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Synopsis. The relation between driving forces and the flux of solutes that would be
expected in a passive system is derived. This relation is a differential equation and dif-
ferent solutions are obtained which apply to different experimental conditions. Solutions
are given for the cascs of pure convective flow, diffusion, electrophoretic mobility,
balance between diffusive and electrical forces, and transport in the presence of both

concentration and voltage differences.

Many different criteria have been used
for the definition of active transport pro-
cesses across membranes. The presence of
saturation kinetics and the potential for
competitive inhibition suggest the forma-
tion of a chemical bond between the trans-
ported substance and something in the
membrane as a preliminary step to trans-
port. Stoichiometric coupling of transport
to oxygen consumption and inhibition of
transport by metabolic blocking agents
suggest that transport depends on cellular
supplics of energy. Comparison of the
measured transmembrane movement with
that expected in a non-living system can
indicate the activity of a process that
would not be present in a passive system.
These different approaches complement
one another and are often used together.
The present discussion, however, will be
dirccted entirely toward the last criterion—
deviation of a measured movement from
that expected on the basis of known physi-
cal relationships. This approach is some-
what more abstruse than the others, for it
is necessary first to decide what we would
expect. We do this by deriving and solving
a transport equation which defines the pas-
sive relation between the transmembrane
flux of a solute and the driving forces act-
ing upon it. The additional difficulty in-
volved in this approach pays dividends, for
when we have the passive transport equa-
tion, we can use it, not only to determine
that some substances are transported ac-
tively and to estimate the magnitude of the
active process, but also to analyze the

movement of passively transported materi-
als. If we expect that a solute obeys the
passive relation, we can compare the driv-
ing forces present to the measured fiuxes
and thereby determine some of the proper-
ties of the membrane. Conversely, if we
know the characteristics of the membrane,
measurement of the flux allows us to
deduce the driving forces, and, from them,
cellular concentrations. Finally, the process
of analyzing what we would expect, in
itself, often gives us greater insight into the
processes going on in a complicated biolo-
gical system.

From the point of view of an anti-
vitalist, a cell membrane is simply a very
thin layer of specialized material. The bas-
ic laws that govern movement in a mem-
brane should be the same as those that
govern movement in free solution. Thus,
we will derive laws of movement of a so-
lute which are true anywhere, and then we
shall apply them around the boundaries
of a membrane. Normally, this approxima-
tion is satisfactory, and Figure 1 illustrates
why this is the case. Suppose we are inves-
tigating the diffusion of an uncharged mol-
ecule, such as glucose, across a cell mem-
brane, and suppose further that we are
analyzing a steady-state condition. The
rates at which glucose passes through a
unit of cross sectional area of extracellular
fluid immediately outside of the mem-
brane, a unit of cross sectional area of
membrane, and a unit of cross sectional
area of intracellular fluid immediately
inside the membrane are all equal, for that
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¥IG. 1. Concentration gradients in external and
internal aqueous solutions and through membrane
during steady flow. Since the diffusion coefficients
are so much higher in the aquecous phases than the
membrane, the concentration gradients are much
lower,

is the definition of a stcady-state. In each
case, the rate at which the solute passes
through a unit of cross sectional area
(defined as the flux, in moles/cm?-sec, and
symbolized by J) is equal to the diflusion
coeficient within that medium times the
rate of change of concentration with dis-
tance. Since we can equate the fluxes in
cach compartment and since both the ex-
tracellular and intracellular compartments
are predominantly water, we can set up
the relation given in Equation 1. For most
solutes, the diffusion coefficient in the
membrane is very much

aC,
1) J = —Duyo ——=_

7

AX

ACyean
= —Dyvn .
AX

= ——DH-_)O

lower than the diffusion coefficient in
aqueous solution, perhaps a million times
lower. Since the product of this diffusion
coefficient and the concentration gradient
is the same in all compartments, the con-
centration gradient must be a million times
higher in the membrane than in the
aqueous solutions surrounding it. Normal-
ly then, we can say that the entire concen-
tration change takes place across the mem-
brane and assume that the conditions a-
cross the membrane are the limiting factors

in the movement. For most solutes, the
concentration gradients in the aqueous so-
lutions are so small as to be chemically
undetectable. There are some exceptions
to this general statement including the
movement of gases or of water through
very porous membranes. Here, where the
diffusion coefficients are not very different
in the different compartments, the concen-
tration gradients are significant in all com-
partments. Analysis of transport in these
conditions does require analysis of the un-
stirred aqucous layers adjacent to the
membrane.

