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A Tutorial on Visual Servo Control 
Seth Hutchinson, Member, IEEE, Gregory D. Hager, Member, IEEE, and Peter I. Corke, Member, IEEE 

Abstract-This article provides a tutorial introduction to visual 
servo control of robotic manipulators. Since the topic spans many 
disciplines our goal is limited to providing a basic conceptual 
framework. We begin by reviewing the prerequisite topics from 
robotics and computer vision, including a brief review of coordi- 
nate transformations, velocity representation, and a description 
of the geometric aspects of the image formation process. We then 
present a taxonomy of visual servo control systems. The two 
major classes of systems, position-based and image-based systems, 
are then discussed in detail. Since any visual servo system must 
be capable of tracking image features in a sequence of images, we 
also include an overview of feature-based and correlation-based 
methods for tracking. We conclude the tutorial with a number 
of observations on the current directions of the research field of 
visual servo control. 

I. INTRODUCTION 
HE VAST majority of today’s growing robot population T operate in factories where the environment can be con- 

trived to suit the robot. Robots have had far less impact in 
applications where the work environment and object placement 
cannot be accurately controlled. This limitation is largely due 
to the inherent lack of sensory capability in contemporary 
commercial robot systems. It has long been recognized that 
sensor integration is fundamental to increasing the versatility 
and application domain of robots, but to date this has not 
proven cost effective for the bulk of robotic applications, 
which are in manufacturing. The “frontier” of robotics, which 
is operation in the everyday world, provides new impetus for 
this research. Unlike the manufacturing application, it will not 
be cost effective to re-engineer “our world” to suit the robot. 

Vision is a useful robotic sensor since it mimics the human 
sense of vision and allows for noncontact measurement of 
the environment. Since the early work of Shirai and Inoue 
[ I ]  (who describe how a visual feedback loop can be used 
to correct the position of a robot to increase task accuracy), 
considerable effort has been devoted to the visual control of 
robot manipulators. Robot controllers with fully integrated 
vision systems are now available from a number of vendors. 
Typically visual sensing and manipulation are combined in an 
open-loop fashion, ‘‘looking’’ then “moving”. The accuracy of 

Manuscript reccived March 24, 1995; revised January 19, 1996. G. D. 
Hager was supported by ARPA grant N00014-93-1-1235, Army DURIP grant 
DAAH04-95-1-0058, National Science Foundation grant IRI-9420982, and 
by funds provided by Yale University. This paper was recommended for 
publication by Associate Editor J. Funda and Editor S. E. Salcudean upon 
evaluation of reviewers’ comments. 

S. Hutchinson is with the Department of Electrical and Computer Engineer- 
ing, The Beckman Institute for Advanced Science and Technology, University 
of- Illinois at Urbana-Champaign, Urbana, IL 61801 USA. 

G. D. Hager is with the Department of Computer Science, Yale University, 
New Haven, CT 06520-8285 USA. 

P. I. Corke is with the CSIRO Division of’ Manufacturing Technology, 
Kenmore, Australia, 4069. 

Publisher Item Identifier S 1042-296)3(96)07366-1. 

the resulting operation depends directly on the accuracy of the 
visual sensor and the robot end-effector. 

An alternative to increasing the accuracy of these subsys- 
tems is to use a visual-feedback control loop that will increase 
the overall accuracy of the system-a principal concern in 
most applications. Taken to the extreme, machine vision 
can provide closed-loop position control for a robot end- 
effector-this is referred to as visual servoing. This term 
appears to have been first introduced by Hill and Park [2] 
in 1979 to distinguish their approach from earlier “blocks 
world” experiments where the system alternated between 
picture taking and moving. Prior to the introduction of this 
term, the less specific term visual feedback was generally used. 
For the purposes of this article, the task in visual servoing is to 
use visual information to control the pose of the robot’s end- 
effector relative to a target object or a set of target features. 
The task can also be defined for mobile robots, where it 
becomes the control of the vehicle’s pose with respect to some 
landmarks. 

Since the first visual servoing systems were reported in the 
early 1980s, progress in visual control of robots has been fairly 
slow, but the last few years have seen a marked increase 
in published research. This has been fueled by personal 
computing power crossing the threshold that allows analysis 
of scenes at a sufficient rate to “servo” a robot manipulator. 
Prior to this, researchers required specialized and expensive 
pipelined pixel processing hardware. Applications that have 
been proposed or prototyped span manufacturing (grasping 
objects on conveyor belts and part mating), teleoperation, 
missile tracking cameras, and fruit picking, as well as robotic 
ping-pong, juggling, balancing, car steering, and even aircraft 
landing. A comprehensive review of the literature in this field, 
as well the history and applications reported to date, is given 
by Corke 131 and includes a large bibliography. 

Visual servoing is the fusion of results from many elemental 
areas including high-speed image processing, kinematics, dy- 
namics, control theory, and real-time computing. It has much 
in common with research into active vision and structure 
from motion, but is quite different from the often described 
use of vision in hierarchical task-level robot control systems. 
Many of the control and vision problems are similar to those 
encountered by active vision researchers who are building 
“robotic heads”. However the task in visual servoing is to 
control a robot to manipulate its environment using vision as 
opposed to just observing the environment. 

Given the current interest in visual servoing it seems both 
appropriate and timely to provide a tutorial introduction to 
this topic. Our aim is to assist others in creating visually 
servoed systems by providing a consistent terminology and 
nomenclature, and an appreciation of possible applications. 

1042-296>(/96$05.00 0 1996 IEEE 



652 IEEE TRANSACTIONS ON ROBOTICS AND AIJTOMATION, VOL 12, NO 5 ,  OCTOBER 1996 

To assist newcomers to the field we will describe techniques 
which require only simple vision hardware (just a digitizer), 
freely available vision software [4], and which make few 
assumptions about the robot and its control system. This is 
sufficient to commence investigation of many applications 
where high control andor vision performance are not required. 

