
ibm.com/redbooks

Introduction to Grid
Computing

Bart Jacob
Michael Brown
Kentaro Fukui
Nihar Trivedi

Learn grid computing basics

Understand architectural
considerations

Create and demonstrate
a grid environment

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Introduction to Grid Computing

December 2005

International Technical Support Organization

SG24-6778-00

© Copyright International Business Machines Corporation 2005. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (December 2005)

Note: Before using this information, read the information in “Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this redbook. xi
Become a published author . xiii
Comments welcome. xiii

Part 1. Grid fundamentals . 1

Chapter 1. What grid Computing is . 3

Chapter 2. Benefits of grid computing . 7
2.1 Exploiting under utilized resources . 8
2.2 Parallel CPU capacity . 9
2.3 Virtual resources and virtual organizations for collaboration. 10
2.4 Access to additional resources . 11
2.5 Resource balancing. 12
2.6 Reliability . 14
2.7 Management . 15
2.8 Summary . 17

Chapter 3. Grid terms and concepts . 19
3.1 Types of resources . 20

3.1.1 Computation . 20
3.1.2 Storage . 20
3.1.3 Communications . 22
3.1.4 Software and licenses . 22
3.1.5 Special equipment, capacities, architectures, and policies 23

3.2 Jobs and applications . 23
3.3 Scheduling, reservation, and scavenging . 24
3.4 Grid software components . 26

3.4.1 Management components. 26
3.4.2 Distributed grid management . 26
3.4.3 Donor software . 27
3.4.4 Submission software . 28
3.4.5 Schedulers . 28
3.4.6 Communications . 29
3.4.7 Observation and measurement. 29
© Copyright IBM Corp. 2005. All rights reserved. iii

3.5 Intragrid and intergrid . 30
3.6 Summary . 32

Chapter 4. Grid user roles . 33
4.1 Using a grid: A user’s perspective. 34

4.1.1 Enrolling and installing grid software. 34
4.1.2 Logging onto the grid . 34
4.1.3 Queries and submitting jobs . 35
4.1.4 Data configuration . 36
4.1.5 Monitoring progress and recovery. 36
4.1.6 Reserving resources . 37

4.2 Using a grid: An administrator’s perspective . 38
4.2.1 Planning . 38
4.2.2 Installation . 39
4.2.3 Managing enrollment of donors and users . 39
4.2.4 Certificate authority . 40
4.2.5 Resource management. 41
4.2.6 Data sharing . 41

4.3 Summary . 42

Part 2. Grid architecture considerations. 43

Chapter 5. Standards for grid environments . 45
5.1 Overview . 46

5.1.1 OGSA . 46
5.1.2 OGSI . 47
5.1.3 OGSA-DAI. 47
5.1.4 GridFTP. 48
5.1.5 WSRF . 48
5.1.6 Web services related standards . 49

Chapter 6. Application considerations . 51
6.1 General application considerations . 52
6.2 CPU-intensive application considerations . 53
6.3 Data considerations. 59
6.4 Summary . 62

Chapter 7. Security . 63
7.1 Introduction to grid security . 64

7.1.1 Grid security requirements . 64
7.1.2 Security fundamentals. 67
7.1.3 Important grid security terms. 68
7.1.4 Symmetric key encryption . 69
7.1.5 Asymmetric key encryption . 70
iv Introduction to Grid Computing

7.1.6 The Certificate Authority . 71
7.1.7 Digital certificates . 73

7.2 Grid security infrastructure . 76
7.2.1 Getting access to the grid . 76
7.2.2 Grid secure communication . 82
7.2.3 Grid security step-by-step . 84

7.3 Grid infrastructure security . 88
7.3.1 Physical security . 88
7.3.2 Operating system security. 88
7.3.3 Grid and firewalls . 89
7.3.4 Host intrusion detection. 89

7.4 PKI security policies and procedures . 90
7.4.1 Certificate Authority . 90
7.4.2 Security controls review . 92

7.5 Summary . 93

Chapter 8. Design . 95
8.1 Building a grid architecture . 96

8.1.1 Solution objectives . 97
8.2 Grid architecture models . 101

8.2.1 Computational grid . 101
8.2.2 Data grid . 102

8.3 Grid topologies . 103
8.3.1 Intragrid . 104
8.3.2 Extragrid . 105
8.3.3 Intergrid . 106
8.3.4 e-Utilities . 107

8.4 Phases and activities. 108
8.4.1 Basic methodology . 108
8.4.2 Recommended steps . 109

8.5 A conceptual architecture . 111
8.5.1 Infrastructure . 111

8.6 Summary . 113

Chapter 9. Web services resource framework . 115
9.1 Resource state management using Grid services. 117

9.1.1 What a Grid service is . 117
9.1.2 Grid services vs. Web services . 118
9.1.3 OGSA Grid service requirements . 119
9.1.4 Open Grid Services Interface (OGSI) Grid services 120
9.1.5 OGSI to WSRF refactoring . 122

9.2 WSRF fundamentals . 124
9.2.1 What a WS-Resource is . 124
 Contents v

9.2.2 Implied resource pattern for stateful resources. 126
9.3 WS-Resource Framework specifications . 130

9.3.1 WS-Resource Framework and Globus Toolkit 4 135
9.4 WSRF references . 137
9.5 Summary . 137

Part 3. Creating a grid environment with the Globus Toolkit 4 . 139

Chapter 10. Globus Toolkit 4 components . 141
10.1 Overview of Globus Toolkit 4 . 142
10.2 Common runtime components . 143

10.2.1 Java WS Core . 143
10.2.2 C WS Core . 144
10.2.3 Python WS Core . 144

10.3 Security components. 145
10.3.1 WS authentication and authorization . 145
10.3.2 Pre-WS authentication and authorization 145
10.3.3 Community Authorization Service (CAS) 145
10.3.4 Delegation service. 145
10.3.5 SimpleCA . 146
10.3.6 MyProxy . 146
10.3.7 GSI-OpenSSH. 146

10.4 Data management components . 147
10.4.1 GridFTP. 147
10.4.2 Reliable File Transfer (RFT) . 148
10.4.3 Replica Location Service (RLS) . 148
10.4.4 OGSA-DAI. 149
10.4.5 Data Replication Service (DRS) . 149

10.5 Monitoring and Discovery Services . 149
10.5.1 Index service . 149
10.5.2 Trigger service . 150
10.5.3 Aggregator Framework . 151
10.5.4 WebMDS. 152

10.6 Execution management. 152
10.6.1 WS GRAM. 152
10.6.2 Community Scheduler Framework 4 (CSF4) 153
10.6.3 Globus Teleoperations Control Protocol (GTCP) 154
10.6.4 Workspace Management Service (WMS) 154

10.7 Summary . 154

Chapter 11. Globus Toolkit 4 installation and configuration. 155
11.1 How to obtain Globus Toolkit 4 . 156
11.2 Packages of Globus Toolkit 4 . 156

11.2.1 Binary packages . 157
vi Introduction to Grid Computing

11.2.2 Source packages . 158
11.3 Grid environment. 158
11.4 Installation . 160

11.4.1 Installing required software for Globus Toolkit 4 installation 160
11.4.2 Preparing the OS for Globus Toolkit 4 installation 163
11.4.3 Installing Globus Toolkit 4 . 165

11.5 Configuration and testing of grid environment. 167
11.5.1 Configuring environmental variables. 168
11.5.2 Security set up . 168
11.5.3 Configuration of Java WS Core. 174
11.5.4 Configuration and testing of GridFTP . 177
11.5.5 Configuration and testing of RFT . 180
11.5.6 Configuration and testing of WS GRAM . 185
11.5.7 Testing of MDS4 . 191

11.6 Uninstallation. 192
11.7 Summary . 193

Part 4. Grid demonstration application. 195

Chapter 12. Demonstration application . 197
12.1 RenderClient . 200

12.1.1 The Graphical User Interface (GUI) . 200
12.1.2 RenderClient source code. 209

12.2 RenderWorker . 211
12.3 RenderSourceService . 212

12.3.1 Alternative architecture . 213
12.4 DirectoryTree of important files in demo . 213

Part 5. Appendixes . 221

Appendix A. IBM software portfolio for grid computing 223
IBM Application Workload Modeler . 224
IBM Cloudscape/Apache Derby . 224
DB2 Connect Family . 224
DB2 Everyplace Family . 224
DB2 Universal Database Family . 224
Mathematical Acceleration Subsystem (MASS). 224
Rational Application Developer for WebSphere Software 225
IBM Tivoli Access Manager Family . 225
IBM Tivoli Configuration Manager . 225
IBM Tivoli Enterprise Console . 225
IBM Tivoli Intelligent Orchestrator . 226
IBM Tivoli License Manager . 226
The IBM Tivoli Management Framework . 226
 Contents vii

IBM Tivoli Monitoring for Virtual Servers . 226
IBM Tivoli OMEGAMON XE Family . 227
IBM Tivoli Provisioning Manager . 227
IBM Tivoli System Automation for Multiplatforms. 227
IBM Tivoli Universal Agent . 227
WebSphere Application Server . 228
WebSphere Application Server Network Deployment 228
WebSphere Extended Deployment . 228
IBM WebSphere MQ . 228
WebSphere Studio Application Monitor . 229
IBM Director . 229
IBM Remote Deployment Manager . 229
IBM ServerGuide . 229
IBM Virtual Machine Manager . 229
Cluster Systems Management . 230
Parallel ESSL . 230
LoadLeveler . 230
General Parallel File System . 230

Appendix B. Additional material . 231
Locating the Web material . 231
Using the Web material . 232

System requirements for downloading the Web material 232
How to use the Web material . 232

Related publications . 235
IBM Redbooks . 235
Other publications . 235
Online resources . 237
How to get IBM Redbooks . 238
Help from IBM . 239

Index . 241
viii Introduction to Grid Computing

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2005. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AFS®
AIX 5L™
AIX®
Cloudscape™
DB2 Connect™
DB2 Universal Database™
DB2®
developerWorks®
DFS™
Domino®
Eserver®
eServer™

Everyplace®
ibm.com®
IBM®
iSeries™
LoadLeveler®
Lotus®
OMEGAMON®
Perform™
pSeries®
Rational®
Redbooks (logo) ™
Redbooks™

RS/6000®
ServerGuide™
Summit®
Tivoli Enterprise Console®
Tivoli Enterprise™
Tivoli®
WebSphere®
World Community Grid™
xSeries®
zSeries®

The following terms are trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.
x Introduction to Grid Computing

Preface

In the past several years, grid computing has emerged as a way to harness and
take advantage of computing resources across geographies and organizations.
In this IBM Redbook, we describe a generalized view of grid computing including
concepts, standards, and ways in which grid computing can provide business
value to your organization. In a nutshell, grid computing is all about virtualization
that enables businesses to take advantage of a variety of IT resources in order to
be more responsive to demands of the business and increase availability of
applications while reducing both infrastructure and management costs.

There are many products and toolkits available from IBM and other companies
that enable different aspects of grid computing. One of the most well known
toolkits is the Globus Toolkit. Globus Toolkit 4 provides components and
services conforming to existing and evolving standards that can be used as the
basis for a grid computing solution. In the second half of this book we provide
instructions for installing and configuring a simple Globus environment that can
be used to demonstrate various aspects of grid computing and to build a
proof-of-concept environment. We also describe, and provide as additional
material, a sample grid application that can be used to demonstrate, test, and
instruct about the grid computing concepts introduced in this book.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Bart Jacob is a Senior Consulting IT Specialist at IBM Corp - International
Technical Support Organization, Austin Center. He has over 25 years of
experience providing technical support across a variety of IBM products and
technologies, including communications, object-oriented software development,
and systems management. He has over 14 years of experience at the ITSO,
where he has been writing IBM Redbooks™ and creating and teaching
workshops around the world on a variety of topics. He holds a Masters degree in
Numerical Analysis from Syracuse University.

Michael Brown is the Technical Project Leader for the Americas and Asia
Pacific sites of IBM's Linux® Integration Center, headquartered in Austin, Texas.
He leads teams that perform technical support for customers who are evaluating
IBM software running on Linux platforms. He is a certified Java™ Programmer,
Developer, and Architect and has worked on several previous IBM grid redbooks
© Copyright IBM Corp. 2005. All rights reserved. xi

and presented on grid computing at the Colorado Software Summit®. He holds
HBSc and MSc degrees in Computer Science from the University of Western
Ontario, Canada.

Kentaro Fukui is an IT Specialist for IBM and a Red Hat Certified Engineer
working in IBM Global Services, Japan. He has more than two years of
experience with grid technologies as well as more than eight years of experience
with UNIX®-like operating systems, Windows® servers, and Lotus® Domino®
servers. He holds a MSc Degree in Information and Computer Science from Keio
University, Japan. Currently, he is also working as a PhD candidate student at
Keio University. He received the IEEE Computer Society Best Paper Award in
2004.

Nihar Trivedi is a Consultant and a IBM Grid Technical Sales certified
professional working for IBM Business Consulting Services in Australia. Nihar
has more than eight years of experience in delivering complex e-business
applications in Financial Services, Utility, Government, and Telecommunication
industries. Nihar is a PhD student affiliated with the University of Sydney and
National ICT Australia. Nihar's main research interests include self-adaptive
middleware systems and grid computing.

Thanks to the following people for their contributions to this project:

Sean Slevin

Suguru Hamazaki
System Design Center - West, Business Infrastructure Solution, IBM Japan
Systems Engineering

Julie Czubik
International Technical Support Organization, Poughkeepsie Center

The team that created a predecessor redbook (Introduction to Grid Computing
with Globus, SG24-6895) from which we have reused a wide range of material:

Luis Ferreira
Viktors Berstis
Jonathan Armstrong
Mike Kendzierski
Andreas Neukoetter
Masanobu Takagi
Richard Bing-Wo
Adeeb Amir
Ryo Murakawa
Olegario Hernandez
James Magowan
xii Introduction to Grid Computing

Norbert Bieberstein

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM® Corporation, International Technical Support Organization
Dept. JN9B Building 905
11501 Burnet Road
Austin, Texas 78758-3493
 Preface xiii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xiv Introduction to Grid Computing

Part 1 Grid
fundamentals

Part 1
© Copyright IBM Corp. 2005. All rights reserved. 1

2 Introduction to Grid Computing

Chapter 1. What grid Computing is

Grid computing can mean different things to different individuals. The grand
vision is often presented as an analogy to power grids where users (or electrical
appliances) get access to electricity through wall sockets with no care or
consideration for where or how the electricity is actually generated. In this view of
grid computing, computing becomes pervasive and individual users (or client
applications) gain access to computing resources (processors, storage, data,
applications, and so on) as needed with little or no knowledge of where those
resources are located or what the underlying technologies, hardware, operating
system, and so on are.

Though this vision of grid computing can capture one’s imagination and may
indeed someday become a reality, there are many technical, business, political,
and social issues that need to be addressed. If we consider this vision as an
ultimate goal, there are many smaller steps that need to be taken to achieve it.
These smaller steps each have benefits of their own.

Therefore, grid computing can be seen as a journey along a path of integrating
various technologies and solutions that move us closer to the final goal. Its key
values are in the underlying distributed computing infrastructure technologies
that are evolving in support of cross-organizational application and resource
sharing—in a word, virtualization—virtualization across technologies, platforms,
and organizations. This kind of virtualization is only achievable through the use of
open standards. Open standards help ensure that applications can transparently
take advantage of whatever appropriate resources can be made available to

1

© Copyright IBM Corp. 2005. All rights reserved. 3

them. An environment that provides the ability to share and transparently access
resources across a distributed and heterogeneous environment not only requires
the technology to virtualize certain resources, but also technologies and
standards in the areas of scheduling, security, accounting, systems
management, and so on.

Grid computing could be defined as any of a variety of levels of virtualization
along a continuum. Exactly where along that continuum one might say that a
particular solution is an implementation of grid computing versus a relatively
simple implementation using virtual resources is a matter of opinion. But even at
the simplest levels of virtualization, one could say that grid-enabling technologies
are being utilized.

This continuum is illustrated in Figure 1-1 on page 5. Starting in the lower left you
see single system partitioning. Virtualization starts with being able to carve up a
machine into virtual machines. As you move up this spectrum you start to be able
to virtualize similar or homogeneous resources. Virtualization applies not only to
servers and CPUs, but to storage, networks, and even applications. As you move
up this spectrum you start to virtualize unlike resources. The next step is
virtualizing the enterprise, not just in a data center or within a department but
across a distributed organization, and then, finally, virtualizing outside the
enterprise, across the Internet, where you might actually access resources from
a set of OEMs and their suppliers or you might integrate information across a
network of collaborators.
4 Introduction to Grid Computing

Figure 1-1 Virtualization continuum

Early implementations of grid computing have tended to be internal to a
particular company or organization. However, cross-organizational grids are also
being implemented and will be an important part of computing and business
optimization in the future.

The distinctions between intraorganizational grids and interorganizational grids
are not based in technological differences. Instead, they are based on
configuration choices given: Security domains, degrees of isolation desired, type
of policies and their scope, and contractual obligations between users and
providers of the infrastructures. These issues are not fundamentally architectural
in nature. It is in the industry’s best interest to ensure that there is not an artificial
split of distributed computing paradigms and models across organizational
boundaries and internal IT infrastructures.

Grid computing involves an evolving set of open standards for Web services and
interfaces that make services, or computing resources, available over the
Internet.

Very often grid technologies are used on homogeneous clusters, and they can
add value on those clusters by assisting, for example, with scheduling or
provisioning of the resources in the cluster. The term grid, and its related
technologies, applies across this entire spectrum.
 Chapter 1. What grid Computing is 5

If we focus our attention on distributed computing solutions, then we could
consider one definition of grid computing to be distributed computing across
virtualized resources. The goal is to create the illusion of a simple yet large and
powerful virtual computer out of a collection of connected (and possibly
heterogeneous) systems sharing various combinations of resources.
6 Introduction to Grid Computing

Chapter 2. Benefits of grid computing

When you deploy a grid, it will be to meet a set of business requirements. To
better match grid computing capabilities to those requirements, it is useful to
keep in mind some common motivations for using grid computing.

2

© Copyright IBM Corp. 2005. All rights reserved. 7

2.1 Exploiting under utilized resources
One of the basic uses of grid computing is to run an existing application on a
different machine. The machine on which the application is normally run might be
unusually busy due to a peak in activity. The job in question could be run on an
idle machine elsewhere on the grid.

There are at least two prerequisites for this scenario. First, the application must
be executable remotely and without undue overhead. Second, the remote
machine must meet any special hardware, software, or resource requirements
imposed by the application. For example, a batch job that spends a significant
amount of time processing a set of input data to produce an output data set is
perhaps the most ideal and simple use case for a grid. If the quantities of input
and output are large, more thought and planning might be required to efficiently
use the grid for such a job. It would usually not make sense to use a word
processor remotely on a grid because there would probably be greater delays
and more potential points of failure.

In most organizations, there are large amounts of under utilized computing
resources. Most desktop machines are busy less than 5 percent of the time over
a business day. In some organizations, even the server machines can often be
relatively idle. Grid computing provides a framework for exploiting these under
utilized resources and thus has the possibility of substantially increasing the
efficiency of resource usage.

The processing resources are not the only ones that may be under utilized.
Often, machines may have enormous unused disk drive capacity. Grid
computing (more specifically, a data grid) can be used to aggregate this unused
storage into a much larger virtual data store, possibly configured to achieve
improved performance and reliability over that of any single machine.

If a batch job needs to read a large amount of data, this data could be
automatically replicated at various strategic points in the grid. Thus, if the job
must be executed on a remote machine in the grid, the data is already there and
does not need to be moved to that remote point. This offers clear performance
benefits. Also, such copies of data can be used as backups when the primary
copies are damaged or unavailable.

Another benefit of a grid is to better balance resource utilization. An organization
may have occasional unexpected peaks of activity that demand more resources.
If the applications are grid-enabled, they can be moved to under utilized
machines during such peaks. In fact, some grid implementations can migrate
partially completed jobs. In general, a grid can provide a consistent way to
balance the loads on a wider federation of resources. This applies to CPU,
storage, and any other types of resources that may be available on a grid.
8 Introduction to Grid Computing

2.2 Parallel CPU capacity
The potential for massive parallel CPU capacity is one of the most common
visions and attractive features of a grid. In addition to pure scientific needs, such
computing power is driving a new evolution in industries such as the bio-medical
field, financial modeling, oil exploration, motion picture animation, and many
others.

The common attribute among such uses is that the applications have been
written to use algorithms that can be partitioned into independently running parts.
A CPU-intensive grid application can be thought of as many smaller subjobs,
each executing on a different machine in the grid. To the extent that these
subjobs do not need to communicate with each other, the more scalable the
application becomes. A perfectly scalable application will, for example, finish in
one tenth of the time if it uses ten times the number of processors.

Barriers often exist to perfect scalability. The first barrier depends on the
algorithms used for splitting the application among many CPUs. If the algorithm
can only be split into a limited number of independently running parts, then that
forms a scalability barrier. The second barrier appears if the parts are not
completely independent; this can cause contention, which can limit scalability.
For example, if all of the subjobs need to read and write from one common file or
database, the access limits of that file or database will become the limiting factor
in the application’s scalability. Other sources of inter-job contention in a parallel
grid application include message communications latencies among the jobs,
network communication capacities, synchronization protocols, input-output
bandwidth to storage or other devices, and other delays interfering with real-time
requirements.

There are many factors to consider in grid-enabling an application. One must
understand that not all applications can be transformed to run in parallel on a grid
and achieve scalability. Furthermore, there are no practical tools for transforming
arbitrary applications to exploit the parallel capabilities of a grid. There are some
practical tools that skilled application designers can use to write a parallel grid
application. However, automatic transformation of applications is a science in its
infancy. This can be a difficult job and often requires mathematics and
programming talents, if it is even possible in a given situation. New
computation-intensive applications written today are being designed for parallel
execution, and these will be easily grid-enabled, if they do not already follow
emerging grid protocols and standards.
 Chapter 2. Benefits of grid computing 9

2.3 Virtual resources and virtual organizations for
collaboration

Another capability enabled by grid computing is to provide an environment for
collaboration among a wider audience. In the past, distributed computing
promised this collaboration and achieved it to some extent. Grid computing can
take these capabilities to an even wider audience, while offering important
standards that enable very heterogeneous systems to work together to form the
image of a large virtual computing system offering a variety of resources, as
illustrated in Figure 2-1 on page 11. The users of the grid can be organized
dynamically into a number of virtual organizations, each with different policy
requirements. These virtual organizations can share their resources collectively
as a larger grid.

Sharing starts with data in the form of files or databases. A data grid can expand
data capabilities in several ways. First, files or databases can span many
systems and thus have larger capacities than on any single system. Such
spanning can improve data transfer rates through the use of striping techniques.
Data can be duplicated throughout the grid to serve as a backup and can be
hosted on or near the machines most likely to need the data, in conjunction with
advanced scheduling techniques.

Sharing is not limited to files, but also includes other resources, such as
specialized devices, software, services, licenses, and so on. These resources
are virtualized to give them a more uniform interoperability among
heterogeneous grid participants.

The participants and users of the grid can be members of several real and virtual
organizations. The grid can help in enforcing security rules among them and
implement policies, which can resolve priorities for both resources and users.
10 Introduction to Grid Computing

Figure 2-1 The grid virtualizes heterogeneous, geographically disperse resources

2.4 Access to additional resources
As already stated, in addition to CPU and storage resources, a grid can provide
access to other resources as well. The additional resources can be provided in
additional numbers and/or capacity. For example, if a user needs to increase
their total bandwidth to the Internet to implement a data mining search engine,
the work can be split among grid machines that have independent connections to
the Internet. In this way, total searching capability is multiplied, since each
machine has a separate connection to the Internet. If the machines had shared
the connection to the Internet, there would not have been an effective increase in
bandwidth.

Some machines may have expensive licensed software installed that users
require. Users’ jobs can be sent to such machines, more fully exploiting the
software licenses.
 Chapter 2. Benefits of grid computing 11

Some machines on the grid may have special devices. Most of us have used
remote printers, perhaps with advanced color capabilities or faster speeds.
Similarly, a grid can be used to make use of other special equipment. For
example, a machine may have a high speed, self-feeding DVD writer that could
be used to publish a quantity of data faster. Some machines on the grid may be
connected to scanning electron microscopes that can be operated remotely. In
this case, scheduling and reservation are important. A specimen could be sent in
advance to the facility hosting the microscope. Then the user can remotely
operate the machine, changing perspective views until the desired image is
captured.

The grid can enable more elaborate access, potentially to remote medical
diagnostic and robotic surgery tools with two-way interaction from a distance.
The variations are limited only by one’s imagination. Today, we have remote
device drivers for printers. Eventually, we will see standards for grid-enabled
device drivers to many unusual devices and resources. All of these will make the
grid look like a large system with a collection of resources beyond what would be
available on just one conventional machine.

2.5 Resource balancing
A grid federates a large number of resources contributed by individual machines
into a large single-system image. For applications that are grid-enabled, the grid
can offer a resource balancing effect by scheduling grid jobs on machines with
low utilization, as illustrated in Figure 2-2 on page 13. This feature can prove
invaluable for handling occasional peak loads of activity in parts of a larger
organization. This can happen in two ways:

� An unexpected peak can be routed to relatively idle machines in the grid.

� If the grid is already fully utilized, the lowest priority work being performed on
the grid can be temporarily suspended or even cancelled and performed
again later to make room for the higher priority work.

Without a grid infrastructure, such balancing decisions are difficult to prioritize
and execute.

Occasionally, a project may suddenly rise in importance with a specific deadline.
A grid cannot perform a miracle and achieve a deadline when it is already too
close. However, if the size of the job is known, if it is a kind of job that can be
sufficiently split into subjobs, and if enough resources are available after
preempting lower priority work, a grid can bring a very large amount of
processing power to solve the problem.
12 Introduction to Grid Computing

Figure 2-2 Jobs are migrated to less busy parts of the grid to balance loads

Other more subtle benefits can occur using a grid for load balancing. When jobs
communicate with each other, the Internet, or with storage resources, an
advanced scheduler could schedule them to minimize communications traffic or
minimize the distance of the communications. This can potentially reduce
communication and other forms of contention in the grid.

Finally, a grid provides excellent infrastructure for brokering resources. Individual
resources can be profiled to determine their availability and their capacity, and
this can be factored into scheduling on the grid. Depending on the accounting
facilities in place, different organizations participating in the grid can build up grid
credits and use them at times when they need additional resources. This can
form the basis for grid accounting and the ability to more fairly distribute work
(and cost) on the grid.
 Chapter 2. Benefits of grid computing 13

2.6 Reliability
High-end conventional computing systems use expensive hardware to increase
reliability. They are built using chips with redundant circuits that vote on results,
and contain logic to achieve graceful recovery from an assortment of hardware
failures. The machines also use duplicate processors with hot pluggability so that
when they fail, one can be replaced without turning the other off. Power supplies
and cooling systems are duplicated. The systems are operated on special power
sources that can start generators if utility power is interrupted. All of this builds a
reliable system, but at a great cost, due to the duplication of expensive
components.

In the future, we will see a complementary approach to reliability that relies on
software and hardware. A grid is just the beginning of such technology. The
systems in a grid can be relatively inexpensive and geographically dispersed.
Thus, if there is a power or other kind of failure at one location, the other parts of
the grid are not likely to be affected. Grid management software can
automatically resubmit jobs to other machines on the grid when a failure is
detected. In critical, real-time situations, multiple copies of important jobs can be
run on different machines throughout the grid, as illustrated in Figure 2-3 on
page 15. Their results can be checked for any kind of inconsistency, such as
computer failures, data corruption, or tampering.
14 Introduction to Grid Computing

Figure 2-3 Redundant grid configuration

Such grid systems will utilize autonomic computing. This is a type of software
that automatically heals problems in the grid, perhaps even before an operator or
manager is aware of them. In principle, most of the reliability attributes achieved
using hardware in today’s high availability systems can be achieved using
software in a grid setting in the future.

2.7 Management
The goal to virtualize the resources on the grid and more uniformly handle
heterogeneous systems will create new opportunities to better manage a larger,
more distributed IT infrastructure. It will be easier to visualize capacity and
utilization, making it easier for IT departments to control expenditures for
computing resources over a larger organization.

The grid offers management of priorities among different projects. In the past,
each project may have been responsible for its own IT resources and the
associated expenses. Often these resources might be under utilized while

Job x

Job x

Job x
 Chapter 2. Benefits of grid computing 15

another project finds itself in trouble, needing more resources due to unexpected
events. With the larger view a grid can offer, it becomes easier to control and
manage such situations. As illustrated in Figure 2-4, administrators can change
any number of policies that affect how the different organizations might share or
compete for resources.

Aggregating utilization data over a larger set of projects can enhance an
organization’s ability to project future upgrade needs. When maintenance is
required, grid work can be rerouted to other machines without crippling the
projects involved.

Autonomic computing can come into play here too. Various tools may be able to
identify important trends throughout the grid, informing management of those
that require attention.

Figure 2-4 Administrators can adjust policies to better allocate resources
16 Introduction to Grid Computing

2.8 Summary
Grid computing enables organizations (real and virtual) to take advantage of
various computing resources in ways not previously possible. They can take
advantage of under utilized resources to meet business requirements while
minimizing additional costs. The nature of a computing grid allows organizations
to take advantage of parallel processing, making many applications financially
feasible as well as allowing them to complete sooner.

Grid computing makes more resources available to more people and
organizations while allowing those responsible for the IT infrastructure to
enhance resource balancing, reliability, and manageability.
 Chapter 2. Benefits of grid computing 17

18 Introduction to Grid Computing

Chapter 3. Grid terms and concepts

In this chapter we introduce a few key grid terms and concepts that we use
throughout this book.

3

© Copyright IBM Corp. 2005. All rights reserved. 19

3.1 Types of resources
A grid is a collection of machines, sometimes referred to as nodes, resources,
members, donors, clients, hosts, engines, and many other such terms. They all
contribute any combination of resources to the grid as a whole. Some resources
may be used by all users of the grid, while others may have specific restrictions.

3.1.1 Computation
The most common resource is computing cycles provided by the processors of
the machines on the grid. The processors can vary in speed, architecture,
software platform, and other associated factors, such as memory, storage, and
connectivity. There are three primary ways to exploit the computation resources
of a grid.

The first and simplest is to use it to run an existing application on an available
machine on the grid rather than locally.

The second is to use an application designed to split its work in such a way that
the separate parts can execute in parallel on different processors.

The third is to run an application, that needs to be executed many times, on
many different machines in the grid. Scalability is a measure of how efficiently
the multiple processors on a grid are used. If twice as many processors makes
an application complete in one half the time, then it is said to be perfectly
scalable. However, there may be limits to scalability when applications can only
be split into a limited number of separately running parts or if those parts
experience some other interdependencies such as contention for resources of
some kind.

3.1.2 Storage
The second most common resource used in a grid is data storage. A grid
providing an integrated view of data storage is sometimes called a data grid.
Each machine on the grid usually provides some quantity of storage for grid use,
even if temporary. Storage can be memory attached to the processor or it can be
secondary storage, using hard disk drives or other permanent storage media.
Memory attached to a processor usually has very fast access but is volatile. It
would best be used to cache data or to serve as temporary storage for running
applications.

Secondary storage in a grid can be used in interesting ways to increase capacity,
performance, sharing, and reliability of data. Many grid systems use mountable
networked file systems, such as Andrew File System (AFS®), Network File
20 Introduction to Grid Computing

System (NFS), Distributed File System (DFS™), or General Parallel File System
(GPFS). These offer varying degrees of performance, security features, and
reliability features.

Capacity can be increased by using the storage on multiple machines with a
unifying file system. Any individual file or database can span several storage
devices and machines, eliminating maximum size restrictions often imposed by
file systems shipped with operating systems. A unifying file system can also
provide a single uniform name space for grid storage. This makes it easier for
users to reference data residing in the grid, without regard for its exact location.
In a similar way, special database software can federate an assortment of
individual databases and files to form a larger, more comprehensive database,
accessible using database query functions.

Figure 3-1 Data striping

More advanced file systems on a grid can automatically duplicate sets of data, to
provide redundancy for increased reliability and increased performance. An
intelligent grid scheduler can help select the appropriate storage devices to hold
data, based on usage patterns. Then jobs can be scheduled closer to the data,
preferably on the machines directly connected to the storage devices holding the
required data.

Data striping can also be implemented by grid file systems, as illustrated in
Figure 3-1. When there are sequential or predictable access patterns to data,
this technique can create the virtual effect of having storage devices that can

High speed data Record Record Record Record Record Record

Striped virtual file system

Mirrors, Replicas, Journals...

Virtualization
Capacity
Sharing
Availability

Striping - speed

Mirrors - reliability

Replicas - remote

Journals - transactions
 Chapter 3. Grid terms and concepts 21

transfer data at a faster rate than any individual disk drive. This can be important
for multimedia data streams or when collecting large quantities of data at
extremely high rates from CAT scans or particle physics experiments, for
example.

A grid file system can also implement journaling so that data can be recovered
more reliably after certain kinds of failures. In addition, some file systems
implement advanced synchronization mechanisms to reduce contention when
data is shared and updated by many users.

3.1.3 Communications
The rapid growth in communication capacity among machines today makes grid
computing practical, compared to the limited bandwidth available when
distributed computing was first emerging. Therefore, it should not be a surprise
that another important resource of a grid is data communication capacity. This
includes communications within the grid and external to the grid.
Communications within the grid are important for sending jobs and their required
data to points within the grid. Some jobs require a large amount of data to be
processed, and it may not always reside on the machine running the job. The
bandwidth available for such communications can often be a critical resource
that can limit utilization of the grid.

External communication access to the Internet, for example, can be valuable
when building search engines. Machines on the grid may have connections to
the external Internet in addition to the connectivity among the grid machines.
When these connections do not share the same communication path, then they
add to the total available bandwidth for accessing the Internet.

Redundant communication paths are sometimes needed to better handle
potential network failures and excessive data traffic. In some cases, higher
speed networks must be provided to meet the demands of jobs transferring
larger amounts of data. A grid management system can better show the topology
of the grid and highlight the communication bottlenecks. This information can in
turn be used to plan for hardware upgrades.

3.1.4 Software and licenses
The grid may have software installed that may be too expensive to install on
every grid machine. Using a grid, the jobs requiring this software are sent to the
particular machines on which this software happens to be installed. When the
licensing fees are significant, this approach can save significant expenses for an
organization.
22 Introduction to Grid Computing

Some software licensing arrangements permit the software to be installed on all
of the machines of a grid but may limit the number of installations that can be
simultaneously used at any given instant. License management software keeps
track of how many concurrent copies of the software are being used and
prevents more than that number from executing at any given time. The grid job
schedulers can be configured to take software licenses into account, optionally
balancing them against other priorities or policies.

3.1.5 Special equipment, capacities, architectures, and policies
Platforms on the grid will often have different architectures, operating systems,
devices, capacities, and equipment. Each of these items represents a different
kind of resource that the grid can use as criteria for assigning jobs to machines.
While some software may be available on several architectures, for example,
PowerPC and x86, such software is often designed to run only on a particular
type of hardware and operating system. Such attributes must be considered
when assigning jobs to resources in the grid.

In some cases, the administrator of a grid may create a new artificial resource
type that is used by schedulers to assign work according to policy rules or other
constraints. For example, some machines may be designated to only be used for
medical research. These would be identified as having a medical research
attribute and the scheduler could be configured to only assign jobs that require
machines of the medical research resource. Others may participate in the grid
only if they are not used for military purposes. In this situation, jobs requiring a
military resource would not be assigned to such machines. Of course, the
administrators would need to impose a classification on each kind of job through
some certification procedure to use this kind of approach.

3.2 Jobs and applications
Although various kinds of resources on the grid may be shared and used, they
are usually accessed via an executing application or job. Usually we use the
term application as the highest level of a piece of work on the grid. However,
sometimes the term job is used equivalently. Applications may be broken down
into any number of individual jobs, as illustrated in Figure 3-2 on page 24. Those,
in turn, can be further broken down into subjobs. The grid industry uses other
terms, such as transaction, work unit, or submission, to mean the same thing as
a job.

Jobs are programs that are executed at an appropriate point on the grid. They
may compute something, execute one or more system commands, move or
collect data, or operate machinery. A grid application that is organized as a
 Chapter 3. Grid terms and concepts 23

collection of jobs is usually designed to have these jobs execute in parallel on
different machines in the grid.

Figure 3-2 An application is one or more jobs that are scheduled to run on grid

The jobs may have specific dependencies that may prevent them from executing
in parallel in all cases. For example, they may require some specific input data
that must be copied to the machine on which the job is to run. Some jobs may
require the output produced by certain other jobs and cannot be executed until
those prerequisite jobs have completed executing. Jobs may spawn additional
subjobs, depending on the data they process. This work flow can create a
hierarchy of jobs and subjobs. Finally, the results of all of the jobs must be
collected and appropriately assembled to produce the ultimate output/result for
the application.

3.3 Scheduling, reservation, and scavenging
The grid system is responsible for sending a job to a given machine to be
executed. In the simplest of grid systems, the user may select a machine suitable
for running his job and then execute a grid command that sends the job to the
24 Introduction to Grid Computing

selected machine. More advanced grid systems would include a job scheduler of
some kind that automatically finds the most appropriate machine on which to run
any given job that is waiting to be executed. Schedulers react to current
availability of resources on the grid. The term scheduling is not to be confused
with reservation of resources in advance to improve the quality of service.
Sometimes the term resource broker is used in place of scheduler, but this term
implies that some sort of bartering capability is factored into scheduling.

In a scavenging grid system, any machine that becomes idle would typically
report its idle status to the grid management node. This management node
would assign to this idle machine the next job whose requirements are satisfied
by the machine’s resources. Scavenging is usually implemented in a way that is
unobtrusive to the normal machine user. If the machine becomes busy with local
non-grid work, the grid job is usually suspended or delayed. This situation
creates somewhat unpredictable completion times for grid jobs, although it is not
disruptive to those machines donating resources to the grid.

Grid applications that run in scavenging mode often mark themselves at the
operating system’s lowest priority level. In this way, they only run when no other
work is pending. Due to the performance of modern day processors and
operating system scheduling algor, the grid application can run for as short as a
few milliseconds, even between a user’s keystrokes.

To create more predictable behavior, grid machines are often dedicated to the
grid and are not preempted by outside work. This enables schedulers to compute
the approximate completion time for a set of jobs, when their running
characteristics are known.

As a further step, grid resources can be reserved in advance for a designated set
of jobs. Such reservations operate much like a calendaring system used to
reserve conference rooms for meetings. This is done to meet deadlines and
guarantee quality of service. When policies permit, resources reserved in
advance could also be scavenged to run lower priority jobs when they are not
busy during a reservation period, yielding to jobs for which they are reserved.
Thus, various combinations of scheduling, reservation, and scavenging can be
used to more completely utilize the grid.

Scheduling and reservation is fairly straightforward when only one resource type,
usually CPU, is involved. However, additional grid optimizations can be achieved
by considering more resources in the scheduling and reservation process. For
example, it would be desirable to assign executing jobs to machines nearest to
the data that these jobs require. This would reduce network traffic and possibly
reduce scalability limits. Optimal scheduling, considering multiple resources, is a
difficult mathematics problem. Therefore, such schedulers may use heuristics.
These heuristics are rules that are designed to improve the probability of finding
 Chapter 3. Grid terms and concepts 25

the best combination of job schedules and reservations to optimize throughput or
any other metric.

3.4 Grid software components
There are many aspects to grid computing that typically are controlled through
software. These functions can be handled across a spectrum of very manual
procedures to process being handled autonomically through sophisticated
software. The software to perform these functions also ranges in capabilities and
availability. Over time more sophisticated software will become available, but in
many early grids with limited support resources, it makes sense that some of
these processes are not implemented completely in software. However, we
discus them in the following sections as software that should be considered
when designing and deploying a grid environment.

3.4.1 Management components
Any grid system has some management components. First, there is a
component that keeps track of the resources available to the grid and which
users are members of the grid. This information is used primarily to decide where
grid jobs should be assigned.

Second, there are measurement components that determine both the capacities
of the nodes on the grid and their current utilization rate at any given time. This
information is used to schedule jobs in the grid. Such information is also used to
determine the health of the grid, alerting personnel to problems such as outages,
congestion, or overcommitment. This information is also used to determine
overall usage patterns and statistics, as well as to log and account for usage of
grid resources.

Third, advanced grid management software can automatically manage many
aspects of the grid. This is known as autonomic computing, or recovery oriented
computing. This software would automatically recover from various kinds of grid
failures and outages, finding alternative ways to get the workload processed.

3.4.2 Distributed grid management
Larger grids may have a hierarchical or other type of organizational topology
usually matching the connectivity topology. That is, machines locally connected
together with a LAN form a cluster of machines. The grid may be organized in a
hierarchy consisting of clusters of clusters. The work involved in managing the
grid is distributed to increase the scalability of the grid. The collection and grid
operation and resource data as well as job scheduling is distributed to match the
26 Introduction to Grid Computing

topology of the grid. For example, a central job scheduler will not schedule a
submitted job directly to the machine that is to execute it. Instead, the job is sent
to a lower level scheduler that handles a set of machines (or further clusters).
The lower level scheduler handles the assignment to the specific machine.
Similarly, the collection of statistical information is distributed. Lower level
clusters receive activity information from the individual machines, aggregate it,
and send it to higher level management nodes in the hierarchy.

3.4.3 Donor software
Each machine contributing resources typically needs to enroll as a member of
the grid and install some software that manages the grid’s use of its resources.
Usually, some sort of identification and authentication procedure must be
performed before a machine can join the grid. Often certificates, such as those
available through Certificate Authorities, can be used to establish and ensure the
identity of the donor machine as well as the users and the grid itself.

Some grid systems provide their own login to the grid while others depend on the
native operating systems for user authentication. In the latter case, a user ID
mapping system may be needed to match the user’s rights properly on different
machines. This typically is manually maintained by a grid administrator. He
determines which user ID a given user may possess on each grid machine and
enters these IDs in a protected database or registry. In this way, when grid jobs
are submitted to different machines for a user, the proper local machine user ID
is used for determining the user’s rights.

In some grid systems, it is possible to join the grid without any special
authentication. And in others, it is possible for any user to submit jobs to the grid.
Such systems may be convenient to set up, but should be discouraged in larger
deployments due to the serious security problems that they would open up.

The grid system makes information about the newly added resources available
throughout the grid. The donor machine will usually have some sort of monitor
that determines or measures how busy the machine is and the rate or amount of
resources utilized. This information is “bubbled up” to the management software
of the grid and used to schedule use of those resources accordingly. In a
scavenging system, this information tells the grid management software when
the machine is idle and available for work.

Most importantly, the software installed on a given machine can accept an
executable job from the grid management system and execute it. A user
somewhere on the grid submits a job for execution on the grid. The grid
management software must communicate with the grid donor software to send
the job there. The donor grid software must be able to receive the executable file
or select the proper one from copies pre-installed on the donor machine. The
 Chapter 3. Grid terms and concepts 27

software is executed and the output is sent back to the requester. More
advanced implementations can dynamically adjust the priority of a running job,
suspend it, and resume running it later, or checkpoint it with the possibility of
resuming its execution on a different machine. These kinds of actions may be
necessary to respond to load balancing problems or priority or policy changes in
the grid.

3.4.4 Submission software
Usually any member machine of a grid can be used to submit jobs to the grid and
initiate grid queries. However, in some grid systems, this function is implemented
as a separate component installed on submission nodes or submission clients.
When a grid is built using dedicated resources rather than scavenged resources,
separate submission software is usually installed on the user’s desktop or
workstation.

3.4.5 Schedulers
Most grid systems include some sort of job scheduling software. This software
locates a machine on which to run a grid job that has been submitted by a user.
In the simplest cases, it may just blindly assign jobs in a round-robin fashion to
the next machine matching the resource requirements. However, there are
advantages to using a more advanced scheduler.

Some schedulers implement a job priority system. This is sometimes done by
using several job queues, each with a different priority. As grid machines become
available to execute jobs, the jobs are taken from the highest priority queues first.
Policies of various kinds are also implemented using schedulers. Policies can
include various kinds of constraints on jobs, users, and resources. For example,
there may be a policy that restricts grid jobs from executing at certain times of the
day.

