formalism
that can take a declarative description of a constraint satisfaction problem, in order to calculate its set of
solutions. As an example, one could write an answer set program for solving sudokus. The idea is that
each resulting answer set of the ASP program corresponds with a solution of the original problem (in
this case: the sudoku). Also, if the original problem does not have any solutions, then one would like to
obtain no answer sets. It then follows that one would like to apply a semantics that can yield zero or more
extensions, explicitly keeping open the possibility of yielding zero extensions in case the problem that
one is trying to model does not have solutions. This naturally leads to the application of stable semantics,
and it should therefore not come as a surprise that stable semantics has become the standard in the field
of logic programming.22

When one wants to do constraint satisfaction, but with the possibility of dealing with flaws and errors
in the constraint specification, it makes sense to apply a semantics that satisfies the properties ofcrash
resistance, non-interferenceandbackwards compatibilitywith stable semantics, as they were defined in
Sections 3.5 and 4.3. In that case, semi-stable semantics and stage semantics would be suitable candidates.
Like most semantics discussed in this paper, they satisfy crash-resistance and non-interference. However,
unlike many other semantics, they are also backwards compatible with stable semantics.

As an aside, it is also possible to define crash resistance, non-interference and backwards compatibility
not just for abstract argumentation, but for general logical formalisms, as is done in (Caminada and Ben-
Naim, 2007). For general logical formalisms, crash resistance basically means that no set of formulas
can make all syntactically disjoint sets of formulas irrelevant when being merged to it, non-interference
means that syntactically disjoint sets of formulas cannot influence each other’s entailment when being put
together, and backwards compatibility means that a logicalformalism yields the same outcome as another
formalism in cases where the latter does not “crash”. Non-interference implies crash resistance, at least
for logical formalisms that satisfy some minimal requirements described in (Caminada et al., 2009). Crash
resistance, however, does not imply non-interference. As explained in (Caminada, 2005), an example of
a formalism that satisfies crash resistance but violates non-interference is theOSCAR system (Pollock,
1995).

When applying the generalized versions of crash resistance, non-interference and backwards compat-
ibility (defined in (Caminada and Ben-Naim, 2007)) it can be observed that classical logic violates crash
resistance, since every inconsistent set of formulas is contaminating. The research field of paraconsistent
logic has been aimed at defining forms of entailment that use the same logical language as classical
logic, but satisfy the postulates of crash resistance, non-interference and backwards compatibility. A
paraconsistent logic as proposed in (Carnielli et al., 2002), for instance, satisfies crash resistance and
non-interference (implying that inconsistency does not affect totally unrelated formulas) and is backwards
compatible with classical logic (meaning that for each set of formulas that is consistent under classical
logic, the paraconsistent logic entails the same consequences as classical logic).

An alternative approach to deal with the issue of crash resistance in classical logic would be to consider
the models of all maximal consistent subsets of the knowledge base, since this approach also satisfies (the

22Stable model semantics (Gelfond and Lifschitz, 1988, 1991)has originally been stated in native logic programming
terms. However, as it has been shown in (Dung, 1995), it is also possible to describe this approach using argumentation
under stable semantics.
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generalized versions of) crash resistance and non-interference, while remaining backwards compatible
with classical logic (it yields the same outcome as classical logic in case the knowledge base is consistent).

To some extent, the approach of stage semantics is comparable with the approach of taking maximal
consistent subsets of a classical logic knowledge base. In both cases, one applies the original semantics
(stable semantics or classical logic semantics) while ignoring part of the original problem description in
order to successfully apply these semantics. The approach of semi-stable semantics, on the other hand,
can be compared with paraconsistent logic, in that one takesinto account the entire problem description
and applies a different semantics instead.

5.2 Semantics for Reasoning with Rules of Thumb

When applying reasoning for constraint satisfaction, one starts with a problem that is well-understood, and
then aims to write a perfect representation in a particular constraint satisfaction formalism (like Answer
Set Programming), so that the original problem can be solvedin an automated way. However, in many
cases one would like to reason about issues that are perhaps not perfectly understood (like for instance
which treatment to give to a patient) and where one has to dealwith rules of thumb, which can give reasons
in favour or against drawing a particular conclusion. Theserules of thumb are not necessarily perfect, nor
do they have to be complete. The challenge, then, is to come upwith a reasonable position one can take
based on imperfect information. This makes it desirable to apply a semantics that satisfies crash resistance
and non-interference, since we do not want problems in one part of the knowledge base to affect other,
possibly totally unrelated parts of the knowledge base. Stable semantics is therefore not an option.

Would the semantics have to be admissibility-based? That is, is it desirable that each extension
(labelling) is an admissible (or even complete) one? Again,it is difficult to provide an ultimate answer
in general: one has to refer to specific contexts. In particular, in the context of instantiated arguments
generated from an underlying logical knowledge base, admissibility can be regarded as advantageous in
relation with consistency requirements, as explained in the following.

