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Abstract

This paper presents an overview on the state of the art ofreador abstract argumentation, covering
both some of the most influential literature proposals andesgeneral issues concerning semantics
definition and evaluation. As to the former point the paperews Dung'’s original notions of complete,
grounded, preferred, and stable semantics, as well asqudrstty proposed notions like semi-stable,
ideal, stage, and CF2 semantics, considering both theggtebased and the labelling-based approaches
with respect to their definitions. As to the latter point theppr presents an extensive set of general
properties for semantics evaluation and analyzes the motié argument justification and skepticism.
The final part of the paper is devoted to discuss some rekdtipe between semantics properties and
domain specific requirements.

1 Introduction

The field of formal argumentation can be traced back to thekwbrPollock (1992, 1995), Vreeswijk
(1993, 1997), and Simari and Loui (1992). The idea is thahfmanotonic) reasoning can be performed
by constructing and evaluating arguments, which are coegpo$ a number of reasons for the validity
of a claim. Arguments distinguish themselves from proofghmy fact that they are defeasible, that is,
the validity of their conclusions can be disputed by othguarents. Whether a claim can be accepted
therefore depends not only on the existence of an argumanhttipports this claim, but also on the
existence of possible counter arguments, that can therstiees be attacked by counter arguments, etc.

Nowadays, much research on the topic of argumentation edbas the abstract argumentation theory
of Dung (1995). The central concept in this work is that of aagumentation frameworkwhich is
essentially a directed graph in which the arguments areesepted as nodes and the attack relation is
represented by the arrows. Given such a graph, one can tlaenirex the question on which set(s) of
arguments can be accepted: answering this question conméspo defining aargumentation semantics
Various proposals have been formulated in this respectireting current paper we will describe some of
the mainstream approaches. It is, however, important tp keenind that the issue of argumentation
semantics is only one specific aspect (although an impodas) in the overall theory of formal
argumentation. For instance, if one wants to use argunientdeory for the purpose of (nonmonotonic)
entailment, one can distinguish three steps (see Figur€&ist of all, one would use an underlying
knowledge base to generate a set of arguments and detemrmimeich ways these arguments attack
each other (step 1). The resultis then an argumentatioreframk, to be represented as a directed graph in
which the internal structure of the arguments, as well asdtere of the attack relation has been abstracted
away. Based on this argumentation framework, the next stepdetermine the sets of arguments that can
be accepted, using a pre-defined criterion correspondiag targumentation semantics (step 2). After
the set(s) of accepted arguments have been identified, enehids to identify the set(s) of accepted
conclusions (step 3), for which there exist various appneac
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Figure 1 Argumentation for inference

In the current paper we mainly focus on step 2 of the aboveritestargumentation process. We
do this not because the other steps are trivial (they arerdan that), but simply because the issue of
argumentation semantics (step 2) has been the subject df reaent study, making it relatively well-
understood compared to the other steps.

One of the strengths of the argumentation approach is thatis out to be powerful enough to model a
whole range of formalisms for nonmonotonic reasoning. stiaince, default logic (Reiter, 1980) has been
reformulated in terms of formal argumentation (Dung, 199% same holds for Nute’s defeasible logic
(Nute, 1994), of which an argumentation based interp@tatias given by Governatori et al. (2004), and
for logic programming under the stable model semanticsf@@dland Lifschitz, 1988, 1991), of which
an argumentation based interpretation can be found in (DLORp).

Argumentation, however, has more applications than jdstémce. The issue of argumentation based
decision making, for instance, has been studied by Amgo0@9R Dung’s question of how to define a
semantics for an argumentation framework is in fact a venega one. In essence, the question is how
to reason in case of conflicts. The issue of argumentatiomstos has also been applied with respect to
topics like coalition formation and the stable marriagelyen (Dung, 1995). This is another reason for
focussing on the topic of argumentation semantics in theeotipaper.

The remaining part of this paper is structured as followsstFin Section 2 we formally describe the
notion of an argumentation framework and present some aéthgvely well-known and well-established
argumentation semantics, both in terms of argument exdeasind in terms of argument labellings. Then,
in Section 3 we review several fundamental properties stjpygpa systematic semantics comparison,
and in Section 4 we provide a comprehensive treatment of dtens of argument justification and
skepticism, including skepticism comparison between #wewed semantics. In Section 5 we round
off with a discussion of how different argumentation serf@nay fit in different application contexts.
In particular, we discuss which kinds of design decisiony tma suitable for which kinds of domains,
and how the issue of argument construction interacts wighidgbue of argumentation semantics. Finally
Section 6 quickly summarizes and concludes the paper.

2 An Overview of Argumentation Semantics

In this section we provide an overview of some well-knownuangntation semantics, including Dung’s
original concepts of complete, stable, preferred and gtedrsemantics (Dung, 1995), as well as the
subsequently introduced ideal (Dung et al., 2007) and statile (Verheij, 1996; Caminada, 2006a)
semantics. These semantics can be considered to be mainstream, saycshiéire a basic property called

!Please notice that terms like “preferred semantics” ordidemantics” correspond to existing terminology in the
literature and do not imply any value judgements.
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admissibilityand have been subject to much study, including the spedificaf proof procedures and
of properties regarding computational complexity. We d@isat two additional semantics, namely stage
(Verheij, 1996) and CF2 semantics (Baroni et al., 2005)ikénthe other semantics considered in this
paper, stage and CF2 semantics are not admissibility-bbsethey have quite unique characteristics that
make them worthwhile to examine.

2.1 Basic concepts

Central to the theory of abstract argumentation is the natfoanargumentation frameworkvhich, as
mentioned in the introduction, is essentially a directeapgrin which the arguments are represented by
the nodes and the attack relation is represented by the stcr@iven the tutorial nature of this paper, we
keep the presentation simple by restricting ourselves i fargumentation frameworks. Some notes on
infinite argumentation frameworks are given in Section 4.4.

Definition 1 ~ Anargumentation frameworik a pair (Ar, att) in which Ar is a finite set of arguments
andatt C Ar x Ar.

We say that argument € Ar attacksargument3 € Ar (or thatA is anattackerof B) iff (A, B) € att.
If Args C Ar andA € Ar then we say thatl attacksArygs iff there existsB € Args such thatd attacks
B. Likewise, we say thatlrgs attacksA iff there existsB € Args such thatB attacksA. For A € Ar
then we writeA~ for {B | (B, A) € att} and AT for {B| (A, B) € att}. Likewise, for Args C Ar we
write Args~ for {B | 3A € Args: (B, A) € att} andArgs™ for {B | 3A € Args : (A, B) € att}.

We will also need to consider the restriction of an argumtémaframework to a subset of its
arguments.

Definition 2  Given an argumentation frameworkF’ = (Ar, att) and a set of argumentdrgs C Ar,
the restriction of AF' to Args, denoted asAF| 4,45 iS the argumentation frameworkArgs, att N
(Args x Args)).

An argumentation framework encodes, through the attackiosl, the existing conflicts within a set
of arguments. It is then interesting to identify the conftictcomes, which, roughly speaking, means
determining which arguments should be accepted (let's"sayyive the conflict”) and which arguments
should be rejected (let’s say, “are defeated in the conflieticording to some reasonable criterion.

Consider for instance the argumentation framework deghict€&igure 2. Which arguments are able to
survive the conflict? Is there only one possibility or areérgeveral solutions available? While the reader
may resort to her/his personal intuition to devise a speaifiswer in this simple case, it appears that
a well-defined systematic method is needed to deal with the o&arbitrarily complex argumentation
frameworks: such a formal method to identify conflict outesnfor any argumentation framework is
calledargumentation semantics

Two main approaches to the definition of argumentation séingare available in the literature: the
labelling-based approach and tbetensiorbased approach.

The idea underlying thiabelling-based approach is to give each argument a label. A sengiolegh
not the only possible) choice for the set of labelsiis; out or undec, where the labein means the
argumentis accepted, the labalt means the argument s rejected and the lahétc means one abstains
from an opinion on whether the argument is accepted or ege@ach argument then gets exactly one

2In Dung’s theory, attack is a one-to-one relationship, Whieviates from earlier work of, for instance, Vreeswijk
(1993) which is centered around the notionaafilective attack meaning that a set of arguments is collectively
attacking another argument.
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label. In Figure 2, one might start assigning the labeto argumentA, as it does not receive attacks,
then derive that the argumeBtshould beout, and then assume th&tshould bein in turn. While this
labeling may sound reasonable, other choices are, at leasiniciple, available: e.g. one might assign
all arguments the labeiln, but this seems incompatible with the existence of confhct®ng them, or

one might assign all arguments the labeliec, but this seems excessively cautious at least as far as the
unattacked argumentis concerned. Thus, a specific labelling-based argumentsgimantics provides a
way to select “reasonable” labellings among all the possilles, according to some criterion embedded
in its definition.

The idea underlying thextensiorbased approach is to identify sets of arguments, callednext
sions, which can survive the conflict together and thus serecollectively a reasonable position an
autonomous reasoner might take. Exemplifying with an imenetal procedure for extension construction,
in Figure 2 one might start including the argumehtas it does not receive attacks, then exclude the
argumentB, and then assume thé&t should be included in turn, ending up with the extensjen C'}.
Also in this case other choices are available, at least imcjie: e.g. one might consider the extension
{A, B, C}, but (again) this seems incompatible with the existing éotsfhmong arguments, or one might
consider the empty set as extension, but this seems exelyssautious since at leadt seems to deserve
inclusion in any extension. Thus, a specific extension-thasgumentation semantics provides a way to
select “reasonable” sets of arguments among all the pessitds, according to some criterion embedded
in its definition.

Let us now turn to the formal counterpart of the notions exéiag above.

A generic labelling assigns to each argument of an argurtienttamework a label taken from a
predefined set.

Definition 3  Let AF = (Ar, att) be an argumentation framework anda set of labels. A—labelling
is a total functionlab : Ar — A. The set of all—labellingsof AF' will be denoted a€(A, AF).

A labelling-based semantics prescribes a set of labelfimgany argumentation framework.

Definition 4  Given an argumentation frameworkF = (Ar, att) and a set of labels\, a labelling-
based semanticS associates wittAF' a subset oE(A, AF), denoted aLs(AF).

We will also need the notion of restriction of a labelling teet of arguments.

Definition 5  Given an argumentation framewotkF = (Ar, att), a set of labels\, a A—labelling
Lab, and a set of argumentdrgs C Ar, the restriction offab to Args, denoted aglab| 4.4 is defined as
Lab N (Args x A).

In this paper we focus on the casde= {in, out, undec}, a sensible choice fak which has received
considerable attention in the literature (Caminada, 20@667a; Rahwan and Larson, 2008; Caminada
and Gabbay, 2009; Caminada and Pigozzi, 2011; Rahwan amdé[d?010). An alternative approach
can be found in (Jakobovits and Vermeir, 1999), where a ¥ailwed labelling is considered. The idea
of labelling can also be put in correspondence with the motibstatus assignment in inference graphs
(Pollock, 1995). Connections between defeat status asgigts and extensions in Dung’s argumentation
frameworks have been firstly investigated by Verheij (1996)

We will implicitly assume the use of\ = {in, out,undec}, when the reference to the label
set is omitted. In particular, given a labellindub, we write in(Lab) for {A|Lab(A)=1in},
out(Lab) for {A| Lab(A) =out} and undec(Lad) for {A| Lub(A) =undec}. A labelling can be
represented as a set of pairs. For instance, the labelliegnetified above for Figure 2 can be
described ag (4, in), (B, out), (C, in)}. Sometimes we will also represent a labellidgh as the
triple (in(Lab), out(Lab), undec(Lad)). The same labelling for Figure 2 can thus be represented as
({A, C}, {B},0).

As an extension is simply a set of arguments, we can direttifgduce the notion of extension-based
semantics.
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Figure 3 An argumentation framework with mutual attack

Definition 6  Given an argumentation framewotkF' = (Ar, att), an extension-based semanti§s
associates witl F a subset 04", denoted ags(AF).

Some observations concerning the relations between teéitahand extension-based approaches are
worth remarking. First, as set membership can be formulatéerms of a simple binary labelling, e.g.
with A = {€, ¢}, the extension-based approach can be regarded as a spseiafthe general labelling-
based approach. The latter is therefore more general, tiglBormer, probably due to its simplicity, has
received by far more attention in previous literature.

Considering the three-valued labelling we focus on in tlaiggy, a correspondence with the extension-
based approach can be drawn, so that a semantics based labéfliag can be turned into an extension-
based one through a simple mapping. In fact, given a lalgatifran A F’, the labelsin can be understood
as identifying the members of an extension. This kind of &sgondence can be easily identified in the
exemplification concerning Figure 2 given above and is folsnexpressed by the following definitions.

Definition 7 Given an argumentation frameworkF” = (Ar, att) and a labellinglab the correspond-
ing set of argumentsab2Ext(Lab) is defined agab2Ext(Lab) = in(Lab).

Definition 8  Given an argumentation frameworkF' = (Ar, att) and a labelling-based semanti&s
the set of extensions correspondingte( AF') is given byes (AF') = {Lab2Ext(Lab) | Lab € Ls(AF)}.

On the other hand, given a set of argumefit# is possible to define a corresponding three-valued
labelling by distinguishing the arguments belongingipthose attacked by some memberfof and
those which neither belong 6 nor are attacked by.. As this correspondence is well-defined onlyif
satisfies some basic conditions, we defer its formal defimitto Section 2.2 (Definition 14).

We now introduce some notions which are common to both appes

First it can be noted that both approaches encompass (imajptie existence of a set of alternatives
(either labellings or extensions) for a single argumeatatiamework. It may be the case, however, that
a semanticsS is defined so that a univocal outcome is prescribed for eaghnagntation framework
(formally for any argumentation framewotkF', |Ls(AF)| =1 or |Es(AF)|=1). In this case, the
semantics is said to belong to theique-statugor single-status approach, while in the general case
it is said to belong to thenultiple-statuspproach.

Consider the argumentation framework of Figure 3 représgra mutual attack. A unique-status
approach may prescribe théA, undec), (B, undec)} labelling or analogously a single empty extension,
corresponding to an explicit abstention from decision. kndther hand, a multiple-status approach may
encompass the two alternative labellingsi, in), (B, out)} and{(4, out), (B, in)} or analogously
the extension$ A} and{B} corresponding to two opposite ways of solving the conflict.

As evident from the previous example, a semarfidoes not provide, in general, the “last word” about
the status of an argumedt In factS may prescribe both a labelling whereis labelledin and another
whereA is labelledout (or, analogously, an extension includidgand another one not). In the view of
producing a synthetic evaluation for each argument, onéhegsto consider questions like “Is beibgin
all labellings significantly different from beinin only in some of them?” or “If an argument is nit in
all labellings should it being labellegit or undec in the remaining labellings make some difference?”.
Analogous questions may arise for the extension-basedaglpr It emerges that the assessment of a
syntheticjustification statugor each argument of an argumentation framework is a fudistinct (and
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not trivial) step after the identification of labellings axtensions. This will be dealt with in Section 4
where the related issue of skepticism comparison betweaearstics will also be examined.

In the subsections 2.3-2.10 we will examine several argtiatien semantics proposed and widely
studied in the literature. The presentations of the varsensantics roughly follow a common line: first, the
underlying intuitive idea is introduced, then the semanfiicmal definition is given according to both the
labelling and the extension-based approach, finally thegmtation is completed by discussing illustrative
examples and examining additional important formal progerand inter-semantics relationships. As
to examples, the relatively simple ones provided in Figutéswill be used as a common reference
throughout this section, adding other more specific anddonpiex ones where necessary. We invite
the reader to give a look to Figures 4-6 in order to set up asgrel view” on how the conflict they
encode might be resolved, and then comparing this view \nithé emerging from the various semantics
proposals analyzed in the following. Before dealing diseaith semantics we need however to examine
in the next subsection two general properties, which urgenbst of them, namely admissibility and
conflict-freeness.

2.2 Admissibility and conflict-freeness

To introduce the notion of admissibility let us start fromeryw simple principle: for every argument
one accepts (or rejects) an explanation of why it is accefmerkjected) should be available, in relation
with acceptance or rejection of other arguments conneotedthrough the attack relation. This concept
lends itself to slightly different, though converging, tieations in the labelling and in the extension-based
approach.