One of the difficulties in writing such an article is that 
the topic spans many disciplines that cannot be adequately 
addressed in a single article. For example, the underlying 
control problem is fundamentally nonlinear, and visual recog- 
nition, tracking, and reconstruction are fields unto themselves. 
Therefore we have concentrated on certain basic aspects of 
each discipline, and have provided an extensive bibliography 
to assist the reader who seeks greater detail than can be 
provided here. Our preference is always to present those 
ideas and techniques that we have found to function well 
in practice and that have some generic applicability. Another 
difficulty is the current rapid growth in the vision-based motion 
control literature, which contains solutions and promising 
approaches to many of the theoretical and technical problems 
involved. Again we have presented what we consider to be 
the most fundamental concepts, and again refer the reader to 
the bibliography. 

The remainder of this article is structured as follows. 
Section I1 reviews the relevant fundamentals of coordinate 
transformations, pose representation, and image formation. In 
Section 111, we present a taxonomy of visual servo control 
systems (adapted from [5]). The two major classes of systems, 
position-based visual servo systems and image-based visual 
servo systems, are then discussed in Sections IV and V 
respectively. Since any visual servo system must be capable 
of tracking image features in a sequence of images, Section VI 
describes some approaches to visual tracking that have found 
wide applicability and can be implemented using a minimum 
of special-purpose hardware. Finally, Section VI1 presents a 
number of observations regarding the current directions of the 
research field of visual servo control. 

11. BACKGROUND AND DEFINITIONS 
In this section we provide a very brief overview of some 

topics from robotics and computer vision that are relevant to 
visual servo control. We begin by defining the terminology and 
notation required to represent coordinate transformations and 
the velocity of a rigid object moving through the workspace 
(Sections 11-A and 11-B). Following this, we briefly discuss 
several issues related to image formation (Sections 11-C and 
11-D), and possible camerdrobot configurations (Section II- 
E). The reader who is familiar with these topics may wish to 
proceed directly to Section 111. 

A. Coordinate Transformations 

In this paper, the task space of the robot, represented by I; 
is the set of positions and orientations that the robot tool can 
attain. Since the task space is merely the configuration space of 
the robot tool, the task space is a smooth m-manifold (see, e.g., 
[6]). If the tool is a single rigid body moving arbitrarily in a 
three-dimensional workspace, then 1 = SE3 = $?3 x SO3, and 

m = 6. In some applications, the task space may be restricted 
to a subspace of SE3. For example, for pick and place, we 
may consider pure translations (7 = iK3; for which m = 3 ) :  
while for tracking an object and keeping it in view we might 
consider only rotations (7 = SO3,  for which m = 3 ) .  

Typically, robotic tasks are specified with respect to one or 
more coordinate frames. For example, a camera may supply 
information about the location of an object with respect to 
a camera frame, while the configuration used to grasp the 
object may be specified with respect to a coordinate frame 
attached to the object. We represent the coordinates of point 
P with respect to coordinate frame .?: by the notation " P .  
Given two frames, z and y 7  the rotation, matrix that represents 
the orientation of frame y with respect to frame x is denoted 
by 3"?,. The location of the origin of frame y with respect to 
frame IC is denoted by the vector V,. Together, the position 
and orientation of a frame specify a pose, which we denote by 
"zy. If the leading superscript, 2 ,  is not specified, the world 
coordinate frame is assumed. 

We may also use a pose to specify a coordinate transforma- 
tion. We use function application to denote applying a change 
of coordinates to a point. In particular, if we are given YP (the 
coordinates of point P relative to frame y), and we obtain 
the coordinates of P with respect to frame R' by applying the 
coordinate transformation rule 

In the sequel, we will use the notation 2xy to refer either 
to a coordinate transformation, or to a pose that is specified 
by a rotation matrix and translation, and Tt,. respec- 
tively. Likewise, we will use the terms pose and coordinate 
transformation interchangeably. In general, there should be no 
ambiguity between the two interpretations of z:zy '. 

Often, we must compose multiple coordinate transforma- 
tions to obtain a desired change of coordinates. For example, 
suppose that we are given poses sxv and Yx,. If we are given 
"E' and wish to compute "'17, we may use the composition of 
coordinate transformations 

As seen here, we represent the composition of coordinate 
transformations by 'x, = "x, o Yx,, and the corresponding 
coordinate transformation of the point "P by ( rxy  ovxz) ("P) .  
The corresponding rotation matrix and translation are given by 

'We have not used more common notations based on homogeneous 
transforms because over parametcrizing points makes it difficult to develop 
somc of the machinery nccded for control. 
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Some coordinate frames that will be needed frequently are 
referred to by the following superscripts/subscripts: 

The coordinate frame attached to the robot 
end effector 

The coordinate frame attached to  the target 

0 

c, 

Thc base frame for thc robot 

The coordinste frame of the i th camcra 

When 7 = SE3! we will use the notation xp E I to 
represent the pose of the end-effector coordinate frame relative 
to the world frame. In this case, we often prefer to parameterize 
a pose using a translation vector and three angles, (e.g., 
roll, pitch and yaw [7]). Although such parameterizations are 
inherently local, it is often convenient to represent a pose by a 
vector T E g6, rather than by 2, E 7. This notation can easily 
be adapted to the case where I C SE3. For example, when 
'T = !R3 I we will parameterize the task space by T = [x, TJ. z]'. 
In the sequel, to maintain generality we will assume that 
T E Rm, unless we are considering a specific task. 

