A Beginner’s Guide
to

MATLAB’

A ‘& \“\\
”%’z‘:‘“&‘}\\‘\s& AT
,:"““““‘\\wi X790
SIS TN
i

1) A\ \\‘s““‘ ““‘ ’ ’Q

iy
1/ 7748
7 /f:‘:‘:“‘\

Leongitude

37 00135 0.0133 00132 0.0130 00128 0.0127

38 0.0233 0.0227 0.0222 0.0217 00215 0.0208

41 0.0238 Q.04r6 0.0455 0.0435 Q0417 0.0400

43 0.0244 0.1429 o 0.1000
45 0.0250 0.0009
47 0.0256 0.0833
49 0.0263 0.0769

Christos X enophontos
Department of Mathematical Sciences

Loyola College

" MATLAB isaregistered trademark of The MathWorks Inc. A first draft of this document appeared as Technical
Report 98-02, Department of Mathematics & Computer Science, Clarkson University.

TABLE OF CONTENTS

. Introduction

1.1 MATLAB at Loyola College
1.2 How to read thistutorial

. MATLAB Basics

2.1 The basic features

2.2 Vectors and matrices

2.3 Built-in functions

2.4 Plotting

. Programmingin MATLAB
3.1 M-files: Scripts and functions
3.2 Loops

3.3 If statement

. Additional Topics

4.1 Polynomialsin MATLAB
4.2 Numerical Methods

. Closing Remarks and References

Page

W

13
22

27
29
33

36
38

42

1. INTRODUCTION

MATLAB, which stands for M ATrix LABoratory, is a state-of-the-art mathematical software
package, which is used extensively in both academia and industry. It isan interactive program for
numerical computation and data visualization, which along with its programming capabilities
provides a very useful tool for amost all areas of science and engineering. Unlike other
mathematical packages, such as MAPLE or MATHEMATICA, MATLAB cannot perform
symbolic manipulations without the use of additional Toolboxes. It remains however, one of the
leading software packages for numerical computation.

As you might guess from its name, MATLAB deals mainly with matrices. A scalar isa1-by-1
matrix and arow vector of length say 5, is a 1-by-5 matrix. We will elaborate more on these and
other features of MATLAB in the sections that follow. One of the many advantages of MATLAB
Isthe natural notation used. It looks alot like the notation that you encounter in alinear algebra
course. This makes the use of the program especially easy and it iswhat makes MATLAB a
natural choice for numerical computations.

The purpose of this tutorial isto familiarize the beginner to MATLAB, by introducing the basic
features and commands of the program. It isin no way a complete reference and the reader is
encouraged to further enhance his or her knowledge of MATLAB by reading some of the
suggested references at the end of this guide.

1.1 MATLAB at Loyola College

MATLAB is available at Loyola College on the Novell network for PCs. Its executable icon is
located inside the folder named “Novell Delivered Applications” that appears on the desktop of
(most) laboratory PCs. While Technology Services is doing their best to maintain current
MATLAB licenses for all machines, your “best-bet” is to use the machines in the Math Lab (KH
308), which contain the latest version of MATLAB (currently 6.1).

You can start MATLAB by first opening the “Novell Delivered Applications” folder and clicking
on the MATLAB icon within it. The program will start in a new window. Once you see the
prompt (») you will be ready to begin ... The current (working) sub-directory is by default
C:\MATLAB\Work\ . If you are working on one of the machines in a computer lab, you should
not be saving any of your work in the default directory. Instead, you should either switch to the
drive that contains your account (e.g. G:\ or H:\ if available), or you should use a floppy (or zip)
disk. To do the latter, issue the command

>> cd a:\

from within MATLAB. Talk to your instructor for further instructions on how and where to save
your work.

1.2 Howto read thistutorial

In the sections that follow, the MATLAB prompt (») will be used to indicate where the
commands are entered. Anything you see after this prompt denotes user input (i.e. acommand)
followed by a carriage return (i.e. the “enter” key). Often, input is followed by output so unless
otherwise specified the line(s) that follow a command will denote output (i.e. MATLAB’s
response to what you typed in). MATLAB is case-sensitive, which means that a + B is not the
sameasa + b. Different fonts, like the ones you just witnessed, will also be used to simulate
the interactive session. This can be seen in the example below:

e.g. MATLAB can work as a calculator. If we ask MATLAB to add two numbers, we get the
answer we expect.

» 3 + 4
ans =

7

As we will see, MATLAB is much more than a “fancy” calculator. In order to get the most out
this tutorial you are strongly encouraged to try all the commands introduced in each section and
work on all the recommended exercises. This usually works best if after reading this guide once,
you read it again (and possibly again and again) in front of a computer.

2. MATLAB BASICS
2.1 Thebasc features

Let us start with something simple, like defining a row vector with components the numbers 1, 2,
3, 4, 5 and assigning it a variable name, say x.

» X =[1 2 3 4 5]

X =
1 2 3 4 5

Note that we used the equal sign for assigning the variable name x to the vector, brackets to
enclose its entries and spaces to separate them. (Just like you would using the linear algebra
notation). We could have used commas (,) instead of spacesto separate the entries, or even a
combination of the two. The use of either spaces or commasiis essential!

To create a column vector (MATLAB distinguishes between row and column vectors, as it
should) we can either use semicolons (;) to separate the entries, or first define arow vector and
take its transpose to obtain a column vector. Let us demonstrate this by defining a column vector
y with entries 6, 7, 8, 9, 10 using both techniques.

»y = [6;7;8;9;10]

y:

CQOWoO~NO®

1

»y =1]6,7,8,9,10]

y =

6 7 8 9 10
» y*©
ans =

6

7

8

9

10

Let us make afew comments. First, note that to take the transpose of a vector (or a matrix for
that matter) we use the single quote (*). Also note that MATLAB repeats (after it processes)
what we typed in. Sometimes, however, we might not wish to “see” the output of a specific
command. We can suppress the output by using a semicolon (;) at the end of the command line.
Finally, keep in mind that MATLAB automatically assigns the variable name ans to anything that
has not been assigned a name. In the example above, this means that a new variable has been
created with the column vector entries as its value. The variable ans, however, gets recycled and
every time we type in a command without assigning a variable, ans gets that value.

It is good practice to keep track of what variables are defined and occupy our workspace. Due to
the fact that this can be cumbersome, MATLAB can do it for us. The command whos gives all
sorts of information on what variables are active.

