
IEEE TRANSACTIONS O N ROROTLCS AND AUTOMATION, VOL. 12, NO. 5 , OCTOBER 1996 65 I

A Tutorial on Visual Servo Control
Seth Hutchinson, Member, IEEE, Gregory D. Hager, Member, IEEE, and Peter I. Corke, Member, IEEE

Abstract-This article provides a tutorial introduction to visual
servo control of robotic manipulators. Since the topic spans many
disciplines our goal is limited to providing a basic conceptual
framework. We begin by reviewing the prerequisite topics from
robotics and computer vision, including a brief review of coordi-
nate transformations, velocity representation, and a description
of the geometric aspects of the image formation process. We then
present a taxonomy of visual servo control systems. The two
major classes of systems, position-based and image-based systems,
are then discussed in detail. Since any visual servo system must
be capable of tracking image features in a sequence of images, we
also include an overview of feature-based and correlation-based
methods for tracking. We conclude the tutorial with a number
of observations on the current directions of the research field of
visual servo control.

I. INTRODUCTION
HE VAST majority of today’s growing robot population T operate in factories where the environment can be con-

trived to suit the robot. Robots have had far less impact in
applications where the work environment and object placement
cannot be accurately controlled. This limitation is largely due
to the inherent lack of sensory capability in contemporary
commercial robot systems. It has long been recognized that
sensor integration is fundamental to increasing the versatility
and application domain of robots, but to date this has not
proven cost effective for the bulk of robotic applications,
which are in manufacturing. The “frontier” of robotics, which
is operation in the everyday world, provides new impetus for
this research. Unlike the manufacturing application, it will not
be cost effective to re-engineer “our world” to suit the robot.

Vision is a useful robotic sensor since it mimics the human
sense of vision and allows for noncontact measurement of
the environment. Since the early work of Shirai and Inoue
[I] (who describe how a visual feedback loop can be used
to correct the position of a robot to increase task accuracy),
considerable effort has been devoted to the visual control of
robot manipulators. Robot controllers with fully integrated
vision systems are now available from a number of vendors.
Typically visual sensing and manipulation are combined in an
open-loop fashion, ‘‘looking’’ then “moving”. The accuracy of

Manuscript reccived March 24, 1995; revised January 19, 1996. G. D.
Hager was supported by ARPA grant N00014-93-1-1235, Army DURIP grant
DAAH04-95-1-0058, National Science Foundation grant IRI-9420982, and
by funds provided by Yale University. This paper was recommended for
publication by Associate Editor J. Funda and Editor S. E. Salcudean upon
evaluation of reviewers’ comments.

S. Hutchinson is with the Department of Electrical and Computer Engineer-
ing, The Beckman Institute for Advanced Science and Technology, University
of- Illinois at Urbana-Champaign, Urbana, IL 61801 USA.

G. D. Hager is with the Department of Computer Science, Yale University,
New Haven, CT 06520-8285 USA.

P. I. Corke is with the CSIRO Division of’ Manufacturing Technology,
Kenmore, Australia, 4069.

Publisher Item Identifier S 1042-296)3(96)07366-1.

the resulting operation depends directly on the accuracy of the
visual sensor and the robot end-effector.

An alternative to increasing the accuracy of these subsys-
tems is to use a visual-feedback control loop that will increase
the overall accuracy of the system-a principal concern in
most applications. Taken to the extreme, machine vision
can provide closed-loop position control for a robot end-
effector-this is referred to as visual servoing. This term
appears to have been first introduced by Hill and Park [2]
in 1979 to distinguish their approach from earlier “blocks
world” experiments where the system alternated between
picture taking and moving. Prior to the introduction of this
term, the less specific term visual feedback was generally used.
For the purposes of this article, the task in visual servoing is to
use visual information to control the pose of the robot’s end-
effector relative to a target object or a set of target features.
The task can also be defined for mobile robots, where it
becomes the control of the vehicle’s pose with respect to some
landmarks.

Since the first visual servoing systems were reported in the
early 1980s, progress in visual control of robots has been fairly
slow, but the last few years have seen a marked increase
in published research. This has been fueled by personal
computing power crossing the threshold that allows analysis
of scenes at a sufficient rate to “servo” a robot manipulator.
Prior to this, researchers required specialized and expensive
pipelined pixel processing hardware. Applications that have
been proposed or prototyped span manufacturing (grasping
objects on conveyor belts and part mating), teleoperation,
missile tracking cameras, and fruit picking, as well as robotic
ping-pong, juggling, balancing, car steering, and even aircraft
landing. A comprehensive review of the literature in this field,
as well the history and applications reported to date, is given
by Corke 131 and includes a large bibliography.

Visual servoing is the fusion of results from many elemental
areas including high-speed image processing, kinematics, dy-
namics, control theory, and real-time computing. It has much
in common with research into active vision and structure
from motion, but is quite different from the often described
use of vision in hierarchical task-level robot control systems.
Many of the control and vision problems are similar to those
encountered by active vision researchers who are building
“robotic heads”. However the task in visual servoing is to
control a robot to manipulate its environment using vision as
opposed to just observing the environment.

Given the current interest in visual servoing it seems both
appropriate and timely to provide a tutorial introduction to
this topic. Our aim is to assist others in creating visually
servoed systems by providing a consistent terminology and
nomenclature, and an appreciation of possible applications.

1042-296>(/96$05.00 0 1996 IEEE

652 IEEE TRANSACTIONS ON ROBOTICS AND AIJTOMATION, VOL 12, NO 5 , OCTOBER 1996

To assist newcomers to the field we will describe techniques
which require only simple vision hardware (just a digitizer),
freely available vision software [4], and which make few
assumptions about the robot and its control system. This is
sufficient to commence investigation of many applications
where high control andor vision performance are not required.

One of the difficulties in writing such an article is that
the topic spans many disciplines that cannot be adequately
addressed in a single article. For example, the underlying
control problem is fundamentally nonlinear, and visual recog-
nition, tracking, and reconstruction are fields unto themselves.
Therefore we have concentrated on certain basic aspects of
each discipline, and have provided an extensive bibliography
to assist the reader who seeks greater detail than can be
provided here. Our preference is always to present those
ideas and techniques that we have found to function well
in practice and that have some generic applicability. Another
difficulty is the current rapid growth in the vision-based motion
control literature, which contains solutions and promising
approaches to many of the theoretical and technical problems
involved. Again we have presented what we consider to be
the most fundamental concepts, and again refer the reader to
the bibliography.

The remainder of this article is structured as follows.
Section I1 reviews the relevant fundamentals of coordinate
transformations, pose representation, and image formation. In
Section 111, we present a taxonomy of visual servo control
systems (adapted from [5]). The two major classes of systems,
position-based visual servo systems and image-based visual
servo systems, are then discussed in Sections IV and V
respectively. Since any visual servo system must be capable
of tracking image features in a sequence of images, Section VI
describes some approaches to visual tracking that have found
wide applicability and can be implemented using a minimum
of special-purpose hardware. Finally, Section VI1 presents a
number of observations regarding the current directions of the
research field of visual servo control.

11. BACKGROUND AND DEFINITIONS
In this section we provide a very brief overview of some

topics from robotics and computer vision that are relevant to
visual servo control. We begin by defining the terminology and
notation required to represent coordinate transformations and
the velocity of a rigid object moving through the workspace
(Sections 11-A and 11-B). Following this, we briefly discuss
several issues related to image formation (Sections 11-C and
11-D), and possible camerdrobot configurations (Section II-
E). The reader who is familiar with these topics may wish to
proceed directly to Section 111.

A. Coordinate Transformations

In this paper, the task space of the robot, represented by I;
is the set of positions and orientations that the robot tool can
attain. Since the task space is merely the configuration space of
the robot tool, the task space is a smooth m-manifold (see, e.g.,
[6]). If the tool is a single rigid body moving arbitrarily in a
three-dimensional workspace, then 1 = SE3 = $?3 x SO3, and

m = 6. In some applications, the task space may be restricted
to a subspace of SE3. For example, for pick and place, we
may consider pure translations (7 = iK3; for which m = 3) :
while for tracking an object and keeping it in view we might
consider only rotations (7 = SO3, for which m = 3) .

Typically, robotic tasks are specified with respect to one or
more coordinate frames. For example, a camera may supply
information about the location of an object with respect to
a camera frame, while the configuration used to grasp the
object may be specified with respect to a coordinate frame
attached to the object. We represent the coordinates of point
P with respect to coordinate frame .?: by the notation " P .
Given two frames, z and y 7 the rotation, matrix that represents
the orientation of frame y with respect to frame x is denoted
by 3"?,. The location of the origin of frame y with respect to
frame IC is denoted by the vector V,. Together, the position
and orientation of a frame specify a pose, which we denote by
"zy. If the leading superscript, 2 , is not specified, the world
coordinate frame is assumed.

We may also use a pose to specify a coordinate transforma-
tion. We use function application to denote applying a change
of coordinates to a point. In particular, if we are given YP (the
coordinates of point P relative to frame y), and we obtain
the coordinates of P with respect to frame R' by applying the
coordinate transformation rule

In the sequel, we will use the notation 2xy to refer either
to a coordinate transformation, or to a pose that is specified
by a rotation matrix and translation, and Tt,. respec-
tively. Likewise, we will use the terms pose and coordinate
transformation interchangeably. In general, there should be no
ambiguity between the two interpretations of z:zy '.

Often, we must compose multiple coordinate transforma-
tions to obtain a desired change of coordinates. For example,
suppose that we are given poses sxv and Yx,. If we are given
"E' and wish to compute "'17, we may use the composition of
coordinate transformations

As seen here, we represent the composition of coordinate
transformations by 'x, = "x, o Yx,, and the corresponding
coordinate transformation of the point "P by (rxy ovxz) ("P) .
The corresponding rotation matrix and translation are given by

'We have not used more common notations based on homogeneous
transforms because over parametcrizing points makes it difficult to develop
somc of the machinery nccded for control.

HUTCHINSON et al.: TUTORIAL ON VISUAL SERVO CONTROL

e

t

Some coordinate frames that will be needed frequently are
referred to by the following superscripts/subscripts:

The coordinate frame attached to the robot
end effector

The coordinate frame attached to the target

0

c,

Thc base frame for thc robot

The coordinste frame of the i th camcra

When 7 = SE3! we will use the notation xp E I to
represent the pose of the end-effector coordinate frame relative
to the world frame. In this case, we often prefer to parameterize
a pose using a translation vector and three angles, (e.g.,
roll, pitch and yaw [7]). Although such parameterizations are
inherently local, it is often convenient to represent a pose by a
vector T E g6, rather than by 2, E 7. This notation can easily
be adapted to the case where I C SE3. For example, when
'T = !R3 I we will parameterize the task space by T = [x, TJ. z]'.
In the sequel, to maintain generality we will assume that
T E Rm, unless we are considering a specific task.

B. The Velocity of a Rigid Object

In visual servo applications, we are often interested in
the relationship between the velocity of some object in the
workspace (e.g., the manipulator end-effector) and the cor-
responding changes that occur in the observed image of the
workspace. In this section, we briefly introduce notation to
represent velocities of objects in the workspace.

Consider the robot end-effector moving in a workspace
with 7 C SE3. In base coordinates, the motion is described
by an angular velocity 62(t) = [~ ~ (t) , ~ ~ (t) , w ~ (t)] ~ and
a translational velocity T(t) = [T,(t), T,(t), TZ(t)I7'. The
rotation acts about a point which, unless otherwise indicated,
we take to be the origin of the base coordinate system. Let
P be a point that is rigidly attached to the end-effector, with
base frame coordinates [:I;., y, 21'. The time derivatives of the
coordinates of P , expressed in base coordinates, are given by

(9)
(10)
(11)

.i: = ZWY - yw,: + TT
= Z W , - ZW, + Tu

2 =YW, - zwl, + T,

which can be written in vector notation as

This can be written concisely in matrix form by noting that
the cross product can be represented in terms of the skew-
symmetric matrix

allowing us to write

653

Together, T and R define what is known in the robotics
literature as a velocity screw

r =

Note that i also represents the derivative of T when the rotation
matrix, R, is parameterized by the set of rotations about the
coordinate axes.