B. The Velocity of a Rigid Object 

In visual servo applications, we are often interested in 
the relationship between the velocity of some object in the 
workspace (e.g., the manipulator end-effector) and the cor- 
responding changes that occur in the observed image of the 
workspace. In this section, we briefly introduce notation to 
represent velocities of objects in the workspace. 

Consider the robot end-effector moving in a workspace 
with 7 C SE3. In base coordinates, the motion is described 
by an angular velocity 62(t)  = [ ~ ~ ( t ) , ~ ~ ( t ) , w ~ ( t ) ] ~  and 
a translational velocity T( t )  = [T,(t), T,(t), TZ(t)I7'. The 
rotation acts about a point which, unless otherwise indicated, 
we take to be the origin of the base coordinate system. Let 
P be a point that is rigidly attached to the end-effector, with 
base frame coordinates [:I;., y, 21'. The time derivatives of the 
coordinates of P ,  expressed in base coordinates, are given by 

(9) 
(10) 
(11) 

.i: = ZWY - yw,: + TT 
= Z W ,  - ZW, + Tu 

2 =YW, - zwl, + T, 

which can be written in vector notation as 

This can be written concisely in matrix form by noting that 
the cross product can be represented in terms of the skew- 
symmetric matrix 

allowing us to write 
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Together, T and R define what is known in the robotics 
literature as a velocity screw 

r =  

Note that i also represents the derivative of T when the rotation 
matrix, R, is parameterized by the set of rotations about the 
coordinate axes. 

Define the 3 x ci matrix A ( P )  = [I31 - s k ( P ) ]  where 13 
represents the 3 x 3 identity matrix. Then (13) can be rewritten 
in matrix form as 

P = A ( P ) f .  (14) 

Suppose now that we are given a point expressed in end- 
effector coordinates, ' P .  and we wish to determine the motion 
of this point in base coordinates as the robot is in motion. 
Combining (1) and (14), we have 

P = A ( 2 R ( C P ) i .  (15) 

Occasionally, it is useful to transform velocity screws 
among coordinate frames. For example, suppose that ' i  = 
['T; 'Cl]' is the velocity of the end-effector in end-effector 
coordinates, Then the equivalent screw in base coordinates is 

I r =  [;I = [ ReeR 
R,"T - R,'R x t ,  

C. Camera Projection Models 
To control the robot using information provided by a com- 

puter vision system, it is necessary to understand the geometric 
aspects of the imaging process. Each camera contains a lens 
that forms a 2D projection of the scene on the image plane 
where the sensor is located. This projection causes direct depth 
information to be lost so that each point on the image plane 
corresponds to a ray in 3D space. Therefore, some additional 
information is needed to determine the 3D coordinates cor- 
responding to an image plane point. This information may 
come from multiple cameras, multiple views with a single 
camera, or knowledge of the geometric relationship between 
several feature points on the target. In this section, we describe 
three projection models that have been widely used to model 
the image formation process: perspective projection, scaled 
orthographic projection, and affine projection. Although we 
briefly describe each of these projection models, throughout 
the remainder of the tutorial we will assume the use of 
perspective projection. 

For each of the three projection models, we assign the 
camera coordinate system with the T C -  and y-axes forming 
a basis for the image plane, the z-axis perpendicular to the 
image plane (along the optical axis), and with origin located 
at distance X behind the image plane, where X is the focal 
length of the camera lens. This is illustrated in Fig. 1. 
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Fig. 1. The coordinate frame for the carnerdlens \ystein. 

I )  Perspective Projection: Assuming that the projective ge- 
ometry of the camera is modeled by perspective projection 
(see, e.g., [8]), a point, “ P  = [ x ,  y j  z]”: whose coordinates are 
expressed with respect to the camera coordinate frame, c,  will 
project onto the image plane with coordinates p = [ I L , ~ ] ~ ,  

given by 

If the coordinates of I’ are expressed relative to coordinate 
frame x; we must first perform the coordinate transformation 

2 )  Scaled Orthographic Projection: Perspective projection 
is a nonlinear mapping from Cartesian to image Coordinates. 
In many cases, it is possible to approximate this mapping by 
the linear scaled orthographic projection. Under this model, 
image coordinates for point ‘I‘ are given by 

c p  = ( -x , r (JP) .  

D. Image Features and the Image Feature Parameter Space 

In the computer vision literature, an image feature is any 
structural feature than can be extracted from an image (e.g., an 
edge or a corner). Typically, an image feature will correspond 
to the projection of a physical feature of some object (e.g., the 
robot tool) onto the camera image plane. A good feature point 
is one that can be located unambiguously in different views 
of the scene, such as a hole in a gasket [lo] or a contrived 
pattern [ l l ] ,  [12]. We define an image feature parameter to 
be any real-valued quantity that can be calculated from one 
or more image features.2 Some of the feature parameters that 
have been used for visual servo control include the image plane 
coordinates of points in the image [l I], [14]-[19], the distance 
between two points in the image plane and the orientation of 
the line connecting those two points [lo], [20], perceived edge 
length [21], the area of a projected surface and the relative 
areas of two projected surfaces [21], the centroid and higher 
order moments of a projected surface [2 11-[24], the parameters 
of lines in the image plane [ I l l ,  and the parameters of an 
ellipse in the image plane 1111. In this tutorial we will restrict 
our attention to point features whose parameters are their 
image plane coordinates. 

Given a set of k image feature parameters, we can define an 
image feature parameter vector f = [ f l  . . . f k I T .  Since each 
,f, is a (possibly bounded) real valued parameter, we have 
f = [ f l  . . . f k , l T  E 3 C Rk, where 3 represents the image 
feature parameter space. 