» whos

Nanme Size El enent s Byt es Density Conpl ex
ans 5 by 1 5 40 Ful | No

X 1 by 5 5 40 Ful | No

y 1 by 5 5 40 Ful | No

Gand total is 15 elenents using 120 bytes

A similar command, called who, only provides the names of the variables that are active.

» who
Your vari abl es are:

ans X y

If we no longer need a particular variable we can “erase” it from memory using the command
cl ear vari abl e_nane. Letuscl ear the variable ans and check that we indeed did so.

» cl ear ans
» who

Your vari abl es are:
X y

The command cl ear used by itself, “erases” all the variables from the memory. Be careful, as
this is not reversible and you do not have a second chance to change your mind.

You may exit the program using the qui t command. When doing so, all variables are lost.
However, invoking the command save f i | enamne before exiting, causes all variables to be
written to a binary file called f i | enane. mat . When we start MATLAB again, we may retrieve
the information in this file with the command | oad f i | ename. We can also create an ascii
(text) file containing the entire MATLAB session if we use the command di ary fi | enane at
the beginning and at the end of our session. This will create a text file called f i | enane (with no
extension) that can be edited with any text editor, printed out etc. This file will include everything
we typed into MATLAB during the session (including error messages but excluding plots). We
could also use the command save f i | enane at the end of our session to create the binary file
described above as well as the text file that includes our work.

One last command to mention before we start learning some more interesting things about
MATLAB, is the hel p command. This provides help for any existing MATLAB command. Let
us try this command on the command who.

» hel p who

VWHO Li st current vari abl es.
VWHO lists the variables in the current workspace.
VWHCS lists nore i nformati on about each vari abl e.
VWHO GA.OBAL and WHOS GLOBAL |ist the variables in the
gl obal wor kspace.

Try using the command hel p on itself!

On aPC, help is aso available from the Window Menus. Sometimesiit is easier to look up a
command from the list provided there, instead of using the command line hel p.

2.2 Vectors and matrices

We have already seen how to define a vector and assign a variable nameto it. Often it is useful to
define vectors (and matrices) that contain equally spaced entries. This can be done by specifying
the first entry, an increment, and the last entry. MATLAB will automatically figure out how many
entries you need and their values. For example, to create a vector whose entriesare 0, 1, 2, 3, ...,
7, 8, you can type

» u = [0:8]

u =
0 1 2 3 4 5 6 7 8

Here we specified the first entry 0 and the last entry 8, separated by acolon (:). MATLAB
automatically filled-in the (omitted) entries using the (default) increment 1. Y ou could also
specify an increment as is done in the next example.

To obtain a vector whose entriesare 0, 2, 4, 6, and 8, you can type in the following line:
» v = [0:2:8]

vV =
0 2 4 6 8

Here we specified the first entry O, the increment value 2, and the last entry 8. The two colons (:
) “tell” MATLAB to fill in the (omitted) entries using the specified increment value.

MATLAB will allow you to look at specific parts of the vector. If you want, for example, to only
look at the first 3 entries in the vector v, you can use the same notation you used to create the
vector:

» v(1:3)

ans =
0 2 4

Note that we used parentheses, instead of brackets, to refer to the entries of the vector. Since we
omitted the increment value, MATLAB automatically assumes that the increment is1. The
following command lists the first 4 entries of the vector v, using the increment value 2 :

» v(1:2:4)
ans =

0 4

Defining a matrix is similar to defining a vector. To define amatrix A, you can treat it like a
column of row vectors. That is, you enter each row of the matrix as arow vector (remember to
separate the entries either by commas or spaces) and you separate the rows by semicolons (;).

» A=[123; 345, 67 8]

A =
1
3
6

~N DN

3
5
8

We can avoid separating each row with a semicolon if we use a carriage return instead. 1n other
words, we could have defined A as follows

» A =]

123

345

6 7 8]

A =
1 2 3
3 4 5
6 7 8

which is perhaps closer to the way we would have defined A by hand using the linear algebra
notation.

Y ou can refer to a particular entry in amatrix by using parentheses. For example, the number 5
liesin the 2™ row, 3™ column of A, thus

» A(2, 3)

ans =
5

The order of rows and columns follows the convention adopted in the linear algebra notation.
Thismeansthat A(2, 3) refersto the number 5 in the above example and A(3, 2) refersto the
number 7, which isin the 3 row, 2™ column.

Note MATLAB?’s response when we ask for the entry in the 4™ row, 1% column.

» A(4,1)
??? Index exceeds matri x di nensi ons.

As expected, we get an error message. Since A is a 3-by-3 matrix, there is no 4" row and
MATLAB realizesthat. The error messages that we get from MATLAB can be quite informative

when trying to find out what went wrong. In this case MATLAB told us exactly what the
problem was.

We can “extract” submatrices using a similar notation as above. For example to obtain the
submatrix that consists of the first two rows and last two columns of A we type

» A(1l:2,2:3)
ans =
2 3
4 5

We could even extract an entire row or column of a matrix, using the colon (:) asfollows.
Suppose we want to get the 2™ column of A. We basically want the dements[A(1, 2)
A(2,2) A(3,2)]. Wetype

» A(:, 2)

ans =

~N DN

where the colon was used to tell MATLAB that al the rows areto be used. The same can be
done when we want to extract an entire row, say the 3 one.

» A(3,:)

ans =
6 7 8

Define now another matrix B, and two vectors s and t that will be used in what follows.

» B = [

-1 3 10

-9 5 25

0 14 2]

B =
-1 3 10
-9 5 25
0 14 2

» s =[-18 5]

10

» t = [7;0;11]
t =
7

0
11

The real power of MATLAB isthe ease in which you can manipulate your vectors and matrices.
For example, to subtract 1 from every entry in the matrix A we type

» A-1
ans =

0 1
2 3
5 6

~NBDN

It isjust as easy to add (or subtract) two compatible matrices (i.e. matrices of the same size).

» A+B
ans =
0] 5 13

-6 9 30
6 21 10

The sameistrue for vectors.
» S-t

??? Error using ==> -
Matrix dimensions must agree.

This error was expected, since s has size 1-by-3 and t has size 3-by-1. We will not get an error if
we type

» s-t*

ans =
-8 8 -6

since by taking the transpose of t we make the two vectors compatible.
We must be equally careful when using multiplication.