In the labelling-based approach, assigningihdabel to an argumemd can be explained by having
assigned theut label to all its attackers (or by being attacked by no argument) so thais not affected
by any attack, while assigning theat label to A can be explained by having assigned thdabel to one
of its attackers, which enablekto be rejected.

This is expressed by the following definitions.
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Definition9  Let Lab be a labelling of argumentation framewofKr, att).

e Anin-labelled argumentis said to Hegally in iff all its attackers are labelledut.
e Anout-labelled argument is said to Hegally out iff it has at least one attacker that is labelled

Definition 10 Let AF = (Ar, att) be an argumentation framework. Aadmissible labellings a
labelling Lab where eachin-labelled argument is legallyn and eachout-labelled argument is legally
out.

Note that, according to this definition, for any argumewtatframework a labelling where all
arguments arendec is admissible. Let us now examine admissible labellingb@reference examples.
Considering Figure 4, it is evident thdt having no attackers, can only be labelled legahyor undec.
Considering the latter cas&, can only be labelledndec, which implies that” can not be legallyin.

If C is labelledundec then D is undec too, otherwiseC is labelledout entailing thatD is labelled
in. This yields two admissible labellings, the trivial ofie 0, { A, B, C, D}) and({D}, {C}, {A, B}).
The case wherd is labelledin leaves two alternatives fdB. If B is labelledundec we have the same
options as above faf' and D yielding the two additional admissible labellingsA}, 0, { B, C, D}) and
({A, D}, {C}, {B}). Finally if B is labelledout, three alternatives are left open f6rand D: they can
be both labelledindec or C can be legally labelledn if D is labelledout and vice versa, yielding other
three labellings({ A}, { B}, {C, D}), ({A, C}, {B, D}, 0), ({A, D}, {B, C}, ).

In Figure 5, with a similar reasoning as in the previous exanitpcan be noted thatl and B can
be both labelledindec or one in and the othewut. The first case yields only the trivial labelling
(0,0,{A, B, C, D}), in the other caseS' may be labelleaindec, yielding D undec, or out leaving for
D both the optionsndec andin. In summary there are seven admissible labellings whosmeration
is left to the reader.

In Figure 6 no admissible labellings besides the trivial thé), { A, B, C'}) are possible.

Turning now to the extension-based approach, the inclusi@m argumentd in an extensiort’ can
be supported by the fact thatrules out all the attackers of by in turn attacking them (if any). To put it
in other words F “defends”A. This is formalized in the following definitions.

Definition 11  Let AF = (Ar, att) be an argumentation framework andirgs C Ar. The setArgs
defend$ A c Ar iff VBe A=3C € Args: C attacks B. The functionF : 247 — 247 such that
F(Args) = {A | Args defendsA} is called the characteristic function ofF'.

An example of defense is given in Figure 7. Here we have amaegtA that has three attackerBy,
By andBs. Args defendsA because it attacks all these attackers.

Having introduced the notion of defense, a basic requirérioera set of arguments is the capability
to defend all its elements. It is however natural to requige &hat the set of arguments features a sort of
“internal coherence”: no conflict should be allowed withisedt of arguments which are considered able
to survive the conflictogether This leads to the definition of conflict-free set.

Definition 12  Let AF = (Ar, att) be an argumentation framework amdlgs C Ar. The setdrys is
conflict-freeiff ~3A, B € Args : A attacksB.

Note that this definition also rules out sets containing-atticking arguments (in the cade= B).
An admissible set (Dung, 1995) is required to be both intrraherent and able to defend its
elements.

Definition 13 Let AF = (Ar, att) be an argumentation framework. A sdirgs C Ar is called an
admissible set iffdrgs is conflict-free anddrgs C F(Args).

As evident from this definition, the empty set is admissibde &ny argumentation framework.
Apart from this trivial case, let us examine conflict-freaelaadmissible sets in the reference examples.

3The original terminology in (Dung, 1995) was that an arguméris acceptablew.r.t. a set of argumentsirgs.
However, we find it more intuitive to say that an argumdris defendedy a set of argumentdrgs.
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Considering Figure 4, one can observe that the non emptyicioftée sets ard A}, { B}, {C}, {D},
{4, C}, {A, D}, {B, D}. Among them {A}, having no attackers, is admissible (actuaily{A}) =
{A}). The setd B} and{C} are not admissibleR does not defend itself fromd andC does not defend
itself from B), while { D} is, as it defends itself fror6’ (in particularF'({D}) = { A, D}). Moreover the
sets{ 4, C'} and{A, D} are admissible (in the former caéedefends itself from the attack by and is
defended byA againstB, in the latter bothd and D are able to defend themselves), wHilB, D} is not
(a defense foB againstA is lacking). Applying analogous considerations in Figuré ban be seen that
the non empty admissible sets qré}, { B}, {A, D} and{B, D}. On the other hand, in Figure 6 only
the empty set is admissible since the non empty conflictdete are just the singletotisl}, { B}, {C'}
but no argument defends itself from the attack it receives.

As probably noticed by the reader, the above examples potrat correspondence between admissible
labellings and admissible sets. Before stating this cpoedence in the general case, we need to provide
the mapping from sets of arguments to labellings that wasmiaiduced in previous section since it is
well-defined only for conflict-free sets of argumeéhts

Definition 14  Given an argumentation framewokF" = (Ar, att) and a conflict-free set of argu-
ments Args C Ar the corresponding labellingExt2Lab(Args) is defined asExt2Lab(Args) =
(Args, Args™, Ar \ (Args U Args™)).

Let us call an extension-based semantics conflict-fre¢itfisaxtensions are conflict-free sets. We can
then extend the above definition to sets of extensions.

Definition 15  Given an argumentation frameworkF = (Ar, att) and a conflict-free extension-based
semanticsS, the set of labellings corresponding &a (AF') is given byLs(AF) = {Ext2Lab(F) | E €
Es(AF)}.

The correspondence between admissible labellings andsaiite sets stated by Proposition 1 has
been proved in (Caminada and Gabbay, 2009).

Proposition 1  For any argumentation framewotkF' = (Ar, att)

o if Argsis an admissible set theixt2Lab(.Args) is an admissible labelling;
e if Lab is an admissible labelling thebab2Ext(Lab) is an admissible set.

It can be noted that the correspondence is not bijectiveesdifferent admissible labellings may
give rise to the same admissible set. For instance, in thansggtation framework of Figure 4

*If a set.Args of arguments is not conflict-fredrgs N Args™ is not empty, i.e. some argument would be labelled
bothin andout according tcExt2Lab(Args).
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both ({A}, {B}, {C, D}) and ({4}, 0,{B, C, D}) are admissible labellings, whose setiaflabelled
arguments yields the same admissible{sé}.

To complete the correspondence it is also possible to defirian of conflict-free labelling which
parallels the one of conflict-free Set

Definition 16  Let Lab be a labelling of an argumentation framewatd” = (Ar, att). Lab is conflict-
freeiff for eachA € Ar it holds that:

1. if Aislabelledin then it does not have an attacker that is labelied
2. if Aislabelledout then it has at least one attacker that is labellad

When comparing a conflict-free labelling to an admissibleeliing it can be noticed that the condition
onout labelled arguments (second bullet) is essentially the shlmeever, the condition fotn-labelled
arguments (first bullet) is weaker for conflict-free lab@dlé than for admissible labellings. It then follows
that every admissible labelling is also a conflict-free labg (just like every admissible set is also a
conflict-free set by definition).

2.3 Complete Semantics

Complete semantics can be regarded as a strengthening basierequirements enforced by the idea
of admissibility. Intuitively, while admissibility requés one to be able to give reasons for accepted and
rejected arguments but leaves one free to abstain aboutrgngnant, complete semantics also requires
one to abstain only if there are no good reasons to do otherwisat is, if one abstains from having an
opinion on whether the argument is accepted or rejected, dhe should have insufficient grounds to
accept the argument (meaning that not all its attackersejeeted) and insufficient grounds to reject the
argument (meaning that it does not have an attacker thatepsed). Note in particular that, while the
trivial solution of leaving anything undecided is alwaysrasisible, it is not always complete since there
can be arguments one has good reason not to abstain about.

In the labelling-based approach, the intuition descritiEaa corresponds to extending Definition 9 in
order to encompass a notion of an argument bkigglly undecided

Definition 17 Let Lub be a labelling of an argumentation framewdtkr, att).

e Anundec-labelled argument is said to Hegally undec iff not all its attackers are labelledut and
it doesn’t have an attacker that is labelled.

Definition 18 A complete labellings a labelling where everin-labelled argumentis legallyn, every
out-labelled argument is legallyut and everyundec labelled argument is legallyndec.

It is clear from Definitions 18 and 10 that every complete lidgis an admissible labelling (but the
reverse does not hold in general).
An alternative characterization of a complete labelling ba provided (Caminada and Pigozzi, 2011).

Proposition2  Let Lab be a labelling of an argumentation framewofHKr, att). Lab is a complete
labelling iff for each argumentl € Ar it holds that:

1. Aislabelledin iff all its attackers are labelledut, and
2. Ais labelledout iff it has at least one attacker that is labelled.

Although Proposition 2 does not explicitly mentiandec, it follows that each argumentthat is labelled
undec does not have all its attackesat (otherwise it would have to be labellea by point 1) and it
does not have an attacker that is labelied(otherwise it would have to be labelledit by point 2).
Therefore, eachndec-labelled argument is legallyndec. A formal proof of Proposition 2 can be found
in (Caminada and Gabbay, 2009).

SWe use the Definition of (Caminada, 2011). Note that clause 2eeded for defining stage labellings (see Section
2.9).
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Turning to the extension-based approach, a complete eateissa conflict-free set which includes
precisely those arguments it defends. That is, if an argtie@efended by the set it should be in the set,
and if an argument is not defended by the set, it should nohltlkee set. Technically this means that a
complete extension is a conflict-free fixed point of the cbimastic function, as stated in the following
definition (Dung, 1995).

Definition 19  Let (Ar, att) be an argumentation framework. A sdtgs C Ar is called acomplete
extensiorniff Args is conflict-free anddrgs = F/(Args).

Itis clear from Definitions 19 and 13 that every complete egien is an admissible set (but the reverse
does not hold in general).

Let us now provide some examples to illustrate the notionoohglete semantics. In Figure 4, one
can observe that, among the seven admissible labellifds, { B}, {C, D}), ({4, C}, {B, D}, 0), and
({A, D}, {B, C}, 0) are complete. In particular, note thatis legallyin in all labellings because all its
attackers areut (trivially, because it has no attackerdj.is legally out in all labellings because it has
an attacker 4) that isin. On the other hand, and D can be both legallyndec, or one legallyin and
the other legallyut. Analogously, in the same figure it can be noted {hé} is a complete extensioni(
has no attackers and is therefore trivially defended by ahyisdefend<” from B but not fromD), and
{4, C} and{ A, D} are complete extensions too.

In Figure 5, the trivial labelling(, @, {4, B, C, D}) is complete, as well a§{A, D}, {B, C},0)
and({B, D}, {A, C},0). Analogouslyf) is a complete extension (no unattacked arguments existhwhi
would be the only arguments defended by the empty set) asawgHd, D} and{B, D}, while {A} and
{B} are not complete extensions since they both defend alsonengfD.

In Figure 6 the only complete labelling is the trivial ofie 0, { A, B, C'}) and analogously the only
complete extension i (as it was the case for admissible labellings/sets).

As the above examples also show, there is a direct mappimgebatcomplete labellings and complete
extensions: it has been proved in (Caminada and Gabbay) 2@@Xxhis correspondence is bijective as
stated in the following proposition.

Proposition3  For any argumentation frameworldr, att), Lab is a complete labelling iff there is a
complete extensiadrgs such thatlab = Ext2Lab(.Args).

2.4 Grounded Semantics

If one regards each complete labelling (or complete extensis a reasonable position one can take in
the presence of the conflicting information expressed inatlgeimentation framework, then a possible
question is to examine what is the most “grounded” positioa can take, namely the position which is
least questionable. The idea is then to accept only the agtgthat one cannot avoid to accept, to reject
only the arguments that one cannot avoid to reject, andiabsjeas much as possible. This gives rise to
the most skeptical (or least committed) semantics amorggthased on complete extensions.

This idea has a straightforward formal counterpart in tesfrsminimality requiremenit

Definition 20 Let AF = (Ar, att) be an argumentation framework. The grounded labelling 6Fis
a complete labellingab wherein(Lab) is minimal (w.r.t. set inclusion).

Definition 21  Let AF = (Ar, att) be an argumentation framework. The grounded extensich/ofs
a minimal (w.r.t. set inclusion) complete extensionAdf (i.e. a minimal conflict-free fixed point of the
characteristic functiorf’).

As we have already seen complete labellings and extensiathe iexamples of Figures 4-6, one can
identify those featuring the minimality property requitadthe above definitions. In the example of Figure
4, the grounded labelling i§ A}, { B}, {C, D}) while the grounded extension{si}. In both Figures 5

Definition 21 is not literally the same as the one originallyeg by Dung (1995). We provide this equivalent version
as more coherent with our presentation line.
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and 6 the grounded labelling is the trivial or(@,(0, {A, B, C, D}) and(0, §, { 4, B, C}) respectively),
and analogously the grounded extension is the empty setlindases.

The uniqueness of the grounded labelling and extensioresetlbxamples is not accidental. Consider-
ing the grounded extension, singeis monotonic it follows from the Knaster-Tarski theoremtthahas
a unique smallest fixed point. It can then be proved that théglfpoint is also conflict-free (Dung, 1995).

Proposition4  For any argumentation framewofldr, att), the following statements are equivalent:

1. Argsis a minimal conflict-free fixed point &t
2. Args is the smallest fixed point &t

It follows that:

e the grounded extension is unique (i.e. grounded semargloss to the unique-status approach);
e the grounded extension is the least complete extensiorgriicplar it is included in any complete
extension.

In virtue of the one-to-one correspondence between comm@etensions and complete labellings
established in Section 2.3, it can be proved that the graltaleelling is unique and coincides with
Ext2Lab(Args) whereArgs is the grounded extension. Similarly,4ib is the grounded labelling, then
Lab2Ext(Lab) is the grounded extension.

As a confirmation of the intuitive meaning stated at the beigig of the section, it turns out that the
grounded semantics can be described not only in terms ofizinig acceptance. In fact, the complete
labelling wherein(Lab) is minimal is also the complete labellinéb whereout(Lab) is minimal, and
the complete labellingab whereundec(Lab) is maximal. This is stated in Proposition 5, whose proof is
based on Lemma 1 (see (Caminada, 2006b; Caminada and Gapbay for details).

Lemmal Letfab; andLabs be complete labellings of an argumentation framewlotk, att). It holds
thatin(Laby) C in(Labs) iff out(Laby) C out(Labs).

Proposition5 Let Lub be a complete labelling of an argumentation framewdrkr, att). The
following statements are equivalent.

1. Labis the complete labelling whete(Lab) is minimal (w.r.t. set inclusion)
2. [Lab is the complete labelling whert(Lab) is minimal (w.r.t. set inclusion)
3. [Lab is the complete labelling whetendec(Lab) is maximal (w.r.t. set inclusion)

Given the bijective correspondence between completeliaggland complete extensions, the above
proposition can be equivalently formulated for the extenddased approach.

Proposition6  LetE be a complete extension of an argumentation framewudrk att). The following
statements are equivalent.

1. Fisthe least (w.r.t. set inclusion) complete extension
2. E isthe complete extension such tizt is minimal (w.r.t. set inclusion)
3. Fisthe complete extension such thit\ (E U ET) is maximal (w.r.t. set inclusion)

Finally, an interesting property proved in (Dung, 1995)yides a useful “constructive” characteriza-
tion of grounded semantics for finite (and more generallydigl) argumentation frameworks.

Proposition7 The grounded extension of any finitary argumentation fraomkwis equal to
o F(0), whereF' () = F() and fori > 1 F*(0) = F(F*~1(0)).

.....