Define the 3 x ci matrix A (P) = [I31 - s k (P)] where 13
represents the 3 x 3 identity matrix. Then (13) can be rewritten
in matrix form as

P = A (P) f . (14)

Suppose now that we are given a point expressed in end-
effector coordinates, ' P . and we wish to determine the motion
of this point in base coordinates as the robot is in motion.
Combining (1) and (14), we have

P = A (2 R (C P) i . (15)

Occasionally, it is useful to transform velocity screws
among coordinate frames. For example, suppose that ' i =
['T; 'Cl]' is the velocity of the end-effector in end-effector
coordinates, Then the equivalent screw in base coordinates is

I r = [;I = [ReeR
R,"T - R,'R x t ,

C. Camera Projection Models
To control the robot using information provided by a com-

puter vision system, it is necessary to understand the geometric
aspects of the imaging process. Each camera contains a lens
that forms a 2D projection of the scene on the image plane
where the sensor is located. This projection causes direct depth
information to be lost so that each point on the image plane
corresponds to a ray in 3D space. Therefore, some additional
information is needed to determine the 3D coordinates cor-
responding to an image plane point. This information may
come from multiple cameras, multiple views with a single
camera, or knowledge of the geometric relationship between
several feature points on the target. In this section, we describe
three projection models that have been widely used to model
the image formation process: perspective projection, scaled
orthographic projection, and affine projection. Although we
briefly describe each of these projection models, throughout
the remainder of the tutorial we will assume the use of
perspective projection.

For each of the three projection models, we assign the
camera coordinate system with the T C - and y-axes forming
a basis for the image plane, the z-axis perpendicular to the
image plane (along the optical axis), and with origin located
at distance X behind the image plane, where X is the focal
length of the camera lens. This is illustrated in Fig. 1.

654 IEEE TRANSACTIONS O N ROBOTICS AND AUTOMATION, VOL 12, NO 5 , OCTOBER 1996

i

Fig. 1. The coordinate frame for the carnerdlens \ystein.

I) Perspective Projection: Assuming that the projective ge-
ometry of the camera is modeled by perspective projection
(see, e.g., [8]), a point, “ P = [x , y j z]”: whose coordinates are
expressed with respect to the camera coordinate frame, c, will
project onto the image plane with coordinates p = [I L , ~] ~ ,

given by

If the coordinates of I’ are expressed relative to coordinate
frame x; we must first perform the coordinate transformation

2) Scaled Orthographic Projection: Perspective projection
is a nonlinear mapping from Cartesian to image Coordinates.
In many cases, it is possible to approximate this mapping by
the linear scaled orthographic projection. Under this model,
image coordinates for point ‘I‘ are given by

c p = (-x , r (JP) .

D. Image Features and the Image Feature Parameter Space

In the computer vision literature, an image feature is any
structural feature than can be extracted from an image (e.g., an
edge or a corner). Typically, an image feature will correspond
to the projection of a physical feature of some object (e.g., the
robot tool) onto the camera image plane. A good feature point
is one that can be located unambiguously in different views
of the scene, such as a hole in a gasket [lo] or a contrived
pattern [l l] , [12]. We define an image feature parameter to
be any real-valued quantity that can be calculated from one
or more image features.2 Some of the feature parameters that
have been used for visual servo control include the image plane
coordinates of points in the image [l I], [14]-[19], the distance
between two points in the image plane and the orientation of
the line connecting those two points [lo], [20], perceived edge
length [21], the area of a projected surface and the relative
areas of two projected surfaces [21], the centroid and higher
order moments of a projected surface [2 11-[24], the parameters
of lines in the image plane [I l l , and the parameters of an
ellipse in the image plane 1111. In this tutorial we will restrict
our attention to point features whose parameters are their
image plane coordinates.

Given a set of k image feature parameters, we can define an
image feature parameter vector f = [f l . . . f k I T . Since each
,f, is a (possibly bounded) real valued parameter, we have
f = [f l . . . f k , l T E 3 C Rk, where 3 represents the image
feature parameter space.

The mapping from the position and orientation of the end-
effector to the corresponding image feature parameters can be
computed using the projective geometry of the camera. We
will denote this mapping by F , where

F : I ---i 3. (19)
where s is a fixed scale factor.

Orthographic projection models are valid for scenes where
the relative depth of the points in the scene is small compared
to the distance from the camera to the scene, for example, an
airplane flying over the earth, or a camera with a long focal
length lens placed several meters from the workspace.

3) Af$ne projection: Another linear approximation to per-

For example, if F C g2 is the space of ? L , U image plane
coordinates for the projection of some point P onto the image
plane, then, assuming perspective projection, f = [U, uIT:
where 71 and ?I are given by (16). The exact form of (19)
will depend in part on the relative configuration of the camera
and end-effector as discussed in the next section.

spective projection is known as affine projection. In this case,
the image coordinates for the projection of a point ‘ P are
given by

[:] = A ‘ P + c (1 8)

where A is an arbitrary 2 x 3 matrix and c is an arbitrary
2-vector.

Note that scaled orthographic projection is a special case
of affine projection. Affine projection does not correspond to
any specific imaging situation. Its primary advantage is that
it is a good local approximation to perspective projection that
accounts for both the external geometry of the camera (i.e.,
its position in space), and the intemal geometry of the lens
and CCD (i.e., the focal length, and scaling and offset to pixel
coordinates). Since the model is purely linear, A and c are
easily computed using linear regression techniques [9], and

E. Camera Configuration

Visual servo systems typically use one of two camera con-
figurations: end-effector mounted, or fixed in the workspace.

The first, often called an eye-in-hand configuration, has the
camera mounted on the robot’s end-effector. Here, there exists
a known, often constant, relationship between the pose of the
camera(s) and the pose of the end-effector. We represent this
relationship by the pose ‘x,. The pose of the target3 relative
to the camera frame is represented by ‘zt . The relationship
between these poses is shown in Fig. 2.

The second configuration has the camera(s) fixed in the
workspace. In this case, the camera(s) are related to the base
coordinate system of the robot by ‘2, and to the object by

Jang [131 provides a formal definition of what we term feature parameters

3The word fcirwr will be used to refer to the obiect of interest. that is. the
as image functionals.

the camera calibration problem is greatly simplified. object that wi l l he tracked

HUTCHINSON et a/ : TUTORIAL ON VISUAL SERVO CONTROL 655

Fig. 2. Relevant coordinate frames (world, end-effector, camera and target) for end-effector mounted, and fixed, camera configurations

Fig. 3. Dynamic position-based look-and-move structure

(‘xt. In this case, the camera image of the target is, of course,
independent of the robot motion (unless the target is the end-
effector itself). A variant of this is for the camera to be
agile, mounted on another robot or padtilt head in order to
observe the visually controlled robot from the best vantage

For either choice of camera configuration, prior to the
execution of visual servo tasks, camera calibration must be
performed in order to determine the intrinsic camera pa-
rameters such as focal length, pixel pitch and the principal
point. A fixed camera’s pose, Oxc,. with respect to the world
coordinate system must be established, and is encapsulated
in the extrinsic parameters determined by a camera calibra-
tion procedure. For the eye-in-hand case the relative pose,
‘xC. must be determined and this is known as the handleye
calibration problem. Calibration is a long standing research
issue in the computer vision community (good solutions to the
calibration problem can be found in a number of references,
e.g., [26]-[28]).

~ 5 1 .

111. SERVOING ARCHITECTURES

In 1980, Sanderson and Weiss [5] introduced a taxonomy of
visual servo systems, into which all subsequent visual servo
systems can be categorized. Their scheme essentially poses
two questions:

1) Is the control structure hierarchical, with the vision
system providing set-points as input to the robot’s joint-
level controller, or does the visual controller directly
compute the joint-level inputs?

2) 1s the error signal defined in 3D (task space) coordinates,

The resulting taxonomy, thus, has four major categories, which
we now describe. These fundamental structures are shown
schematically in Figs. 3-6.

If the control architecture is hierarchical and uses the vision
system to provide set-point inputs to the joint-level controller,
thus making use of joint feedback to internally stabilize the
robot, it is referred to as a dynamic look-and-move system.
In contrast, direct visual servo4 eliminates the robot controller
entirely replacing it with a visual servo controller that directly
computes joint inputs, thus using vision alone to stabilize the
mechanism.

For several reasons, nearly all implemented systems adopt
the dynamic look-and-move approach. Firstly, the relatively
low sampling rates available from vision make direct control
of a robot end-effector with complex, nonlinear dynamics
an extremely challenging control problem. Using internal
feedback with a high sampling rate generally presents the
visual controller with idealized axis dynamics [29]. Sec-
ondly, many robots already have an interface for accepting
Cartesian velocity or incremental position commands. This
simplifies the construction of the visual servo system, and also
makes the methods more portable. Thirdly, look-and-move
separates the kinematic singularities of the mechanism from
the visual controller, allowing the robot to be considered as

or directly in terms of image features?

4Sanderson and Weiss used the term “visual servo” for this type of system,
but since then this term has come to be accepted as a generic description for
any type o f visual control of a robotic system. Here we use the term “direct
visual servo’’ to avoid confusion.

656 IFFE TRANSACTlONS O N ROBOTICS AND AUTOMArION, VOL 12. N O 5 , OCTOBER 1996

fd

Fig 4 Dynamic image-based look-and movc stiuLture

lrflagc
feature

Fig. 5. Position-based visual servo (PBVS) structure as per Weiss

Camera

Fig. 6. Image-based visual servo (IBVS) structure as per Weiss.

an ideal Cartesian motion device. Since many resolved rate
[30] controllers have specialized mechanisms for dealing with
kinematic singularities [3 11, the system design is again greatly
simplified. In this article, we will utilize the look-and-move
model exclusively.

The second major classification of systems distinguishes
position-based control from image-based control. In position-
bused control, features are extracted from the image and used
in conjunction with a geometric model of the target and the
known camera model to estimate the pose of the target with
respect to the camera. Feedback is computed by reducing er-
rors in estimated pose space. In image-based servoing, control
values are computed on the basis of image features directly.
The image-based approach may reduce computational delay,
eliminate the necessity for image interpretation and eliminate
errors due to sensor modeling and camera calibration. However

it does present a significant challenge to controller design since
the plant is nonlinear and highly coupled.

One of the typical applications of visual servoing is to
position an end-effector relative to a target. For example,
many authors use an end-effector mounted camera to position
a robot arm for grasping. In most cases, the control algorithm
is expressed in terms of moving the camera to a pose defined
in terms of the image of the object to be grasped. The position
of the end-effector relative to the object is determined only
indirectly by its known kinematic relationship with the camera.
Errors in this kinematic relationship lead to positioning errors
which cannot be observed by the system. Observing the
end-effector directly makes it possible to sense and correct
for such errors. In general, there is no guarantee on the
positioning accuracy of the system unless control points on
both the end-effector and target can be observed [9], [32],

HUTCHINSON et a/: 'rUTORIA1L ON VISUAI. SERVO CONTROL 651

[33]. To emphasize this distinction, we refer to systems that
only observe the target object as endpoint open-loop (EOL)
systems, and systems that observe both the target object and
the robot end-effector as endpoint closed-loop (ECL) systems.
The differences between EOL and ECL systems will be made
more precise in subsequent discussions.