Schedulers usually react to the immediate grid load. They use measurement
information about the current utilization of machines to determine which ones are
not busy before submitting a job. Schedulers can be organized in a hierarchy.
For example, a meta-scheduler may submit a job to a cluster scheduler or other
lower level scheduler rather than to an individual machine.

More advanced schedulers will monitor the progress of scheduled jobs managing
the overall work flow. If the jobs are lost due to system or network outages, a
good scheduler will automatically resubmit the job elsewhere. However, if a job
appears to be in an infinite loop and reaches a maximum time out, then such jobs
should not be rescheduled. Typically, jobs have different kinds of completion
codes, some of which are suitable for re-submission and some of which are not.
28 Introduction to Grid Computing

Reserving resources on the grid in advance is accomplished with a reservation
system. It is more than a scheduler. It is first a calendar-based system for
reserving resources for specific time periods and preventing any others from
reserving the same resource at the same time. It also must be able to remove or
suspend jobs that may be running on any machine or resource when the
reservation period is reached.

3.4.6 Communications
A grid system may include software to help jobs communicate with each other.
For example, an application may split itself into a large number of subjobs. Each
of these subjobs is a separate job in the grid. However, the application may
implement an algorithm that requires that the subjobs communicate some
information among them. The subjobs need to be able to locate other specific
subjobs, establish a communications connection with them, and send the
appropriate data. The open standard Message Passing Interface (MPI) and any
of several variations is often included as part of the grid system for just this kind
of communication.

3.4.7 Observation and measurement
We mentioned above that schedulers react to current loads on the grid. Usually,
the donor software includes some tools that measure the current load and
activity on a given machine using either operating system facilities or by direct
measurement. This software is sometimes referred to as a load sensor. Some
grid systems provide the means for implementing custom load sensors for other
than CPU or storage resources.

Such measurement information is useful not only for scheduling, but also for
discovering overall usage patterns in the grid. The statistics can show trends that
may signal the need for additional hardware. Also, measurement information
about specific jobs can be collected and used to better predict the resource
requirements of that job the next time it is run. The better the prediction, the more
efficiently the grid’s workload can be managed.

The measurement information can also be saved for accounting purposes, or to
form the basis for grid resource brokering, or to manage priorities more fairly.
The information can also be displayed in various forms to better visualize grid
activity and utilization.
 Chapter 3. Grid terms and concepts 29

3.5 Intragrid and intergrid
As already mentioned, the definition of a grid is somewhat subjective. Therefore,
the following descriptions of various kinds of grids must be taken loosely.

Grids can be built in all sizes, ranging from just a few machines in a department
to groups of machines organized as a hierarchy spanning the world. In this
section, we describe some examples in this range of grid system topologies.

Figure 3-3 A simple grid

As presented in Figure 3-3, the simplest grid consists of just a few machines, all
of the same hardware architecture and same operating system, connected on a
local network. This kind of grid uses homogeneous systems so there are fewer
considerations and may be used for specialized applications. The machines are
usually in one department of an organization, and their use as a grid may not
require any special policies or security concerns. Because the machines have
the same architecture and operating system, choosing application software for
these machines is usually simple. Some people would call this a cluster
implementation rather than a grid.
30 Introduction to Grid Computing

The next progression would be to include heterogeneous machines. In this
configuration, more types of resources are available. The grid system is likely to
include some scheduling components. File sharing may still be accomplished
using networked file systems. Machines participating in the grid may include
systems from multiple departments but within the same organization. Such a grid
is also referred to as an intragrid.

As the grid expands to many departments, policies may be required for how the
grid should be used. For example, there may be policies for what kinds of work is
allowed on the grid and at what times. There may be a prioritization by
department or by kinds of applications that should have access to grid resources.
Also, security becomes more important as more organizations are involved.
Sensitive data in one department may need to be protected from access by jobs
running for other departments. Dedicated grid machines may be added to
increase the quality of service for grid computing, rather than depending entirely
on scavenged resources.

The grid may grow geographically in an organization that has facilities in different
cities. Dedicated communications’ connections may be used among these
facilities and the grid. In some cases, VPN tunneling or other technologies may
be used over the Internet to connect the different parts of the organization.
Security increases in importance once the bounds of any given facility are
traversed. The grid may grow to be hierarchically organized to reduce the
contention implied by central control, increasing scalability.

Over time, as illustrated in Figure 3-4 on page 32, a grid may grow to cross
organization boundaries, and may be used to collaborate on projects of common
interest. This is known as an intergrid. The highest levels of security are usually
required in this configuration. The intragrid offers the prospect for trading or
brokering resources over a much wider audience. Resources may be purchased
as a utility from trusted suppliers.
 Chapter 3. Grid terms and concepts 31

Figure 3-4 A more complex intergrid

3.6 Summary
This chapter provided an overview of some of the key terms and concepts
related to grid computing. This information may help as you read this book or
other literature on grid computing.
32 Introduction to Grid Computing

Chapter 4. Grid user roles

This chapter briefly describes grid computing from the perspectives of the user
and the administrator. The architect and application developer are other key
roles in a grid environment. Information applicable to those roles are touched on
in subsequent chapters.

4

© Copyright IBM Corp. 2005. All rights reserved. 33

4.1 Using a grid: A user’s perspective
This section describes the typical activities in utilizing a grid from a user’s
perspective.

4.1.1 Enrolling and installing grid software
A user may first have to enroll in the grid and install the provided grid software on
his own machine. He may optionally enroll his machine as a donor on the grid.

Enrolling in the grid may require authentication for security purposes. The user
positively establishes his identity with a Certificate Authority. This should not be
done solely via the Internet. The Certificate Authority must take steps to assure
that the user is in fact who he claims to be. The Certificate Authority makes a
special certificate available to software needing to check the true identity of a grid
user and his grid requests. Similar steps may be required to identify the donating
machine. The user has the responsibility of keeping his grid credentials secure.

Once the user and/or machine are authenticated, the grid software is provided to
the user for installing on his machine for the purposes of using the grid as well as
donating to the grid. This software may be automatically preconfigured by the
grid management system to know the communication address of the
management nodes in the grid and user or machine identification information. In
this way, the installation may be a one-click operation with a minimum of
interaction required on the part of the user. In less automated grid installations,
the user may be asked to identify the grid’s management node and possibly
other configuration information. He may choose to limit the resources donated to
the grid, the times that his machine is usable by the grid, and other policy-related
constraints. The user may also need to inform the grid administrator which user
IDs are his on other machines that exist on the grid.

4.1.2 Logging onto the grid
Most grid systems require the user to log on to a system using an ID that is
enrolled in the grid. Other grid systems may have their own grid login ID separate
from the one on the operating system. A grid login is usually more convenient for
grid users. It eliminates the ID matching problems among different machines. To
the user, it makes the grid look more like one large virtual computer rather than a
collection of individual machines. Some grid environments may use a proxy login
model that keeps the user logged in for a specified amount of time, even if he
logs off and back on the operating system and even if the machine is rebooted.
34 Introduction to Grid Computing

Once logged on, the user can query the grid and submit jobs. Some grid
implementations permit some query functions if the user is not logged into the
grid or even if the user is not enrolled in the grid.

4.1.3 Queries and submitting jobs
The user will usually perform some queries to check to see how busy the grid is,
to see how his submitted jobs are progressing, and to look for resources on the
grid. Grid systems usually provide command-line tools as well as graphical user
interfaces (GUIs) for queries. Command-line tools are especially useful when the
user wants to write a script that automates a sequence of actions. For example,
the user might write a script to look for an available resource, submit a job to it,
watch the progress of the job, and present the results when the job has finished.

Job submission usually consists of three parts, even if there is only one
command required. First, some input data and possibly the executable program
or execution script file are sent to the machine to execute the job. Sending the
input is called staging the input data. Alternatively, the data and program files
may be pre-installed on the grid machines or accessible via a mountable
networked file system. When the grid consists of heterogeneous machines, there
may be multiple executable program files, each compiled for the different
machine platforms on the grid. A nice feature provided by some grid systems is
to register these multiple versions of the program so that the grid system can
automatically choose a correctly matching version to the grid machine that will
run the program. Some grid technologies require that the program and input data
be first processed or wrappered in some way by the grid system. This may be
done to add protective execution controls around the application or just to simply
collect all of the data files into one.

Second, the job is executed on the grid machine. The grid software running on
the donating machine executes the program in a process on the user’s behalf. It
may use a common user ID on the machine or it may use the user’s own user ID,
depending on which grid technology is used. Some grid systems implement a
protective sandbox around the program so that it cannot cause any disruption to
the donating machine if it encounters a problem during execution. Rights to
access files and other resources on the grid machine may be restricted.

Third, the results of the job are sent back to the submitter. In some
implementations, intermediate results can be viewed by the user who submitted
the job. In some grid technologies that do not automatically stage the output data
back to the user, the results must be explicitly sent to the user, perhaps using a
networked file system.

Scripts are also useful for submitting a series of jobs, for a parameter space
application, for example. Some computation problems consist of a search for the
 Chapter 4. Grid user roles 35

desired result based on some input parameters. The goal is to find the input
parameters that produce the best desired result. For each input parameter, a
separate job is executed to find the result for that value. The whole application
consists of many such jobs, which explore the results for a large number of input
parameter values. Scripts are usually used to launch the many subjobs, each
receiving their own particular parameter values. Parameter inputs can
sometimes be more complex than simply a number. Sometimes a different input
data set represents the input parameter. Scripts help automate the large variety
of more complex parameter space study problems. For simpler parameter space
inputs, some grid products provide a GUI to submit the series of subjobs, each
with different input parameter values.

When there are a large number of subjobs, the work required to collect the
results and produce the final result is usually accomplished by a single program,
usually running on the machine at the point of job submission. If there are a very
large number subjobs required for an application, the work of collecting the
results might be distributed as well. For example, the subjob that submits more
subjobs to the grid would be responsible for collecting and aggregating the
results of the subjobs it spawned.

4.1.4 Data configuration
The data accessed by the grid jobs may simply be staged in and out by the grid
system. However, depending on its size and the number of jobs, this can
potentially add up to a large amount of data traffic. For this reason, some thought
is usually given on how to arrange to have the minimum of such data movement
on the grid.

For example, if there will be a very large number of subjobs running on most of
the grid systems for an application that will be repeatedly run, the data they use
may be copied to each machine and reside until the next time the application
runs. This is preferable to using a networked file system to share this data,
because in such a file system, the data would be effectively moved from a central
location every time the application is run. This is true unless the file system
implements a caching feature or replicates the data automatically.

There are many considerations in efficiently planning the distribution and sharing
of data on a grid. This type of analysis is necessary for large jobs to better utilize
the grid and not create unnecessary bottlenecks.

4.1.5 Monitoring progress and recovery
The user can query the grid system to see how his application and its subjobs
are progressing. When the number of subjobs becomes large, it becomes too
difficult to list them all in a graphical window. Instead, there may simply be one
36 Introduction to Grid Computing

large bar graph showing some averaged progress metric. It becomes more
difficult for the user to tell if any particular subjob is not running properly.

A grid system, in conjunction with its job scheduler, often provides some degree
of recovery for subjobs that fail. A job may fail due to a:

� Programming error: The job stops part way with some program fault.

� Hardware or power failure: The machine or devices being used stops working
in some way.

� Communications interruption: A communication path to the machine has
failed or is overloaded with other data traffic.

� Excessive slowness: The job might be in an infinite loop or normal job
progress may be limited by another process running at a higher priority or
some other form of contention.

It is not always possible to automatically determine if the reason for a job’s failure
is due to a problem with the design of the application or if it is due to failures of
various kinds in the grid system infrastructure. Schedulers are often designed to
categorize job failures in some way and automatically resubmit jobs so that they
are likely to succeed, running elsewhere on the grid. In some systems, the user
is informed about any job failures and the user must decide whether to issue a
command to attempt to rerun the failed jobs.

Grid applications can be designed to automate the monitoring and recovery of
their own subjobs using functions provided by the grid system software
application programming interfaces (APIs).

4.1.6 Reserving resources
To improve the quality of a service, the user may arrange to reserve a set of
resources in advance for his exclusive or high-priority use. A calendaring system
analogy can be used here. Such a reservation system can also be used in
conjunction with planned hardware or software maintenance events, when the
affected resource might not be available for grid use.

In a scavenging grid, it may not be possible to reserve specific machines in
advance. Instead, the grid management systems may allocate a larger fraction of
its capacity for a given reservation to allow for the likelihood of some of the
resources becoming unavailable. This must be done in conjunction with tools
that have profiled the grid’s workload capacity sufficiently to have reliable
statistics about the grid’s ability to serve the reservation.
 Chapter 4. Grid user roles 37

4.2 Using a grid: An administrator’s perspective
This section describes the typical usage activities in using the grid from an
administrator’s perspective.

4.2.1 Planning
The administrator should understand the organization’s requirements for the grid
to better choose the grid technologies that satisfy those requirements. The
following sections briefly describe the steps the administrator may take to
manage the grid. It is suggested that one should start by deploying a small grid
first, to learn about its installation and management, before having to confront
more complicated issues involved with a large grid.

The use of a grid is often born from a need for increased resources of some type.
One often looks to their neighbor who may have excess capacity in the particular
resource. One of the first considerations is the hardware available and how it is
connected via a LAN or WAN. Next, an organization may want to add additional
hardware to augment the capabilities of the grid. It is important to understand the
applications to be used on the grid. Their characteristics can affect the decisions
of how to best choose and configure the hardware and its connectivity.

Security
Security is a much more important factor in planning and maintaining a grid than
in conventional distributed computing, where data sharing comprises the bulk of
the activity. In a grid, the member machines are configured to execute programs
rather than just move data. This makes an unsecured grid potentially fertile
ground for viruses and trojan horse programs. For this reason, it is important to
understand exactly which components of the grid must be rigorously secured to
deter any kind of attack. Furthermore, it is important to understand the issues
involved in authenticating users and providing proper authorization for specific
operations.

Organization
The technology considerations are important in deploying a grid. However,
organizational and business issues can be equally important. It is important to
understand how the departments in an organization interact, operate, and
contribute to the whole. Often, there are barriers built between departments and
projects to protect their resources in an effort to increase the probability of timely
success. However, by rethinking some of these relationships, one can find that
more sharing of resources can sometimes benefit the entire organization. For
example, a project that finds itself behind schedule and over budget may not be
able to afford the resources required to solve the problem. A grid would give such
projects an added measure of safety, providing an extra margin of resource
38 Introduction to Grid Computing

capacity needed to finish the project. Similarly, a project in its early stages, when
computing resources are not being fully utilized, may be able to donate them to
other projects in need. A grid also offers the ability for the organization’s
management to see the bigger picture and react more quickly in shifting resource
utilization, priorities, and policies.

4.2.2 Installation
First, the selected grid system must be installed on an appropriately configured
set of machines. These machines should be connected using networks with
sufficient bandwidth to other machines on the grid. Of prime importance is
understanding the fail-over scenarios for the given grid system so that the grid
can continue operating even if any of the management machines fail in some
way. Machines should be configured and connected to facilitate recovery
scenarios. Any critical databases or other data essential for keeping track of the
jobs in the grid, members of the grid, and machines on the grid should have
suitable backups. Furthermore, public key certificates must be backed up and
the private keys must be held in a highly secured place inaccessible by anyone
else.

After installation, the grid software may need to be configured for the local
network address and IDs. The administrator will usually require root access to
the machines managing the grid. In some grid systems, he will also need root
access to the donor machines required to install the software on those as well.
The software to be installed on the donor machines may need to be customized
so that it can find the grid management machines automatically and include
pre-installed public keys for the grid. This software may be provided to potential
donors on an FTP or equivalent server or be made available on physical media.

Once the grid is operational, there may be application software and data that
should be installed on donor machines as well. This software may have specific
licensing restrictions that should be understood and adhered to. Some grid
systems include tools to assist with grid-wide license management. This can
both help in following the rules of the licenses and most efficiently exploit those
licenses.

4.2.3 Managing enrollment of donors and users
An ongoing task for the grid administrator is to manage the members of the grid,
both the machines donating resources and the users. Users may be further
organized as project groups. The administrator is responsible for controlling the
rights of the users in the grid. Donor machines may have access rights that
require management as well. Grid jobs running on donor machines may be
executed under a special grid user ID on behalf of the users submitting the jobs.
 Chapter 4. Grid user roles 39

The rights of these grid user IDs must be properly set so that grid jobs do not
allow access to parts of the donor machine to which the users are not entitled.

As users join the grid, their identity must be positively established and entered in
the Certificate Authority. The user and his certificate credentials must be added
to the user list using the software appropriate for the grid system deployed. In
some cases, the administrator must propagate the user information to several or
all grid machines. Also, when the grid system depends primarily on the operating
system for user login, the administrator may need to add entries to map the grid
user to specific operating system user IDs on the donor machines.

Similar enrollment activity is usually required to enroll donor machines into the
grid. The machine’s identity is established and registered with the Certificate
Authority. The administrator of the grid must have an agreement with the
administrator of the donor machine about user IDs, software, access rights, and
any policy restrictions. The administrator must enter the machine’s identification
credentials, addresses, and resource characteristics using the appropriate
software for enrolling the donor machine into the grid. In some cases, the
administrator may need to manually propagate this information to other
machines in the grid.

Corresponding procedures for removing users and machines must be executed
by the administrator.

4.2.4 Certificate authority
It is critical to ensure the highest levels of security in a grid because the grid is
designed to execute code and not just share data. Thus, it can be fertile ground
for viruses, trojan horses, and other attacks if the grid system is compromised in
any way. The Certificate Authority is one of the most important aspects of
maintaining strong grid security. An organization may choose to use an external
Certificate Authority or operate one itself. You must be able to trust the
Certificate Authority to strictly adhere to its responsibilities.

The primary responsibilities of a Certificate Authority are:

� Positively identifying entities requesting certificates
� Issuing, removing, and archiving certificates
� Protecting the Certificate Authority server
� Maintaining a namespace of unique names for certificate owners
� Serving signed certificates to those needing to authenticate entities
� Logging activity

Briefly, a Certificate Authority is based on the public key encryption system. In
this system, keys are generated in pairs, a public key and a private key. Either
one can be used to encrypt some data such that the other is needed to decrypt it.
40 Introduction to Grid Computing

The private key is guarded by the owner and never revealed to anyone. The
public one is given to anyone needing it. A Certificate Authority is used to hold
these public keys and to guarantee who they belong to. When a user uses his
private key to encrypt something, the receiver uses the corresponding public key
to decrypt it. The receiver knows that only that user’s public key can decrypt the
message correctly. However, anyone could intercept this message and decrypt it
because anyone can get the originator’s public key. If the originator instead
doubly encrypts the message with his private key and the intended recipient’s
public key, a secure communication link is formed. The receiver uses his private
key to decrypt the message and then uses the sender’s public key for the second
decryption. Now the recipient knows that if the message decrypts properly, then
only the sender could have sent it and, furthermore, the sender knows that only
the intended receiver can decrypt it. The beauty of all of this is that nobody had to
securely carry an encryption key from the sender to the receiver, as must be
done for conventional encryption systems, and any tampering with the
communication is revealed. A similar exchange is used to get anyone’s public
key from the Certificate Authority, so that the user knows that he has received an
unaltered public key for the desired user.

4.2.5 Resource management
Another responsibility of the administrator is to manage the resources of the grid.
This includes setting permissions for grid users to use the resources as well as
tracking resource usage and implementing a corresponding accounting or billing
system. Usage statistics are useful in identifying trends in an organization that
may require the acquisition of additional hardware, reduction in excess hardware
to reduce costs, and adjustments in priorities and policies to achieve utilization
that is fairer or better achieves the overall goals of an organization.

Some grid components, usually job schedulers, have provisions for enforcing
priorities and policies of various kinds. It is the responsibility of the administrator
to configure these to best meet the goals of the overall organization. Software
license managers can be used in a grid setting to control the proper utilization.
These may be configured to work with job schedulers to prioritize the use of the
limited licenses.

4.2.6 Data sharing
For small grids, the sharing of data can be fairly easy, using existing networked
file systems, databases, or standard data transfer protocols. As a grid grows and
the users become dependent on any of the data storage repositories, the
administrator should consider procedures to maintain backup copies and
replicas to improve performance. All of the resource management concerns
apply to data on the grid.
 Chapter 4. Grid user roles 41

4.3 Summary
When considering whether a grid environment is applicable to a particular
organization or set of requirements, two key user perspectives must be
considered. First, the end users’ perspective and how they will access the grid
and gain benefits from using it. Second, how will a grid be administered,
especially when resources making up the grid may be distributed both
geographically as well as organizationally.

This chapter discussed some of the key points to consider for both of these user
roles. Once it is decided that a grid may be the right solution, the architect and
application developer will need to be involved to ensure the grid and its related
applications are designed and implemented to meet the business’ requirements.
42 Introduction to Grid Computing

Part 2 Grid
architecture
considerations

Part 2
© Copyright IBM Corp. 2005. All rights reserved. 43

44 Introduction to Grid Computing

Chapter 5. Standards for grid
environments

As we described in Chapter 1, “What grid Computing is” on page 3, grid
computing consists of many concepts, and can be defined in many ways. But, at
its essence, it provides for distributed computing utilizing virtual resources.

Many technologies could be used to implement such an environment. However,
to ensure that various resources across a wide variety of hardware and software
platforms can peacefully coexist and interoperate, standards need to be defined
and widely adopted.

This chapter describes just a few of the key standards and evolving standards
that apply to grid computing.

5

© Copyright IBM Corp. 2005. All rights reserved. 45

5.1 Overview
As we have discussed, grid computing assumes and/or requires technologies
that include:

� Support for executing programs on a variety of platforms
� A secure infrastructure
� Data movement/replication/federation
� Resource discovery
� Resource management

For each of these areas, there are a variety of technologies available that could
be used to address them. We will look at just a few of the standards (both
proposed and adopted) that could be considered when architecting a grid-based
solution.

Standards bodies that are involved in areas related to grid computing include:

� Global Grid Forum (GGF)

http://www.ggf.org

� Organization for the Advancement of Structured Information Standards
(OASIS)

http://www.oasis-open.org/

� World Wide Web Consortium (W3C)

http://www.w3.org/

� Distributed Management Task Force (DMTF)

http://www.dmtf.org/

� Web Services Interoperability Organization (WS-I)

http://www.ws-i.org/

5.1.1 OGSA
The Global Grid Forum has published the Open Grid Service Architecture
(OGSA). To address the requirements of grid computing in an open and standard
way, requires a framework for distributed systems that support integration,
virtualization, and management. Such a framework requires a core set of
interfaces, expected behaviors, resource models, and bindings.

OGSA defines requirements for these core capabilities and thus provides a
general reference architecture for grid computing environments. It identifies the
components and functions that are useful if not required for a grid environment.
Though it does not go to the level of detail such as defining programmatic
46 Introduction to Grid Computing

http://www.ws-i.org/
http://www.dmtf.org/
http://www.w3.org/
http://www.oasis-open.org/
http://www.ggf.org

interfaces or other aspects that would guarantee interoperabilty between
implementations, it can be used to identify the functions that should be included
based on the requirements of the specific target environment.

For more information, refer to:

http://www.ggf.org
http://www.globus.org/ogsa/

5.1.2 OGSI
As grid computing has evolved it has become clear that a service-oriented
architecture could provide many benefits in the implementation of a grid
infrastructure. The Global Grid Forum extended the concepts defined in OGSA to
define specific interfaces to various services that would implement the functions
defined by OGSA.

More specifically, the Open Grid Services Interface (OGSI) defines mechanisms
for creating, managing, and exchanging information among Grid services. A Grid
service is a Web service that conforms to a set of interfaces and behaviors that
define how a client interacts with a Grid service.

These interfaces and behaviors, along with other OGSI mechanisms associated
with Grid service creation and discovery, provide the basis for a robust grid
environment. OGSI provides the Web Service Definition Language (WSDL)
definitions for these key interfaces.

Globus Toolkit 3 included several of its core functions as Grid services
conforming to OGSI.

For more information, refer to:

http://www.globus.org/toolkit/draft-ggf-ogsi-gridservice-33_2003-06-27.pdf

5.1.3 OGSA-DAI
The OGSA-DAI (data access and integration) project is concerned with
constructing middleware to assist with access and integration of data from
separate data sources via the grid. The project was conceived by the UK
Database Task Force and is working closely with the Global Grid Forum
DAIS-WG and the Globus team.

For more information, refer to:

http://www.ogsadai.org.uk/
 Chapter 5. Standards for grid environments 47

http://www.ggf.org
http://www.globus.org/ogsa/
http://www.globus.org/toolkit/draft-ggf-ogsi-gridservice-33_2003-06-27.pdf
http://www.ogsadai.org.uk/

5.1.4 GridFTP
GridFTP is a secure and reliable data transfer protocol providing high
performance and optimized for wide-area networks that have high bandwidth. As
one might guess from its name, it is based upon the Internet FTP protocol and
includes extensions that make it a desirable tool in a grid environment. The
GridFTP protocol specification is a proposed recommendation document in the
Global Grid Forum (GFD-R-P.020).

GridFTP uses basic Grid security on both control (command) and data channels.
Features include multiple data channels for parallel transfers, partial file
transfers, third-party transfers, and more.

GridFTP can be used to move files (especially large files) across a network
efficiently and reliably. These files may include the executables required for an
application or data to be consumed or returned by an application. Higher level
services, such as data replication services, could be built on top of GridFTP.

For more information, refer to:

http://www.globus.org/grid_software/data/gridftp.php

5.1.5 WSRF
Web Services Resource Framework (WSRF) is described in more detail in
Chapter 9, “Web services resource framework” on page 115. WSRF is being
promoted and developed through work from a variety of companies, including
IBM, and has been submitted to OASIS technical committees. Basically, WSRF
defines a set of specifications for defining the relationship between Web services
(that are normally stateless) and stateful resources. WSRF is a general term that
encompasses several related proposed standards that cover:

� Resources
� Resource lifetime
� Resource properties
� Service groups (collections of resources)
� Faults
� Notifications
� Topics

As the concept of Grid services evolves, the WSRF suite of evolving standards
holds great promise for the merging of Web services standards with the stateful
resource management requirements of grid computing.

For more information, refer to:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://www.globus.org/wsrf/
48 Introduction to Grid Computing

http://www.globus.org/grid_software/data/gridftp.php
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://www.globus.org/wsrf/

5.1.6 Web services related standards
Because Grid services are so closely related to Web services, the plethora of
standards associated with Web services also apply to Grid services. We do not
describe all of these standards in this document, but rather recommend that the
reader become familiar with standards commonly associate with Web services,
such as:

� XML
� WSDL
� SOAP
� UDDI

In addition, there are many evolving standards related to Web Services
Interoperabilty (WS-I) that also can be applied to and bring value to grid
environments, standards, and proposed standards.

For more information, refer to:

http://www.w3.org/2002/ws/
http://www.ws-i.org/
 Chapter 5. Standards for grid environments 49

http://www.w3.org/2002/ws/
http://www.ws-i.org/

50 Introduction to Grid Computing

Chapter 6. Application considerations

As we have already discussed, grid computing environments provide a
distributed computing environment utilizing virtualized resources. With this in
mind, applications that can take advantage of distributed computing capabilities
are possible candidates for grid computing environments. Of course, they may
need to be adapted to be able to take advantage of virtual resources through the
use of open interfaces and standards such as those discussed in Chapter 5,
“Standards for grid environments” on page 45.

This chapter provides an overview of various considerations when contemplating
the development or modification of an application to take advantage of grid
computing.

6

© Copyright IBM Corp. 2005. All rights reserved. 51

6.1 General application considerations

While a grid-based environment may offer many advantages, any given
application may not necessarily benefit from a grid. For example, some personal
productivity applications are tightly coupled with a user’s interface and do not
consume a large amount of computing resources. Running them on a grid may
not provide significant benefits. However, other applications may be very suited
for exploiting a grid.

If we take a parochial view of the grid as an environment that provides access to
vast amounts of computing power, one of the simplest concepts for grid
utilization is to be able to run an application somewhere else when your own
machine is too busy or otherwise does not have the required resources. Almost
any kind of application can be executed in a grid environment this way. You may
not see spectacular performance gains unless the machine it runs on is much
faster than the machine you usually use.

Applications that can be run in a batch mode are the easiest to execute on other
resources within the grid. Applications that need interaction through graphical
user interfaces are more difficult to run on a grid, but not impossible. For
instance, they can use remote graphical terminal support, such as X Windows or
other similar capabilities.

In subsequent sections of this chapter, we discuss many considerations for
applications that are CPU intensive or have various requirements associated
with data access or sharing. These number-crunching types of applications have
historically gained efficiencies by running in a cluster environment or more
recently in a grid (that some consider a distributed cluster). However, with
advances in grid middleware and the economic incentives to run more typical
business applications on virtualized resources, there is a trend towards
understanding how these business applications can be implemented (or
modified) to take advantage of the various resources provided by a grid
computing environment.

For this discussion, let us consider a grid environment to be distributed
computing on virtualized resources. Distributed computing concepts are well
known and most application architects and developers understand what it takes
to enable an application to execute and take advantage of a distributed

Attention: Aside from application-specific criteria described below, it should
be obvious that applications that can most easily take advantage of grid
computing should be designed to be portable and to utilize virtual resources.
Utilizing open standards such as those described in the previous chapter
provides a solid foundation for ensuring such portability.
52 Introduction to Grid Computing

computing environment. What is new, is the utilization of virtualized resources.
This implies that the application developer may not know (and optimally should
not need to know) what operating platform or other resources (network, storage,
and so on) will be utilized by the application at run time. The more an application
can be written to be independent of actual physical resources, the more likely it
can take advantage of a grid environment by running on any available resources
that provide the required services and conform to any applicable policies.

A key aspect of writing applications that are independent of physical resources is
the conformance to widely adopted standards. For instance, applications that are
implemented as services and can be deployed to any compliant J2EE container
have little or no dependency on the underlying hardware or operating system.
Therefore, they could potentially be deployed to and run on any systems within
the grid that have a compliant J2EE container.

Likewise, using standardized interfaces for access to storage, databases, and
network communications provides the portability required to run on virtualized
resources independent of their physical makeup.

Applications specifically designed to use multiple processors or other federated
resources of a grid will benefit most. The following discussion is designed to
stimulate analysis, which will show how various factors may help decide whether
a given application should be deployed on a grid and what modifications, if any,
might be considered.

6.2 CPU-intensive application considerations
To determine if existing or planned applications that are CPU intensive can take
advantage of a grid environment requires many considerations. This section
describes some things to consider related to the possible applicability of a grid to
these applications.

Probably the most important step in grid enabling an application is to determine
whether the calculations can be done in parallel. While High Performance
Computing (HPC) clusters are sometimes used to handle the execution of
applications that can utilize parallel processing, grids provide the ability to run
these applications across a heterogeneous, geographically dispersed set of
clusters. Rather than run the application on a single homogenous cluster, the
application can take advantage of the larger set of resources in the grid. If the
algorithm is such that each computation depends on the prior calculation, then a
new algorithm (if possible) may be beneficial. Not all problems can be converted
into parallel calculations. As an oversimplified example, let us take the process of
adding up a large list of numbers. The simple serial program may be written to
start with the sum of zero and then add each of the numbers, one at a time, until
 Chapter 6. Application considerations 53

the final sum is reached. Here each calculation depends on the prior one.
However, we can observe that the associative property of arithmetic shows us
that we could break the list up into seven pieces, for example, with seven
separate programs adding up the numbers in each list, and then a final eighth
program adding the 7 sums to form the final answer. This is illustrated by
Figure 6-1.

Figure 6-1 Rearranging computations to execute in parallel

On the other hand, some computations cannot be rewritten to execute in parallel.
For example, in physics, there are no simple formulas that show where three or
more moving bodies in space will be after a specified time when they
gravitationally affect each other. These kinds of computations are done by
simulating the motions of the bodies, applying Newton’s (or Einstein’s) laws to
small time increments, and computing how the forces and bodies affect each
other, given the new position of the objects after each tiny time increment, as
illustrated in Figure 6-2 on page 55.
54 Introduction to Grid Computing

Figure 6-2 Simulation that cannot be made parallel but needs to run many times

This is repeated a great number of times until the desired time is reached. Each
computation depends on the prior one. If it did not, then we would have used a
different formula or algorithm to begin with. Because the time increments are not
infinitely small, after many increments, small errors start adding up. The final
computed position of the objects can be in error, perhaps ultimately causing a
spacecraft to crash into a planet instead of going into orbit. To improve accuracy
in such computations, we make the time increments much shorter. This
increases the number of these increments to be computed, and thus the overall
computation time. Many simulations suffer from this type of difficulty.

As we saw above, in the list-adding example, such computations can be
performed in parallel, while others, such as the 3-body physics problem, cannot.
Often, an application may be a mix of independent computations as well as
dependent computations. One needs to analyze the application to see if there is
 Chapter 6. Application considerations 55

a way to split some subset of the work. Drawing a program flow graph and a data
dependency graph can help in analyzing whether and how an application could
be separated into independently running parallel parts.

Going back to the space object example, let us say we are trying to find the
correct trajectory to aim a rocket so that it loops around Venus, and then Earth,
to reach Jupiter more quickly. We might try calculating to see what happens for a
large number of different trajectories, pointing the rocket in slightly different
directions and firing the engines for different durations. Each trajectory can be
thought of as a separate calculation, and then in the end, a program chooses the
best one. Here, we are able to perform work in parallel, even though the
underlying computation for a single trajectory may be serial. Applications that
consist of a large number of independent subjobs are very suitable for exploiting
grid CPU resources. These are sometimes called parameter space searches.

Figure 6-3 Redundant speculative computation to reduce latency

Another approach to reducing data dependency on prior computations is to look
for ways to use redundant computations. If the dependency is on a subset of the
prior computations, it may be beneficial just to have each successive
56 Introduction to Grid Computing

computation that needs the results of the prior computation recompute those
results instead of waiting for them to arrive from another job. If the dependency is
on a computation that has a yes/no answer, perhaps it is better to compute the
next calculations for both of the yes and no cases and throw away the wrong
choice when the dependency is finally known, as illustrated in Figure 6-3 on
page 56. This technique can be taken to extremes in various ways. For example,
for two bits of data dependency, we could make four copies of the next
computation with all four possible input values. This can proceed to copies of the
next calculation for N bits of data dependency. As N gets large, it quickly
becomes too costly to compute all possible computations. However, we may
speculate and only perform the copies for the values we guess might be more
likely to be correct. If we did not guess the correct one, then we simply end up
computing it in series, but if we guessed correctly it saves us overall real time.
Here heuristics (rules of thumb) could be developed to make the best possible
guesses. Furthermore, there may be many points in the application where we
could use the speculative approach, and if our guess rate is high enough, there
might be an overall improvement in efficiency and parallelism. This same kind of
speculative computing is used to improve the efficiency inside CPUs by
executing both branches of a condition until the correct one is determined.

Some parameter space problems are finite in nature, and some are infinite or so
large that all possible parameter inputs cannot be examined. For these kinds of
parameter space problems, it is useful to use additional heuristics to select which
parts of the parameter space to try. This may not lead to the absolute best
solution, but it may be close enough. The traveling salesman problem can be
intractable in this way when there are many cities to be visited. However, various
heuristics can be used to get reasonably close to an optimal solution. It may not
be worth a month of additional computation to improve the answer from 98
percent to 99 percent efficiency.

It may be acceptable to explore only a small part of the parameter space. One
approach is to try a reasonable number of randomly scattered points in the
problem’s parameter space first. Then one would try small changes in the
parameters around the best points that might lead to a better solution. This
technique is useful when the parameter space relates relatively smoothly to
changes in the result.

By analogy, this can be described as hill climbing. To find the highest altitude
point in a perpetually fog-shrouded region of land on which to build a television
broadcast antenna, you would put a set of people at random on the terrain. Then
each would climb to the highest point near them. Whomever reached the highest
point would then be declared to have found the highest hill in the land. They may
not have found the absolute highest point if nobody started near that point, but
they will probably find the nearly highest hill or one that is sufficient for their
 Chapter 6. Application considerations 57

antenna tower. This kind of technique is useful when there are too few people
and too many hills to visit all of them.

Often, mathematical calculations are commutative, associative, or linear in some
way. The simple adding of a list of numbers example illustrates this. By altering
some potentially unimportant rules in the computations involved in a calculation,
we may be able to break the ordering requirement and thus make it possible to
execute more of the application in parallel. For example, in a bank account,
deposits and withdrawals are serially calculated and if the account ever goes
negative, then the transaction may be rejected, a fine may be imposed, or the
account may be frozen. If, however, the bank changes its rules and says that the
account must simply be positive at the end of the day, then withdrawals
processed before the deposits would not cause a problem and all of these
calculations could be broken up into separate, parallel-running jobs.

Many times, an application that was written for a single processor may not be
organized or use algorithms or approaches that are suitable for splitting into
parallel subcomputations. An application may have been written in a way that
makes it most efficient on a single processor machine. However, there may be
other methods or algorithms that are not as efficient, yet may be much more
amenable to being split into independently running subcomputations. A different
algorithm may scale better because it can more efficiently use larger and larger
numbers of processors. Thus, another approach for grid enabling an application
is to revisit the choices made when the application was originally written. Some
of the discarded approaches may be better for grid use.

How you go about solving a problem may be quite different, depending on
whether it is unique to be solved only once versus being solved repeatedly with
different inputs. One might use a less efficient but more straightforward
technique if the problem is only to be solved once, reducing debug time and
making good use of a grid’s ability to absorb momentary peaks of activity. On the
other hand, if it is a one- time problem, but is going to take a year of execution,
more thought should be put into the problem before proceeding. The following
are some additional things to think about.

Is there any part of the computation that would be performed more than once
using the same data? If so, and if that computation is a significant portion of the
overall work, it may be useful to save the results of such computations.

If we find that an application performs some sets of computations on the same
input data every time it is run, produces the same output data, and takes a
significant amount of time computing this output, how much output data would
need to be saved to avoid the computation the next time? If there is a very large
amount of output data, it may be prohibitive to save this data. Perhaps there are
a large number of similar computations that might be saved. Even if any one
computation’s results do not represent a large amount of data, the aggregate for
58 Introduction to Grid Computing

all of them might. One needs to consider this time-space trade-off for the
application. One could presumably save space and time by only saving the
results for the most frequently occurring situations. For example, in world class
chess playing programs, the opening positions of the game of chess are usually
stored in a database containing the best move to take in each such position. This
information can be precomputed to a large extent and can save large amounts of
computation time during a chess tournament. However, the number of possible
chess board positions increases very rapidly with more moves into the game, so
only the early move positions of the game or the end-game moves when there
are few pieces left, are precomputed and saved.

In a distributed application, partial results or data dependencies may be met by
communicating among subjobs. That is, one job may compute some
intermediate result and then transmit it to another job in the grid. If possible, one
should consider whether it might be more efficient to simply recompute the
intermediate result at the point where it is needed rather than waiting for it from
another job. One should also consider the transfer time from another job, versus
retrieving it from a database of prior computations.

6.3 Data considerations
When considering applications that may be split into multiple parts for execution
on a grid, it is important to consider the amounts of data that are needed to be
sent to the node performing a calculation and the time required to send it. If the
application can be split into small work units requiring little input data and
producing small amounts of output data, that would be most ideal. The data in
this kind of case is said to be staged to the node doing the work. Sending this
data along with the executable file to the grid node doing the work is part of the
function of most grid systems. However, in many applications, larger amounts of
input and/or output data are involved, and this can cause complications and
inefficiencies.

When the grid application is split into subjobs, often the input data is a large fixed
set of data. This offers the opportunity to share this data rather than staging the
entire set with each subjob. However, one must consider that even with a shared
mountable file system, the data is being sent over the network. The goal is to
locate the shared data closer to the jobs that need the data. If the data is going to
be used more than once, it could be replicated to the degree that space permits.

If more than one copy of the data is stored in the grid, it is important to arrange
for the subjobs to access the nearest copy per the configuration of the network.
This highlights the need for an information service within the grid to track this
form of data awareness. Furthermore, one must be careful that the network does
not become the bottleneck for such a grid application. If each subjob processes
 Chapter 6. Application considerations 59

the data very quickly and is always waiting for more data to arrive, then sharing
may not be the best model if the network data transfer speed to each subjob
does not at least match disk speeds.

Shared data may be fixed or changing. For example, a database may contain the
latest known gene sequences and be constantly growing. However, applications
using this data may not need the latest gene sequence data the instant that it is
available. This makes it easier and more efficient to share such a database
because the updates to it can be batched and processed at off-peak usage times
rather than contending with concurrent access by applications. Furthermore, if
more than one copy of this data exists, and all of the copies do not need to be
simultaneously updated, this improves performance because all applications
using the data would not need to be stopped while updating the data. Only those
accessing a particular copy would need to be stopped or temporarily paused.

When a file or a database is updated, jobs cannot simultaneously read the
portion of the file concurrently being updated by another job. Locking or
synchronizing primitives are typically built into the file system or database to
automatically prevent this. Otherwise, the application might read partially
updated data, perhaps receiving a combination of old and new data.

In some shared data situations, updates must not be delayed. For example, if the
subjobs are processing financial transactions, they must be immediately updated
in the master balances database. Furthermore, if there are copies of this
database elsewhere, they must all be updated with each new item
simultaneously. A number of scaling issues come into play here. There can be a
large amount of data synchronization communications among jobs and
databases. The synchronization primitives can become bottlenecks in overall
grid performance. It is important to consider how the database activity can be
partitioned so that there is less interference among the parts and thus less
potential synchronization contention among those parts.

Applications that access the data they need serially are more predictable, so
various techniques can be used to improve their performance on the grid. If each
subjob needs to access all of the data, then shared copies might be desirable.
Multiple copies of the data should be considered if bringing the data closer to the
nodes running the subjobs would help. If each part of the data is examined only
once, then copies may not be desirable. However, if the access is serial, some of
the retrieval time can be overlapped with processing time. There could be a
thread retrieving the data that will be needed next while the data already
retrieved is being processed. This can even apply to randomly accessed data, if
there is the ability to do some prediction of which portions of data will be needed
next.

One of the most difficult problems with duplicating rapidly changing databases is
keeping them in synchronization. The first step is to see if rapid synchronization
60 Introduction to Grid Computing

is really needed. Can the application be modified to work around this? If not, the
synchronization mechanisms themselves may need to be changed. If the rapidly
changing data is only a subset of the database, memory versions of the
database might be considered. Network communication bandwidth into the
central database repository could also be increased. Is it possible to rewrite the
application so that it uses a data flow approach rather than the central state of a
database? Perhaps it can use self-contained transactions that are transmitted to
where they are needed. The subjobs could use direct communications between
them as the primary flow for data dependency rather than passing this data
through a database first.

In some applications, various database records may need to be updated
atomically or in concert with others. Locking or synchronization primitives are
used to lock all of the related database entries, whether they are in the same
database or not, and then are updated while the synchronization primitives keep
other subjobs waiting until the update is finished. One should look for ways to
minimize the number of records being updated simultaneously to reduce the
contention created by the synchronization mechanism. One should exercise
caution not to create situations that might cause a synchronization deadlock with
two subjobs waiting for each other to unlock a resource the other needs. There
are three ways that are usually used to prevent this problem:

� The first is the easiest, but can be the most wasteful. This is to have all waits
for resources to include time-outs. If the time-out is reached, then the
operation must be undone and started over in an attempt to have better luck
at completing the transaction.

� The second is to lock all of the resources in a predefined order ahead of the
operation. If all of the locks cannot be obtained, then any locks acquired
should be released, and then, after an optional time period, another attempt
should be made.

� The third is to use deadlock detection software. A transitive closure of all of
the waiters is computed before placing the requesting task into a wait for the
resource. If it would cause a deadlock, the task is not put into a wait. The task
should release its locks and try again later. If it would not cause a deadlock,
the task is set to automatically wait for the desired resource.

It may be necessary to run an application redundantly for reliability reasons, for
example. The application may be run simultaneously on geographically distinct
parts of the grid to reduce the chances that a failure would prevent the
application from completing its work or prevent it from providing a reliable
service. If the application updates databases or has other data communications,
it would need to be designed to tolerate redundant data activity caused by
running multiple copies of the application. Otherwise, computed results may be
in error.
 Chapter 6. Application considerations 61

6.4 Summary
Portability and the capability to take advantage of virtual resources are key
attributes of an application that can take advantage of grid computing. As grid
technologies and environments advance, more and more applications will be
able to take advantage of the grid.