We start the derivation of a passive
transport equation by breaking the pos-
sible modes of solute movement into two
different classes. Movement of the solute
particle with respect to its surrounding
solvent molecules is termed interfusion.
Movement, with respect to the observer, of
the solute particle together with its imme-
diate environment, is termed convection.
The distinction between these two types of
movement can be clarified by the parable
of the Biologist on a Buoy in the Bosnian
Straits Counting People as They Pass By
(Fig. 2). Suppose you are perched on a
buoy counting people as they pass you, and

INTERFUSION

CONVECTION

3

_A/Jp»

FI1G. 2. Comparison of interfusion and convection.
Upper figure: interfusion. The boat is anchored,
but the swimmer is moving with respect to his
surrounding solvent molecules. Lower figure: con-
vection. The swimmer is fixed with respect to his
surrounding solvent molecules, but the whole boat
is moving with respect to the observer.
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suppose further that a boat crosses your
line of vision. On that boat is a swimming
pool, and in the pool, a swimmer. 1f the
boat is at anchor, but the person within
the pool is swimming, he might cross your
line of vision and you would count him.
You would also count him if he is hanging
on to the side of the pool, but the boat is
moving with respect to you. If all you are
doing is counting heads, you will make no
distinction between these two swimmers
even though the mechanism by which they
pass your line of vision is different. The
parable points out some way of separating
the two movements. If you jump off the
buoy and swim alongside the boat,
matching its velocity, you eliminate the
convective movement and perceive only
the interfusion component. Either type of
movement may occur by itself, or they may
occur in combination.

INTERFUSION

This s movement of the solute particles
with respect to their immediate surround-
ings and is caused by any driving force
which acts differently on the solute and the
solvent molecules. When the driving force
is a concentration gradient, we call it dif-
fusion; when the driving force is a voltage
gradient, we call it electrophoresis. These
are the two driving forces which we nor-
mally treat in biological movement. Differ-
ences in temperature between adjacent
regions can also cause interfusion move-
ments, but we normally assume that these
are minor. Differences in centrifugal force
cause movement by interfusion and this
principle is used in ultracentrifugal sepa-
rations. Although all of these, and other
forces as well, might contribute to the in-
terfusion term, we will restrict our consid-
erations to concentration and voltage gra-
dients. There are three important proper-
ties of interfusion terms. The first is that
the driving force is derived from the spa-
tial rate of change of a potential energy
term. Thus, for diffusion, differences in
concentration are an expression of a differ-
ence in potential energy, and the driving

force is the spatial rate ol change of con-
centration. For electric mobility, the vol-
tage difference is the expression of poten-
tial energy difference and the spatial rate
of change of voltage (the electric field), is
the driving force. If, between two adjacent
regions, there is no difference in potential
energy, there is no interfusion. This is
simply the thermodynamic criterion for
equilibrium. The second property is as-
sumed as an induction from the statement
about equilibrium. We assume that the in-
terfusion movement is proportional to the
potential energy gradient. We can justify
this statement by saying that it must be
true if we are sufficiently close to equilibri-
um. From thermodynamics, the net move-
ment is some function of the potential en-
ergy gradient. All we really know is that
the movement must go to zero when the
energy gradient goes to zero. We can ex-
press the movement as a series of succes-
sively higher derivatives of the energy and,
if we take a sufficient number of terms,
this series must describe the net transport.
The argument is that, if we are close to
equilibrium, only the first derivative term
counts. In general, in solutions, we do not
really know whether we are close enough
to equilibrium. However, the approxima-
tion works for both diffusion and electric
mobility taken separately. The third major
property of interfusion terms is the as-
sumption that the different driving forces
add.

We can formalize these statcments for
both diffusion and electric mobility.

b AC
Jl’)ift _ - AX
2) diffusion diffusion concentration
flux coefficient gradient
Moles cm® Moles
sec-cm? sec cmi-cm

Equation 2 is the relation we use for pure
diffusion, and it is simply Fick’s first law. It
states that the flux is proportional to the
product of a driving force and a diffusion
coefficient. The physical meaning of the
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diffusion coefficient becomes clear; it is a
measure of the amount of work that must
be done to have the solute particle slip
through its surrounding solute molecules.
Thus, we should expect the same diffusion
coefficient to appear in all interfusion
terms, as indeed it does. The flux in re-
sponse to a pure electric field is given by
Equation 3. Here, the flux is again equal

ZF _  AE
JELIC(:’I‘ =—-DbD—=C-
RT AX
3) ) .
electric clectric voltage
flux mobility gradient
Moles Moles volts
sec-cm®  volt-sec-cm cm

to the product of a driving force and a
mobility term. The mobility term includes
the diffusion coefficient, a factor ZF/RT,
which relates chemical to electrical energy,
and the concentration, C. The concentra-
tion appears because the electric ficld acts
upon each charged particle present in an
element of volume, and the higher the
concentration, the greater the number of
particles that drift. The total interfusion
term is just the sum of these two terms.t