It is usually possible to transform an EOL system to an
ECL system simply by including direct observation of the
end-effector or other task-related control points. Thus, from
a theoretical perspective, it would appear that ECL systems
would always be preferable to EOL systems. However, since
ECL systems must track the end-effector as well as the target
object, the implementation of an ECL controller often requires
solution of a more demanding vision problem and places
field-of-view constraints on the system that cannot always be
satisfied.

IV. POSITION-BASED VISUAL SERVO CONTROL

We begin our discussion of visual servoing methods with
position-based visual servoing. As described in the previous
section, in position-based visual servoing, features are ex-
tracted from the image and used to estimate the pose of the
target with respect to the camera. Using these values, an error
between the current and the desired pose of the robot is defined
in the task space. In this way, position-based control neatly
separates the control issues, namely the the computation of
the feedback signal, from the estimation problems involved in
computing position or pose from visual data.

We now formalize the notion of a positioning task as
follows:

Definition 4.1: A positioning task is represented by a func-
tion E : I + R"'. This function is referred to as the kinematic
error ,function. A positioning task is fulfilled with the end-
effector in pose 2, if E (2 ,) = 0.

If we consider a general pose x, for which the task is
fulfilled, the error function will constrain some number, d 5
711; degrees of freedom of the manipulator. The value d will be
referred to as the degree of the constraint. As noted by Espiau
et ul. [I l l , [34], the kinematic error function can be thought
of as representing a virtual kinematic constraint between the
end-effector and the target.

Once a suitable kinematic error function has been defined
and the parameters of the functions are instantiated from visual
data, a regulator is defined that reduces the estimated value of
the kinematic error function to zero. This regulator produces
at every time instant a desired end-effector velocity screw
U E $2' that is sent to the robot control subsystem. For the
purposes of this article, we use simple proportional control
methods for linear and linearized systems to compute U [35].
Although there are formalized methods for developing such
control laws, since the kinematic error functions are defined
in Cartesian space, for most problems it i s possible to develop
a regulator through geometric insight. The process is to first
determine the relative motion that would fulfill the task, and
then to write a control law that would produce that motion.

The remainder of the section presents various example
problems that we have chosen to provide some insight into

ways of thinking about position-based control, and that will
also provide useful comparisons when we consider image-
based control in the next section. Section IV-A introduces
several simple positioning primitives, based on directly ob-
servable feature points, which can be compounded to achieve
more complex positioning tasks. Next, Section IV-B describes
positioning tasks based on the explicit estimation of the target
object's pose. Finally, in Section IV-C, we briefly describe
how point position and object pose can be computed using
visual information from one or more cameras-the visual
reconstruction problem.

A. Point-Feature Based Motions

We begin by considering a positioning task in which some
point on the robot with end-effector coordinates, ' P , is to be
brought to a fixed stationing point, S. visible in the scene. We
refer to this as point-to-point positioning. In the case where the
camera is fixed, the kinematic error function may be defined
in base coordinates as

Epp(2,; s, " P) = X " (" P) - s. (20)

Here, as in the sequel, the argument before the semicolon is the
value to be controlled (in all cases, manipulator position) and
the values after the semicolon parameterize the positioning
task.

E,, defines a three degree of freedom kinematic constraint
on the robot end-effector position. If the robot workspace is
restricted to be 7 = @, this task can be thought of as a rigid
link that fully constrains the pose of the end-effector relative
to the target. When IT SE3, the constraint defines a virtual
spherical joint between the object and the robot end-effector.

Let I = R3. We first consider the case in which one or
more cameras calibrated to the robot base frame furnish an
estimate, ' S . of the stationing point coordinates with respect
to a camera coordinate frame. Using the estimate of the camera
pose in base coordinates, 2'. from off-line calibration and (l),
we have S = S,('S).

Since 7 = R3, the control input to be computed is the
desired robot translational velocity, which we denote by u3 to
distinguish it from the more general end-effector screw. Since
(20) is linear in xf, it is well known that in the absence of
outside disturbances, the proportional control law

will drive the system to an equilibrium state in which the
value of the error function is zero [35]. The value k > 0 is a
proportional feedback gain. Note that we have written 3, in
the feedback law to emphasize the fact that this value is also
subject to errors.

The expression (21) is equivalent to open-loop positioning
of the manipulator using vision-based estimates of geome-
try. Variations on this scheme are used by [36], [37]. In
our simplified dynamics, the manipulator is stationary when
ILJ = 0. Since the right hand side of the equation includes
estimated quantities, it follows that errors in 3,, or "S

658 lEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 5, OCTOBER 1996

(robot kinematics, camera calibration and visual reconstruction
respectively) can lead to positioning errors of the end-effector.

Now, consider the situation when the cameras are mounted
on the robot and calibrated to the end-effector. In this case,
we can express (20) in end-effector coordinates

pEIIp(z,; s; ' P) = ' P - 'zo(S). (22)

The camera(s) furnish an estimate of the stationing point, " S ,
which can be combined with information from the camera
calibration and robot kinematics to produce S = (ke o
'kc)(?,!?). w e now compute

'213 = - k eElIp(kp; (& 0 "kC)("S) , " P)
= - k (?P- ('20 0 02' 0 %) (" S))

= -k('P - e k . c (" s)) . (23)

Notice that the terms involving 2' have dropped out.
Thus (23) is not only simpler, but positioning accuracy is
also independent of the accuracy of the robot kinematics-a
fundamental benefit of visual servoing.

All of the above formulations presume prior knowledge of
" P and are therefore EOL systems. To convert them to ECL
systems, we suppose that ' P is directly observed and estimated
by the camera system. In this case, (21) and (23) can be written

A A

us = -k E p p (d e ; k < : (C s) , "2J"P)) = -k 2J'P - ' S)

cu3 = - k 'Epp(k,;kc(Cs), % (" P)) = -k ekc("P - 'S)
(24)

(25)

respectively. We now see that u3 (respectively ' U S) does not
depend on 2, and is homogeneous in xc (respectively
Hence, if 'S = ' P , then u3 = 0, independent of errors in
the robot kinematics or the camera calibration. This is an
important advantage for systems where a precise camerdend-
effector relationship is difficult or impossible to determine
off-line.

Consider now the full Cartesian problem where I C SE3,
and the control input is the complete velocity screw U E R6.
Since, the error functions presented above only constrain 3
degrees of freedom, the problem of computing U from the
estimated error is under-determined. One way of proceeding
is as follows. Consider the case of free standing cameras. Then
in base coordinates we know that P = 213. Using (14), we can
relate this to the end-effector velocity screw as follows:

P = 113 = A(P)u. (26)

Thus, if we could "solve for" IL in the above equation, we
could effectively use the three-dimensional solution to arrive at
the full Cartesian solution. Unfortunately, A is not square and
therefore can cannot be inverted to solve for U . However, recall
that the matrix right inverse for an m x n matrix M , n > m is
defined as M+ = M T (M M T) - l . The right inverse computes
the minimum norm vector which solves the original system of
equations. Hence, we have

U A (P) + u ~ (27)

for free-standing cameras. Similar manipulations yield

for end-effector mounted cameras. Substituting the appropriate
expression for u3 or eu, from the previous discussion leads to
a form of proportional regulation for the Cartesian problem.

As a second example of feature-based positioning, consider
that some point on the end-effector, " P , is to be brought to
the line joining two fixed points S1 and S2 in the world. The
shortest path for performing this task is to move " P toward the
line joining SI and 5'2 along the perpendicular to the line. The
error function describing this trajectory in base coordinates is:

Epz(2e;Sl,SZ,"P)
= (S2 - SI) x ((zr ('P) - SI) X (5'2 - SI)). (29)

Notice that although E,l is a mapping from 7 to $ I 3 . placing a
point on a line is a constraint of degree 2. From the geometry of
the problem and the previous discussion, we see that defining

U = -kA(kr('P))+Epl(3,; gl, g2, ' P)

is a proportional feedback law for this problem.

the end-effector
Suppose that now we apply this constraint to two points on

Eppl now defines a four degree of freedom positioning con-
straint that aligns the points on the end-effector with those
in target coordinates, and again no unique motion satisfies
this kinematic error function. A geometrically straightforward
solution is to compute a translation, T , which moves ' P I to
the line through SI and S2. Simultaneously, we can choose
a rotation, R which rotates eP2 about eP1 so that the line
through ' P I and 'P2 becomes parallel to that through S1 and
SZ.

In order to compute a velocity screw U = (T, R), we first
note that the end-effector rotation matrix R, can be represented
as a rotation through an angle B about an axis defined by a
unit vector k [7]. In this case, the axis of rotation is

k = (S2 - SI) x [R,(eP2 - "PI)]

where the bar over expressions on the right denotes normal-
ization to a unit vector. Hence, a natural feedback law for the
rotational portion of the velocity screw is

R = -k1 t . (30)

Note the expression on the right hand size is the zero vector
if the lines joining associated points are parallel as we desire.

The only complication to computing the translation portion
of the vector is to realize that rotation introduces translation of
points attached to the end-effector. Hence, we need to move
"PI toward the goal line while compensating for the motion
introduced by rotation. Based on the discussion above, we
know the former is given by -Ep i (xe ; SI, 5'2, ' P I) while

HUTCHINSON et al.: TUTORIAL ON VISUAL SERVO CONTROL 659

from (12) the latter is simply R x ze(‘Pl). Combining these
two expressions, we have

Note that we are still free to choose translations along the line
joining SI and S2 as well as rotations about it. Full six degree-
of-freedom positioning can be attained by enforcing another
point-to-line constraint using an additional point on the end-
effector and an additional point in the world. Similar geometric
arguments can be used to define a proportional feedback law.

These formulations can be adjusted for end-effector
mounted camera and can be implemented as ECL or EOL
systems. We leave these modifications as an exercise for the
reader.

B. Pose-Based Motion

In the previous section, positioning was defined in terms of
directly observable point features. When working with a priori
known objects, it is possible to recover the pose of the object,
xt, and to define stationing points with respect to object pose.

The methods of the previous section can be easily applied
when object pose is available. For example, suppose tS is an
arbitrary stationing point in a target object’s coordinate system,
and that we can compute ‘xt using end-effenctor mounted
camera(s). Then using (1) we can compute ‘5’ = ‘2t(tS) .
This estimate can be used in any of the end-effector based
feedback methods of the previous section in both ECL and
EOL configurations. Similar remarks hold for systems utilizing
free-standing cameras.

Given an object pose, it is possible to directly define
positioning tasks in terms of that object pose. Let ‘x: be a
desired stationing pose (rather than point as in the previous
section) for the end-effector, and suppose the system employs
free-standing cameras. We can define a positioning error

(Note that in order for this error function to be in accord
with our definition of kinematic error we must select a
parameterization of rotations which is 0 when the end-effector
is in the desised position.)

Using feature information and the camera calibration, we
can directly estimate xt = xc o ‘St . If we again represent
the rotation in terms of a unit vector ‘ k, and rotation angle
‘ H , , we can define

where t , is the origin of the end-effector frame in base
coordinates.

If we can also observe the end-effector and estimate its pose,
‘XP we can rewrite (32) as follows:

= (‘& 0 ‘2.0) 0 (OX(. 0 ‘&) 0 t2, = e&. 0 ex+ 0 t 2e - .

Once again we see that for an ECL system, both the robot
kinematic chain and the camera pose relative to the base

coordinate system have dropped out of the error equation.
Hence, these factors do not affect the positioning accuracy
of the system.

The modifications of pose-based methods to end-effector
based systems are completely straightforward and are left for
the reader.

C. Estimation

A key issue in position-based visual servo is the estimation
of the quantities used to parameterize the feedback. In this
regard, position-based visual servoing is closely related to the
problem of recovering scene geometry from one or more cam-
era images. This encompasses problems including structure
from motion, exterior orientation, stereo reconstruction, and
absolute orientation. Unfortunately, space does not permit a
complete coverage of these topics here and we have opted
to provide pointers to the literature, except in the case of
point estimation for two cameras, which has a straightforward
solution. A comprehensive discussion of these topics can be
found in a recent review article [38].