In general, applications and their requirements should be analyzed to understand
how they could be designed and developed to reap the benefits from a grid.
However, in many cases today, organizations are looking to identify specific
applications that they could adapt quickly to a grid environment to gain
immediate benefits and to gain experience and knowledge around grid
computing. This chapter has described some of the attributes of applications and
data access patterns that more easily lend themselves to grid computing.
62 Introduction to Grid Computing

Chapter 7. Security

One of the key questions that usually arises when considering a grid
environment is security. This chapter describes security issues, techniques, and
solutions needed to provide a robust and secure grid computing environment.

The information presented up to this point in this book has been generic and not
specific to a particular grid environment. Many of the security issues and topics
described here are also general in nature. However, some of our examples and
discussion are made clearer when we can use a specific implementation, so this
chapter provides some information that is specific to the Globus Toolkit 4. We
introduce Globus Toolkit 4 in more detail in Part 3, “Creating a grid environment
with the Globus Toolkit 4” on page 139. Though we have included these specific
examples, the general concepts and requirements apply to other environments
as well.

7

© Copyright IBM Corp. 2005. All rights reserved. 63

7.1 Introduction to grid security
Security requirements are fundamental to the grid design. The basic security
components are comprised of mechanisms for authentication, authorization, and
confidentiality of communication between grid computers. Without this
functionality, the integrity and confidentiality of the data processed within the grid
would be at risk. To properly secure your grid environment, there are many
different tools and technologies available. This chapter examines some of those
technologies.

In order to better understand grid security, it is best to start with some basic grid
security requirements and security fundamentals. Grid security builds on
well-known security standards. We discuss general security requirements
followed by security fundamentals. In this chapter, we discuss the nuts and bolts
of grid security and the underlying technologies that allow for grid security to
work.

7.1.1 Grid security requirements
A virtual organization is one of the fundamental concepts in a grid environment
today. A virtual organization (VO) is defined as a dynamic group of individuals,
groups, or organizations who define the conditions and rules (business
objectives and policies) for sharing resources.

A grid environment is required to coordinate resource management and sharing
within a VO that potentially spans multiple organizations. This implies that a grid
application may span multiple administrative domains. Each of these domains
would have its own business requirements and policies to adhere to. A grid
security infrastructure is required to comply with local domain-level security
policies and VO-defined policies. To achieve this requirement the grid security
infrastructure requires interoperability amongst various domains while
maintaining a clear separation of the security policies and mechanisms deployed
by both virtual and real organizations.

The Security Architecture for Open Grid Services by Nagaratnam, et. al., 2002;
(http://www.cs.virginia.edu/~humphrey/ogsa-sec-wg/OGSA-SecArch-v1-07192
002.pdf) summarizes the following security challenges in a grid environment:

� Integration

The grid security infrastructure is required to integrate with existing security
infrastructures across platforms and hosting environments. The overall grid
security architecture is required to be implementation agnostic and be
extensible to incorporate new security services as they become available.

� Interoperability
64 Introduction to Grid Computing

http://www.cs.virginia.edu/~humphrey/ogsa-sec-wg/OGSA-SecArch-v1-07192002.pdf
http://www.cs.virginia.edu/~humphrey/ogsa-sec-wg/OGSA-SecArch-v1-07192002.pdf

The Grid services that traverse multiple domains and hosting environments
need to be able to interact with each other to allow domains to exchange
messages (for example, via SOAP/HTTP), allow each party to specify
security policy applied to a secure conversation, and provide mechanisms to
identify a user from one domain in another domain.

� Trust Relationship

A Grid service request can span multiple security domains. The security
domains involved to meet a Grid service request require establishing trust
with each other. Due to the dynamic nature of a grid environment, it is
unfeasible to establish end-to-end trust prior to execution of an application.
The issue of trust establishment becomes complicated with transient Grid
services.

At a high level the grid security requirements can be defined as follows:

Authentication Providing interfaces to plug-in different
authentication mechanisms and means to
convey the mechanism used.

Delegation Providing mechanisms to allow delegation
of access rights from requesters to
services while ensuring that the access
rights delegated are restricted to the tasks
intended to be performed within policy
restrictions.

Single logon This refers to relieving an authenticated
entity from re-authentication for a certain
period of time when subsequent access to
grid resources are requested while taking
multiple security domains and identity
mappings into account.

Credential life span and renewal Ability to refresh requester credentials if a
grid application operation takes longer to
complete than the life-span of a delegated
credential.

Authorization Ability to control access to grid
components based on authorization
policies.

Privacy Allowing both a service requester and a
service provider to define and enforce
privacy policies.

Confidentiality Protect confidentiality of underlying
transport and message content and
 Chapter 7. Security 65

between OGSA-compliant components in
either point-to-point or store and forward
mechanisms.

Message integrity Ensuring unauthorized changes made to
message content or data can be detected
at the recipient end.

Policy exchange Allows security context negotiation
mechanism between service requesters
and service providers based on security
policy information.

Secure logging Provides a foundation for non-repudiation
and auditing that enables all services to
time-stamp and log various types of
information without interruption or
information alteration by adverse agents.

Assurance Provides means to qualify the security
assurance level that can be expected of a
hosting environment. The security
assurance level indicates the types of
security services provided by an
environment. This information is useful in
deciding whether to deploy a service in
the environment.

Manageability This requirement mainly deals with
various security service management
issues such as identity management,
policy management, and so on.

Firewall traversal Ability to traverse firewalls without
compromising local control of firewall
policy to enable cross-domain grid
computing environment.

Securing the OGSA infrastructure This refers to securing core OGSA
components.

The diagram below gives a high-level view of various components of a grid
security model that addresses the requirements described above.
66 Introduction to Grid Computing

Figure 7-1 Grid security model

This grid security model abstracts enterprise security services as a single model
to enable organizations to utilize their existing security infrastructure to
communicate with other enterprises that uses different technology.

Please refer to the The Security Architecture for Open Grid Services by
Nagaratnam, et. al., for a detailed discussion of each of the components shown
in the figure above.

7.1.2 Security fundamentals
Security requires three fundamental services: Authentication, authorization, and
encryption. A grid resource must be authenticated before any checks can be
done as to whether any requested access or operation is allowed within the grid.
Once the user has been authenticated within the grid, the grid user can be
granted certain rights to access a grid resource. This, however, does not prevent
data in transit between grid resources from being captured, spoofed, or altered.
The security service to insure that this does not happen is encryption.

The world of security has its own set of terminology. The International
Organization for Standardization (ISO) has defined the common security
services found in modern IT systems. The list was first put in ISO 7498-2 (OSI
Security Architecture) and later updated in ISO 10181 (OSI Security

Key
Management

User
Management

Policy
Management

Anti-Virus
Management

Intrusion
Detection Secure

Conversations

Access
Control

Environment

Credential and
Identity

Management
(Single Logon)

Audit and
Non-

Repudiation

Policy Expression and Exchange

Binding Security
(Transport, Protocol, Message Security)

Tr
us

t
M

od
el

Se
cu

re
 L

og
gi

ng

Service /
EndPoint

Policy
Authorisation

Policy
Mapping

Rules Privacy Policy
 Chapter 7. Security 67

Frameworks). To have a better understanding of security systems and services,
some security terms with explanations are listed below:

Authentication Authentication is the process of verifying the validity of a
claimed individual and identifying who he or she is.
Authentication is not limited to human beings; services,
applications, and other entities may be required to
authenticate also.

Access control Assurance that each user or computer that uses the
service is permitted to do what he or she asks for. The
process of authorization is often used as a synonym for
access control, but it also includes granting the access or
rights to perform some actions based on access rights.

Data integrity Data integrity assures that the data is not altered or
destroyed in an unauthorized manner.

Data confidentiality Sensitive information must not be revealed to parties that
it was not meant for. Data confidentiality is often also
referred to as privacy.

Key management Key management deals with the secure generation,
distribution, authentication, and storage of keys used in
cryptography.

The Grid Security Infrastructure (GSI) provided as part of the Globus Toolkit and
a Public Key Infrastructure (PKI) provide the technical framework (including
protocols, services, and standards) to support grid computing with five security
capabilities: User authentication, data confidentiality, data integrity,
non-repudiation, and key management.

7.1.3 Important grid security terms
During the course of this chapter, we go over many important security terms.
While some of the terms covered within this section provide the background as to
how grid security works, there are some important concepts that should be
highlighted. This is due to the fact that some areas within grid security require a
precise understanding of the security concepts. Also, some security components
may work slightly differently within a grid environment as opposed to a standard
network. Below are some important security concepts that you should be aware
of when reading this chapter. These concepts are described in greater detail
throughout the chapter.

� Symmetric encryption: Using the same secret key to provide encryption and
decryption of data.
68 Introduction to Grid Computing

� Asymmetric encryption: Using two different keys for encryption and
decryption. The public key encryption technique is the primary example of this
using a public key and a private key pair.

� Secure Socket Layer/Transport Layer Security (SSL/TLS): These are
essentially the same protocol. TLS has been renamed by the IETF, but they
are based on the same RFC.

� Public Key Infrastructure (PKI): The different components, technologies, and
protocols that make up a popular asymmetric encryption solution.

� Mutual Authentication: Instead of using an LDAP repository to hold the public
key (PKI), two parties who want to communicate with one another use their
public key stored in their digital certificate to authenticate with one another.
This topic is covered in 7.2.2, “Grid secure communication” on page 82.

These are all important concepts to remember and will give you a head start in
understanding how grid security works.

7.1.4 Symmetric key encryption
Symmetric key encryption is based on the use of one shared secret key to
perform both the encryption and decryption of data. To ensure that the data is
only read by the two parties (sender and receiver), the key has to be distributed
securely between the two parties and no others. If someone should gain access
to the secret key that is used to encrypt the data, they would be able to decrypt
the information. This form of encryption has performance benefits over
asymmetric encryption, but requires additional care and administration in the
handling of the shared key. As we mention in the next section, asymmetric key
encryption may be used to help manage the keys when using symmetric
encryption.
 Chapter 7. Security 69

Figure 7-2 Symmetric key encryption using a shared secret key

Here are some commonly used examples of a symmetric key cryptosystem:

� Data Encryption Standard (DES): 56-bit key plus 8 parity bits, developed by
IBM in the mid-1970s

� Advanced Encryption Standard (AES): Cryptographic keys of 128, 192, and
256 bits to encrypt and decrypt data in blocks of 128 bits

� Triple-DES: 112-bit key plus 16 parity bits or 168-bit key plus 24 parity bits
(that is, two to three DES keys)

� RC2 and RC4: Variable-sized key, often 40 to 128 bits long

To summarize, secret key cryptography is fast for both the encryption and
decryption processes. However, secure distribution and management of keys is
difficult to guarantee.

7.1.5 Asymmetric key encryption
Another commonly used cryptography method is called public key cryptography.
The RSA public key cryptography system is a prime example of this. In public
key cryptography, an asymmetric key pair (a so-called public key and a private
key) is used. The key used for encryption is different from the one used for
decryption. Public key cryptography requires the key owners to protect their
private keys while their public keys are not secret at all and can be made
70 Introduction to Grid Computing

available to the public. Normally, the public key is present in the digital certificate
that is issued by the Certificate Authority.

The computation algorithm relating the public key and the private key is designed
in such a way that an encrypted message can only be decrypted with the
corresponding key of that key pair, and an encrypted message cannot be
decrypted with the encryption key (the key that was used for encryption).
Whichever (public/private) key encrypts your data, the other key is required to
decrypt the data. A message encoded with the public key, for instance, can only
be decoded with the private key. One of the keys is designated as the public key
because it is made available, publicly, via a trusted Certificate Authority, which
guarantees the ownership of each of the public keys. The corresponding private
keys are secured by the owner and never revealed to the public.

The public key system is used twice to completely secure a message between
the parties. The sender first encrypts the message using his private key and then
encrypts it again using the receiver’s public key. The receiver decrypts the
message, first using his private key and then the public key of the sender. In this
way, an intercepted message cannot be read by anyone else. Furthermore, any
tampering with the message will make it not decrypt properly, revealing the
tampering.

The asymmetric key pair is generated by a computation that starts by finding two
vary large prime numbers. Even though the public key is widely distributed, it is
practically impossible for computers to calculate the private key from the public
key. The security is derived from the fact that it is very difficult to factor numbers
exceeding hundreds of digits.

This mathematical algorithm improves security, but requires a long encryption
time, especially for large amounts of data. For this reason, public key encryption
is often used to securely transmit a symmetric encryption key between the two
parties, and all further encryption is performed using this symmetric key.

7.1.6 The Certificate Authority
A properly implemented Certificate Authority (CA) has many responsibilities.
These should be followed diligently to achieve good security. The primary
responsibilities are:

� Positively identifying entities requesting certificates
� Issuing, removing, and archiving certificates
� Protecting the Certificate Authority server
� Maintaining a namespace of unique names for certificate owners
� Serving signed certificates to those needing to authenticate entities
� Logging activity
 Chapter 7. Security 71

Within some PKI environments, a Registrant Authority (RA) works in conjunction
with the CA to help perform some of these duties. The RA is responsible for
approving or rejecting requests for the certificate of public keys and forwarding
the user information to the CA. The RA normally has the responsibility of
validating that the user’s information is correct before the signed digital certificate
is sent back to the user. Simple CAs, such as those provided with the Globus
Toolkit, can be installed for testing purposes. Within this scenario, the simple CA
handles the job of both the CA and RA within the grid environment. As the
number of certificates expands, these two jobs are normally separated.

One of the critical issues within a grid PKI environment is guaranteeing the
system’s trustworthiness. Before a CA can sign and issue certificates for others,
it has to do the same thing to itself so that its identity can be represented by its
own certificate. That means a CA has to do the following:

1. The CA randomly generates its own key pair.
2. The CA protects its private key.
3. The CA creates its own certificate.
4. The CA signs its certificate with its private key.

If a grid resource needs to securely communicate with another grid resource, it
needs a certificate signed by a CA. The grid resource has to enroll with the CA by
generating an unsigned digital certificate specifying his or her own information.
The information submitted will be used by the CA to identify whether this grid
resource is real and should be granted a certificate. The CA will then sign the
digital certificate if the grid resource is eligible to receive the certificate. This
certificate, after the CA signs the certificate, will be passed back to the
requesting grid resource. So, one basic function of a CA is to create and issue
certificates for a grid resource.

The CA’s private key
The CA’s private key is one of the most important parts in the whole public key
infrastructure. It is used, for example, by the CA to sign every issued digital
certificate within the grid network. Thus, it is especially susceptible to attacks
from hackers. If someone were to gain access to the CA’s private key, they
would be able to impersonate anyone within the environment. Therefore, it is
very important to protect this key. Knowing how sensitive the private key is to the
rest of your grid environment, it is important to provide your CA server with any
available security measures. This includes restricting physical and remote
access and monitoring and auditing the server.

CA cross certification
Generally within a single grid environment, a CA will provide certificates to a
fixed group of users. If two companies or virtual organizations (VOs) need to
communicate with and trust one another, this may require that both CAs trust
72 Introduction to Grid Computing

one another or participate in cross certification. For example, Alice, an employee
belonging to an organization with its own CA, may want to run a job on grid
computer Mike, who is outside the organization, and who belongs to a different
CA. In order to do so, the following should be considered:

� Alice and Mike need a way to obtain each other’s public key certificates.

� Mike needs to be sure that he can trust Alice’s CA. Alice needs to be sure that
she can trust Mike’s CA.

Grid computers from different security domains or VOs will need to trust each
others’ certificates, so the roles and relationships between CAs have to be
defined. The purpose of creating such trust relationships is to eventually achieve
a global, interoperable PKI and enlarge the grid infrastructure. Once the
relationship is established, both of the CAs can be configured to work with the
grid system.

Managing your own CA
It is important to note that the simple CA provided with the Globus Toolkit is a
fully functioning CA for a PKI environment, but it is only recommended for testing
or demo purposes. For a production grid environment, it is recommended that
you evaluate commercial PKI solutions that may better suit your needs and
remove the responsibility of managing your own CA.

7.1.7 Digital certificates
Digital certificates are digital documents that associate a grid resource with its
specific public key. A certificate is a data structure containing a public key and
pertinent details about the key owner. A certificate is considered to be a
tamper-proof electronic ID when it signed by the Certification Authority for the
grid environment.

Digital certificates, also called X.509 certificates, act very much like passports:
They provide a means of identifying grid resources. Unlike passports, digital
certificates are used to identify grid resources. Another difference between a
digital certificate and a passport is that a certificate can (and should) be
distributed and copied without restriction, while people are normally very
concerned about handing their passports to someone else. Certificates do not
normally contain any confidential information, and their free distribution does not
create a security risk.

The important fact to know and understand about digital certificates is that the
CA certifies that the enclosed public key belong to the entity listed in the
certificate. The technical implementation is such that it is considered extremely
difficult to alter any part of a certificate without easy detection. The signature of
the CA provides an integrity check for the digital certificate.
 Chapter 7. Security 73

When a grid client wants to start a session with a grid recipient, he or she does
not attach the public key to the message, but the certificate instead. The recipient
receives the communication with the certificate and then checks the signature of
the Certificate Authority within the certificate. If the signature was signed by a
certifier that he or she trusts, the recipient can safely accept that the public key
contained in the certificate is really from the sender. This prevents someone from
using a fraudulent public key to impersonate the public key owner.

Contained in your digital certificate is the information about you and your public
key. When you communicate with another party on the grid, the recipient will use
your public key (contained in your digital certificate) to decrypt the SSL session
ID, which is used to encrypt all data transferred between grid computers.

A digital certificate is made up of a unique distinguished name (DN) and
certificate extensions that contain the information about the individual or host that
is being certified. Some information in this section may contain the subject’s
e-mail address, organizational unit, or location.

Figure 7-3 is a graphical depiction of the digital certificate.

Figure 7-3 Digital certificate
74 Introduction to Grid Computing

Obtaining a client or a server certificate from a CA involves the following steps:

1. The grid user requiring certification generates a key pair (private key and
certificate request containing the public key).

2. The user signs its own public key and any other information required by the
CA. Signing the public key demonstrates that the user does, in fact, hold the
private key corresponding to the public key.

3. The signed information is communicated to the CA. The private key remains
with the client and should be stored securely. For instance, the private key
could be stored in an encrypted form on a Smartcard, or on the user’s
computer.

4. The CA verifies the that the user does own the private key of the public key
presented.

5. The CA (or optionally an RA) needs to verify the user’s identity. This can be
done using out-of-band methods, for example, through the use of e-mail,
telephone, or face-to-face communication. A CA (or RA) can use its own
record system or another organization’s record system to verify the user’s
identity.

6. Upon a positive identity check, the CA creates a certificate by signing the
public key of the user, thereby associating a user to a public key. The
certificate will be forwarded to the RA for distribution to the user.

Verification of the user
The authentication described above is a one-time authentication for the purpose
of certificate issuance. This can be compared to the process when a government
authority issues a passport to an individual. The passport then serves as an
authentication mechanism when this individual travels to foreign countries. Just
like passports, digital certificates can subsequently be used in daily operations
for authenticating subjects to other parties that require authentication.

Different types of certificates
There are two different types of certificates that are used within a grid
environment. The first type of certificate is a user certificate that will identify
different users on the grid. The second type of certificate is issued to grid
servers.

User
As a grid user, you will need a user certificate to identify yourself within the grid.
This certificate will identify your user name within the grid, not your server or
workstation name. For a user named John Doe, the digital certificate might have
the distinguished name:

“/O=Grid/O=GridTest/OU=test.domain.com/CN=John Doe"
 Chapter 7. Security 75

Server
If you plan on running PKI-enabled programs on your server, you will need to
register a server certificate. This server certificate will register the fully qualified
domain name of your server to your certificate. For your certificate to work, your
fully qualified DNS name will have to match your digital certificate. For example,
if your a server name was goban.<companyname>.com, your server certificate
would read:

/CN=Service/goban.<companyname>.com

PKI directory services
Within some PKI environments, the signed keys are published to a public
directory for easy retrieval. Instead of having the clients handle the mutual
authentication, an external server is responsible for handling the authentication
process. A good example of this process is the MyProxy server, which works as
a grid Web proxy for Web portals. In this example, the user would authenticate to
the Web portal, which would request the user’s online credentials that are stored
in the directory. Upon this authentication, the proxy would extract the DN within
their digital certificate and match their credentials with the public key stored
within the directory. If they two keys matched up, the user would be given access
to resources within the grid.

7.2 Grid security infrastructure
Now that we have gone over some security fundamentals, explaining how the
different grid security components interact will be much easier. In this section of
the chapter, we choose to summarize the basic mechanisms used by the Grid
Security Infrastructure (GSI) provided by the Globus Toolkit. This is just one
example of an implementation of a grid security infrastructure. We describe how
the different security components within the Globus Toolkit provide security
services. We examine different scenarios and walk through the various functions
of the GSI.

7.2.1 Getting access to the grid
In order to build a grid environment using the GSI components, you have to
create a set of keys for public key cryptography and request your certificate from
the Certificate Authority and a copy of the public key of the CA. Figure 7-4 on
page 77 and the following procedure describe the steps to establish the GSI
communication:

1. Copy the Certificate Authority’s public key to your grid host with which you set
up GSI.
76 Introduction to Grid Computing

2. Create your private key and a certificate request.

3. Send your certificate request to CA by e-mail or another more secure way if
you are running a production system and need to positively identify the
sender.

4. CA signs your request to make your certificate and sends it back to you.

Figure 7-4 Preparation procedure for GSI

When that procedure has been completed and you have received your signed
digital certificate, you will have three important files on your grid host. They are:

� The CA’s public key
� The grid host’s private key
� The grid host’s digital certificate

In order to provide secure authentication and communication for your grid
computer, you should not let others have access to your private key. An extra
layer of security was added to the private key, which includes a secret
passphrase that must be used when using your private key along with your
digital certificate. This is to prevent someone from stealing your digital certificate
and private key and being able to automatically use them to access grid
resources. The host key is protected by the local operating system privileges
within the grid server.

Authentication and authorization
Imagine a scenario where you need to communicate with another grid
computer’s application and you want to ensure that the data from the host is
really from the host. Besides making sure that you can trust the grid host, you
want to make sure the grid host that you want to communicate with trusts your
grid computer. In these cases, you can use the authentication function of GSI, as
shown in Figure 7-5 on page 79. After you have authenticated with the remote
grid resource, you then have the option of having the grid resource give you

GSI sign

Certificate AuthorityGrid Host

Your certificate

Your certificate
signing request

Your private key

CA's Public Key copy

send

send

create2

3
4

1

Your certificate

Your certificate
signing request

4

CA's Public Key

CA's Private Key
 Chapter 7. Security 77

access to resources on your behalf. In this case, you can use the authorization
function of GSI.

Through the steps described below, grid host A (or a user on grid host A) is
authenticated and authorized by grid host B. Almost all steps are for
authentication, except the last authorization step:

1. A user or application on A sends its certificate to the host B.

2. Host B will get the public key for A and will use it to extract the subject from
the certificate.

3. Host B creates a random number and sends it to host A.

4. Host A receives the number, encrypts it with its private key, and sends the
encrypted number to host B.

5. Host B will decrypt the number and check that the decrypted number is really
the one that it sent before. Then host B authenticates that the certificate is
really that from the user on host A, because only that user on host A can
encrypt the number with its private key.

6. The certificate is authenticated by host B, and the subject in the certificate is
mapped to a local user name. The subject is in the form of Distinguished
Name (DN) like “O=Grid/O=Globus/OU=itso.grid.com/CN=your name“, and it
is the name that is used by LDAP to distinguish the entries in the directory
service. The subject is used to specify the user identity in a grid environment.
The user defined by the Distinguished Name is authorized by host B to act as
a local user on host B.
78 Introduction to Grid Computing

Figure 7-5 Authentication procedure

In grid environments, your host will become a client in some cases, and in other
cases, a server. Therefore, your host might be required to authenticate another
host and be authenticated by the host at the same time. In this case, you can use
the mutual authentication function of GSI. This function is almost the same as
explained above, and it proceeds with the authentication steps, and changes the
direction of hosts and redoes the procedure.

Briefly speaking, authentication is the process of sharing public keys securely
with each other, and authorization is the process that maps your DN to a local
user/group of a remote host.

Delegation
Imagine a situation where you distribute jobs to remote grid machines and let
them distribute their child jobs to other machines under your security policy. In
this situation, you can use the delegation function of GSI, as shown in Figure 7-6
on page 81.

If you are on the side of host A, you can create your proxy at host B to delegate
your authority. This proxy acts as yourself, and submits a request to host C on
your behalf.

user name

"<Subject>" <User Name>

grid-mapfile

mapping

Grid Host A Grid Host B

Your certificate Your certificate

random

Your
public key

random

random

CA's
public keyYour

private key

password

subject

encrypt & send

decrypt

get your public key
& subject

identify

1
send

2

4

4
5

5

3 create & send

6

 Chapter 7. Security 79

The next steps (see “Proxy creation” on page 80) describe the procedure to
create your proxy (proxy creation) at a remote machine, and the procedure to
submit a request (see “Proxy action” on page 80) to the other remote host on
your behalf (proxy action).

Proxy creation
For proxy creation:

1. A trusted communication is created between host A and host B.

2. You request host B to create a proxy that delegates your authority.

3. Host B creates the request for your proxy certificate, and sends it back to host
A.

4. Host A signs the request to create your proxy certificate using your private
key and sends it back to host B.

5. Host A sends your certificate to host B.

Proxy action
For proxy action:

1. Your proxy sends your certificate and the certificate of your proxy to host C.

2. Host C gets your proxy's public key through the path validation procedure:

a. Host C gets your subject and your public key from your certificate using
CA's public key.

b. Host C gets the proxy's subject and your proxy's public key from your
proxy's certificate using your public key.

c. The subject is a Distinguished Name similar to
"O=Grid/O=Globus/OU=itso.grid.com/CN=your name". The subject of the
proxy certificate is similar to its owner's (your) subject and is similar to
"O=Grid/O=Globus/OU=itso.grid.com/CN=your name/CN=proxy". So in
order to validate the proxy certificate, host C just has to check that the
words that eliminate the words "/CN=proxy" from the proxy's subject are
just the same as your subject’s. If it is validated, your proxy is
authenticated by host C and able to act on your behalf.

3. The proxy encrypts a request message using its private key and sends it to
host C.

4. Host C decrypts the encrypted message using the proxy's public key and gets
the request.

5. Host C runs the request under the authority of a local user. The user is
specified using a mapping file, which represents the mapping between the
grid users (subject) and local users (local user name).
80 Introduction to Grid Computing

Figure 7-6 Delegation procedure of user’s proxy

The procedure in Figure 7-6 represents remote delegation, where a user creates
a proxy at a remote machine. There is also a local delegation, where a user
creates a proxy certificate at the local machine; for that task, Globus Toolkit uses
the grid-proxy-init command and gatekeeper daemon mechanism.

When you make a proxy on a remote machine (in remote delegation), the proxy's
private key is stored on the remote machine, so the super-user of that machine
can access your proxy's private key. This delegated credential can be vulnerable
to attacks. In order to avoid this, it is recommended that the proxy attain
restricted policies from its owner. The standardization of this proxy restriction is

Grid Host A Grid Host B

creat proxy certificate request

Proxy certificate

Proxy
certificate request

Your
private key

password

Grid Host C
1 creat secure communication

3sign proxy certificate and
send back

4

Proxy certificate

Your certificate

send your
certificate

5

Proxy
certificate request

Proxy certificate
Your

subject

Your public
key

send your
certificate and
proxy certificate

7 path validation & get proxy
public key

CA's
public key

Your
certificate

Proxy public
key

Proxy
subjectrequest

request

Proxy
private key

8 encrypt request
& send decrypt9

mapping & execution10

local user
name

Proxy
subject

"<Subject>" <User Name>

grid-mapfile

request to create proxy2

Your certificate

6

 Chapter 7. Security 81

now going on under GSI Working Group of the Grid Forum Security Area, and
you can see more details in its Internet draft at:

http://www.ietf.org/internet-drafts/draft-ietf-pkix-proxy-03.txt

7.2.2 Grid secure communication
While we have gone over the process of using PKI within a grid environment and
the different functions of GSI, it is still important to understand the
communication mechanisms used within the Globus Toolkit. By default, the
underlying communication is based on the mutual authentication of digital
certificates and SSL/TLS.

The digital certificates that have been installed on the grid computers provide the
mutual authentication between the two parties. We discuss this process in detail
later on in this section. The SSL/TLS functions that OpenSSL provides will
encrypt all data transferred between grid hosts. These two functions together
provide the basic security services of authentication and confidentiality.

Mutual authentication
To allow secure communication within the grid, the OpenSSL package is
installed as part of the Globus Toolkit. Within the Globus Toolkit, OpenSSL is a
software package that is used to create an encrypted tunnel using SSL/TSL
between grid clients and servers.

The process of mutual authentication begins when two grid resources want to
share resources. Instead of using a key repository, each grid resource
authenticates with one another based on their digital certificate. For example,
one grid resource will attempt to establish secure communication with another
grid resource. Before the recipient will allow the client access to their resources,
they need to authenticate to one another. This process is documented below with
the SSL handshake.

SSL handshake
In order to establish the secure communication between the grid server and grid
client, a handshake must be established. This handshake is responsible for
determining the SSL settings, exchanging public keys and the basis for the
mutual authentication process. The handshake process is as follows:

1. A grid client contacts a remote grid server to start a secure session by using a
digital X.509 ID certificate.

2. The grid client automatically sends to the server the client's SSL version
number, cipher settings, randomly generated data, and other information the
server needs to communicate with the client using SSL.
82 Introduction to Grid Computing

http://www.ietf.org/internet-drafts/draft-ietf-pkix-proxy-03.txt

3. The grid server responds, automatically sending the grid client the site's
digital certificate, along with the server's SSL version number, cipher settings,
and so on.

4. The customer's client examines the information contained in the server's
certificate, and verifies that:

a. The server certificate is valid and has a valid date.

b. The CA that issued the server certificate has been signed by a trusted CA
whose certificate is built into the client.

c. The issuing CA's public key, built into the client, validates the issuer's
digital signature.

d. The domain name specified by the server certificate matches the server's
actual domain name.

5. If the server can be successfully authenticated, the grid client generates a
unique session key to encrypt all communications with the grid server using
asymmetric encryption.

6. The user's client encrypts the session key itself with the server's public key so
that only the site can read the session key, and sends it to the server.

7. The server decrypts the session key using its own private key.

8. The grid client sends a message to the server informing it that future
messages from the grid client will be encrypted with the session key. The grid
server then sends a message to the grid client informing it that future
messages from the server will be encrypted with the session key.

9. An SSL-secured session is now established. SSL then uses symmetric
encryption (which is much faster than asymmetric PKI encryption) to encrypt
and decrypt messages within the SSL-secured pipeline.

10.Now that the first grid resources have authenticated, the second grid resource
will now authenticate using the same process.

11.Once the session is complete, the session key is eliminated.

As long as both grid resources have a valid digital certificate, the process of
mutual authentication will succeed. This is a good example of how grid security
uses both symmetric and asymmetric encryption to authenticate and secure data
transfer between grid resources. A grid client uses asymmetric encryption to
authenticate, and once it is authenticated, it passes symmetric encryption along
with a shared secret key to encrypt and decrypt all data traffic between them.

Other grid communication
If you cannot physically access your grid client or server, it may be necessary to
gain remote access to the grid. While your operating systems default telnet
 Chapter 7. Security 83

program works fine for remote access, the transmission of the data is in clear
text. That means that the data transmission would be vulnerable to someone
listening or sniffing the data on the network. While this vulnerability is low, it does
exist and needs to be dealt with.

To secure the remote communication between a client and grid server, the use of
Secure Shell (SSH) can be used. SSH will establish an encrypted session
between your client and the grid server.

7.2.3 Grid security step-by-step
In order to better understand the process for accessing grid resources, we have
outlined the basic process from start to finish.

Local delegation
This program is used to get a session proxy certificate using your long-term
certificate.

The proxy certificate is used to authenticate the user and user programs to
resources on the grid. For example, the user can run jobs on the grid with the
globusrun command. The globusrun command is authenticated with the proxy
certificate. The proxy certificate is created with the grid-proxy-init command. A
proxy certificate must be created before jobs can be run on the grid. The proxy
certificate is a session certificate with a limited or short-lived life time, which is
signed by the user certificate. This is functionally equivalent to the Kerberos kinit
program or DCE dce_login.

The motive behind this model is to provide for the single sign-on. The single
sign-on is the grid-proxy-init. Once the grid proxy certificate is created, this
certificate is used for authentication on the grid.

This model works because it creates a certificate trust hierarchy, as shown in
Figure 7-7 on page 85.
84 Introduction to Grid Computing

Figure 7-7 Authentication process

The hierarchy is as follows:

1. The remote grid resource trusts the CA. The remote grid resource trusts the
CA because it placed the CA's certificate in /etc/grid-security/certificates.

2. The remote grid resource can authenticate the user certificate because it is
digitally signed by the CA.

3. The remote grid resource can authenticate the user proxy certificate because
it is digitally signed by the user certificate.
 Chapter 7. Security 85

It is analogous to meeting three people at a party: CA, Alice, and Proxy. Proxy
hands you a card that is similar to Figure 7-8.

Figure 7-8 Certificate signed by Alice

You are not familiar with Alice's signature, so you take a card from Alice, which is
similar to Figure 7-9.

Figure 7-9 Certificate signed by CA
86 Introduction to Grid Computing

You keep a copy of CA's signature in you wallet. You compare the CA signature
on Alice's card to the copy you keep in your wallet and they match. You now
have an authenticated copy of Alice's signature, which you compare to the
signature on Proxy's card. They match, and you now trust you that you are
talking to Proxy. You have authenticated that this person is Proxy.

The grid-proxy-init command uses the SSL library to create a proxy certificate
that is stored in /tmp/<filename>, where <filename> is equal to x509up_u<uid>,
where uid is equal to the UID of the user running grid-proxy-init. The
permission of this file is “-rw------- owner group” of the user running the
command.

This file is an X.509 certificate where the issuer is the user’s primary certificate.
Basically, the user’s primary certificate acts like a CA to create this session or
proxy certificate. The proxy certificate is considered a short-lived certificate. By
default, it has a validity period of 12 hours, but this can be specified by the
grid-proxy-init parameter -hours.

The proxy certificate, as with all X.509 certificates, contains a unique name and
public key. The proxy certificate's unique subject name or distinguished name is
the primary certificate’s unique name plus "CN=proxy" (limited proxy). This is
best illustrated with the grid-cert-info and grid-proxy-info commands. If the
grid-cert-info command is run with the file name of our primary certificate, the
contents of the certificate are displayed:

%grid-cert-info -f.globus/usercert.pem -subject
/C=US/O=IBM/OU=GridLPP/OU=austin.ibm.com/CN=griduser

The -subject flag displays the subject or distinguished name (DN).

A complete description of X.509 certificates can be found in RFC 2459. The
/tmp/x509_up_u<uid> file created by grid-proxy-init contains two other
components in addition to the proxy certificate. It also contains the private key of
the proxy certificate and the user certificate.

The proxy certificate’s private key is only protected by the file permissions of
/tmp/x509_up<uid>. Since the proxy certificate is short lived, a compromised or
stolen certificate will become useless at the end of its life.

The user certificate's private key remains encrypted in the
$HOME/.globus/userkey.pem file. It can only be accessed with the passphrase
that is given when the user certificate is created with the grid-cert-request
command.
 Chapter 7. Security 87

7.3 Grid infrastructure security
Apart from the different GSI components and technologies, there are many other
infrastructure security components that are needed to secure the grid. As in other
areas of grid design, the grid infrastructure security builds on other security
principles. While these security components are optional, they are considered
standard within many production networks. We explore some of these basic
security concepts and see how they fit into a grid infrastructure.

7.3.1 Physical security
Once again, the security of grid infrastructure is based on other common security
fundamentals. The basics involve solid physical security practices for all grid
computers. The physical environment of a system is also considered a part of the
infrastructure. If the servers are kept in an open room, no matter how secure the
applications are designed or how complex the cryptographic algorithms are, the
server services can easily be interrupted, such as being powered off, or
otherwise tampered with. Therefore, physical access should be controlled and is
part of the security policies that need to be defined.

The CA server should be located in a robust, dedicated, and locked room. All
accesses should be logged and controlled. The power supply to the servers
should never be interrupted. This means an uninterruptable power supply (UPS)
must be used. However, a UPS may still run out of electricity after a prolonged
period. In such a case, the servers should be able to automatically back up the
data and properly shut down.

For maximum security, the network segment where the PKI-sensitive server
machines are installed should be physically and logically separated from the rest
of the network. Ideally, the separation is done through a firewall that is
transparent only for PKI-related traffic. Normally, PKI traffic is reduced to using
only a few TCP/IP ports.

7.3.2 Operating system security
A review of the configuration files for each operating system and middleware
component within the scope of the project determines how each effectively
allows authorized users access based on your security policy and prevents and
detects unauthorized access attempts at all times. You should:

� Remove any unnecessary processes from the servers. If the grid server does
not need sendmail or an FTP server running, these processes should be
disabled.

� Remove any unnecessary users or groups.
88 Introduction to Grid Computing

� Use strong passwords for all users on the grid server.

� Update your server with the latest updates and security FixPacks. This
includes all software the has been installed as well.

� Restrict access to directories that contain security-related information, such
as the /.globus directory (in a Globus Toolkit) environment.

� Consider using host IDS to monitor important directories on the server.

� Enable logging and auditing for the server.

� Use a uniform operating system build whenever possible.

� Enable file-level restrictions on important files within the server.

� Make periodic reviews of the operating system every other month to ensure
that nothing major has changed.

� Enable anti-virus protection.

7.3.3 Grid and firewalls
Firewalls can be used within a networked environment to logically separate
different sets of computers that require additional security. In a grid environment,
this is no different. The use of firewalls within a grid design helps restrict network
access to computers. The firewall is an important piece of the security
infrastructure, so it needs to be carefully analyzed and understood before it is
implemented.

7.3.4 Host intrusion detection
A recommended option for further securing your grid computers is to invest in a
host intrusion detection (IDS) product. As with any software application that
stores important files within the local workstation, host intrusion detection can
add a greater defense for anyone manipulating files on the workstation that
should not be doing so. If the host IDS product detects a changed file on the
server, it can send an alert to a central monitoring workstation to log and alert the
necessary people.

An intrusion detection system gathers and analyzes information from various
areas within a computer or a network to identify possible security breaches,
which include both intrusions (attacks from outside the organization) and misuse
(attacks from within the organization). An intrusion detection system uses
vulnerability assessment (sometimes referred to as scanning), which is a
technology developed to assess the security of a computer system or network.

Intrusion detection functions include:

� Monitoring and analyzing both user and system activities
 Chapter 7. Security 89

� Analyzing system configurations and vulnerabilities
� Assessing system and file integrity
� Ability to recognize typical patterns of attacks
� Analysis of abnormal activity patterns
� Tracking user policy violations

Network intrusion detection
There can be a point made for network IDS within a grid environment, but some
of that benefit would be lost due to the encryption between grid servers. While a
network IDS would be able to use special signatures for standardized network
traffic, the introduction of a network-based IDS system would be lost because of
the SSL/TLS encryption. While a network IDS system could not see the data
payload portion of the packet that is encrypted, the network IDS could respond to
events based on the packet header that is unencrypted. Network IDS is best
suited for placement where it can analyze unencrypted traffic.

The use of any IDS is an optional component within an architecture, but is
strongly recommended for good security practices.

7.4 PKI security policies and procedures
Good security policies and procedures are used to complement the variety of
security components that make up a security infrastructure. This is no different in
a grid environment, but may take on more importance since you may be dealing
with networks out of your control. To help manage this risk, different policies and
procedures should be used. These policies and procedures will help build a
certain way of managing the security controls.

One of the first steps an organization has to consider when comprehensive
security solutions are to be introduced is to define a feasible set of security
policies. In the first place, this has little to do with a PKI because security policies
need to be in place for any kind of IT infrastructure. Only when the deployment of
a PKI has been decided do some additional benefits and issues come up that
need to be defined within security policies. The following subsections discuss
security policies that primarily relate to a PKI.

7.4.1 Certificate Authority
A PKI must be operated in accordance with defined policies. The deployment of
a PKI system in an organization requires the development of security policies
and processes for that organization. The demo CA that is provided within the
Globus Toolkit provides the software needed in order to build a CA, but
unfortunately none of the policies. In this section, we examine some of the basic
90 Introduction to Grid Computing

policies and expectations that a CA would normally be responsible for. For any
type of production CA duties, it is suggested that you examine a commercial
vendor to provide these services for you.

The standardization effort has been made to involve security policies in a PKI
framework systematically, as outlined in RFC 2527, Internet X.509 Public Key
Infrastructure Certificate Policy and Certification Practices Framework.
According to X.509, a certificate policy is “a named set of rules that indicates the
applicability of a certificate to a particular community and/or class of application
with common security requirements.” A more detailed description of the practices
followed by a CA in issuing and otherwise managing certificates may be
contained in a Certification Practice Statement (CPS) published or referenced by
a CA.

A certificate policy’s extension contains a sequence of one or more policy
information terms, each of which consists of a registered object ID (OID) and
optional qualifiers. Applications with specific policy requirements will have to
recognize the OID meaning in at least the same security domain. If the required
policy’s OID is not contained in the certificate extension field, or if any existing
critical OIDs are not understood by the application, the application has to reject
the client’s request. Security policies also result in processes that have to be in
place and subsequently enforced. Processes describe (and/or mandate) the way
an infrastructure is utilized by its administrators and users. Processes may
include elements, such as:

� The certificate requesting, issuance, distribution, and revocation processes.

� The use of certificates for client authentication

� The use of certificates for securing e-mail communication

� The use of certificates for inter-organization communication

� Procedures to follow when security violations are suspected

� Handling guidelines for private keys and certificates

� Application development guidelines for PKI exploitation (such as user
authentication using certificates)

A PKI will alter many existing business processes and require many new ones to
support it. These processes can cover technical, organizational, legal, and
infrastructure elements of the whole workflow.

� CA key generation

– Who is involved?
– How is the process secured?

� CA key backup

How is a backup of the CA private key accomplished?
 Chapter 7. Security 91

� CA key restore

How is a key restored?

� CA key compromise

What happens if the key is broken?

� User registration

How does a user obtain a certificate?

� Certificate revocation

How is a certificate revoked?

CA implementation
If you are planning on implementing your own Certificate Authority, you will likely
build on tools similar to those provided with the Globus Toolkit. The Globus
Toolkit provides some of the basic tools for a demo CA within a lab or testing
environment, but there is more to building a CA than installing a few scripts.

In order to manage and administer your own CA, you should be aware of some
of the other resources and policies that are normally required. If you plan on
managing a CA yourself, your plan for implementation must include:

� Required resources and skills
� Required PKI and security process additions and changes
� Recommended implementation time line and dependencies
� Required changes to the technical infrastructure
� Adoption of the CPS, certificate, and security policies
� Required PKI and security policy additions and changes
� All required checkpoints and approvals

7.4.2 Security controls review
When building any new environment or implementing a new software application,
it is always a good idea to perform a security health check. A security health
check will help determine how these new changes will affect the overall security
of the environment and any other areas of change. This can help provide
guidance on the overall use of security controls or how you are managing
security within your environment. A review of your security controls can help you
better understand how security works for your passwords, administration,
toolsets, auditing, and monitoring within your environment. This will provide an
in-depth review of the site security controls in place and the related processes
used within the organization.
92 Introduction to Grid Computing

7.5 Summary
This chapter has described in some detail the types of considerations involved in
security related to grid environments. For specific examples, we have used the
Globus Toolkit 4 environment and the PKI infrastructure that it delivers.
 Chapter 7. Security 93

94 Introduction to Grid Computing

Chapter 8. Design

This chapter provides architectural design considerations for grid computing.
Other design topics that will be discussed are different grid topologies, grid
infrastructure design, and grid architecture models.