On the basis of Proposition 7 the grounded labelling (or \eently extension) can be obtained
incrementally by first labellingn those arguments which do not receive attacks. Then the angtsm

“An argumentation framework is finitary if every argumentaiges a finite number of attacks.
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attacked by those labelleth are labelledout. The same steps are iterated considering only those
arguments which have not been labelled yet, namely reppdtia procedure on an argumentation
framework obtained by suppressing the already labelledraegts. In particular, this corresponds to
labelling in those unlabelled arguments which only receive attacks faognments labelledut, and
then labellingout those attacked by the newly labelled arguments. The procedure is then iterated until
an iteration does not produce any newtyor out labelled argument. Then, any still unlabelled arguments
are labelledindec.

It can be noted that the first iteration corresponds to latgelin the arguments iF"!((})) and out
the arguments attacked @y* (), the second iteration labellinth the arguments id?(()) andout the
arguments attacked biy?(()), and so on. This procedure can be applied to the exampleshama shat
the grounded extension includes those and only those argsmwhose defense is “rooted” in unattacked
arguments (see (Baroni and Giacomin, 2007) for a formalrireat of this notion, calledtrong defenge

If the aim is not so much to compute the entire grounded eidar{abelling) but merely to examine
whether or not an argument s in the grounded extensionl(gahin by the grounded labelling) then one
could also use the proof procedures described in (ModgilGardinada, 2009).

2.5 Preferred Semantics

While grounded semantics takes a skeptical, or least-ctrmeni, standpoint, one can also consider the
alternative view oriented at accepting as many argumentsas®nably possible. This may give rise to
mutually exclusive alternatives for acceptance: for insésa mutual attack can be reasonably resolved by
accepting either of the conflicting arguments, but cleadiboth.

The idea of maximizing accepted arguments is expressgaegrred semanticwhose description in
the labelling-based and extension-based approachesis igithe following definitions.

Definition 22  Let AF' = (Ar, att) be an argumentation framework. A preferred labellingAdf is a
complete labellinglab wherein(Lab) is maximal (w.r.t. set-inclusion) among all complete ldibgs.

Definition 23  LetAF = (Ar, att) be an argumentation framework. A preferred extension is amel
admissible set ol F' (w.r.t. set inclusion).

Considering the examples of Figures 4-6, the existence tfpteupreferred labellings (or extensions)
immediately emerges. For instance, in Figure 4 two non+#apsolutions exist for the mutual attack
betweenC' and D, giving rise to the preferred labelling$A, C}, {B, D}, 0) and({A, D},{B, C},0).
Similarly, two preferred extensions exist, namél, C'} and{A, D}.

In Figure 5 again two alternative non-skeptical solutiokristefor the mutual attack betweeh and
B. In both cases(’ is then rejected an@d accepted. This intuitive description corresponds to the tw
preferred labellingg{ A, D}, {B, C},0) and ({ B, D}, {A, C},0) and, analogously, to the preferred
extensiond 4, D} and{B, D}.

In Figure 6 instead, no non-trivial solutions to the conflice available under the constraint of
admissibility, as the reader may remember from previousettinns. It then follows that the unique
preferred labelling in this case (8, §, { A, B, C}) and, similarly, the only preferred extensiorfis

As usual, the evident correspondences in the above exaarglest accidental: it can be proved that an
analogous version of Proposition 3 holds for preferred seits i.e. there is a bijective correspondence
between preferred labellings and preferred extensionsitrtheExt2Lab (andLab2Ext) functions.

It turns out that the complete labellings with maximalare the same as the complete labellings with
maximalout, as stated in Proposition 8 whose proof is based on Lemma 1.

Proposition8  Given an argumentation frameworkF' = (Ar, att) the following statements are
equivalent.

1. [Lab is a complete labelling wherén(Lab) is maximal (w.r.t. set inclusion) among all complete
labellings.
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2. [Lab is a complete labelling whereut(Lab) is maximal (w.r.t. set inclusion) among all complete
labellings.

An analogous formulation of Proposition 8 for the extendi@sed approach could be provided in a
straightforward way.

Relationships of preferred extensions with other semantmtions have been analyzed in (Dung,
1995). Preferred extensions can for instance equivalémstlgharacterized as maximal complete exten-
sions.

Proposition9  LetAF = (Ar, att) be an argumentation framework and létys C Ar. The following
statements are equivalent.

1. Argsis a maximal (w.r.t. set inclusion) admissible setddf
2. Argsis a maximal (w.r.t. set inclusion) complete extensioA 6f

This in particular implies that the grounded extension @uded in any preferred extension, as it is
in any complete extension. By definition, the grounded esitencoincides with the intersection of all
complete extensions: one may then wonder whether this latddsfor preferred extensions. The answer
is negative, as shown for instance by the example of Figureegethe grounded extensiorfiisvhile the
intersection of the preferred extensiongi3}. Again, this fact can be easily translated in the labelling-
based approach referring to the-labelled arguments.

An algorithm that produces all preferred labellings (aneréfiore also produces all preferred exten-
sions) is described in (Caminada, 2007a; Modgil and Canain2@09). If the aim is merely to determine
whether an argument is in at least one preferred extensibel{edin by at least one preferred labelling)
then one could also use the proof procedures describedé&eévijk and Prakken, 2000; Vreeswijk, 2006;
Verheij, 2007; Modgil and Caminada, 2009; Caminada and WQ92 Proof procedures for determining
whether an argumentis in every preferred extension (latbel by every preferred labelling) are provided
in (Cayrol et al., 2003; Modgil and Caminada, 2009).

2.6 Stable Semantics

So far we have discussed semantics according to the irdudia that an argument can be accepted,
rejected or left undecided. One can however prefer more dtsurevaluations, in which there is no
room for neutrality or shades of gray and everything is juatk or white. This means that undecided
arguments are simply “forbidden” as in statements like “y@aither with us or against us.”

This clear-and-strong view has a direct formulation in bibt labelling-based and extension-based
approach.

Definition 24  Let Lab be a labelling of argumentation frameworkF' = (Ar, att). Lab is a stable
labellingof AF iff it is a complete labelling witlundec(Lab) = 0.

Definition 25 Let AF = (Ar, att) be an argumentation framework. #table extensionf AF is a
conflict-free sefdrgs such thatdrgs U Args™ = Ar.

In the example of Figure 4 there are two stable labellingsneia ({4, C},{B, D},0) and
({A, D}, {B, C},0). Similarly, two stable extensions exist, namébt, C} and{A, D}. In Figure 5
the labellings({A, D}, {B, C},0) and ({ B, D}, {A, C'}, () are stable and, analogously, there are two
stable extensions, namelyl, D} and{B, D}.

Figure 6 shows that the strong view underlying stable seicgntn not be universally applied. In
fact, no labelling nor extension complying with the defimitican be identified (the requirements of
conflict-freeness and ability to attack all other argumearts incompatible in this case). This can be
regarded as a limitation of stable semantics as “stableneiktes do not capture the intuitive semantics
of every meaningful argumentation system” (Dung, 1995pHKing at this fact from another perspective,
differently from other semantics reviewed so far, in theecaEstable semantics the trivial labelling (or
extension) does not represent the “default” conflict resmiuone can resort to when nothing else is
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Figure 8 An argumentation framework where preferred and stable séosadiffer

reasonable. It follows that, using a terminology from (Barand Giacomin, 2009b), stable semantics
is notuniversally definedsince there are argumentation frameworks where it isnisitally impossible

to apply its “in-or-out” view. No other argumentation serties considered in the literature shows this
limitation.

Apart from this critical case, the reader may have noticeat the stable labellings (extensions)
coincide with the preferred ones in the other two cases. Cmethen wonder whether stable semantics
(leaving apart critical cases) coincides with preferrethaetics. The answer is negative, as shown
by the argumentation framework of Figure 8. Here one canfywedhiat there are three complete
labellings, namely(®, 8, {A, B, C, D, E}), ({A}, {B},{C, D, E}) and ({ B, D}, {A, C, E}, (), and,
correspondingly, three complete extensions. Two of theethabellings (extensions) are preferred, namely
({A},{B},{C, D, E})and({B, D}, {4, C, E}, D), but clearly only the last one is stable.

Let us now generalize this and possibly related observatexamining properties of stable semantics
in general.

First it is possible to characterize the concept of a stadddelling in other terms. In particular note
that the difference between a complete labelling and an ssioié labelling is that a complete labelling
has the additional requirement that evemdec-labelled argument is legallyndec. However, if, as
in Definition 24, there are nandec-labelled arguments in the first place, then this extra mequént
becomes superfluous. Moreover, the fact that anything shattilabelledin is labelledout ensures that
every stable labelling is also preferred (but not viceveaisave have already seen). These considerations
are summarized in Proposition 10 (notice that point 3 of Bsitipn 10 coincides with Definition 24).

Proposition 10  Let Lab be a labelling of an argumentation framewatld” = (Ar, att). The following
statements are equivalent:

Lab is a conflict-free labelling withundec(Lab) =
Lab is an admissible labelling withndec(Lab) =
Lab is a complete labelling withndec(Lab) =0
Lab is a preferred labelling withundec(Lab) = ()

PR

On the other hand, it is immediate to see that a stable exterisian admissible set, hence the
equivalent characterizations given in Proposition 11 ifag#ote that point 1 of Proposition 11 coincides
with Definition 25).

Proposition 11  Let AF = (Ar, att) be an argumentation framework andlgs C Ar a set of argu-
ments. The following statements are equivalent:

Args is a conflict-free set wittdrgs U Args™ = Ar

Args is an admissible set such thdtrgs U Args™ = Ar
Args is a complete extension such thétgs U Argst = Ar
Args is a preferred extension such thdtgs U Args™ = Ar
ArgsT = Ar\ Args

SARE A o

As probably evident from above, the bijective labellingse@sions correspondence throEgt2Lab
(andLab2Ext) holds for stable semantics too as proved in (Caminada ab8&ya2009).
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An algorithm that produces all stable labellings (and tfaeealso all stable extensions) is described in
(Caminada, 2007a; Modgil and Caminada, 2009). If the aimésety to determine whether an argument
is in at least one stable extension (labeliedby at least one stable labelling) then one could also use
the proof procedures described in (Caminada and Wu, 2088)f Brocedures for determining whether
an argument is in every stable extension (labeliadby every stable labelling) are also provided in
(Caminada and Wu, 2009).

2.7 Semi-Stable Semantics

As illustrated in the previous section, the requirementfoffidding” undecided arguments turns out to

yield no results in some cases. A more sophisticated idesistsrin expressing a definite opinion on the

largest possible set of arguments, while restricting admasgossible (but not necessarily avoiding) those
which are left undecided. This intuition lies at the basisehi-stablesemantics, which can be defined as

follows.

Definition 26  Let Lab be a labelling of an argumentation framewadd = (Ar, att). Lab is a semi-
stablelabelling of AF' iff Lub is a complete labelling wherendec(Lab) is minimal (w.r.t. set inclusion)
among all complete labellings.

Definition 27  Let AF = (Ar, att) be an argumentation framework. A semi-stable extensioAof
is a complete extensiadrgs whereArgs U Args™ is maximal (w.r.t. set inclusion) among all complete
extensions.

It follows directly that each stable labelling is also a sestaible labelling and that semi-stable
labellings coincide with stable labellings when the lag&ist. This is because a stable labelling is a
complete labelling with an empty setwidec-labelled arguments. Hence, itis a complete labelling wher
the set ofundec-labelled arguments is minimal (so a semi-stable labéllirgrthermore, if there exists
at least one stable labelling then the setindec-labelled arguments has to be empty in any complete
labelling with a minimal set ofindec-labelled arguments (semi-stable labelling) and hencesach a
labelling has to be stable. The same relationship holdsdmtvgtable and semi-stable extensions: each
stable extension is a semi-stable extension, and seniestatensions coincide with stable extensions
when the latter exist. Accordingly, we already know, from\pous section, the behavior of semi-stable
semantics in the examples of Figures 4 and 5.

Even in situations where stable extensions/labellings db axist, the existence of semi-stable
labellings (or extensions) is anyway guaranteed, sincg dne selected among the (always existing)
complete ones. In particular, in the example of Figure 6 thly semi-stable labelling (extension) is
(again) the trivial one.

The maximization requirement imposed by semi-stable s@o%ais intuitively similar, but clearly
different, from the maximization requirement in the defomtof preferred semantics. One may wonder
whether these different maximisations actually lead tostimae results. The answer is negative (see also
Verheij, 2003) as shown by the example of Figure 8, wheresthes two preferred labellings (and then
two corresponding extensions) naméjy}, { B}, {C, D, E}) and({ B, D}, {A, C, E}, 1), but only the
latter is semi-stable (as well as stable).

Equivalent characterizations of semi-stable semantitayins of admissible labellings/sets and of pre-
ferred labellings/extensions are available (see for m®aCaminada and Gabbay, 2009) as summarized
in the following propositions.

Proposition 12 Let Lub be a labelling of an argumentation framewadF” = (Ar, att). The following
statements are equivalent.

1. [fabis a complete labelling wherendec(Lab) is minimal (w.r.t. set inclusion) among all complete
labellings

2. Lab is an admissible labelling wherendec(Lab) is minimal (w.r.t. set inclusion) among all
admissible labellings
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3. [Lab is a preferred labelling wherandec(Lab) is minimal (w.r.t. set inclusion) among all preferred
labellings

Proposition 13 Let AF = (Ar, att) be an argumentation framework, and létgs C Ar. The follow-
ing statements are equivalent.

1. Args is a complete extension wheyérgs U Args™ is maximal (w.r.t. set inclusion) among all
complete extensions

2. Argsis an admissible set wherérgs U Args™ is maximal (w.r.t. set inclusion) among all admissible
sets

3. Args is a preferred extension wherdrgs U Args™ is maximal (w.r.t. set inclusion) among all
preferred extensions

Finally, the usual bijective labellings-extension cop@sdence holds for semi-stable semantics too
(see Caminada, 2007a; Caminada and Gabbay, 2009). An thigothat produces all semi-stable
labellings (and therefore also all semi-stable exten3imndescribed in (Caminada, 2007a; Modgil and
Caminada, 2009).

The concept of semi-stable semantics can be traced back twtion of admissible stage extensions
(see Section 2.9) introduced by Verheij (1996). Althouggré¢hare differences in the basic formalisation
(Verheij for instance does not use the standard extensase¢bapproach) it can be proved that Verheij's
approach is equivalent to that of Caminada, who, indepehd&om Verheij, rediscovered the same
concept under the name of semi-stable semantics (Camip@déa).

2.8 Ideal Semantics

The notion ofideal semanticsan perhaps be best explained using a description congeajidgement
aggregation context (Caminada and Pigozzi, 2011). Assugrewp of people who all try to accept as
much as possible, examine what they all agree on, and cheetheihthis position is still defensible: if
not, water it down (by abstaining from some arguments imstdfaaccepting or rejecting them) until it
becomes defensible. The result is ttleal labelling/extension.

In order to formally define the concept of the ideal labelling first need to treat some preliminaries
(see Caminada and Pigozzi, 2011).

Definition 28  Let Laby and Lubs be labellings of an argumentation frameworkF' = (Ar, att).
We say thatlub, is more or equally committedhan Laby (Laby T Labs) iff in(Laby) C in(Labs)
and out(Lab1) C out(Labs). We say thatlubs is compatiblewith Lab; (Laby =~ Labs) iff in(Laby) N
out(Labs) = 0 andout(Laby) N in(Labs) = ().