The mapping from the position and orientation of the end- 
effector to the corresponding image feature parameters can be 
computed using the projective geometry of the camera. We 
will denote this mapping by F ,  where 

F :  I ---i 3. (19) 
where s is a fixed scale factor. 

Orthographic projection models are valid for scenes where 
the relative depth of the points in the scene is small compared 
to the distance from the camera to the scene, for example, an 
airplane flying over the earth, or a camera with a long focal 
length lens placed several meters from the workspace. 

3) Af$ne projection: Another linear approximation to per- 

For example, if F C g2 is the space of ? L , U  image plane 
coordinates for the projection of some point P onto the image 
plane, then, assuming perspective projection, f = [U, uIT: 
where 71 and ?I are given by (16). The exact form of (19) 
will depend in part on the relative configuration of the camera 
and end-effector as discussed in the next section. 

spective projection is known as affine projection. In this case, 
the image coordinates for the projection of a point ‘ P  are 
given by 

[:] = A ‘ P + c  (1 8) 

where A is an arbitrary 2 x 3 matrix and c is an arbitrary 
2-vector. 

Note that scaled orthographic projection is a special case 
of affine projection. Affine projection does not correspond to 
any specific imaging situation. Its primary advantage is that 
it is a good local approximation to perspective projection that 
accounts for both the external geometry of the camera (i.e., 
its position in space), and the intemal geometry of the lens 
and CCD (i.e., the focal length, and scaling and offset to pixel 
coordinates). Since the model is purely linear, A and c are 
easily computed using linear regression techniques [9], and 

E. Camera Configuration 

Visual servo systems typically use one of two camera con- 
figurations: end-effector mounted, or fixed in the workspace. 

The first, often called an eye-in-hand configuration, has the 
camera mounted on the robot’s end-effector. Here, there exists 
a known, often constant, relationship between the pose of the 
camera(s) and the pose of the end-effector. We represent this 
relationship by the pose ‘x,. The pose of the target3 relative 
to the camera frame is represented by ‘zt .  The relationship 
between these poses is shown in Fig. 2. 

The second configuration has the camera(s) fixed in the 
workspace. In this case, the camera(s) are related to the base 
coordinate system of the robot by ‘2, and to the object by 

Jang [ 131 provides a formal definition of what we term feature parameters 

3The word fcirwr will be used to refer to the obiect of interest. that is. the 
as image functionals. 

the camera calibration problem is greatly simplified. object that wi l l  he tracked 
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Fig. 2. Relevant coordinate frames (world, end-effector, camera and target) for end-effector mounted, and fixed, camera configurations 

Fig. 3. Dynamic position-based look-and-move structure 

(‘xt. In this case, the camera image of the target is, of course, 
independent of the robot motion (unless the target is the end- 
effector itself). A variant of this is for the camera to be 
agile, mounted on another robot or padtilt head in order to 
observe the visually controlled robot from the best vantage 

For either choice of camera configuration, prior to the 
execution of visual servo tasks, camera calibration must be 
performed in order to determine the intrinsic camera pa- 
rameters such as focal length, pixel pitch and the principal 
point. A fixed camera’s pose, Oxc,. with respect to the world 
coordinate system must be established, and is encapsulated 
in the extrinsic parameters determined by a camera calibra- 
tion procedure. For the eye-in-hand case the relative pose, 
‘xC. must be determined and this is known as the handleye 
calibration problem. Calibration is a long standing research 
issue in the computer vision community (good solutions to the 
calibration problem can be found in a number of references, 
e.g., [26]-[28]). 

~ 5 1 .  

111. SERVOING ARCHITECTURES 

In 1980, Sanderson and Weiss [5] introduced a taxonomy of 
visual servo systems, into which all subsequent visual servo 
systems can be categorized. Their scheme essentially poses 
two questions: 

1)  Is the control structure hierarchical, with the vision 
system providing set-points as input to the robot’s joint- 
level controller, or does the visual controller directly 
compute the joint-level inputs? 

2) 1s the error signal defined in 3D (task space) coordinates, 

The resulting taxonomy, thus, has four major categories, which 
we now describe. These fundamental structures are shown 
schematically in Figs. 3-6. 

If the control architecture is hierarchical and uses the vision 
system to provide set-point inputs to the joint-level controller, 
thus making use of joint feedback to internally stabilize the 
robot, it is referred to as a dynamic look-and-move system. 
In contrast, direct visual servo4 eliminates the robot controller 
entirely replacing it with a visual servo controller that directly 
computes joint inputs, thus using vision alone to stabilize the 
mechanism. 

For several reasons, nearly all implemented systems adopt 
the dynamic look-and-move approach. Firstly, the relatively 
low sampling rates available from vision make direct control 
of a robot end-effector with complex, nonlinear dynamics 
an extremely challenging control problem. Using internal 
feedback with a high sampling rate generally presents the 
visual controller with idealized axis dynamics [29]. Sec- 
ondly, many robots already have an interface for accepting 
Cartesian velocity or incremental position commands. This 
simplifies the construction of the visual servo system, and also 
makes the methods more portable. Thirdly, look-and-move 
separates the kinematic singularities of the mechanism from 
the visual controller, allowing the robot to be considered as 

or directly in terms of image features? 

4Sanderson and Weiss used the term “visual servo” for this type of system, 
but since then this term has come to be accepted as a generic description for 
any type o f  visual control of a robotic system. Here we use the term “direct 
visual servo’’ to avoid confusion. 
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Fig 4 Dynamic image-based look-and movc stiuLture 

lrflagc 
feature 

Fig. 5.  Position-based visual servo (PBVS) structure as per Weiss 

Camera 

Fig. 6. Image-based visual servo (IBVS) structure as per Weiss. 

an ideal Cartesian motion device. Since many resolved rate 
[30] controllers have specialized mechanisms for dealing with 
kinematic singularities [3 11, the system design is again greatly 
simplified. In this article, we will utilize the look-and-move 
model exclusively. 