At a glance, the following topics are discussed:

� Grid architecture design concepts
� Different grid topologies
� Grid architecture models
� Building a grid architecture
� Grid architecture conceptual model

8

© Copyright IBM Corp. 2005. All rights reserved. 95

8.1 Building a grid architecture
The foundation of a grid solution design is typically built upon an existing
infrastructure investment. However, a grid solution does not come to fruition by
simply installing software to allocate resources on demand. Given that grid
solutions are adaptable to meet the needs of various business problems,
differing types of grids are designed to meet specific usage requirements and
constraints. Additionally, differing topologies are designed to meet varying
geographical constraints and network connectivity requirements. The success of
a grid solution is heavily dependant on the amount of thought the IT architect
puts into the solution design.

Once the functional and non-functional requirements are known, the IT architect
should readily be able to select the type of grid and the best topology required to
satisfy the majority of the business requirements. When armed with this
information, the high-level grid design will be easier to complete, and by
leveraging the use of known grid types and topologies, articulating the solution
design will require much less effort.

It is important to focus on starting small and to begin building the basic
framework of the design. Rather than setting out to build the desired end state
grid solution all at once, consider building the grid solution in a phased approach.
The milestone for the initial phase is to provide an intragrid solution, which is
essentially a grid sandbox that supports a basic set of Grid services. This
solution would support a single location built upon the core grid components,
such as a security model, information services, workload management, and the
host devices. As long as this model supports the same protocols and standards,
this design can be expanded as needed.

The first step of the design process is to build a graphical representation of the
grid components. The subsequent phases of the design will be focused on the
next level of architecture. This phase of the design is a starting point for
architects, technical managers, and executives to understand the overall
structure of the architecture.

At a glance, the grid architecture design should offer the following:

� The “blueprint” for the detailed conceptual design

� The use of open standards prescribed by the grid framework

� A multi-dimensional tiered and layered view of the grid infrastructure, which
demonstrates the ability to logically partition grid resources so that their
service consumption does not impact other grid locations

� The middleware components and subsystems for a grid infrastructure
integration
96 Introduction to Grid Computing

� A design for communication to both business and technical personnel, for
budget and planning purposes, and to provide application development an
illustration of how the shared grid infrastructure will impact the middleware
solution design

� The distribution of applications and subsystems

� A means for identifying the necessary technical, infrastructural, and other
middleware components and subsystems for a grid infrastructure

8.1.1 Solution objectives
The design objectives provide a basic framework for building the grid
infrastructure. The advantage of using design solution objectives is to start
documenting certain areas that can affect the overall design. Within your design,
you are going to need to make sure that the grid can provide a certain amount of
security, availability, and performance. By documenting these different objectives
or requirements, it will make your design a lot easier to follow. You will also be
able to justify some of your decisions during the course of the design by being
able to come back to certain objectives and making sure they were met.

Once the design objectives have been defined, you can separate them into
individual subsystems. This allows each design objective to be worked on in
parallel, while at the same time providing a cohesiveness for the overall
architecture. Once you have documented the core subsystems of the design,
you can focus on the different requirements that your grid design will comprise.

When you start building the initial pieces of your design, you need to make sure
that your solution objectives line up with the customer’s requirements. For a grid
design, this is especially important, as there are not only the standard
infrastructure components to consider, but specialized middleware and
application integration issues as well. Making sure that your solution objectives
satisfy your stated requirements will allow you to design a working grid.

Security
Within any networked environment, there is going to be some risk and exposure
involved with the security of your infrastructure. Unless the computers are
unplugged in a locked room, there is the potential that someone may bypass the
security and get access to protected resources. Whether the weaknesses are
exploited in the infrastructure, application, configuration, or administration, there
is some level of risk.

Security objectives are put in place to help to reduce that risk to an acceptable
level. While no design is 100 percent secure, the level of risk is reduced and
controlled through the use of security controls. The goal of the security objectives
 Chapter 8. Design 97

are to examine the security requirements and implement the necessary tools and
processes to reduce the risk involved.

The degree of security involved is based on the type of grid topology and the
data the security will be protecting. The security requirements for a grid design
within a bank will be completely different from those of an academic institution
doing research. Whatever the security requirements may be, the security design
objectives for the grid design need to be a central focus for the conceptual
architecture.

Considering that the basic grid security model is based on PKI, it is imperative
that the security components are designed and thought out carefully. While PKI
has been around for a while, there are different components and necessary
processes that should be identified. Rushing this process could lead to many
problems in the future.

With the PKI architecture being the focus of the initial design, there are still areas
that need attention. The infrastructure components (firewalls, IDS, anti-virus, and
encryption) and the processes to manage these pieces are all part of the security
objectives. Knowing which areas match up with your existing environment is the
first step to robust security. The following bullet points are an example of some
security questions that will be answered during the course of the design. The first
three assume that the enterprise will provide its own certificate authority, which is
not usually recommended:

� Where will my CA be deployed and how will we manage it?

� Do I have the necessary processes in place to administer my own CA?

� What are the responsibilities for managing my own CA?

� How will I administer security on the local servers?

� Are my servers of a uniform build or common operating environment?

� Do I have a consistent software build across critical grid infrastructure
systems?

� Which processes are running on my servers?

� Will any existing applications conflict with or further expose my grid to any
vulnerabilities?

Availability
Availability in its simplest terms commonly refers to the percentage of time that a
site is up and servicing job requests. Determining how much availability should
be built into the design is part of the availability objectives. This leads down the
path of discovering how many potential single points of failure exist and how
much redundancy should be built into the design. It is inevitable that some
98 Introduction to Grid Computing

components will fail during a lifetime of usage, but this can be managed by using
redundant components where possible.

Whenever you review various availability scenarios, there are always
discussions about the amount of availability that is required. In this respect, a
grid design is no different from any other infrastructure. A good start is to list the
potential components within the design that should be resilient to failure. Once
these components have been identified, you can seek out the specific availability
options for those components. In the following examples, some different
infrastructure options are described.

An important point that needs to be discussed is the availability of dynamic
resources within a grid environment. Grid is not like a standard environment
where resources are fixed and do not change regularly. Within grid
environments, resources are constantly changing according to the membership
and participation in the grid. When grid resources are active, they can register
with information services within the grid to alert the system of their state. It is
important to make sure that when you design your grid, you keep this in mind.

Besides the grid middleware components, the different infrastructure
components will also require different levels of availability. Some components
will be more critical than others, and it will be up to your design to make sure that
you account for this. When going through the different availability requirements,
make sure that you account for both the grid and infrastructure components. The
following lists are some examples of availability resources that should be
accounted for:

� Grid middleware

– Workload management
– Grid directory and indexing service
– Security services
– Data storage
– Grid software clustering

� Networks

– Load-balancing
– High-availability routing protocols
– Redundant and diverse network paths

� Security

– Redundant firewalls

� Datastore

– Mirroring
– Data replication
– Parallel processing
 Chapter 8. Design 99

� Systems management

– Backup and recovery
– LDAP replicas
– Alerts and monitoring to signal a failure within the environment

Every so often, different components necessary to the workflow process fail
periodically and disrupt availability of the system. You can help mitigate the risk
involved by eliminating the single points of failure within your environment
through the use of redundant software or hardware components.

To give you a better idea of some different availability targets, the following list
presents an example of the expected system availability in a whole year:

� Normal commercial availability (single node): 99–99.5 percent, 87.6–43.8
hours of system down

� High availability: 99.9 percent, 8.8 hours of system down

� Fault resilient: 99.99 percent, 53 minutes of system down

� Fault tolerant: 99.999 percent, 5 minutes of system down

� Continuous processing: 100 percent, 0 minutes of system down

Keep in mind, however, that the redundancy that is added to the grid
infrastructure will normally increase the costs within the infrastructure. It is up to
the business to help justify the costs that would bring an environment from 99.9
percent availability per year up to 99.99 percent per year. While the difference in
time between those two numbers is about eight hours, the costs associated may
be too much to justify the increased availability.

Performance
The performance objective for a grid environment is to most efficiently utilize the
various resources within the grid. Whether that includes spare CPU cycles,
access to a federated databases, or application processing, it is up to you to
match the performance goals of the business and design accordingly.

If your application can take advantage of multiple resources, you can design your
grid to be broken up into smaller instances and have the work distributed
throughout the grid. The goal is to take advantage of the grid as a whole in order
to increase the performance of the application. Through intelligent workload
management and scheduling, your application can take advantage of whatever
resources within the grid are available. Part of the performance is based on the
form of workload management to make sure that all resources within the grid are
actively servicing jobs or requests within the grid.
100 Introduction to Grid Computing

8.2 Grid architecture models
There are different types of grid architectures to fit different types of business
problems. Some grids are designed to take advantage of extra processing
resources, whereas some grid architectures are designed to support
collaboration between various organizations.

The type of grid selected is based primarily on the business problem that is being
solved. Taking the goals of the business into consideration will help you choose
the proper type of grid framework. A business that wants to tap into unused
resources for calculating risk analysis within their corporate data center will have
a much different design than a company that wants to open their distributed
network to create a federated database with one or two of their main suppliers.
Such different types of grid applications will require different designs, based on
their respective unique requirements.

The selection of a specific grid type will have a direct impact on the grid solution
design. Additionally, it should be mentioned that grid technologies are still
evolving and tactical modifications to a grid reference architecture may be
required to satisfy a particular business requirement.

8.2.1 Computational grid
A computational grid aggregates the processing power from a distributed
collection of systems. A well-known example of a computational grid is the
SETI@home grid. This type of grid is primarily comprised of low-powered
computers with minimal application logic awareness and minimal storage
capacity.

Rather than simply painting images of flying toasters, the idle cycles of the
personal computers on the SETI@home grid are combined to create a
computational grid used to analyze radio transmissions received from outer
space in the “Search for Extra Terrestrial Intelligence.”

Most businesses interested in computational grids will likely have similar IT
initiatives in common. While they probably will not want to search for
extraterrestrials, there will likely be a business initiative to expand abilities and
maximize the computer utilization of existing resources through aggregation and
sharing. The business may require more computer capacity than is available.
The business is interested in modifying specific vertical applications for parallel
computing opportunities.

Additional uses for a computational grid include mathematical equations,
derivatives, pricing, portfolio valuation, and simulation (especially risk
measurement). Note that not all algorithms are able to leverage parallel
 Chapter 8. Design 101

processing, data intensive and high throughput computing, order and transaction
processing, market information dissemination, and enterprise risk management.
In many cases, the grid architecture model is not (yet) suitable for real-time
applications.

Computational grids can be recognized by these primary characteristics:

� Made up of clusters of clusters
� Enables CPU scavenging to better utilize resources
� Provides the computational power to process large-scale jobs
� Satisfies the business requirement for instant access to resources on demand

The primary benefits of computational grids are a reduced Total Cost of
Ownership (TCO) and shorter deployment life cycles. Besides the SETI@home
grid, the World Community Grid™, the Distributed Terascale Facility (TeraGrid),
and the UK and Netherlands grids are all different examples of deployed
computational grids. The next generation of computational grid computing will
shift focus towards solving real-time computational problems.

8.2.2 Data grid
While computational grids are more suited for aggregating resources, data grids
focus on providing secure access to distributed, heterogeneous pools of data.
Through collaboration, data grids can also include resources such as a federated
database. Within a federated database, as illustrated in Figure 8-1 on page 103,
a data grid makes a group of databases available that function as a single virtual
database. Through this single interface, the federated database provides a single
query point, data modeling, and data consistency.

Data grids also harness data, storage, and network resources located in distinct
administrative domains, respect local and global policies governing how data can
be used, schedule resources efficiently (again subject to local and global
constraints), and provide high speed and reliable access to data. Businesses
interested in data grids typically have IT initiatives to expand data-mining abilities
while maximizing the utilization of an existing storage infrastructure investment,
and to reduce the complexity of data management.
102 Introduction to Grid Computing

Figure 8-1 Federated DBMS architecture

8.3 Grid topologies
A topology view (see Figure 8-2 on page 104) covers the following spectrum of
grids:

� Intragrids

– Single organizations
– No partner integration
– A single cluster

� Extragrids

– Multiple organizations
– Partner integration
– Multiple clusters

� Intergrids

– Many organizations
– Multiple partners
– Many multiple clusters

Federated DBMS Architecture

Federated
DBMS

Web
Services
Portal

Grid
Services

Web Services
Gateway

Public Network
Client
Proxy

Grid
Client

Storage Tank Infrastructure

Oracle

Oracle

DB2

Documentum

Client
Firewall

Grid provider
Firewall 1

Grid provider
Firewall 2SOAP

over HTTPS

Pluggable,
'wrappered'
data sources

JDBC,
ODBC,
etc
 Chapter 8. Design 103

Figure 8-2 Intragrids, extragrids, and intergrids

The simplest of the three topologies is the intragrid, which is comprised merely of
a basic set of Grid services within a single organization. The complexity of the
grid design is proportionate to the number of organizations that the grid is
designed to support, and the geographical parameters and constraints. As more
organizations join the grid, the non-functional or operational requirements for
security, directory services, availability, and performance become more complex.

As more organizations require access to grid resources, the requirements for
increased application layer security, directory services integration, higher
availability, and capacity become more complicated.

The resource sharing alluded to is not primarily file exchange but rather direct
access to computers, software, data, and other resources, as is required by a
range of collaborative problem-solving and resource-brokering strategies
emerging in industry, science, and engineering. This sharing is, necessarily,
highly protected, with resource providers and consumers defining clearly and
carefully just what is shared, who is allowed to share, and the conditions under
which sharing occurs.

8.3.1 Intragrid
A typical intragrid topology, as illustrated in Figure 8-3 on page 105, exists within
a single organization, providing a basic set of Grid services. The single
organization could be made up of a number of computers that share a common
security domain, and share data internally on a private network. The primary

Intragrid

Extragrid

Intergrid
104 Introduction to Grid Computing

characteristics of an intragrid are a single security provider, bandwidth on the
private network is high and always available, and there is a single environment
within a single network. Within an intragrid, it is easier to design and operate
computational and data grids. An intragrid provides a relatively static set of
computing resources and the ability to easily share data between grid systems.
The business might deem an intragrid appropriate if the business has an initiative
to gain economies of scale on internal job management, or wants to start
exploring the use of a grid internally first by enabling vertical enterprise
applications.

Figure 8-3 An intragrid

8.3.2 Extragrid
Based on a single organization, the extragrid expands on the concept by bringing
together two or more intragrids. An extragrid, as illustrated in Figure 8-4 on
page 106, typically involves more than one security provider, and the level of
management complexity increases. The primary characteristics of an extragrid
are dispersed security, multiple organizations, and remote/WAN connectivity.
Within an extragrid, the resources become more dynamic and your grid needs to
be more reactive to failed resources and failed components. The design
becomes more complicated and information services become relevant to ensure
that grid resources have access to workload management at run time.
 Chapter 8. Design 105

A business would benefit from an extragrid if there was a business initiative to
integrate with external trusted business partners. An extragrid could also be used
in a B2B capacity and/or to establish relationships of trust.

Figure 8-4 Extragrids can exist in several organizations and security providers

8.3.3 Intergrid
An intergrid requires the dynamic integration of applications, resources, and
services with patterns, customers, and any other authorized organizations that
will obtain access to the grid via the internet/WAN. An intergrid topology, as
illustrated in Figure 8-5 on page 107, is primarily used by engineering firms, life
science industries, manufacturers, and by businesses in the financial industry.
The primary characteristics of an intergrid include dispersed security, multiple
organizations, and remote/WAN connectivity. The data in an intergrid is global
public data, and applications (both vertical and horizontal) must be modified for a
global audience. A business may deem an intergrid necessary if there is a need
for peer-to-peer computing, a collaborative computing community, or simplified
end-to-end processes with the organizations that will use the intergrid.
106 Introduction to Grid Computing

Figure 8-5 Intergrid

8.3.4 e-Utilities
One other type of grid that we should discuss before closing out this section is
what we will call e-utility computing. Instead of having to buy and maintain the
latest and best hardware and software, with this type of grid, customers will have
the flexibility of tapping into computing power and programs as needed, just as
they do gas or electricity. But enterprises are coming more and more to see the
e-sourcing trend as a continuum—reaching beyond commonplace IT resources
on demand to the delivery of business process and management functions
integral to the way the organization works.

The e-sourcing business model is based on providing the components of IT
function that are (largely) standardized and delivered through a service provider
model. The attributes of this model include a distributed and shared environment,
and generally standardized non-core business processes. The e-utility is used by
consumers of the e-utility as building blocks for developing complex e-business
solutions. The major properties of e-sourcing environments are a standard
solution that requires minimal configuration; pooled resources used to serve
 Chapter 8. Design 107

multiple customers; capacity on demand; and scalable, 24x7, always on, high
availability, rapidly deployable, minimal operations overhead; shared systems
management; and flexible pricing and billing based on either actual
usage/consumption of resources, or a calculated flat rate subscription.

8.4 Phases and activities
Deciding which grid type and topology to chose from is just the first step in the
grid architecture design. A mature end-to-end design methodology is comprised
of distinct phases and activities. The activities in the architecture design phase of
the project include a review of the detailed architectural decisions and design
documentation for the current infrastructure, conducting interviews and
workshops, the modification of the initial high-level design based on new
requirements and the results of the detailed assessment, the creation of a
detailed modular architecture design, and the creation of the implementation and
transition plan.

8.4.1 Basic methodology
For building a grid architecture, using a basic methodology allows the design to
follow a consistent path from beginning to end. A methodology is not a cookbook
for building a grid architecture, but a way to trace the progress of the design from
the kickoff meeting to the final end state. The methodology follows a reproducible
set of guidelines that can be used over again based on a set of successful
guiding principals for architecture design. A methodology allows the architecture
to follow a set of principals that can be documented from beginning to end
throughout the design.

We define one such basic design methodology for developing the grid
conceptual architecture in the next three sections.

Understanding the business drivers
The first step of any design is to identify and document the business drivers that
are the foundation behind building the grid. The business drivers outline the
investment and what the end state will accomplish. The business drivers or
business strategy is the foundation or reasoning behind building the grid.
Whether the goal is to tie together or build a federated database with your
suppliers or tie together a set of computers to harness their overall processing
power, you should have an end goal in mind before the design begins.
108 Introduction to Grid Computing

Requirements gathering
The requirements gathering process will help drive the architecture process by
helping the technical team work within a set of guidelines for the architecture. By
following this process, all of your decisions can be tied back to the basic
requirements and business drivers for the design. Along with your solution
objectives, the requirements will offer a road map for you to follow work through
the design phases.

� Business requirements

The business requirements are a subset of the business drivers that are
focused on solving a specific business need. The business requirements
drive important areas within the design, such as the performance and
availability of the environment. Helping to understand these key service levels
is an important part of the design.

� Infrastructure requirements

The infrastructure requirements provide the basic framework for how the
infrastructure will be designed. There are many different variables for how the
grid architecture can be designed and, based on what the requirements will
be, will shape how the environment will look.

� Application requirements

There are many factors that need to be accounted for during the design, and
the application is one of them. Possibly one of the most important
requirements that must be validated is to ensure that the application in
question can be made grid-aware. Unless the application can take advantage
of the grid resources or split the workload across multiple components, the
power of the grid is wasted.

Validate requirements
During the course of some designs, the requirements can change at the last
minute or may go undiscovered. Requirements also have a way of changing
when you least expect them to, so it is always a good idea to validate them
before you proceed. Validating the requirements one last time before the design
phase begins is a good way to ensure that all parties agree with the direction of
the design.

8.4.2 Recommended steps
The following sections deal with additional recommended methods for
developing an optimal grid design. These methods include attending grid design
workshops and building prototypes once the design has been completed.
 Chapter 8. Design 109

Grid design workshops
The purpose of the grid design workshops is to help all of the parties involved to
better understand the variables, options, and considerations that need to be
taken into account when developing a grid infrastructure design. Many or most of
the grid middleware, technologies, and system components are probably new to
many people within the design team and it is always a good idea to hear
firsthand from experienced IT professionals the means by which grid
infrastructures can be implemented, as well as any pitfalls to watch out for when
designing environments for grid computing.

Documentation
An extremely critical means of communicating the design (your solution) of your
grid infrastructure is via an architecture or solution document. The solution
document should start with a high-level overview of the environment and
subsequently should drill down into the most detailed configuration diagrams and
descriptions possible. You will want to include things like IP addresses, network
routes, server names, server architectures, network hardware, and essentially
everything you know about the infrastructure at the time your design is
completed. In truth, architecture documents are often dynamic, changing as the
needs of the system users change and as technologies mature, become
obsolete, and are replaced by newer technologies. You should revise your
architecture document upon further hardware and software updates so that it
accurately reflects the state of the system. Without an accurate architecture
document, the system implementation team may get easily confused and not
produce the system that was originally designed. Additionally, anyone adding
further design changes to the system after the original system architect has
moved on will appreciate an up-to-date architecture document, as it will save him
or her countless hours of information gathering that would be necessary without
an architecture document.

Prototype
Building a prototype of a grid system can save significant time that would
otherwise be spent debugging and re-tooling unforeseen system
incompatibilities. Your goal in building a prototype should be to produce a
small-scale, end-to-end backbone of what your production environment will look
like. It should include all interoperating technologies and/or architectures, so that
if any incompatibility exists, it will be apparent before the production system is
implemented. When all of the kinks are ironed out of your prototype, you will be
confident that all of your components will work together properly in your designed
infrastructure, and, additionally, you will have some experience in the
implementation of such a system. Lessons learned from building the prototype
should be reflected in your architecture document and any other directions
provided to the implementation team.
110 Introduction to Grid Computing

8.5 A conceptual architecture
The purpose of the grid conceptual architecture is to establish a common
understanding between the business owners and the people architecting and
designing the grid infrastructure by describing the grid architecture that will
support the client business requirements.

This section highlights some of the common components that you can choose
from within the Globus Toolkit. If you are designing a grid architecture using
different grid middleware software from Platform, DataSynapse, Avaki, or any
other grid software provider, this section should still give you a head start on grid
architecture. You will still be faced with decisions on the basic components, such
as the security models, workload management, information services, and data
sharing.

The conceptual model is a high-level framework consisting of the grid system
components and nodes within the design. The nodes represent the different
system components and grid middleware that make up the design. Normally, the
conceptual model is the first graphical view of the grid infrastructure and is used
as a stepping-stone to building a detailed configuration for the grid network. The
graphic depiction of the grid environment will allow you to see how the
requirements were gathered and how the many grid components will interact
with one another.

8.5.1 Infrastructure
The infrastructure represents the physical hardware and software components
used to interconnect different grid computers. These components help support
the flow of information between grid systems and provide the basic set of
services for connectivity, security, performance availability, and management.
While many of these infrastructure components supply basic functionality to the
grid, many are optional. It will be up to you to decide on the requirements and
how well these components match up to the needs of your design.

Security
Chapter 7, “Security” on page 63, provides details about considerations related
to security in a grid environment. Please refer to that chapter for more details on
security.

One issue not addressed in detail in the chapter referenced above is the used of
firewalls. The use of firewalls can provide logical and secure segmentation
between grid systems. You might want to use firewalls to protect your networks
and grid servers by limiting the types of services and protocols that connect to
your computers. By using firewalls within your grid design, you can help limit the
 Chapter 8. Design 111

network communication between grid systems and only use protocols that you
specify that the firewall will support.

Firewalls are not the only answer to protecting your grid servers, but they do add
an additional layer of defense from internal or external users trying to access
your systems. Firewalls work by controlling access to network services that your
grid computers will be running. Since the network offers a gateway to your grid
systems, you want to make sure that you control exactly the services and
protocols that can be used to access your systems, as well as who can initiate
communications.

For the most up-to-date information regarding the Globus Toolkit and firewalls,
you should check out the firewall section on the Globus Web site at:

http://www.globus.org/security/

Some areas you may want to protect within your design are:

� Certificate Authority/Registrant Authority

� Globus Toolkit components, such as MDS, GRIS, and GIIS (For more
information about these and other Globus Toolkit components, refer to 7.2,
“Components of Globus Toolkit” on page 133.)

� Databases

� All grid servers

Networks
The network design within the grid architecture can take on many different
shapes. The networking components can represent the LAN or campus
connectivity or even WAN communication between the grid networks. Whatever
the case may be, the network’s responsibility is to provide adequate bandwidth
for any of the grid systems. Like many other components within the
infrastructure, the networking can be customized to provide higher levels of
availability, performance, or security.

Grid systems are for the most part network intensive due to security and other
architectural limitations. For data grids in particular, which may have storage
resources spread across the enterprise network, an infrastructure that is
designed to handle a significant network load is critical to ensuring adequate
performance.

Systems management
Any design will require a basic set of systems management tools to help
determine availability and performance within the grid. A design without these
tools is limited in how much support and information can be given about the
health of the grid infrastructure. Some networks within a grid architecture can be
112 Introduction to Grid Computing

http://www.globus.org/security/

dedicated to perform these functions as to not hamper the performance of the
grid.

Storage
The storage possibilities are endless within a grid design. How that storage will
be secured, backed up, managed, and replicated are some of the questions that
the grid design will try to answer. Within a grid design, you want to make sure
that your data is always available to the resources that need it. Besides
availability, you want to make sure that your data is properly secured, as you
would not want unauthorized access to sensitive data. Lastly, you want more
than decent performance for access to your data. Obviously, some of this relies
on the bandwidth and distance to the data, but you will not want any I/O
problems to slow down your grid applications. For applications that are more
disk-intensive, or for a data grid, more emphasis can be placed on storage
resources, such as those providing higher capacity, redundancy, or
fault-tolerance.

8.6 Summary
This chapter provided an overview of some of the key criteria and general
methodologies that should be considered when designing a grid computing
environment.
 Chapter 8. Design 113

114 Introduction to Grid Computing

Chapter 9. Web services resource
framework

A grid computing environment consists of a set of resources that are being
shared, possibly across organizations. A dynamic collection of individuals,
institutions, and resources is also known as a virtual organization.

This concern for resource sharing sets a grid computing environment apart from
a traditional distributed computing environment. Traditionally, object-oriented
distributed systems do not deal with resource sharing and management issues.
A grid computing environment is essentially a distributed computing environment
that also deals with heterogeneous resource sharing and management.

The sharing of a resource could range from simple file transfers to complex and
collaborative problem solving. A resource can potentially be any IT infrastructure
component such as software application, database, cluster, network capacity,
software licence, storage, and so on.

The resource sharing is required to occur under the control of a well-defined set
of conditions and policies. In this context the key issues associated with resource
sharing include discovery, authentication, authorization, and access
mechanisms.

The resource sharing is further complicated when a grid is introduced as a
solution for utility computing, where commercial applications and resources

9

© Copyright IBM Corp. 2005. All rights reserved. 115

become available as shareable and on demand resources. However, issues
such as metering, accounting and billing, quality of services compliance, and so
on, are out of the scope of this book.

This chapter aims to introduce some of the fundamental concepts in resource
state management as they are currently defined in the context of a grid
computing environment.
116 Introduction to Grid Computing

9.1 Resource state management using Grid services
In the grid context a resource is assumed to represent some state or data and
provides some useful capability via an interface.

An interface associated with a resource defines a logical grouping of operations
that can be invoked by its clients.

In the recent past we have observed increasing popularity of service oriented
architecture frameworks. The emergence of service oriented architecture (SOA)
helps grid resources to advertise their capabilities through a standard service
interface.

Web services are open standards-based mechanisms to make services
available to whatever client program can take advantage of them. Web services
are becoming a popular way to implement various components of a service
oriented architecture and many organizations are becoming very familiar with
Web services technologies and capabilities.

However, as those familiar with Web services know, Web services are typically
stateless. That is, there is no memory between separate transactions invoked on
the same service instance. However, for grid computing, the state of a resource
or service is often important and therefore may need to persist across
transactions.

Other than this little (actually somewhat major) difference, there are many
similarities between Grid services and Web services. It would be a shame not to
find a way to take advantage of the standards and facilities already provided by
Web services when defining and implementing Grid services. We explore this
possibility in the discussion that follows and describe what the differences are
between Grid services and Web services and how these differences can be
addressed.

9.1.1 What a Grid service is
A service interface associated with a grid resource is known as a Grid service. A
resource and its state is controlled and managed via Grid services in a Grid
environment. A Grid service may require access to more than one resource or
vice versa. It is also possible that multiple Grid services access the same
resource or a Grid service can create a new instance of a resource every time it
is invoked.

Various grid resources may require to interact and integrate with each other
depending on business requirements. It is most likely that the resources are
hosted in a technologically heterogeneous environment. Therefore, a framework
 Chapter 9. Web services resource framework 117

is required that abstracts environment-specific resource implementation details
from the actual interGrid service messaging. A service oriented architecture
(SOA) provides such a framework.

It follows that an open standards compliant SOA architecture would make it
easier to integrate heterogeneous resources and various layers of the grid
architecture. Such an architecture would help us achieve distributed resource
sharing across heterogeneous and dynamic virtual organizations, that is, grid
computing.

The Global Grid Forum (GGF) has adopted an SOA principles based Open Grid
Services Architecture (OGSA) that provides a framework for implementing a
Grid.

All of the resources (physical or logical) in an OGSA-compliant grid are modeled
as Grid services. These Grid services are built on top of a SOA leveraging WEB
services technology. This enables a Grid service to use the capabilities of the
Web services messaging model, service descriptions, and discovery. Various
Web services standards have evolved to enable secure and reliable Web
services transactions. The choice of Web-services technology to implement the
OGSA-compliant Grid services leverages investment in Web-services
architecture and its standards.

9.1.2 Grid services vs. Web services
Although Grid services are implemented using Web-services technology, there is
a fundamental difference between a Grid service and a Web-service.

A Web-service addresses the issue of discovery and invocation of persistent
services. A Web Services Description Language (WSDL) compliant document
points to a location that hosts the Web service.

A Grid service addresses the issue of a virtual resource and its state
management. A grid is a dynamic environment. Hence, a Grid service can be
transient rather than persistent. A Grid service can be dynamically created and
destroyed, unlike a Web service, which is often presumed available if its
corresponding WSDL file is accessible to its client. Web services also typically
out live all their clients.

This has significant implications for how Grid services are managed, named,
discovered, and used. The OGSA model adopts a Factory design pattern to
create transient Grid services. Thus, an OGSA Grid service is a potentially
transient Web service based on grid protocols using WSDL.
118 Introduction to Grid Computing

9.1.3 OGSA Grid service requirements
From the OGSA perspective, a grid environment consists of typically few
persistent and potentially many transient Grid services. All Grid services must
comply with the OGSA-required interface specifications to enable reliable and
secure management of a distributed state of virtual resources.

The following are some of the key capabilities that the OGSA Service Model
requires a compliant Grid service to provide:

� Creation: This refers to creating new instances of resources associated with a
Grid service via an operation. An instance can be newly created or be
initialized from a persistent state of a resource.

� Global naming and references: Once we have an instance of a resource, a
grid environment requires a unique network-aware reference to a resource
instance with information about how to interact with the instance via the Grid
service.

� Lifetime management: The lifetime management operation defines the
life-span of a resource, mainly dependent on whether a resource expires after
a certain time period or immediately.

� Registration and discovery: This set of operations refers to the ability to find
Grid service instances and their associated deploy-time and run-time meta
data.

� Notification: The notifications are asynchronous messaging mechanisms to
notify subscribing clients of certain events such as resource life-time events,
property changes, and so on.

The OGSA Grid services also address authorization, concurrency control, and
manageability aspects.

There are two standards currently available to implement OGSA-compliant Grid
services:

� Open Grid Services Interface (OGSI) Grid services
� Web Services Resource Framework (WSRF) Grid services

Both frameworks provide mechanisms to implement OGSA-compliant Grid
services in different ways.

Next we review and compare both approaches at a high level and discuss WSRF
in greater detail for the rest of the chapter.
 Chapter 9. Web services resource framework 119

9.1.4 Open Grid Services Interface (OGSI) Grid services
The Open Grid Services Interface defines rules about how OGSA can be
implemented using Grid services that are Web services extensions.

The OGSI specification defines a Grid service instance as “a Web service that
conforms to a set of conventions expressed by WSDL as service interfaces,
extensions, and behaviors.”

The OGSI specification defines Grid services features that include:

� Statefulness
� Stateful interactions
� The ability to create new instances
� Service lifetime management
� Notification of state changes and Grid service groups

The OGSI model requires Grid services to be specified via Grid Web Services
Definition Language (GWSDL), which is an extension of WSDL.

The OGSI 1.0 specification defines the following interfaces that should be
implemented by a Grid service.

Table 9-1 OGSI interfaces for a Grid service

Interface Description

GridService Encapsulates the root behavior of the service model. This
interface is mandatory for a OGSA service based on
OGSI 1.0.

HandleResolver The OGSI method of creating an instance of a Grid
service returns a handle. This handle is mapped to a
reference, which then has enough information to enable
client communication with the actual instance of a grid
resource via a Grid service.
This interface provides the functionality to map a Grid
Service Handle (GSH) to a Grid Service Reference
(GSR).

NotificationSource Allows clients to subscribe to notification messages.

NotificationSubscription Defines the relationship between a single
NotificationSource and NotificationSink pair.

NotificationSink Defines a single operation for delivering a notification
message to the service instance that implements the
operation.
120 Introduction to Grid Computing

The portType construct of the WSDL grammar defines the functional interface
implemented by a Web service. An OGSI-compliant Grid service component
extends the GridService portType. The component may optionally extend other
portTypes as listed in the previous table along with any application-specific
portTypes, as required. The OGSI model also extends WSDL with mechanisms
to specify additional state data descriptions.

The diagram below depicts the layering of various OGSI components.

Factory This is the standard operation for creation of Grid service
instances.

ServiceGroup This allows Grid services to be added and removed from
a ServiceGroup. A ServiceGroup is a collection of Grid
service instances.

ServiceGroupRegistration This allows Grid services to be added and removed from
a ServiceGroup.

ServiceGroupEntry This defines the relationship between a Grid service
instance and its membership within a ServiceGroup.

Interface Description
 Chapter 9. Web services resource framework 121

Figure 9-1 OGSI components

Please refer to the Open Grid Service Infrastructure 1.0 and the Open Grid
Services Infrastructure Primer documents available from the Global Grid Forum
Web site (http://www.ggf.org) for more information about OGSI.

9.1.5 OGSI to WSRF refactoring
The Globus Toolkit 3 (GT3) contains a reference implementation for the OGSI.
However, its implementation through extensions to some of the Web services
standards and the continuing evolution of Web services has made it more difficult
for the Web services and Grid services to continue to merge than originally
hoped. The Web Services-Resource Framework (WR-RF) provides a promising
solution that can address the needs of Grid services while still holding true to the
Web services foundation.

The main issue of contention was the perceived divergence of the OGSI
specification from the popular practices in the Web services community at large.
The main objective behind the WSRF refactoring is to bring the Grid services and
Web services communities closer together.

XM
L

Sc
he

m
a

W
SD

L

G
W

SD
L

SOAP

XML Information Set

Transport Protocols

Non-SOAP

Open Grid Services Infrastructure

LifeCycle

HandleMap

Notification

Factory

ServiceGroup

State Management
122 Introduction to Grid Computing

http://www.ggf.org

Please note that it is possible to build and deploy OGSA-compliant, Web
services based Grid services using both OGSI and WSRF proposed
specifications.

The following itemizes some of the key issues observed with the OGSI approach:

� Too much in one specification: The OGSI did not have a clean separation of
functions to support incremental adoption. For example, Table 9-1 on
page 120 has a list of the full range of interfaces that can be implemented by
a Grid service. The OGSI does not provide a way to partition these functions
and adopt them incrementally.

The WSRF set of specifications partition the equivalent functionality in
separate specifications, and they can be adopted incrementally.

� Does not work well with existing Web services and XML tooling: The XML
syntax used with OGSI 1.0 causes problems with JAX-RPC standard APIs.

The WSRF set of specifications use standard XML Schema mechanisms that
are familiar to developers and is supported by the existing tooling. The WSRF
utilizes WSDL 1.1 compliant methods to associate the XML information model
of a resource with a resource’s operations instead of Service Data Elements
used by OGSI.

� Too object oriented: The OGSI 1.0 models a stateful resource as a Web
service that encapsulates the resource’s state, with the identity and life cycle
of the service and resource state coupled. From a purist Web services point
of view, “Web services do not have any state or instances.”

The WSRF set of specifications provides a distinction between the service
and the management of stateful entities and their state by that service. The
WS-Addressing standard is used by the WSRF set of specifications to
formalize the relationship between Web services and the stateful resources.

� Introduction of forthcoming WSDL 2.0 functionality as unsupported
extensions to WSDL 1.1: The OGSI exploited features of the WSDL 2.0 draft
specification, making it difficult to support the OGSI with existing Web
services tooling and runtimes.

The WSRF set of specifications relies on WSDL 1.1 constructs to avoid
incompatibility issues.

The A Grid Application Framework based on Web Services Specifications and
Practices paper by Parastatidis, et. al. [6], provides further discussion on issues
encountered with OGSI specifications.

At a high level the OGSI-to-WSRF refactoring has resulted in the following:

� The notion of a Grid service as a WS-Resource.
 Chapter 9. Web services resource framework 123

� A better separation of functions (listed in Table 9-1 on page 120) by splitting
the functionality in separate specifications.

� WS-Notification specification that can be used to build state change
notifications using Web services.

The next section formally introduces the Web Services Resource Framework
and Web Services Notification families of specifications.

9.2 WSRF fundamentals
In the previous discussion we described a Grid service as a service
representation of a resource. A grid resource is normally assumed to represent
some state. This section introduces the concept of a WS-Resource and
associated modelling concepts that underpin the WSRF and WS-Notification
families of specifications.

9.2.1 What a WS-Resource is
The WS-Resource is a construct used to model stateful resources using a Web
services architecture framework.

According to WSRF, a stateful resource:

� Has its state data described as an XML document
� Has a well defined life-cycle
� Is known to and accessed by one or more Web services

A stateful resource modelled using the WS-Resource construct can be
implemented in a variety of different ways. It can be implemented as a file on a
file system or a record in a database table or may reside in memory as an
application-specific data structure.

The diagram below depicts the relationships amongst a hypothetical movie
scene rendering service and several stateful resources such as the actual scene
data, special effects to be applied, and the rendering styles for television and
wide-screen display.
124 Introduction to Grid Computing

Figure 9-2 Example of a WS-Resource to WSDL relationship model

In the diagram above the resources are modelled as WS-Resources and the
movie-rendering service is exposed as a Web service via its WSDL interface file.

The operations available from the movie-rendering service and the attributes of
various resources are defined in the WSDL file.

It is important to note that the service and the resources are seen as a single
bundle via the WSDL file by the service clients. The clients of the
movie-rendering service in the above example never deal with a resource
instance directly, but implicitly via interactions with the WSRF-compliant movie
render service.

This implicit interaction with WS-Resource instances is known as the Implied
Resource Pattern.

When a stateful resource is associated with a Web service, we refer to the
component resulting from the composition of the Web service and the stateful
resource as a WS-Resource.

It follows from the WS-Resource Framework discussion so far that a
WS-Resource is an association of a Web service and at least one stateful
resource. The general understanding of a Web service suggests that a Web
service exposes an interface via a portType construct. The portType construct
advertises one or more publicly available operations that can be invoked by a
Web service client.

Movie Render
Service
(facade)

Scene

Special
Effect

TV Style

Wide
Screen
Style

Stateful
Resource

W
SD

L

WS-Resource
 Chapter 9. Web services resource framework 125

A Web service becomes a WS-Resource when a portType definition within a
WSDL file is associated with an XML representation of the properties of a stateful
resource in a WS-Resource Framework specific way.

Figure 9-3 is an example WSDL fragment that shows the association.

Figure 9-3 Example WSDL fragment showing WS-Resource definition

In the above WSDL fragment, the GenericPlanetProperties are associated with a
SolarSystem portType. This association makes the WSDL represent a
WS-Resource.

The next section discusses the implied resource pattern.

9.2.2 Implied resource pattern for stateful resources
One of the stated criticisms of OGSI 1.0 was that it was “too object oriented.” The
implied resource pattern aims to distinguish between the actual service from the
management of stateful resource instances.

The Web services are stateless. Therefore, when Web services operations are
involved with dynamic state, these are the following options:

� The state is provided explicitly within the request message.

<definitions .name=....
.........
 xmlns:wsrp="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.xsd"
.................
 <xsd:element name="atmosphere" type="xsd:boolean" />
 <xsd:element name="water" type="xsd:boolean" />
 <xsd:element name="name" type="xsd:string" />

 <xsd:element name="GenericPlanetProperties">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="atmosphere" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="water" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="name" minOccurs="1" maxOccurs="1"/>
 <xsd:any/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

<wsdl:portType name="SolarSystem" wsrp:ResourceProperties="tns:GenericPlanetProperties">
<operation name=".../>
</wsdl:portType>
.................
</definitions>
126 Introduction to Grid Computing

� The state is maintained implicitly via sub systems with which a Web service
interacts.

The implied resource pattern implements the second option from the above. The
actual state management and instance management of stateful resources is
delegated to an external component. This is the approach selected for WSRF.

The WSRF implementation implicitly passes the resource identifier information
when message interaction occurs between a client and a WS-Resource. By
implicit it is meant that the client does not explicitly include a resource identifier in
its request. Instead, the requisite identifier is implicitly associated with a message
exchange. A resource identifier can be dynamically or statically associated with a
message exchange.

The implied resource pattern in WSRF parlance utilizes a set of conventions
such as XML, WSDL, and WS-Addressing in particular.

The WS-Addressing plays an important role in implementing the implied
resource pattern.

The WS-Addressing standardizes the way Web service addresses are
represented. Such a representation is known as an End Point Reference (EPR).
Besides the Web service address an EPR can also represent enough contextual
information to enable client communication with a WS-Resource.

The EPR contains two pieces of information:

� The Web service address information

� The resource properties information that may include an identifier to a
resource instance besides other meta data about the service.

In the WSRF, an EPR with a resource identifier is also known as a WS-Resource
qualified end point reference.

The resource identifier points to a stateful resource used when the Web service
is invoked. The Web service maps the identifier to a stateful resource based on
its business requirements.

A resource identifier’s creation is analogous to creating a new instance of a
WS-Resource. A new instance of a WS-Resource can be created via a
WS-Resource Factory or some other application. A WS-Resource Factory Web
service brings new instances of WS-Resource into existence.

Creating a new instance of a WS-Resource involves the following:

1. Creating a new instance of the resource

2. Assigning a new identifier to the new resource instance
 Chapter 9. Web services resource framework 127

3. Creating an association between the new resource instance and its
corresponding Web service

A WS-Resource Factory’s operation responsible for creating new instances of
WS-Resource may return a WS-Resource qualified EPR or save the equivalent
information elsewhere, such as a registry or a database for later retrieval.

Because the stateful resource’s identifier is included in a WS-Resource qualified
EPR the client is not required to have specific knowledge of the location of the
Web service nor the resource identifier.

The actual semantic meaning of a resource identifier is Web service
implementation-specific. At the current time there are no specifications that
provision a resource identifier definition.

When a client application interacts with a WS-Resource compliant Web service,
the XML representation of the concerned EPR is implicitly sent along with the
request opaque to the client. If the EPR resource properties contain a resource
identifier, then it gets sent along with the rest of the request in a Web service
message.

From a client application perspective an EPR represents a pointer to a
WS-Resource. The EPR may contain a resource identifier to target a client’s
interaction with a specific instance of a WS-Resource via a Web service. The
resource identifier is required to be unique enough to enable a Web service to
uniquely identify a stateful resource instance. The resource identifier is not
required to be unique outside the scope of the Web service concerned.

The diagram below depicts how a WS-Resource-qualified EPR gets involved
when a client interacts with a WS-Resource.
128 Introduction to Grid Computing

Figure 9-4 Using a WS-Resource qualified endpoint reference

The WS-Addressing specification mandates that the ReferenceProperties part of
an EPR must be sent as part of any message that is directed towards a Web
service identified by an EPR. How the information is actually sent is dependent
on protocol-binding specifics.

In the above example, the client holds an EPR that points to a (fictional) Web
service at location http://www.ibm.redbook.com/IntroGrid and identifies a stateful
resource B. Because this EPR has a resource identifier in its
ReferenceProperties stanza, recall that this becomes a WS-Resource-qualified
endpoint reference.