Suppose one generates an argumentation framework based on aset of propositional formulasP and a
set of defeasible rulesD. The idea is that the propositional formulas express information that is beyond
doubt, and the defeasible rules express rules of thumb that can be subject to exceptions. Now consider the
following knowledge base.
P = {jw; mw; sw; ¬(jt ∧mt ∧ st)}

D = {jw⇒ jt; mw⇒mt; sw⇒ st}

This example can be interpreted as follows. John, Mary and Suzy want to go cycling on a tandem. The fact
that John wants to get on the tandem (jw) is a reason to believe that John will be on the tandem (jt). The
same holds for Mary and Suzy. However, since the tandem only has two seats, they cannot be on it with
the three of them:¬(jt ∧mt ∧ st). From this knowledge base, we can then construct the ten following
arguments, based on an argument construction scheme as presented in (Caminada and Amgoud, 2007;
Prakken, 2010).
A1 = ¬(jt ∧mt ∧ st)

A2 = jw

A3 =mw

A4 = sw

A5 =A2 ⇒ jt

A6 =A3 ⇒mt

A7 =A4 ⇒ st

A8 =A6, A7, A1 →¬jt

A9 =A5, A7, A1 →¬mt

A10 =A5, A6, A1 →¬st

Assuming the principle ofrestricted rebutting23 it would then follow thatA8 attacksA5, A9 andA10, that

23Restricted rebutting basically means that conclusion-based attacks can only be done against a conclusion that is the
consequent of adefeasiblereasoning step. So in our example,A8 attacksA5 butA5 does not attackA8. The reader
may refer to (Caminada and Amgoud, 2007) for more details.
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Figure 20 Conflict-freeness is not enough to obtain consistent conclusions

A9 attacksA6,A8 andA10 and thatA10 attacksA7,A8 andA9. This yields the argumentation framework
of Figure 20.

In the argumentation framework of Figure 20 there are four complete extensions:{A1, A2, A3, A4},
{A1, A2, A3, A4, A6, A7, A8}, {A1, A2, A3, A4, A5, A7, A9} and{A1, A2, A3, A4, A5, A6, A10}. The
first of these is the grounded extension, the other three are stable extensions (and therefore also
semi-stable and preferred extensions). It should be mentioned that the sets of conclusions associ-
ated to these extensions are consistent:{jw; mw; sw; ¬(jt ∧mt ∧ st)}, {jw; mw; sw; ¬(jt ∧mt ∧

st); mt; st; ¬jt}, {jw; mw; sw; ¬(jt ∧mt ∧ st); jt; st; ¬mt} and {jw; mw; sw; ¬(jt ∧mt ∧

st); jt; mt; ¬st}. Now let us examine what happens if one lowers the requirement of admissibility
to the mere property of conflict-freeness. In that case, we lose consistency, since the set of arguments
{A5, A6, A7, A1} is conflict-free yet its associated set of conclusions{jt; mt; st; ¬(jt ∧mt ∧ st)} is
inconsistent. It is therefore important to notice that conflict-freeness by itself doesnot imply consistency;
in order to yield consistent conclusions, something stronger is needed. In (Caminada and Amgoud, 2007)
it is proved that, under the right procedure of argument construction, admissibility of a set of arguments
is a condition that is strong enough to yield consistent conclusions of this set.

What does this mean for non-admissibility based semantics,such as stage or CF2? First of all, it should
be mentioned that the above described example is not a counter example against stage semantics or CF2
semantics. This is because the stage extensions (and CF2 extensions) are{A1, A2, A3, A4, A6, A7, A8},
{A1, A2, A3, A4, A5, A7, A9} and{A1, A2, A3, A4, A5, A6, A10} which yield consistent conclusions.

For stage semantics it is, however, possible to come up with aslightly more complex example where a
stage extension does yield inconsistent conclusions. Suchan example24 could be constructed by taking the
argumentation framework of Figure 20 and adding three self-attacking argumentsA8, A9 andA10 where
A8 is also attacked byA5, A9 by A6 andA10 by A7. Such arguments could be constructed by using the
notion of self-undercut, like is done in (Caminada, 2005).

Although we are currently not aware of any counter examples against the consistency of the conclusions
associated with CF2 extensions, there has not been any proofeither that this semantics indeed does yield
consistent conclusions, making this one of the open issues in argumentation. For those applications where
consistency is important, it could have advantages to be on the safe side and choose a semantics that is
guaranteed to yield consistent conclusions, hence to choose a semantics that is admissibility based.

On the other hand, as discussed in Section 2.10, admissibility is incompatible with a “balanced”
treatment of even-length and odd-length attack cycles. An example of a formalization where this kind

24This counter example was presented at COMMA 2010 and is available at:
http://www.ing.unibs.it/comma2010/presentations/P15-Caminada.pdf



42 P. BARONI M . CAMINADA M . GIACOMIN

of balanced behavior is desirable has been given in (Baroni et al., 2005). In these contexts one might
prefer to give up admissibility and then adopt CF2 semantics.

When using argumentation for reasoning with rules of thumb,it seems also reasonable that the status
of an argument depends only on the arguments that are “upstream” in the argumentation framework
(attackers, attackers of attackers, etc.) and that the semantics should therefore satisfy the directionality
principle (Section 3.5). If one restricts oneself to admissibility-based semantics, the candidates are
complete, grounded, preferred and ideal semantics, otherwise also CF2 can be considered. In the former
case, which of these semantics to choose is to some extent a matter of taste. If one would like to entail as
much as possible, preferred semantics would be the most obvious choice, since this semantics is the least
skeptical among the four. Similarly, if one would like to entail as little as possible, grounded semantics
would be selected.

6 Conclusions

Starting from the seminal paper by Dung (1995) abstract argumentation semantics has received a growing
interest by the research community, witnessed by a large corpus of scientific literature where an increasing
variety of alternative semantics proposals is complemented by studies on general principles and properties
for their assessment and comparison. This tutorial paper ismeant to provide a reasonably complete and
up-to-date introductory survey on these aspects. In particular it provides a side-by-side treatment of the
extension-based and labelling-based approaches and a fullcoverage of principle-based and skepticism-
based semantics comparison, which, as to our knowledge, cannot be found in previous works with similar
tutorial nature. For an extensive introduction to the widertheme of argumentation in Artificial Intelligence
the reader may refer to the recent book edited by Rahwan and Simari (2009), where, in particular, some
chapters devoted to more advanced topics on abstract argumentation, like proof theories and algorithms
(Modgil and Caminada, 2009) or computational complexity (Dunne and Wooldridge, 2009), can be found.
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