It holds that ‘=" defines a partial order (reflexive, anti-symmetric, tréims) on the labellings of
an argumentation framework. We can therefore talk aboubelllag being “bigger” or “smaller” than
another labelling with respect td_". The relation %", although reflexive and symmetric, is not an
equivalence relation, since it does not satisfy trangjtfit holds that ‘=" is at least as strong as<";
that s, if Lab; C Laby thenLaby =~ Labs.®

The idea of =" is to define what it means for a labelling to be more committexh another labelling
(this is a special case of skepticism comparison, an issighwiill be dealt with systematically in Section
4). For instance, the grounded labelling is the least cotethiabelling among all complete labellings.
The idea of %" is to define when a labelling of one person might still be gtable to another person. To
see this, first consider that by requiring tha{ £ab,) N out(Labs) = @ andout(Lab,) N in(Labs) =0,
the relation %" does not allow for conflicts betweein andout. That is, if there is an argument that

8As a counterexample, consider an argumentation framewtfk= ({A, B}, {(4, B), (B, A)}). Let Lab; =
({A}, {B}, 0), Labs = (0,0, {A, B}) andLabs = ({B}, {A}, 0). It holds thatlab, ~ Labs and Labs ~ Labs but
Laby % Labs.
9This is because Laby = Lab> iff in(Labi) C in(Labs) U undec(Lab2) and out(Labi) C out(Labs) U
undec(Labz).
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is accepted by agemt but rejected by agen® (or vice versa) then their labellings are not compatible.
However, it is less problematic to have conflicts betweeandundec, or betweerut andundec. Thus,
compatibility provides an indication of how easy or diffititlis to share a position that is not one’s own.
It is easier to do this for a labelling that is compatible tliana labelling that is not compatible. In the
former case the worst that can happen is that one has torabstai something one accepts or rejects (or
have to accept or reject something where one did not have@itigxpinion about). In the latter case,
however, one has to make statements that go directly agaie& private position.

To come back to the informal description of ideal semantigs,assume a meeting in which every
preferred labelling is represented. The meeting then d&gsieach argument, one by one, with the aim
to define annitial labelling. If everybody agrees that the argument is labeiledthat is, the argument
is labelledin in every preferred labelling) then the argument is alsollaten in the initial labelling. If
everybody agrees that the argument is labelled(that is, the argument is labelledt in every preferred
labelling) then the argument is labelledt in the initial labelling. In all other cases, the argument is
labelledundec in the initial labelling. After this process is over, and thigial labelling has been finished,
the meeting goes to the second phase, in which the initialllab is “watered down” in order to become
an admissible labelling. This is done by iteratively relibg each argument that is illegaliy or illegally
out to undec. When there are no more arguments left that are illegallpr illegally out, the result is
theideal labelling It was proved in (Caminada and Pigozzi, 2011) that thisggscesults in constructing
the most committed (“biggest”) labelling that is less or @fyucommitted than each preferred labelling.
This leads to the following definition of ideal semantics.

Definition 29  Let AF = (Ar, att) be an argumentation framework. The ideal labelling4df is the
biggest admissible labelling that is smaller or equal tolepeeferred labelling.

The uniqueness of the ideal labelltigand the fact that the ideal labelling is a complete labelling
have been proved in (Caminada and Pigozzi, 2011). Sincetlumded labelling is the smallest complete
labelling (w.r.t. ‘'=") it directly follows that the ideal labelling is bigger ogaal to the grounded labelling.

Proposition 14  Let (Ar, att) be an argumentation framework, lelb,, oundes b€ its grounded
labelling andLab;qcq; be its ideal labelling. It holds thafab g, ounded T Labideal-

There are several ways of describing the ideal labellingri@ada, 2011).

Proposition 15  Let Lub be a labelling of an argumentation framewatlé” = (Ar, att). The following
statements are equivalent.

Lab is the biggest admissible labelling that is smaller or ecwadach preferred labelling
Lab is the biggest admissible labelling that is compatible veisith admissible labelling
Lab is the biggest admissible labelling that is compatible veilth complete labelling
Lab is the biggest admissible labelling that is compatible viglth preferred labelling

PowbdbpE

The concept of ideal semantics was originally introduce@ims of extensions in (Dung et al., 2007),
drawing inspiration from the analogous concept of ideaptical semantics in extended logic programs
(Alferes et al., 1993).

Definition 30  Let AF = (Ar, att) be an argumentation framework. An admissible.4egs is called
ideal iff it is a subset of each preferred extension. The idealresiém of AF is a maximal (w.r.t. set-
inclusion) ideal set.

It turns out that the ideal extension is unique (which implieat it is also the biggest ideal set) and
that it is also a complete extension (Dung et al., 2007).dhtfollows directly that the ideal extension is
a superset of the grounded extension.

%The idea is to perform the sceptical judgment aggregatiaeguiure of (Caminada and Pigozzi, 2011) on all
preferred labellings.
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Figure 9 The ideal labelling can be less skeptical than the grounaleelling

Proposition 16  Let (Ar, att) be an argumentation framework, letrgs, ,,,q4.q 0€ its grounded
extension antrgs, ., be its ideal extension. It holds thaltrgs ,,...,4cq © Args

ideal"
There are several ways of describing the ideal extension.

Proposition 17 Let AF = (Ar, att) be an argumentation framework, and létgs C Ar. The follow-
ing statements are equivalent.

1. Argsis the biggest admissible set that is a subset of each pegfextension

2. Args is the biggest admissible set that is not attacked by any sxibiée set

3. Args is the biggest admissible set that is not attacked by any Eimpxtension
4. Args is the biggest admissible set that is not attacked by anypef extension

In Proposition 17 the equivalence between points 1 and avaslifrom (Dung et al., 2007, Theorem
3.3). The equivalence between points 2, 3 and 4 follows filwarfact that an argument (or set) is attacked
by an admissible set iff it is attacked by a complete extentidt is attacked by a preferred extension.

The bijective labellings-extensions correspondenceutlfin®xt2Lab (andLab2Ext) also holds for
ideal semantics (Caminada, 2011).

Ideal semantics is similar to grounded semantics in theestira it always yields a unique labelling
(extension). Actually it can be seen that the ideal labgllfextension) coincides with the grounded
labelling (extension) in the examples of Figures 4, 5 and @alrticular, referring to extensions, in Figure
4 the intersection of preferred extension4} coincides with the grounded extension; in Figure 5 the
intersection of preferred extensiofi®} is not admissible and its only admissible subset is the empty
set (coinciding with the grounded extension); in Figure é¢his only one (empty) preferred extension,
which coincided with the grounded and ideal extension.

However, as shown in Propositions 14 and 16, in general &ahntics tends to be less skeptical than
grounded semantics. As an example, in the argumentatiorefsark of Figure 9 the grounded labelling
is (0,0,{A, B}) (the grounded extension #§ whereas the ideal labeling {§ A}, {B}, 0) (the ideal
extension i A}).

To determine whether an argument is an element of the ideahsion, point 2 of Proposition 17
implies that it is sufficient to determine whether it is anneémt of an admissible set that is not attacked
by any admissible set. Proof procedures for this are stifaighard and have been described in (Dung
etal., 2007).

An alternative approach that is very close to ideal semarigithat ofeager semantic€Caminada,
2007b). Where the ideal extension is the (unique) biggestisgible (and complete) subset of each
preferred extension, the eager extension is the (uniqgegebt admissible (and complete) subset of each
semi-stable extension. The eager extension is a supertieg @feal extension, making eager semantics
(to the best of our knowledge) the most credulous uniquestgmantics that has been proposed in the
literature. The eager extension and the associated edugdliig can be computed by first calculating all
semi-stable labellings (using for instance the algorittiifCaminada, 2007a)) and subsequently applying
the judgement aggregation operators specified in (Camiaad#®igozzi, 2011).

2.9 Stage Semantics

The concept of stage semantics has been introduced in (yer®@6) and further developed in (Verheij,
2003) in different formal settings with respect to the onessidered in this paper. Precise (and rather
straightforward) correspondences can be anyway drawresevihcan describe stage semantics in terms
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of labellings and extensions, as for all other semanticdis paper. In essence, a stage labelling is
a conflict-free labelling wherandec is minimal, whereas a stage extension is a conflict-free tet o
argumentsdrgs, whereArgs U Args™ is maximal.

Definition 31  Let AF = (Ar, att) be an argumentation framework. A labelling:b is called a
stage labellingf AF iff it is a conflict-free labelling wherendec(Lab) is minimal (w.r.t. set-inclusion)
among all conflict-free labellings.

Definition 32  Let AF = (Ar, aft) be an argumentation framework. A stage extensiom 6fis a
conflict-free sefdrgs C Ar whereArgs U Args™ is maximal (w.r.t. set inclusion) among all conflict-free
sets.

It holds that every stable labelling (extension) is alscagstiabelling (extension).

Theorem1 Let/ab be a labelling of an argumentation framewadld = (Ar, att). If Lab is a stable
labelling of AF' thenab is also a stage labelling ol F.

Theorem2 Let AF = (Ar, att) be an argumentation framework aptigs C Ar. If Args is a stable
extension oA F' then.Args is also a stage extension dff.

If there exists at least one stable labelling (extensidrénteach stage labelling (extension) is also a
stable labelling (extension).

Theorem3 Let AF = (Ar, att) be an argumentation framework. If there exists at least dabls
labelling of AF then every stage labelling is also a stable labelling.

Theorem4 Let AF = (Ar, att) be an argumentation framework. If there exists at least dable
extension ofA F' then every stage extension is also a stable extension.

There also exists an alternative way to describe the corafeftage semantics. In essence, a stage
labelling is a stable labelling of a maximal subgraph of thguenentation framework that has at least
one stable labelling, augmented witldec labels for the arguments that did not make their way into
the subgraph. Similarly, what a stage extension does iagakimaximal subgraph of the argumentation
framework that has at least one stable extension. A stagm&rnh is then a stable extension of such a
maximal subgraph.

Theorem5 Let/fab be alabelling of an argumentation framewatld” = (Ar, att). The following two
statements are equivalent.

1. [fabis a conflict-free labelling wherendec(Lab) is minimal (w.r.t. set inclusion) among all conflict-
free labellings

2. Args = in(Lab) U out(Lab) is a maximal subset olr such thatAF| 4,4, has a stable labelling,
and Labl 45 is a stable labelling 0fAF | 4rgs.

Theorem 6 Let AF = (Ar, ait) be an argumentation framework aotl-gs C Ar. The following two
statements are equivalent.

1. Args is a conflict-free set wherdrgs U Args™ is maximal (w.r.t. set inclusion) among all conflict-
free sets.

2. Args U Args™ is amaximal subset ofr such thatA F'| 44,1445+ has a stable extension, anthgs
is a stable extension ofF'| 4 gsuargst -

The bijective labellings-extensions correspondenceutfin®xt2Lab (andLab2Ext) also holds for
stage semantics, as proved in (Caminada, 2011). An algotitfat produces all stage labellings (and
therefore also all stage extensions) is described in (Caahaiy2010).

To exemplify stage labellings (extensions) let us referasalito the examples of Figures 4-6. Stage
labellings (extensions) coincide with stable labellingsténsions), when the latter exist, as in the case
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Figure 10 Stage semantics differs from semi-stable semantics

of Figures 4 and 5. On the other hand, in the case of Figuref@reintly from all other semantics
examined so far, stage semantics prescribes three ndal-tibellings, namely({A}, {B}, {C}),
{B},{C},{A}), ({C}, {A}, {B}) (and of course the corresponding three non-empty extesididi},
{B}, and{C}).

Using the technical properties and the examples describedeawe are now ready to describe the
intuition behind stage semantics. In essence, stage ses\attares with stable semantics a sort of
preference for strongly committed evaluations with respethe undecided ones. As already seen, such an
attitude is not universally applicable: the solution of@@emantics is to consider the maximal restrictions
where this attitude is still applicable. In other termsgstaemantics can be read as the attempt to identify
and then ignore the minimal amounts of information that prévthe application of a black-and-white
view of the world. Note that different information can be agad in different labellings (extensions), for
instance in the example of Figure 6 argume#id3, andC are alternatively ignored.

The idea of minimizing the set afndec-labelled arguments or, alternatively, of maximizing thage
(Args U Args™) of extensions is common to stage and semi-stable semahlivgever, where semi-
stable semantics aims to maximize the range under the ¢omdit admissibility, stage semantics tries
to maximize the range under the weaker condition of confitetness. As shown above, this amounts
to taking the stable labellings (extensions) of the biggesiframework that has at least one stable
labelling (extension). Hence, the approach of stage seosaattomparable with the approach of handling
inconsistent knowledge bases, where one can select maganaistent subsets of the knowledge base,
and then examine what holds in all of them (in the interseaticall their models). That s, it is as if stage
semantics interprets the absence of stable labellingsisxins as some form of “inconsistency”, which
needs to be handled taking the “maximal consistent subframies”. On the other hand, in semi-stable
semantics as well as in most other semantics all argumeaysaptole in all extensions/labellings. In
particular, an undecided argument keeps the capabilitatse other arguments to be undecided, while
this is not the case in stage semantics. An example is showigime 10. Here, any other semantics
considered in this paper yields a single labellifigh, { A, B}) corresponding to the extensi@nwhereas
stage semantics yields a single labelli§d3}, ), { A}) corresponding to the extensi¢i}. In essence,
what stage semantics does is to ignore argurdesince this argument causes the framework not to have
any stable labelling/extension.

Another example to illustrate the difference between stsgyaantics and semi-stable semantics is
givenin Figure 11. Here, semi-stable semantics yieldsglesgxtensioqd A}, corresponding to a labelling
({A}, {B}, {C}). Stage semantics yields two extensions, the first one bejmgalent to the one yielded
by semi-stable semantics, the second one b corresponding to a labellind B}, {C}, {A4}). The
first stage extension (labelling) is the result of ignoringuanent”, the second stage extension (labelling)
is the result of ignoring argument. For both possibilities, the remaining argumentation feamrk is a
maximal one that has at least one stable extension (lagkllircan therefore be observed that under stage
semantics, even an argument without any attackers (likenaegtA in Figure 11) is not always labelled
in. With any other semantics considered in this paper, howeweargument without any attackers is
alwayslabelledin.

2.10 CF2 semantics

With the exception of stage semantics, all semantics rexdeso far are admissibility-based, i.e. the
labellings (extensions) they prescribe are admissiblereldeer they are compatible with the basic
skeptical view represented by grounded semantics, in tigeg@at in any of their labellings (extensions)



An introduction to argumentation semantics 21

NI

A B C

Figure 11 A peculiar case for stage semantics

the accepted arguments are a superset of those accepted gyotinded semantics. Focusing now on
those of these semantics which are multiple-status (nacmghplete, preferred, stable and semi-stable),
one can notice that odd-length unidirectional attack cycluse a sort of singularity in their behavior. For
instance, considering the example of Figure 6 only theatilbelling (extension) is prescribed and, in
the case of stable semantics, no labelling (extension) akiits. This gives rise to a sort of unbalanced
treatment of even-length and odd-length unidirection@ckt cycles: non-trivial labellings (extensions)
exist for the former ones, while they do not exist for thedatThis has been regarded as problematic
by Pollock (2001), since in some contexts an “equal” treatno cycles, independently of their length,
can be more appropridte It is evident that this requires giving up the property ofrassibility, as no
non-trivial admissible labellings (extensions) exist foe example of Figure 6. In fact, the behavior of
stage semantics goes in that direction, since in the exaofgdiégure 6 it prescribes three non-trivial
labellings, namely({4}, {B}, {C}), ({B}, {C}, {A}), ({C}, {A}, {B}), or, analogously, three non-
empty extensions, namelyA}, {B}, {C}. Stage semantics however shows a peculiar behavior and
strongly departs from grounded semantics in some casedreexlg commented in Section 2.9 a stage
labelling (or extension) may even exclude from acceptanagnattacked argumen#(in the example of
Figure 11) while including an argument attacked byAtif the same example). This kind of behavior
has no parallel in all other semantics considered in thi#papd, as such, appears rather hard to justify.
Then the question arises as to whether it is possible to dafmealtiple-status semantics which is not
admissibility-based, treats in an “equal” way odd and elemgth unidirectional attack cycles, while
preserving compatibility with the grounded semantics in ease.

CF2 semantics (Baroni and Giacomin, 2003; Baroni et al., 20@fsfes the above requirements.
In fact, to achieve this objective a relatively sophistchtemantics definition scheme has been devised
calledSCC-recursivenes$he SCC-recursive scheme is based on the graph theorsitbah of strongly
connected component (SCC). In a nutshell, strongly coedaxximponents provide a unique partition of a
directed graph into disjoint parts where all nodes are nilytugachable (it is assumed that reachability is
a reflexive relation). Formally, strongly connected compus are the equivalence classes induced by the
path equivalence (i.e. mutual reachability) relation twnodes. To illustrate this notion, in the example
of Figure 4 there are three SCCs, namgh}, { B}, and{C, D}, in Figure 5 there are three SCCs too,
namely{ A, B}, {C}, and{D}, while the argumentation framework of Figure 6 consistsfiglue SCC,
namely{ A, B, C'}. As another example, in the argumentation framework of fé@uthere are two SCCs,
namely{A, B} and{C, D, E}.