5 D(dc—}—ZFCdE\
T aXx RT ax /

1There appears to be a logical problem in adding
a concentration gradient to a voltage gradient. The
concentration gradient gencrates a net velocity
from the fact that the solute particles are in
continuous random movement and they tend to
spread from regions where there are many of them
toward regions where there arc few. The elec-
tric field, on the other hand, is a classical Newtoni-
an force and produces an acceleration, not a veloci-
ty. Anywhere outside of a vacuum, however, fric-
tional retarding forces are generated between the
moving particle and its surrounding molecules.
Frictional forces increase with the velocity, and, as
a particle is accelerated in the electric field, fric-
tion builds up until the frictional retarding force
just balances the electric field. At this point there
is no further acceleration, but a steady velocity
whose magnitude depends on the electric field and
the diffusion coefficient. The transient state persists
only for microseconds, and once we are beyond
that, it is the velocity of the movement rather than
the acceleration which depends on the driving
force. This same line of reasoning leads to Ohm’s

1f any other forces which produce interfu-
sion are present, they would also appear in
this term.

CONVECTION

This is movement of the whole solution
with respect to the observer (or, more ol-
ten in biology, with respect to the mem-
brane, which is a fixed point in our frame
ol reference). Technically, we should
define convection as movement of the cen-
ter ol mass of the solution; then we can
justify the corollary that convective move-
ment requires the application of an exter-
nal force. In biological solutions, water is
the overwhelming constituent of any solu-
tion and so we approximate movement of
the center of mass of the solution as the
movement of the solvent. If we talk about
convective flow through a membrane, we
make the basic assumption that there arc
aqueous channels or pores present. Such
pores are present in some membranes, e.g.,
mammalian erythrocytes, but are appar-
ently absent in others, e.g., Valonia plas-
malemma. The magnitude of the convec-
tive flux is just what would be counted
[rom the solution moving past the mem-
brane, and so it depends on the product of
the volume flow and the concentration. A
separate reclation is needed to define the
volume flow. This relation will be flux-
force relation for water movement and the
driving force will be the gradient in water
activity, either because of differences in
hydrostatic pressure or osmotic activity.
The convective llux is given by Equation 5.

Jcnnv - Cc * Jv
5)  convective concentration  volume
flux flow
per cm?
Moles Moles cn
sec-cm? cm3 sec

law relating the driving force to the flow of clec-
trons in a metallic conductor and also leads to a
limiting velocity, rather than continuous acceler-
ation, of a parachutist, where the gravitational field
which produces an acceleration of 32 ft/sec® is
balanced by the friction between the parachute
and the air.

6102 Joqueydas 0 uo 1senb Aq Zy£.2012/1EE/S/0 L AOBISGE-D[O1HE/G1/WOD dNO"DIWSPEoE//:SARY WOy PAPEOjUMOC]



TRANSPORT EQUATIONS 335

conc.

Potential

MEMBRANE

o .
a distance

FIG. 3. Solution of the passive transport equation
for pure convection. a. Concentration (solid line)
and voltage profiles (dashed line) through the
membrane. b. Representation of data on convec-

The total passive movement is given by
the sum of the interfusion and the convec-
tive terms:

dC yAY dLE
co)

6 = D <
) J dx RT dx

C-Jv

Equation 6 is the passive transport equa-
tion that we wanted to derive. If J, is
defined in terms of relative motion of the
solution and an observer, Equation 6 con-
tains no statement of requiring the
presence of a membrane. This equation is
not an answer of what would be expected
to occur across a membrane, but rather is a
relationship which must hold true at any
point in space. 1t is a differential equation
rclating fluxes to driving forces, and to
obtain predictions of the behavior across a
membrane, we must integrate this relation
through a distance equal to the thickness
of the membrane. We get different solu-
tions of Equation 6 depending on the dif-
ferent experimental conditions, and the
criterion that we use to investigate active
transport is that solution of Equation 6
that is appropriate to our conditions. The
remainder of this discussion will he de-
voted to an examination of some of the

Jy high

VIow

tion; the flux is plotted as a function of the

concentration from which the transport is taking
place.

more commonly used solutions ol the pas-
sive transport cquation.

The first thing to do is to restrict the
conditions under which we are going to
look at solutions. Equation 6 was derived
in terms of only one spatial variable, x.
"T'he same equation could be gencralized to
include movement in more than one di-
rection. However, the unidirectional equa-
tion is not only much simpler, but is the
proper treatment around a membrane,
since the only potential gradients are di-
rected perpendicular to the membrane.
The second restriction that we shall im-
posc is that of steady state. This means
that there are no changes in concentration
or voltage or flux with time. Another con-
sequence of the steady-state condition is
that the flux is constant in distance and
does not vary for different values of the
independent variable. Both of these res-
trictions limit us to consideration of rea-
sonably simple, ordinary differential equa-
tions rather than partial differential equa-
tions.