1) Estimation with a Single Camera: As noted previously,
it follows from (16) that a point in a single camera im-
age corresponds to a line in space. Although it is possible
to perform geometric reconstruction using a single moving
camera, the equations governing this process are often ill-
conditioned, leading to stability problems [38]. Better results
can be achieved if target image features have some internal
structure, or the image features come from a known object.
Below, we briefly describe methods for performing both point
estimation and pose estimation with a single camera assuming
such information is available.

a) Single Points: Clearly, extra information is needed in
order to reconstruct the Cartesian coordinates of a point in
space from a single camera projection. This may come from
additional measurable attributes, for example, in the case of
a circular opening with known diameter d the image will be
an ellipse. The ellipse can be described by five image feature
parameters from which can be derived distance to the opening,
and orientation of the plane containing the hole.

b) Object Pose: Object pose can be estimated if the
vision system observes multiple point features on a known
object. This is referred to as the pose estimation problem in the
vision literature, and numerous methods for its solution have
been proposed. These can be broadly divided into analytic
solutions and least-squares solutions. Analytic solutions for
three and four points are given by [39]-[43], and unique
solutions exist for four coplanar, but not collinear, points.
Least-squares solutions can be found in [44]-[50]. Six or
more points always yield unique solutions and allow the
camera calibration matrix to be computed. This can then be
decomposed [48] to yield the target’s pose.

The general least-squares solution is a nonlinear optimiza-
tion problem which has no known closed-form solution. In-
stead, iterative optimization techniques are generally em-
ployed. These techniques iteratively refine a nominal pose
value using observed data (see [SI] for a recent review).
Because of the sensitivity of the reconstruction process to

660 IEEE TRANSACTlONS ON KOBOTICS AND AUTOMATION, VOL. 12, NO. 5, OCTOBER 1996

noise, it is often a good idea to incorporate some type of
smoothing or averaging of the computed pose parameters, at
the cost of some delay in response to changes in target pose.
A particularly elegant formulation of this updating procedure
results by application of statistical techniques such as the
extended Kalman filter [52]. This approach has been recently
demonstrated by Wilson [53] for six DOF control of end-
effector pose. A similar approach was recently reported in
t541.

2) Estimation with Multiple Cameras: Multiple cameras
greatly simplify the reconstruction process and many systems
utilizing position-based control with stereo vision from free-
standing cameras have been demonstrated. For example, Allen
[36] shows a system that can grasp a toy train using stereo
vision. Rizzi [37] demonstrates a system which can bounce
a ping-pong ball. All of these systems are EOL. Cipolla [9]
describes an ECL system using free-standing stereo cameras.
One novel feature of this system is the use of the affine
projection model (Section II-C) for the imaging geometry.
This leads to linear calibration and control at the cost of some
system performance. The development of a position-based
stereo eye-in-hand servoing system has also been reported
[551.

a) Single Points: Let ax,l represent the pose of a camera
relative to an arbitrary base coordinate frame a. By inverting
this transformation and combining (1) and (16) for a point
" P = [x,?/ ,zIT we have

where x, y and z are the rows of '.lR, and "ta = [t r , C,, 1,IT.
Multiplying through by the denominator of the right-hand side,
we have

Al(P,)"P Z Y bl(P1). (36)

where

Given a second camera at location ' x , ~ we can compute
A2 (p 2) and b2 (p 2) analogously. Stacking these together results
in a matrix equation

which is an over-determined system that can be solved for
" P . Note the same approach can be used to provide estimates
from three or more cameras.

b) Object Pose: As seen above, given two or more cam-
eras, it is straightforward to estimate their camera relative
coordinates. Given observations of three or more points in
known locations with respect to an object coordinate system,
it is relatively straightforward to solve the absolute orientation
problem which relates camera coordinates to object coordi-
nates. The solution is based on noting that the centroid of
a rigid set of points is invariant to rotation. By exploiting
this observation, it is possible to first isolate rotation as

the only unknown in the system. The corresponding least-
squares problem can either be solved explicitly for rotation
(see [56]-[58]), or solved incrementally using linearization.
Given an estimate for rotation, the computation of translation
is a standard linear least squares problem.

D. Discussion

The principle advantage of position-based control is that
it is possible to describe tasks in terms Cartesian pose as is
common in robotics. It's primary disadvantage is that feedback
is computed using estimated quantities that are a function of
the system calibration parameters. Hence, in some situations.
position-based control can become extremely sensitive to cal-
ibration error. Endpoint closed-loop systems are demonstrably
less sensitive to calibration. However, particularly in stereo
systems, small errors in computing the orientation of the
cameras can still lead to reconstruction errors that impact the
positioning accuracy of the system.

Pose-based methods for visual servoing seem to be the most
generic approach to the problem, as they support arbitrary
relative position with respect to the object. An often cited
disadvantage of pose-based methods is the computation time
required to solve the relative orientation problem. However
recent results show that solutions can be computed in only a
few milliseconds even using iteration [51] or Kalman filtering
[53]. In general, given the rapid advances in microproces-
sor technology, computational considerations are becoming
less of an issue in the design of visual servoing systems.
Another disadvantage of pose-based approaches is the fact
that they inherently depend on having an accurate model of
the target object-a form of calibration. Hence, feature-based
approaches tend to be more appropriate to tasks where there
is no prior model of the geometry of the task, for example
in teleoperation applications [59]. Generally speaking, since
feature-based methods rely on less prior information (which
may be in error), they can be expected to perform more
robustly on comparable tasks.

Another approach to position-based visual servoing which
has not been discussed here is to use an active 3D sensor. For
example, active 3D sensors based on structured lighting are
now compact and fast enough to use for visual servoing. If
the sensor is small and mounted on the robot the depth and
orientation information can be used directly for position-based
visual servoing [60]-[621.

V. IMAGE-BASED CONTROL

As described in Section 111, in image-based visual servo
control the error signal is defined directly in terms of image
feature parameters (in contrast to position-based methods that
define the error signal in the task space coordinates). Thus,
we posit the following definition.

Definition 5.1: An image-based visual servoing task is rep-
resented by an image error function e: 3 + R'. where I < k
and k is the dimension of the image feature parameter space.

As described in Section II-E, the system may use either
a fixed camera or an eye-in-hand configuration. In either
case, motion of the manipulator causes changes to the image

HIJTCkIINSON c’f d: TUTORIAL ON VISUAL SERVO CONTROL 66 I

observed by the vision system. Thus, the specification of an
image-based visual servo task involves determining an appro-
priate error function e , such that when the task is achieved,
e = 0. This can be done by directly using the projection
equations (16), or via a “teach by showing” approach in which
the robot is moved to a goal position and the corresponding
image is used to compute a vector of desired image feature
parameters, fd. If the task is defined with respect to a moving
object, the error, e . will be a function, not only of the pose of
the end-effector, but also of the pose of the moving object.

Although the error, e , is defined on the image parameter
space, the manipulator control input is typically defined either
in joint coordinates or in task space coordinates. Therefore, it
is necessary to relate changes in the image feature parameters
to changes in the position of the robot. The image Jacobian,
introduced in Section V-A, captures these relationships. We
present an example image Jacobian in Section V-B. In Section
V-C, we describe methods that can be used to “invert” the
image Jacobian, to derive the robot velocity that will produce
the desired change in the image. Finally, in Sections V-D
and V-E we describe how controllers can be designed for
image-based systems.

A. The Image Jacobian

Let T represent coordinates of the end-effector in some
parameterization of the task space 7 and i represent the
corresponding end-effector velocity (note, i is a velocity
screw, as defined in Section 11-B). Let f represent a vector of
image feature parameters and the corresponding vector of
image feature parameter rates of change’. The image Jacobian,
?7?>, is a linear transformation from the tangent space of 7 at
r to the tangent space of .F at J. In particular

f = J,;(r)i-

where *7,> E RRkXnL, and

J,; (r) = [g] =

B. An Example Image Jacobian

Suppose that the end-effector is moving with angular ve-
locity ‘12, = [w,, w y , w.] and translational velocity ‘T, =
[T,. T?,) TZ] (as described in Section 11-B) both with respect to
the camera frame in a fixed camera system. Let P be a point
rigidly attached to the end-effector. The velocity of the point
P , expressed relative to the camera frame, is given by

‘’P = ‘R, x ‘ P + ‘T?. (39)

To simplify notation, let ‘ P = [x. y. z]*. Substituting the
perspective projection equations (16) into (10) and (1 l), we
can write the derivatives of the coordinates of “ P in terms of
the image feature parameters U , ?) as

(40)

(41)

(42)

Cl 6
.i. = Z W ~ - -U, + Tr

G = - w , - ZW, +Ty
x

U Z

x
x
z z = -(vw, - uw,) + T,.

Now, let f = [U, U]*. as above and using the quotient rule,

(43)
2.r. - 22.

i l=A-
2 2

(44)

Similarly

x u - A 2 - v2 uv
i i = -T z Y - -T, + wT + -wY x +uw,. (46)

(37) Finally, we may rewrite these two equations in matrix form
to obtain

Recall that m, is the dimension of the task space, 7. Thus the
number of columns in the image Jacobian will vary depending
on the task.

The image Jacobian was first introduced by Weiss et al.
[21 J , who referred to it as the feature seizsitivity matrix. It is
also referred to as the interaction matrix [111 and the B matrix
[16], [17]. Other applications of the image Jacobian include

The relationship given by (37) describes how image feature
parameters change with respect to changing manipulator pose.
In visual servoing we are interested in determining the ma-
nipulator velocity, i , required to achieve some desired value
of i. This requires solving the system given by (37). We will
discuss this problem in Section V-C, but first we present an
example image Jacobian.

~101, 1141, [151, ~ 4 1 .

‘If the image featurc parameters are point coordinates these rates arc image
planc point velocities.

x [;I = [,
0

0
x
-

z

U

z
u

?1 v

z x

x2 + u2
x

x
UV -

(47)

which relates image-plane velocity of a point to the relative
velocity of the point with respect to the camera. Alternative
derivations for this example can be found in a number of
references including [63], [64].

It is straightforward to extend this result to the general
case of using k / 2 image points for the visual control by
simply stacking the Jacobians for each pair of image point
coordinates; see (48), shown at the bottom of the next page.

Finally, note that the Jacobian matrices given in (47) and
(48) are functions of z,, the distance to the point being imaged.
For a fixed camera system, when the target is the end-effector
these x values can be computed using the forward kinematics
of the robot and the camera calibration information. For an
eye-in-hand system, determining z can be more difficult, and
this problem is discussed further in Section V-F.

662 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 5 , OCTOBER 1996

-U

U
x
0
0
-0

C. Using the Image Jacobian to Compute
End-Effector Velocity

The results of the previous sections show how to relate
robot end-effector motion to perceived motion in a camera
image. However, visual servo control applications typically
require the reverse-computation of i given f as input. There
are three cases that must be considered: k = 7n, k < m, and
k. > m. We now discuss each of these.

When k = m, and J , is nonsingular, J,' exists. Therefore,
in this case, r = Ji'f. Such an approach has been used
by Feddema [20], who also describes an automated approach
to image feature selection in order to minimize the condition
number of J u .

When k # m: J L 1 does not exist. In this case, assuming that
J , , is full rank (i.e., rank(J,,) = min(k, m)) , we can compute
a least squares solution, which, in general, is given by

i = Jrff + (I - J ; f J , ,) b (49)

where Jrf is a suitable pseudoinverse for J,, and b is an
arbitrary vector of the appropriate dimension. The least squares
solution gives a value f o r i that minimizes the norm l l f - J l , ill .