Client

WS-Resource

Web Service
Implementation

Resource
B

W
SD

L

Resource
C

Resource
A

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsa="http://www.w3.org/2005/02/addressing"
xmlns:ibmgrid="http://www.ibm.redbook.com/gridintro">

<SOAP-ENV:Header>
<wsa:To SOAP-ENV:mustUnderstand="1">http://example.com/satellite</wsa:To>
<wsa:Action>http://www.ibm.redbook.com/IntroGrid</wsa:Action>
<ibmgrid:MyResourceId>B</ibmgrid:MyResourceId>

</SOAP-ENV:Header>
<SOAP-ENV:Body>

<DoSomethingRequest xmlns="http://www.ibm.redbook.com/gridintro.xsd">
<someparameter>ClientValue</someparameter>
</DoSomethingRequest>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

EPR

<wsa:EndpointReference xmlns:wsa="http://www.w3.org/2005/02/addressing"
xmlns:ibmgrid="http://www.ibm.redbook.com/gridintro">

<wsa:Address>http://www.ibm.redbook.com/IntroGrid</wsa:Address>
<wsa:ReferenceProperties>

<ibmgrid:MyResourceId>B</ibmgrid:MyResourceId>
</wsa:ReferenceProperties>

</wsa:EndpointReference>
 Chapter 9. Web services resource framework 129

When the client invokes the DoSomethingRequest operation on the Web service
portType, the information contained within the ReferenceProperties stanza of the
EPR XML document is sent as part of the SOAP header.

The Web service extracts the resource identifier value (B) and locates the
corresponding resource to work with and completes the DoSomethigRequest.

Inspecting the SOAP message’s body element reveals that the client request for
the DoSomethingRequest only passes the operation-specific parameter (that is,
SomeParameter). The resource identifier is not passed explicitly by the client in
the request made. This is the key to the implied resource pattern.

In the next section we review the WSRF and WS-N set of specifications and
briefly discuss how they meet OGSA Grid service requirements.

9.3 WS-Resource Framework specifications
The OGSI to WSRF transition is a refactoring exercise for various reasons briefly
discussed in 9.1.5, “OGSI to WSRF refactoring” on page 122, which implies that
collectively these specifications retain the same functionality present in OGSI.

The OGSI refactoring results in five WSRF specifications and three
WS-Notification family specifications. The WS-Notification family of
specifications addresses event notification subscription and delivery.

Each of the specifications targets a grouping of functionality. This facilitates the
flexible composition of various functionality in an incremental or mix-and-match
fashion.

This section gives an overview of the WSRF family of specifications.

The WS-Resource Framework paper by Czajkowski, et. al. [5], summarizes the
various WS-Resource Framework specifications, as shown in Table 9-2.

Table 9-2 WS-Resource Framework specifications summary

Specification name Description

WS-ResourceProperties Describes associating useful resources and Web
services to produce WS-Resources and how elements
of publicly visible properties of a WS-Resource are
retrieved, changed, and deleted

WS-ResourceLifeTime Allows a requestor to destroy a WS-Resource either
immediately or at a scheduled future point in time
130 Introduction to Grid Computing

The following table summarizes the WS-Notification family of specifications.

Table 9-3 WS-Notification Specifications summary

Figure 9-5 on page 132 provides an overview of WS-Resource Framework and
how it relates to other Web service specifications.

WS-RenewableReferences Annotates a WS-Addressing endpoint reference with
policy information needed to retrieve a new endpoint
reference when the current reference becomes invalid

WS-ServiceGroup Creates and uses heterogeneous by-reference
collections of Web services

WS-BaseFault Describes a base fault type used for reporting errors

Specification name Description

WS-BaseNotification Defines Web service operations to define the roles of
notification producers and notification consumers.

WS-BrokeredNotification Defines Web service operations for a notification broker. A
notification broker is an intermediary which, among other
things, allows publication of messages from entities that
are not themselves service providers.

It includes standard message exchanges to be
implemented by notification broker service providers along
with operational requirements expected of service
providers and requestors that participate in brokered
notifications.

WS-Topics Defines a mechanism to organize and categorize topics. It
defines three topic expression dialects that can be used as
subscription expressions in subscribe request messages
and other parts of the WS-Notification system.

It further specifics an XML model for describing meta data
associated with topics.

Specification name Description
 Chapter 9. Web services resource framework 131

Figure 9-5 WS-Resource Framework with Web service specifications

The diagram above is comparable with Figure 9-1 on page 122.

The From Open Grid Services Infrastructure to WS-Resource Framework:
Refactoring and Evolution paper by Czajkowski, et. al. [3], maps primary OGSI
constructs to WS-Resource Framework and WS-Notification constructs, as
shown in Table 9-4.

Table 9-4 OGSI to WS-Resource Framework and WS-Notification map

OGSI WS-Resource Framework

Grid Service Reference WS-Addressing Endpoint Reference.

Grid Service Handle WS-Addressing Endpoint Reference and
WS-RenewableReferences.

HandleResolver portType WS-RenewableReferences.

Service Data Definition Resource properties definition.

GridService porType service data
access

WS-Resourceproperties.

GridService portType lifetime
management

WS-ResourceLifetime.

W
S-

M
et

ad
at

aE
xc

ha
ng

e

W
SD

L

SOAP

XML Information Set

Transport Protocols

WS-Renewable
References

WS-Notification

WS-Addressing

WS-Security

WS-Resource
Properties

WS-Resource
Lifetime

WS-BaseFaults WS-ServiceGroup

XM
L

Sc
he

m
a

132 Introduction to Grid Computing

The following are a few observations based on the OGSI-to-WSRF comparison
table above:

� The implied resource pattern and the concept of WS-Resource replaces the
GridService interface as defined by the OGSI 1.0 specification.

� The Grid Service Handle (GSH) and Grid Service Reference (GSR) concepts
are replaced by the WS-Addressing standard. The EPR introduced by
WS-Addressing is equivalent to GSH and GSR.

� The WSRF introduces a standard notification framework for Web services
enabling Grid services and Web services to share notification patterns
defined by WS-Notification specifications.

Please refer to The From Open Grid Services Infrastructure to WS-Resource
Framework: Refactoring and Evolution paper by Czajkowski, et. al. [4], for a
detailed discussion about each of the items in the table above.

Figure 9-6 on page 134 gives a high-level view of a SolarSystem WS-Resource
that implements WS-ResourceProperties interface functions.

Notification portTypes WS-Notification.

Factory portType Now treated as a WS-Resource Factory
concept. Please refer to 9.2.2, “Implied
resource pattern for stateful resources” on
page 126.

ServiceGroup portTypes WS-ServiceGroup.

Base fault type WS-BaseFault.

GWSDL Copy-and-paste. Uses existing WSDL 1.1
interface composition approaches (that is,
copy and paste) rather than using WSDL
2.0 constructs.

OGSI WS-Resource Framework
 Chapter 9. Web services resource framework 133

Figure 9-6 A SolarSystem WS-Resource with WS-ResourceProperties interfaces

Please note in the diagram above that the SolarSystem Web service is delegating
the actual planet instance management to a separate Planet resource
component.

The WS-Resource client invokes the WS-ResourceProperties interface functions
via the information provided in the WSDL file.

The SolarSystem WS-Resource generates a notification when a Planet resource
instance’s property changes. The notification message format is also declared in
the WSDL file.

Figure 9-7 on page 135 is an example GetResourceProperty request and
response with our SolarSystem example.

WS-Resource

Solar System
Web service

Implementation

Planet
Resource

W
SD

L

Planet Earth
Instance

Properties

SetResource
Properties
(portType)

GetResource
Property

(portType)

GetMultiple
Resource
Properties
(portType)

QueryResource
Properties
(portType)

W
S-

R
es

ou
rc

e
C

lie
nt

WS-Notification
134 Introduction to Grid Computing

Figure 9-7 Example WS-ResourceProperties request and response for
GetResourceProperty operation

The WS-Resource Framework Interop Workshop #1 - Scenarios (v0.13),
available from the following Web site, has numerous example messages for the
rest of the WS-ResourceProperties and WS-Notification operations.

http://www.ibm.com/developerworks/offers/WS-Specworkshops/ws-rf200404.html

The Understanding WSRF series of tutorials on IBM developerWorks® also
provides numerous WS-Resource examples and further discussion about the
fundamentals of the WS-Resource Framework.

The next section discusses the role of the WS-Resource Framework within the
Globus Toolkit 4 (GT4).

9.3.1 WS-Resource Framework and Globus Toolkit 4
The WS-Resource Framework introduces the notion of WS-Resource. We have
seen earlier in Table 9-4 on page 132 and the subsequent discussion that the
notion of WS-Resource replaces the Grid service as it was defined with OGSI
1.0.

When a WS-Resource is packaged as a Grid Archive (GAR) and deployed in a
GT4 container, it is recognized by the GT4 container as a valid GT4 WSRF
compliant Web service. This is synonymous with a Grid service.

The above also implies that it is also possible to implement a non-OGSA, SOA
environment using WS-Resource Framework compliant Web services.

Figure 9-8 on page 136 from the A Globus Primer by Ian Foster [7] depicts
various Web service deployment scenarios within a GT4 container.

<wsrp:GetResourcePropertyRequest xmlns:tns="http://test.org/computersystem" >
tns:name <!—name of the property to retrieve - ->

</wsrp:GetResourcePropertyRequest>

<wsrp:GetResourcePropertyResponse xmlns:tns="http://test.org/computersystem" >
<tns:name> <!—an XML view of the resource property- ->

Earth
</tns:name>

</wsrp:GetResourcePropertyResponse>
 Chapter 9. Web services resource framework 135

http://www.ibm.com/developerworks/offers/WS-Specworkshops/ws-rf200404.html

Figure 9-8 GT4 container services

The shaded areas of the above diagram represent a GT4 container’s
infrastructure components that allow it to host different services.

There are several components that are implemented as WSRF Web services
within the GT4 container. A discussion of various GT4 components can be found
in Chapter 10, “Globus Toolkit 4 components” on page 141.

At a high level the steps to implement a WSRF-compliant Web service for
deployment in a GT4 container are as follows [7]:

1. Define the service interface. This refers to preparing a WSDL file that defines
our WSRF service operations and may include resource properties
definitions.

2. Implement the service. This refers to developing Java code for the WSRF
service operations and associated properties, if any.

3. Define deployment parameters. This refers to preparing a Web Services
Deployment Descriptor (WSDD) file for our service that defines various
aspects of service configuration.

4. Compile and generate a GAR file. The compilation and GAR file creation
involves creating appropriate stub files for handling SOAP messaging and
packing the service in a format required by a GT4 container.

5. Deploy the service.

GT4 Container

Custom Web
Services

Custom
WSRF Web

Services

WSDL, SOAP, WS-Security

WS-Addressing, WSRF, WS-
Notification

GT4 WSRF
Web

Services

R
eg

is
tr

y
A

dm
in

is
tr

at
io

n

User Applications
136 Introduction to Grid Computing

9.4 WSRF references
There are numerous tutorials available in the public domain to assist with WSRF
services development and implementation. Some of the useful references are as
follows:

� The Globus Toolkit 4 Programmer’s Tutorial by Borja Sotomayor

http://gdp.globus.org/gt4-tutorial/

� Understanding WSRF Parts 1 to 4 by Babu Sundaram

http://www.ibm.com/developerworks

� Using Eclipse to develop Grid services

http://www.ibm.com/developerworks/edu/gr-dw-gr-eclipseide-i.html

� Apache WSRF tutorial

http://ws.apache.org/ws-fx/wsrf/tutorial/

� WSRF.NET Developer Tutorial by Mark Morgan and Glenn Wasson

http://www.cs.virginia.edu/~gsw2c/WSRFdotNet/WSRF.NET_Developer_Tutorial.pd
f

9.5 Summary
This chapter provided an overview of the WS-Resource Framework and how it
enables the handling of state information within a Web services context. We also
provided information about how it relates to the Open Grid Service Interface
standard.
 Chapter 9. Web services resource framework 137

http://gdp.globus.org/gt4-tutorial/
http://www.ibm.com/developerworks
http://www.ibm.com/developerworks/edu/gr-dw-gr-eclipseide-i.html
http://ws.apache.org/ws-fx/wsrf/tutorial/
http://www.cs.virginia.edu/~gsw2c/WSRFdotNet/WSRF.NET_Developer_Tutorial.pdf

138 Introduction to Grid Computing

Part 3 Creating a grid
environment
with the Globus
Toolkit 4

Part 3
© Copyright IBM Corp. 2005. All rights reserved. 139

140 Introduction to Grid Computing

Chapter 10. Globus Toolkit 4
components

The Globus Alliance is made up of organizations and individuals that develop
and make available various technologies applicable to grid computing.

The Globus Toolkit, the primary delivery vehicle for technologies developed by
the Globus Alliance, is an open source software toolkit used for building grid
systems and applications. Many companies and organizations are using the
Globus Toolkit as the basis for grid implementations of various types.

To learn more about the Globus Alliance, visit their Web site at:

http://www.globus.org

During the writing of this book, the Globus Toolkit is currently at Version 4. As we
will see, the toolkit (as is implied by its name) consists of many components that
can be used as the basis to implement a grid computing environment. It is not a
complete grid solution, but provides the tools and facilities to address many of
the requirements of grid computing. This chapter briefly describes the major
components of Globus Toolkit 4.

10
© Copyright IBM Corp. 2005. All rights reserved. 141

http://www.globus.org

10.1 Overview of Globus Toolkit 4
Globus Toolkit 4 is a collection of open-source components. Many of these are
based on existsing standards, while others are based on (and in some cases
driving) evolving standards. Version 4 of the toolkit is the first version to support
Web service based implementations of many of its components. (Version 3 had
included an OGSI implementation of some components, and Version 2 was not
service based at all.)

Though many components have Web service based implementations, some do
not, and for compatibility and migration reasons, some have both
implementations.

Globus Toolkit 4 provides components in the following five categories:

� Common runtime components
� Security
� Data management
� Information services
� Execution management

Table 10-1 shows a list of components in Globus Toolkit 4, and identifies those
that are Web service based and those that are not. In the sections that follow, we
describe each of these in more detail.

Table 10-1 List of components in Globus Toolkit 4

Web service based components Non Web service based
components

Common
runtime
components

Java WS
Core

C WS Core Python WS
Core

C Common
Libraries

eXtensible
IO (XIO)

Security
components

WS
authentica
tion and
authorizati
on

Community
Authorizatio
n Service
(CAS)

Delegation
service

Pre-WS
authenticati
on and
authorizatio
n

Credential
Manageme
nt

Data
management
components

Reliable
File
Transfer
(RFT)

OGSA-DAI Data
Replication
Service
(DRS)

GridFTP Replica
Location
Service
(RLS)

Monitoring and
Discovery
Services

Index
service

Trigger
service

Aggregator
Framework

WebMDS MDS2
142 Introduction to Grid Computing

10.2 Common runtime components
Globus Toolkit 4 includes common runtime components. Common runtime
components consist of libraries and tools needed by both types of
implementations and used by most of the other components.

10.2.1 Java WS Core
Java WS Core consists of APIs and tools that implement WSRF and
WS-Notification standards implemented in Java. These components act as the
base components for various default services that Globus Toolkit 4 supplies.
Also, Java WS Core provides the development base libraries and tools for
custom WS-RF based services. Figure 10-1 on page 144 shows the relation
between Java WS Core and other services.

Execution
management

WS GRAM Community
Scheduler
Framework
4 (CSF4)

Globus
Teleoperatio
ns Control
Protocol
(GTCP)

Workspace
Manageme
nt Service
(WMS)

Pre WS
GRAM

Web service based components Non Web service based
components
 Chapter 10. Globus Toolkit 4 components 143

Figure 10-1 Relation between Java WS Core and Globus Toolkit 4 supplied services

For more information about WS-RF, refer to Chapter 9, “Web services resource
framework” on page 115. Also, the following link should be of interest:

http://www.globus.org/toolkit/docs/4.0/common/javawscore/

10.2.2 C WS Core
C WS Core consists of APIs and tools that implement WS-RF and
WS-Notification standards using C. For more information about C WS Core, look
at the following link:

http://www.globus.org/toolkit/docs/4.0/common/cwscore/

10.2.3 Python WS Core
Python WS Core consists of APIs and tools that implement WS-RF and
WS-Notification standards with Python. This component is also known as

Web Application Server with SOAP engine
(“simple java container” by Globus, Jakarta Tomcat)

Java WS Core Components

GRAM
Service

RFT
Service

MDS
Service

CAS
Service

Dele-
gation

Service

Other
Custom
WSRF

Services Standard
Web

Services
144 Introduction to Grid Computing

http://www.globus.org/toolkit/docs/4.0/common/javawscore/
http://www.globus.org/toolkit/docs/4.0/common/cwscore/

pyGridWare, contributed by Lawrence Berkeley National Laboratory. For more
information about Python WS Core, look at the following links:

http://dsd.lbl.gov/gtg/projects/pyGridWare/
http://www.globus.org/toolkit/docs/4.0/contributions/pythonwscore/

10.3 Security components
Because security is one of the most important issues in grid environments,
Globus Toolkit 4 includes various types of security components.

10.3.1 WS authentication and authorization
Globus Toolkit 4 enables message-level security and transport-level security for
SOAP communication of Web services. Also, it provides an Authorization
Framework for container-level authorization. For more information, refer to
Chapter 7, “Security” on page 63. Also look at the following link for more
information about those components:

http://www.globus.org/toolkit/docs/4.0/security/message/

10.3.2 Pre-WS authentication and authorization
Pre-WS authentication and authorization consists of APIs and tools for
authentication, authorization, and certificate management. For more information,
refer to Chapter 7, “Security” on page 63. Also look at the following link for more
information about those components:

http://www.globus.org/toolkit/docs/4.0/security/prewsaa/

10.3.3 Community Authorization Service (CAS)
CAS provides access control to virtual organizations. The CAS server grants
fine-grained permissions on subsets of resources to members of the community.
CAS authorization is currently not available for Web services, but it supports the
GridFTP server. For more information, look at the following link:

http://www.globus.org/toolkit/docs/4.0/security/cas/

10.3.4 Delegation service
The Delegation service enables delegation of credentials between various
services in one host. The Delegation service allows a single delegated credential
to be used by many services. Also, this service has a credential renewal
 Chapter 10. Globus Toolkit 4 components 145

http://dsd.lbl.gov/gtg/projects/pyGridWare/
http://www.globus.org/toolkit/docs/4.0/contributions/pythonwscore/
http://www.globus.org/toolkit/docs/4.0/security/message/
http://www.globus.org/toolkit/docs/4.0/security/prewsaa/
http://www.globus.org/toolkit/docs/4.0/security/cas/

interface, and this service is capable of extending the valid date of credentials.
For more information, look at the following link:

http://www.globus.org/toolkit/docs/4.0/security/delegation/

Also, Figure 10-5 on page 153 provides an example of how this service is used
by other services.

10.3.5 SimpleCA
SimpleCA is a simplified Certificate Authority. This package has fully functioning
CA features for a PKI environment. In Chapter 11, “Globus Toolkit 4 installation
and configuration” on page 155, we use SimpleCA as a Certificate Authority for
our grid environment. For more information, look at the following link:

http://www.globus.org/toolkit/docs/4.0/security/simpleca/

10.3.6 MyProxy
MyProxy is responsible for storing X.509 proxy credentials, protecting them by
pass phrase, and enabling an interface for retrieving the proxy credential.
MyProxy acts as a repository of credentials, and is often used by Web portal
applications. For more information, look at the following link:

http://www.globus.org/toolkit/docs/4.0/security/myproxy/

10.3.7 GSI-OpenSSH
GSI-OpenSSH is a modified version of the OpenSSH client and server that adds
support for GSI authentication. GSI-OpenSSH can be used to remotely create a
shell on a remote system to run shell scripts or to interactively issue shell
commands, and it also permits the transfer of files between systems without
being prompted for a password and a user ID. Nevertheless, a valid proxy must
be created by using the grid-proxy-init command. Fore more information
about GSI-OpenSSH, look at the following link:

http://www.globus.org/toolkit/docs/4.0/security/openssh/

Important: It is important to note that the simple CA is only recommended for
testing or demo purposes. For any type of production grid, it is recommended
that you evaluate commercial PKI solutions that may better suit your needs
and remove the responsibility for managing your own CA.
146 Introduction to Grid Computing

http://www.globus.org/toolkit/docs/4.0/security/delegation/
http://www.globus.org/toolkit/docs/4.0/security/simpleca/
http://www.globus.org/toolkit/docs/4.0/security/openssh/
http://www.globus.org/toolkit/docs/4.0/security/myproxy/

10.4 Data management components
Globus Toolkit 4 provides various tools that enable data management in a grid
environment.

10.4.1 GridFTP
The GridFTP facility provides secure and reliable data transfer between grid
hosts. Its protocol extends the well-known FTP standard to provide additional
features, including support for authentication through GSI. One of the major
features of GridFTP is that it enables third-party transfer. Third-party transfer is
suitable for an environment where there is a large file in remote storage and the
client wants to copy it to another remote server, as illustrated in Figure 10-2.

Figure 10-2 GridFTP third-party transfer

For more information about GridFTP, look at the following link:

http://www.globus.org/toolkit/docs/4.0/data/gridftp/

globus-url-copy

GridFTP server
daemon

File

GridFTP server
daemon

Filetransfer

control control

GridFTP Host GridFTP Host

GridFTP Client
 Chapter 10. Globus Toolkit 4 components 147

http://www.globus.org/toolkit/docs/4.0/data/gridftp/

10.4.2 Reliable File Transfer (RFT)
Reliable File Transfer provides a Web service interface for transfer and deletion
of files. RFT receives requests via SOAP messages over HTTP and utilizes
GridFTP. RFT also uses a database to store the list of file transfers and their
states, and is capable of recovering a transfer request that was interrupted.
Figure 10-3 shows how RFT and GridFTP work.

Figure 10-3 How RFT and GridFTP works

For more information about RFT, look at the following link:

http://www.globus.org/toolkit/docs/4.0/data/rft/

10.4.3 Replica Location Service (RLS)
The Replica Location Service maintains and provides access to information
about the physical locations of replicated data. This component can map multiple
physical replicas to one single logical file, and enables data redundancy in a grid
environment. For more information, look at the following link:

http://www.globus.org/toolkit/docs/4.0/data/rls/

Client RFT Service

GridFTP Server A

SOAP message

Notifications

GridFTP Server B

Database

File Transfer
Information

GridFTP third party transfer

GridFTP third party
transfer request
148 Introduction to Grid Computing

http://www.globus.org/toolkit/docs/4.0/data/rft/
http://www.globus.org/toolkit/docs/4.0/data/rls/

10.4.4 OGSA-DAI
OGSA-DAI enables a general grid interface for accessing grid data sources such
as relational database management systems and XML repositories, through
query languages like SQL, XPat, and XQuery. Currently, OGSA-DAI is a
technical preview component. That is, the implementation is functional, but not
necessarily complete, and its implementation and interfaces may change in the
future. For more information, look at the following link:

http://www.globus.org/toolkit/docs/4.0/techpreview/ogsadai/

10.4.5 Data Replication Service (DRS)
Data Replication Service provides a system for making replicas of files in the grid
environment, and registering them to RLS. DRS uses RFT and GridFTP to
transfer the files, and it uses RLS to locate and register the replicas. Currently,
DRS is a technical preview component. For more information, look at the
following link:

http://www.globus.org/toolkit/docs/4.0/techpreview/datarep/

10.5 Monitoring and Discovery Services
The Monitoring and Discovery Services (MDS) are mainly concerned with the
collection, distribution, indexing, archival, and otherwise processing information
about the state of various resources, services, and system configurations. The
information collected is used to either discover new services or resources, or to
enable monitoring of system status.

The GT4 provides a WS-RF and WS-Notification compliant version of MDS, also
known as MDS4.

The resource properties provided by a WS-RF compliant resource can be
registered with MDS4 services for information collection purposes. The GT4
WS-RF compliant services such as GRAM and RFT provide such properties.
Upon GT4 container startup these services are registered with MDS4 services.

MDS4 consists of two higher-level services, an Index service and a Trigger
service, which are based on the Aggregator Framework that is briefly described
next.

10.5.1 Index service
The Index service is the central component of the GT4 MDS implementation.
Every instance of a GT4 container has a default indexing service
 Chapter 10. Globus Toolkit 4 components 149

http://www.globus.org/toolkit/docs/4.0/techpreview/ogsadai/
http://www.globus.org/toolkit/docs/4.0/techpreview/datarep/

(DefaultIndexService) exposed as a WSRF service. The Index service interacts
with data sources via standard WS-RF resource property and
subscription/notification interfaces (WS-ResourceProperties and
WS-BaseNotification). A WSRF-based service can make information available
as resource properties. An Index service can potentially collect information from
many sources and publish it in only one place. Various WSRF registrations with
the Index service are maintained as Service Group Entries by the Index service.
The contents of the Index service can be queried via XPath queries.

As noted earlier, each GT4 container has a default index service instance
registered with it. Therefore, a grid computing site with multiple nodes can
potentially have multiple instances of index services available for use. Often
virtual organizations configure an instance of Index service to keep track of all
relevant resources, containers, and services within their domain.

The following are some of the key features of an Index service:

� Index services can be configured in hierarchies, but there is no single global
index that provides information about every resource on the Grid.

� The presence of a resource in an Index service makes no guarantee about
the availability of the resource for users of that Index.

� Information published with MDS is recent but not the absolute latest.

� Each registration into an Index service has a lifetime and requires periodic
renewal of registrations to indicate the continued existence of a resource or a
service.

For more information, look at the following link:

http://www.globus.org/toolkit/docs/4.0/info/index/

10.5.2 Trigger service
The MDS Trigger service collects information and compares that data against a
set of conditions defined in a configuration file. When a condition is met an action
is executed. The condition is specified as an XPath expression; that, for
example, may compare the value of a property to a threshold and send an alert
e-mail to an administrator by executing a script. The name and location of the
script can be configured with the MDS Trigger service. For more information,
look at the following link:

http://www.globus.org/toolkit/docs/4.0/info/trigger/
150 Introduction to Grid Computing

http://www.globus.org/toolkit/docs/4.0/info/index/
http://www.globus.org/toolkit/docs/4.0/info/trigger/

10.5.3 Aggregator Framework
The MDS-Index service and the MDS-Trigger service are specializations of a
general Aggregator Framework. The Aggregator Framework is a software
framework for building software services that collect and aggregate data. These
services are also known as aggregator services.

An aggregator service collects information from one of the three types of
aggregator sources such as a query source that utilizes WS-ResourceProperty
mechanisms to collect data, a subscription source that uses a WS-Notification
subscription/notification mechanism to collect data, or an execution source that
executes an administrator-provided application to collect information in XML
format.

Figure 10-4 MDS4 Aggregator Framework

An aggregator source retrieves information from an external component called
an information provider. In the case of a query and subscription source, the
information provider is a WSRF-compliant service. For an execution source, the

Query
Aggregator

Source

Subscription
Aggregator

Source
Execution

Source

Index Service Trigger Service
Archive Service

(in
development)

Aggregator
Framework

WSRF WSRF Anything

Resource Property
Requests

Subscription /
Notification Program Execution

Resource Property
Requests, Subscription /

Notification

Program Execution

Resource Property
Requests, Subscription /

Notification, Archive
Service Requests

Clients Anything Clients
 Chapter 10. Globus Toolkit 4 components 151

information provider is an executable program that obtains data via some
application-specific mechanism.

For more information, look at the following link:

http://www.globus.org/toolkit/docs/4.0/info/aggregator/

10.5.4 WebMDS
WebMDS is a Web-based interface to WS-RF resource property information that
can be used as a user-friendly front-end to the Index service. WebMDS uses
standard resource property requests to query resource property data and
transforms data for a user-friendly display. Web site administrators can
customize their own WebMDS deployments by using HTML form options and
creating their own XSLT transformations. For more information, look at the
following link:

http://www.globus.org/toolkit/docs/4.0/info/Webmds/

10.6 Execution management
Globus Toolkit 4 provides various tools that enable execution management in a
grid environment.

10.6.1 WS GRAM
WS GRAM is the Grid service that provides the remote execution and status
management of jobs. When a job is submitted by a client, the request is sent to
the remote host as a SOAP message, and handled by WS GRAM service
located in the remote host. The WS GRAM service is capable of submitting those
requests to local job schedulers such as Platform LSF or Altair PBS. The WS
GRAM service returns status information of the job using WSNotification.

The WS GRAM service can collaborate with the RFT service for staging files
required by jobs. In order to enable staging with RFT, valid credentials should be
delegated to the RFT service by the Delegation service. Figure 10-5 on page 153
shows how job staging works.
152 Introduction to Grid Computing

http://www.globus.org/toolkit/docs/4.0/info/aggregator/
http://www.globus.org/toolkit/docs/4.0/info/webmds/

Figure 10-5 Execution of staging job

For more information, look at the following link:

http://www.globus.org/toolkit/docs/4.0/execution/wsgram/

10.6.2 Community Scheduler Framework 4 (CSF4)
The Community Scheduler Framework 4 (CSF4) provides an intelligent,
policy-based meta-scheduling facility for building grids where there are multiple
types of job schedulers involved. It enables a single interface for different
resource managers, such as Platform LSF and Altair PBS. Currently, CSF4 is a
technical preview component. For more information, look at the following link:

http://www.globus.org/toolkit/docs/4.0/contributions/csf/

WS GRAM
Client

WS GRAM
Service

GridFTP
Server*

SOAP message

Notifications

Transfer
Information

Delegation
Service

RFT Service

SOAP message

Host A

RFT
request

GridFTP
Server

Delegated
Credential

GridFTP control

GridFTP transfer Database

GRAM Adaptersudo

*GridFTP Server doesn’t need to be in WS GRAM client host

Host B

Local Resource
Manager

Fork
PBS

LSFDelegated
Credential
 Chapter 10. Globus Toolkit 4 components 153

http://www.globus.org/toolkit/docs/4.0/execution/wsgram/
http://www.globus.org/toolkit/docs/4.0/contributions/csf/

10.6.3 Globus Teleoperations Control Protocol (GTCP)
Globus Teleoperations Control Protocol is the WSRF version of NEESgrid
Teleoperations Control Protocol (NTCP). Currently, GTCP is a technical preview
component. For more information, look at the following links:

http://www.globus.org/toolkit/docs/4.0/techpreview/gtcp/
http://it.nees.org/

10.6.4 Workspace Management Service (WMS)
The Workspace Management Service enables a grid client to dynamically create,
manage, and delete user accounts in a remote site. Currently, WMS is a
technical preview component, and only supports management of UNIX accounts.
For more information, look at the following link:

http://www.globus.org/toolkit/docs/4.0/techpreview/wms/

10.7 Summary
This chapter provided a brief overview of some of the components of the Globus
Toolkit Version 4. Please refer to the Globus Web site for more information about
the toolkit and the details of its components.

In the next chapter, we describe how to install and configure a simple Globus
environment suitable for testing various components or creating a demonstration
of some of the grid technologies and capabilities.
154 Introduction to Grid Computing

http://www.globus.org/toolkit/docs/4.0/techpreview/wms/
http://it.nees.org/
http://www.globus.org/toolkit/docs/4.0/techpreview/gtcp/

Chapter 11. Globus Toolkit 4 installation
and configuration

This chapter presents the necessary steps to install and configure Globus Toolkit
4 in a simple environment. You can follow these steps to set up a demo
environment suitable for your own testing and to gain experience with some of
the components of the Globus Toolkit.

The following topics are discussed:

� How to obtain Globus Toolkit 4
� Packages of Globus Toolkit 4
� Grid environment
� Installation
� Configuration and testing of grid environment
� Uninstallation

11
© Copyright IBM Corp. 2005. All rights reserved. 155

11.1 How to obtain Globus Toolkit 4
Globus Toolkit 4 is supported on a variety of operating systems. Binary packages
are available for Linux environments (SuSE Linux 9/8, Red Hat Linux 9, Fedora
Core Linux 2/3, and Debian 3.1), and Solaris 9. By compiling the source
packages, Globus Toolkit 4 can be used on other operating systems such as
AIX® and Mac OS X. The Java-based components including the
WSRF-compliant WS Java container run in most Java-supported operating
systems including Windows.

For the purpose of this book, we use both the binary and source packages of
Globus Toolkit 4.0 running on Red Hat Linux 9.

This version of Globus Toolkit may be obtained at the official Globus Project site:

http://www.globus.org/toolkit/downloads/4.0.0/

For bug tracking, the Globus Project provides the following Web site:

http://bugzilla.globus.org/bugzilla/

For platform-specific system requirements for Globus Toolkit 4, please refer to
the following Web site:

http://www.globus.org/toolkit/docs/4.0/admin/docbook/ch03.html#s-platform

11.2 Packages of Globus Toolkit 4
Globus Toolkit 4 is available in three ways.

� Download the full binary package from the Globus site.
� Download the full source package from the Globus site.

Note: Though our test environment was built using Globus Toolkit 4.0, by the
time this book is published, 4.0.1 or later may be available. If using a later
release than 4.0.0, some of the information documented here may be slightly
out of date.

Important: Globus Toolkit is distributed under the Globus Toolkit Public
License (GTPL) Version 3, a liberal open source license. You are allowed to
use every tool and the source code in the Globus Toolkit as you like with no
restriction. But it is as is with no warranty. You can find out more about the
GTPL at:

http://www.globus.org/toolkit/legal/4.0/license-v3.html
156 Introduction to Grid Computing

http://www.globus.org/toolkit/downloads/4.0.0/
http://www.globus.org/toolkit/legal/4.0/license-v3.html
http://bugzilla.globus.org/bugzilla/
http://www.globus.org/toolkit/docs/4.0/admin/docbook/ch03.html#s-platform

� Get source codes from a CVS server.

Depending on your environment, you can choose from these ways.

11.2.1 Binary packages
Table 11-1 shows the list of Globus Toolkit 4 binary packages that are available. If
you install Globus Toolkit 4 into one of the operating systems described in
Table 11-1, you can use binary packages. Otherwise, if you are using operating
systems not listed in Table 11-1, you need to obtain the source packages and
build binaries.

Table 11-1 List of Globus Toolkit 4 binary packages

Java WS Core components are also available. This package only includes
WSRF-compliant WS Java container and base components. All packages in
Table 11-1 include Java WS core components, so you do not need to install both
packages. Table 11-2 shows a list of Java WS Core installation packages.

Table 11-2 List of Java WS Core packages

Binary packages name Operating
system

Version Platform

gt4.0.0-ia32-redhat9-binary-installer.tar.gz Red Hat
Linux

9 ia32

gt4.0.0-ia32-fedora2-binary-installer.tar.gz Fedora
Core Linux

2 ia32

gt4.0.0-ia32-fedora3-binary-installer.tar.gz Fedora
Core Linux

3 ia32

gt4.0.0-ia32-debian-binary-installer.tar.gz Debian
Linux

3.1 ia32

gt4.0.0-sun4u-solaris9-binary-installer.tar.gz Solaris 9 sun4u

gt4.0.0-x86_64-sles9-binary-installer.tar.gz SuSE Linux 9 x86_64
(Opteron)

gt4.0.0-ia64-sles8-binary-installer.tar.gz SuSE Linux 8 ia64
(Itanium)

Binary packages Operating system Version Platform

ws-core-4.0.0-bin.zip
ws-core-4.0.0-bin.tar.gz

All java vm-enabled operating
systems

- -
 Chapter 11. Globus Toolkit 4 installation and configuration 157

You can obtain those packages from the following page:

http://www.globus.org/toolkit/downloads/4.0.0/

11.2.2 Source packages
Table 11-3 shows the list of Globus Toolkit 4 source packages that are available.

Table 11-3 List of Globus Toolkit 4 source packages

You can obtain those packages from the following page:

http://www.globus.org/toolkit/downloads/4.0.0/

You can also obtain individual packages from a CVS repository. Table 11-4
shows the list of major packages available in CVS.

Table 11-4 Major packages available in CVS repository

In order to obtain the packages from CVS, type the following command:

cvs -d :pserver:anonymous@cvs.globus.org:/home/globdev/CVS/globus-packages \
checkout (package-name)

11.3 Grid environment
Figure 11-1 on page 159 introduces a conceptual grid environment after a
Globus Toolkit installation. In this chapter we take you through the steps required
to install and configure this environment. There are three servers:

� CA

Source packages name Description

gt4.0.0-all-source-installer.tar.bz2
gt4.0.0-all-source-installer.tar.gz

Source packages with all components

ws-core-4.0.0-src.zip
ws-core-4.0.0-src.tar.gz

Source packages with only Java WS core
components

Source package name Description

wsrf WS Core packages

ws-transfer RFT packages

ws-mds WS MDS packages

ws-gram WS GRAM packages
158 Introduction to Grid Computing

http://www.globus.org/toolkit/downloads/4.0.0/
http://www.globus.org/toolkit/downloads/4.0.0/

This is a Certificate Authority host. We use SimpleCA, which is included in the
Globus Toolkit 4 package, as a Certificate Authority.

� Host A, host B

These are the grid nodes. We install Globus Toolkit 4 packages to those
hosts.

The user’s names are different on host A (auser1) and host B (buser1), but they
share the same grid user ID, which is known as the Distinguished Name:

/O=Grid/O=Globus/OU=redbook.ibm.com/CN=grid user 1

Figure 11-1 System overview after installation

We install software with the versions shown in Table 11-5 on page 160, and this
book uses these versions during the installation process. Also, the installation
directory of each software component is listed in Table 11-5 on page 160. If you
want to install software with different versions or directories, make sure you
specify your own version and directory each time you submit a command.

Note: In a grid environment, users use X.509 certificates to distinguish
themselves from other users. So each grid user has one X.509 certificate, and
the subject of the X.509 certificate is defined as the Distinguished Name.

CA Host A Host B

Hostname : ca.redbook.ibm.com
Role : Certificate Authority
OS : Red Hat 9
Package : Globus Toolkit 4 Binary

Hostname : hosta.redbook.ibm.com
Role : Grid Node
OS : Red Hat 9
Package : Globus Toolkit 4 Binary
Local User: auser1 (uid:511 gid:511)

Hostname : hostb.redbook.ibm.com
Role : Grid Node
OS : Red Hat 9
Package : Globus Toolkit 4 Source
Local User: buser1 (uid:521 gid:521)

/O=Grid/O=Globus/OU=redbook.ibm.com/CN=grid user 1

Grid User name (Distinguished Name of user certificate)

TCP/IP network
 Chapter 11. Globus Toolkit 4 installation and configuration 159

Table 11-5 Version and directory of each Globus software component

At first, we explain how to install the servers using both binary and source
packages. Then we show you how to configure CA, host A, and host B.

11.4 Installation
In order to install Globus Toolkit 4, we need to configure some tools that are
essential for the Globus Toolkit 4 installation. After installation of those tools, we
will install Globus Toolkit 4 using those tools.

11.4.1 Installing required software for Globus Toolkit 4 installation
Table 11-6 shows a list of software we need for Globus Toolkit 4 installation.

Table 11-6 List of required software for Globus Toolkit 4 installation

Most of the packages in Table 11-6 are installed after Red Hat Linux 9
installation. Therefore, we only show how to install the IBM Java SDK and

Name of software Version Directory

Globus Toolkit 4 4.0.0 /usr/local/globus-4.0.0

IBM Java SDK 1.4.2 /opt/IBMJava2-142

Apache Ant 1.6.3 /usr/local/apache-ant-1.6.3

Software name Recommended version

Java SDK (IBM / Sun / BEA) 1.4.2 or later

Apache Ant 1.5.1 or later

gcc 3.2.1 and 2.95.x are tested
(avoid 3.2)

GNU tar -

GNU sed -

zlib 1.1.4 or later

GNU Make -

sudo -

PostgreSQL
(or other JDBC compliant database)

7.1 or later
(if using PostgreSQL)
160 Introduction to Grid Computing

Apache Ant, which are not installed during the Red Hat Linux 9 installation.
Installation and configuration of PostgreSQL are described in “Configuration and
testing of RFT” on page 180.

IBM Java SDK installation
To install IBM Java SDK:

1. Obtain IBM Java SDK from the following URL:

http://www.ibm.com/developerworks/java/jdk/linux140/

2. Install IBM Java SDK. Example 11-1 shows the installation procedure of IBM
Java SDK.

Example 11-1 Installation of IBM Java SDK

[root@hosta]# rpm -ivh IBMJava2-142-ia32-SDK-1.4.2-2.0.i386.rpm
Preparing... ### [100%]
 1:IBMJava2-142-ia32-SDK ### [100%]

3. Add environmental variables for IBM Java SDK. Example 11-2 shows an
example of the /etc/profile.

Example 11-2 Example of /etc/profile

...(unrelated information omitted)

export JAVA_HOME=/opt/IBMJava2-142
export PATH=$JAVA_HOME/bin:$PATH

4. Log out and log in. (Instead, you may type source /etc/profile to ensure the
variables are set and available.)

5. To test the IBM Java SDK installation, type java -version. If you see the
version, then IBM Java SDK is properly installed (see Example 11-3 on
page 162).

Note: You may alternatively use the Sun Java SDK. The installation
procedure of Sun Java SDK is similar to IBM Java SDK. You may obtain
Sun Java SDK from the following URL:

http://java.sun.com/j2se/1.4.2/download.html

Note: We set up environmental variables in /etc/profile in order to make
those variables available to all users on the same host. You can put those
variables into (userhome)/.bash_profile if you do not want to share those
variables between users.
 Chapter 11. Globus Toolkit 4 installation and configuration 161

http://www-128.ibm.com/developerworks/java/jdk/linux140/
http://java.sun.com/j2se/1.4.2/download.html

Example 11-3 Test IBM Java SDK installation

[root@hosta]# java -version
java version "1.4.2"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.2)
Classic VM (build 1.4.2, J2RE 1.4.2 IBM build cxia32142-20050609 (JIT enabled:
jitc))

Apache Ant installation
To install Apache Ant:

1. Obtain Apache Ant from the following URL:

http://ant.apache.org/

2. Extract the Apache Ant archive. Example 11-4 shows the extract procedure of
Apache Ant.

Example 11-4 Extraction of Apache Ant

[root@hosta]# tar xvzf apache-ant-1.6.3-bin.tar.gz -C /usr/local
apache-ant-1.6.3/bin/ant
apache-ant-1.6.3/bin/antRun
...(unrelated information omitted)

3. Add environmental variables for Apache Ant. Example 11-5 shows the
example of /etc/profile.

Example 11-5 Example of /etc/profile

...(unrelated information omitted)

export ANT_HOME=/usr/local/apache-ant-1.6.3
export PATH=$ANT_HOME/bin:$PATH

4. Log out and log in. (Instead, you may type source /etc/profile to set the
variables and make them available.)

5. To test Apache Ant installation, type the ant command (see Example 11-6).
This command will initially fail because a build.xml file is missing, but this
output means Apache Ant is working.

Example 11-6 Test Apache Ant installation

[root@hosta]# ant
Buildfile: build.xml does not exist!
Build failed
162 Introduction to Grid Computing

http://ant.apache.org/

11.4.2 Preparing the OS for Globus Toolkit 4 installation
Before you install Globus Toolkit 4, there are few things that need to be prepared.

Users in each host
Add the users in Table 11-7 for Globus Toolkit 4 installation and configuration.

In a Linux environment, users can be added with a command such as that shown
in the following example, where the password is provided with the -p parameter.

Example 11-7 Adding a user with the adduser command

adduser buser1 -p buserpw

Table 11-7 Users for our Globus Toolkit 4 installation and configuration

Time settings
You should make sure to synchronize the system time of all the machines in your
environment. GSI certificates use timestamps and are very sensitive to the time.
If the system time of your grid environment is not set correctly, errors might occur
when you use GSI certificates. For this reason, it is strongly recommended that
you set up a time server, such as NTP, in your grid environment, and set the time
correctly on all of your systems. Use of a time server is especially important in a
distributed environment where a single administrator cannot easily ensure the
correct setting of system clocks.

In order to configure NTP, look at following procedures:

1. On the machine that is designated to be the time server (in our case, CA
host), edit the /etc/ntp.conf file as a root user. Leave the two lines shown in
Example 11-8 as the only uncommented ones, commenting out all of the
other lines with a leading # character.

Example 11-8 /etc/ntp.conf of ntp server

server 127.127.1.0 # local clock

Host name User name

ca globus

hosta globus

auser1

hostb globus

buser1
 Chapter 11. Globus Toolkit 4 installation and configuration 163

driftfile /etc/ntp/drift

2. On the machine that is designated to be the ntp client (in our case, host A and
host B), edit the /etc/ntp.conf file as the root user. Leave the two lines shown
in Example 11-9 as the only uncommented ones, commenting out all of the
other lines with a leading # character.