Pure Convection

In this case, only the net flux and the
product of water flow and concentration
remain [rom the complete transport equa-
tion.
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FIG. 4. Solution of the passive transport equation
for pure diffusion. a. Concentration (solid line)
and voltage (dashed line) profiles through the

dC 7F c dE )
dx RT dx

7) J:—D(

C-Jou

In this and in subsequent cases, we shall
show the complete transport equation with
the terms that are present in each particu-
lar consideration emphasized. In convec-
tion, the derivative terms are all zero and
the remaining terms constitute the solution
in themselves. Figure 3a shows that both
the

8) J=C-]Jv

concentration and the voltage profiles are
uniform as we go from compartment 1,
outside the membrane, through the mem-
brane, to compartment 2 inside the mem-
brane. One way of plotting such data is
illustrated in Figure 3b where the net trans-
port is plotted as a function of the concen-
tration in the compartment from which
transport is occurring. The data will fall
on a straight line passing through the
origin with a slope equal to the volume
flow. Pure convection is responsible for the
movement of, say, sodium within the vas-
cular system; no concentration or voltage
gradients are present and the only factor
causing movement of the sodium is the
blood flow.

¢ -C2

membrane. b. Representation of data on diffusion;
flux is plotted as a function of the difference in
concentration across the membrane.

Pure Diffusion

Equation 9 shows that the terms that are
present are the net transport, the dif-
fusion coefficient, and the concentration
gradient. The solution for net flux in the
steady state is given in Equation 10 as the
product of

dC ~ IF _ dE
9) J:—D( C )

dx + RT dx
C-Jv

the difference in concentration and the ra-
tio of the diffusion coefficient to the thick-
ness of the membrane, [. This ratio of
diffusion coefficient to membrane thickness
occurs sufficiently often to be given a spe-
cial name, the permeability (P). As shown
in Figure 4a, the concentration through
the

D
1) J=— (C—C)=P(C:—Cy)

membrane falls in a linear fashion from
the concentration in compartment 1 to the
concentration in compartment 2 on the
other side. The voltage is constant in dis-
tance. Steady-state diffusion flux might be
plotted as a function of the concentration
difference across the membrane. The data
will describe a straight line passing
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FIG. 5. Solution of the passive transport equation
for pure eclectrophoresis. a. Concentration (solid
line) and voltage (dashed line) profiles through

through the origin with a slope equal to
the permeability. Transport of uncharged
molecules, such as urea or sugars, if they
are passively transported, will follow these
characteristics.

Pure Electric Mobility

This case is analogous to the previous
one except that the driving force is the
voltage gradient, rather than the concen-
tration gradient. The terms present are the
net flux, the electric mobility, and the
voltage gradient.

dc
11) J:-l)( ZchE)

dx +RT dx
C-Jv

The solution is also analogous to that for
diffusion. Figure 5A shows that

12) J="P L C(E;—E,)

RT

the concentration is uniform as we pass
through the membrane, but that the volt-
age [alls linearly from the outside to the
inside of the membrane. The reasonable
plot would be the net transport as a func-
tion of the voltage difference across the
membrane. The data would fall on
straight lines through the origin in which
the slope would increase with increasing

the membrane. b. Representation of electrophoretic
data; the flux is plotted as a function of the
voltage difference across the membrane.

permeability and with increasing concen-
tration. This case is electrophoresis.

Balance of Electrical and Chemical Poten-
tials

We come to the situation where there is
no net transport, but there are driving forces
of both chemical and electrical poten-
tial gradients. Equation 13 indicates which
terms arc present and Equation 14 gives
the solution in terms of the concentrations
on the two sides and the voltage differ-
ences across the membrane. This is one
form of the famous Nernst equation; it is
given in

18 J— D(dC+ZFCdE)
o de  RT dx

G-Jv

14) i _ err
G,

its logarithmic form in Equation 14a. This
relation between the concentrations and
voltage across a membrane at a time when
there is no net transport was also derived
by Boltzman and is also known as the
Boltzman distribution. Relations of the
same form will be generated whenever there
is a balance between concentration gradi-
ents and any classical force which produces
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FIG. 6. Solution of the passive transport equation
for balance between chemical and electrical forces.
a. Possible concentration (solid line) and voltage
(dashed line) profiles across the membrane. b. Rep-

interfusion movement,

RT Cy
14a) E;(—E, =——1In—
ZF C,

23RT C,

= —— log —

ZF C,

Thus, the distribution of an unpumped
ion across a muscle or erythrocyte mem-
brane would be expected to fulfill the
Nernst relation. In a like manner, the
Nernst relation is a first approximation to
the density of the air as a function of
altitude. The major factors which are bal-
anced are the density (or concentration)
gradient, against the gravitational field.
The final distribution is not exactly Nern-
stian because there are differences in tem-
perature, too, but the basic idea is very
similar. Figure 6a illustrates possible pro-
files of the voltage and concentration
through the membrane. No statement is
made about the nature of these profiles
except that they must be related to each
other in an exponential fashion. The
Nernst equation gives the relationships at
the boundaries of the membrane only. A
common way of plotting this relation is
shown in Figure 6b where the logarithm of
the concentration ratio is plotted against
the voltage difference. Solutes which obey
the Nernst relation will fall on a straight

resentation of Nernstian data; the logarithm of
the concentration ratio is plotted as a function of
the voltage difference across the membrane.