An important property of the SCC decomposition is that thapfrobtained considering SCCs as
single nodes is acyclic, i.e. the attack relation inducesdigl order between the SCCs. The SCC-
recursive scheme exploits this property and can be inaljtivegarded as a constructive procedure to
incrementally build extensions (or labellings) followinige partial order of SCCs. In a nutshell, one
“locally” applies some extension selection criterion te thitial SCCs, i.e. those not receiving attacks
from other ones. Then, for each possible choice identifigdarinitial SCCs, one accordingly suppresses
some arguments from the initial argumentation frameworkthe procedure is recursively applied to the
new argumentation framework resulting from this modifieatiuntil no remaining arguments are left to

Hpollock (2001) discusses odd-length attack cycles in theeso of a set of “reference” inference graphs for testing
the intuitive validity of justification status assignmenésctually, the paper where the problem is raised (Pollock,
2001) is mainly focused on an approach to reasoning wittakiridegrees of justification and does not provide an
explicit “solution” to this problematic example.
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process. In the case of CF2 semantics, the “local” selectiberion'? applied to SCCs is quite simple and
is similar to the intuition underlying stage semanticsnadiximal conflict free sets are selected. However
embedding this criterion within the SCC recursive schemaegiise to different results.

We now provide a formal definition of CF2 semantics in term&xiensions (as this is its original
and easier to follow formulation), exemplify its behavioidereview its properties. For further details and
more extensive explanations of the SCC-recursive scheemeettder may refer to (Baroni et al., 2005).
A labelling-based formulation of CF2 semantics has not remiously considered in the literature and
will be examined at the end of the section.

Definition 33  Given an argumentation frameworkF’ = (Ar, att), a setArgs C Ar is an extension
of C'F'2 semantics if and only if

o Argse MCF(AF)if |SCCSap|=1
e VS eSCCSar (ArgsNS) € Ecra(AFup,p(s,Args)) Otherwise

where

e MCF(AF) denotes the set of maximal conflict-free setd 5f
e SCCS sr denotes the set of strongly connected componentsgof
o foranyArgs, S C Ar,UPar(S, Args) ={A € S|PB € Args\ S: (B, A) € att}.

Definition 33 is quite complicated and its detailed illustva is beyond the scope of the paper. We
remark only that the recursion is well-founded since, ingbeond branch of Definition 33, CF2 semantics
itself is applied to a set of restricted (and disjoint) argumation frameworks, each including a strictly
lesser number of arguments with respect to the original ®his. ensures that the base case, namely the
application of CF2 semantics to an argumentation frameworisisting of a single SCC (first branch of
Definition 33) is reached in a finite number of steps. Note intipalar that an argumentation framework
including 0 or 1 arguments necessarily consists of a sinGlé.S

In spite of technical complications, the idea underlying2Gemantics is relatively simple and can
be illustrated with reference to our examples. In Figureetdhs one initial SCC, namelyA}, and of
course it contains only one maximal conflict-free set, ngmjel} itself, which is selected for extension
building. The subsequent (according to the partial ordduded by the attack relation) SCC, namgly},
is suppressed as its only element is attacked by the alredelgtad argumend. The last SCC, namely
{C, D}, then remains unaffected by previously selected elemexktsva can select its maximal conflict-
free subset§C} and{D} to be combined with the previous selection, leading to th@ €ftensions
{4, C}and{A, D}.

In Figure 5 there is one initial SCC, namely, B}, whose maximal conflict-free sets afel} and
{B}, each representing a starting point for further extensmmstruction. As a matter of fact, in both
cases the subsequent SCC, nam{€ly} is suppressed, leaving the remaining S€D;}, unaffected and
providing{ D} itself as maximal conflict-free subset. It turns out thaté&tere two CF2 extensions, namely
{4, D} and{B, D}.

The argumentation framework of Figure 6 consists of only 86€ and therefore its CF2 extensions
coincide with its maximal conflict-free subsetd }, { B} and{C'}.

In the example of Figure 8, the application of CF2 semantiefindion is more articulated. The
(again unique) initial SCC i§A, B}, which, as in the previous case, yielfild} and{B} as starting
points for further extension construction. Considerint}, we have thaB is attacked by the extension
and the subsequent SC, D, E} is left unaffected. As a consequence, all its maximal carfiiee
subset{C}, {D} and{E} are available, yielding the three CF2 extensi¢AsC}, {A, D} and{ A, E}.
Considering B}, both A andC are attacked by the extension and therefore suppressededthietion of
the argumentation framework to the 4é?, E'} then remains to be evaluated. AB} is the initial SCC
of this restricted argumentation framework, it is selecied then the subsequent SGE'} is entirely
suppressed, yielding a further CF2 extensjidh D}.

121t can be remarked that all Dung’s original semantics can dgivalently characterized using SCC-recursive
definitions similar to Definition 33, as proved in (Baroni &t 2005).



An introduction to argumentation semantics 23

Table 1 Describing admissibility based semantics in terms of ceteplabellings

restriction on complete labelling

resulting semantics |

no restrictions complete semantics
emptyundec stable semantics
maximalin preferred semantics
maximalout preferred semantics
maximalundec grounded semantics
minimal in grounded semantics
minimal out grounded semantics
minimalundec semi-stable semantics
maximal w.r.t.C while compatible with each complete labellirjgideal semantics

Finally, in the example of Figure 11 a unique CF2 extensioidéntified, namely{ A}, yielding
agreement with grounded semantics.

Having exemplified the behavior of CF2 semantics, we suneeamiProposition 18 some of its known
properties in relation to the other semantics notions damed in the paper.

Proposition 18  For any argumentation framewotkF = (Ar, att)

o Ecma(AF) C MCF(AF) (any CF2 extension is a maximal conflict-free set\df);
e the grounded extension is included in any CF2 extension;

e for any preferred extensioR there is a CF2 extensioB’ such thatt C F’;

e any stable extension is also(aF'2 extension.

As mentioned above, CF2 has been conceived and defined ixtiresmn-based setting. The same
semantic notion can however be expressed using the SC@siezacheme in the labelling context.

Definition 34  Given an argumentation frameworkF’ = (Ar, att), a labellingLab is a CF2 labelling
if and only if

o if |SCCSar|=1, Lab is a conflict-free labelling with maximain(Lab) among conflict-free
labellings and such thatl € in(Lab) = AT C out(Lab);

e otherwise,VS € SCCSar Lablyp,.(s,Args) 1S @ CF2 labelling of AF|yp, (s 4rgs) and all
arguments inS' \ UP4r (S, Args) are labelledout.

where all notations are as in Definition 33.

By inspection of Definitions 33 and 34, it can be seen that thective labellings-extensions
correspondence throu@kt2Lab (andLab2Ext) holds for CF2 semantics.

2.11 Roundup

We now provide an overview of how the semantics that have treated until now are related. In Figure
12 we graphically depict what can be seen as an ontology ofheegtation semantics. The figure shows
forinstance that every stable labelling is also a stagdllabea semi-stable labelling and a CF2 labelling,
that every semi-stable labelling is also a preferred lafggletc. The same relations of Figure 12 also hold
for the extension-based approach. In Table 1 we provide anview of how the admissibility-based
semantics can be expressed in terms of complete labellings.

3 Properties of Argumentation Semantics

As evidenced by the review carried out in Section 2, diffeegumentation semantics rely on different
(though sometimes related) intuitions, which can be exgaei terms of formal properties of extensions
or labellings. Given the variety of the proposals availaiblehe literature (and of those to come in

the future) the issue of comparing and assessing differemiaatics in a systematic way assumes
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Figure 12 Relations among alternative labelling notions

special importance. Evidencing differences in semantidsanes on specific cases may be useful to
support intuition in grasping the actual manifestation prattical meaning of different definitions, but a
comparison solely based on examples is not satisfactoityaaks generality, reusability and extensibility.
As a consequence, the issue of identifying general forngdgmties which can be used for a principled
evaluation and comparison of different semantics has bessidered in the literature both at the level
of abstract argumentation (Baroni and Giacomin, 2007) dmdase concrete formalisms (Caminada and
Amgoud, 2007). In this section we review and discuss segemadral properties of abstract argumentation
semantics, most of which have been originally introducatiéncontext of the extension-based approach,
and consider their definition also in the context of the labgibased approach.

3.1 Fundamental principles

A basic standpoint of abstract argumentation consists énf#itt that semantics evaluation should
only depend on the topology of the argumentation framewagk 6n the attack relation between
arguments) while being totally independent of any propeftarguments at the underlying language
level, which is abstracted away. Formally, th@guage independengarinciple corresponds to the
fact that argumentation frameworks which are isomorphie gise to the same semantics outcome
(modulo the isomorphism relation). First, let us introdadgjuite natural) isomorphism relation between
argumentation frameworks.

Definition 35  Two argumentation frameworl&F, = (Ary, atty) andAFy = (Arq, atte) are isomor-
phic if and only if there is a bijective mapping : Ar; — Ars, such that(A, B) € att; if and only if
(m(A), m(B)) € atty. This is denoted ad F; =,,, AF>.

Then we can express the language independence principlextension-based semantics in a
straightforward way by requiring extension corresponéghcough the bijective mapping.
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Definition 36  An extension-based semantissatisfies the language independence principle if and
only if for any argumentation framework&F', = (Ary, att1) and AF, = (Arg, atts), AFy =, AFy =
Es(AFy)={M(E)| E € s(AF)},whereM (E)={B€ Ary|3A€ E, B=m(A)}.

The formulation for labellings is conceptually similar d@edmally just a bit more articulated.

Definition 37 A labelling-based semantics with set of labels\ satisfies the language independence
principle if and only if for any argumentation frameworkd?, = (Ary, att1) and AF; = (Ara, atta),
AFy =, AF> = Ls(AF,) = {M'(Lad) | Lab € Ls(AF1)}, whereM’ is a function fromg(A, AF;) to
£(A, AF,) such thatlab’ = M'(Lab) if and only ifYA € Ar; Lab'(m(A)) = Lab(A).

The language independence principle lies at the heart ofiditien itself of abstract argumentation
semantics and is satisfied by all literature semantics wasage of.

Another basic standpoint in abstract argumentation cosdiie fact that the attack relation represents
a situation of “incompatibility” between arguments, sotttveo arguments can not stand together if there
is an attack (either unidirectional or mutual) between th&his leads to the fundamentednflict-free
principle which states that any extension or labelling priégd by a semantics should be conflict-free,
according to Definitions 12 and 16 respectively. Its stri@ivard formulation is given below and, again,
as to our knowledge, it is satisfied by all semantics propos#tk literature.

Definition 38  An extension-based semanti§ssatisfies theconflict-freeprinciple if and only if for
any argumentation frameworkF', VE € Es(AF) E is conflict-free (Definition 12). A labelling-based
semanticsS satisfies theconflict-free principle if and only if for any argumentation frameworkZ",
VLab € Ls(AF) Lab is conflict-free (Definition 16).

3.2 Defense-related properties

The notion of defense of an argumefitagainst its attackers by a set of arguments (possibly ifrodud
A itself) is quite intuitive in the extension-based approant has been formalized in Definition 11. One
might then argue that defense against attackersniscassarycondition for extension membership: an
argument which is not defended by an extension can not hézercship there. This corresponds to the
admissibilityproperty, which has an obvious formulation for both extendbased and labelling-based
semantics.

Definition 39  An extension-based semantissatisfies theadmissibility property if and only if for
any argumentation framework F’, VE € £s(AF') E is an admissible set (Definition 13). A labelling-
based semanticS§ satisfies theadmissibility property if and only if for any argumentation framework
AF,V/Lab € Ls(AF) Lab is an admissible labelling (Definition 10).

The notion of defense plays a key role in Dung’s completeyigded, preferred and stable semantics
which all satisfy the admissibility property. Subsequertgmsals which are anyway related to Dung’s
ones, namely semi-stable and ideal semantics, also satisfyssibility, while stage and CF2 semantics,
relying on the more basic notion of conflict-freeness, doraspect this property.

With a dual reasoning, one might also argue that defensastgstiackers is aufficientcondition for
extension membership: an argument which is defended by @ms®n should belong to the extension
itself. This property is calledeinstatemensince the acceptance status of an argument is “reinstated”
thanks to defense against attackers.

Definition 40  An extension-based semantisatisfies theeinstatemerproperty if and only if for any
argumentation frameworld F', VE € Es(AF') and for any argument it holds that:

(VBEA™3C€(ENB7))=AcE

or, equivalentlyF'(E) C E.
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In the labelling-based approach the same idea can be egdregsequiring that if all attackers of an
argument are labellesl:t then the argument is labelled.

Definition 41 A labelling-based semantics satisfies theeinstatemenproperty if and only if for any
argumentation frameworl F', V.Lab € Ls(AF') and for any argument it holds that:

(VB € A™ Lab(B) = out) = Lab(A) = in

By inspection of Definitions 13, 19 and 40 it is immediate te skat a complete extension is an
admissible set with the addition of the reinstatement pityp@©n the other hand, examining Definitions
10, 18, and 41 one can note that the reinstatement propexty sifficient to make an admissible labelling
complete. In fact in the labelling context we need also arieixgtatement about rejection: an argument
which is attacked by an argument labeltadcan not be undecided and must be explicitly rejected.

Definition 42 A labelling-based semanticS satisfies therejection property if and only if for any
argumentation frameworl F, V.Lab € Ls(AF') and for any argument it holds that:

(3B € A™ Lab(B) = in) = Lab(A) = out

Thus, in the labelling context, completeness is equivatetite conjunction of admissibility, reinstate-
ment, and rejection.

Reinstatement can be regarded as a further basic prop&utynig’'s approach: it characterizes complete
semantics, as remarked above, and is featured also by grdupreferred and stable semantics as their
extensions are complete. The same holds for semi-stabl&laatisemantics, while this is not the case
for stage and CF2 semantics. In the labelling approach itbeanbserved, in an analogous way, that
grounded, preferred, stable, semi-stable and tdéathellings are also complete labellings, therefore they
satisfy both reinstatement and rejection properties. @nother hand stage and CF2 semantics do not
feature the reinstatement property while satisfying rt&gec

3.3 Forbidding subsumption

Considering a set of outcomes (either extensions or laigsli prescribed by a given semantics the
question arises whether it is possible that one of the outsoim the set is “subsumed” by another
one. Consider the example of Figure 3. Here one may consitiersalute” stance wherel or B is
accepted (giving rise to two alternative labellings/estens) or adopt a more “cautious” stance where
everything is left undecided (giving rise to the empty esten or trivial labelling). Mixing the resolute
and cautious stance in the same set of extensions/latepirggluced by a reasoner may be considered
undesirable. Moreover, if argument acceptance requireslbraeship to all extensions or to the part
of all labellings* the results of acceptance evaluation are determined ontidojabellings/extensions
corresponding to the cautious stance (in particular, ifeitmpty set/trivial labelling is included in the set
of outcomes no argument can be accepted). In this case,dkerme of extensions/labellings having no
effects on acceptance results (due to the subsumptioiorglatight be regarded as somewhat redundant.

One can then consider a property, calledaximality, requiring that there is no subsumption in the set
of outcomes.

In the extension-based approach, the I-maximality prgp@niply states that no extension is a strict
subset of another one.

Definition 43 A set of extensionSis I-maximal if and only i E, F5 € &, if B C Fy thenE; = Fs.
A semanticsS satisfies thd-maximality criterionif and only if for any argumentation framework?’
Es(AF) is I-maximal.

13This observation is immediate for all the considered seimsuiut ideal. The proof that an ideal labelling is also
complete is given in (Caminada, 2011).
This is commonly calledkeptical acceptancas it will be better discussed in Section 4.
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Note that I-maximality is a property of the set of extensiémer seand does not imply that maximality
is prescribed by the semantics-specific definition of whatxdension is. For instance any unique-status
semantics (like grounded semantics) necessarily satigfi@simality according to Definition 43, despite
the fact that (at least in the case of the grounded semaittties)nique extension is not maximal in any
sense.