We first consider the case k > m; that is , there are more
feature parameters than task degrees of freedom. By the
implicit function theorem [65], if, in some neighborhood of
r ,m 5 k: and rank(d,,) = m (i.e., J,: is full rank), we
can express the coordinates fTrL+1 Jllc as smooth functions
of f l . . , fnL . From this, we deduce that there are k - m
redundant visual features. Typically, this will result in a set
of inconsistent equations (since the k visual features will be
obtained from a computer vision system and are likely to be
noisy). In this case, the appropriate pseudoinverse is given by

J: = (J:J?,)-'J;. (50)

Here, we have (I - J:J,) = 0 (the rank of the null space of
J , is 0, since the dimension of the column space of J , : m,
equals rank(J (,)) . Therefore, the solution can be written more
concisely as

r = J : f . (5 1)

Such approaches have been used by Hashimoto [lS] and Jang
[661.

When k < n, the system is under-constrained. In the visual
servo application, this implies that we are not observing
enough features to uniquely determine the object motion i,

-0
0
0
U
V

-x

i.e., there are certain components of the object motion that can
not be observed. In this case, the appropriate pseudoinverse is
given by

In general, for k < m, (I - S T J ,) # 0, and all vectors of the
form (I - J ; J ,) b lie in the null space of J,, and correspond to
those components of the object velocity that are unobservable.
In this case, the solution is given by (49). For example, as
shown in [64], the null space of the image Jacobian given in
(47), is spanned by the four vectors

In some instances, there is a physical interpretation for the
vectors that span the null space of the image Jacobian. For
example, the vector [U. v , A, 0, 0, 0IT reflects that the motion of
a point along a projection ray cannot be observed. The vector
[O, 0, 0, U , v , A]' reflects the fact that rotation of a point on a
projection ray about that projection ray cannot be observed.
Unfortunately, not all basis vectors for the null space have
such an obvious physical interpretation. The null space of the
image Jacobian plays a significant role in hybrid methods, in
which some degrees of freedom are controlled using visual
servo, while the remaining degrees of freedom are controlled
using some other modality [14].

D. Resolved-Rate Methods

The earliest approaches to image-based visual servo control
[lo], [21] were based on resolved-rate motion control [30],
which we will briefly describe here. Suppose that the goal of
a particular task is to reach a desired image feature parameter
vector, fd. If the control input is defined as in Section IV to be
an end-effector velocity, then we have U = r , and assuming for
the moment that the image Jacobian is square and nonsingular,

If we define the error function as e(f) = f d - f , a simple
proportional control law is given by

x
21

0

-

x
2 k / 2

0

0

x
21
-

0

x

A2 + up
x

UlUl

x
__

x2
x

x
k / 2 k / 2

HUTCHlNSON et ut.: TIJTORlAL ON VISUAL SERVO CONTROL 663

where K is a constant gain matrix of the appropriate di-
mension. For the case of a nonsquare image Jacobian, the
techniques described in Section V-C would be used to compute
for U . Similar results have been presented in [14], [15]. More
advanced techniques based on optimal control are discussed
in 1161.

E. Examde Servoinn Tasks

proof proceeds as follows. The origin of the coordinate frame
for the left camera, together with the projections of S1 and
S2 onto the left image forms a plane. Likewise, the origin of
the coordinate frame for the right camera, together with the
projections of SI and onto the right image forms a plane.
The intersection of these two planes is exactly the line joining
SI and S2 in the workspace. When P lies on this line, it must
lie simultaneously in both of these planes, and therefore, must -

In this section, we revisit some of the problems introduced
in Section IV-A and describe image-based solutions for these
problems. In all cases, we assume two fixed cameras are
observing the scene.

1) Point to Point Positioning: Consider the task of bring-
ing some point P on the manipulator to a desired stationing
point S. The kinematic error function was given in (20). If
two cameras are viewing the scene, a necessary and sufficient
condition for P and S to coincide in the workspace is that the
projections of P and S coincide in each image.

If we let [U’, 71‘1~ and [ur, vrIT be the image coordinates for
the projection of P in the left and right images, respectively,
then we may take f = [, ~ ‘ , d , u ~ , v ~] ~ . If we let ‘T = R,?,
then in (19), F is a mapping from 7 to R4.

Let the projection of S have coordinates [U:, TI,:] and [7~:, ?I;]

in the left and right images. We then define the desired feature
vector to be f C i = [U; . U;, ,U:, yielding

The image Jacobian for this problem can be constructed
by “stacking” (47) for each camera. Note, however, that
a coordinate transformation must be used for each camera
in order to relate the end-effector velocity screw in camera
coordinates to the robot reference frame.

Unfortunately, the resulting Jacobian matrix cannot be in-
verted as it is a matrix with four rows and six columns which is
of rank three. This is a reflection of the fact that although two
cameras provide four measurements, the point observed has
only three degrees of freedom. Hence, one measurement value
is redundant, or equivalently the observations are constrained
to lie on a three-dimensional subspace of four-dimensional
measurement space. The constraint defining this subspace is
known as the epipolar constraint in the vision literature [67].

There are a variety of methods for dealing with this problem.
The simplest is to note that most stereo camera systems are
arranged so that the camera z (horizontal) axes are roughly
co-planar. In this case, the redundant information is largely
concentrated in the y (vertical) coordinates, and so one can be
discarded. Doing so removes a row from the Jacobian, and the
resulting matrix has a well-defined inverse.

2) Point to Line Positioning: Consider again the task in
which some point P on the manipulator end-effector is to
be brought to the line joining two fixed points SI and S z in
the world. The kinematic error function is given by (29).

If two cameras are viewing the workspace, it can be shown
that a necessary and sufficient condition for P to be colinear
with the line joining S1 and 5 2 is that the projection of P
be colinear with the projections of the points S1 and sz in
both images (for nondegenerate camera configurations). The

be colinear with the the projections of the points S1 and S2

in both images.
We now tum to conditions that determine when the pro-

jection of P is colinear with the projections of the points SI
and Sz? and will use the knowledge that three vectors are
coplanar if and only if their scalar triple product is zero. For
the left image, let the projection of SI have image coordinates
[U;, 41. the projection of Sz have image coordinates [U ; , wk],
and the projection of P have image coordinates [d. U‘]. If the
three vectors from the origin of the left camera to these image
points are coplanar, then the three image points are colinear.
Thus, we construct the scalar triple product

and proceeding in a similar fashion for the right image, derive
from which we construct the error function

where f = [U‘, d, U”; uUTlT. It is important to note that this
error is a linear projection of the image coordinates of the
point P , and hence the Jacobian is also a linear transformation
of the image Jacobian for P . To make this explicit, let $;(E‘)
denote the image Jacobian for P in the left camera. Then it
follows that the image Jacobian for efr is

The derivation of the image Jacobian in the right camera is
similar. The full Jacobian is the “stack’ consisting of Jhi
and -7Ll multiplied with a coordinate transformation to relate
the end-effector velocity screw in robot coordinates to the
equivalent motion in the camera coordinate frame. Note that
given a second point on the end-effector, a four degree of
freedom positioning operation can be defined by simply stack-
ing the two “point-to-line” errors and their image Jacobians.
Likewise, choosing yet another point in the world and on
the manipulator, and setting up an additional independent
“point-to-line” problem yields a rigid six degree of freedom
positioning problem

F. Discussion

It is interesting to note that image-based solutions to the
point-to-line problem discussed above perform with an ac-
curacy that is independent of calibration. This follows from

664 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL 12, NO 5 , OCTOBER 1996

the fact that by construction, when the image error function
is zero, the kinematic error must also be zero. Even if the
hand-eye system is miscalibrated, if the feedback system is
asymptotically stable, the image error will tend to zero, and
hence so will the kinematic error. This is not the case with the
position-based system described in Section IV [68]. Thus, one
of the chief advantages to image-based control over position-
based control is that the positioning accuracy of the system is
less sensitive to camera calibration errors.

There are also often computational advantages to image-
based control, particularly in ECL configurations. For example,
a position-based relative pose solution for an ECL single-
camera system must perform two nonlinear least squares
optimizations in order to compute the error function. The
comparable image-based system must only compute a sim-
ple image error function, an inverse Jacobian solution, and
possibly a single position or pose calculation to parameterize
the Jacobian. In practice, as described in Section V-B, the un-
known parameter for Jacobian calculation is distance from the
camera. Some recent papers present adaptive approaches for
estimating this depth value [16], or develop feedback methods
which do not use depth in the feedback formulation [69].

One disadvantage of image-based methods compared to
position-based methods is the presence of singularities in the
feature mapping function which reflect themselves as unstable
points in the inverse Jacobian control law. These instabili-
ties are often less prevalent in the equivalent position-based
scheme. Returning again to the point-to-line example, the
Jacobian calculation becomes singular when the two stationing
points are coplanar with the optical centers of both cameras. In
this configuration, rotations and translations of the setpoints in
the plane are not observable. This singular configuration does
not exist for the position-based solution.

In the above discussion we have referred to f as the desired
feature parameter vector, and implied that it is a constant. If
it is a constant then the robot will move to the desired pose
with respect to the target. If the target is moving the system
will endeavor to track the target and maintain relative pose,
but the tracking performance will be a function of the system
dynamics, as discussed below in Section VII. However many
tasks can be described in terms of the motion of image features,
for instance by aligning visual cues within the scene. Jang et
ul. [66] describe a generalized approach to servoing on image
features, with trajectories specified in feature space which
results in trajectories (tasks) that are independent of target
geometry. Feddema [lo] also uses a feature space trajectory
generator to interpolate feature parameter values due to the low
update rate of the vision system used. Skaar et al. [IS] describe
the example of a lDOF robot catching a ball by observing
visual cues such as the ball, the arm’s pivot point, and another
point on the arm. The interception task can then be specified,
even if the relationship between camera and arm is not known
a priori.

VI. IMAGE FEATURE EXTRACTION AND TRACKING

Irrespective of the control approach used, a vision system
is required to extract the information needed to perform the

servoing task. Hence, visual servoing pre-supposes the solution
to a set of potentially difficult static and dynamic vision
problems. To this end many reported implementations contrive
the vision problem to be simple: e.g. painting objects white,
using artificial targets, and so forth [lo], [14], [37], [70]. Other
authors use extremely task-specific clues: e.g. Allen [36] uses
motion detection for locating a moving object to be grasped,
and a fruit picking system looks for the characteristic fruit
color. A review of tracking approaches used by researchers in
this field is given in [3].

In less structured situations, vision has typically relied on the
extraction of sharp contrast changes, referred to as “comers”
or “edges”, to indicate the presence of object boundaries or
surface markings in an image. Processing the entire image to
extract these features necessitates the use of extremely high-
speed hardware in order to work with a sequence of images
at camera rate. However not all pixels in the image are of
interest, and computation time can be greatly reduced if only
a small region around each image feature is processed. Thus,
a promising technique for making vision cheap and tractable
is to use window-based tracking techniques [4], [37], [71].
Window-based methods have several advantages, among them:
computational simplicity, little requirement for special hard-
ware, and easy reconfiguration for different applications. We
note, however, that initial positioning of each window typically
presupposes an automated or human-supplied solution to a
potentially complex vision problem.

This section describes a window-based approach to tracking
features in an image. The methods are capable of tracking a
number of point or edge features at frame rate on a workstation
computer and require a framestore, no specialized image pro-
cessing hardware, and have been incorporated into a publicly
available software “toolkit” [4]. A discussion of methods
which use specialized hardware combined with temporal and
geometric constraints can be found in [67]. The remainder of
this section is organized as follows. Section VI-A describes
how window-based methods can be used to implement fast
detection of edge segments, a common low-level primitive
for vision applications. Section VI-B describe an approach
based on temporally correlating image regions over time.
VI-C describes some general issues related to the use of
temporal and geometric constraints, and Section VI-D briefly
summarizes some of the issues surrounding the choice of a
feature extraction method for tracking.