line with a slope of magnitude 2.3
RT/ZF. At room temperature, this factor
is about 59 mV per decade of concentra-
tion ratio (i.e., equal concentrations on
the two sides of the membrane are in
equilibrium with 0 mV, a 10-1 ratio of
concentrations is in equilibrium with 59
mV, and a 100-1 ratio is in equilibrium
with 118 mV). At 39°C, the value of the
factor is 61 mV. The Nernst equation not
only gives the expected distribution when
there is no net movement of a passively
transported ion, but it also indicates, in a
qualitative fashion, the expected direction
of movement when the two potential terms
are not in balance. Thus, in Equation 14,
when the concentration ratio is numerically
higher than the exponential term, there
will be net movement of solute from com-
partment 1to compartment 2,

Net Transport from Combined Interfusion
Terms

The Nernst relation is the proper solu-
tion when there is no net transport and no
convective term. However, there are many
situations in which there is a steady net
transport of solute and the question of
whether or not there is any active trans-
port cannot be answered from application
of the Nernst equation. Investigation of
tonic movements in intestinal or renal ep-
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ithelium or across amphibian skin are ex-
amples of this more general situation.
Equation 15 indicates the terms of the full
transport equation which are present in
these cases.

dac ZF dE
15 J:—D( C )
) dx +RT dx -

C-Jv

The only difference between the present
case and that considered previously is that
there is a net flux in the present case.
However, this minor modification changes
a simple mathematical problem into a very
formidable one. In a simple solution, such
as a binary solution of univalent electro-
lytes, it is possible to solve the system com-
prising transport equations for each of the
solutes together with the basic laws of elec-
trostatics which define the electric poten-
tial in terms of the net charge density in
an element of volume. However, the solu-
tions that are generated, even in this sim-
plest case, are so complicated as to be vir-
tually useless to the experimentor. There
are two commonly used techniques for ob-
taining simplified relations. The most di-
rect is simply to assume that we know the
voltage profile as we pass through the
membrane and, having chosen a voltage
profile which renders integration easy, to
integrate the transport equations directly.
We shall discuss this approach below. A
second approach is to look at the ratio
of one-way movements whose difference
makes up the net flux. Suppose we have
the possibility of adding isotopic tracers of
the solute we wish to investigate, first to
one compartment only and then to the
other compartment only. We might an-
alyze the movement of sodium by adding
“INa to compartment 1 and 22Na to com-
partment 2. So long as we wash the mem-
brane with sufficient vigor that the concen-
tration of 2¢Na never gets high in com-
partment 2, we can use the rate at which
this isotope appears in compartment 2 as a
measure of the one way flux from com-
partment 1 to compartment 2 (J,5). We
can use the appearance of 2*Na in com-

partment 1 as a measure of the reverse flux
(J21)- Then, if the transport equation for
the tracer is the same as that for the
stable isotope and if the membrane makes
no distinction between the different iso-
topes, we can solve Equation 15 without
further assumptions. The result is given in
Equation 16 which states that the ratio of
one-way fluxes is proportional to the ratio
of concentrations from which the fluxes
are occurring weighted by an exponential
function of the transmembrane voltage
difference. This equation was derived by
Ussing and provided a major breakthrough
in the analysis of ionic transport in non-
equilibrium conditions. Equation 16 is
generally called the Ussing criterion. Ex-
amination of Equation 16 shows

J C ZF
12 1T ———(E,—E)
——=——¢ &RrT °

Jo G

that it reduces to the proper simpler rela-
tions. Thus, if there is no voltage differ-
ence, or if we are looking at an uncharged
molecule, the ratio of one-way fluxes is
just the ratio of concentrations from which
the fluxes are derived. If the two one-way
fluxes are equal, their ratio is one, and the
Ussing criterion reduces to the Nernst
equation. Of course, when the two one-way
fluxes are equal, there is no net flux and
the Nernst equation is the correct solution.
Figure 7a illustrates that, like the Nernst
equation, the Ussing criterion does mnot
have any specific requirements about pro-
files as we pass through the membrane, but
depends solely on the concentrations and
voltages at the boundaries. The normal
way of presenting such data is given in
Figure 7b in which the flux ratio is plotted
against the voltage-weighted concentra-
tion ratio. Passive movement produces a
straight line passing through the origin
with unity slope.