Example 11-9 /etc/ntp.conf of ntp client

server (ip address of ntp server) # time server
driftfile /etc/ntp/drift

3. In all hosts as the root user, configure the ntp daemon to run on the next boot
(see Example 11-10).

Example 11-10 Configure ntp server to run on the next boot

[root@hosta]# chkconfig ntpd -on

4. In all hosts as the root user, start the ntp service (see Example 11-11).

Example 11-11 Starting ntp server

[root@hosta]# service ntpd start

5. Check if the time is synchronized with the ntp server by using the ntpq
command. If you get an asterisk (*) before the time server name, then your
ntp service is properly configured (see Example 11-12).

Example 11-12 Check the time setting with the ntpq command

[root@hosta]# ntpq -p
 remote refid st t when poll reach delay offset jitter
==
*ca.redbook.ib LOCAL(0) 6 u 516 1024 377 0.931 -2.258 0.262

Firewall settings
If you have a firewall in your environment, you should open the TCP ports listed
in Table 11-8 on page 165 in order to use the services/components of Globus
Toolkit 4. Take a look at your firewall settings and make sure those ports are
open.

Note: You may have to wait a few minutes before the ntp service
synchronizes the time between systems.
164 Introduction to Grid Computing

Table 11-8 TCP port numbers used by Globus Toolkit 4

11.4.3 Installing Globus Toolkit 4
You may install Globus Toolkit 4 in many ways.

In this section, we introduce both binary and source package installation.
Installation of the binary package is extremely fast, while installation using the
source package will take longer, as would be expected. As a guideline, we have
provided the approximate time it took for us to install the packages in our
environment in Table 11-9. Your experience may vary.

Table 11-9 Approximate time for installation (with Intel® Pentium® 4 3GHz, memory)

Installation from binary package
To install from a binary package:

1. Obtain the Globus Toolkit 4 binary package from the Globus site. For more
information, see 11.2.1, “Binary packages” on page 157.

2. Extract the binary package as the Globus user (see Example 11-13).

Example 11-13 Extracting binary package

[globus@hosta]$ tar xvzf gt4.0.0-ia32-redhat9-binary-installer.tar.gz \
-C /tmp

3. Set environmental variables for the Globus location. Example 11-14 shows
how to set up the environmental variables.

Example 11-14 Set up the environmental variables for Globus

[globus@hosta]$ export GLOBUS_LOCATION=/usr/local/globus-4.0.0

4. Create and change the ownership of directory for user and group globus.
(See Example 11-15 on page 166.)

TCP port number Application

2811 GridFTP

8080 Globus container (non-secure mode)

8443 Globus container (secure mode)

Package type Approximate time

Binary 1 min.

Source 83 min.
 Chapter 11. Globus Toolkit 4 installation and configuration 165

Example 11-15 Create and change the ownership of directory

[globus@hosta]$ su
Password:
[root@hosta]# mkdir $GLOBUS_LOCATION
[root@hosta]# chown globus:globus $GLOBUS_LOCATION
[root@hosta]# exit
exit
[globus@hosta]$

5. Configure and install Globus Toolkit 4 (see Example 11-16).

Example 11-16 Configure and install Globus Toolkit 4

[globus@hosta]$ cd /tmp/gt4.0.0-ia32-redhat9-binary-installer
[globus@hosta]$./configure --prefix=$GLOBUS_LOCATION
checking for javac... /usr/java/j2sdk1.4.2_08/bin/javac
checking for ant... /usr/local/apache-ant-1.6.3/bin/ant
configure: creating ./config.status
config.status: creating Makefile

[globus@hosta]$ make 2>&1 | tee build.log
cd gpt-3.2autotools2004 && OBJECT_MODE=32 ./build_gpt
build_gpt ====> installing GPT into /usr/local/globus-4.0.0
...(unrelated information omitted)

[globus@hosta]$ make install
ln -s /usr/local/globus-4.0.0/etc/gpt/packages
/usr/local/globus-4.0.0/etc/globus_packages
/usr/local/globus-4.0.0/sbin/gpt-postinstall
...(unrelated information omitted)
config.status: creating fork.pm
..Done

Installation from source package
To install from a source package:

1. Obtain the Globus Toolkit 4 source package from the Globus site. For more
information, see 11.2.2, “Source packages” on page 158.

2. Extract the source package with the Globus user ID (see Example 11-17).

Example 11-17 Extracting source package

[globus@hostb]$ tar xvzf gt4.0.0-all-source-installer.tar.gz -C /tmp

3. Set environmental variables for the Globus location. Example 11-18 on
page 167 shows how to set up the environmental variables.
166 Introduction to Grid Computing

Example 11-18 Set up GLOBUS_LOCATION environmental variables for Globus

[globus@hostb]$ export GLOBUS_LOCATION=/usr/local/globus-4.0.0

4. Create and change the ownership of the directory for user and group Globus
(see Example 11-19).

Example 11-19 Create and change the ownership of directory

[globus@hostb]$ su
Password:
[root@hostb]# mkdir $GLOBUS_LOCATION
[root@hostb]# chown globus:globus $GLOBUS_LOCATION
[root@hostb]# exit
exit

5. Configure and install Globus Toolkit 4 (see Example 11-20).

Example 11-20 Configure and install Globus Toolkit 4

[globus@hostb]$ cd /tmp/gt4.0.0-all-source-installer
[globus@hostb]$./configure --prefix=$GLOBUS_LOCATION
checking build system type... i686-pc-linux-gnu
checking for javac... /usr/java/j2sdk1.4.2_08/bin/javac
checking for ant... /usr/local/apache-ant-1.6.3/bin/ant
configure: creating ./config.status
config.status: creating Makefile

[globus@hostb]$ make 2>&1 | tee build.log
cd gpt-3.2autotools2004 && OBJECT_MODE=32 ./build_gpt
build_gpt ====> installing GPT into /usr/local/globus-4.0.0
...(unrelated information omitted)

[globus@hostb]$ make install
/usr/local/globus-4.0.0/sbin/gpt-postinstall
running /usr/local/globus-4.0.0/setup/globus/setup-globus-common..[Changing to
/usr/local/globus-4.0.0/setup/globus]
...(unrelated information omitted)
config.status: creating fork.pm
..Done

11.5 Configuration and testing of grid environment
After the installation of the Globus Toolkit, each element of your grid environment
must be configured.
 Chapter 11. Globus Toolkit 4 installation and configuration 167

11.5.1 Configuring environmental variables
Before starting the configuration process, it is useful to set up the
GLOBUS_LOCATION environmental variables in either /etc/profile or
(userhome)/.bash_profile. To save time upon subsequent logins from different
user IDs, we specified GLOBUS_LOCATION in /etc/profile (see Example 11-21).

Also, Globus Toolkit provides shell scripts to set up these environmental
variables. They can be sourced as follows:

source $GLOBUS_LOCATION/etc/globus-user-env.sh (sh)
source $GLOBUS_LOCATION/etc/globus-user-env.csh (csh)

The Globus Toolkit also provides shell scripts for developers to set up Java
CLASSPATH environmental variables. They can be sourced as follows:

source $GLOBUS_LOCATION/etc/globus-devel-env.sh (sh)
source $GLOBUS_LOCATION/etc/globus-devel-env.csh (csh)

In this book, to save time upon subsequent logins, we specify
globus-user-env.sh and globus-devel-env.sh in /etc/profile so that all users can
use the grid environment.

Example 11-21 Example of /etc/profile

...(unrelated information omitted)

export GLOBUS_LOCATION=/usr/local/globus-4.0.0
source $GLOBUS_LOCATION/etc/globus-user-env.sh
source $GLOBUS_LOCATION/etc/globus-devel-env.sh

11.5.2 Security set up
In this book, we use SimpleCA, which is a wrapper of OpenSSL CA functionality.

Important: Before setting up a certificate authority (CA), make sure to
synchronize the system time of all the machines in your environment. For
more information, refer to 11.4.2, “Preparing the OS for Globus Toolkit 4
installation” on page 163.

Note: Make sure Globus Toolkit 4 is also installed on the CA host, as the
SimpleCA package is provided in the Globus Toolkit. See “Installing Globus
Toolkit 4” on page 165 for installation procedures.
168 Introduction to Grid Computing

Installation of CA packages
To install CA packages:

1. Log in to the CA host as a Globus user.

2. Invoke the setup-simple-ca script, and answer the prompts as appropriate
See Example 11-22. This script initializes the files that are necessary for
SimpleCA.

Example 11-22 Setting up SimpleCA

[globus@ca]$ $GLOBUS_LOCATION/setup/globus/setup-simple-ca

WARNING: GPT_LOCATION not set, assuming:
 GPT_LOCATION=/usr/local/globus-4.0.0

 C e r t i f i c a t e A u t h o r i t y S e t u p

This script will setup a Certificate Authority for signing Globus users
certificates. It will also generate a simple CA package that can be
distributed to the users of the CA.

The CA information about the certificates it distributes will be kept in:

/home/globus/.globus/simpleCA/
/usr/local/globus-4.0.0/setup/globus/setup-simple-ca: line 250: test: res:
integer expression expected

The unique subject name for this CA is:

cn=Globus Simple CA, ou=simpleCA-ca.redbook.ibm.com, ou=GlobusTest, o=Grid

Do you want to keep this as the CA subject (y/n) [y]: y

Enter the email of the CA (this is the email where certificate requests will be
sent to be signed by the CA): (type mail address)globus@ca.redbook.ibm.com

The CA certificate has an expiration date. Keep in mind that once the CA
certificate has expired, all the certificates signed by that CA become invalid.
A CA should regenerate the CA certificate and start re-issuing ca-setup
packages before the actual CA certificate expires. This can be done by
re-running this setup script. Enter the number of DAYS the CA certificate
should last before it expires.
[default: 5 years (1825 days)]: (type the number of days)1825

Enter PEM pass phrase: (type ca certificate pass phrase)
Verifying - Enter PEM pass phrase: (type ca certificate pass phrase)
...(unrelated information omitted)
 Chapter 11. Globus Toolkit 4 installation and configuration 169

setup-ssl-utils: Complete

Setting up security in each grid node
After performing the steps above, a package file has been created that needs to
be used on other nodes, as described in this section. In order to use certificates
from this CA in other grid nodes, you need to copy and install the CA setup
package to each grid node.

1. Log in to a grid node as a Globus user and obtain a CA setup package from
the CA host. Then run the setup commands for configuration (see
Example 11-23).

Example 11-23 Set up CA in each grid node

[globus@hosta]$ scp globus@ca:/home/globus/.globus/simpleCA \
/globus_simple_ca_(ca_hash)_setup-0.18.tar.gz .
[globus@hosta]$ $GLOBUS_LOCATION/sbin/gpt-build \
globus_simple_ca_(ca_hash)_setup-0.18.tar.gz gcc32dbg
[globus@hosta]$ $GLOBUS_LOCATION/sbin/gpt-postinstall

2. As the root user, submit the commands in Example 11-24 to configure the CA
settings in each grid node. This script creates the /etc/grid-security directory.
This directory contains the configuration files for security.

Example 11-24 Configure CA in each grid node

[root@hosta]# $GLOBUS_LOCATION/setup\
/globus_simple_ca_[ca_hash]_setup/setup-gsi -default

Obtain and sign a host certificate
In order to use some of the services provided by Globus Toolkit 4, such as Grid
FTP, you need to have a CA signed host certificate and host key in the
appropriate directory.

1. As root user, request a host certificate with the command in Example 11-25
on page 171.

Note: A CA setup package is generated when you run the
setup-simple-ca command in Example 11-22. Keep in mind that the name
of the CA setup package includes a unique CA hash.

Note: For the setup of the CA host, you do not need to run the setup-gsi
script. This script creates a directory that contains the configuration files for
security. The CA host does not need this directory, because these
configuration files are for the servers and users who use the CA.
170 Introduction to Grid Computing

Example 11-25 Request a host certificate

[root@hosta]# grid-cert-request -host `hostname`

2. Copy or send the /etc/grid-security/hostcert_request.pem file to the CA host.

3. In the CA host as a Globus user, sign the host certificate by using the
grid-ca-sign command.

Example 11-26 Sign a host certificate

[globus@ca]$ grid-ca-sign -in hostcert_request.pem -out hostcert.pem

To sign the request
please enter the password for the CA key: (type ca passphrase)

The new signed certificate is at:
/home/globus/.globus/simpleCA//newcerts/01.pem

4. Copy the hostcert.pem back to the /etc/grid-security/ directory in the grid
node.

Obtain and sign a user certificate
In order to use the grid environment, a grid user needs to have a CA signed user
certificate and user key in the user’s directory.

1. As a user (auser1 in hosta), request a user certificate with the command in
Example 11-27.

Example 11-27 Request a user certificate

[auser1@hosta]$ grid-cert-request
Enter your name, e.g., John Smith: grid user 1 (type grid user name)
A certificate request and private key is being created.
You will be asked to enter a PEM pass phrase.
This pass phrase is akin to your account password,and is used to protect your
key file.
If you forget your pass phrase, you will need to obtain a new certificate.

Generating a 1024 bit RSA private key
.....................................++++++
...++++++
writing new private key to '/home/auser1/.globus/userkey.pem'
Enter PEM pass phrase: (type pass phrase for grid user)
Verifying - Enter PEM pass phrase: (retype pass phrase for grid user)
...(unrelated information omitted)

2. Copy or send the (userhome)/.globus/usercert_request.pem file to the CA
host.
 Chapter 11. Globus Toolkit 4 installation and configuration 171

3. In CA host as a Globus user, sign the user certificate by using the
grid-ca-sign command (see Example 11-28).

Example 11-28 Sign a user certificate

[globus@ca]$ grid-ca-sign -in usercert_request.pem -out usercert.pem

To sign the request
please enter the password for the CA key:

The new signed certificate is at:
/home/globus/.globus/simpleCA//newcerts/02.pem

4. Copy the created usercert.pem to the (userhome)/.globus/ directory on the
grid node.

5. Test the user certificate by typing grid-proxy-init -debug -verify as the
auser user. With this command, you can see the location of a user certificate
and a key, CA’s certificate directory, a distinguished name for the user, and
the expiration time. After you successfully execute grid-proxy-init, you
have been authenticated and are ready to use the grid environment.

Example 11-29 Testing user certificate installation

[auser1@hosta]$ grid-proxy-init -debug -verify

User Cert File: /home/auser1/.globus/usercert.pem
User Key File: /home/auser1/.globus/userkey.pem

Trusted CA Cert Dir: /etc/grid-security/certificates

Output File: /tmp/x509up_u511
Your identity:
/O=Grid/OU=GlobusTest/OU=simpleCA-ca.redbook.ibm.com/OU=redbook.ibm.com/CN=grid
user 1
Enter GRID pass phrase for this identity:
Creating proxy++++++++++++
.................++++++++++++
 Done
Proxy Verify OK
Your proxy is valid until: Thu Jun 9 22:16:28 200

Note: You may copy those user certificates to other grid nodes in order to
access each grid node as a single grid user. But you may not copy a host
certificate and a host key. A host certificate is needed to be created in each
grid node.
172 Introduction to Grid Computing

Set mapping information between a grid user and a local user
Globus Toolkit 4 requires a mapping between an authenticated grid user and a
local user. In order to map a user, you need to get the distinguished name of the
grid user, and map it to a local user.

1. Get the distinguished name by invoking the grid-cert-info command.

Example 11-30 Obtaining distinguished name

[auser1@hosta]$ grid-cert-info -subject -f /home/auser1/.globus/usercert.pem
/O=Grid/OU=GlobusTest/OU=simpleCA-ca.redbook.ibm.com/OU=redbook.ibm.com/CN=grid
user 1

2. As a root user, map the local user name with the distinguished name by using
the grid-mapfile-add-entry command, as seen in Example 11-31.

Example 11-31 Map a grid user and local user

[root@hosta]# grid-mapfile-add-entry -dn \
"/O=Grid/OU=GlobusTest/OU=simpleCA-ca.redbook.ibm.com/OU=redbook.ibm.com/CN=gri
d user 1" -ln auser1

Modifying /etc/grid-security/grid-mapfile ...
/etc/grid-security/grid-mapfile does not exist... Attempting to create
/etc/grid-security/grid-mapfile
New entry:
"/O=Grid/OU=GlobusTest/OU=simpleCA-ca.redbook.ibm.com/OU=redbook.ibm.com/CN=gri
d user 1" auser1
(1) entry added

3. In order to see the mapping information, look at /etc/grid-security/grid-mapfile
(see Example 11-32).

Example 11-32 Example of /etc/grid-security/grid-mapfile

"/O=Grid/OU=GlobusTest/OU=simpleCA-ca.redbook.ibm.com/OU=redbook.ibm.com/CN=gri
d user 1" auser1

4. To check for consistency of the mapfile, submit
grid-mapfile-check-consistency. If you get no response from this
command, then it means the grid-mapfile is consistent.

Note: The grid-mapfile-add-entry command creates and adds an entry
to /etc/grid-security/grid-mapfile. You can manually add an entry by adding
a line into this file.
 Chapter 11. Globus Toolkit 4 installation and configuration 173

Example 11-33 Check the consistency of grid-mapfile

[root@hosta]# grid-mapfile-check-consistency

11.5.3 Configuration of Java WS Core
The Java WS Core container is installed as a part of the default Globus Toolkit 4
installation. There are a few things you need to configure before you start Java
WS Core.

Setting up Java WS Core environment
The Java WS Core container uses a copy of the host certificate and a host key.
You need to copy and change the owner of those files before you start the Java
WS Core container.

As a root user, copy hostcert.pem and hostkey.pem to containercert.pem and
containerkey.pem in /etc/grid-security/. Then change the owner of the new files
to Globus (see Example 11-34).

Example 11-34 Copying host certificate and key to container certificate and key

[root@hosta]# cp hostcert.pem containercert.pem
[root@hosta]# cp hostkey.pem containerkey.pem
[root@hosta]# chown globus.globus containercert.pem containerkey.pem

Verifying the installation and configuration of Java WS Core
To verify that the Java WS Core has been installed successfully and that grid
security has been implemented correctly, complete the following procedure:

1. As a Globus user, run the following command to start the container:

globus-start-container

If you do not use a secured container, then type following command:

globus-start-container -nosec

2. When the process is complete, a message indicates that the container is
open for Grid services, as shown in Example 11-35.

Example 11-35 Starting the Java WS Core container

[globus@hosta]$ globus-start-container -nosec
2005-06-09 11:31:41,192 ERROR service.ReliableFileTransferImpl [main,<init>:73]
Unable to setup data base driver with pooling.Connection refused. Check that
the hostname and port are correct and that the postmaster is accepting TCP/IP
connections.
2005-06-09 11:31:41,848 WARN
service.ReliableFileTransferHome[main,initialize:97] All RFT requests will fail
174 Introduction to Grid Computing

and all GRAM jobs that require file staging will fail.Connection refused. Check
that the hostname and port are correct and that the postmaster is accepting
TCP/IP connections.
Starting SOAP server at: http://192.168.1.103:8080/wsrf/services/With the
following services:

[1]: http://192.168.1.103:8080/wsrf/services/TriggerFactoryService
[2]: http://192.168.1.103:8080/wsrf/services/DelegationTestService
...(unrelated information omitted)
[51]: http://192.168.1.103:8080/wsrf/services/ManagedJobFactoryService
2005-06-09 11:32:10,359 INFO impl.DefaultIndexService
[Thread-9,processConfigFile:99] Reading default registration configuration from
file: /usr/local/globus-4.0.0/etc/globus_wsrf_mds_index/hierarchy.xml
2005-06-09 11:32:11,398 ERROR impl.QueryAggregatorSource
[Thread-11,pollGetMultiple:149] Exception Getting Multiple Resource Properties
from
http://192.168.1.103:8080/wsrf/services/ReliableFileTransferFactoryService:
java.rmi.RemoteException: Failed to serialize resource property
org.globus.transfer.reliable.service.factory.TotalNumberOfBytesTransferred@1fd1
0fa; nested exception is: org.apache.commons.dbcp.DbcpException: Connection
refused. Check that the hostname and port are correct and that the postmaster
is accepting TCP/IP connections.

Executing Counter Sample program
Globus Toolkit 4 includes sample programs. Counter Sample is one of the
samples in Globus Toolkit 4. Counter Sample contains a CounterService and
counter client. CounterService has two key operations:

createCounter Create a new counter resource and return the end point
reference of the resource.

add Add a value to the specified counter resource.

Note: globus-start-container may take some time to complete.

Note: With the globus-start-container command, you will see many
exceptions regarding RFT. This is because we have not configured RFT yet,
and therefore these messages are normal. If you do not want these
messages, go to “Configuration and testing of RFT” on page 180 and
configure RFT first.
 Chapter 11. Globus Toolkit 4 installation and configuration 175

CounterService is deployed into the container during the installation process by
default, so you only need to use the client program to try Counter Sample. To try
the sample, follow these procedures:

1. If your Java WS Core container is not running, start your container by typing
the following command:

globus-start-container [-nosec]

If you do not want to run the container in secure mode, then use the -nosec
option.

Make sure the CounterService entry is shown when you start your container
(see Example 11-36).

Example 11-36 Part of globus-start-container output

...(unrelated information omitted)
[15]: https://192.168.1.103:8443/wsrf/services/CounterService
...(unrelated information omitted)

2. Log in to your grid node with a user that has grid user certificates.

3. Type the grid-proxy-init command to authenticate and create the proxy
certificate (see Example 11-37).

Example 11-37 Submitting grid-proxy-init command

[auser1@hosta]$ grid-proxy-init
Your identity:
/O=Grid/OU=GlobusTest/OU=simpleCA-ca.redbook.ibm.com/OU=redbook.ibm.com/CN=grid
user 1
Enter GRID pass phrase for this identity:
Creating proxy Done
Your proxy is valid until: Tue Jun 14 21:41:25 2005

4. Create a counter resource by typing following command:

counter-create -s <URI of CounterService> > <epr file name>

Output of this command includes an end point reference string, so you need
to redirect the output to file. See Example 11-38.

Example 11-38 Create counter resource

[auser1@hosta]$ counter-create -s \
https://192.168.1.103:8443/wsrf/services/CounterService > test.epr

Note: If you are using non-secure container, you do not need this step.
176 Introduction to Grid Computing

5. Add a value to the counter resource by typing the following command:

counter-add -e <epr file name> <value to add>

Output of this command shows the result after addition. You may try several
times to see how it works (see Example 11-39).

Example 11-39 Add values to counter resource

[auser1@hosta]$ counter-add -e test.epr 3
3
[auser1@hosta]$ counter-add -e test.epr 4
7

Troubleshooting
The following are a few common errors that may occur and what you might do to
correct them.

� The following message appears during the globus-start-container
command.

Failed to start container: Failed to initialize 'ManagedJobFactoryService'
service [Caused by: [SEC] Service credentials not configured and was not
able to obtain container credentials.;

This may be due to not having properly created container certificates. Also,
this error appears when you do not have a grid-mapfile. Make sure you follow
the steps in 11.5.2, “Security set up” on page 168.

� The following message appears during the globus-start-container
command.

Failed to start container: Container failed to initialize [Caused by:
Address already in use]

This is because you have another container or program running. You may
need to stop the container or program in order to make this command work.

� The following message appears during the counter-create command.

Error: ; nested exception is:
 GSSException: Defective credential detected [Caused by: Proxy file
(/tmp/x509up_u511) not found.]

This is because you have tried to access a secured container without an
activated proxy certificate. You need to run the grid-proxy-init command in
order to make this command work.

11.5.4 Configuration and testing of GridFTP
You need to configure GridFTP before RFT, because GridFTP is required by
RFT. GridFTP is already installed during the default installation process. You
 Chapter 11. Globus Toolkit 4 installation and configuration 177

only need to configure GridFTP as a service daemon so that you can transfer
data between two hosts with GridFTP.

Setting up GridFTP environment
In order to install GridFTP, follow the procedures below.

1. Assign the service name gsiftp to TCP port 2811 in /etc/services as you see
in Example 11-40.

Example 11-40 Example of /etc/services file

...(unrelated information omitted)
gsiftp 2811/tcp # GridFTP

2. Create the /etc/xinetd.d/gsiftp file with the entry in Example 11-41.

Example 11-41 Example of /etc/xinetd.d/gsiftp

service gsiftp
{
instances = 100
socket_type = stream
wait = no
user = root
env += GLOBUS_LOCATION=/usr/local/globus-4.0.0
env += LD_LIBRARY_PATH=/usr/local/globus-4.0.0/lib
server = /usr/local/globus-4.0.0/sbin/globus-gridftp-server
server_args = -i
log_on_success += DURATION
nice = 10
disable = no
}

3. Restart xinetd daemon (see Example 11-42).

Example 11-42 Restarting xinetd daemon

[root@hosta]# service xinetd restart
Stopping xinetd: [OK]
Starting xinetd: [OK]

Note: You may also start your GridFTP server by the command below.

globus-gridftp-server -S

For more information, see the following link:

http://www.globus.org/toolkit/docs/4.0/data/gridftp/admin-index.html
178 Introduction to Grid Computing

http://www.globus.org/toolkit/docs/4.0/data/gridftp/admin-index.html

Verifying the installation and configuration of GridFTP
To verify that GridFTP has been installed successfully, complete the following
procedure:

1. Log in to your grid node with the user who has grid user certificates.

2. Type a grid-proxy-init command to authenticate and create the proxy
certificate.

3. Type the following GridFTP client command to make sure your GridFTP is
configured properly (see Example 11-43).

globus-url-copy <sourceURL> <destURL>

Example 11-43 Using GridFTP with globus-url-copy command

[auser1@hosta]$ echo "GridFTP Test" > /tmp/gridftptest.txt
[auser1@hosta]$ globus-url-copy gsiftp://hosta/tmp/gridftptest.txt \
file:///tmp/gridftptest_copied.txt
[auser1@hosta]$ cat /tmp/gridftptest_copied.txt
GridFTP Test
[auser1@hosta]$ globus-url-copy file:///tmp/gridftptest_copied.txt \
gsiftp://hosta/tmp/gridftptest_copied2.txt
[auser1@hosta]$ cat /tmp/gridftptest_copied2.txt
GridFTP Test

4. Try third-party transfer with the globus-url-copy command (see
Example 11-44).

Example 11-44 Third-party transfer with globus-url-copy command

[auser1@hosta]$ echo "ThirdParty GridFTP Test" > /tmp/thirdparty.txt
[auser1@hosta]$ globus-url-copy gsiftp://hosta/tmp/thirdparty.txt \
gsiftp://hostb/tmp/thirdparty.txt
[auser1@hosta]$ ssh buser1@hostb
buser1@hostb's password:
Last login: Thu Jun 9 19:36:31 2005 from hosta.redbook.ibm.com
[buser1@hostb]$ cat /tmp/thirdparty.txt
ThirdParty GridFTP Test
[buser1@hostb]$ ll /tmp/thirdparty.txt
-rw-r--r-- 1 buser1 buser1 24 Jun 9 19:36 /tmp/thirdparty.txt

Important: In Example 11-44, the owner of the created file is buser1 (not
root). This is because GridFTP uses GSI for authentication, and
/etc/grid-mapfile was used to map the grid user and local user. Take a look at
/etc/grid-security/grid-mapfile. Refer to “Security set up” on page 168 and
Chapter 7, “Security” on page 63, for more information.
 Chapter 11. Globus Toolkit 4 installation and configuration 179

Troubleshooting
The following are some possible error conditions or symptoms that may come up
in your testing along with possible resolutions.

� It takes long time to transfer a small data file using globus-url-copy

Make sure your name server is configured properly. Look at /etc/resolv.conf
to make sure name resolution of your grid node is configured properly.

� The following message appears during the globus-url-copy command.

globus_gsi_gssapi: Error with gss credential handle
globus_credential: Valid credentials could not be found in any of the
possible locations specified by the credential search order.
Valid credentials could not be found in any of the possible locations
specified by the credential search order.

This is because you have tried to access the secured container without an
activated proxy certificate. You need to run the grid-proxy-init command in
order to make this command work.

11.5.5 Configuration and testing of RFT
After you configure GridFTP, you may configure RFT. RFT is used by WS GRAM
during stage-in and stage-out.

Setting up PostgreSQL
In order to use RFT, you need to configure a JDBC-compliant database. In this
book, we install PostgreSQL as the database. Follow the procedures below to
install and set up PostgreSQL.

1. If you do not have PostgreSQL in your node, install PostgreSQL with rpm
commands as a root user (see Example 11-45).

Example 11-45 Installing postgres

[root@hosta]# rpm -ivh /mnt/cdrom/RedHat/RPMS/postgresql-libs-7.3.2-3.i386.rpm
[root@hosta]# rpm -ivh /mnt/cdrom/RedHat/RPMS/postgresql-7.3.2-3.i386.rpm

Note: In order to enable third-party GridFTP transfer, you need to install and
configure other hosts, such as hostb, with the same steps. Refer to previous
sections for installation and configuration procedures.

Attention: Before configuring RFT, make sure you follow the instructions in
“Configuration and testing of GridFTP” on page 177.
180 Introduction to Grid Computing

[root@hosta]# rpm -ivh \
/mnt/cdrom/RedHat/RPMS/postgresql-server-7.3.2-3.i386.rpm

2. Start the PostgreSQL server. Also, set postgresql to start after reboot (see
Example 11-46).

Example 11-46 Starting PostgreSQL

[root@hosta]# service postgresql start
Initializing database: [OK]
Starting postgresql service: [OK]
[root@hosta]# chkconfig postgresql on

3. RFT requires PostgreSQL to accept a connection from the network. Edit the
PostgreSQL settings file (/var/lib/pgsql/data/postgresql.conf) to allow
connection from the network (see Example 11-47).

Example 11-47 Example of /var/lib/pgsql/data/postgresql.conf

...(unrelated information omitted)
Connection Parameters
#
tcpip_socket = true (change the value from false to true)
...(unrelated information omitted)

4. Add the following line to /var/lib/pgsql/data/pg_hba.conf to allow access from
your host (see Example 11-48).

Example 11-48 Example of /var/lib/pgsql/data/pg_hba.conf

...(unrelated information omitted)
local all all ident sameuser
host all all (ip address of RFT host) 255.255.255.255 trust

5. Restart the PostgreSQL server to activate the new settings (see
Example 11-49).

Example 11-49 Restarting PostgreSQL

[root@hosta]# service postgresql restart
Stopping postgresql service: [OK]
Starting postgresql service: [OK]

Adding a new database for RFT to PostgreSQL
You need to create a database that RFT uses in PostgreSQL. Follow the
procedures below:

1. As a postgres user, submit the command in Example 11-50 on page 182 to
create the RFT database.
 Chapter 11. Globus Toolkit 4 installation and configuration 181

Example 11-50 Creating RFT database

[postgres@hosta]$ createdb rftDatabase
CREATE DATABASE

2. Create tables by using the sql scripts that are included in the Globus Toolkit 4
package (see Example 11-51).

Example 11-51 Creating tables in RFT database

[postgres@hosta]$ psql -d rftDatabase -f \
$GLOBUS_LOCCATION/share/globus_wsrf_rft/rft_schema.sql
CREATE SEQUENCE
CREATE SEQUENCE
psql:/usr/local/globus-4.0.0/share/globus_wsrf_rft/rft_schema.sql:22: NOTICE:
CREATE TABLE / PRIMARY KEY will create implicit index 'request_pkey' for table
'request'
CREATE TABLE
psql:/usr/local/globus-4.0.0/share/globus_wsrf_rft/rft_schema.sql:57: NOTICE:
CREATE TABLE / PRIMAR
Y KEY will create implicit index 'transfer_pkey' for table 'transfer'
CREATE TABLE
CREATE TABLE
CREATE TABLE
CREATE INDEX

3. Register the Globus user to PostgreSQL server (see Example 11-52).

Example 11-52 Registering Globus user

[postgres@hosta]$ createuser globus
Shall the new user be allowed to create databases? (y/n) y
Shall the new user be allowed to create more new users? (y/n) y
CREATE USER

Verifying the installation and configuration of RFT
To verify that the RFT has been installed successfully, complete the following
procedure:

1. Log in to your grid node with the Globus user.

2. Start the secure container (see Example 11-53).

Example 11-53 Starting the Java WS Core container in secure mode

[globus@hosta]$ globus-start-container

Note: The postgres user is automatically generated during the
PostgreSQL package installation shown in Example 11-45 on page 180.
182 Introduction to Grid Computing

Starting SOAP server at: https://192.168.1.103:8443/wsrf/services/
With the following services:

[1]: https://192.168.1.103:8443/wsrf/services/TriggerFactoryService
[2]: https://192.168.1.103:8443/wsrf/services/DelegationTestService
...(unrelated information omitted)
[51]: https://192.168.1.103:8443/wsrf/services/ManagedJobFactoryService
2005-06-09 21:46:49,805 INFO impl.DefaultIndexService
[Thread-9,processConfigFile:99] Reading default registration configuration from
file: /usr/local/globus-4.0.0/etc/globus_wsrf_mds_index/hierarchy.xml

3. In another console, log in to your grid node with the user who has grid user
certificates.

4. Create an RFT description file. A sample RFT description file is show in
Example 11-54.

Example 11-54 Sample of RFT description file (rfttest.xfr)

#true=binary false=ascii
true
#Block size in bytes
16000
#TCP Buffer size in bytes
16000
#Notpt (No thirdPartyTransfer)
false
#Number of parallel streams
1
#Data Channel Authentication (DCAU)
true
Concurrency of the request
1
#Grid Subject name of the source gridftp server
/O=Grid/OU=GlobusTest/OU=simpleCA-ca.redbook.ibm.com/CN=host/hosta.redbook.ibm.
com
#Grid Subject name of the destination gridftp server
/O=Grid/OU=GlobusTest/OU=simpleCA-ca.redbook.ibm.com/CN=host/hostb.redbook.ibm.
com
#Transfer all or none of the transfers
false
#Maximum number of retries
10

Attention: Make sure you do not have an RFT error after you start your
container. If you still have an RFT error like in Example 11-35 on page 174,
check the settings again. See “Troubleshooting” on page 184 for more
information.
 Chapter 11. Globus Toolkit 4 installation and configuration 183

#Source/Dest URL Pairs
gsiftp://hosta.redbook.ibm.com/tmp/fileInHostA.txt
gsiftp://hostb.redbook.ibm.com/tmp/fileFromHostA.txt

5. Run the RFT job by invoking the rft command, as below.

Example 11-55 Executing RFT file transfer with rft command

[auser1@hosta]$ echo TestFromHostA > /tmp/fileInHostA.txt
[auser1@hosta]$ rft -h hosta.redbook.ibm.com -r 8443 -f rfttest.xfr
Number of transfers in this request: 1
Subscribed for overall status
Termination time to set: 60 minutes

 Overall status of transfer:

 Overall status of transfer:
Finished/Active/Failed/Retrying/Pending
Finished/Active/Failed/Retrying/Pending
1/0/0/0/0
0/1/0/0/0
All Transfers are completed

[auser1@hosta]$ ssh buser1@hostb
buser1@hostb's password:

[buser1@hostb]$ cat /tmp/fileFromHostA.txt
TestFromHostA

Troubleshooting
To troubleshoot:

� The following message appears during the globus-start-container
command.

2005-06-09 21:41:12,135 ERROR service.ReliableFileTransferImpl
[main,<init>:73] Unable to setup database driver with pooling.A connection
error has occurred: FATAL: No pg_hba.conf entry for host
(XXX.XXX.XXX.XXX), user globus, database rftDatabase

Note: A template for rfttest.xfr in Example 11-54 is located in the file below:

$GLOBUS_LOCATION/share/globus_wsrf_rft_client/transfer.xfr

For more information, look at the following site:

http://www.globus.org/toolkit/docs/4.0/data/rft/rn01re01.html
184 Introduction to Grid Computing

http://www.globus.org/toolkit/docs/4.0/data/rft/rn01re01.html

This message appears because PostgreSQL is not configured properly. Look
at /var/lib/pgsql/data/pg_hba.conf and check if there is an entry for your host
ip.

� The following message appears during the globus-start-container
command.

2005-06-13 16:10:55,374 ERROR service.ReliableFileTransferImpl
[main,<init>:73] Unable to setup database driver with pooling.Connection
refused. Check that the hostname and port are correct and that the
postmaster is accepting TCP/IP connections.

This message appears because the container can not connect to
PostgreSQL. Check whether PostgreSQL is running. Check the configuration
as described in “Setting up PostgreSQL” on page 180.

� The following message appears during rft command execution.

Exception in thread "main" Error during startup processing. Caused by
java.lang.NumberFormatException: For input string:

Or:

Number of transfers in this request: 0
Exception in thread "main" Error during startup processing. Caused by
AxisFault
 faultCode: {http://schemas.xmlsoap.org/soap/envelope/}Server.userException
 faultSubcode:
 faultString: java.lang.NullPointerException

Or:

Exception in thread "main" Error during startup processing. Caused by
java.lang.ArrayIndexOutOfBoundsException: 10 >= 10

These messages appear because the RFT description file (rfttest.xfr) is
inconsistent. Check the RFT description file.

11.5.6 Configuration and testing of WS GRAM
Most of the settings for WS GRAM are completed automatically during the
Globus Toolkit 4 installation process. You do need to set the environment for the
sudo command.

Setting up WS GRAM environment
In order to configure WS GRAM, you need to configure the sudo command.
Follow the procedures below:

1. As a root user, type in the visudo command (see Example 11-56 on
page 186).
 Chapter 11. Globus Toolkit 4 installation and configuration 185

Example 11-56 Type visudo command

[root@hosta]# visudo

2. Add the lines in Example 11-57 into the field.

Example 11-57 Example of visudo entry

...(unrelated information omitted)
Globus GRAM entries

globus ALL=(auser1,auser2) NOPASSWD:
/usr/local/globus-4.0.0/libexec/globus-gridmap-and-execute -g
/etc/grid-security/grid-mapfile
/usr/local/globus-4.0.0/libexec/globus-job-manager-script.pl *

globus ALL=(auser1,auser2) NOPASSWD:
/usr/local/globus-4.0.0/libexec/globus-gridmap-and-execute -g
/etc/grid-security/grid-mapfile
/usr/local/globus-4.0.0/libexec/globus-gram-local-proxy-tool *

Verifying the installation and configuration of WS GRAM
To verify WS GRAM installation, complete the following procedure:

1. Log in to your grid node as the Globus user.

2. Start the secure container (see Example 11-53 on page 182).

3. In another console, log into your grid node with the user who has grid user
certificates.

4. Run the command in Example 11-58. If you find a file, then WS GRAM is
configured properly.

Example 11-58 Running simple WS GRAM command

[auser1@hosta]$ globusrun-ws -submit -c /bin/touch /tmp/createdfile
Submitting job...Done.
Job ID: uuid:1b4e3cb2-d966-11d9-9f76-0011250d31d9
Termination time: 06/11/2005 04:14 GMT
Current job state: Active
Current job state: CleanUp
Current job state: Done

Note: All entries in Example 11-57 should be in one line.

Note: Do not forget to put a list of your local user names in the ALL=() clause,
as shown in Example 11-57.
186 Introduction to Grid Computing

Destroying job...Done.
[auser1@hosta]$ ls /tmp/createdfile
/tmp/createdfile

Submitting a WS GRAM job using a job definition file
You may define a WS GRAM job with a job definition file.

Simple echo job definition file
Example 11-59 shows a simple echo job definition file. In order to submit the WS
GRAM job, type the commands as in Example 11-60.

Example 11-59 Example of echo_job.xml

<?xml version="1.0" encoding="UTF-8"?>
<job>
 <executable>/bin/echo</executable>
 <argument>This file is written by WS GRAM job with job definition
file.</argument>
 <stdout>${GLOBUS_USER_HOME}/stdout</stdout>
 <stderr>${GLOBUS_USER_HOME}/stderr</stderr>
</job>

Example 11-60 Submitting simple echo job with globusrun-ws command

[auser1@hosta]$ globusrun-ws -submit -f echo_job.xml
Submitting job...Done.
Job ID: uuid:2139fdca-d9e6-11d9-afb5-0011250d31d9
Termination time: 06/11/2005 19:30 GMT
Current job state: Active
Current job state: CleanUp
Current job state: Done
Destroying job...Done.
[auser1@hosta]$ cat ~/stdout
This file is written by WS GRAM job with job definition file.

WS GRAM multiple job
Example 11-61 on page 188 shows a multiple job definition that echoes a string
to both host A and host B. In order to submit this WS GRAM job, type the
commands as in Example 11-62 on page 188.

Note: ${GLOBUS_USER_HOME} is a Globus-supplied variable. For more
information, look at the following link:

http://www.globus.org/toolkit/docs/4.0/execution/wsgram/schemas/gram_job_
description.html
 Chapter 11. Globus Toolkit 4 installation and configuration 187

http://www-unix.globus.org/toolkit/docs/4.0/execution/wsgram/schemas/gram_job_description.html
http://www-unix.globus.org/toolkit/docs/4.0/execution/wsgram/schemas/gram_job_description.html

Example 11-61 Example of multijob.xml

<?xml version="1.0" encoding="UTF-8"?>
<multiJob xmlns:gram="http://www.globus.org/namespaces/2004/10/gram/job"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/03/addressing">
 <job>
 <factoryEndpoint>
<wsa:Address>https://hosta.redbook.ibm.com:8443/wsrf/services/ManagedJobFactory
Service</wsa:Address>
 <wsa:ReferenceProperties>
 <gram:ResourceID>Fork</gram:ResourceID>
 </wsa:ReferenceProperties>
 </factoryEndpoint>
 <executable>/bin/echo</executable>
 <argument>This file is the first file written by WS GRAM job with
multiple job definition file.</argument>
 <stdout>${GLOBUS_USER_HOME}/stdout_multi_1</stdout>
 <stderr>${GLOBUS_USER_HOME}/stderr_multi_1</stderr>
 <count>2</count>
 </job>
 <job>
 <factoryEndpoint>
<wsa:Address>https://hostb.redbook.ibm.com:8443/wsrf/services/ManagedJobFactory
Service</wsa:Address>
 <wsa:ReferenceProperties>
 <gram:ResourceID>Fork</gram:ResourceID>
 </wsa:ReferenceProperties>
 </factoryEndpoint>
 <executable>/bin/echo</executable>
 <argument>This file is the second file written by WS GRAM job with
multiple job definition file.</argument>
 <stdout>${GLOBUS_USER_HOME}/stdout_multi_2</stdout>
 <stderr>${GLOBUS_USER_HOME}/stderr_multi_2</stderr>
 <count>1</count>
 </job>
</multiJob>

Example 11-62 Submitting multiple jobs with globusrun-ws command

[auser1@hosta]$ globusrun-ws -submit -f multijob.xml -J
Delegating user credentials...Done.
Submitting job...Done.
Job ID: uuid:08d97932-dc1f-11d9-9f2c-0011250d31d9
Termination time: 06/14/2005 15:23 GMT
Current job state: CleanUp
Current job state: Done
Destroying job...Done.
Cleaning up any delegated credentials...Done.
[auser1@hosta]$ cat /home/auser1/stdout_multi_1
188 Introduction to Grid Computing

This file is the first file written by WS GRAM job with multiple job definition
file.
This file is the first file written by WS GRAM job with multiple job definition
file.
[auser1@hosta]$ ssh buser1@hostb
buser1@hostb's password:
[buser1@hostb]$ cat /home/buser1/stdout_multi_2
This file is the second file written by WS GRAM job with multiple job
definition file.

WS GRAM job with stage in and stage out
Example 11-63 on page 190 shows a job definition with file stage in and file
stage out. This job copies /bin/echo binary to host B, executes the echo
command with the copied echo binary in host B, copies output files from host B
to host A, then cleans up the work files in host B. See Figure 11-2 for more
details.

Figure 11-2 Overview of file staging GRAM job

Note: -J option in Example 8-57 is used to delegate the credentials to each
GRAM host.