» B*s

??? Error using ==> *

Inner matrix dimensions must agree.

» B*t

11

ans =

103
212
22

Another important operation that MATLAB can perform with ease is “matrix division”. If M is
an invertible” square matrix and b is a compatible vector then

M b isthe solution of M x = b and
b/ Misthe solution of xM = b.

X
X

Let usillustrate the first of the two operations above withM =B and b =1t.

» X=B\t

X =
2. 4307
0. 6801
0. 7390

x isthe solution of B x =t as can be seen in the multiplication below.
» B*X

ans =
7. 0000
0. 0000
11. 0000

Since x does not consist of integers, it is worth while mentioning here the command f or mat
| ong. MATLAB only displays four digits beyond the decimal point of areal number unless we
use the command f or mat | ong, which tells MATLAB to display more digits.

» format | ong
» X

X =
2.43071593533487

0.68013856812933
0. 73903002309469

On aPC the command f or mat | ong can aso be used through the Window Menus.

" Recall that amatrix M O R™"iscaled invertibleif Mx=0 [0 x=0 OxOR".

12

There are many times when we want to perform an operation to every entry in a vector or matrix.
MATLAB will alow usto do this with “element-wise” operations.

For example, suppose you want to multiply each entry in the vector swith itself. In other words,
suppose you want to obtain the vector & = [s(1)*s(1), S(2)*(2), S(3)*(3)].

The command s* s will not work due to incompatibility. What is needed here is to tell MATLAB
to perform the multiplication element-wise. This is done with the symbols ". *". In fact, you can
put a period in front of most operators to tell MATLAB that you want the operation to take place
on each entry of the vector (or matrix).

» S*s
??? Error using ==> *
Inner matrix dimensions must agree.

» S.*s

ans =
1 64 25

The symbol " .~ " can also be used since we are after all raising sto apower. (The period is
needed here aswell.)

» S.N2

ans =
1 64 25

The table below summarizes the operators that are availablein MATLAB.

+ addition
subtraction
multiplication
power
transpose

\ left division
/ right division

. > X !

Remember that the multiplication, power and division operators can be used in conjunction with a
period to specify an element-wise operation.

Exercises

Creasteadiary session called sec2_2 in which you should complete the following exercises.
Define

@2 9 0 0] 10
0 0.0
@414 6
_ 0 _0%0 2 _ _
A3 5 5 10 P gop 2718 ~2 4 -5
78 7 47 Ho O

1. Calculate the following (when defined)
(@ Alb (b) a+4 (c) bla (d) alb' (e) AR

2. Explain any differences between the answers that MATLAB gives when you type in A* A,
A2 and A N2.

3. What is the command that isolates the submatrix that consists of the 2™ to 3™ rows of the
matrix A?

4. Solvethe linear system A x = b for x. Check your answer by multiplication.

Edit your text file to delete any errors (or typos) and hand in a readable printout.

2.3 Built-in functions

There are numerous built-in functions (i.e. commands) in MATLAB. We will mention a few of

them in this section by separating them into categories.

Scalar Functions

Certain MATLAB functions are essentially used on scalars, but operate element-wise when
applied to amatrix (or vector). They are summarized in the table below.

sin trigonometric sine

cos trigonometric cosine

tan trigonometric tangent

asin trigonometric inverse sine (arcsine)
acos trigonometric inverse cosine (arccosine)
at an trigonometric inverse tangent (arctangent)
exp exponential

| og natural logarithm

abs absolute value

sqrt square root

rem remainder

round round towards nearest integer
floor round towards negative infinity
ceil round towards positive infinity

13

14

Even though we will illustrate some of the above commands in what follows, it is strongly
recommended to get hel p on all of them to find out exactly how they are used.

The trigonometric functions take as input radians. Since MATLAB uses pi for the number
=23.1415...

» sin(pil?2)

ans =
1

» cos(pil/?2)

ans =
6. 1230e- 017

The sine of /2 isindeed 1 but we expected the cosine of 172 to be 0. Well, remember that
MATLAB isanumerical package and the answer we got (in scientific notation) is very closeto 0
(6.1230e-017 =6.1230x10 " = 0).

Sincethe exp and | og commands are straight forward to use, let usillustrate some of the other
commands. Ther emcommand gives the remainder of adivison. So the remainder of 12 divided
by 4 iszero

» rem(12, 4)

ans =
0

and the remainder of 12 divided by 5is 2.
» rem(12, 5)

ans =
2

Thefl oor,cei | andr ound commands areillustrated below.
» floor(1.4)

ans =
1

» ceil (1.4)
ans =

2
» round(1. 4)

15

ans =
1

Keep in mind that all of the above commands can be used on vectors with the operation taking

place element-wise. For example, if x =10, 0.1, 0.2, .. ., 0.9, 1], then y = exp(x) will produce
another vector y , of the same length as x, whose entries are given by y = [€°, ™%, €°2, . . ., €].

» X = [0:0.1:1]

X =

Colums 1 through 7

0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000
Col ums 8 through 11

0.7000 0.8000 0.9000 1.0000

»y = exp(Xx)

y =

Colums 1 through 7

1.0000 1.1052 1.2214 1.3499 1.4918 1.6487 1.8221
Col ums 8 through 11

2.0138 2.2255 2.4596 2.7183

Thisis extremely useful when plotting data. See Section 2.4 ahead for more details on plotting.
Also, note that MATLAB displayed the results as 1-by-11 matrices (i.e. row vectors of length
11). Since there was not enough space on one line for the vectors to be displayed, MATLAB

reports the column numbers.

Vector Functions

Other MATLAB functions operate essentially on vectors returning a scalar value. Some of these
functions are given in the table below.

max largest component

m n smallest component

| ength |ength of avector
sort sort in ascending order

sum sum of elements

16

prod product of elements
medi an median value

mean mean value

std standard deviation

Once again, it is strongly suggested to get hel p on all the above commands. Some are
illustrated below.

Let z be the following row vector.
» z = [0.9347, 0. 3835, 0. 5194, 0. 8310]

Z =
0. 9347 0. 3835 0.5194 0. 8310

» sort(z)

ans =
0. 3835 0. 5194 0. 8310 0. 9347

» sun(z)

ans =
2.6686

» mean(z)

0.6671

The above (vector) commands can also be applied to a matrix. In this case, they act in a column-
by-column fashion to produce a row vector containing the results of their application to each
column. The example below illustrates the use of the above (vector) commands on matrices.