Although the Ussing criterion allows one
to determine whether an individual solute
fits the passive transport equation, it does
not allow predictions of the magnitude of
the passive flux. In order to obtain simple
solutions which possess this property, it is

16)
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FIG. 7. Solution of the passive transport equation
for flux ratios. a. Possible concentration (solid
line) and voltage (dashed line) profiles across the

necessary to assume either the concentra-
tion profile or the voltage profile through
the membrane. Both approximations have
been made at different times and the
choice of which to use depends on how
accurate is the resulting solution and on
how fruitful the solution is to the experi-
mentor. The assumption that seems best
for the treatment of thin membranes is the
assumption that the voltage falls in a
linear fashion from one side of the mem-
brane to the other. This is known as the
constant field assumption and was first ap-
plied to membrane ionic movement by
Goldman in 1943. The main reason for
using this assumption is that it simplifies
the problem of obtaining a solution to
Equation 15 which can give absolute values
for net fluxes. Strong justification for the
constant field assumption comes from a
consideration of the physical situation
around a membrane. The presence of a
voltage across a membrane means that
there is a slight excess of positive charges
on one side of the membrane balanced by
an equivalent number of negative charges
on the other side. The charges remain sep-
arated (else there would be no voltage)
and are held in place by the electrostatic
attraction of their counterions. In terms of
the thickness of a cell membrane, the dis-

_ ZF -
o C2
membrane. b. Representation of the Ussing equa-

tion; the flux ratio is plotted as a function of the
voltage-weighted concentration ratio.

tances tangential to the membrane surface
are so enormous that a membrane can be
considered as a charged parallel plate ca-
pacitor with no edge effects. The field
within such a parallel plate capacitor is
constant and the voltage does change in a
linear fashion from one plate to the other.
Using this assumption, then, Equation 15
can be solved to give the net flux in terms
of the concentrations and voltages on each
side of the membrane. Equation 17 gives
this solution which is often called the Gold-
man current equation. Although the

17)

ZF C, ZF
p Gy (E;—Ey) < 1— = CE(P‘“_EI})
T C; .
ZF
1 _exrrt &

solution looks more formidable than previ-
ous solutions, it really contains the same
terms. The flux is the product of the elec-
tric mobility times the voltage differences
times a Nernstian term. When the Nernst
condition is satisfied, and there is no net
transport, the factor
C, %(E:—El)

] ——e
G
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Potential

X=0 ~ x=1 distance Ex —E4

a

FIG. 8. Solution of the passive transport equation
with the constant field assumption. a. Concentra-
tion (solid line) and voltage (dashed line) profiles
across the membrane. b. Representation of constant

is zero. When transport is present, this fac-
tor assumes the sign of the net transport.
The current equation can be used to de-
rive the steady voltage that would be ex-
pected to develop across a membrane when
several ions can cross it. If a2 membrane is
investigated under steady-state open-circuit
conditions, where there is no net current,
the total charges transferred by the net
transport of cations must be just equal to
the total charges transferred by the net
transport of anions. If the ions move inde-
pendently and passively and if there is no
convective flow, the flux of each should
obey the current equation. Thus, we have
a set of relations of the form of Equation
17, one for each ion present, each with its
own flux and each with its own pair of con-
centrations. The relations are not complete-
ly independent though, for the sum of the
cationic fluxes must be equal to the sum of
the anionic fluxes and the transmembrane
voltage is common to all of these relations.
These fluxes can be added up and the
voltage factored out to give an expression
of the stable voltage as a function of the
concentrations of all of the permeable ions
present and the membrane permeability
to each of them. When all of the ions
present are univalent, the result is fairly
simple and is given in Equation 18, which

o

field data; the logarithm of the concentration
ratio is plotted as a function of the voltage differ-
ence across the membrane.

is

23RT
18) E,—E, ————

( zpcat C1 + 2"I)axl A2 )
EPcat C2 + EPnn Al

usually termed the Goldman voltage equa-
tion. Here, the voltage is expressed as the
logarithm of a fraction which includes a
summation of all of the cationic concentra-
tions on side one, each times its own per-
meability factor plus all of the anionic
concentrations on side two, each times its
permeability factor divided by the summa-
tion of the concentrations on the opposite
side, each weighted by its permeability fac-
tor. Equation 18 is a generalization of the
logarithmic form of the Nernst equation
for, if there is only one permeant ion, it
goes to the Nernst equation for that ion.
Figure 8a shows the voltage and concen-
tration profile through the membrane un-
der the constant field assumption. The volt-
age drops in a linear fashion, as is re-
quired by the initial assumption. The con-
centration changes in an approximately
exponential fashion through the mem-
brane. The normal manner of plotting
such data is given in Figure 8b and is
identical to the plot of the Nernst equa-
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TRANSPORT EQUATIONS 343