Host A Host B

TCP/IP network

User (This time, user is in hostA)

WS GRAM job
description file

1. Submit (SOAP/https)

stdout_filestaging
stderr_filestaging

2. File transfer request
3. File transfer of /bin/echo (GridFTP)

copied to /tmp/copied_echo

4. Execute
(/tmp/copied_echo)

5. File transfer of results (GridFTP)

6. CleanUp
- stdout_filestaging
- stderr_filestaging
- /tmp/copied_echo
 Chapter 11. Globus Toolkit 4 installation and configuration 189

Example 11-63 Example of filestaging.xml

<?xml version="1.0" encoding="UTF-8"?>
<job xmlns:gram="http://www.globus.org/namespaces/2004/10/gram/job"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/03/addressing">
 <factoryEndpoint>
<wsa:Address>https://hostb.redbook.ibm.com:8443/wsrf/services/ManagedJobFactor
yService</wsa:Address>
 <wsa:ReferenceProperties>
 <gram:ResourceID>Fork</gram:ResourceID>
 </wsa:ReferenceProperties>
 </factoryEndpoint>
 <executable>/tmp/copied_echo</executable>
 <argument>Staging sample executed in hostb.</argument>
 <stdout>${GLOBUS_USER_HOME}/stdout_filestaging</stdout>
 <stderr>${GLOBUS_USER_HOME}/stderr_filestaging</stderr>
 <fileStageIn>
 <transfer>
 <sourceUrl>gsiftp://hosta.redbook.ibm.com//bin/echo</sourceUrl>
<destinationUrl>gsiftp://hostb.redbook.ibm.com//tmp/copied_echo</destinationUrl
>
 </transfer>
 </fileStageIn>
 <fileStageOut>
 <transfer>
<sourceUrl>gsiftp://hostb.redbook.ibm.com/${GLOBUS_USER_HOME}/stdout_filestagin
g</sourceUrl>

<destinationUrl>gsiftp://hosta.redbook.ibm.com/tmp/stdout_from_hostb</destinati
onUrl>
 </transfer>
 <transfer>
<sourceUrl>gsiftp://hostb.redbook.ibm.com/${GLOBUS_USER_HOME}/stderr_filestagin
g</sourceUrl>
<destinationUrl>gsiftp://hosta.redbook.ibm.com/tmp/stderr_from_hostb</destinati
onUrl>
 </transfer>
 </fileStageOut>
 <fileCleanUp>

<deletion><file>gsiftp://hostb.redbook.ibm.com/tmp/copied_echo</file></deletion
>

<deletion><file>gsiftp://hostb.redbook.ibm.com/${GLOBUS_USER_HOME}/stdout_files
taging</file>
</deletion>

<deletion><file>gsiftp://hostb.redbook.ibm.com/${GLOBUS_USER_HOME}/stderr_files
taging</file>
190 Introduction to Grid Computing

</deletion>
 </fileCleanUp>
</job>

In order to the submit WS GRAM job, type the commands shown in
Example 11-64.

Example 11-64 Submitting file staging job with globusrun-ws command

[auser1@hosta]$ globusrun-ws -submit -f filestaging.xml -S
Delegating user credentials...Done.
Submitting job...Done.
Job ID: uuid:dd7e461a-dc3b-11d9-bc0b-0011250d31d9
Termination time: 06/14/2005 18:49 GMT
Current job state: StageIn
Current job state: Active
Current job state: StageOut
Current job state: CleanUp
Current job state: Done
Destroying job...Done.
Cleaning up any delegated credentials...Done.
[auser1@hosta]$ cat /tmp/stdout_from_hostb
Staging sample executed in hostb.
[auser1@hosta]$ cat /tmp/stderr_from_hostb
[auser1@hosta]$

11.5.7 Testing of MDS4
The configurations of MDS4 are completed automatically during the Globus
Toolkit 4 installation process. In order to test the MDS4 function, follow the
procedure below:

1. Log in to your grid node as the Globus user.

2. Start a secure container.(see Example 11-53 on page 182).

3. In another console, log in to your grid node with the user who has grid user
certificates.

4. Run the command shown in Example 11-65. If you receive a list of services,
then MDS4 is properly configured.

Example 11-65 Using wsrf-query to obtain information from MDS4

[auser1@hosta]$ wsrf-query -s \
https://hosta.redbook.ibm.com:8443/wsrf/services/DefaultIndexService "//*"

Note: The -S option shown in Example 11-64 is used to delegate the
credentials to each host during staging.
 Chapter 11. Globus Toolkit 4 installation and configuration 191

<ns0:IndexRP xmlns:glue="http://mds.globus.org/glue/ce/1.1"
xmlns:ns0="http://mds.globus.org/index"
xmlns:ns1="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ServiceGroup-1.2-dra
ft-01.xsd"
xmlns:ns10="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceLifetime-1.
2-draft-01.xsd" xmlns:ns2="http://schemas
...(unrelated information omitted)

11.6 Uninstallation
In order to uninstall Globus Toolkit 4, follow the procedure below.

1. If you have running WS Core containers, stop them.

2. As a root user, delete the directories listed below. (See Example 11-66 for
commands.)

– $GLOBUS_LOCATION (/usr/local/globus-4.0.0/)
– /etc/grid-security/
– (If you do not need Apache Ant) $ANT_HOME (/usr/apache-ant-1.6.3)

Example 11-66 Removing Globus directories

[root@hosta]# rm -rf /usr/local/globus-4.0.0/
[root@hosta]# rm -rf /etc/grid-security/
[root@hosta]# rm -rf /usr/apache-ant-1.6.3/

3. If you have changed /etc/profile in 11.5.1, “Configuring environmental
variables” on page 168, remove the following lines:

– export GLOBUS_LOCATION=/usr/local/globus-4.0.0
– source $GLOBUS_LOCATION/etc/globus-user-env.sh
– source $GLOBUS_LOCATION/etc/globus-devel-env.sh

4. Remove the GridFTP service settings by removing the gsiftp 2811/tcp line
in /etc/services.

5. Remove the GridFTP daemon settings. (See Example 11-67 for the
commands.)

Example 11-67 Remove GridFTP settings

[root@hosta]# rm /etc/xinetd.d/gsiftp
[root@hosta]# service xinetd restart
Stopping xinetd: [OK]
Starting xinetd: [OK]

6. Remove the Globus user. (See Example 11-68 for the commands.)
192 Introduction to Grid Computing

Example 11-68 Removing Globus user

[root@hosta]# userdel -r globus

7. Remove the two entries for the Globus user in /etc/sudoers by typing visudo
and editing the file.

8. If you do not need PostgreSQL, uninstall the following rpm packages:

– postgresql-libs
– postgresql
– postgresql-server

Example 11-69 Removing postgres rpm files

[root@zeta]# rpm -e postgresql-server
[root@zeta]# rpm -e postgresql
[root@zeta]# rpm -e postgresql-libs

9. If you do not need IBM Java SDK, uninstall the rpm package by issuing the
following command (Example 11-70).

Example 11-70 Removing IBM Java SDK

[root@hosta]# rpm -e IBMJava2-142-ia32-SDK

11.7 Summary
In this chapter we provided step-by-step instructions for setting up a grid in an
environment based on Globus Toolkit 4. This environment is relatively basic and
does not include all of the Globus Toolkit 4 components. However, it does
provide a representative environment that can be used for self-education,
testing, and creating a demonstration of certain grid capabilities.

In the next chapter, we describe a sample grid application that can be executed
in the environment that we have just installed and configured.

Note: If you get dependency errors with Example 11-69, remove packages
that depend on postgresql packages.
 Chapter 11. Globus Toolkit 4 installation and configuration 193

194 Introduction to Grid Computing

Part 4 Grid
demonstration
application

Part 4
© Copyright IBM Corp. 2005. All rights reserved. 195

196 Introduction to Grid Computing

Chapter 12. Demonstration application

This chapter describes a demonstration application built to explore some of the
functionality provided by the Globes 4 Toolkit.

The application is a system that takes Scalable Vector Graphics (SVG) files (see
http://www.w3.org/TR/SVG) and uses nodes on a grid to render a set of JPEG
files representing sub-images of the complete image. As it is a demonstration
system, certain design decisions and assumptions have been made to
accelerate development.

The three components of the system are:

� RenderClient: This is a Java application with a graphical interface for the user
that drives the rendering work on the grid and displays the resulting
sub-images into a final large image. There is only one running in the grid.

� RenderWorker: This is a Java application with no graphical user interface that
converts one sub-image of the SVG file into a JPEG file. There are one or
more running on each node in the grid. Due to the strong parallelism inherent

12

Important: The application as described below was built and tested in the
environment described in Chapter 11, “Globus Toolkit 4 installation and
configuration” on page 155. This application is provided as is and is intended
as a learning tool for the reader. For information related to obtaining the
sample application’s source code and building the application, please refer to
Appendix B, “Additional material” on page 231.
© Copyright IBM Corp. 2005. All rights reserved. 197

http://www.w3.org/TR/SVG

in rendering an SVG file to multiple JPEG sub-images, the more nodes in the
grid, the faster the SVG file will be fully rendered. You can run one or more
RenderWorkers on each node, but depending on the available cycles and
networking capabilities, you will reach a point of diminishing returns.

� RenderSourceService: This is a Globus Toolkit 4 grid service, deployed into a
Globus Toolkit 4 container. It is initialized by the RenderClient and hands out
work instructions to RenderWorker processes on the grid. There is only one
running in the grid.

Figure 12-1 Demonstration application architecture

We use the following Globus Toolkit 4 features in this demonstration application:

� Grid service: A stateful Java class with methods using complex parameter
passing and return objects

� MDS: Registration and query of nodes participating in the virtual organization

� Security: Grid proxies and certificates for secure execution of tasks and file
transfers

� RFT / GridFTP: High-performance file transfers

� GRAM: Staging all files required for the RenderWorker to the node, executing
the RenderWorker, and staging back the resulting JPEG file
198 Introduction to Grid Computing

The following sections detail the design and implementation of each component.
 Chapter 12. Demonstration application 199

12.1 RenderClient
The RenderClient is a large Java application using Swing classes to present the
user interface of the SVG rendering system to the user.

12.1.1 The Graphical User Interface (GUI)
The GUI consists of several parts. Most of the text fields are pre-filled with
reasonable defaults in an effort to make it easier to use. Changing the default
values requires editing and rebuilding the source code of the RenderClient.

Here is the overall screen layout. We examine each section in detail below.

Figure 12-2 The Full RenderClient screen

The left side of the screen holds a number of grouped text fields that allow the
user to customize the work to be done and buttons to initialize and launch the
rendering process. The right side displays the rendered JPEG files, tiled into a
single full image.
200 Introduction to Grid Computing

Figure 12-3 SVG File Parameters

The user provides the host and path to the SVG file to be rendered. Currently the
demonstration assumes the SVG file is on the same machine running the
RenderClient. The user also gives an indication of the natural height and width of
the file. You can enter estimated values or examine the SVG file contents for a
line near the top of the file that looks similar to:

<svg viewBox=”0 0 600 420” width=”600” height=”420”

Figure 12-4 RenderSource Service Parameters

The user provides the full URL where the RenderSourceService is running in a
Globus Toolkit 4 container. A suggested URL is pre-filled, as the format of the
URL is very specific. The desired width of the resulting full JPEG file is given.
The RenderWorker will scale as appropriate to give this resulting size, while the
aspect ratio of the SVG file will be preserved in the JPEG file. Finally, the user
specifies how many boxes wide and high the SVG will be broken into for
rendering. The number of RenderWorkers launched will be (boxes wide * boxes
high). A rule of thumb is to specify boxes high and boxes wide in proportion to the
number of nodes in the virtual organization.
 Chapter 12. Demonstration application 201

Figure 12-5 RenderWorker Application File Locations

The user provides the host and path to the location of all files required to run
RenderWorker on the nodes. Currently, the demonstration application assumes
that the host holding the RenderWorker files is running a Globus Toolkit 4
container, or at least the RFT service.

Figure 12-6 Rendered JPEG File Parameters

The user provides the host and desired path where the rendered JPEG files will
be placed. The demonstration application currently assumes that the host will
always be the host running the RenderClient.

Figure 12-7 Virtual Organization

The user provides the full URL to a DefaultIndexService running in a GT4
container that is defined as the root node of the virtual organization. The URL is
queried to get a list of all nodes in the VO.

Figure 12-8 Prepare Grid button
202 Introduction to Grid Computing

When all of the above fields are filled in, clicking Prepare Grid initializes the
RenderSourceService, queries the virtual organization, and builds a list of nodes
in the virtual organization in the following section of the graphical interface.

Figure 12-9 Grid nodes before clicking Prepare Grid

The “Copy files to remote nodes” box can be checked to force the staging of all
files required by the RenderWorker to each node. Since this takes a non-trivial
amount of time and network bandwidth, the user can uncheck this box if each
node has already had the latest version of all files staged at least once.

Figure 12-10 Grid nodes after clicking Prepare Grid

After the Prepare Grid button is clicked, this section of the GUI shows the list of
all nodes in the virtual organization. Individual sub-images can be rendered by
clicking the Go button to the right of a host name. If the user wants to start the
rendering of the remaining sub-images, nodes can be selected or deselected for
work.
 Chapter 12. Demonstration application 203

After the user clicks Go Selected, the RenderClient provides a visual indication of
the current state of the process on each worker node. The full image area is
drawn with lines showing how the SVG file will be broken into sub-images and
rendered by worker nodes on the grid. Text and color coding is used to track
each job’s progress.

There are six possible states that a job can be in on this demonstration grid:

� Preparing
� Pushing
� Rendering
� Retrieving
� Complete
� Failed

Each state and its visual representation is described below.

Preparing

Figure 12-11 Preparing job state

Preparing is the first job state entered after the user clicks Go Selected. The
application creates and prepares a Globus JobDescriptionType object. This
object defines everything required to prepare and execute a program on a
remote system. The client then creates and initializes a GramJob object, which is
used to pass the JobDescriptionType object to the Globus GRAM subsystem.
Calling GRAM’s submit() method launches the request to run the program on the
remote system. A listener is added to the GRAM job to catch the notifications for
changes in status, which drive the state changes shown on the screen.

Note that in this demonstration application each GRAM job is launched in its own
thread, allowing multiple simultaneous GRAM jobs to be launched and monitored
for state changes.

From a problem determination standpoint, several things can go wrong during
this stage. Below are a few of the problems we encountered while developing
and testing this application:

� Cannot communicate with the ManagedJobFactoryService running in the
Globus container on the worker node. We found that some systems were
204 Introduction to Grid Computing

silently running iptables, which blocked communications, so all systems must
permanently turn off iptables or do /etc/init.d/iptables stop after each
reboot.

� Incorrect parameters defined in the JobDescriptionType and GramJob
objects.

To enable debugging and tracing, edit
/usr/local/globus-4.0.0/container-log4j.properties. Comment or uncomment lines
at the bottom of the file to get more information for GRAM and RFT/GridFTP.

Pushing

Figure 12-12 Pushing files to worker node state

Pushing is the term used by the RenderClient for GRAM’s StageIn state. StageIn
means copying the list of requested files from their source on the network to the
destination worker node. Note that any number of files can be designated for
staging in, and they can be sourced from different servers on the network. The
only caveat is that GRAM must be able to find the file on the attached storage via
the file: Protocol or via a Globus container or RFT/GridFTP server via the gsiftp:
protocol.

Several things can potentially go wrong during this stage, including:

� Not being able to locate the files to be staged in.

� Destination directory on the worker node does not exist—GRAM will not
automatically create a directory path for you.

� Insufficient privilege to write the file to its destination location on the worker
node.

� When running multiple RenderWorkers on a single worker node, GRAM is not
smart enough to only copy the files once. We have seen the JVM crash when
a JAR file was in the process of being overwritten by one job while being used
by another job.
 Chapter 12. Demonstration application 205

Rendering

Figure 12-13 Rendering Image on worker node state

Rendering is the term used for the RenderClient for GRAM’s active state. Active
means the program defined in the JobDescriptionType object is about to be
launched or is currently executing.

Several things can potentially go wrong during this stage, including:

� The command line defined in the JobDescriptionType failed.

� The program’s environment is not fully set up, including JAVA_HOME,
GLOBUS_LOCATION, CLASSPATH, LIBPATH, and LD_LIBRARY_PATH.

� Globus security fails due to non-existent or expired proxy credentials.

� Insufficient privilege to create the program’s output files.

� Program-specific failures. In the case of this demo, the Batik library requires
communication with the machine’s X Windows server, so we had to set the
DISPLAY environment variable. Also, an administrator must do ‘xhost +’ on
each worker node or Batik cannot open the X Windows DISPLAY to run its
code. An alternative is to do ‘xhost +’ on a single node and modify the shell
script’s DISPLAY variable to point to that host.

It is a good idea to build your target application such that it can be run and
debugged by hand on a worker node, minimizing the amount of effort once you
get to the GRAM part of your development and testing.

The most important thing we discovered for this state is that even though the job
is run under the auspices of a certain user ID on the worker node, for example,
globus, the program does not inherit any environment that the user would
normally see if logged into a system with that user ID. In the end we had to
provide a complete environment setup for the program to run, so we made a
shell script, called runrenderworker, that performed all environment setup, and
then as the last step launched the target Java application, RenderWorker. This
has the benefit of getting RenderWorker to run successfully on the worker nodes,
but the detriment is the directory paths to all required software components (Java
runtime, Globus installation, system libraries, and so on) had to be hardcoded in
the shell script. Therefore, all worker nodes had to be identically configured to
allow for successful execution across the grid.
206 Introduction to Grid Computing

Retrieving

Figure 12-14 Retrieving image from worker node state

Retrieving is the term used for the RenderClient for GRAM’s StageOut state.
StageOut occurs after the program finishes execution and pulls any requested
files back from the worker node to another location on the network. For our
demonstration, the generated JPEG file was pulled back to the machine running
the RenderClient application.

Several things can potentially go wrong during this stage, including:

� Files expected to exist for StageOut do not exist due to an incorrect definition
in the JobDescriptionType object or failure of the program.

� Insufficient privilege to copy the program’s output files to the destination
system.

Complete

Figure 12-15 Job complete state

Complete is the term used for the RenderClient for GRAM’s done state.
Complete occurs after files are staged out to the destination system. Our demo
application located the rendered JPEG file by its expected file name and displays
it at the proper coordinates in the Image Results part of the screen.

Several things can potentially go wrong during this stage, including:

� The expected JPEG file does not exist, due to a failure described above.

� The JPEG file is actually not in JPEG format due to an error with the
RenderWorker.
 Chapter 12. Demonstration application 207

Failed

Figure 12-16 Job failed state

Failed is the term used for the RenderClient for GRAM’s failed state. A job can
fail for any of the reasons described above, at any state of the process. In the
demo application we try to catch as many failure modes as possible to give the
user a hint as to what failed. Failures are unusual once a system goes into
production, but during development GRAM can fail in several ways. There are
several places to look for help, both information messages and error messages,
when something goes awry:

� The output of the Globus container where the RenderClient is running. You
may see security failure-related errors, file StageIn and StageOut transfer
errors, and so on.

� The terminal window where you executed the RenderClient. The demo
application emits many messages when an error is determined. You can also
uncomment desired System.out.println lines and rebuild the RenderClient to
see trace information.

� The output of the Globus container where the RenderSourceServce is
running. You may see security failure-related errors and grid service API
errors. You can also uncomment desired System.out.println lines and rebuild
the RenderSourceService to see trace information.

� The contents of the StageIn target directory on the worker node will show if all
files are being successfully staged in.

� The stdout and stderr files created by GRAM for your remote application.
Messages from both the shell script and RenderWorker are shown. You can
also uncomment desired System.out.println lines and rebuild the
RenderWorker to see trace information.

� The contents of the StageOut target directory on the system running
RenderClient will show if all JPEG files are being successfully staged out.
208 Introduction to Grid Computing

View of successful completion of job

Figure 12-17 Resulting image area

The entire right side of the GUI window is reserved for the resulting sub-image
JPEGs.

12.1.2 RenderClient source code

The source code to the RenderClient application is defined in two classes,
RenderClient.java and GRAMLocator.java.

Attention: This demonstration application is available to be downloaded as
described in Appendix B, “Additional material” on page 231. Detailed
descriptions of the source code and how to develop grid applications using the
Globus Toolkit are beyond the scope of this book. However, some information
is provided below for those interested in modifying or adapting this code for
their unique environments.
 Chapter 12. Demonstration application 209

We highlight some interesting aspects of the RenderClient application below:

� A special inner class called SVGImage is used to maintain the state of each
of the sub-images.

� When the Prepare Grid button is clicked, the GramLocator object is used to
query all nodes in the virtual organization and populate the list on the screen.
Then the internal state of image dispatching is reset and the area for the
resulting JPEG images is cleared and segmented. Finally, the
createRenderSourceInstance() method uses Globus facilities to locate the
RenderSourceService and call its reset(), setSVGParams(), and
setRenderParams() methods.

� When the Go Selected button is clicked, a check is made to make sure at
least one node is selected for processing. Then each sub-image is
dispatched to each selected worker node in round-robin fashion via threads.

� If one of the Go buttons is clicked, the next non-dispatched sub-image is
dispatched to the corresponding worker node via a thread.

� The WorkerDispatch class handles the actual dispatching of each sub-image
rendering job. Doing this in a thread allows the parallel execution and
asynchronous status update of each sub-image. The run() method is used to
set up the job via the Globus JobDescriptionType class. JobDescriptionType
is a complex class that is used to set up all aspects of a task to be executed
on a remote node. Normally, a subset of the full object setting will get the job
done, but you may need to set more fields, depending on your project’s
requirements.

– Environment variables
– Working directory
– Executable name
– Executable parameters
– Location of stdout and stderr files created by the remote task

� The source and destination of all files to be transferred to the remote node are
also defined in the JobDescriptionType object. Normally, the file description is
in URL format starting with “gsiftp://...” signifying the Globus RFT/GridFTP
facilities are to be used to perform the transfers. Note that our demonstration
application requires 18 files to be staged to the remote node:

– A shell script, called runrenderworker, that sets up the full environment
(Java and Globus locations, CLASSPATH, LIBPATH, and others), runs
grid-proxy-init, and then launches the RenderWorker java application

– A Jar file containing the RenderWorker application

– A Jar file containing the stub classes required to communicate with the
RenderSourceService
210 Introduction to Grid Computing

– Thirteen Jar files from the Apache Batik project, which contains the
classes that actually convert SVG files to JPEG files

– The SVG file whose sub-images are to be rendered into a JPEG file

– Source and destination of the JPEG file to be transferred back to the
system running the RenderClient (called Staging In)

� When the JobDescription is fully set up, a GramJob object is created and
used to submit the job to the Globus GRAM facility.

� A listener is added to the GramJob that catches all changes in the job’s state,
as reported by GRAM. At each state change, the graphical interface is
updated with color coding and status messages. When GramJob returns, the
job has completed, either succeeding or failing, so the code attempts to load
and display the JPEG file that was expected to be returned.

� A special inner class called SVGImagePanel is used to force the proper
repainting of each sub-image on the screen.

� A helper class called GRAMLocator is used to query the root node of the
virtual organization and return a list of nodes registered in that virtual
organization.

12.2 RenderWorker
The RenderWorker is a standalone Java application (with no GUI) that is
launched by GRAM on a worker node. It is a single Java file called
RenderWorker.java.

It creates a JPEG file corresponding to a given sub-image of the SVG file and
exits. This is a design choice we made in order to make the design and execution
of the RenderWorker straightforward.

When launched, it checks that its two required parameters are available. The first
parameter is the full URL of the RenderSourceService and the second parameter
is the sub-image number that it should render.

It uses Globus methods to connect to the RenderSourceService and call the
getWork() method. getWork() returns a Java class that describes everything the
RenderWorker needs to know to create a JPEG image, including the rectangle of
interest in the SVG file, the size of the resulting JPEG file, and the names of the
SVG and the JPEG file.

Note that the source code uses a number of Java classes that are generated
from the WSDL definition of the RenderSourceService’s grid service API, which
is standard procedure when building and working with Globus 4 grid services.
The most important object is GetWorkResponse, a compound generated Java
 Chapter 12. Demonstration application 211

object that contains all of the information needed for the RenderWorker to do its
job.

The code uses the Apache Batik library’s JPEGTranscoder class to set up the
proper parameters for the generation of the JPEG image, then generates the
JPEG file.

One thing you might notice in the code is the following:

static
{
Util.registerTransport();
}

This is the prescribed way to avoid a No socket factory for https error in any
Globus code working in secure mode.

12.3 RenderSourceService
The RenderSourceService is a straightforward Globus Toolkit 4 grid service that
maintains an internal state and has several public methods. Its purpose is to
hand out sub-image chunks of work when a RenderWorker somewhere on the
grid makes a request.

The service currently has several Globus 4 resources defined, but we do not
currently exploit any Globus Toolkit 4 resource facilities in this application.

The service is set up to start an instance when the container it is deployed into is
started. It calls its own reset() method to initialize the internal state, where none
of the sub-images have been marked as dispatched to remote nodes.

The setSVGParams() and setRenderParams() methods are called by the
RenderClient to pass the user-supplied SVG and JPEG parameters and prepare
for dispatch of a new series of RenderWorkers.

When a RenderWorker calls getWork(), the service takes the sub-image number
passed in, calculates the image coordinates, builds an object describing the work
to be done, and hands it back to the RenderWorker.

Note that all methods along with their input and output parameters are defined in
WSDL so other applications on the grid can call the methods and interpret the
return values properly.
212 Introduction to Grid Computing

12.3.1 Alternative architecture
As they stand today, the RenderClient and RenderSourceService share some of
the tasks of dispatching work to the nodes; specifically, they must stay in sync
with which sub-images have been dispatched. In hindsight, it would have been
better to give the RenderSourceService full scheduler responsibility.

The RenderClient would continue to collect the parameters from the user and
pass them to the RenderSourceService as is done today. The design would
change so when the user clicks Go or Go Selected, the RenderClient would
simply ping the RenderSourceService. The RenderSourceService would do all
job creation, file staging, and fire off the RenderWorkers. The RenderClient
would register for any job state changes and gain access to the resulting JPEG
file via Globus Toolkit 4’s Resource facility.

12.4 DirectoryTree of important files in demo

<top directory of our project>

buildclient: batch file to build RenderClient

source $GLOBUS_LOCATION/etc/globus-devel-env.sh
javac -classpath ./build/stubs/classes/:$CLASSPATH
com/ibm/redbook/gridintro/render/clients/RenderClient.java
javac -classpath ./build/stubs/classes/:$CLASSPATH
com/ibm/redbook/gridintro/render/clients/GRAMLocator.java

buildworker: batch file to build RenderWorker
source $GLOBUS_LOCATION/etc/globus-devel-env.sh
javac -classpath batik-transcoder.jar:./build/stubs/classes/:$CLASSPATH com/ibm/redbook/gridintro/render/worker/RenderWorker.java
jar cf RenderWorker.jar com/ibm/redbook/gridintro/render/worker/RenderWorker.class

buildservice: batch file to build RenderSourceService
export GLOBUS_LOCATION=/usr/local/globus-4.0.0
./globus-build-service.sh -d com/ibm/redbook/gridintro/render -s schema/gridintro/RenderSourceService_instance/RenderSourceService.wsdl
#copy up the generated jar files to the main directory
cp build/lib/com_ibm_redbook_gridintro_render.jar .
cp build/lib/com_ibm_redbook_gridintro_render_stubs.jar .

deployservice: batch file to deploy RenderSourceService into a GT4 container
/usr/local/globus-4.0.0/bin/globus-deploy-gar com_ibm_redbook_gridintro_render.gar

Note: In the various scripts and other files that are described below, we have
hard coded many of the directory paths based on our specific environment.
This constrains us to having identical environments and directory structures
on each of our grid nodes. This may not be a practical constraint in many
environments. More complex scripts and the use of environment variables or
parameters may be required.
 Chapter 12. Demonstration application 213

undeployservice: batch file to undeploy RenderSourceService from a GT4
container

/usr/local/globus-4.0.0/bin/globus-undeploy-gar com_ibm_redbook_gridintro_render

startcontainer: batch file to start a GT4 container
/usr/local/globus-4.0.0/bin/globus-start-container

runclient: batch file to run RenderClient
source $GLOBUS_LOCATION/etc/globus-devel-env.sh
rm -rf /tmp/*.jpg
java -DGLOBUS_LOCATION=$GLOBUS_LOCATION -classpath ./build/stubs/classes/:$CLASSPATH

com/ibm/redbook/gridintro/render/clients/RenderClient
http://127.0.0.1:8080/wsrf/services/render/RenderService

runworker: batch file to run RenderWorker in standalone mode for testing

./runrenderworker https://192.168.1.111:8443/wsrf/services/render/RenderSourceService 1

build.xml: build files provided by the Globus Service Build Tools project -
http://gsbt.sourceforge.net, unchanged by our work

globus-build-service.sh: build file for Globus services, provided by the Globus
Service Build Tools, unchanged by our work.

client-config.wsdd: configuration file used as input to the build process, provided
by the Globus Service Build Tools, unchanged by our work

namespace2package.mappings: file that maps abstract namespaces of our
project to concrete class names implementing the service

http\://www.globus.org/namespaces/render.gridintro.redbook.ibm.com/RenderSourceService_instance=c
om.ibm.redbook.gridintro.render.stubs.RenderSourceService_instance
http\://www.globus.org/namespaces/render.gridintro.redbook.ibm.com/RenderSourceService_instance/b
indings=com.ibm.redbook.gridintro.render.stubs.RenderSourceService_instance.bindings
http\://www.globus.org/namespaces/render.gridintro.redbook.ibm.com/RenderSourceService_instance/s
ervice=com.ibm.redbook.gridintro.render.stubs.RenderSourceService_instance.service

com_ibm_redbook_gridintro_render.gar: Grid Archive file containing the
RenderSourceService, ready for deployment. This is the output file of the
buildservice process.

runrenderworker: batch file that is the main executable, staged to the worker
nodes.

#!/bin/bash

this script is pushed to the remote node and executed to run the RenderWorker application
two arguments: URL of RenderSourceService and block number to render
echo Running RenderWorker kickoff script

#delete stdout and stderr to assist with debugging - GRAM appends every job
#rm -f stdout
#rm -f stderr

set up the path to the Java runtime
export JAVA_HOME=/usr/java/j2sdk1.4.2_08
214 Introduction to Grid Computing

echo JAVA_HOME is $JAVA_HOME

set up the path to the globus install
export GLOBUS_LOCATION=/usr/local/globus-4.0.0
echo GLOBUS_LOCATION is $GLOBUS_LOCATION

run the globus script to set up the classpath with all of the globus jars
echo sourcing globus environment in $GLOBUS_LOCATION
source $GLOBUS_LOCATION/etc/globus-devel-env.sh
echo sourced globus environment

add render demo specific jars to classpath
echo adding required worker jars
export
CLASSPATH=RenderWorker.jar:com_ibm_redbook_gridintro_render_stubs.jar:batik.jar:batik-dom.jar:bat
ik-svg-dom.jar:batik-css.jar:batik-rasterizer.jar:batik-transcoder.jar:batik-bridge.jar:batik-gvt
.jar:batik-util.jar:batik-ext.jar:batik-xml.jar:batik-script.jar:batik-awt-util.jar:batik-parser.
jar:$CLASSPATH
echo final classpath is $CLASSPATH

set up the path to the Globus and system libraries
export LIBPATH=/usr/local/globus-4.0.0/lib:/usr/lib:/lib
echo LIBPATH is $LIBPATH

set up another path to Globus libraries
export LD_LIBRARY_PATH=/usr/local/globus-4.0.0/lib
echo LD_LIBRARY_PATH is $LD_LIBRARY_PATH

having problems with credentials on each worker node, so manually ran grid-proxy-init -hours
100000 to avoid
set up proper user for security credentials for this application
echo setting X509_USER_PROXY
#ID=`/usr/bin/id -u`
#X509_USER_PROXY="/tmp/x509up_u$ID"
#echo set X509_USER_PROXY to $X509_USER_PROXY
request security credentials for this application
echo doing grid-proxy-init
#$GLOBUS_LOCATION/bin/grid-proxy-init
echo did grid-proxy-init

for some reason the Batik library needs to have X Windows' DISPLAY variable set
this has to be done to the machine before this script is run
#echo setting DISPLAY and running xhost +
export DISPLAY=192.168.1.103:0.0
#export DISPLAY=localhost:0.0
#/usr/X11R6/bin/xhost +

now execute the application with the passed in URL to the RenderSourceService
echo launching RenderWorker class with parameter $1
$JAVA_HOME/bin/java com/ibm/redbook/gridintro/render/worker/RenderWorker $1 $2
echo completed RenderWorker, exiting

RenderWorker.jar: jar file containing the compiled RenderWorker java class.

batik-awt-util.jar: Apache Batik jar files, staged to the worker nodes.

� batik-bridge.jar
� batik-css.jar
� batik-dom.jar
� batik-ext.jar
� batik-gvt.jar
� batik.jar
� batik-parser.jar
 Chapter 12. Demonstration application 215

� batik-rasterizer.jar
� batik-script.jar
� batik-svg-dom.jar
� batik-transcoder.jar
� batik-util.jar
� batik-xml.jar

mapSpain.svg: test SVG file provided by the Apache Batik project, staged to the
worker nodes

com_ibm_redbook_gridintro_render_stubs.jar: jar file generated by the Globus
service build process, containing Java objects for RenderSourceService
methods, staged to the worker nodes.

Note that the tree for the Java classes may follow the package naming
convention you choose, but the other configuration files must be placed in very
specific places in order to be found and processed during the build and
deployment stages.

./com/ibm/redbook/gridintro/render:

deploy-jndi-config.xml: instructions to the container about how to deploy the
RenderSourceService

<?xml version="1.0" encoding="UTF-8" ?>
<jndiConfig xmlns="http://wsrf.globus.org/jndi/config">

<service name="render/RenderSourceService">
<resource name="home" type="org.globus.wsrf.impl.ServiceResourceHome">
<resourceParams>
<parameter>
<name>factory</name>
<value>org.globus.wsrf.jndi.BeanFactory</value>
</parameter>
</resourceParams>
</resource>

</service>
</jndiConfig>

deploy-server.wsdd: instructions to the container about how to deploy the
RenderSourceService

<?xml version="1.0" encoding="UTF-8"?>
<deployment name="defaultServerConfig"
 xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <service name="render/RenderSourceService" provider="Handler" use="literal" style="document">
 <parameter name="className" value="com.ibm.redbook.gridintro.render.impl.RenderSourceService"/>
 <wsdlFile>share/schema/gridintro/RenderSourceService_instance/RenderSourceService_service.wsdl</wsdlFile>
 <parameter name="allowedMethods" value="*"/>
 <parameter name="handlerClass" value="org.globus.axis.providers.RPCProvider"/>
 <parameter name="scope" value="Application"/>
 <parameter name="providers" value="GetRPProvider"/>
 <parameter name="loadOnStartup" value="true"/>
 </service>

</deployment>

./com/ibm/redbook/gridintro/render/clients:
216 Introduction to Grid Computing

RenderClient.java: source file for RenderClient application

GRAMLocator.java: source file for RenderClient application

./com/ibm/redbook/gridintro/render/impl:

RenderSourceService.java: source file for RenderSourceService GT4 service

RenderSourceServiceQNames.java: source file for RenderSourceService GT4
service

./com/ibm/redbook/gridintro/render/worker:

RenderWorker.java: source file for RenderWorker application

./schema/gridintro/RenderSourceService_instance:

RenderSourceService.wsdl: Web Services Description Language (WSDL) file
defining methods and parameters for RenderSourceService

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="RenderSourceService"

targetNamespace="http://www.globus.org/namespaces/render.gridintro.redbook.ibm.com/RenderSourceService_instance"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://www.globus.org/namespaces/render.gridintro.redbook.ibm.com/RenderSourceService_instance"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsrp="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.xsd"
 xmlns:wsrpw="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.wsdl"
 xmlns:wsdlpp="http://www.globus.org/namespaces/2004/10/WSDLPreprocessor"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:import
 namespace=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.wsdl"
 location="../../wsrf/properties/WS-ResourceProperties.wsdl" />

<!--==
T Y P E S
==-->
<types>
<xsd:schema
targetNamespace="http://www.globus.org/namespaces/render.gridintro.redbook.ibm.com/RenderSourceService_instance"
 xmlns:tns="http://www.globus.org/namespaces/render.gridintro.redbook.ibm.com/RenderSourceService_instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<!-- REQUESTS AND RESPONSES -->

<xsd:element name="reset">
<xsd:complexType/>

</xsd:element>
<xsd:element name="resetResponse">

<xsd:complexType/>
</xsd:element>

<xsd:element name="setSVGParams">
<xsd:complexType>
<xsd:sequence>

<xsd:element name="uriSVG" type="xsd:string"/>
<xsd:element name="svgDocWidth" type="xsd:int"/>
<xsd:element name="svgDocHeight" type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="setSVGParamsResponse">
 Chapter 12. Demonstration application 217

<xsd:complexType/>
</xsd:element>

<xsd:element name="setRenderParams">
<xsd:complexType>
<xsd:sequence>

<xsd:element name="uriJPEG" type="xsd:string"/>
<xsd:element name="imageWidth" type="xsd:int"/>
<xsd:element name="imageHeight" type="xsd:int"/>
<xsd:element name="blocksWide" type="xsd:int"/>
<xsd:element name="blocksHigh" type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="setRenderParamsResponse">

<xsd:complexType/>
</xsd:element>

<xsd:element name="getWork" type="xsd:int"/>
<xsd:element name="getWorkResponse">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="uriSVG" type="xsd:string"/>
<xsd:element name="uriJPEG" type="xsd:string"/>
<xsd:element name="blockNumber" type="xsd:int"/>
<xsd:element name="numBlocksWide" type="xsd:int"/>
<xsd:element name="numBlocksHigh" type="xsd:int"/>
<xsd:element name="svgBlockX" type="xsd:int"/>
<xsd:element name="svgBlockY" type="xsd:int"/>
<xsd:element name="svgBlockWidth" type="xsd:int"/>
<xsd:element name="svgBlockHeight" type="xsd:int"/>
<xsd:element name="imageBlockX" type="xsd:int"/>
<xsd:element name="imageBlockY" type="xsd:int"/>
<xsd:element name="imageBlockWidth" type="xsd:int"/>
<xsd:element name="imageBlockHeight" type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="getLastJPEGRP">
<xsd:complexType/>

</xsd:element>
<xsd:element name="getLastJPEGRPResponse" type="xsd:string"/>

<!-- RESOURCE PROPERTIES -->

<xsd:element name="LastJPEG" type="xsd:string"/>

<xsd:element name="RenderResourceProperties">
<xsd:complexType>
<xsd:sequence>

<xsd:element ref="tns:LastJPEG" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>

</xsd:element>

</xsd:schema>
</types>

<!--==
M E S S A G E S
==-->
<message name="ResetInputMessage">

<part name="parameters" element="tns:reset"/>
</message>
<message name="ResetOutputMessage">

<part name="parameters" element="tns:resetResponse"/>
</message>

<message name="SetSVGParamsInputMessage">
<part name="parameters" element="tns:setSVGParams"/>

</message>
<message name="SetSVGParamsOutputMessage">

<part name="parameters" element="tns:setSVGParamsResponse"/>
</message>
218 Introduction to Grid Computing

<message name="SetRenderParamsInputMessage">
<part name="parameters" element="tns:setRenderParams"/>

</message>
<message name="SetRenderParamsOutputMessage">

<part name="parameters" element="tns:setRenderParamsResponse"/>
</message>

<message name="GetWorkInputMessage">
<part name="parameters" element="tns:getWork"/>

</message>
<message name="GetWorkOutputMessage">

<part name="parameters" element="tns:getWorkResponse"/>
</message>

<message name="GetLastJPEGRPInputMessage">
<part name="parameters" element="tns:getLastJPEGRP"/>

</message>
<message name="GetLastJPEGRPOutputMessage">

<part name="parameters" element="tns:getLastJPEGRPResponse"/>
</message>

<!--==
P O R T T Y P E
==-->
<portType name="RenderSourceServicePortType"
 wsdlpp:extends="wsrpw:GetResourceProperty"
 wsrp:ResourceProperties="tns:RenderResourceProperties">
<operation name="reset">

<input message="tns:ResetInputMessage"/>
<output message="tns:ResetOutputMessage"/>

</operation>
<operation name="setSVGParams">

<input message="tns:SetSVGParamsInputMessage"/>
<output message="tns:SetSVGParamsOutputMessage"/>

</operation>
<operation name="setRenderParams">

<input message="tns:SetRenderParamsInputMessage"/>
<output message="tns:SetRenderParamsOutputMessage"/>

</operation>
<operation name="getWork">

<input message="tns:GetWorkInputMessage"/>
<output message="tns:GetWorkOutputMessage"/>

</operation>
<operation name="getLastJPEGRP">

<input message="tns:GetLastJPEGRPInputMessage"/>
<output message="tns:GetLastJPEGRPOutputMessage"/>

</operation>
</portType>
</definitions>

There are also a significant number of files created under the build directory as a
result of the build process. Luckily, the build process is highly automated and you
should not need to worry about anything in here. You can safely delete the entire
build tree and re-run all build scripts.

Some of the products of the build process are .java source files, which are then
compiled and used later in the build process. These tend to be the Java definition
of resources and helper classes for complex objects passed in and back from
Globus service methods. These source files can be useful to track down strange
compiler errors or runtime bugs dealing with calling these methods.

Double-check the spelling of all method and parameter variable names.
Remember that by convention a parameter called value will have corresponding
methods called getValue() and setValue().
 Chapter 12. Demonstration application 219

It is always better to take an existing file and make slight modifications rather
than trying to write one from scratch, for example,
namespace2package.mappings, deploy-jndi-config.xml, deploy-server.wsdd,
<>QNames.java, <>.wsdl.
220 Introduction to Grid Computing

Part 5 Appendixes

Part 5
© Copyright IBM Corp. 2005. All rights reserved. 221

222 Introduction to Grid Computing

Appendix A. IBM software portfolio for
grid computing

This appendix provides a short summary of some IBM software that has
particular application for grid environments.

A

© Copyright IBM Corp. 2005. All rights reserved. 223

IBM Application Workload Modeler
This can help you allocate existing system resources more efficiently by
modeling, generating real traffic on your network, and evaluating the network
performance of existing workloads.

IBM Cloudscape/Apache Derby
IBM Cloudscape™ V10.0 is a pure, open source-based Java relational database
management system that can be embedded in Java programs and used for
online transaction processing (OLTP). A platform-independent, small-footprint
(2MB) database, Cloudscape V10.0 integrates tightly with any Java-based
solution. It has been donated to the Apache Software Foundation and is now
named Derby.

DB2 Connect Family
DB2® Connect™ connects LAN-based systems and their desktop applications to
your company's mainframe and minicomputer host databases. Designed to
address the needs of organizations that require robust connectivity from a variety
of desktop systems including workgroup/departmental and LAN-based systems
to mainframes and iSeries™ database servers.

DB2 Everyplace Family
This creates secure embedded mobile data management solutions easily using
the DB2 Everyplace® Database. Use industry standard SQL to store and query
data in the high-performance, small footprint relational database.

DB2 Universal Database Family
This is the premier IBM database and data management products.

Mathematical Acceleration Subsystem (MASS)
Mathematical Acceleration Subsystem consists of libraries of tuned
mathematical intrinsic functions, available in versions for the AIX and Linux
platforms. MASS libraries offer improved performance over the standard
224 Introduction to Grid Computing

mathematical library routines, are thread-safe, and support compilations in C,
C++, and Fortran applications.

Rational Application Developer for WebSphere Software
Quickly design, develop, analyze, test, profile, and deploy Web, Web services,
Java, J2EE, and portal applications with this comprehensive IDE. Optimized for
IBM WebSphere® software, and supporting multi-vendor runtime environments,
IBM Rational® Application Developer for WebSphere Software is powered by the
Eclipse open source platform so developers can adapt and extend their
development environment to match their needs and increase their productivity.
When used with the IBM Software Development Platform, developers can
access a broad range of requirements and change management functions
directly from Rational Application Developer for WebSphere Software. Adapt and
extend your development environment with Eclipse-based plug-ins to match your
needs.

IBM Tivoli Access Manager Family
IBM Tivoli® Access Manager is an award winning, policy-based access control
solution for e-business and enterprise applications that is in the leader quadrant
of Gartner's Magic Quadrant. Tivoli Access Manager for e-business can help you
manage growth and complexity, control escalating management costs, and
address the difficulties of implementing security policies across a wide range of
Web and application resources.

IBM Tivoli Configuration Manager
IBM Tivoli Configuration Manager provides the ability to capture your best
practices for software distribution, automate those best practices, and enforce
corporate standards. It helps you gain total control over your heterogeneous
enterprise software and hardware.