A. Feature Bused Methods

In this section, we illustrate how window-based processing
techniques can be used to perform fast detection of isolated
straight edge segments of fixed length. Edge segments are
intrinsic to applications where man-made parts contain comers
or other patterns formed from physical edges.

Images are comprised of pixels organized into a two-
dimensional coordinate system. We adopt the notation 1(x, t)
to denote the pixel at location 2 [U, .IT in an image captured
at time k . A window can be thought of as a two-dimensional
array of pixels related to a larger image by an invertible
mapping from window coordinates to image coordinates. We

HIJTCHINSON et al TUTORlAl ON VISUAI. SERVO CONTROL 665

consider rigid transformations consisting of a translation vector
c = [J , 1/]' and a rotation 8. A pixel value at x = [U. U]'' in
window coordinates is related to the larger image by

W (z : c, 0, t) = I (c + B (Q) X , t) (60)

where R is a two dimensional rotation matrix. We adopt the
conventions that x = 0 is the center of the window, and the
set X represents the set of all values of x.

Window-based tracking algorithms typically operate in two
stages. In the first stage, one or more windows are acquired
using a nominal set of window parameters. The pixel values
for all x E X are copied into a two-dimensional array that is
subsequently treated as a rectangular image. Such acquisitions
can be implemented extremely efficiently using line-drawing
and region-fill algorithms commonly developed for graphics
applications [72]. In the second stage, the windows are pro-
cessed to locate image features and from their parameters
a new set of window parameters, 0 and e, are computed.
These parameters may be modified using external geometric
constraints or temporal prediction, and the cycle repeats.

We consider an edge segment to be characterized by three
parameters in the image plane: the PL and 7) coordinates
of the center of the segment, and the orientation of the
segment relative to the image plane coordinate system. These
values correspond directly to the parameters of the acquisition
window used for edge detection. Let us first assume we have
correct prior values e- = (P L - , v) and Q- for an edge
segment. A window, W - (x) = W (x ; e - , Q-, t) . extracted
with these parameters would then have a vertical edge segment
within it.

Isolated step edges can be localized by determining the
location of the maximum of the first derivative of the signal
1641, [67], [731. Let c be a l-dimensional edge detection
kernel arranged as a single row. The convolution W,(x) =
(W- ~r P)(z) will have a response curve in each row which
peaks at the location of the edge. Summing each column
of W1 superimposes the peaks and yields a one-dimensional
response curve. If the estimated orientation, 0- , was correct,
the maximum of this response curve determines the offset of
the edge in window coordinates. By interpolating the response
curve about the maximum value, sub-pixel localization of the
edge can be achieved. Here, e is taken to be a 1-dimensional
Prewitt operator [64] which, although not optimal from a signal
processing point of view, is extremely fast to execute on simple
hardware.

If the 0- was incorrect, the response curves in W1 will
deviate slightly from one another and the superposition of
these curves will form a lower and less sharp aggregate
curve. Thus, maximizing the maximum value of the aggregate
response curve is a way to determine edge orientation. This
can be approximated by performing the detection operation
on windows acquired at 8- as well as two bracketing angles
8- 5 a and performing quadratic interpolation on the maxima
of the corresponding aggregate response curves. Computing
the three oriented edge detectors is particularly simple if the
range of angles is small. In this case, a single window is
processed with the initial convolution yielding W1. Three
aggregate response curves are computed by summing along

the columns of W1 and along diagonals corresponding to
angles of fa. The maxima of all three curves are located
and interpolated to yield edge orientation and position. Thus,
for the price of one window acquisition, one complete 1-
dimensional convolution, and three column sums, the vertical
offset So and the orientation offset 60 can be computed. Once
these two values are determined, the state variables of the
acquisition window are updated as

8+ = e - + s o
U+ = c - 60 sin(e+)
v+ = ? I - + S O C O S (0 +) .

An implementation of this method [4] has shown that
localizing a 20 pixel long edge using a Prewitt-style mask
15 pixels wide searching k10 pixels and ~ t 1 5 degrees takes
1.5 ms on a Sun Sparc I1 workstation. At this rate, 22 edge
segments can be tracked simultaneously at 30 Hz, the video
frame rate used. Longer edges can be tracked at comparable
speeds by sub-sampling along the edge.

Clearly, this edge-detection scheme is susceptible to mis-
tracking caused by background or foreground occluding edges.
Large acquisition windows increase the range of motions that
can be tracked, but reduce the tracking speed and increase
the likelihood that a distracting edge will disrupt tracking.
Likewise, large orientation brackets reduce the accuracy of the
estimated orientation, and make it more susceptible to edges
that are not closely oriented to the underlying edge.

There are several ways of increasing the robustness of edge
tracking. One is to include some type of additional information
about the edges being tracked such as the sign or absolute
value of the edge response. For more complex edge-based
detection, collections of such oriented edge detectors can be
combined to verify the location and position of the entire
feature. Some general ideas in this direction are discussed in
Section VI-C.

B. Area-Based Methods

Edge-based methods tend to work well in environments
in which man-made objects are to be tracked. If, however,
the desired feature is a specific pattern, then tracking can be
based on matching the appearance of the feature (in terms
of its spatial pattern of gray-values) in a series of images,
and exploiting its temporal consistency-the observation that
the appearance of small region in an image sequence changes
little. Such techniques are well described in image registration
literature and have been applied to other computer vision
problems such as stereo matching and optical flow.

Consider only windows that differ in the location of their
center. We assume some reference window was acquired at
time t at location c. Some small time interval, 7 , later, a
candidate window of the same size is acquired at location
c + d . The correspondence between these two images is given
by some similarity measure

O (d) = f ((W (z ; c, i)) - W (x ; c + d , t + 7))1u(x) ,
X E ' Y

T > O (61)

666 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 5 , OCTOBER 1996

where w(8) is a weighting function over the image region and
f (.) is a scalar function. Commonly used functions include
, f (x) = 1x1 for sum of absolute values (SAD) and f(x) = x2
for sum of squared differences (SSD).

The aim is to find the displacement, d , that minimizes O (d) .
Since images are inherently discrete, a natural solution is to
select a finite range of values D and compute

d = min q d) .
drD

The advantage of a complete discrete search is that the
true minimum over the search region is guaranteed to be
found. However, the larger the area covered, the greater
the computational burden. This burden can be reduced by
performing the optimization starting at low resolution and
proceeding to higher resolution, and by ordering the candidates
in D from most to least likely and terminating the search
once a candidate with an acceptably low SSD value is found
[17]. Once the discrete minimum is found, the location can
be refined to sub-pixel accuracy by interpolation of the SSD
values about the minimum. Even with these improvements,
[171 reports that a special signal processor is required to attain
frame-rate performance.

It is also possible to solve (61) using continuous optimiza-
tion methods [4] [74]-[761. The solution begins by expanding
W (z ; c , t) in a Taylor series about (c , t) yielding

W (z ; c + d, t + ?-)

N W (~ ; ~ , t) f W z (z) dx+W,(z) dy+Wt(z)r

where W , I W , and W, are respectively the horizontal and ver-
tical spatial, and temporal derivatives of the image computed
using convolution as follows:

Substituting into (61) yields

O(d) = (Wz(x) dz+W,(x) d y + W + (2) r) 2 w (2) . (62)
X t ’ Y

Define

Expression (62) can now be written more concisely as

O (d) = (g(2) ’ d + h(2)?-)2 .
X E X

Notice 0 is now a quadratic function of d . Computing the
derivatives of 0 with respect to the components of d, setting
the result equal to zero, and rearranging yields a linear system
of equations:

r 1

Solving for d yields an estimate, d of the offset that would
cause the two windows to have maximum correlation. We
then compute c+ = c- + d yielding the updated window
location for the next tracking cycle. This is effectively a
proportional control algorithm for the “servoing” the location
of an acquisition to maintain the best match with the reference
window over time.

In practice this method will only work for small motions
(it is mathematically correct only for a fraction of a pixel).
This problem can be alleviated by first performing the opti-
mization at low levels of resolution, and using the result as a
seed for computing the offset at higher levels of resolution.
For example, reducing the resolution by a factor of two
by summing groups of four neighboring pixels doubles the
maximum displacement between two images. It also speeds up
the computations since fewer operations are needed to compute
d for the smaller low-resolution image.

Another drawback of this method is the fact that it relies
on an exact match of the gray values-changes in contrast
or brightness can bias the results and lead to mistracking.
Thus, it is common to normalize the images to have zero
mean and consistent variance. With these modifications, it is
easy to show that solving (64) is equivalent to maximizing the
correlation between the two windows [74].

Continuous optimization has two principle advantages over
discrete optimization. Firstly, a single updating cycle is usually
faster to compute. For example, (64) can be computed and
solved in less than 5 ms on a Sparc I1 computer [4]. Secondly,
it is easy to incorporate other window parameters such as
rotation and scaling into the system without greatly increasing
the computation time [41, [76]. Thus, SSD methods can be
used to perform template matching as well as tracking of
image regions.

C. Feature Prediction

Window-based trackmg implicitly assumes that the inter-
frame motions of the tracked feature do not exceed the size of
search window, or, in the case of continuous optimization, a
few pixels from the expected location of the image region.
In the simplest case, the previous location of the image
feature can be used as a predictor of its current location.
Unfortunately, as feature velocity increases the search window
must be enlarged which adversely affects computation time.

The robustness and speed of tracking can be significantly
increased with knowledge about the motion of the observed
features, which may be due to the camera and/or target moving.
For example, given knowledge of the image feature location
xt at time t , Jacobian J , , the end-effector velocity ut, and
the inter-frame time r, the expected location of the search
windows can be computed, assuming no target motion, by the
prediction

f t t 7 = f t + rJvut.

Likewise, if the dynamics of a moving object are known,
then it is possible to use this information to enhance tracking
performance. For example, Rizzi [37] describes the use of a
Newtonian flight dynamics model to make it possible to track a

HUTCHINSON ef ul.: TUTORIAL ON VISIJAL SERVO CONTROL 667

ping-pong ball during flight. Predictors based on (II -113 tracking
filters and Kalman filters have also been used [36], [53], [67].

D. Discussion

Prior to executing or planning visually controlled motions,
a specific set of visual features must be chosen. Discussion
of the issues related to feature selection for visual servo
control applications can be found in [20], [21]. The “right”
image feature tracking method to use is extremely application
dependent. For example, if the goal is to track a single special
pattern or surface marking that is approximately planar and
moving at slow to moderate speeds, then area-based tracking
is appropriate. It does not require special image structure (e.g.
straight lines), is robust to large set of image distortions, and
for small motions can be implemented to run at frame rates.

In comparison to the edge detection methods described
above, area-based tracking is sensitive to occlusions and
background changes (if the template includes any background
pixels). Thus, if a task requires tracking several occluding
contours of an object with a changing background, edge-based
methods are clearly faster and more robust.

In many realistic cases, neither of these approaches by
themselves yields the robustness and performance desired. For
example, tracking occluding edges in an extremely cluttered
environment is sure to distract edge tracking as “better” edges
invade the search window, while the changing background
would ruin the SSD match for the region. Such situations call
for the use of more global task constraints (e.g. the geometry
of several edges), more global tracking (e.g. extended contours
or snakes [77]), or improved or specialized detection methods.

To illustrate these tradeoffs, suppose a visual servoing task
relies on tracking the image of a circular opening over time.
In general, the opening will project to an ellipse in the camera.
There are several candidate algorithms for detecting this ellipse
and recovering its parameters:

1) If the contrast between the interior of the opening and
area around it is high, then binary thresholding followed
by a calculation of the first and second central moments
can be used to localize the feature [37].

2) If the ambient illumination changes greatly over time,
but the brightness of the opening and the brightness of
the surrounding region are roughly constant, a circular
template could be localized using SSD methods aug-
mented with brightness and contrast parameters. In this
case, (61) must also include parameters for scaling and
aspect ratio [4].