The second major classification of systems distinguishes 
position-based control from image-based control. In position- 
bused control, features are extracted from the image and used 
in conjunction with a geometric model of the target and the 
known camera model to estimate the pose of the target with 
respect to the camera. Feedback is computed by reducing er- 
rors in estimated pose space. In image-based servoing, control 
values are computed on the basis of image features directly. 
The image-based approach may reduce computational delay, 
eliminate the necessity for image interpretation and eliminate 
errors due to sensor modeling and camera calibration. However 

it does present a significant challenge to controller design since 
the plant is nonlinear and highly coupled. 

One of the typical applications of visual servoing is to 
position an end-effector relative to a target. For example, 
many authors use an end-effector mounted camera to position 
a robot arm for grasping. In most cases, the control algorithm 
is expressed in terms of moving the camera to a pose defined 
in terms of the image of the object to be grasped. The position 
of the end-effector relative to the object is determined only 
indirectly by its known kinematic relationship with the camera. 
Errors in this kinematic relationship lead to positioning errors 
which cannot be observed by the system. Observing the 
end-effector directly makes it possible to sense and correct 
for such errors. In general, there is no guarantee on the 
positioning accuracy of the system unless control points on 
both the end-effector and target can be observed [9], [32],  
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[33]. To emphasize this distinction, we refer to systems that 
only observe the target object as endpoint open-loop (EOL) 
systems, and systems that observe both the target object and 
the robot end-effector as endpoint closed-loop (ECL) systems. 
The differences between EOL and ECL systems will be made 
more precise in subsequent discussions. 

It is usually possible to transform an EOL system to an 
ECL system simply by including direct observation of the 
end-effector or other task-related control points. Thus, from 
a theoretical perspective, it would appear that ECL systems 
would always be preferable to EOL systems. However, since 
ECL systems must track the end-effector as well as the target 
object, the implementation of an ECL controller often requires 
solution of a more demanding vision problem and places 
field-of-view constraints on the system that cannot always be 
satisfied. 

IV. POSITION-BASED VISUAL SERVO CONTROL 

We begin our discussion of visual servoing methods with 
position-based visual servoing. As described in the previous 
section, in position-based visual servoing, features are ex- 
tracted from the image and used to estimate the pose of the 
target with respect to the camera. Using these values, an error 
between the current and the desired pose of the robot is defined 
in the task space. In this way, position-based control neatly 
separates the control issues, namely the the computation of 
the feedback signal, from the estimation problems involved in 
computing position or pose from visual data. 

We now formalize the notion of a positioning task as 
follows: 

Definition 4.1: A positioning task is represented by a func- 
tion E :  I + R"'. This function is referred to as the kinematic 
error ,function. A positioning task is fulfilled with the end- 
effector in pose 2, if E ( 2 , )  = 0. 

If we consider a general pose x, for which the task is 
fulfilled, the error function will constrain some number, d 5 
711; degrees of freedom of the manipulator. The value d will be 
referred to as the degree of the constraint. As noted by Espiau 
et ul. [ I l l ,  [34], the kinematic error function can be thought 
of as representing a virtual kinematic constraint between the 
end-effector and the target. 

Once a suitable kinematic error function has been defined 
and the parameters of the functions are instantiated from visual 
data, a regulator is defined that reduces the estimated value of 
the kinematic error function to zero. This regulator produces 
at every time instant a desired end-effector velocity screw 
U E $2' that is sent to the robot control subsystem. For the 
purposes of this article, we use simple proportional control 
methods for linear and linearized systems to compute U [35].  
Although there are formalized methods for developing such 
control laws, since the kinematic error functions are defined 
in Cartesian space, for most problems it i s  possible to develop 
a regulator through geometric insight. The process is to first 
determine the relative motion that would fulfill the task, and 
then to write a control law that would produce that motion. 

The remainder of the section presents various example 
problems that we have chosen to provide some insight into 

ways of thinking about position-based control, and that will 
also provide useful comparisons when we consider image- 
based control in the next section. Section IV-A introduces 
several simple positioning primitives, based on directly ob- 
servable feature points, which can be compounded to achieve 
more complex positioning tasks. Next, Section IV-B describes 
positioning tasks based on the explicit estimation of the target 
object's pose. Finally, in Section IV-C, we briefly describe 
how point position and object pose can be computed using 
visual information from one or more cameras-the visual 
reconstruction problem. 

A. Point-Feature Based Motions 

We begin by considering a positioning task in which some 
point on the robot with end-effector coordinates, ' P ,  is to be 
brought to a fixed stationing point, S. visible in the scene. We 
refer to this as point-to-point positioning. In the case where the 
camera is fixed, the kinematic error function may be defined 
in base coordinates as 

Epp(2,;  s, " P )  = X " ( " P )  - s. (20) 

Here, as in the sequel, the argument before the semicolon is the 
value to be controlled (in all cases, manipulator position) and 
the values after the semicolon parameterize the positioning 
task. 

E,, defines a three degree of freedom kinematic constraint 
on the robot end-effector position. If the robot workspace is 
restricted to be 7 = @, this task can be thought of as a rigid 
link that fully constrains the pose of the end-effector relative 
to the target. When IT SE3, the constraint defines a virtual 
spherical joint between the object and the robot end-effector. 

Let I = R3. We first consider the case in which one or 
more cameras calibrated to the robot base frame furnish an 
estimate, ' S .  of the stationing point coordinates with respect 
to a camera coordinate frame. Using the estimate of the camera 
pose in base coordinates, 2'. from off-line calibration and (l), 
we have S = S,('S). 

