Chapter 3

Surface Samples

In this chapter we introduce some of the properties of surfaces and their
samples in three dimensions. The results developed in this chapter are used
in later chapters to design algorithms for surface reconstruction and prove
their guaratees. Before we talk about these results, let us explain what we
mean by smooth surfaces.

Consider a map 7: U — V where U and V are the open sets in R?
and R? respectively. The map 7 has three components, namely 7(z) =
(m1(x), ma(x), m3(z)) where z = (1, x2) is a point in R%. The three by two

matrix of partial derivatives (ag;(;") )i,;j is called the Jacobian of 7 at z. We

say 7 is regular if its Jacobian at each point of U has rank 2. A subset
¥ C R? is a smooth surface if for each point z € ¥ the following condition
holds. There is a neighborhood W C R? of z and a map 7: U — W N X of
an open set U C R? onto W N T so that

(i) = is differentiable,
(ii) = is a homeomorphism, and
(iii) = is regular.

The first condition says that all partial derivatives of m of all orders
are continuous. The second condition imposes one-to-one property which
eliminates self intersections of 3. The third condition together with the first
actually enforce the smoothness. It makes sure that the tangent plane at
each point ¥ is well defined. All of these three conditions together imply
that the functions like 7 defined in the neighborhood of each point of X
overlap smoothly.
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In this chapter and the chapters to follow, we assume that ¥ is a smooth
surface. Notice that, by the definition of smoothness (condition (ii)) X is a
2-manifold without boundary. We also assume that ¥ is compact since we
are interested in approximating 3 with a finite simplicial complex. We need
one more assumption. Just like the curves, for a finite point set to be an
e-sample for some £ > 0, we assume that f(z) > 0 for any point z in X.

Smooth surfaces have a tangent plane 7, and a normal n; defined at each
point z € 3. We assume that the normals are oriented outward. Precisely, n,
points locally to the unbounded component of R \ 3. If ¥ is not connected,
n; points locally to the unbounded component of R® \ ¥/ where z is in X,
a connected component of .

An important fact used in surface reconstruction is that the line of di-
rection of the surface normals can be approximated from the sample. An
illustration in R? is helpful here. See Figure 2.4 which shows the Voronoi
diagram of a dense sample on a smooth curve. This Voronoi diagram has a
specific structure. Each Voronoi cell is elongated along the normal direction
at the sample points. Fortunately, the same holds in three dimensions. The
three dimensional Voronoi cells are long and thin and the direction of the
elongation matches with the normal direction at the sample points when the
sample is dense, see also Figure 3.1.
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Figure 3.1: (a) Tangent plane and the normal at a point on a smooth surface,
(b) A long thin Voronoi cell elongated along the normal direction.
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3.1 Normals

Let P C R? be an e-sample of £. If P is all we know about ¥, it is impossible
to know the line of direction of n, exactly at a point p € P. However, it is
conceivable that as P gets denser, we should have more accurate idea about
the direction of n;, by looking at the adjacent points. This is what is done
using the Voronoi cells in Vor P.

For further developments we will often need to talk about how one vector
approximates another one in terms of the angles between them. We denote
the angle between two vectors u and v as Z(u,v). For vector approximations
that disregard the orientation, we use a slightly different notation. This
approximation measures the acute angle between the line of the vectors.
We use Z,(u,v) to denote this acute angle between two vectors u and v.
Since any such angle is acute, we have the triangular inequality Z,(u,v) <
Zo(u,w) + Zg(v,w) for any three vectors u,v and w.

3.1.1 Approximation of normals

It turns out that the structure of the Voronoi cells contains information about
normals. Indeed, if the sample is sufficiently dense, the Voronoi cells become
long and thin along the direction of the normals at the sample points. One
reason for this structural property is that a Voronoi cell V,, must contain the
medial axis points that are the centers of the medial balls tangent to X at p,
see Figure 3.2.

Figure 3.2: Medial axis points m and mg are in the Voronoi cell V.
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Lemma 3.1 (Medial.) Let m; and mgy be the centers of the two medial
balls tangent to ¥ at p. The Voronoi cell V,, contains mi and my.

PROOF. Denote the medial ball with center mq as B. The ball B meets the
surface Y. only tangentially at points, one of which is p. Thus, B is empty
of any point from ¥ and P in particular. Therefore, the center m, has p as
the nearest point in P. By definition of Voronoi cells, m1 is in V}. A similar
argument applies to the other medial axis point msy. O

We have already mentioned that the Voronoi cells are long and thin and
they are elongated along the direction of the normals. The next lemma
formalizes this statement by asserting that as we go further from p within
Vp, the direction to p becomes closer to the normal direction.

Lemma 3.2 (Normal.) Letv be a point in V), with ||v—p|| > uf(p). Then,

Za(Up,mp) < arcsinﬁ + arcsin —£—
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PrROOF. Let my and mo be the two centers of the medial balls tangent to
Y at p where mq is on the same side of 3 as v is. Both m; and mg are in V,
by the Medial Lemma (3.1). The line joining m1 and p is normal to ¥ at p
by the definition of medial balls. Similarly, the line joining mo and p is also
normal to ¥ at p. Therefore, mi,m9 and p are co-linear. See Figure 3.3.
Consider the triangle pymsy. We are interested in the angle Zmipv which is
equal to Z,(p¥,n,). From the triangle pvmso we have

Zmipv = Lpvmg + Lvmap.

To measure the two angles on the righthand side, drop the perpendicular
pzr from p onto the segment vmgy. The line segment vmo intersects X, say
at y, since m; and my and hence v and my lie on opposite sides of X.
Furthermore, y must lie inside V), since any point on the segment joining two
points v and mg in a convex set V, must lie within the same convex set. This
means y has p as the nearest sample point, and thus

llz — pl| < |ly — pl| <ef(y) by the e-sampling condition.

Using Feature Translation Lemma (1.3) we get
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Figure 3.3: Ilustration for Normal Lemma.

We have
Zpume = arcsin le = pl < arcsin ———— as llv —p|| > uf(p), and
v — pll u(l —e)
- €
Zvmep = arcsinM < arcsin as [|me — p|| > f(p).
lma2 — pl| 1—e

The assertion of the lemma follows immediately. O