Suppose we wanted to find the maximum element in the following matrix.

17

» M= |

0.7012, 0. 2625, 0. 3282
0. 9103, 0. 0475, 0. 6326
0.7622,0. 7361, 0. 7564] ;

If we used the max command on M, we will get the row in which the maximum element lies
(remember the vector functions act on matrices in a column-by-column fashion).

> max(M

ans =
0. 9103 0. 7361 0. 7564

To isolate the largest element, we must use the max command on the above row vector. Taking
advantage of the fact that MATLAB assigns the variable name ans to the answer we obtained,
we can smply type

» max(ans)

0.9103

The two steps above can be combined into one in the following.

» max(max(M)

0.9103

Combining MATLAB commands can be very useful when programming complex algorithms
where we do not wish to see or access intermediate results. More on this, and other
programming features of MATLAB in Section 3 ahead.

Matrix Functions

Much of MATLAB’s power comes from its matrix functions. These can be further separated into
two sub-categories. The first one consists of convenient matrix building functions, some of
which are given in the table below.

eye identity matrix

Zeros matrix of zeros

ones matrix of ones

di ag extract diagonal of a matrix or create diagonal matrices
triu upper triangular part of a matrix

tril lower triangular part of a matrix

rand randomly generated matrix

18

Make sure you ask for hel p on al the above commands.

To create the identity matrix of size 4 (i.e. a square 4-by-4 matrix with ones on the main diagonal
and zeros everywhere else) we use the command eye.

» eye(4,4)

ans =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

The numbers in parenthesis indicates the size of the matrix. When creating square matrices, we
can specify only one input referring to size of the matrix. For example, we could have obtained
the above identity matrix by smply typing eye(4) . The sameistrue for the matrix building
functions below.

Similarly, the command zer os creates amatrix of zeros and the command ones creates a
matrix of ones.

» zeros(2,3)

ans =
0 0 0
0 0 0
» ones(2)
ans =
1 1
1 1

We can create arandomly generated matrix using the r and command. (The entries will be
uniformly distributed between 0 and 1.)

» C = rand(5, 4)

C =
0. 2190 0. 3835 0. 5297 0.4175
0. 0470 0. 5194 0.6711 0. 6868
0.6789 0. 8310 0. 0077 0. 5890
0.6793 0. 0346 0. 3834 0. 9304
0.9347 0. 0535 0. 0668 0. 8462

Thecommandstriuandtril, extract the upper and lower part of a matrix, respectively. Let
us try them on the matrix C defined above.

19

» triu(Q
ans =
0.2190 0. 3835 0. 5297 0.4175
0 0.5194 0.6711 0. 6868
0 0 0. 0077 0. 5890
0 0 0 0. 9304
0 0 0 0
» tril (O
ans =
0.2190 0 0 0
0. 0470 0.5194 0 0
0.6789 0. 8310 0. 0077 0
0.6793 0. 0346 0. 3834 0. 9304
0. 9347 0. 0535 0. 0668 0. 8462

Once the extraction took place, the “empty” positions in the new matrices are automatically filled
with zeros.

As mentioned earlier, the command di ag has two uses. The first use is to extract a diagonal of a
matrix, e.g. the main diagonal. Suppose D is the matrix given below. Then, di ag(D) produces
a column vector, whose components are the elements of D that lie on its main diagonal.

D=
. 9092 0.5045 0.9866
. 0606 0.5163 0.4940
. 9047, 0. 3190, 0. 2661] ;

QOQOOoOv

M

di ag(D)
ans =
0. 9092

0. 5163
0. 2661

The second useis to create diagonal matrices. For example,

» di ag([0. 9092; 0. 5163; 0. 2661])

ans =
0. 9092 0 0
0 0. 5163 0
0 0 0. 2661

creates a diagonal matrix whose non-zero entries are specified by the vector given asinput. (A
short cut to the above constructionisdi ag(di ag(D))).

20

This command is not restricted to the main diagonal of a matrix; it works on off diagonals as well.

Seehel p di ag for more information.

Let us now summarize some of the commands in the second sub-category of matrix functions.

si ze size of amatrix

det determinant of a square matrix
i nv inverse of amatrix

rank rank of amatrix

rref reduced row echelon form
eig eigenvalues and eigenvectors

poly characteristic polynomial
norm norm of matrix (1-norm, 2-norm, co -norm)

cond condition number in the 2-norm
lu LU factorization

qr QR factorization

chol Cholesky decomposition

svd singular value decomposition

Don’t forget to get hel p on the above commands. To illustrate a few of them, define the

following matrix.

» A=1[9,7,0,08,6;7,1,-6]

A =
9 7 0
0 8 6
7 1 -6
» size(A)
ans =
3 3
» det (A)
ans =

-192

Since the determinant is not zero, the matrix is invertible.
» i nv(A)

ans =
0.2812 - 0. 2187 - 0. 2187
- 0. 2187 0.2812 0.2812
0. 2917 - 0. 2083 -0. 3750

21

We can check our result by verifying that AA™ =1and A"A =1 .
» A*inv(A)

ans =

1. 0000 0. 0000 0. 0000
0. 0000 1. 0000 0. 0000
0. 0000 0. 0000 1. 0000

» inv(A)*A

ans =
1. 0000 0. 0000 0
0. 0000 1. 0000 0
0. 0000 0 1. 0000

Let us comment on why MATLAB uses both 0’s and 0.0000°s in the answer above. Recall that
we are dealing with a numerical package that uses numerical algorithms to perform the operations
we ask for. Hence, the use of floating point (vs. exact) arithmetic causes the “discrepancy” in the
results. From a practical point of view, 0 and 0.0000 are the same.

The eigenvalues and eigenvectors of A (i.e. the numbers A and vectors x that satisfy
Ax = Ax) can be obtained through the ei g command.

» eig(A)
ans =
12. 6462

3. 1594
-4. 8055

produces a column vector with the eigenvalues and

» [X, D] =ei g(A

X =
-0. 8351 -0. 6821 0.2103
-0. 4350 0. 5691 -0. 4148
- 0. 3368 - 0. 4592 0. 8853

D =
12. 6462 0 0
0 3.1594 0
0 0 - 4. 8055

produces a diagonal matrix D with the eigenvalues on the main diagonal, and a full matrix X
whose columns are the corresponding eigenvectors.