Since 7 = R3, the control input to be computed is the 
desired robot translational velocity, which we denote by u3 to 
distinguish it from the more general end-effector screw. Since 
(20) is linear in xf, it is well known that in the absence of 
outside disturbances, the proportional control law 

will drive the system to an equilibrium state in which the 
value of the error function is zero [35]. The value k > 0 is a 
proportional feedback gain. Note that we have written 3, in 
the feedback law to emphasize the fact that this value is also 
subject to errors. 

The expression (21) is equivalent to open-loop positioning 
of the manipulator using vision-based estimates of geome- 
try. Variations on this scheme are used by [36], [37]. In 
our simplified dynamics, the manipulator is stationary when 
ILJ = 0. Since the right hand side of the equation includes 
estimated quantities, it follows that errors in 3,, or "S 
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(robot kinematics, camera calibration and visual reconstruction 
respectively) can lead to positioning errors of the end-effector. 

Now, consider the situation when the cameras are mounted 
on the robot and calibrated to the end-effector. In this case, 
we can express (20) in end-effector coordinates 

pEIIp(z,; s; ' P )  = ' P  - 'zo(S). (22) 

The camera(s) furnish an estimate of the stationing point, " S ,  
which can be combined with information from the camera 
calibration and robot kinematics to produce S = (ke o 
'kc)(?,!?). w e  now compute 

'213 = - k  eElIp(kp; (& 0 "kC)("S) ,  " P )  
= - k (?P-  ('20 0 02' 0 % ) ( " S ) )  

= -k( 'P - e k . c ( " s ) ) .  (23) 

Notice that the terms involving 2' have dropped out. 
Thus (23) is not only simpler, but positioning accuracy is 
also independent of the accuracy of the robot kinematics-a 
fundamental benefit of visual servoing. 

All of the above formulations presume prior knowledge of 
" P  and are therefore EOL systems. To convert them to ECL 
systems, we suppose that ' P  is directly observed and estimated 
by the camera system. In this case, (21) and (23) can be written 

A A  

us = -k E p p ( d e ; k < : ( C s ) ,  "2J"P))  = -k 2J'P - ' S )  

cu3 = - k  'Epp(k,;kc(Cs), % ( " P ) )  = -k ekc("P - 'S) 
(24) 

(25)  

respectively. We now see that u3 (respectively ' U S )  does not 
depend on 2, and is homogeneous in xc (respectively 
Hence, if 'S = ' P ,  then u3 = 0,  independent of errors in 
the robot kinematics or the camera calibration. This is an 
important advantage for systems where a precise camerdend- 
effector relationship is difficult or impossible to determine 
off-line. 

Consider now the full Cartesian problem where I C SE3, 
and the control input is the complete velocity screw U E R6. 
Since, the error functions presented above only constrain 3 
degrees of freedom, the problem of computing U from the 
estimated error is under-determined. One way of proceeding 
is as follows. Consider the case of free standing cameras. Then 
in base coordinates we know that P = 213. Using (14), we can 
relate this to the end-effector velocity screw as follows: 

P = 113 = A( P)u.  (26) 

Thus, if we could "solve for" IL in the above equation, we 
could effectively use the three-dimensional solution to arrive at 
the full Cartesian solution. Unfortunately, A is not square and 
therefore can cannot be inverted to solve for U .  However, recall 
that the matrix right inverse for an m x n matrix M ,  n > m is 
defined as M+ = M T ( M M T ) - l .  The right inverse computes 
the minimum norm vector which solves the original system of 
equations. Hence, we have 

U A ( P ) + u ~  (27) 

for free-standing cameras. Similar manipulations yield 

for end-effector mounted cameras. Substituting the appropriate 
expression for u3 or eu, from the previous discussion leads to 
a form of proportional regulation for the Cartesian problem. 

As a second example of feature-based positioning, consider 
that some point on the end-effector, " P ,  is to be brought to 
the line joining two fixed points S1 and S2 in the world. The 
shortest path for performing this task is to move " P  toward the 
line joining SI and 5'2 along the perpendicular to the line. The 
error function describing this trajectory in base coordinates is: 

Epz(2e;Sl,SZ,"P) 
= (S2 - SI) x ( ( zr ( 'P)  - SI) X (5'2 - SI)). (29) 

Notice that although E,l is a mapping from 7 to $ I 3 .  placing a 
point on a line is a constraint of degree 2. From the geometry of 
the problem and the previous discussion, we see that defining 

U = -kA(kr('P))+Epl(3,;  gl, g2, ' P )  

is a proportional feedback law for this problem. 

the end-effector 
Suppose that now we apply this constraint to two points on 

Eppl now defines a four degree of freedom positioning con- 
straint that aligns the points on the end-effector with those 
in target coordinates, and again no unique motion satisfies 
this kinematic error function. A geometrically straightforward 
solution is to compute a translation, T ,  which moves ' P I  to 
the line through SI and S2. Simultaneously, we can choose 
a rotation, R which rotates eP2 about eP1 so that the line 
through ' P I  and 'P2 becomes parallel to that through S1 and 
SZ. 

In order to compute a velocity screw U = (T,  R),  we first 
note that the end-effector rotation matrix R, can be represented 
as a rotation through an angle B about an axis defined by a 
unit vector k [7]. In this case, the axis of rotation is 

k = (S2 - SI) x [R,(eP2 - "PI)]  

where the bar over expressions on the right denotes normal- 
ization to a unit vector. Hence, a natural feedback law for the 
rotational portion of the velocity screw is 

R = -k1 t .  (30) 

Note the expression on the right hand size is the zero vector 
if the lines joining associated points are parallel as we desire. 