3) The opening could be selected in an initial image,
and subsequently located using SSD methods. This
differs from the previous method in that this calculation
does not compute the center of the opening, only its
correlation with the starting image. Although useful for
servoing a camera to maintain the opening within the
field of view, this approach is probably not useful for
manipulation tasks that need to attain a position relative
to the center of the opening.

4) If the contrast and background are changing, the opening
could be tracked by performing edge detection and

fitting an ellipse to the edge locations. In particular, short
edge segments could be located using the techniques
described in Section VI-A. Once the segments have
been fit to an ellipse, the orientation and location of the
segments would be adjusted for the subsequent tracking
cycle using the geometry of the ellipse.

During task execution, other problems arise. The two most
common problems are occlusion of features and visual singu-
larities. Solutions to the former include intelligent observers
that note the disappearance of features and continue to predict
their locations based on previously observed motion [37], or
redundant feature specifications that can perform even with
some loss of information. Solution to the latter require some
combination of intelligent path planning and/or intelligent ac-
quisition and focus-of-attention to maintain the controllability
of the system.

It is probably safe to say that fast and robust image process-
ing presents the greatest challenge to general-purpose hand-eye
coordination. As an effort to help overcome this obstacle, the
methods described above and other related methods have been
incorporated into a publicly available software “toolkit.” The
interested reader is referred to [4] for details.

VII. DISCUSSION

This paper has presented a tutorial introduction to robotic
visual servo control, focusing on the relevant fundamentals
of coordinate transformations, image formation, feedback al-
gorithms, and visual tracking. In the interests of space and
clarity, we have concentrated on presenting methods that are
well-represented in the literature, and that can be solved using
relatively straightforward techniques. The reader interested in
a broader overview of the field or interested in acquiring more
detail on a particular area is invited to consult the references
we have provided. Another goal has been to establish a
consistent nomenclature and to summarize important results
here using that notation.

Many aspects of the more general problem of vision-based
control of motion have necessarily been omitted or abbreviated
to a great degree. One important issue is the choice between
using an image-based or position-based system. Many systems
based on image-based and position-based architectures have
been demonstrated, and the computational costs of the two
approaches seem to be comparable and are easily within the
capability of modem computers. In many cases the motion
of a target, for example an object on a conveyer, is most
naturally expressed in a Cartesian reference frame. For this
reason, most systems dealing with moving objects ([36], [37])
have used position-based methods. Although there has been
recent progress in understanding image plane dynamics [22],
the design of stable, robust image-based servoing systems for
capturing moving objects has not been fully explored.

In general, the accuracy of image-based methods for static
positioning is less sensitive to calibration than comparable
position-based methods, however image-based methods re-
quire online computation of the image Jacobian. Unfortu-
nately, this quantity inherently depends on the distance from
the camera to the target which, particularly in a monocular

668 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO 5, OCTOBER 1996

system, is difficult to compute. Many systems utilize a constant
image Jacobian, which is computationally efficient, but valid
only over a small region of the task space6. Other systems
have resorted to performing a partial pose estimation [lo],
adaptive depth estimation [161, or image Jacobian estima-
tion [78]. However, both add significantly to the complexity
of the system design as well as introducing an additional
computational load.

This issue is further complicated when dynamics are in-
troduced into the problem. Even when the target object is not
moving, it is important to realize that a visual servo system is a
closed-loop discrete-time dynamical system. The sampling rate
in such a system is limited by the frame rate of the camera,
though many reported systems operate at a sub-multiple of
the camera frame rate due to limited computational ability.
Negative feedback is applied to a plant that generally includes
a time delays due to charge integration time within the camera,
serial pixel transport from the camera to the vision system, and
computation time for feature parameter extraction. In addition
most reported visual servo systems employ a relatively low
bandwidth communications link between the vision system
and the robot controller, which introduces further latency.
Some robot controllers operate with a sample interval that
is not related to the sample rate of the vision system, and
this introduces still further delay. A good example of this
is the common Unimate Puma robot whose position loops
operate at a sample interval of 14 or 28 ms while vision
systems operate at sample intervals of 33 or 40 ms for RS
170 or CCIR video respectively [29]. It is well known that a
feedback system including delay will become unstable as the
loop gain is increased. Many visual closed-loop systems are
tuned empirically, increasing the loop gain until overshoot or
oscillation becomes intolerable.

Simple proportional controllers are commonly used and can
be shown to drive the steady state error to zero. However this
implies nothing about performance when tracking a moving
object, which will typically exhibit pronounced image plane
error and tracking lag. If the target motion is constant then
prediction (based upon some assumption of target motion)
can be used to compensate for the latency, and predictors
based on autoregressive models, Kalman filters, 01 - /? and
cv - /3 - y tracking filters have been demonstrated for visual
servoing. However when combined with a low sample rate
predictors can result in poor disturbance rejection and long
reaction time to unmodeled target motion. In order for a
visual-servo system to provide good tracking performance
for moving targets considerable attention must be paid to
modeling the dynamics of the robot, the target, and vision
system and designing an appropriate control system. Other
issues for consideration include whether or not the vision
system should “close the loop” around robot axes which can be
position, velocity or torque controlled. A detailed discussion
of these dynamic issues in visual servo systems is given by
Corke [29], [79].

In addition to these “low-level” considerations, other issues
that merit consideration are vision-based path planning, and

‘However recent results indicate that a visual servo system will converge
dcspite quite significant image Jacobian errors.

visual recognition. In the case of the former, although path-
planning is a well-established discipline, the idea of combining
image space feature path-planning with visual feedback has
not been adequately explored. For a simple example of visual
servoing with obstacle avoidance, see [78]. Visual recognition
or interpretation is also important for any visual servoing
system that is to operate without constant human intervention.
These are but two of the many issues that the designer
of an autonomous system that is to operate in unstructured
environments must confront.

It is appropriate to note that despite the long history and
intuitive appeal of using vision to guide robotic systems, the
applications of this technology remain limited. To some degree
this has been due to the high costs of the specialized hardware
and the diverse engineering skdls required to construct an
integrated visually controlled robot system. Fortunately the
costs of key elements such as cameras, framestores, image
processing hardware and computers in general, continue to
fall and appear set to do so for some time to come. Cameras
are now becoming available with performance characteristics
such as frame rate and image resolution beyond the limiting
broadcast television standards which have constrained them
for so long.

In conclusion we hope that this paper has shown that visual
servoing is both useful and achievable using technology that
is readily available today. In conjunction with the cost trends
noted above we believe that the future for visual servoing
is bright and will become an important and common control
modality for robot systems in the future.

ACKNOWLEDGMENT

The authors are grateful to R. Kelly and to the anonymous
reviewers for their helpful comments on an earlier version of
this

111

121

[31

141

151

~ 7 1

191

161

181

l1Ol

[I l l

1121

REFERENCES

Y. Shirai and H. Inoue, “Guiding a robot by visual fcedback in
assembling tasks,” Puttern Recognil., vol. 5. pp. 99-108, 1973.
J . Hill and W. T. Park, “Real time control of a robot with a mobile
camera,” i n P m . . 9th ISIR, Washington, D.C., Mar. 1979, pp. 233-246.
P. Corkc, “Visual control of robot manipulators-A review,” in I6.sual
Srrvoing K. Hashimoto. Ed. Singapore: World Scientific, 1993, pp.
1-3 1. (vol. 7 of X o h o f i c . . ~ und Automured Sy.c/rms).
G. D. Hagcr, “The “X-vision” system: A general purpose substrate for
real-time vision-based robotics,” in Proc. Workshop on Visionfbr Robots,
1995, pp. 56-63, 1995. Also available as Yale CS-RR-1078.
A. C. Sanderson and L. E. Wciss, “Image-based visual servo control
using relational &raph eiTor signals,” Proc. IEEE, pp. 1074-1077, 1980.
J. C. Latombe, Robot Motion Plunning.
J. J. Craig, Infroduction lo Roboiics. Menlo Park: Addison-Wesley.
2nd ed., 1986.
B. K. P. Horn, Robot Vision.
N. Hollinghurst and R. Cipolla, “Uncalibrated stereo hand eye coor-
dination,” Image und Msion Computing. vol. 12, no. 3, pp. 187-192,
1994.
J. Feddema and 0. Mitchcll, ‘Vision-guided servoing with feature-
based trajectory generation,” lEEE Truns. Robot. Aufomul., vol. 5 , pp.
691-700, Oct. 1989.
B. Espiau, F. Chaumette, and P. Rives, “.4 ncw approach to visual
servoing in robotics,” IEEE lruns. Rohof. Autonzut., vol. 8, pp. 3 13-326,
1992.
M. L. Cyros, “Datacube at the space shuttle’s launch pad,” Dalucuhe
World Review. vol. 2, pp. 1-3, Sept. 1988. Datacube Inc., 4 Dearborn
Road. Peabody, MA.

Boston: Kluwer, 1991.

Cambridge, MA: MIT Press, 1986.

HUTCHINSON et a1 TUTORIAL ON VISUAL SERVO CONTROL 669

113) W. Jang, K. Kim, M. Chung, and Z. Bien, “Concepts of augmented
image space and transformed feature space for efficient visual servoing
of an “eye-in-hand robot”,” Roborica, vol. 9, pp. 203-212, 1991.

[I41 A. Castano and S. A. Hutchinson, “Visual compliance: Task-directed vi-
sual servo control,” IEEE Truns. Robot. Automa/., vol. 10, pp. 334-342,
June 1994.

[I51 K. Hashimoto, T. Kimoto, T. Ehine, and H. Kimura, “Manipulator
control with image-based visual servo,” in Proc. IEEE In/’/ Conf on
Robotics cmd Automution, 1991, pp. 2267-2272.

1161 N. P. Papanikolopoulos and P. K. Khosla, “Adaptive robot visual
tracking: Theory and experiments,” IEEE Trans. Automat. Contr., vol.
38, no. 3, pp. 429445, 1993.

1171 N. P. Papanikolopoulos, P. K. Khosla, and T. Kanade, “Visual tracking
of a moving target by a camera mounted on a robot: A combination
of vision and control,” IEEE Trans. Robot. Automczt., vol. 9, no. I , pp.
14-35, 1993.

[181 S. Skaar, W. Brockman, and R. Hanson, “Camera-space manipulation,”
In/. J. Robot. Res., vol. 6 , no. 4, pp. 20-32, 1987.

1191 S. B. Skaar, W. H. Brockman, and W. S. Jang, “Three-dimensional
camcra spacc manipulation,” Irzt. J . Robol. Res., vol. 9, no. 4, pp. 22-39,
1990.

(201 J. T. Feddema, C. S. G. Lee, and 0. R. Mitchell, “Weighted selection of
image features for resolved rate visual feedback control,” IEEE Trans.
Robot. Automat., vol. 7, pp. 31-47, Feb. 1991.

1211 A. C. Sanderson, L. E. Weiss, and C. P. Neuman, “Dynamic sensor-
based control of robots with visual feedback,” [EEE Truns. Robot.
Auroniat., vol. RA-3, pp. 404-417, Oct. 1987.

1221 M. Lei and B. K. Ghosh, “Visually-guided robotic motion tracking,”
in Pror.. Thirtieth Annu. Allerton Con/: on Communicution, Control, and
Computing, 1992, pp. 712-721.

[23] R. L. Andersson, A Robot Ping-Pong Player. Experiment in Real-Time
lntellipxt Control.

1241 B. Yoshimi and P. K. Allen, “Active, uncalibrated visual servoing,”
in Proc. IEEE In/. Conf: on Rohotica and Automation, San Diego, CA,
May 1994, pp. 156-161.