22

Exercises

Creaste adi ar y session called sec2_3 in which you should complete the following exercises
using MATLAB commands. When applicable, use the matrix A and the vectors b, a that were
defined in the previous section’s exercises.

1. Construct a randomly generated 2-by-2 matrix of positive integers.
2. Find the maximum and minimum elements in the matrix A.
3. Sort the values of the vector b.

4. (a) Find the eigenvalues and eigenvectors of the matrix B = A™". Store the eigenvaluesin a
column vector you should name lambda.
(b) With | the 4-by-4 identity matrix, calculate the determinant of the matrix
B-lambdg |, forj =1, 2, 3, 4. (Note: lambda, is the first eigenvalue, lambda, is the
second eigenvalue etc.)

2.4 Plotting

We end our discussion on the basic features of MATLAB by introducing the commands for data
visualization (i.e. plotting). By typing hel p pl ot you can see the various capabilities of this
main command for two-dimensional plotting, some of which will be illustrated below.

If xand y are two vectors of the same length then pl ot (x, y) plots x versus'y.

For example, to obtain the graph of y = cos(x) from — 1tto 11, we can first define the vector x with
components equally spaced numbers between — 1tand 11, with increment, say 0.01.

» X=-pi:0.01: pi;

We placed a semicolon at the end of the input line to avoid seeing the (long) output.
Note that the smallest the increment, the “smoother” the curve will be.

1N;xf, we define the vector y

» y=C0S(X);

(using a semicolon again) and we ask for the plot

» plot(x,y)

At this point a new window will open on our desktop in which the graph (as seen below) will
appear.

23

0.8 B

0.6 B

0.4 4

0.2 B

-0.2+ -

-04F i

-06F i

-0.8r+ -

It isgood practice to label the axis on a graph and if applicable indicate what each axis represents.
This can be done with the x| abel andyl abel commands.

» xlabel ("x")
» ylabel ("y=cos(x)")

Inside parentheses, and enclosed within single quotes, we type the text that we wish to be
displayed along the x and y axis, respectively.

We could even put atitle on top using
» title("Graph of cosine from - \pi to \pi~)

as long as we remember to enclose the text in parentheses within single quotes. The back-dash
(\) infront of pi1 allows the user to take advantage of LaTeX commands. If you are not familiar
with the mathematical typesetting software LaTeX (and its commands), ignore the present
commend and simply type

» title("Graph of cosine from -pi to pi~°)
Both graphs are shown below.

These commands can be invoked even after the plot window has been opened and MATLAB will
make all the necessary adjustments to the display.

24

Various line types, plot symbols and colors can be used. If these are not specified (asin the case
above) MATLAB will assign (and cycle through) the default ones as given in the table below.

y yel | ow . poi nt

m magent a 0 circle

Cc cyan X x- mar k

r red + pl us

g green - solid

b bl ue * star

w white : dotted

k bl ack -. dashdot
-- dashed

S0, to obtain the same graph but in green, we type
» plot(x,y,’g”)

where the third argument indicating the color, appears within single quotes. We could get a
dashed line instead of a solid one by typing

» plot(x,y,”--")

or even a combination of line type and color, say a blue dotted line by typing

» plot(x,y,’b:?)

Multiple curves can appear on the same graph. 1f for example we define another vector
» z = sin(X);

we can get both graphs on the same axis, distinguished by their line type, using

» plot(X,y,"r--",x,z,"b:")

The resulting graph can be seen below, with thered dashed line representing y = cos(x) and the
blue dotted line representing z = Sin(x).

25

\

0.8F / N N i
L / 7\ \ 4

0.6 / S\

0.4f / \ E

0.2f) ! \ 4

\
02+ \ / , B
-041 \ i T
-06F \ s \ 7

08F / / \\ i
/ \

When multiple curves appear on the same axis, it isagood ideato create alegend to label and
distinguish them. The command | egend does exactly this.

» legend("cos(x) ", "sin(x)")

The text that appears within single quotes as input to this command, represents the legend labels.
We must be consistent with the ordering of the two curves, so since in the plot command we
asked for cosine to be plotted before sine, we must do the same here.

T — N
/ \ s N — cos(®)
/ N / \ — — sin(®)

0.8 / N4 N

L / 7\ \ 4
06 / SN\
0.2f) ! \ 4
-041 \ i T

-06F \ s \ 7

-08F /0 / \ b
’ \

At any point during aMATLAB session, you can obtain a hard copy of the current plot by either
issuing the command print a the MATLAB prompt, or by using the command menus on the
plot window. In addition, MATLAB plots can by copied and pasted (as pictures) in your favorite

26

word processor (such as Microsoft Word). This can be achieved using the Edit menu on the
figure window.

Another nice feature that can be used in conjunction with pl ot isthe command gr i d, which
places grid lines to the current axis (just like you have on graphing paper). Typehel p gri d
for more information.

Other commands for data visualization that exist in MATLAB include

subpl ot create an array of (tiled) plots in the same window
| ogl og plot using log-log scales

sem | ogx plot using log scale on the x-axis

sem | ogy plot using log scale on the y-axis

surf 3-D shaded surface graph
surfl 3-D shaded surface graph with lighting
mesh 3-D mesh surface

It is left to the reader to further investigate the above commands through MATLAB’s hel p
command. We illustrate here how to obtain one of the surface pictures on the cover of this guide:

>> [X,y] = meshgrid(-3:.1:3,-3:.1:3);

>> 7z = 3*(1-x)."2. *exp(-(x."2) - (y+1).72) ...
- 10*(x/5 - x."3 - y."5).*exp(-x."2-y."2)
- 1/ 3*exp(-(x+1).72 - y."2);

>> surf(z)

>> x| abel (" x)

>> yl abel ("y’)

>> z| abel (" z)

>> title(’ Peaks’)

i
1S3

z

8% & & v o N » o ®

Type hel p nmeshgrid, hel p surf and hel p peaks for more information on the above
surface.

27

Exercises

Obtain a hard copy of the plot of the functions f (x) = X%, g (x) = X’ for x=—1, ..., 1 on the same
axis. Label the x and y axes and create a legend indicating which graph is which.