tion (Fig. 6b). When concentrations are
such that one ion dominates the trans-
membrane movement, the results approx-
imate those of the Nernst relation (indi-
cated in Fig. 8b by the dashed line). As
the transfer of charges by other ions be-
comes important, the results fall off the
Nernst relation. The point at which the
results deviate from the Nernst relation
and the sharpness of the curvature give
information about the relative permeabili-
ties of the ions present. Equation 18 can be
simplified under certain conditions to ren-
der it even more useful. The terms in the
fraction are related to net transport of
each ol the ions present. Any ion that
is in clectrochemical equilibrium and for
which there is no net transport does not
contribute to the voltage. If, for example,
Na, K, and Cl are distributed across a
membrane and Cl is in electrochemical
equilibrium, the numerical value of the
voltage from Equation 18 is the same
whether or not the Cl terms are included
in the [raction. In many animal systems,
these three ions are the dominant per-
mcant ions present and Cl is so close to
equilibrium that its net flux is quite low.
Comparison of the transmembrane voltage
to the concentrations of the two cations
can give a ratio of permeabilities of the
two cations directly.

Table 1 summarizes the results that have
been presented here. It repeats the solu-
tions given in the text and gives the condi-
tions which must be filled for each solu-
tion if it is to be the expected result. In
addition to the experimental conditions
listed in the table, all of the solutions are
valid only if the system is in a steady-state,
if transport is one-dimensional, and if each
solute moves independently of all others.

1 have presented some of the more com-
monly used solutions to the passive trans-
port equation. These are by no means the
only ones, and there are many cases where
more complicated solutions are required.
In situations of molecular sieving, where
voltage gradients are not important, solu-
tion of the equation using gradients of
concentration and convective terms would

be appropriate. This is an approximation
of the case for transcapillary exchange. In
plant roots, concentration gradients, volt-
age gradients, and convective terms are all
important and an even more complicated
solution is required. Sometimes it is pos-
sible to design an experiment which elimi-
nates some of the driving forces and allows
one of the simpler solutions of the trans-
port equation to be used as the criterion;
sometimes, only the more complicated
relations can be used.

The basic statement that can result from
an experiment comparing the appropriate
solution of the passive transport equation
to the measured fluxes and driving forces is
that the system either is or is not de-
scribed by that relation. When the experi-
mental results do fit, we feel satished and
believe that we understand the basis for
the transmembrane movement. When the
experimental results do not match our pre-
dictions, the conclusion is that passive in-
dependent transport does not completely
describe the system and that an additional
term is needed. Rather than Equation 6,
the membrane under investigation would
require a relation of the form of Equation
19. The term J,4,. might be a conse-
quence of in-file behavior in aqueous
channels through the

dC ZF dE
+o—c—)
dx RT dx

C- JV 4 Jother

membrane, or it might be the consequence
of carrier-mediated energy-independent
transport, or it might be the consequence
ol a solute pump. Usually, different kinds
of cxperiments are required to define the
detailed mechanisms of jonic movement.
The approach presented here, though, can
define the magnitude of the additional
term and serve as a starting point for fur-
ther experiments.

19 =

APPENDIX
SOLUTIONS OF THE TRANSPORT EQUATION

The purpose of this section is twofold.
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344 Aranx KocH

First, therc should be a more satislying
way of obtaining the solutions given above
than the authoritarian statement, “The
solution is . . .”. Secondly, it is hoped that
illustration of the manner in which the
solutions are obtained will enable the
reader to derive different solutions which
he may need for some particular experi-
mental situation. The solution for pure
convection will not be given inasmuch as
the terms remaining from the complete
transport equation are free of derivatives
and consitute the solution in themselves.

Pure Diffusion

The equation to be solved is given as
Equation 20 with the associated
20) J D ac
N dx
conditions that C = G, atx = 0and C =
C, at x = L. E is constant so that dE/dx is
everywhere zero and J is constant through-
out the membrane. Both sides of the equa-
tion can be integrated directly between the
limits of x = 0 and x = [ and we get the
solution given in the text.
! ldC
J‘de: —D ) —dx=]l
. dx
o 0
= —D (C,—C))
21)

J= 11)- (C,—Cs) = P (C,—Cy)

Pure Electric Mobility

The equation to be solved is given in

Equation 22; the associated

ZF _ dE
22) J=—D—C—

RT dx
conditions are that E = E; at x = 0 and E
= E, at x = l. Here, the concentration is
constant so that dC/dx is everywhere zero
and J is constant throughout the mem-
brane. Again, both sides can be integrated
directly and the solution given in the text
is obtained.

Nernst Relation

The equation to be solved is just the
interfusion portion of the transport equa-
tion and is given in Equation 23 with the
values of concentration and voltage defined
at the boundaries. Actually, there are two
different solutions.

ZF _ dE
23) O:D(dc C )

dx RT dx

One of them is the condition of zero dif-
fusion coefficient. Although this may seem
trivial, it does point out that for complete-
ly impermeable membranes, any set of
conditions is possible. So long as the volt-
age can be expressed as a function of
distance only, Equation 23 is a first order
linear differential equation in concentra-
tion. If the description of voltage in dis-
tance is more complicated than first de-
gree, the equation does not have constant
coefficients, but it is still linear. The func-
tion exp [(ZF/RT) E{x}] is an integrating
factor and leads directly to the Nernst
equation.