The only complication to computing the translation portion 
of the vector is to realize that rotation introduces translation of 
points attached to the end-effector. Hence, we need to move 
"PI  toward the goal line while compensating for the motion 
introduced by rotation. Based on the discussion above, we 
know the former is given by -Ep i (xe ;  SI, 5'2,  ' P I )  while 
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from (12) the latter is simply R x ze(‘Pl). Combining these 
two expressions, we have 

Note that we are still free to choose translations along the line 
joining SI and S2 as well as rotations about it. Full six degree- 
of-freedom positioning can be attained by enforcing another 
point-to-line constraint using an additional point on the end- 
effector and an additional point in the world. Similar geometric 
arguments can be used to define a proportional feedback law. 

These formulations can be adjusted for end-effector 
mounted camera and can be implemented as ECL or EOL 
systems. We leave these modifications as an exercise for the 
reader. 

B. Pose-Based Motion 

In the previous section, positioning was defined in terms of 
directly observable point features. When working with a priori 
known objects, it is possible to recover the pose of the object, 
xt, and to define stationing points with respect to object pose. 

The methods of the previous section can be easily applied 
when object pose is available. For example, suppose tS is an 
arbitrary stationing point in a target object’s coordinate system, 
and that we can compute ‘xt  using end-effenctor mounted 
camera(s). Then using (1) we can compute ‘5’ = ‘2t( tS) .  
This estimate can be used in any of the end-effector based 
feedback methods of the previous section in both ECL and 
EOL configurations. Similar remarks hold for systems utilizing 
free-standing cameras. 

Given an object pose, it is possible to directly define 
positioning tasks in terms of that object pose. Let ‘x: be a 
desired stationing pose (rather than point as in the previous 
section) for the end-effector, and suppose the system employs 
free-standing cameras. We can define a positioning error 

(Note that in order for this error function to be in accord 
with our definition of kinematic error we must select a 
parameterization of rotations which is 0 when the end-effector 
is in the desised position.) 

Using feature information and the camera calibration, we 
can directly estimate xt = xc o ‘St .  If we again represent 
the rotation in terms of a unit vector ‘ k, and rotation angle 
‘ H , ,  we can define 

where t ,  is the origin of the end-effector frame in base 
coordinates. 

If we can also observe the end-effector and estimate its pose, 
‘XP we can rewrite (32) as follows: 

= (‘& 0 ‘2.0) 0 (OX(. 0 ‘&) 0 t2, = e&. 0 ex+ 0 t 2e - .  

Once again we see that for an ECL system, both the robot 
kinematic chain and the camera pose relative to the base 

coordinate system have dropped out of the error equation. 
Hence, these factors do not affect the positioning accuracy 
of the system. 

The modifications of pose-based methods to end-effector 
based systems are completely straightforward and are left for 
the reader. 

C. Estimation 

A key issue in position-based visual servo is the estimation 
of the quantities used to parameterize the feedback. In this 
regard, position-based visual servoing is closely related to the 
problem of recovering scene geometry from one or more cam- 
era images. This encompasses problems including structure 
from motion, exterior orientation, stereo reconstruction, and 
absolute orientation. Unfortunately, space does not permit a 
complete coverage of these topics here and we have opted 
to provide pointers to the literature, except in the case of 
point estimation for two cameras, which has a straightforward 
solution. A comprehensive discussion of these topics can be 
found in a recent review article [38]. 

1)  Estimation with a Single Camera: As noted previously, 
it follows from (16) that a point in a single camera im- 
age corresponds to a line in space. Although it is possible 
to perform geometric reconstruction using a single moving 
camera, the equations governing this process are often ill- 
conditioned, leading to stability problems [38]. Better results 
can be achieved if target image features have some internal 
structure, or the image features come from a known object. 
Below, we briefly describe methods for performing both point 
estimation and pose estimation with a single camera assuming 
such information is available. 

a )  Single Points: Clearly, extra information is needed in 
order to reconstruct the Cartesian coordinates of a point in 
space from a single camera projection. This may come from 
additional measurable attributes, for example, in the case of 
a circular opening with known diameter d the image will be 
an ellipse. The ellipse can be described by five image feature 
parameters from which can be derived distance to the opening, 
and orientation of the plane containing the hole. 

b)  Object Pose: Object pose can be estimated if the 
vision system observes multiple point features on a known 
object. This is referred to as the pose estimation problem in the 
vision literature, and numerous methods for its solution have 
been proposed. These can be broadly divided into analytic 
solutions and least-squares solutions. Analytic solutions for 
three and four points are given by [39]-[43], and unique 
solutions exist for four coplanar, but not collinear, points. 
Least-squares solutions can be found in [44]-[50]. Six or 
more points always yield unique solutions and allow the 
camera calibration matrix to be computed. This can then be 
decomposed [48] to yield the target’s pose. 

The general least-squares solution is a nonlinear optimiza- 
tion problem which has no known closed-form solution. In- 
stead, iterative optimization techniques are generally em- 
ployed. These techniques iteratively refine a nominal pose 
value using observed data (see [SI] for a recent review). 
Because of the sensitivity of the reconstruction process to 
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noise, it is often a good idea to incorporate some type of 
smoothing or averaging of the computed pose parameters, at 
the cost of some delay in response to changes in target pose. 
A particularly elegant formulation of this updating procedure 
results by application of statistical techniques such as the 
extended Kalman filter [52]. This approach has been recently 
demonstrated by Wilson [53] for six DOF control of end- 
effector pose. A similar approach was recently reported in 
t541. 