IBM Tivoli Enterprise Console
IBM Tivoli Enterprise™ Console® provides sophisticated, automated problem
diagnosis and resolution to improve system performance and reduce support
costs. The new enhancements focus on time to value and ease of use with
out-of-the-box best practices to simplify and accelerate deployment. The
 Appendix A. IBM software portfolio for grid computing 225

auto-discovery feature allows you to understand the environment and process
events appropriately. The Web console enhances visualization while providing
remote access to events and console operations.

IBM Tivoli Intelligent Orchestrator
IBM Tivoli Intelligent Orchestrator helps you to improve return of IT assets and
increase server utilization. It helps boost server-to-administrator ratios by
automatically triggering the provisioning, configuration, and deployment of a
solution into production. This automated process supports servers, operating
systems, storage, middleware, applications, and network devices. IBM Tivoli
Intelligent Orchestrator extends the benefits of the IBM Tivoli Provisioning
Manager. It intelligently and dynamically issues instructions to Tivoli Provisioning
Manager, which then uses automation packages to maintain server availability
and meet required service levels in accordance with business priorities. It
provides the why, where, and when of a complete orchestration solution.

IBM Tivoli License Manager
IBM license management software offerings help companies achieve a total
software asset management solution, enabling planning, management and
optimization of enterprise-wide software assets.

The IBM Tivoli Management Framework
The IBM Tivoli Management Framework is the foundation for a suite of
management applications that are making systems and network management
easy. This shields administrators from platform-specific details of day-to-day
operations. Common operations such as deploying applications and routine
network maintenance can be performed with a single action; administrators are
no longer required to repeat the same operation for each platform on your
enterprise. Deploy applications to literally thousands of machines with one
operation, all the while ensuring the applications remain available.

IBM Tivoli Monitoring for Virtual Servers
IBM Tivoli Monitoring for Virtual Servers centrally monitors server virtualization
and consolidation resource performance and availability at the enterprise level
for efficient and cost-effective IT operations. IBM Tivoli Monitoring for Virtual
226 Introduction to Grid Computing

Servers allows for quick problem identification, notification, and correction, and
provides tasks to automate and perform routine operations.

IBM Tivoli OMEGAMON XE Family
IBM Tivoli OMEGAMON® XE for Distributed Systems offers a unique approach
to enterprise management “proactivity and advanced automation,” which is
especially important as IT structures become increasingly complex and
heterogeneous. An integrated approach to management, Tivoli OMEGAMON XE
for Distributed Systems enables you to see and manage your entire distributed
enterprise from a single point of control.

IBM Tivoli Provisioning Manager
IBM Tivoli Provisioning Manager automates manual tasks of provisioning and
configuring servers and virtual servers, operating systems, middleware,
applications, storage, and network devices acting as routers, switches, firewalls,
and load balancers.

IBM Tivoli System Automation for Multiplatforms
IBM Tivoli System Automation for Multiplatforms manages the availability of
business applications and middleware running on single Linux and AIX systems
or clusters on IBM zSeries®, pSeries®, iSeries, and xSeries®, or other
Intel-based servers, according to customer-defined goals.

IBM Tivoli Universal Agent
IBM Tivoli Universal Agent collects information via numerous data providers
including SNMP, ODBC, and FILE to monitor almost any device or application
connected to a TCP/IP network. IBM Tivoli OMEGAMON solutions can then
reveal consolidated views of performance and availability to help you diagnose
and pinpoint problems more quickly.
 Appendix A. IBM software portfolio for grid computing 227

WebSphere Application Server
The core of the WebSphere portfolio, this product is the industry's leading J2EE
and Web services application server, delivering a high-performance and
extremely scalable transaction engine for dynamic e-business applications.

WebSphere Application Server Network Deployment
WebSphere Application Server Network Deployment provides an operating
environment with advanced performance and availability capabilities in support
of dynamic application environments. In addition to all of the features and
functions within the base WebSphere Application Server, this configuration
delivers advanced deployment services that include clustering, edge-of-network
services, Web services enhancements, and high availability for distributed
configurations.

WebSphere Extended Deployment
WebSphere Extended Deployment, together with WebSphere Application Server
Network Deployment, delivers a high-performance, easily manageable, and
dynamically scalable environment for distributed WebSphere applications that
leverages the principles and concepts of proven IBM systems. It provides:

� WebSphere resource virtualization and pooling using node groups and
dynamic clusters

� Dynamic adjustment of WebSphere resources through application placement

� Integration with Tivoli Intelligent Orchestrator (optional, available separately)
for enterprise-wide autonomic provisioning

� Introduction of operational policies to distributed WebSphere environments
and intelligent routing and dynamic workload management according to
established goals

IBM WebSphere MQ
IBM WebSphere MQ V6.0 delivers improved ease of use and manageability to
provide a flexible and proven foundation for your enterprise service bus (ESB).
228 Introduction to Grid Computing

WebSphere Studio Application Monitor
WebSphere Studio Application Monitor helps improve application availability and
performance by providing deep-dive real-time problem detection, analysis, and
repair. Diagnostics at the method level can pinpoint code problems, which can
help an architect or developer quickly fix a problem.

IBM Director
IBM Director is the industry-leading client/server workgroup manager. IBM
Director tools provide customers with flexible capabilities to realize maximum
system availability and lower IT costs. With IBM Director, IT administrators can
view and track the hardware configuration of remote systems in detail and
monitor the usage and performance of critical components, such as processors,
disks, and memory.

IBM Remote Deployment Manager
Remote Deployment Manager (RDM) facilitates remote deployment of both IBM
and non-IBM systems. RDM allows for remote unattended installation of new and
existing systems. RDM helps automate deployment tasks such as initial
operating system installation, BIOS updates, and disposal of retired systems. All
of these tasks can be done without visiting the remote system, reducing travel
and labor costs.

IBM ServerGuide
IBM ServerGuide™ is a tool that simplifies the process of installing and
configuring IBM Eserver™ and IBM Eserver xSeries servers. ServerGuide
goes beyond mere hardware configuration by assisting with the automated
installation of Windows server operating systems, device drivers, and other
system components, with minimal user intervention.

IBM Virtual Machine Manager
IBM Virtual Machine Manager (VMM) is an extension to IBM Director that allows
you to manage both physical and virtual machines from a single console. With
VMM, you can manage both VMware ESX Server and Microsoft® Virtual Server
 Appendix A. IBM software portfolio for grid computing 229

environments using IBM Director. VMM also integrates VMware VirtualCenter
and IBM Director for advanced virtual machine management.

Cluster Systems Management
Cluster Systems Management (CSM) for AIX and Linux is designed for simple,
low-cost management of distributed and clustered IBM Eserver pSeries and
xSeries servers in technical and commercial computing environments.

Parallel ESSL
Parallel ESSL is a scalable mathematical subroutine library that supports parallel
processing applications on the IBM RS/6000® SP Systems and clusters of IBM
pSeries and RS/6000 workstations.

LoadLeveler
LoadLeveler® manages both serial and parallel jobs over a cluster of servers.
This distributed environment consists of a pool of machines or servers, often
referred to as a LoadLeveler cluster.

General Parallel File System
The IBM General Parallel File System (GPFS) is a high-performance shared-disk
file system that can provide fast, reliable data access from all nodes in a
homogenous or heterogeneous cluster of IBM UNIX servers running either the
AIX 5L™ or the Linux operating system.
230 Introduction to Grid Computing

Appendix B. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246778

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG246788.

B

© Copyright IBM Corp. 2005. All rights reserved. 231

ftp://www.redbooks.ibm.com/redbooks/SG246778
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description

DemoGridApp.zip A zip file including the source files and other supporting
files required for the sample application described in
Chapter 12, “Demonstration application” on page 197

GT4SampInst.zip A zip file containing a sample script that we used to
quickly install Java, Ant, and Globus Toolkit 4.0

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space 1 MB minimum.

Operating System Any OS supporting Java environment. Our examples are
based on Linux.

How to use the Web material

GT4SampInst.zip
The content of this zip file is a sample bash shell script that we used to install and
reinstall our grid nodes whenever we needed to rebuild our environment. It is
customized for our environment and assumes specific host name and IP
addresses for NFS shares that contain the installation images for Java, Ant, and
Globus Toolkit 4.0. We do not provide any specific instructions on modifying this
for your environment, but thought you might find it useful if you want to automate
the install task once you have done it a few times manually. Chapter 11, “Globus
Toolkit 4 installation and configuration” on page 155, provides the step-by-step
instructions for manually installing an environment similar to ours.

Extract the shell script (gt4_install.sh) from the GT4SampInst.zip file to an
environment that supports the bash shell. Edit this file to meet your specific
requirements.

DemoGridApp.zip
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder. To use the files and application, follow the
directions provided below in conjunction with detailed information about the
application provided in Chapter 12, “Demonstration application” on page 197.
232 Introduction to Grid Computing

This application was developed and tested in the environment as described in
Chapter 11, “Globus Toolkit 4 installation and configuration” on page 155.

Note that all scripts follow the installation paths shown earlier in the book. If you
chose different install paths you will have to adjust the scripts.

To perform the source code build process
To do this:

1. Run the buildservice script. This must be done first to generate the services
binding files required for the rest of the sample application, and build and
package the RenderSourceService code. This must build cleanly to continue
the process.

Important: The demonstration grid application described in this book and
available for download as described above utilizes the open source Batik
toolkit available from Apache.org. See:

http://xml.apache.org/batik/

This toolkit provides libraries of functions to handle and manipulate SVG files.
Before building and running our sample application, you should obtain the
Batik toolkit from the Apache Web site referenced above. Specifically, the
following jar files need to be available and specified in your CLASSPATH
environment variable to compile and execute our sample application.

� batik-awt-util.jar
� batik-bridge.jar
� batik-css.jar
� batik-dom.jar
� batik-ext.jar
� batik-gvt.jar
� batik-parser.jar
� batik-rasterizer.jar
� batik-script.jar
� batik-svg-dom.jar
� batik-transcoder.jar
� batik-util.jar
� batik-xml.jar
� batik.jar

In addition, the Batik package includes sample SVG files that can be used to
test and run this application. The two samples we use for testing are:

� mapSpain.svg
� tiger.svg
 Appendix B. Additional material 233

http://xml.apache.org/batik/

2. Run the buildworker script. This builds and packages the RenderWorker
code.

3. Run the buildclient script. This builds and packages the RenderClient
application.

To perform the code deployment process
To do this:

1. Ensure the Globus container running the RenderSourceService is stopped.
You can do this by typing ^C or closing the terminal window that the container
is running in.

2. Run the undeployservice script. This will uninstall a previously installed
version of the RenderSourceService from your local system's Globus
container. This allows for a clean install of a new version of the service in the
next step.

3. Run the deployservice script. This installs the previously built
RenderSourceService into your local system's Globus container. This service
should be installed into a Globus container on only one machine on the
network. The client application defaults to this service running on the same
machine as the client, so if you choose a different machine you will have to
adjust the client's entry field to point to the proper machine.

To bring up the system for grid processing
To do this:

1. Run the startcontainer script in its own terminal window. You must do this for
every node that you want to participate in the grid or host the
RenderSourceService. This launches the Globus container, making it
available for dispatch of RenderWorker processes, and on one machine
makes the RenderSourceService ready for work. Globus will take some time
to launch and will produce many status messages. These are the key
long-running process for the operation of the grid, so only shut down the
container when you do not expect to submit any work to that particular node,
or if you need to deploy a new version of the service.

2. Optionally, run the runworker script. This allows you to perform stand-alone
testing of a RenderWorker process against a running RenderSourceService,
without the overhead of the full GUI client.

3. Run the runclient script. This launches the GUI RenderClient application and
lets you test the rendering system on your running grid.

.

234 Introduction to Grid Computing

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 238. Note that some of the documents referenced here may be available
in softcopy only.

� Introduction to Grid Computing with Globus, SG24-6895

� Grid Computing: Solution Briefs, REDP-3891

� Grid Computing Products and Services, SG24-6650

� Grid Computing in Research and Education, SG24-6649

� Grid Computing with the IBM Grid Toolbox, SG24-6332

� Grid Services Programming and Application Enablement, SG24-6100

� Globus Toolkit 3.0 Quick Start, REDP-3697

� Enabling Applications for Grid Computing with Globus, SG24-6936

� Fundamentals of Grid Computing, REDP-3613

Other publications
These publications are also relevant as further information sources:

� J. Joseph, M. Ernest, and C. Fellenstein, Evolution of grid computing
architecture and grid adoption models, IBM Systems Journal Vol 43, No 4,
2004.

� M. Baker, A. Apon, C. Ferner, and J. Brown, Emerging Grid Standards, page.
43-50, IEEE Computer, April 2005.

� I. Foster, J. Frey, S. Graham, S. Tuecke, K. Czajkowski, D. Ferguson, F.
Leymann, M. Nally, I. Sedukhin, D. Snelling, T. Storey, W. Vambenepe, and
S. Weerawarana, Modelling Stateful Resources with Web Services,
http://www.ibm.com/developerworks/library/ws-resource/ws-modelingres
ources.pdf, March 2004.
© Copyright IBM Corp. 2005. All rights reserved. 235

http://www.ibm.com/developerworks/library/ws-resource/ws-modelingresources.pdf
http://www.ibm.com/developerworks/library/ws-resource/ws-modelingresources.pdf

� K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, T. Maguire, D.
Snelling, and S. Tuecke, From Open Grid Services Infrastructure to
WS-Resource Framework: Refactoring and Evolution,
http://www.ibm.com/developerworks/library/ws-resource/ogsi_to_wsrf_1
.0.pdf, March 2004.

� K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin, D.
Snelling, S. Tuecke, and W. Vambenepe, The WS-Resource Framework,
http://www.ibm.com/developerworks/library/ws-resource/ws-wsrf.pdf,
March 2004.

� S. Parastatidis, J. Webber, P. Watson, and T. Rischbeck, A Grid Application
Framework based on Web Services Specifications and Practices,
http://www.neresc.ac.uk/ws-gaf/A%20Grid%20Application%20Framework%20
based%20on%20Web%20Services%20Specifications%20and%20Practices%20v1.
0.pdf, 2003.

� I. Foster, A Globus Primer,
http://www.globus.org/toolkit/docs/4.0/key/GT4_Primer_0.6.pdf, May
2005.

� I. Foster, C. Kesselman, The Grid: Blueprint for a new Computing
Infrastructure, Morgan Kaufmann Publishers, San Francisco, CA, 1998.

� I. Foster, C. Kesselman, and S. Tuecke, The Anatomy of the Grid-Enabling
Scalable Virtual Organizations, The Globus Alliance,
http://www.globus.org/research/papers/anatomy.pdf.

� I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw, B. Horn,
F. Maciel, F. Siebenlist, R. Subramaniam, J. Treadwell and J. Von Reich, The
Open Grid Services Architecture, Version 1.0,
http://forge.gridforum.org/projects/ogsa-wg, January 2005.

� S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T.
Maquire, T. Sandholm, D. Snelling, and P. Vanderbilt, Open Grid Services
Infrastructure (OGSI) Version 1.0, Global Grid Forum, http://www.ggf.org,
June 2003.

� Open Grid Service Infrastructure Primer, Global Grid Forum,
http://www.ggf.org, August, 2004.

�

� N. Nagaratnam, P. Janson, J. Dayka, A. Nadalin, F. Siebenlist, V. Welch, I.
Foster, S. Tuecke, Security Architecture for Open Grid Services,
http://www.cs.virginia.edu/~humphrey/ogsa-sec-wg/OGSA-SecArch-v1-071
92002.pdf.
236 Introduction to Grid Computing

http://www.ibm.com/developerworks/library/ws-resource/ogsi_to_wsrf_1.0.pdf
http://www.ibm.com/developerworks/library/ws-resource/ogsi_to_wsrf_1.0.pdf
http://www.ibm.com/developerworks/library/ws-resource/ws-wsrf.pdf,
http://www.neresc.ac.uk/ws-gaf/A%20Grid%20Application%20Framework%20based%20on%20Web%20Services%20Specifications%20and%20Practices%20v1.0.pdf
http://www.neresc.ac.uk/ws-gaf/A%20Grid%20Application%20Framework%20based%20on%20Web%20Services%20Specifications%20and%20Practices%20v1.0.pdf
http://www.globus.org/toolkit/docs/4.0/key/GT4_Primer_0.6.pdf
http://www.globus.org/research/papers/anatomy.pdf
http://forge.gridforum.org/projects/ogsa-wg
http://www.ggf.org
http://www.ggf.org
http://www.cs.virginia.edu/~humphrey/ogsa-sec-wg/OGSA-SecArch-v1-07192002.pdf
http://www.cs.virginia.edu/~humphrey/ogsa-sec-wg/OGSA-SecArch-v1-07192002.pdf

Online resources
These Web sites and URLs are also relevant as further information sources:

� Apache Ant Web page

http://ant.apache.org/

� Apache Batik

http://xml.apache.org/batik/

� Apache WSRF tutorial

http://ws.apache.org/ws-fx/wsrf/tutorial/

� Distributed Management Task Force (DMTF)

http://www.dmtf.org/

� Global Grid Forum (GGF)

http://www.ggf.org

� Globus

http://www.globus.org

� Globus Toolkit 4 Programmer’s Tutorial by Borja Sotomayor

http://gdp.globus.org/gt4-tutorial/

� Globus WSRF

http://www.globus.org/wsrf/

� GridFTP

http://www.globus.org/grid_software/data/gridftp.php

� Internet Engineering Task Forfe

http://www.ietf.org/

� Open Grid Services Architecture (OGSA)

http://www.globus.org/ogsa/

� OGSA-DAI

http://www.ogsadai.org.uk/

� Open Grid Services Interface (OGSI)

http://www.globus.org/toolkit/draft-ggf-ogsi-gridservice-33_2003-06-27.pdf

� Organization for the Advancement of Structured Information Standards
(OASIS)

http://www.oasis-open.org/
 Related publications 237

http://ant.apache.org/
http://xml.apache.org/batik/
http://ws.apache.org/ws-fx/wsrf/tutorial/
http://www.dmtf.org/
http://www.ggf.org
http://www.globus.org
http://gdp.globus.org/gt4-tutorial/
http://www.globus.org/wsrf/
http://www.globus.org/grid_software/data/gridftp.php
http://www.ietf.org/
http://www.globus.org/ogsa/
http://www.ogsadai.org.uk/
http://www.globus.org/toolkit/draft-ggf-ogsi-gridservice-33_2003-06-27.pdf
http://www.oasis-open.org/

� OASIS Web Services Resource Framework

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf

� pyGridWare

http://dsd.lbl.gov/gtg/projects/pyGridWare/

� Scalable Vector Graphics specification

http://www.w3.org/TR/SVG

� Understanding WSRF Parts 1 to 4 by Babu Sundaram

http://www.ibm.com/developerworks

� Using Eclipse to develop Grid services

http://www.ibm.com/developerworks/edu/gr-dw-gr-eclipseide-i.html

� Web Services Activity

http://www.w3.org/2002/ws/

� Web Services Interoerability

http://www.ws-i.org/

� Web Services Interoperability Organization (WS-I)

http://www.ws-i.org/

� World Wide Web Consortium (W3C)

http://www.w3.org/

� WS-Resource Framework Interop Workshop #1 - Scenarios (v0.13)

http://www.ibm.com/developerworks/offers/WS-Specworkshops/ws-rf200404.html

� WSRF.NET Developer Tutorial by Mark Morgan and Glenn Wasson

http://www.cs.virginia.edu/~gsw2c/WSRFdotNet/WSRF.NET_Developer_Tutorial.pd
f

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks
238 Introduction to Grid Computing

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://dsd.lbl.gov/gtg/projects/pyGridWare/
http://www.w3.org/TR/SVG
http://www.ibm.com/developerworks
http://www.ibm.com/developerworks/edu/gr-dw-gr-eclipseide-i.html
http://www.w3.org/2002/ws/
http://www.ws-i.org/
http://www.ws-i.org/
http://www.w3.org/
http://www.ibm.com/developerworks/offers/WS-Specworkshops/ws-rf200404.html
http://www.cs.virginia.edu/~gsw2c/WSRFdotNet/WSRF.NET_Developer_Tutorial.pdf

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 239

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

240 Introduction to Grid Computing

Index

A
access control 68
Access Manager Family 225
accounting 4
administrator’s perspective 38
administrators 16
advanced synchronization 22
aggregator framework 149
aggregator service 151
Altair PBS 152–153
Andrew File System (AFS) 20
Apache Ant

archive 162
installation 162

Apache Software Foundation 224
API

see Application Programming Interface
application 23

authentication 68
characteristics 38
considerations 52
development 91, 97
distributed 59
integration 97, 106
monitoring 36
MPI 29
parallel 58, 101
processing 100
requirements 109
secure 88
submitting jobs 35

application considerations 51, 53
Application Programming Interface 37
Application Workload Modeler 224
architectural design considerations 95
architecture 96
architecture models 101
assurance 66
asymmetric encryption 69–70
asymmetric key pair 70
authentication 27, 34, 64–65, 68, 77
authorization 64–65, 77
autonomic computing 15, 26
© Copyright IBM Corp. 2005. All rights reserved.
availability 98

B
bandwidth 22
basic methodology 108
batch mode 52
benefits 7
bio-medical 9
blueprint 96
business requirements 109

C
C WS Core 144
CA Host 163, 169–172
caching 36
calendaring system 37
certificate 71, 76

X.509 certificate 73, 82, 87
Certificate Authority 27, 34, 40, 71, 74, 76, 146,
159, 168–169

implementation 92
primary responsibilities 40
public key 41
server 40, 71

Certification Practice Statement (CPS) 91
clients 20
Cloudscape 224
cluster 30
Cluster Systems Management (CSM) 230
coexist 45
communications 29
communications latencies 9
Community Scheduler Framework 4 (CSF4) 153
computation intensive applications 9
computational grid 8, 101, 105

well known example 101
concepts 19
conceptual architecture 98, 108, 111

central focus 98
confidentiality 64–65
Configuration Manager 225
contractual obligations 5
CPU intensive applications 53
 241

credential life span and renewal 65
credentials 34, 40
cryptography 68

D
daemons

gatekeeper 81
data

confidentiality 68
configuration 36
considerations 59
dependencies 56, 59
federation 21
integrity 68
management components 147
movement 36
redundancy 148
replication 99
sharing 41
striping 21

Data Encryption Standard
data grid 8, 10, 20, 102, 105, 112–113
Data Replication Service (DRS) 48, 149
DB2 Everyplace® family 224
DB2 Universal Database™ 224
DB2® Connect™ family 224
deadlock detection 61
dedicated 25
degrees of isolation 5
delegation 65, 79
demonstration application 197
DES

see Data Encryption Standard
design considerations 95
design workshops 110
digital certificate 69, 71–73, 75, 77, 82–83

graphical depiction 74
mutual authentication 76

directory and indexing service 99
disk drive capacity 8
Distinguished Name (DN) 74, 76, 78–79, 87, 159,
172

local user name 173
distributed applications 59
distributed computing paradigms 5
Distributed File System (DFS) 21
distributed grid management 26
Distributed Management Task Force (DMTF) 46

Distributed Terascale Facility (TeraGrid) 102
DN

see Distinguished Name
documentation 110
donor machine 27, 39
donor software 27
donors 20
dynamic nature 65

E
Einstein 54
encryption 98
end point reference (EPR) 127, 175–176
engines 20
enterprise service bus (ESB) 228
Enterprise™ Console® 225
e-utility 107
execution management 152
Extended Deployment 228
extragrid 103, 105–106

F
factory 121
fail-over scenarios 39
faults 48
federated databases 100, 102
federation 21, 46
file system 20, 22, 35–36, 59–60, 124
financial modeling 9
firewall 88–89, 98, 112, 164
firewall traversal 66
functional requirements 96

G
General Parallel File System (GPFS) 21, 230
GIIS 112
Global Grid Forum

DAIS-WG 47
Global Grid Forum (GGF) 46–47, 118, 122
Globus Alliance 141
Globus container 165
Globus Teleoperations Control Protocol (GTCP)
154
Globus Toolkit 68, 72–73, 76, 81–82, 89–90,
92–93, 111–112, 139, 144, 182

components 112
installation 158
242 Introduction to Grid Computing

obtaining 156
Public License 156
security components 76

Globus Toolkit 3 47, 122
Globus Toolkit 4 63, 135, 141

binary packages 157
container 198
source package 158

Globus Toolkit components
gatekeeper 81
GSI 68, 76

globusrun-ws command 187–188, 191
file staging job 191
mulitple jobs 188
simple echo job 187

globus-start-container command 175, 177, 184
globus-url-copy command 179

Third party transfer 179
GramJob object 204, 211
graphical user interface

Java application 197
graphical user interface (GUI) 36, 52, 200, 209, 211
grid

management 26
performance 60
security model 67
security requirements 64
security terms 68
standards 45
topology 98

grid architecture 96
Grid Archive 135
grid computing 3

basic uses 8
benefits 7

grid design 64, 110
grid design steps 109
grid environment

execution management 152
graphic depiction 111
performance objective 100
user identity 78

grid infrastructure 12
grid job 12, 36
grid middleware 99
grid resource 65

issue certificates 72
secure communication 82

Grid Security Infrastructure 68, 76

Grid service 47, 67, 96, 104, 117, 130
basic set 96, 104
fundamental difference 118
reference 119
requirements 119
what is 117

Grid Service Handle 120, 133
Grid Service Reference 120, 133
grid types

computational grid 8, 101, 105
data grid 8, 10, 20, 102, 105, 112–113

Grid Web Services Definition Language (GWSDL)
120
grid-enabled device drivers 12
GridFTP 48, 147, 198
GridFTP Test 179
grid-proxy-init command 81, 84, 87, 146, 176–177,
179–180
GRIS 112
GSI certificate 163
GSI-OpenSSH 146
GT4 container 135–136, 149–150, 202

H
heterogeneous systems 15
heuristics 25
High Performance Computing (HPC) 53
high-availability routing protocols 99
host certificate 170, 172, 174
hosts 20
HTTP 65

I
IBM Director 229
IBM eServer

pSeries 230
IBM Java SDK 160–161, 193

environmental variables 161
installation procedure 161

IBM Remote Deployment Manager 229
IBM ServerGuide™ 229
IBM Software

Development Platform 225
IBM software 223
IBM Tivoli 225–227

Enterprise 225
Intelligent Orchestrater 226
Management Framework 226
 Index 243

Monitoring 226
OMEGAMON solution 227
System Automation 227

Implied Resource Pattern 125
independently running parallel parts 56
Index Service 149

service group entries 150
information services 99
infrastructure requirements 109
infrastructure security 88
input data 24, 35–36, 59
installation considerations 39
integration 64
Intelligent Orchestrator 226
intergrid 30–31, 106
inter-job contention 9
interoperability 64
interoperate 45
intragrid 30–31, 96, 103–104
intrusion detection 89, 98
ISO 10181 67
ISO 7498-2 67

J
J2EE container 53
JAR file 216
Java WS Core 143

component 157–158
container 174, 176, 182
environment 174
installation package 157
package 157

JAX-RPC 123
job 23
job queue 24
job scheduling software 28
job state 204, 213
job submission 35
JobDescriptionType object 204, 206–207, 210

incorrect definition 207
journal 21
JPEG file 197, 200, 211
JPEG image 211

K
Kerberos 84
key management 68

L
LDAP replicas 100
License Manager 226
license managers 41
licenses 22
lifetime management 119
load sensor 29
Load-balancing 99
LoadLeveler® 230
local delegation 84
locks 61
logging onto the grid 34

M
manageability 66
management 14–15, 22, 26–27, 29, 37, 41, 46,
100, 108, 112
management components 26
management of priorities 15
massive parallel CPU capacity 9
Mathematical Acceleration Subsystem 224
MDS 112
MDS4 service 149
members 20
message integrity 66
message name 218
Message Passing Interface 29
meta-scheduler 28
middleware components 96
mirror 21, 99
monitoring 36
Monitoring and Discovery Services (MDS)
149–150
motion picture animation 9
motivations 7
MPI

see Message Passing Interface
mutual authentication 69, 76, 82

function 79
process 82

N
naming and references 119
NEESgrid Teleoperations Control Protocol

WSRF version 154
NEESgrid Teleoperations Control Protocol (NTCP)
154
network communication capacities 9
244 Introduction to Grid Computing

Network Deployment 228
Network File System (NFS) 20
network IDS 90
Newton 54
nodes 20
non-functional requirements 96
notification interfaces 120
notifications 48, 119
ntp client 164
ntp service 164

O
OASIS 46, 48
off-peak usage times 60
OGSA 46, 66, 119
OGSA compliant grid

service 118–119
OGSA Service Model 119
OGSA-DAI 47, 149
OGSI model 121
oil exploration 9
OMEGAMON® XE Family 227
online transaction processing (OLTP) 224
Open Grid Service Architecture (OGSA) 46
Open Grid Services Architecture (OGSA) 118
Open Grid Services Interface (OGSI) 47, 119–120
open standards 3, 5, 96
organizational considerations 38
OSI Security 67

P
paraellel applications 58
parallel applications 101
parallel calculations 53
Parallel ESSL 230
parallel execution 9, 54
parallel processing 99
parallel transfers 48
parameter space 35
parameter space problems 57
partial file transfers 48
patterns of attacks 90
perfectly scalable application 9, 20
performance 60, 100
performance gains 52
phases and activities 108
physical security practices 88
PKI 90

see Public Key Infrastructure
PKI environment 76, 146
planning 38
Platform LSF 152–153
policies 16
policy exchange 66
policy requirements 10
policy violations 90
portType 121, 125–126, 130, 132
postgresql service 181
prediction 29
pricing

resources 108
privacy 65
private key 39–41, 69–72, 75, 77, 80–81, 83, 87,
91, 171
project groups 39
prototype 110
Provisioning Manager 227
proxy certificate 80–81, 84–85, 87, 176–177,
179–180
proxy creation 80
proxy login 34
public key 39–40, 69–73, 75–77, 80, 83, 87, 91

encryption system 40
Public Key Infrastructure 69, 72, 98
Python WS Core 144

Q
quality of service 25, 37

R
Rational® Application Developer for WebSphere®
Software 225
real-time requirements 9
recovery oriented computing 26
Redbooks Web site 238

Contact us xiii
redundancy 98
reference architecture 46
ReferenceProperties 129
Registrant Authority (RA) 72, 75
registration and discovery 119
reliability 14
Reliable File Transfer (RFT) 148, 158, 174–175,
177, 180–182, 184–185
remote communication 84
Remote Deployment Manager (RDM) 229
 Index 245

remote machine 8, 81
RenderClient 197–198, 200–202, 204–209,
211–214, 217
RenderSourceService 201, 203, 208, 210–214,
216
RenderWorker 197–198, 201–203, 206–207,
210–214, 217
replica 21
Replica Location Service (RLS) 148
replication 46
requirement validation 109
requirements gathering 109
reservation 24–25
reservation period 25
reservation system 29
reserved 25
reserving resourcs 37
resources

allocation 96
balancing 12
billing 108
communications 22
computation 20
discovery 46
exploiting 8
identifier 127–130
lifetime 48
management 41
on demand 102
protected 97
reservation 25, 37
sharing 3
software and licenses 22
special equipment 23
storage 20
type of 11, 20, 23, 104–105
underutilized 8
virtual 10, 15

rft command 184
RFT file transfer 184

RFT error 183
RFT service 152, 202
runtime components 143

S
sandbox 35, 96
scalability 9, 20, 25, 58
Scalable Vector Graphics (SVG) 197, 200–201,

204, 211–212, 215–216
scavenging 24, 27, 37, 102
scheduler 13, 21, 23, 25, 28–29, 37, 41
scheduling 4
scheduling techniques 10
secondary storage 20
secure communication 82
secure data transfer 83
secure logging 66
Secure Shell (SSH 84
Secure Socket Layer 69, 82
securing the OGSA infrastructure 66
security 4, 38, 63, 111

challenges 64
components 145
domains 5
fundamentals 67
infrastructure 76
model 67
policy 90
requirements 64
service 99
step-by-step 84

security policy 64–65, 225
feasible set 90

security requirements 64
server certificate 76
service creation 119
service group emtries 150
service oriented architecture (SOA) 47, 117–118
ServiceGroup 121, 131, 133
session key 83
SETI@home grid 101
shared data 60
SimpleCA 146
single logon 65
single system image 12
SOAP 49, 65
software clustering 99
software components 26
software platform 20, 45
software portfolio 223
solution design 96
solution objectives 97
source package 156–157
SSL

see Secure Socket Layer
SSL handshake 82
staging the input data 35
246 Introduction to Grid Computing

standards 45
startup processing 185
state management 117
stated requirement 97
stateful resource 48, 123–129

Implied Resource Pattern 126
instance 128
instance management 127
management requirement 48

storage 20
storage resources 11
sub-images 203, 210–213
subjob 9, 12, 36–37, 59–60
submission clients 28
submission nodes 28
submission software 28
submitting jobs 35
supports parallel (SP) 230
SVG file 201, 211, 216

aspect ratio 201
symmetric key encryption 69
synchronization 22, 60
synchronization contention 60
synchronization deadlock 61
synchronization primitives 60–61
synchronization protocols 9
System Automation for Multiplatforms 227
systems management 4, 112

T
terms 19
third-party transfers 48
Tivoli Management Framework 226
Tivoli Monitoring for Virtual Servers 226
Tivoli Universal Agent 227
TLS

see Transport Layer Security
topics 48
topologies 30, 103
topology

e-utility 107
extragrid 103, 105
intergrid 106
intragrid 96, 103–104

Total Cost of Ownership (TCO) 102
transient grid services 119
Transport Layer Security 69
trojan horses 40

trust relationship 65

U
UDDI 49
uniform name space 21
uninterruptable power supply (UPS) 88
user certificate 75, 84–85, 87, 171–172
user id 27, 35, 39

common 35
user identity 78
user roles 33
utility computing 115

V
validate requirement 109
verification of the user 75
Virtual Machine Manager (VMM) 229
virtual organization 10, 64, 72, 115, 145, 150, 198,
201–203, 210–211

root node 202, 211
virtualization 3
virtualized resource 6, 51–53

typical business applications 52
viruses 40
VO

see virtual organization
VPN tunneling 31
vulnerabilities 90

W
W3C 46
Web material 231–232
Web Service (WS) 5, 46–47, 117–118, 123–124,
131, 228
Web Service Definition Language (WSDL) 47
Web Service deployment scenario 135
Web Service specifications 132
Web Services Interoperabilty (WS-I) 49
Web Services Resource Framework (WSRF) 48,
119
Web Services technology 118
WebMDS 152
WebSphere Application Server 228
WebSphere MQ 228
WebSphere Software 225

IBM Rational Application Developer 225
Rational Application Developer 225
 Index 247

WebSphere Studio Application Monitor 229
worker node 204–208, 210–211, 215

Globus container 205
workload management 99–100
Workspace Management Service (WMS) 154
World Community Grid™ 102
WS Gram 143, 152
WS-Addressing 129
WSDL 49, 123
WSDL 1.1

construct 123
WSDL 2.0 123
WSDL file 118, 125, 134

portType definition 126
WSDL Relationship Model 125
WS-I 46
WS-Notification family 124, 130
WS-Resource Framework 125, 130–132
WSRF 135
WSRF fundamentals 124
WSRF refactoring 122
WSRF service 150
WSRF specification 130

X
XML 49, 126
XML representation 128
XML version 216
xsd

element name 217–218
248 Introduction to Grid Computing

Introduction to Grid Com
puting

Introduction to Grid Com
puting

Introduction to Grid
Com

puting

Introduction to Grid Com
puting

Introduction to Grid
Com

puting

Introduction to Grid
Com

puting

®

SG24-6778-00 ISBN 0738494003

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Introduction to Grid
Computing

Learn grid
computing basics

Understand
architectural
considerations

Create and
demonstrate a grid
environment

In the past several years, grid computing has emerged as a
way to harness and take advantage of computing resources
across geographies and organizations. In this IBM Redbook,
we describe a generalized view of grid computing including
concepts, standards, and ways in which grid computing can
provide business value to your organization. In a nutshell, grid
computing is all about virtualization that enables businesses
to take advantage of a variety of IT resources in order to be
more responsive to demands of the business and increase
availability of applications while reducing both infrastructure
and management costs.

There are many products and toolkits available from IBM and
other companies that enable different aspects of grid
computing. One of the most well known toolkits is the Globus
Toolkit. Globus Toolkit 4 provides components and services
conforming to existing and evolving standards that can be
used as the basis for a grid computing solution. In the second
half of this book we provide instructions for installing and
configuring a simple Globus environment that can be used to
demonstrate various aspects of grid computing and to build a
proof of concept environment. We also describe, and provide
as additional material, a sample grid application that can be
used to demonstrate, test, and teach more about the grid
computing concepts introduced in this book.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Grid fundamentals
	Chapter 1. What grid Computing is
	Chapter 2. Benefits of grid computing
	2.1 Exploiting under utilized resources
	2.2 Parallel CPU capacity
	2.3 Virtual resources and virtual organizations for collaboration
	2.4 Access to additional resources
	2.5 Resource balancing
	2.6 Reliability
	2.7 Management
	2.8 Summary

	Chapter 3. Grid terms and concepts
	3.1 Types of resources
	3.1.1 Computation
	3.1.2 Storage
	3.1.3 Communications
	3.1.4 Software and licenses
	3.1.5 Special equipment, capacities, architectures, and policies

	3.2 Jobs and applications
	3.3 Scheduling, reservation, and scavenging
	3.4 Grid software components
	3.4.1 Management components
	3.4.2 Distributed grid management
	3.4.3 Donor software
	3.4.4 Submission software
	3.4.5 Schedulers
	3.4.6 Communications
	3.4.7 Observation and measurement

	3.5 Intragrid and intergrid
	3.6 Summary

	Chapter 4. Grid user roles
	4.1 Using a grid: A user’s perspective
	4.1.1 Enrolling and installing grid software
	4.1.2 Logging onto the grid
	4.1.3 Queries and submitting jobs
	4.1.4 Data configuration
	4.1.5 Monitoring progress and recovery
	4.1.6 Reserving resources

	4.2 Using a grid: An administrator’s perspective
	4.2.1 Planning
	4.2.2 Installation
	4.2.3 Managing enrollment of donors and users
	4.2.4 Certificate authority
	4.2.5 Resource management
	4.2.6 Data sharing

	4.3 Summary

	Part 2 Grid architecture considerations
	Chapter 5. Standards for grid environments
	5.1 Overview
	5.1.1 OGSA
	5.1.2 OGSI
	5.1.3 OGSA-DAI
	5.1.4 GridFTP
	5.1.5 WSRF
	5.1.6 Web services related standards

	Chapter 6. Application considerations
	6.1 General application considerations
	6.2 CPU-intensive application considerations
	6.3 Data considerations
	6.4 Summary

	Chapter 7. Security
	7.1 Introduction to grid security
	7.1.1 Grid security requirements
	7.1.2 Security fundamentals
	7.1.3 Important grid security terms
	7.1.4 Symmetric key encryption
	7.1.5 Asymmetric key encryption
	7.1.6 The Certificate Authority
	7.1.7 Digital certificates

	7.2 Grid security infrastructure
	7.2.1 Getting access to the grid
	7.2.2 Grid secure communication
	7.2.3 Grid security step-by-step

	7.3 Grid infrastructure security
	7.3.1 Physical security
	7.3.2 Operating system security
	7.3.3 Grid and firewalls
	7.3.4 Host intrusion detection

	7.4 PKI security policies and procedures
	7.4.1 Certificate Authority
	7.4.2 Security controls review

	7.5 Summary

	Chapter 8. Design
	8.1 Building a grid architecture
	8.1.1 Solution objectives

	8.2 Grid architecture models
	8.2.1 Computational grid
	8.2.2 Data grid

	8.3 Grid topologies
	8.3.1 Intragrid
	8.3.2 Extragrid
	8.3.3 Intergrid
	8.3.4 e-Utilities

	8.4 Phases and activities
	8.4.1 Basic methodology
	8.4.2 Recommended steps

	8.5 A conceptual architecture
	8.5.1 Infrastructure

	8.6 Summary

	Chapter 9. Web services resource framework
	9.1 Resource state management using Grid services
	9.1.1 What a Grid service is
	9.1.2 Grid services vs. Web services
	9.1.3 OGSA Grid service requirements
	9.1.4 Open Grid Services Interface (OGSI) Grid services
	9.1.5 OGSI to WSRF refactoring

	9.2 WSRF fundamentals
	9.2.1 What a WS-Resource is
	9.2.2 Implied resource pattern for stateful resources

	9.3 WS-Resource Framework specifications
	9.3.1 WS-Resource Framework and Globus Toolkit 4

	9.4 WSRF references
	9.5 Summary

	Part 3 Creating a grid environment with the Globus Toolkit 4
	Chapter 10. Globus Toolkit 4 components
	10.1 Overview of Globus Toolkit 4
	10.2 Common runtime components
	10.2.1 Java WS Core
	10.2.2 C WS Core
	10.2.3 Python WS Core

	10.3 Security components
	10.3.1 WS authentication and authorization
	10.3.2 Pre-WS authentication and authorization
	10.3.3 Community Authorization Service (CAS)
	10.3.4 Delegation service
	10.3.5 SimpleCA
	10.3.6 MyProxy
	10.3.7 GSI-OpenSSH

	10.4 Data management components
	10.4.1 GridFTP
	10.4.2 Reliable File Transfer (RFT)
	10.4.3 Replica Location Service (RLS)
	10.4.4 OGSA-DAI
	10.4.5 Data Replication Service (DRS)

	10.5 Monitoring and Discovery Services
	10.5.1 Index service
	10.5.2 Trigger service
	10.5.3 Aggregator Framework
	10.5.4 WebMDS

	10.6 Execution management
	10.6.1 WS GRAM
	10.6.2 Community Scheduler Framework 4 (CSF4)
	10.6.3 Globus Teleoperations Control Protocol (GTCP)
	10.6.4 Workspace Management Service (WMS)

	10.7 Summary

	Chapter 11. Globus Toolkit 4 installation and configuration
	11.1 How to obtain Globus Toolkit 4
	11.2 Packages of Globus Toolkit 4
	11.2.1 Binary packages
	11.2.2 Source packages

	11.3 Grid environment
	11.4 Installation
	11.4.1 Installing required software for Globus Toolkit 4 installation
	11.4.2 Preparing the OS for Globus Toolkit 4 installation
	11.4.3 Installing Globus Toolkit 4

	11.5 Configuration and testing of grid environment
	11.5.1 Configuring environmental variables
	11.5.2 Security set up
	11.5.3 Configuration of Java WS Core
	11.5.4 Configuration and testing of GridFTP
	11.5.5 Configuration and testing of RFT
	11.5.6 Configuration and testing of WS GRAM
	11.5.7 Testing of MDS4

	11.6 Uninstallation
	11.7 Summary

	Part 4 Grid demonstration application
	Chapter 12. Demonstration application
	12.1 RenderClient
	12.1.1 The Graphical User Interface (GUI)
	12.1.2 RenderClient source code

	12.2 RenderWorker
	12.3 RenderSourceService
	12.3.1 Alternative architecture

	12.4 DirectoryTree of important files in demo

	Part 5 Appendixes
	Appendix A. IBM software portfolio for grid computing
	IBM Application Workload Modeler
	IBM Cloudscape/Apache Derby
	DB2 Connect Family
	DB2 Everyplace Family
	DB2 Universal Database Family
	Mathematical Acceleration Subsystem (MASS)
	Rational Application Developer for WebSphere Software
	IBM Tivoli Access Manager Family
	IBM Tivoli Configuration Manager
	IBM Tivoli Enterprise Console
	IBM Tivoli Intelligent Orchestrator
	IBM Tivoli License Manager
	The IBM Tivoli Management Framework
	IBM Tivoli Monitoring for Virtual Servers
	IBM Tivoli OMEGAMON XE Family
	IBM Tivoli Provisioning Manager
	IBM Tivoli System Automation for Multiplatforms
	IBM Tivoli Universal Agent
	WebSphere Application Server
	WebSphere Application Server Network Deployment
	WebSphere Extended Deployment
	IBM WebSphere MQ
	WebSphere Studio Application Monitor
	IBM Director
	IBM Remote Deployment Manager
	IBM ServerGuide
	IBM Virtual Machine Manager
	Cluster Systems Management
	Parallel ESSL
	LoadLeveler
	General Parallel File System

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