3. PROGRAMMING IN MATLAB
3.1 M-files: Scripts and functions

To take advantage of MATLAB?’s full capabilities, we need to know how to construct long (and
sometimes complex) sequences of statements. This can be done by writing the commands in a file
and calling it from within MATLAB. Such files are called “m-files” because they must have the
filename extension *. ni’. This extension is required in order for these files to be interpreted by
MATLAB.

There are two types of m-files: script filesand function files. Script files contain a sequence of
usual MATLAB commands, that are executed (in order) once the script is called within
MATLAB. For example, if such a file has the name conput e. m, then typing the command
conput e at the MATLAB prompt will cause the statements in that file to be executed. Script
files can be very useful when entering data into a matrix.

Function files, on the other hand, play the role of user defined commands that often have input
and output. You can create your own commands for specific problems this way, which will have
the same status as other MATLAB commands. Let us give a simple example. The text below is
saved in a file called | 0g3. mand it is used to calculate the base 3 logarithm of a positive
number. The text file can be created in a variety of ways, for example using the built-in
MATLAB editor through the command edi t (that is available with MATLAB 5.0 and above),
or your favorite (external) text editor (e.g. Notepad or Wordpad in Microsoft Windows). You
must make sure that the filename has the extension “. ni’ !

function [a] = [0g3(x)

% [a] = log3(x) - Calculates the base 3 |ogarithm of x.
a = log(abs(x))./10g(3);

% End of function

Using this function within MATLAB to compute log 3(5), we get

» [0g3(5)

1. 4650

28

Let us explain afew things related to the syntax of afunction file. Every MATLAB function
begins with a header, which consists of the following :

(a) theword f uncti on,

(b) the output(s) in brackets, (the variable a in the above example)

(c) the equal sign,

(d) the name of the function, which must match the function filename (I og3 in the above
example) and

(e) the input(s) (the variable x in the above example).

Any statement that appears after a “%’ sign on a line is ignored by MATLAB and plays the role of
comments in the subroutine. Comments are essential when writing long functions or programs,
for clarity. In addition, the first set of comments after the header in a function serve as on-line
help. For example, see what happens when we type

» hel p 1 og3

[a] = 10g3(x) - Calculates the base 3 logarithm of x.

MATLAB gave us as “help” on the function we defined, the text that we included after the header
in the file.

Finally, the algorithm used to calculate the base 3 logarithm of a given number, is based on the
formula
log 3(X) = In(|x]) / In(3).

Since the logarithm of a negative number is undefined, we use the absolute value for “safety”.
Also, note that we have allowed for a vector to be passed as input, by using element-wise division
in the formula.

During a MATLAB session, we may call a function just like we did in the above example,
provided the file is saved in the current (working) directory. This is the reason why in the
beginning of this guide we suggested that you should create a working directory and switch to
that directory from within MATLAB.

It should be noted that both types of m-files can reference other m-files, including themselves in a
recursive way.
Exercises

Write a script m-file called r and_i nt . mthat once called within MATLAB gives a random
integer.

29

3.2 Loops

We will now cover some commands for creating loops, which are not only used in writing m-files,
but in regular MATLAB sessionsaswell. The examples that we will give will include both
situations. The two types of loops that we will discuss are “for” and “while” loops. Both loop
structures in MATLAB start with a keyword such as f or , or whi | e and they end with the word
end.

The “for” loop allows us to repeat certain commands. If you want to repeat some action in a
predetermined way, you can use the “for” loop. The “for” loop will loop around some statement,
and you must tell MATLAB where to start and where to end. For example,

>> for j=1:4
j+2
end

6
looped through the numbers 1, ..., 4 and every time printed the current number plus 2.

Enclosed between the f or and end, you can have multiple statements just like in the example
below. Here, we define the vector x = [1, 2, ..., 10] and we calculate x* = [1?, 22, ..., 10°], which
we name x2. The semicolon at the end of the inner statement in the loop suppresses the printing
of unwanted intermediate results.

» X = 1:10

X =
1 2 3 4 5 6 7 8 9 10

» for i=1:10
x2(1) = x(i)"2;
end
» X2

X2 =
1 4 9 16 25 36 49 64 81 100

30

Even though for loops are convenient to use in certain cases, they are not always the most
efficient way to perform an operation. In the above example, we would have been better off using

» X2 = x."2

X2 =
1 4 9 16 25 36 49 64 81 100

instead. There are occasions, however, where the “vectorized” notation of MATLAB cannot help
us perform the operations we want, and loops are needed despite the fact that they are not as
efficient.

Nested loops can also be created. In the following example, we calculate the square of the entries
in a matrix. (This again is not efficient but it is used for illustration purposes only.)

» A = [1,5,-3;2y4$0;-1’6’9]

A =
1 5 -3
2 4 0
-1 6 9
» for i=1:3
for j=1:3
A2(i,)) = A(i,])"2;
end
end
» A2
A2 =
1 25 9
4 16 0

1 36 81

For amore redlistic example, consider the m-file gaussel . m which performs Gaussian
elimination (and back substitution) to solve the square system A x = b.

function [Xx] = gaussel (A Db)

% [x] = gaussel (A b)
%

% This subroutine will perform Gaussian elim nation
% and back substitution to solve the system Ax = b.
% INPUT : A - matrix for the left hand side.

% b - vector for the right hand side

%

% OQUTPUT : x - the solution vector.

N = max(size(A));
% Perform Gaussi an Eli m nati on

for j=2:N,
for i=j:N,
m=A(i,j-1)/A(j-1,j-1);
A(i,:) = A(i,:) - A(j-1,:)*m
b(i) = b(i) - ntb(j-1);
end
end

% Perform back substitution

x = zeros(N, 1);
X(N) = b(N)/A(N, N);
for j=N-1:-1:1,

E(J) = (b(j)-A(, J+L:N*x(J+1:N)) T A(.)
en

% End of function

To illustrate the use of the above file, we define
» A=[4323;1236;4221;,991-2]

A =

ONNW
RPNWN
NP, O W

OhRF,hA

» b=[1;0; 2;-5]

ONOBF-

Since, the function does not check to see if the matrix A isinvertible, we do so oursalves.

» det (A)

ans =

- 94

32

The solution to A x = b isgiven by
» X = gaussel (A b)

X =
1. 2979
-1. 7660
-0. 0213
0. 3830

Of course, a more efficient way to solve such alinear system would be through the built-in
MATLAB solver. That is, we could havetyped x = A\ b to obtain the same answer. Try it!