In the labelling-based approach we can draw analogousaenagions with the difference that both
arguments labelletin andout should be considered in the definition.

Definition 44 A set of labellingsC is I-maximal if and only itV Lab1, Labs € L, if Laby E Labs then
Laby = Labs. A labelling-based semantic$ satisfies thd-maximality propertyif and only if for any
argumentation frameworlF' Ls(AF') is I-maximal.

Either in the extension-based or labelling-based verstioan be checked that all semantics considered
in this paper satisfy I-maximality, with the exception ofaplete semantics.

3.4 Allowing abstention

The considerations carried out about I-maximality are seha related to the assumption that a
set of extensions/labellings corresponds to the posittdren individual reasoner adopting a definite
stance, either resolute or cautious. In other contextseliewy it may be considered desirable that a
set of extensions/labellings allows mixing both stanch& may even be necessary for applications
such as argumentation-based judgement aggregation (@danand Pigozzi, 2011). In this perspective,
considering again the argumentation framework of FiguieeBset of extensions/labellings encompasses
both the acceptance of (with rejection of B) and the acceptance &f (with rejection ofA) then it is
reasonable also to allow for the position where one simp$aabs from having an explicit opinion of
andB.

One can then consider a propertyadiowing abstentiorwhich can be expressed in a straightforward
way for the labelling-based approach.

Definition 45  Given an argumentation frameworkF = (Ar, att), a set of labellingsC allows for
dilemma abstaining and only if for every argumem € Ar if there exist two labelling€ab, , Labs € L
such thatlab; (A) = in and Lab2(A) = out then there exists a labellingzbs € £ such thatlabs(A) =
undec. A labelling-based semantic$ satisfies theallowing abstentiorproperty if and only if for any
argumentation frameworld F' Ls(AF') allows for dilemma abstaining.

The same idea can be expressed in a slightly more compliegtgih the extension-based approach.

Definition 46  Given an argumentation frameworkF’ = (Ar, att), a set of extension§ allows for
dilemma abstainingf and only if for every argumenti € Ar if there exist two extensions;, F; € £
such thatA € E; and A € E; then there exists an extensidiy € £ such thatA ¢ (E3 U ES). An
extension-based semant&satisfies thallowing abstentioproperty if and only if for any argumentation
frameworkAF Es(AF') allows for dilemma abstaining.

It can be seen that only complete semantics satisfies thjgepso while all other multiple-status
semantics considered in this paper do not. Technicallguastatus semantics comply with the allowing
abstention property, because they simply do not admit ailas but one might argue that assessing this
property only makes sense for multiple-status semantics.

3.5 Topology-related properties

As evidenced by the language-independence principle, rggaautcomes for an argumentation frame-
work actually depend on the attack relation only, i.e. on tib@ology of the corresponding directed
graph. More specific relations between graph topology antheics outcomes can then be considered,
according to the basic idea that attacks are the “chanraigligh which arguments affect each other.
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On this basis, a first elementary consideration suggestdftaa argumentation framework can be
partitioned in several subgraphs which are not connectedd¢h other they should not affect each other
at the semantics level. In order to better specify and famedhis intuition we first need to introduce, in
the obvious way, the operation of union of (disjoint) arguta¢ion frameworks.

Definition 47  Two argumentation frameworkéF; = (Ary, atty), AF» = (Ars, atty) are disjoint if
and only if Ar; N Are = (. Given two disjoint argumentation frameworkd, = (Ary, atty), AF; =
(Ary, atts) their union is defined ad Fy W AFy £ (Ary U Ara, atty U atty).

Note that, by definitionAF; W AF; consists of at least two subgraphs not connected each biwer.
a first basic semantics requirement, call@dsh resistanceconsists in excluding that there are cases
of “contaminating” argumentation frameworks, namely angumtation frameworks which determine the
semantics outcomes for any union they are included in, asdtly specified in Definition 48.

Definition 48  An argumentation framewotl F'* is contaminating for an extension-based semarflics
if for every argumentation framewotkF’ disjoint from AF™ it holds thats(AF™* W AF) = Es(AF™).
An argumentation frameworld F'* is contaminating for a labelling-based semanti§sif for every
argumentation frameworld F disjoint from AF™* it holds thatls (AF* W AF') = Ls(AF*). A semantics
S satisfies therash resistangaroperty if there are no contaminating argumentation fravoeks forsS.

Clearly the existence of contaminating argumentation éaorks for a given semantics can be
regarded as undesirable and violates in the strongesthp@seay the intuition that disjoint subgraphs
should not affect each other. Stable semantics does nsfysatiash resistance as any argumentation
framework consisting of a simple self-attacking argumentdantaminating and determines as outcome
an empty set of either labellings or extensions. All othenaetics considered in this paper are crash
resistant.

Crash resistance excludes only the most “brutal” form dcdrii@rence between disjoint subgraphs but
does not prevent them to affect each other in less drasticsfillcounterintuitive) ways: a stronger
non interferenceequirement can then be considered. We formally define tieept by introducing
the notion of isolated set in Definition 49 and then requirim@efinitions 50 and 51 any isolated set
to be unaffected by other parts of the argumentation framlewas far as extensions (or labellings) are
concerned.

Definition 49  Given an argumentation frameworkF' = (Ar, att), a set of argumentglrgs C Ar is
isolated inAF if and only ifatt N ((Args x (Ar \ Args)) U ((Ar \ Args) x Args)) = 0.

In words a set is isolated if it does not attack outside arqumpor receive attacks from them, i.e.
AF = AF\LATgS 2 AFJ/AT\.ATQS

Definition 50  An extension-based semanti£satisfies thenon interferenceroperty if and only if for
any argumentation framework F' = (Ar, att), for any set of argumentdrgs isolated in AF it holds
that AE s (AF, Args) = Es(AF | args) Where AE s (AF, Args) 2 {(E N Args) | E € Es(AF)}.

In words, the intersection with an isolated setys of any extension prescribed l&§/for AF' is equal
to one of the extensions prescribed®yor the restriction ofAF to Args, and vice versa. The same idea
is expressed by the corresponding formalization in thellialpebased approach.

Definition 51 A labelling-based semanti¢swith set of labels\ satisfies th@on interferenceroperty
if and only if for any argumentation frameworkF' = (Ar, att), for any set of argumentdrgs isolated
in AF it holds thatALs(AF, Args) = Ls(AF | args) Where ALs(AF, Args) £ {Lab N (Args x A) |
Lab € Ls(AF)}.

It holds that non interference implies crash resistandelltiws that stable semantics does not satisfy
non interference. On the other hand it can be shown that lairademantics considered in this paper
feature the non interference property.
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Table 2 Satisfaction of general properties by argumentation sénsan

CO|GR | PR| ST | SST | ID | STA | CF2
Admissibility Yes | Yes | Yes | Yes| Yes | Yes| No No

Reinstatement | Yes | Yes | Yes | Yes | Yes | Yes| No No
Rejection Yes | Yes | Yes | Yes | Yes | Yes| Yes Yes
I-maximality No | Yes| Yes | Yes| Yes | Yes| Yes Yes

Allowing abstention| Yes | No | No | No No No No No
Crashresistance | Yes | Yes | Yes | No | Yes | Yes| Yes Yes
Non interference | Yes | Yes | Yes | No Yes | Yes| Yes Yes

Directionality Yes | Yes | Yes | No No | Yes| No Yes
Cardinality >1 | 1 >1|>0| >1 1 >1 >1

Making a step further, one can consider the fact that argtswam affect each other only following the
direction of attacks: if argument attacksB then A affectsB but not vice versa. Then, the considerations
drawn above for isolated sets of arguments can be applied@lgnattacked sets of arguments, which
should be unaffected by the remaining part of the argumientfitamework: in a nutshell, this is the
directionality property which is formalized in the following definitions.

Definition 52  Given an argumentation frameworkr" = (Ar, att), a setArgs C Ar is unattackedn
AF ifand only if A(A, B) € att such thatd € (Ar \ Args), B € Args.

Definition 53  An extension-based semantitsatisfies thelirectionalityproperty if and only if for any
argumentation frameworl F' = (Ar, att), for any set of argumentdrgs unattacked inAF' it holds that
Ags (AF, AT’gS) = 5,5 (AFJ/.ATgs)-

Definition 54 A labelling-based semantic¢s satisfies thalirectionalityproperty if and only if for any
argumentation frameworld F' = (Ar, att), for any set of argumentdrgs unattacked inAF' it holds that
ALs(AF, Args) = Ls(AF | Args)-

Itis immediate to see that isolated sets are a special casetthcked sets and therefore directionality
implies non-interference. It is shown in (Baroni and Giagord007) that complete, grounded, preferred,
ideal and CF2 semantics satisfy the directionality propertile it can be seen that stable, semi-stable and
stage semantics do not. This is illustrated in the exampkafre 8 where the sdtd, B} is unattacked
and it holds&s(AF | a,5y) = {{A}, {B}} for stable, semi-stable and stage semantics while for the
same semanticEs(AF) = {{B, D}} and henceAfs(AF, {A, B}) = {{B}} # £s(AFla,By)- The
counter-example runs in a fully analogous way in the labgihased approach.

A synthetic view of the property satisfactitrby the semantics considered in this paper is given in
Table 2, where complete, grounded, preferred, stable -sthle, ideal and stage semantics are denoted
respectively a0, GR, PR, ST, SST, ID, ST A. The last row specifies the possible values of
the cardinality of the set of extensions/labellingsiridicates a unique-status and universally defined
semantics> 0 indicates multiple-status and not universally definedi, indicates multiple-status and
universally defined$®

15Recall that the rejection property is defined only in the enhof labelling-based approaches and that directionality
implies non interference which in turn implies crash resise.

16 A similar table is given in (Baroni and Giacomin, 2007), here add the treatment of stage semantics and the
properties of cardinality, rejection, allowing abstentiorash resistance, and non interference, while omittindgnt
semantics and some variants of admissibility and reinstame properties.
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4 Argument Justification and Skepticism
4.1 The notion of justification status

Either labellings or extensions provide the basis for theuation of the justification status of arguments:
we assume, as in previous literature (Baroni and Giacon@722009a), that evaluating argument
justification is meaningful only when the set of labellingseatensions is not empty, otherwise the basis
for evaluation is lacking. For this reason we need to forynaentify the argumentation frameworks
where the evaluation basis is not empty.

Definition 55 Given a labelling-based semantic§, DLs = {AF :Ls(AF)#0}. Given an
extension-based semanti§sDEs = {AF : Es(AF) # 0}.

Even when an argumentation framework belong®ts or DL, the “final answer” on argument
justification is not directly determined. In fact, severlbices are available as to the derivation of
justification status from a set of labellings or extensidktsa basic level two very simple (and, in a sense,
extreme) alternatives for the notion of justification carcbasideredskeptical justificatiomequires that
an argument is accepted in all labellings (or extensionkjlevcredulous justificatiomequires that an
argumentis accepted in at least one labelling (or exteqsits is formalized in the following definitions.

Definition 56  Given a labelling-based semanti¢s and an argumentation framewotkF' € DL,
an argumentA is skeptically justified(or skeptically acceptedif V.Lab € Ls(AF) Lab(A) = in; an
argumentA is credulously justifiedor credulously accept@df 3Lab € Ls(AF) : Lub(A) = in.

Definition 57  Given an extension-based semanticand an argumentation framewotkF' € DE s,
an argumentd is skeptically justifiedlor skeptically acceptedf VE € Es(AF) A € E; an argumentA
is credulously justifiedor credulously acceptedf 3F € £s(AF): A€ E.

Clearly skeptical justification implies credulous justfiion, moreover a third justification status can
be derived: an argument it justified(or rejected if it is not credulously justified (and hence also not
skeptically justified).

It can be noted that in any unique-status semantics sképtidecredulous acceptance coincide, so that
an argument can only be accepted or rejected. In this coibiexiossible however to consider two levels
of rejection, in fact a rejected argument can be attackeabby the unique extension (or, analogously,
can be labelledut or undec in the unique labelling). The former case corresponds toomger form of
rejection (these arguments have been sometimes a#fedted outrighin the literature (Pollock, 1992))
while in the latter case rejection is clearly weaker (thesgiiments being calledrovisionally defeated
according to the same terminology).

While the brief remarks above correspond to the prevailipgreaches to the notion of justification
status in the literature, one may observe that a more systetreatment is possible, by combining the
ideas concerning the status of an argument with respect iogée dabelling (or extension) and those
referring to a plurality of them. In fact, an argument can h@mne of three possible states with respect
to a single labelling (namelyn, out or undec) and correspondingly can be accepted, defeated outright
or provisionally defeated with respect to a single extemsiba plurality of labellings (or extensions)
is considered, the argument can be in a given state in allesammone of them. Excluding impossible
combinations (e.g. an argumentiis in all labellings ancbut in some of them) seven justification states
arise. For the labellings approach, these are summariZ2dfinition 58.

Definition 58  Given a labelling-based semanti§sand an argumentation frameworkF = (Ar, att)
with AF' € DLs the possible justification states of an argumdnare defined by a functiodS : Ar —
glinout,undect gch that/S(A) = {Lab(A) | Lab € Ls(AF)}.

If we assume a labelling-based semantics to specify thenaa¢e positions (labellings) one can take
in the presence of the conflicting information specified ia #rgumentation framework, then one can
give an intuitive interpretation of the concept of a justfion status. For instance, the justification status



An introduction to argumentation semantics 31

of {in} means the argument has to be accepted in every reasonalilep&imilarly, the justification
status{in, undec} means that in every reasonable position the argument iereititepted or abstained
from having an explicit opinion on, but the argument canrm®téjected. Such an interpretation of the
notion of justification status is for instance used in (Wu &aaninada, 2010).

It is also possible to define the notion of a justificationstdh terms of the extensions approach, as is
done in Definition 59.

Definition 59  Given an extension-based semanti§sand an argumentation frameworldF =
(Ar, att) with AF € DE s the possible justification states of an argumdrdre defined by the following
mutually exclusive conditions:

o VEEEs(AF) A€ E;

o VEE€Es(AF) Ac EY;

e VE€&s(AF)A¢ (EUET);

e JECEs(AF): AcEt,3E€&s(AF): A¢ (EUET), andfE € Es(AF): A€ F,
e JECEs(AF): AcE,3E€&s(AF): A¢ (EUET), andfE € Es(AF): Ac ET,;
e JECEs(AF): AcE,3Ec&s(AF): Ac Ef,andBE c Es(AF): A¢ (EUEY),
o JE€és(AF): AcE,JE€&s(AF): Ac Et,and3FE € Es(AF): A¢ (EUET).

Correspondences with more “traditional” definitions oftjfication states can be easily drawn, but a
full adoption in the literature of the systematic Definits58 and 59 is still to conté.

4.2 Skepticism and skepticism relations

The termskepticismhas been used in the literature (often in an informal way)isouss argumentation
semantics behavior, e.g. by observing that a semanticsase‘iskeptical” than another one. Intuitively,
a skeptical attitude tends to make less committed choiceatahe justification of the arguments, as
well exemplified by the traditional notions of skeptical acrgdulous acceptance recalled in Section
4.1. In other words, a skeptical behavior tends to leaveraegus in an “undecided” justification state
and to accept (or reject) as least arguments as possiblée whess skeptical (or more credulous)
behavior corresponds to more extensive acceptance (atiogjof arguments. Note, in particular, that
the notion of commitment (or decidedness) of a justificatitate must be clearly distinguished from the
notion of acceptance: two justification states correspanth definite acceptance and definite rejection,
though reflecting antithetical choices about the state afrgnment, have both the same highest level of
commitment.

Which are the formal counterparts of these basic intuifons

Starting from basic elements, we first need to define a aviteldo compare extensions and labellings
with respect to skepticism. As to extensions, this is quitgge: an extensiott; is “more skeptical” than
(to be precise, at least as skeptical as) an exterfsjdh E'; C F», since thent; supports the acceptance
of no more arguments thak,. As to labellings, we have to consider both theandout labels as being
both more committed choices thandec. We can then state that a labellidgb, is at least as skeptical
as a labellinglab, according to the inclusion of both the setsiaf andout labelled arguments. These
intuitions are formalized in Definition 60.