1251 B. Nelson and P. K. Khosla, “Integrating sensor placement arid vi-
sual tracking strategies,” in Pmc. IEEE Int ’1 Con$ on Robozics and
Automation, 1994, pp. 1351-1356.

1261 I. E. Sutherland, “Three-dimensional data input by tablet,” Proc. IEEE,
vol. 62, pp. 453461, Apr. 1974.

1271 R . Tsai and R. Lenz, “A new technique for fully autonomous and effi-
cient 3D robotics handeye calibi-a tion.” IEEE Truns. Robot. Automat.,
vol. 5 , pp. 345-358, June 1989.

1281 R. Tsai, “A versatile camera calibration technique for high accuracy 3D
machine vision m etrology using off-the-shclf TV cameras and lenses,”
IEEE Trans. Robot. Automat., vol.

1291 P. 1. Corke, High-Peiformance u ~ l Closed-Lmp Robot Control.
Ph.D. Dissertation, Univcrsity of Melbourne, Dept. Mechanical and
Manufacturing Engineering, July 1994.

[30] D. E. Whitney, “The mathematics of coordinated control of’ prosthetic
arms and manipulators,” J. Dyn. Svst., Meas. Control, vol. 122, pp.
303-309, Dec. 1972.

1311 S. Chieaverini, L. Sciavicco, and B. Siciliano, “Control of robotic
systems through singularities,” in Proc. Inf. Workshop on Nonlineur
and Aduptive Con/rol: I.s.sue.s in Robotics C. C. de Wit, Ed. Berlin:

Cambridge, MA: MIT Press, 1988.

pp. 323-344, Aug. 1987.

Springer-Verlag, 199 I .
1321 S. Wiiesoma, D. Wolfe, and R. Richards, “Eye-to-hand coordination for - -

vision-guided robot control applications,” Int. J. Robot. Re.s., vol. 12,
no. 1, pp. 65-78, 1993.

[33] G. D. Hager, W.-C. Chang, and A. S. Morse, “Robot hand-eye coordi-
nation based on stereo vision,” I Control Sy.s/. Mag., vol. 15, pp.
30-39, Feb. 1995.

[34] C. Samson, M. Le Borgne, and B. Espiau, Robot Control: The Task
Function Approuch.

1351 G. Franklin, J. Powell, and A. Emami-Naeini, Feedback Control of
Dynamic Systems.

[36] P. K. Allen, A. Timcenko, B. Yoshimi, and P. Michelman, “Automated
tracking and grasping of a moving object with a robotic hand-eye
system,” IEEE Trclns. Robot. Automat., vol. 9, no. 2, pp. 152-165, 1993.

[37] A. Rizzi and D. Koditschek, “An active visual estimator for dexterous
manipulation,” in Proc. IEEE Int. Con$ on Robotics und AUt<JmUtkJn,
1994.

1381 T. S. Huang and A. N. Netravali, “Motion and structure from feature
correspondences: A review,” Proc. IEEE, vol. 82, no. 2, pp. 252-268,
1994.

1391 M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applicatio ns to image analysis and automated
cartography,” Conzmun. ACM, vol. 24, pp. 381-395, June 1981.

Oxford, England: Clarendon, 1992.

Boston, MA: Addison-Wesley, 2nd ed., 1991.

[40] R. M. Haralick, C. Lee, K. Ottenberg, and M. Nolle, “Analysis and
solutions of the three point perspective pose estimation problem,” in
Proc. IEEE Cunf Computer Vision Pattern Recognition, pp. 592-598,
1991.

[41] D. DeMenthon and L. S. Davis, “Exact and approximate solutions of the
perspective-three-point problem,” IEEE Trans. Pattern Anal. Machine
Intell., no. 1 I , pp. 1100-1105, 1992.

1421 R. Horaud, B. Canio, and 0. Leboullenx, “An analytic solution for the
perspective 4-point problem,” Comput. Vision Graphics, Image Process,
no. 1, pp. 33-1-4, 1989.

[43] M. Dhome, M. Richetin, J. LaprestC, and G. Rives, “Determination of
the attitude of 3-D objects from a single perspective view,” IEEE Trans.
Pattern Anal. Machine Intell., no. 12, pp. 1265-1278, 1989.

1441 G. H. Rosenfield, “The problem of exterior orientation in photogram-
metry,” Photogrumnietric Eng., pp. 536-553, 1959.

1451 D. G. Lowe, “Fitting parametrized three-dimensional models to im-
ages,” IEEE Trans. Pattern Anal. Machine Intell., no. 5 , pp. 441450,
1991.

1461 R. Goldberg, “Constrained pose refinement of parametric objects,” Int.
J. Comput. Vision, no. 2, pp. 181-211, 1994.

[47] R. Kumar, “Robust methods for estimating pose and a sensitivity
analysis,” CVGIP: Image Understanding, no. 3, pp. 313-342,
1994.

1481 S. Ganapathy, “Decomposition of transformation matrices for robot
vision,” Pattern Recog. Lezt., pp. 401412, 1989.

1491 M. Fischler and R. C. Bolles, “Random sample consensus: A paradigm
for model fitting and automatic cartography,” Commun. ACM, no. 6,

[SO] Y. Liu, T. S. Huang, and 0. D. Faugeras, “Determination of camera
location from 2-D to 3-D line and point correspondences,” IEEE Trans.
Pat. Anal. Machine Intell., no. 1, pp. 28-37, 1990.

[SI] C. Lu, E. J. Mjolsness, and G. D. Hager, “Online computation of exterior
orientation with application to hand-eye calibration,” DCS RR- 1046,
Yale University, New Haven, CT, Aug. 1994; To appear in Mathematical
and Compuler Modeling.

[52] A. Gelb, Ed., Applied Optimal Estimation. Cambridge, MA: MIT
Press, 1974.

1.531 W. Wilson, “Visual servo control of robots using Kalman filter estimates
of robot pose relative to work-pieces,” in Visual Sewoing, K. Hashimoto,
Ed.

1.541 C. Fagerer, D. Dickmanns, and E. Dickmanns, “Visual grasping with
long delay time of a free floating object in orbit,” Anton. Robots, vol.
1, no. I , 1994.

[SS] J. Pretlove and G. Parker, “The development of a real-time stereo-vision
system to aid robot guidance in carrying out a typical manufacturing
task,” in Proc. 22nd ISRR, Detroit, MI, 1991, pp. 21.1-21.23.

[56] B. K. P. Horn, H. M. Hilden, and S. Negahdaripour, “Closed-form
solution of absolute orientation using orthonormal matrices,” J. Opt.
Soc. Amer., vol. A-5, pp. 1127-1135, 198.

[57] K. S . Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting of
two 3-D point sets,” IEEE Trans. Pattern Anal. Machine Intell., vol. 9,
pp. 698-700, 1987.

[58] B. K. P. Horn, “Closed-form solution of absolute orientation using unit
quaternions,” J. Opt. Soc. Amer., vol. A-4, pp. 629-642, 1987.

[59] G. D. Hager, G. Grunwald, and G. Hirzinger, “Feature-based visual
servoing and ita application to telerobotics,” in Proc. IEEWRSJ Int. Con$
on lntellijient Robo!s and Systems, Jan. 1994, pp. 1644171.

[60] G. Agin, “Calibration and use of a light stripe range scnsor mounted
on the hand of a robot,” in Proc. IEEE In/. Conf: on Robotics und
Automution, 1985, pp. 680-685.

1611 S. Venkatesan and C. Archibald, “Realtime tracking in five degrees of
freedom using two wrist-mounted laser
Int. Conj! on Robotics and Automation, 1990, pp.

[62] J. Dietrich, G. Hirzinger, B. Gombert,
concept for a new generation of light-w
Robotics 1, V. Hayward and 0. Khatib, eds., Berling, Germany:
Springer-Verlag, 1989, pp. 287-295. (vol. 139 of Lecture Notes in
Control and Information Sciences).

[63] J. Aloimonos and D. P. Tsakiris, “On the mathematics of visual
tracking,” Image and Vision Computing, vol. 9, pp. 235-251, Aug. 1991.

[64] R. M. Haralick and L. G. Shapiro, Computer and Robot Vision. Read-
ing, MA: Addison-Wesley, 1993.

[65] F. W. Warner, Foundations uf Differentiublr Manifolds and Lie Groups.
New York: Springer-Verlag, 1983.

[66] W. Jang and Z. Bien, “Feature-based visual servoing of an eye-in-hand
robot with improved tracking performance,” in Proc. IEEE Int. Con$ on
Robotics and Automation, 199 I , pp. 2254-2260.

[67] 0. Faugeras, Three-Dimensional Computer Vision. Cambridge, MA:
MIT Press, 1993.

pp. 381-395, 1981.

Singapore: World Scientific, 1994, pp. 71-104.

670 lEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO 5, OCTOBER 1996

[68] G. D. Hager, “Calibration-free visual control using projective invari-
ance,” in Proc. ICCV, pp. 1009-1015, 1995. Also available as Yale

[69] D. Kim, A. Rizzi, G. D. Hager, and D. Koditschek, “A “robust”
convergent visual servoine svstem.” in Proc. IEEE/RSJ Int. Conf on

Seth Hutchinson (S’85-M’88), for a photograph and biography, see p. 650
of this issue.

CS-RR-1046.

- ,

Gregory D. Hager (S’85-M’SS), for a photograph and biography, see p. 650
of this issue,

Intelligent Robots and Systems, 1995, vol. I, pp. 348-353.
[70] R. L. Anderson, “Dynamic sensing in a ping-pong playing robot,” IEEE

Trans. Robot. Automat.. vol. 5. no. 6. DU. 723-739. 1989.
I I L

[71] E. Dickmanns and V. Graefe, “Dynamic monocular machine vision,’’
Mach. Vis. Applicat., vol. 1, pp. 223-240, 1988.

[72] J. Foley, A. van Dam, S. Feiner, and J. Hughes, Computer Graphics.
Reading, MA: Addison-Wesley, 1993.

[731 D. Ballard and C. Brown, Computer Vision. Englewood Cliffs, NJ:
Prentice-Hall, 1982.

[74] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in Proc. Int. Joint Con$ on Artificzul
Intelligence, 198 1, pp. 674-679.

[75] P. Anandan, “A computational framework and an algorithm for the
measurement of structure from motion,” h t . J. Coinput. Vis., vol. 2,
pp. 283-310, 1989.

[76] J. Shi and C. Tomasi, “Good features to track,” in Proc. IEEE Computer
Society Con$ on Computer Vision and Pattern Recognition, 1994, pp.
593-600.

[77] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: active contour
models,” Int. J. Comput. Vis., vol. I , no. 1, pp. 321-331, 1987.

[78] K. Hosada and M. Asada, ‘Versatile visual servoing without knowledge
of true jacobian,” Proc. IROS 94, Sept. 1994, pp. 186-191.

[79] P. Corke and M. Good, “Dynamic effects in visual closed-loop systems,”
IEEE Trans. Robot. Automat., this issue, pp. 671-683.

Peter 1. Corke (S’82-M’83 received the B E
(Elec), the M.Eng.’Sc. and Ph.D. degrees from the
University of Melbourne, Australia, where he also
lectured in Electrical Engineering.

He is a Principal Research Scientist within the In-
dustrial Automation program of the CSIRO Division
of Manufacturing Technology, Kenmore, Australia.
As a CSIRO overseas fellow (1988-1989) he visited
the GRASP laboratory at the University of Penn-
sylvania, Philadelphia. At CSIRO, he has worked
extensivelv in the areas of robotics. control. and

high-speed machine vision. Projects have included robot control architectures,
force controlled deblurring, development of the APA512 (a hardware unit for
video rate region analysis of binary images) and applications of high-speed
machine vision to the food processing, traffic monitoring and other sectors.
More recently his research interests have included high-performance visually
guided robot motion, and the application of robotic and vision technology to
the automation of mining equipment.