The second type of loop is the “while” loop. The “while” loop repeats a sequence of commands
as long as some condition is met. For example, given a number n, the following m-file
(expl e. m) will display the smallest non-negative integer a such that 2% > n,

function [a] = exple(n)

% [a] = exple(n)

% End of function
» a = exple(4)

a =
2

The conditional statement in the “while” loop is what makes it differ from the “for” loop. In the
above example we used the conditional statement

while 2%a < n

which meant that MATLAB would check to see if this condition is met, and if so proceed with the
statement that followed. Such conditional statements are also used in “if” statements that are
discussed in the next section. To form a conditional statement we use relational operators. The
following are available in MATLAB.

< less than
> greater than
<= less than or equal

33

>= greater than or equal

~= not equal
Note that “="is used in assignments and “= =" is used in relations. Relations may be connected
(or quantified) by the following logical operators.

& and
| or
-~ not

Exercises

The n-by-n Hilbert matrix H, has as its entries Hi; = 1/(i +j — 1), i,j =1, 2, ..., n. Create a double
“for loop” to generate the 5-by-5 Hilbert matrix and check your answer using the built-in
MATLAB command hi | b.

3.3 If statement

There are times when you would like your algorithm/code to make a decision, and the “if”
statement is the way to do it. The general syntax in MATLAB is as follows :

I f relation
statement(s)
el sei f relation % if applicable
statement(s) % if applicable
el se % if applicable
statement(s) % if applicable
end
The logical operators (&, |, ~) could also be used to create more complex relations.

Let us illustrate the “if” statement through a simple example. Suppose we would like to define
and plot the piecewise defined function

xk* if -1<x<05

F =
025 if 05<x<1

This is done with the use of the “if” statement in MATLAB as follows. First we define the
“domain” vector x from -1 to 1 with increment 0.01 to produce a smooth enough curve.

» x=-1:0.01:1;

Next, we loop through the values of x and for each one we create the corresponding function
value F as a vector.

» For 1=1:length(x)
if x(i) < 0.5
F(i) = x(i)"2;
else
F(i) = 0.25;
end
end

Finaly, we plot the two vectors (using a solid black curve).

» plot(x,F,”-k”)

0.9+

0.8

0.7r

0.6

0.51

041

0.31

0.2r

0.1r-

As a second example, we would like to write a subroutine that takes as input a square matrix and
returns itsinverse (if it exists). The m-file below (chk_1nv._m) will perform this task for us, and
make use of the “if” statement. If the matrix is not square or if it does not have an inverse, the
subroutine should print a message letting us know and it will terminate without computing
anything. We will also make use of comments within the m-file to make it more readable.

function [Ainv] = chk_inv(A)

% [Ai nv] = chk_inv(A)
% Cal cul ate the inverse of a matrix A
%if it exists.

[mn] = size(A); %conpute the size of the matrix A
if m=n %check if Ais square

disp(’ Matrix is not square.’);

break % quit the function
el seif det(A) == % check if A is singular

di sp(’ Matrix is singular.’);

35

break % quit the function
el se

Ainv = inv(A); %conpute the inverse
end

% End of function

Here is a sample run of the above program with arandom 3-by-3 matrix.

» A=rand(3, 3)

A =
0. 0475 0. 6326 0. 3653
0. 7361 0. 7564 0. 2470
0. 3282 0. 9910 0. 9826
» chk_i nv(A)
ans =
-2.4101 1. 2551 0. 5806
3. 1053 0. 3544 -1. 2437
-2.3270 -0. 7767 2.0783

It isleft to the reader to see what answers other input matrices will produce.

In the above m-file, we used two “new” commands: di sp and br eak. As you can imagine,

br eak simply causes the current operation to stop (exit the program in this case). The command
di sp takes as input text enclosed within single quotes and displays it on the screen. See hel p
di sp for more information of this and other text displaying commands.

As a final example, let us write an m-file called f act . mthat gives the factorial of a positive
number n= 1234 . . . (n— 1)[M, using the recursive formula n! = n (n—1). This example will
not only illustrate the use of the “if” statement, but that of a recursive function as well.

function [N] = fact(n)

%[N = fact(n)
% Cal cul ate n factori al

% End of function

36

Exercises

1. Modify the m-filel 0g3. mfrom Section 3.1, by removing the absolute value within the
logarithms (that was used for “safety”). Your function should now check to see if the input is
negative or zero, print out a message saying so, and then terminate. If the input is positive
then your function should proceed to calculate the logarithm base 3 of the input.

2. Write a function m-file called di v5. mthat takes as input a real number and checks to see if it
is divisible by 5. An appropriate message indicating the result should be the output.

4. ADDITIONAL TOPICS
4.1 Polynomialsin MATLAB

Even though MATLAB is a numerical package, it has capabilities for handling polynomials. In
MATLAB, a polynomial is represented by a vector containing its coefficients in descending order.
For instance, the following polynomial

p(x) =X —3x+5

is represented by the vectorp = [1, -3, 5] and the polynomial
qix) =x* + ¢ -x

is represented byg = [1, O, 7, -1, 0] .

MATLAB can interpret any vector of length n + 1 as an nth order polynomial. Thus, if your
polynomial is missing any coefficients, you must enter zeros in the appropriate place(s) in the
vector, as done above.

You can find the value of a polynomial using the pol yval command. For example, to find the
value of the polynomial g above at x =-1, you type

» pol yval (q, -1)

ans =
7

Finding the roots of a polynomial is as easy as entering the following command.
» roots(q)
ans =

0
0.0712 + 2.6486i

37

0.0712 - 2. 6486i
-0. 1424

Note that MATLAB can handle complex numbers as well, withi =sqrt (- 1) . Thisisreflected
in the four roots above, two of which are complex.

Suppose you want to multiply two polynomials together. Their product is found by taking the
convolution of their coefficients. MATLAB’s command conv will do this for you. For example,
if S(x) = x + 2 and t(x) = x* + 4x + 8 then

Z(x) = S(X) t(x) = X° + 6X° + 16X + 16.

In MATLAB, we type

»s =[1 2];
»t =[14 8],
» z = conv(s,t)
Z =
1 6 16 16

Dividing two polynomialsisjust aseasy. Thedeconv function will return the remainder as well
as the result. Let’s divide zby t and see if we get s.