Zew ; dc ZF _ dE
( ~C ):o

eRT
dx RT dx
24) -
S (E,—F))
C, cR1 —C, =0,
ZF
C, _ C—]E(ES—E,)
Ce

Note that it is necessary to define the inte-
grating factor only at the boundaries,
where the voltages are defined, and that
nothing need be known about what hap-
pens to the voltage within the membrane.

Ussing Criterion

The equation to be solved is the non-
homogeneous version of Equation 23. Volt-
ages and concentrations are defined at the
boundaries and J is constant throughout
the membrane. We can divide by —D to
put the equation in standard form (Equa-
tion 25) and then apply the same inte-
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grating [actor that was
dC 1F dE

25) L e T
dx RT dx D

used previously. The result shown in
Equation 26 after integration constitutes a

ZF
C, eRT

26) - JJ‘ _E()

—_— —-E(x
— J12 Ja1 f ) dx
D ),

—=(E,—E)
1 —C,

solution in the mathematical sense, but it
is not useful. The integral of the voltage
across the membrane cannot be evaluated
without knowledge of the functional form
of the voltage. However, we can evaluate
the expected flux ratio and, in order to
presage that step, the net flux has been
expressed as the difference between two
one-way fluxes. We could arrange condi-
tions so that there could only be one one-
way flux by setting one of the concentra-
tions equal to zero. Thus if C, were set to
zero, Jo; would also be zero. Conversely, if
C, were zero, J;» would also be zero. The
ratio of these two specialized solutions
gives rise to the Ussing criterion.

}ozr
2 E(x
C = Jiz feRT o dx
D

0

27)

l
ZE g ZF px )
G, cRT eRT
-ZF
° — (E,—
Jl.. — C] eR )
Jf.’l C2

Goldman Constant Field Lquations

This is another way of solving Equation
25 and one which allows direct prediction
of the net flux. As discussed above, the

integral

1 ZF
— E(x)

eRT dx
0
cannot be evaluated without knowledge of
the form of E (x). The constant field as-
sumption forces E (x) into the form:

28) E(x) = E;4+(Eo—E,) -

where [ is the thickness of the membrane.

The derivative term is then (E, - E,)/l =
A E/I, the voltage difference divided by
the thickness. This term can be inserted
directly into Equation 25 and the inte-
gration carried out in a straightforward
manner.

dcC ZF AE J
29) + C=—=
dx RT 1 D

ZF ! 7ZF AE

“JRT | “Eue
=l (eRT )
D ZF aE
30)
D ZF ZE ok
—_‘—u:<c,_cnem )
ZIRT
J=
ZF
~— AT
1—eRT
1F Co —(EEy)
P—;-(El—L)Cl( i )
RT 1

1_eRT o BB

The derivation of the voltage equation
comes from the statement that, in the
steady state and in a situation of zero cur-
rent, the sum of the cationic fluxes must
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equal the sum of the anionic fluxes. This
summation is only simple if all of the ions
present (or which cross to any significant
degree) are ol the same valence. The der-
ivation given below is for univalent ions.

3]) 2 qutlon = z‘ Jnnion

ZF 2ok
_Pcﬂt—‘—Mz(cl_czeRT >
St RT -
H Zr AE

1—eRT

32) ZF

7F ——AE
—P,,— AE (Al—f\2 eRT )

2 RT
ZF

]— eRT

AE

In this case, Z can take values only of + 1,
so we can eliminate Z and adjust the signs
accordingly.

3

F — AE
U CET o
T

2— -

AR
]_eRT

38)
¥ ———AE
P,m—ﬂAE(Al—AQe RT >

2 RT
o

l—e RT

AE

After multiplying the numerator and
denominator of cach term in the right

hand summation by the factor

i

-1 AE
eRT

this equality looks like:

F
F _ AR
D — 8 RT
Peat CI_CZ eRT — =
-~ F
— AE
1—eRT
84)
F
5 o —RTE
p:ln f\l cRT _f\:_' - o
F
—AE
]—eRT

The Iast factor in each term is common
and can be factored out. If we then collect
the terms which contain the exponential
in voltage on one side and those that lack
it on the other side, we get:

F
—AE
35) eR1 (Epcat.cﬁl—l_gpm\'A]) -
2 Pcut' Cl + E Pau A‘.’
Expressing Equation 35 in terms of the
voltage as a function of the concentrations,

and taking logarithms, we obtain the final
result:

i- AE EPcut'cl‘*’EPun'A2

eRT
E ])('ut' C2 + 2 P"" .A1
36)
EQ—E]:
2.3RT ] < TPt Ci 2P A >
(8]
F o\ S P Cot B P A
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