Definition 60  Given two extensiong; and F» of an argumentation framewotkF', E is at least as
skeptical ask,, denoted ady; < E» if and only if £, C E5. Given two labelling€ab; and Lab, of an
argumentation frameworl F', Lab is at least as skeptical a&ibs, denoted aglab; < Labs, if and only
if Lab; T Labs (See Definition 28).

1"Note in particular that a partial order can be defined amofigrdit justification statuses both labelling-based and
extension-based, for example as specified in (Wu and Cami28d.0; Baroni et al., 2004).
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While the above relations are sufficient to compare unigagss semantics, the next step is to introduce
skepticism relations between non-emftgets of extensions or labellings in order to compare mekipl
status semantics. As more extensively discussed in (Bar@hGiacomin, 2009a), several alternatives can
be considered for this issue.

As afirst basic step, one can consider a comparison methed lbasnclusion of the sets of accepted
arguments, either according to skeptical or credulougdanee. This gives rise to the skepticism relations
stated in the following definitions.

Definition 61  Given two non-empty sets of extensiéngnd &, of an argumentation framewotk F,
& =B &ifandonly ifN g .o, 1 CNp,ee, B

Definition 62  Given two non-empty sets of extensiénand &, of an argumentation framewotk F,
& =t &ifandonly iUy .o, B1 S Up,ce, Eo

Definition 63  Given two non-empty sets of labellings and £, of an argumentation framewotk F,
Ly =k Lyifandonlyif),, o p in(Lab1) € (Mg, ep, in(Labo).

Definition 64  Given two non-empty sets of labellings and £, of an argumentation framewotk F,
£y =L £y if and only U pap, e, 10(Lab1) € Upp, e, in(Labz).

To exemplify the above notions, consider first the exampld-igure 3. In the extension-based
approach, the grounded and ideal semantics prescribe thef setensionst; = {(} while all other
semantics prescribg, = {{A}, {B}}. Clearly,& <E &, & =E &1, & <E &, while it is not the case
that&, <& & (denoted as, £Af &). For the same example in the labelling-based approacmgezbiand
ideal semantics prescribe the set of labellidgs= {(0, 0, { A, B})} while all other semantics prescribe
Lo={({A},{B},0), ({B}, {A},0)}. Again, it can be seen thay <L Lo, Lo <L £1, £1 =& L5, while
Lo 25 Ly

Considering the example of Figure 5, in the extension-bagptbach the grounded and ideal semantics
prescribe the set of extensiofis = {0} while all other semantics prescrilée = {{A, D}, {B, D}}.

It turns out that&; <& & and & <E &, while & AL & and & AF €. The case of labellings is
perfectly analogous withZ; = {(0, 0, {A, B, C, D})} for grounded and ideal semantics afd =
{({A, D}, {B, C},0), {B, D},{A,C},0)} for other semantics yielding; <% £, and £, < £,
while Lo ﬁ# L ansz ﬁﬁ L.

Figure 8 provides a more articulated case for comparisothdrextension-based approach grounded
and ideal semantics prescriBe= {0}, preferred semantics prescritfes= {{ A}, { B, D} }, CF2 seman-
tics prescribe€s = {{4, C}, {4, D}, {4, E}, {B, D}}, while stable, semi-stable and stage semantics
prescribeg, = {{B, D}}. It follows that for anyi, j € {1, 2,3} & =<E &;, while for anyi € {1, 2, 3}

& =E & and&, AE &;. On the other hand, these sets are completely ordered aegdmi<£ since
& =t &y =E & <E &. Again, the case of labellings is perfectly analogous.

As a further step in the analysis of skepticism relationg, wray observe that also explicitly rejected
arguments should be taken into account in a similar way aspaed arguments: this gives rise to the
following definitions.

Definition 65  Given two non-empty sets of extensiéngnd &, of an argumentation framewotk F,
& =5 &ifandonly ity <E & andNp ce, BY CNp,ee, Es -

Definition 66  Given two non-empty sets of extensiéngnd &, of an argumentation framewotk F,
& =E- &ifandonly ity <5 & andUp, ce, BY CUp,ce, E5 -

Definition 67  Given two non-empty sets of labellings and £, of an argumentation framewotk F',
Ly =k Lyifand only if£y <Ff Lo and( gy, o, 0ut(Lab1) € Mgy, cr, out(Labs).

18 As recalled at the beginning of Section 4.1 we assume thatrgatyeset of extensions/labellings does not support
any justification status evaluation and therefore can natagved in skepticism comparison.
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Figure 13 Cycle of three attacking arguments in turn attacking armadngument

Definition 68  Given two non-empty sets of labellings and £, of an argumentation framewotkF',
Ly =5 Lyifandonly ifLy <5 Lo andU gy, o, 0ut(Laby) C© Uy, cr, out(Labs).

Consider again the example of Figure 3, and for a set of exiess let us denote in the following
ET={ET | E€&}. Then, referring to the already mentioned sets of extes&f@n: {0} and 62
{{A}, {B}} we have&; = {0} and & = {{B}, {A}}. Clearly, & <E., &, & =E. &, & =E. &
while 52 2E. & For the same example in the Iabellmg based approach iamalogously be seen that
L1 = ﬁﬂ Lo, Lo = mﬁ Ly, L1 = _Uﬁ Lo and£2 ﬁu”

In the example of Figure 5, we refer againdp= {V)} andEQ ={{A, D}, {B, D}}, yielding&;" =
{0} and& = {{B, C}, {4, C}}. Then&, <E. & and&; <E., &, While & AE. & and&y £EL €.
The case of labellings is perfectly analogous with=<Z_, £2 and £, =l L5, while £5 AL £, and
Lo AL L.

Figure 8 provides again a more articulated case. Consigléhia sets of extensiorg = {0}, &> =
{{A},{B,D}}, & ={{A,C},{A, D}, {A,E},{B, D}}, and & = {{B, D}} we have&; = {0},
EF={{B},{A,C, E}}, & ={{B,D},{B, E},{B,C},{A,C, E}}, & = {{A, C, E}}. It follows
that for anys, je {1,2, 3} & <Eﬁ &, while for anyi € {1,2,3} & <E. & and & AE- &. On the
other hand&; <& &4 25— & <X &3. Again, the case of labellings is perfectly analogous.

To have an example Where the relations of #e kind differ from those of the<~- kind consider
the example of Figure 13. In the extension-based approaciemlantics but stabl® CF2, and stage
semantics prescribe the set of extensidas= {#} with £ = {}, while CF2 and stage semantics
prescrlbe52 {{A},{B},{C}} with & ={{D}}. It follows that & <E & and & =<E &, while
&1 =EL &y but&, AE &, Similar considerations apply in the labelling-based apph.

Definitions 61-68 treat sets of extensions or labellings dawhole” by simply considering their
intersection or union: for instance, very different setepfensions are treated in the same way if they
have an empty intersection. In order to take account of haglsiextensions or labellings are defined,
a different kind of definition is needed: the skepticism tiela between two sets (let say;, and X,)
of extensions or labellings should be based on some conopabistween their individual elements. In
particular, according to a skeptical approach to argumsstification, in order to state thaf, is at least
as skeptical ad’, one may require that every elementiin has a more skeptical counterparti, while,
according to a credulous approach, one may require duatyetrery element idt; has a less skeptical
counterpart in¥,. This general idea is formalized by the following definitsomvhich resort to the basic
comparisons between single extensions and labellingsifidehin Definition 60.

Definition 69  Given two non-empty sets of extensiénand &, of an argumentation framewotk F,
&l j£+ &, ifand onIy ifVE, €€ dF € &1 E1 X Es.

Definition 70  Given two non-empty sets of extensiéngnd &, of an argumentation framewotk F,
&1 jg+ &, ifand onIy ifVE, €& dFEy € & By X Es.

19The set of stable extensions is empty in this case.
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Definition 71 Given two non-empty sets of labellings and £, of an argumentation framewotk F',
Ly <L, Lo ifand only ifVLaby € Lo 3Laby € Ly : Laby < Labs.

Definition 72 Given two non-empty sets of labellings and £, of an argumentation framewotk F',
L j6+ Lo if and only ifVLaby € L1 3Laby € Lo : Laby < Labs.

Let us exemplify these relations.

In the example of Figure 3, referring to the already mentibsets of extensions, = {(}} and&; =
{{A}, {B}} we have&; <E, &, but, differently from the previously considered relatipfis 2%, £
On the other hand;; j& & andé&y 5+ &;1. As usual, analogous relations hold for the labelling-Hase
approach.

Similarly, in the example of Figure 5, with, = {0} and&, = {{4, D}, {B, D}} it holds & <E,
& and&y <E, &, while & £E, & and&; A, & It goes without saying that the same holds in the
labelling-based approach.

Finally consider the case of Figure 8 with sets of extensiins {0}, &, = {{A}, {B, D}}, &3 =
{{4,C},{A, D}, {A, E},{B,D}}, and&, = {{B, D}}. We can first observe that fare {2 3,4}
& jﬁ &; and (differently from previous relations), ﬁ &1. Then we can note thal, < _ﬂ+ &4 and
&3 < E + &4 since the only element cﬂ‘4 (namely{B, D}) is a superset of (actually coincides with) an
eIement of eithe€; or &. Also & <E, &; since the element§A, C}, {4, D}, and{A, E} of & are
supersets of A} in & and {B, D} is present both irf5 and&;. With similar observations it can be
seen that; ﬁﬁ Ea, & ﬁﬁ &y, andé&, E + &3. Turning to the relation corresponding to the credulous
perspective, it is immediate to note that foe {2,3,4} & <E. & and & AL, &1 Also, & <, &
since{ A} is included in some elements &f and{B, D} is present both i, and53. On the other hand,
Es ﬁw &s. Differently from the skeptical perspectivé; < _U+ & and&, =<F, &; (the only element of
&4, namely{ B, D} is present both i€, and&3) while it can be easily seen théi B, & ({A} is not
included in any element o) and&s A2, &, (as above for setA, C}, {A, D}, {A, E}). Again, the
case of labellings is perfectly analogous.

A stronger skepticism relation, unifying the skeptical amedulous perspectives, can be obtained by
combining together the relations-+ and=<_+.

Definition 73 Given two non empty sets of extensiénand &, of an argumentation framework F,
& =E & ifandonlyife, <E, & andé; <E, &.

Definition 74 Given two non empty sets of labellings and £, of an argumentation framewotk F',
L1 =% Loifandonly if £y <&, Lo andLy <5, L.

As also evident from their definitions, the various skeptitirelations introduced above are related
each other by implication. In particular, two implicatioetzains can be identified in correspondence with
the skeptical or credulous perspective. In fact, given tets sf extension§; and&, of an argumentation
frameworkAF', it holds that:

51‘< 52?51 —ﬁ+ 52?51 ﬁﬁ 52:>51‘< 52 (1)

51‘< 52?51 U+52$51 Uﬁ52:>51‘< 52 (2)

The only nontrivial implications in (1) and (2) concern ttwtfthaH + implies<E_, and, similarly,
=<E, implies=<[.: they have been proved in (Baroni and Giacomin, 2009a).

Using Definitions 63, 64, 67, 68, 71, 72, 74, and the same kimdasoning it is possible to prove that
the analogous relations hold in the labelling based apprdadact, given two sets of labelling%; and
Lo of an argumentation framewotkF', it holds that:

£1'< £2:>£1 ﬁ+ £2:>£1 ﬁﬁ £2:>£1'< Eg (3)

£1'< £2:>£1 U+ £2:>£1 Uﬁ £2:>£1'< Eg (4)
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Turning to the comparison between semantics, for a givereriemelation < concerning either
extensions or labellings it is quite natural to define an aetlirelation of skepticism between two
semanticsS; andsS,, by requiring that holds for their sets of extensions or labellings. As it magpen
that eitherS; or S; prescribes an empty set of extensions (or labellings) inesoases, the induced
relation has to refer to a set of argumentation frameworkeresbothS; andS; prescribe non-empty sets
of extensions (or labellings).

Definition 75  Let <F be a skepticism relation between sets of extensiSnsnd S, be extension-
based argumentation semantics, afithe a set of argumentation frameworks WiIC (DEs, N DEs,).
The skepticism relatiog*” induced by<” betweers; andS, with reference tc is defined as follows:
S =9E Syifand only ifYAF € S Es, (AF) =F Es,(AF).

Definition 76  Let=’ be a skepticism relation between sets of labelligysandS, be labelling-based
argumentation semantics, arftlbe a set of argumentation frameworks wihC (DLs, N DLs,). The
skepticism relation<° induced by<” betweenS; and S, with reference toS is defined as follows:
S =9 Sy ifand only ifYAF € S Ls, (AF) < Ls,(AF).

Focusing on the extension-based approach, while Definit®applies to any set of argumentation
frameworksS C (DEs, N DEs, ), clearly the most interesting case is whers- (DEs, N DEs,). Then,
when considering a skepticism comparison concerning nfae two semantic§;, Ss, ..., Sy itis
reasonable to consider a common referefice(),_, , DEs,. As to the semantics discussed in this
paper, only stable semantics may prescribe an empty setsanfstons/labellings. Therefore two reference
sets can be considered: the universe of all argumentatamgivorks if stable semantics is not involved in
the comparison, dP€ st otherwise. Clearly the same considerations hold in thdllagebased approach
by replacingD€ with DL.

It is worth noting that, in general, two semanti§s and S, may not be comparable with respect to
skepticism. For instance, it may be the case that there aratgumentation frameworkéF; and AF,
such thatS; behaves more skeptically th&h in the case ofAF; butS, behaves more skeptically than
&1 in the case ofAFy, or that the two semantics yield incomparable sets of eidasgor some given
argumentation framework. Furthermore, the order betwaersemantics may be different according to
the credulous or skeptical perspective.

A detailed analysis of skepticism relations between extenbased semantics (except stage semantics,
whose consideration is anyway not problematic and is addeithis paper) has been carried out in
(Baroni and Giacomin, 2009a) to which the reader may refedétails: we report here only the resulting
partial orders, graphically presented as Hasse diagrasmhéehtioned above, distinct Hasse diagrams are
presented for the case where stable extensions exist atitefgeneral one.

The partial order® induced by all the relations corresponding to the skeppeabpective, namely
<SP <SE and=<3F coincide. The Hasse diagram corresponding to the genesalisahown in Figure
14: grounded semantics is the most skeptical one and sieaggrttunded extension is the least complete
extension it turns out th&atR jﬁf CO andCO jﬁf GR. Ideal, preferred, and semi-stable semantics are
all comparable among them and orderly less skeptical. Cf2stcs is comparable wiiR andCO but
not with the other ones, while stage semantics is not corbpaveith any other, also due to its peculiar
behavior in some cases, exemplified in the argumentatiomeinaork of Figure 11.

The Hasse diagram fojﬁf, =<5E and=<3F considering only the argumentation frameworks where
stable extensions exist (and then coincide with semi-stabd stage extensions) is shown in Figure 15.
It can be noted that in this context CF2 semantics is comperaith (and less skeptical than) stable
semantics.

Turning to skepticism relations based on the credulougpeetive, namel)ﬁﬁf, =<5E and=<3F, the
Hasse diagram corresponding to the general case is showigureFL6. An almost complete ordering

20The skepticism relations described in the following haverbanalyzed in (Baroni and Giacomin, 2009a) for the
extension-based approach. Due to the one-to-one cormdspoa between extensions and labellings holding for all
the semantics involved in the comparison, it is possibletegthat the skepticism relations hold also in the labgin
based approach.
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SST

PR,

1D CF2

ST4 GR = CO

Figure 14 <5% <5E and=<3¥ relations for any argumentation framework

ST=85T=8T
PR,

D CF2
GR=CO

Figure 15 <5%, <3E and=<3¥ relations for argumentation frameworksir€ s+ (DLsT)

is achieved where, due to the change of perspective. Incp&tj complete semantics is in mutual
relation with preferred semanticBR jﬁf COandCO jﬁf PR since preferred extensions are maximal
complete extensions. Moreover one can note AR is now comparable with any other one (and is
actually the least skeptical semantics) and that the argéetweerPR andSST is inverted with respect
to Figure 14.