» [s,r] = deconv(z,t)

S =

0 0 0 0

Asyou can see, we get (as expected) the polynomial/vector s from before. If sdid not divide z
exactly, the remainder vector r, would have been something other than zero.

MATLAB can obtain derivatives of polynomials very easily. The command pol yder
takes asinput the coefficient vector of a polynomia and returns the vector of coefficients for its
derivative. For example, with p(x) = x* -3x + 5, as before

» pol yder (p)

ans =
2 -3

What do you think (in terms of Calculus) the combination of commands
pol yval (pol yder (p), 1) give? How about r oot s(pol yder (p)) ?

38

Exercises

1. Write afunction m-file called pol yadd. mthat adds two polynomials (of not necessarily the
same degree). The input should be the two vectors of coefficients and the output should be a
new vector of coefficients representing their sum.

2. Find the maxima and minima (if any) of the polynomial function f(x) = x> — x* =3x. Plot the
function and the maxima and minima (if any) using a ‘0’ for each minimum and a “*” for each
maximum.

4.2 Numerical Methods

In this section we mention some useful commands that are used in approximating various
quantities of interest.

We already saw that MATLAB can find the roots of a polynomial. Suppose we are interested in
finding the root(s) of a general non-linear function. This can be done in MATLAB through the
command f zer o, which is used to approximate the root of a function of one variable, given an
initial guess. We must first create an m-file that describes the function we are interested in, and
then invoke the f zer o command with the name of that function and an initial guess as input.
Consider finding the root(s) of f(x) = & — x>. We create the m-file called ef f . mas seen below.

function [F] = eff(x)
%[F] = eff(x)

F = exp(x) - x.”"2;

% End of function

A plot of the function can prove to be very useful when choosing a good initial guess, since it
gives as an idea as to where the root(s) lie.

» X=-3:.01:3; plot(x,eff(x)); grid

T
|
|
|
-
|
|
|
-
|
|
|
|

39
We see from the above plot that there is one root between x = -1 and x = 0. Hence, we choose
as an initial guess — 0.5 and we type
» fzero("eff",-0.5)
ans =

-0.7035

Note that the name of the function appears within single quotes as input to the function. In
addition, don’t forget that this is a four-digit approximation to the root. This is seen from

» efF(-0.7035)
ans =

-6.1957e-005

which is not (quite) zero. Of course, the number of digits beyond the decimal point that are
passed as input play an important role. See what happens when we change the format.

» Format long
» fzero("eff",-0.5)

ans =
-0.70346742249839
» efF(-0.70346742249839) % eff(ans) also works

ans =
0

As expected, a more accurate approximation gave much better results.
When afunction has more than one root, the value of the initial guess can be changed in order to
obtain approximations to additional roots.

Another useful command is fmin, which worksin a similar way as the fzero command, but
finds the minimum of a function. The command fmin requires as input the name of the function
(within single quotes) and an interval over which the minimization will take place.
For example, the MATLAB demo function

g(x) = 2/((x-0.3)* +0.01) + 1/((x—0.9)* + 0.04) - 6

is (already) in a file called hunps. mand its graph is seen below.

100

I I) I I I
| | J'\ | | |
| | I | | |
I I A I I
80k — — — — — [ER Lo 4 R
	[l			
		“		
	[
60F — — — — — F---== e e e 4--— - B				
	[1			
	[
		(I		
40 - - - -~ [T T T T T T T AT				
	{			
v L				
	L			
	/ \\\			
20 T T T VAR 1				
1/ N/ N				
1/ o [N				
I)4 I [N I				
1		.		
0 I		—a		
—				
20 I I I I I
1 05 0 0.5 1 15 2

We see that there is a minimum between x = 0.5 and x = 1. So we type,
» fmin("humps®,0.5,1)
ans =

0.63701067459059

to get the minimum. The minimum value of g is obtained by
» humps(ans)
ans =

11.25275412656430

When multiple minima are present, the endpoints of the interval given as input can be changed in
order to obtain the rest of the minima.

How do you think you can find the maximum of a function instead of the minimum?
Asafina command in this section, we mention quad which approximates the value of a definite

integral. Once again, the function we wish to integrate must be saved in afile and the name,
along with the limits of integration must be passed as input to the command quad.

Consider integrating f(X) = € — X over the interval x=0to 1. Since we already have this function
in the file ef f . m we simply type

» quad("eff",0,1)

41

ans =

1. 38495082136656

How about the integral of sin(x) over 0 to .. We know the answer in this case, and it should be
2. MATLAB knows the function sin, so without creating any m-file for it, we type

» quad("sin®,0,pi1)
ans =

2.00001659104794

The answer we got is close to 2 since after al it is only an approximation. We can get a closer
approximation if we use the command quad8 instead.

» quad8(“sin~,0,pl)
ans =

1.99999999999989

The command quad8 uses a more accurate technique than that used in quad, hence the better
approximation. An even “closer” approximation can be obtained if we pass as input to the
command the tolerance we wish to have, i.e. the acceptable error in the approximation. For
example, if we wish the error to be less than 10™°, we type

» quad8("sin®,0,pi,1le-10)

ans =
2

and we get the answer exactly. The tolerance was passed in scientific notation above asthe
fourth input value.

42

5. CLOSING REMARKS AND REFERENCES

It isour hope that by reading this guide you formed a general idea of the capabilities of
MATLAB, while obtaining a working knowledge of the program. Certain advantages but also
limitations of MATLAB could also be seen through this tutorial, and it is left to the reader to
decide when and if to use this program.

There are numerous other commands and specialized functions and toolboxes that may be of
interest to you. For example, MATLAB’s Symbolic Toolbox includes a “piece” of MAPLE"
(www.maplesoft.com), so that symbolic manipulations can be performed.

A good source of information related to MATLAB, the creator company THE MATHWORKS INC
and their other products is their Web Page at www.mathworks.com. It is strongly recommended
that you visit this web page to see what other publications (if any) exist that will allow you to
enhance your knowledge of MATLAB. Some are more advanced than others so do not hesitate
to talk to your professor for guidance through the (rather) long list.

Hope you enjoyed reading this guide and ... keep computing ©

MATLAB Suppport

o http://www.mathworks.com/support/

The above web page includes a link to MATLAB based books. See also

* http://www.mathworks.com/support/books/index.jsp