The Hasse diagram fojﬁf, =<5E and=3F considering only the argumentation frameworks where
stable extensions exist is shown in Figure 17: here a toti®ras achieved, which obeys the same relations
as the general case but where stable, semi-stable and stagatics coincide.

Finally, the Hasse diagrams for the relations arising froendonjunction of the skeptical and credulous
perspective are shown in Figures 18 and 19, for the genesalarad for argumentation frameworks where
stable extensions exist respectively. As obvious, strongjations entail lesser comparability between
semantics, but one can note in particular that the rolg/®fas “bottom” skeptical reference with respect
to all other semantics (b7 .A4) is confirmed.

4.3 Backwards compatibility

Another kind of relation between semantics concerns tHiabi a semanticsS; to “extend” the behavior
of another semanticS; to cases wheré; has problems, while remaining identical$g otherwise. This
relation, callecdbackwards compatibilitycan be regarded as a special kind of skepticism comparison:
one hand it considers also cases where one of the compareshtiesri‘’crashes”, on the other hand it
requires equality (rather that)) between extensions (labellings).
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PR = CO
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Figure 16 <5%, <5 and=<Z¥ relations for any argumentation framework

CF2

PR=CO

ST =55T =857

ID

GR

Figure 17 <57, <5E and=<g” relations for argumentation frameworksMe s (DLsT)

SST PR CTF2
D co
GR 514

Figure 18 jéE relation for any argumentation framework.

Definition 77  An extension-based semanti§s is backwards compatiblevith an extension-based
semanticsS; iff for each argumentation framewotk F' that is not contaminating fo&;, it holds that
532 (AF) = 531 (AF)
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ST=85T=8574 PR CF2

D cO
GR.
Figure 19 <2F relation for argumentation frameworks € s (DL s )

Definition 78 A labelling-based semanti< is backwards compatibiith a labelling-based seman-
tics S; iff for each argumentation frameworkd F' that is not contaminating foiS;, it holds that
LS2 (AF) = £$1 (AF)

It holds that both semi-stable semantics and stage sersarécbackwards compatible with stable
semantics. This is because for argumentation frameworlesendit least one stable extension (labelling)
exists, the semi-stable extensions (labellings) and thgeséxtensions (labellings) are the same as the
stable extensions (labellings).

4.4 A note on infinite argumentation frameworks

As explicitly stated in Section 2.1, this paper is focusedfioite argumentation frameworks and the
analysis of semantics properties we have carried out refighis assumption. One may wonder what is
the impact of this restriction and what would be the impiimas$ of considering also infinite frameworks.
While providing a full answer to this question is beyond thege of this paper, we observe in particular
that in infinite frameworks the notion of maximality w.r.ttsaclusion is less immediate than in finite
frameworks and the existence of maximal sets of argumespeoting some criterion, which is guaranteed
in finite frameworks, may fail to be achieved in infinite onAs.an example of the consequences of this
fact, a semantics which is universally defined in the contXinite frameworks may not be so when
considering also infinite ones, implying (among other cqueaces) that the skepticism comparison we
have carried out does not extend directly to the infinite cAsea matter of fact, we are not aware of
any systematic literature analysis of argumentation séiggproperties in the infinite case. Concerning
in particular the issue of universal definition, we may rettedt the existence of complete, grounded, and
preferred extensions is guaranteed also in the infinite dsag, 1995; Caminada and Verheij, 2010).
Similarly it can be proved that existence of the ideal extamsan be guaranteed in the infinite cise
On the other hand, there are examples of infinite framewothksrey semi-stable, the eager, and stage
extensions do not exist (see Verheij, 1996, 2003; CaminadaVerheij, 2010); finally whether CF2
semantics is universally defined in the infinite case is, aaitdknowledge, an open question.

5 Applying Argumentation Semantics

The existence of various argumentation semantics, eadhitsibwn properties, raises the question of
which semantics to choose. That is, which semantics is “d3&'® One has to keep in mind, however, that
this a notoriously difficult question, on which currently alear consensus exists within the community
of argumentation researchers. One might even argue thaisthan ill-posed question since different
semantics are appropriate in different contexts. Withbatambition to provide any definite answer, in

21Since the empty set is an ideal set and the union of two idéslisan ideal set, as proved in (Dung et al., 2007),
it follows that the set of ideal sets is a non-empty partialigered (wrt. inclusion) set whose totally ordered subsets
have an upper bound (their union). Then by Zorn’s lemma thefsdeal sets contains at least one maximal element.
The maximal element is unique, since supposing that therénar distinct maximal ideal sets would contradict the
fact that their union is an ideal set too.
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the current paper we draw some considerations on which sermavould be most appropriate in which
kinds of domains.

One of the first questions one could ask when selecting amagtation semantics concerns the nature
of the domain of reasoning, and especially the nature ofrtfogrnation in the knowledge base (step 1 in
Figure 1). Here we focus on two application domains: (1) trast satisfaction and (2) reasoning with
imperfect “rules of thumb”.

5.1 Semantics for Constraint Satisfaction

The application domain of constraint satisfaction is mogtedominant in the field of logic programming
and answer set programming (Gelfond and Lifschitz, 19881).Here, the idea is to provide a formalism
that can take a declarative description of a constraingfeation problem, in order to calculate its set of
solutions. As an example, one could write an answer set anodor solving sudokus. The idea is that
each resulting answer set of the ASP program correspontisangplution of the original problem (in
this case: the sudoku). Also, if the original problem doeshave any solutions, then one would like to
obtain no answer sets. It then follows that one would likeptply a semantics that can yield zero or more
extensions, explicitly keeping open the possibility oflgieg zero extensions in case the problem that
one is trying to model does not have solutions. This natylatids to the application of stable semantics,
and it should therefore not come as a surprise that stablargers has become the standard in the field
of logic programming?

When one wants to do constraint satisfaction, but with thesjtdlity of dealing with flaws and errors
in the constraint specification, it makes sense to apply an#éos that satisfies the propertiesapash
resistancenon-interferencandbackwards compatibilityith stable semantics, as they were defined in
Sections 3.5 and 4.3. In that case, semi-stable semantct@ye semantics would be suitable candidates.
Like most semantics discussed in this paper, they satisfgheresistance and non-interference. However,
unlike many other semantics, they are also backwards calnigpatith stable semantics.

As an aside, it is also possible to define crash resistanceimterference and backwards compatibility
not just for abstract argumentation, but for general lddimanalisms, as is done in (Caminada and Ben-
Naim, 2007). For general logical formalisms, crash resistabasically means that no set of formulas
can make all syntactically disjoint sets of formulas inlet when being merged to it, non-interference
means that syntactically disjoint sets of formulas canmiiiénce each other’s entailment when being put
together, and backwards compatibility means that a loficatalism yields the same outcome as another
formalism in cases where the latter does not “crash”. Naeriarence implies crash resistance, at least
for logical formalisms that satisfy some minimal requirensedescribed in (Caminada et al., 2009). Crash
resistance, however, does not imply non-interference xftaged in (Caminada, 2005), an example of
a formalism that satisfies crash resistance but violatesimerference is th@®scaARr system (Pollock,
1995).

When applying the generalized versions of crash resistareinterference and backwards compat-
ibility (defined in (Caminada and Ben-Naim, 2007)) it can Iserved that classical logic violates crash
resistance, since every inconsistent set of formulas isacoinating. The research field of paraconsistent
logic has been aimed at defining forms of entailment that bheesame logical language as classical
logic, but satisfy the postulates of crash resistance, intamference and backwards compatibility. A
paraconsistent logic as proposed in (Carnielli et al., 208 instance, satisfies crash resistance and
non-interference (implying that inconsistency does nigtatotally unrelated formulas) and is backwards
compatible with classical logic (meaning that for each $dbamulas that is consistent under classical
logic, the paraconsistent logic entails the same consegsears classical logic).

An alternative approach to deal with the issue of crashtaesig in classical logic would be to consider
the models of all maximal consistent subsets of the knovddsdge, since this approach also satisfies (the

22stable model semantics (Gelfond and Lifschitz, 1988, 19@%)originally been stated in native logic programming
terms. However, as it has been shown in (Dung, 1995), itésfadssible to describe this approach using argumentation
under stable semantics.
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generalized versions of) crash resistance and non-inéerée, while remaining backwards compatible
with classical logic (it yields the same outcome as claskigic in case the knowledge base is consistent).

To some extent, the approach of stage semantics is compavéhlthe approach of taking maximal
consistent subsets of a classical logic knowledge baseotindases, one applies the original semantics
(stable semantics or classical logic semantics) whilerigigapart of the original problem description in
order to successfully apply these semantics. The apprdaséna-stable semantics, on the other hand,
can be compared with paraconsistent logic, in that one tiakesccount the entire problem description
and applies a different semantics instead.

5.2 Semantics for Reasoning with Rules of Thumb

When applying reasoning for constraint satisfaction, dagswith a problem that is well-understood, and
then aims to write a perfect representation in a particudastraint satisfaction formalism (like Answer
Set Programming), so that the original problem can be sdilvech automated way. However, in many
cases one would like to reason about issues that are perbapenectly understood (like for instance
which treatment to give to a patient) and where one has tord&afules of thumb, which can give reasons
in favour or against drawing a particular conclusion. Thees of thumb are not necessarily perfect, nor
do they have to be complete. The challenge, then, is to comvétha reasonable position one can take
based on imperfect information. This makes it desirablgfiyaa semantics that satisfies crash resistance
and non-interference, since we do not want problems in ontegpghe knowledge base to affect other,
possibly totally unrelated parts of the knowledge baséhl&tsemantics is therefore not an option.

Would the semantics have to be admissibility-based? Thak i# desirable that each extension
(labelling) is an admissible (or even complete) one? Agiis, difficult to provide an ultimate answer
in general: one has to refer to specific contexts. In padicuh the context of instantiated arguments
generated from an underlying logical knowledge base, aslhility can be regarded as advantageous in
relation with consistency requirements, as explainedérfaliowing.

Suppose one generates an argumentation framework basestbofgropositional formulg® and a
set of defeasible rule®. The idea is that the propositional formulas express in&diom that is beyond
doubt, and the defeasible rules express rules of thumbaimdbe subject to exceptions. Now consider the
following knowledge base.

P = {jw; mw; sw; =(jt Amt A st)}

D = {jw = jt; mw = mt; sw= st}

This example can be interpreted as follows. John, Mary arzg $ant to go cycling on atandem. The fact
that John wants to get on the tandejw) is a reason to believe that John will be on the tandgth The
same holds for Mary and Suzy. However, since the tandem adywio seats, they cannot be on it with
the three of them=(jt A mt A st). From this knowledge base, we can then construct the teowfioly
arguments, based on an argument construction scheme antakin (Caminada and Amgoud, 2007,
Prakken, 2010).

A1 ==t Amit A st)

Agij’w
Az =mw
Ay = sw
A5:A2:>jt
A(;:Agémt
A7:A4§St

Ag = Ag, A7, Ay — —jt

Ag = A5, A7, Al — —mt

AlO = A5, AS, A1 — st

Assuming the principle afestricted rebutting® it would then follow thatdg attacksAs, Ag andA; g, that
23Restricted rebutting basically means that conclusiortastacks can only be done against a conclusion that is the

consequent of defeasibleeasoning step. So in our examph; attacksAs but A5 does not attackls. The reader
may refer to (Caminada and Amgoud, 2007) for more details.
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Figure 20 Conflict-freeness is not enough to obtain consistent ceimhs

Ag attacksAg, Ag andA;o and thatd; attacksAz, As andAy. This yields the argumentation framework
of Figure 20.

In the argumentation framework of Figure 20 there are founglete extensionsA;, Az, Az, A4},
{Al, Ag, A3, 1447 Aﬁ, 1477 Ag}, {Al, AQ, A3, A4, 1457 A7, Ag} and{Al, Ag, A3, 1447 A5, A67 AlO}- The
first of these is the grounded extension, the other three tal@esextensions (and therefore also
semi-stable and preferred extensions). It should be medidhat the sets of conclusions associ-
ated to these extensions are consistéjiy; mw; sw; —(jt Amt A st)}, {jw; mw; sw; =(jt A mt A
st); mt; st; —jt}, {jw; mw; sw; =(jt Amt A st); jt; st; -mt} and {jw; mw; sw; ~(jt A mt A
st); jt; mt; —st}. Now let us examine what happens if one lowers the requiremieadmissibility
to the mere property of conflict-freeness. In that case, We fmnsistency, since the set of arguments
{As, Ag, A7, A1} is conflict-free yet its associated set of conclusiQfs mt; st; —(jt Amt A st)}is
inconsistent. It is therefore important to notice that detfreeness by itself doastimply consistency;
in order to yield consistent conclusions, something steoimgneeded. In (Caminada and Amgoud, 2007)
it is proved that, under the right procedure of argument tanson, admissibility of a set of arguments
is a condition that is strong enough to yield consistent ksians of this set.

What does this mean for non-admissibility based semarstich as stage or CF2? First of all, it should
be mentioned that the above described example is not a caxample against stage semantics or CF2
semantics. This is because the stage extensions (and Gi&siexts) ard A1, As, As, Ay, Ag, A7, As},

{A1, Ag, Az, Ay, A5, A7, Ag} and{A;, Ay, A3, Ay, As, Ag, A10} Which yield consistent conclusions.

For stage semantics it is, however, possible to come up véliglatly more complex example where a
stage extension does yield inconsistent conclusions. Suekamplé could be constructed by taking the
argumentation framework of Figure 20 and adding threeatédfeking argumentdg, A9 and A;o where
Ag is also attacked byl;, Ag by Ag and A1 by A;. Such arguments could be constructed by using the
notion of self-undercut, like is done in (Caminada, 2005).

Although we are currently not aware of any counter exampjeswst the consistency of the conclusions
associated with CF2 extensions, there has not been any githef that this semantics indeed does yield
consistent conclusions, making this one of the open issug&gumentation. For those applications where
consistency is important, it could have advantages to béesafe side and choose a semantics that is
guaranteed to yield consistent conclusions, hence to elmesmantics that is admissibility based.

On the other hand, as discussed in Section 2.10, admisgilsilincompatible with a “balanced”
treatment of even-length and odd-length attack cycles. ¥ample of a formalization where this kind

24This  counter example was presented at COMMA 2010 and is ablail at:
http://www.ing.unibs.it/comma2010/presentations4ZEBninada. pdf
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of balanced behavior is desirable has been given in (Baroal.,e2005). In these contexts one might
prefer to give up admissibility and then adopt CF2 semantics

When using argumentation for reasoning with rules of thuitrdgems also reasonable that the status
of an argument depends only on the arguments that are “apstrin the argumentation framework
(attackers, attackers of attackers, etc.) and that therg@aahould therefore satisfy the directionality
principle (Section 3.5). If one restricts oneself to adibitisy-based semantics, the candidates are
complete, grounded, preferred and ideal semantics, otbeailso CF2 can be considered. In the former
case, which of these semantics to choose is to some exteritex wigtaste. If one would like to entail as
much as possible, preferred semantics would be the mostadbehoice, since this semantics is the least
skeptical among the four. Similarly, if one would like to aihias little as possible, grounded semantics
would be selected.

6 Conclusions

Starting from the seminal paper by Dung (1995) abstractraegation semantics has received a growing
interest by the research community, witnessed by a largmusaf scientific literature where an increasing
variety of alternative semantics proposals is complentkinyestudies on general principles and properties
for their assessment and comparison. This tutorial papaeBnt to provide a reasonably complete and
up-to-date introductory survey on these aspects. In paatidt provides a side-by-side treatment of the
extension-based and labelling-based approaches and @fidiage of principle-based and skepticism-
based semantics comparison, which, as to our knowledg@atdre found in previous works with similar
tutorial nature. For an extensive introduction to the witheme of argumentation in Artificial Intelligence
the reader may refer to the recent book edited by Rahwan amdr§j2009), where, in particular, some
chapters devoted to more advanced topics on abstract angatio@, like proof theories and algorithms
(Modgil and Caminada, 2009) or computational complexityiibe and Wooldridge, 2009), can be found.
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