2) Estimation with Multiple Cameras: Multiple cameras 
greatly simplify the reconstruction process and many systems 
utilizing position-based control with stereo vision from free- 
standing cameras have been demonstrated. For example, Allen 
[36] shows a system that can grasp a toy train using stereo 
vision. Rizzi [37] demonstrates a system which can bounce 
a ping-pong ball. All of these systems are EOL. Cipolla [9] 
describes an ECL system using free-standing stereo cameras. 
One novel feature of this system is the use of the affine 
projection model (Section II-C) for the imaging geometry. 
This leads to linear calibration and control at the cost of some 
system performance. The development of a position-based 
stereo eye-in-hand servoing system has also been reported 
[551. 

a )  Single Points: Let ax,l represent the pose of a camera 
relative to an arbitrary base coordinate frame a. By inverting 
this transformation and combining (1) and (16) for a point 
" P  = [x,?/ ,zIT we have 

where x, y and z are the rows of '.lR, and "ta = [ t r ,  C,, 1,IT. 
Multiplying through by the denominator of the right-hand side, 
we have 

Al(P,)"P Z Y  bl(P1). (36) 

where 

Given a second camera at location ' x , ~  we can compute 
A2 ( p 2 )  and b2  ( p 2 )  analogously. Stacking these together results 
in a matrix equation 

which is an over-determined system that can be solved for 
" P .  Note the same approach can be used to provide estimates 
from three or more cameras. 

b )  Object Pose: As seen above, given two or more cam- 
eras, it is straightforward to estimate their camera relative 
coordinates. Given observations of three or more points in 
known locations with respect to an object coordinate system, 
it is relatively straightforward to solve the absolute orientation 
problem which relates camera coordinates to object coordi- 
nates. The solution is based on noting that the centroid of 
a rigid set of points is invariant to rotation. By exploiting 
this observation, it is possible to first isolate rotation as 

the only unknown in the system. The corresponding least- 
squares problem can either be solved explicitly for rotation 
(see [56]-[58]), or solved incrementally using linearization. 
Given an estimate for rotation, the computation of translation 
is a standard linear least squares problem. 

D. Discussion 

The principle advantage of position-based control is that 
it is possible to describe tasks in terms Cartesian pose as is 
common in robotics. It's primary disadvantage is that feedback 
is computed using estimated quantities that are a function of 
the system calibration parameters. Hence, in some situations. 
position-based control can become extremely sensitive to cal- 
ibration error. Endpoint closed-loop systems are demonstrably 
less sensitive to calibration. However, particularly in stereo 
systems, small errors in computing the orientation of the 
cameras can still lead to reconstruction errors that impact the 
positioning accuracy of the system. 

Pose-based methods for visual servoing seem to be the most 
generic approach to the problem, as they support arbitrary 
relative position with respect to the object. An often cited 
disadvantage of pose-based methods is the computation time 
required to solve the relative orientation problem. However 
recent results show that solutions can be computed in only a 
few milliseconds even using iteration [51] or Kalman filtering 
[53]. In general, given the rapid advances in microproces- 
sor technology, computational considerations are becoming 
less of an issue in the design of visual servoing systems. 
Another disadvantage of pose-based approaches is the fact 
that they inherently depend on having an accurate model of 
the target object-a form of calibration. Hence, feature-based 
approaches tend to be more appropriate to tasks where there 
is no prior model of the geometry of the task, for example 
in teleoperation applications [59]. Generally speaking, since 
feature-based methods rely on less prior information (which 
may be in error), they can be expected to perform more 
robustly on comparable tasks. 

Another approach to position-based visual servoing which 
has not been discussed here is to use an active 3D sensor. For 
example, active 3D sensors based on structured lighting are 
now compact and fast enough to use for visual servoing. If 
the sensor is small and mounted on the robot the depth and 
orientation information can be used directly for position-based 
visual servoing [60]-[621. 

V. IMAGE-BASED CONTROL 

As described in Section 111, in image-based visual servo 
control the error signal is defined directly in terms of image 
feature parameters (in contrast to position-based methods that 
define the error signal in the task space coordinates). Thus, 
we posit the following definition. 

Definition 5.1: An image-based visual servoing task is rep- 
resented by an image error function e: 3 + R'. where I < k 
and k is the dimension of the image feature parameter space. 

As described in Section II-E, the system may use either 
a fixed camera or an eye-in-hand configuration. In either 
case, motion of the manipulator causes changes to the image 
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observed by the vision system. Thus, the specification of an 
image-based visual servo task involves determining an appro- 
priate error function e ,  such that when the task is achieved, 
e = 0. This can be done by directly using the projection 
equations (16), or via a “teach by showing” approach in which 
the robot is moved to a goal position and the corresponding 
image is used to compute a vector of desired image feature 
parameters, fd. If the task is defined with respect to a moving 
object, the error, e .  will be a function, not only of the pose of 
the end-effector, but also of the pose of the moving object. 

Although the error, e ,  is defined on the image parameter 
space, the manipulator control input is typically defined either 
in joint coordinates or in task space coordinates. Therefore, it 
is necessary to relate changes in the image feature parameters 
to changes in the position of the robot. The image Jacobian, 
introduced in Section V-A, captures these relationships. We 
present an example image Jacobian in Section V-B. In Section 
V-C, we describe methods that can be used to “invert” the 
image Jacobian, to derive the robot velocity that will produce 
the desired change in the image. Finally, in Sections V-D 
and V-E we describe how controllers can be designed for 
image-based systems. 

A. The Image Jacobian 

Let T represent coordinates of the end-effector in some 
parameterization of the task space 7 and i represent the 
corresponding end-effector velocity (note, i is a velocity 
screw, as defined in Section 11-B). Let f represent a vector of 
image feature parameters and the corresponding vector of 
image feature parameter rates of change’. The image Jacobian, 
?7?>, is a linear transformation from the tangent space of 7 at 
r to the tangent space of .F at J. In particular 

f = J,;(r)i-  

where *7,> E RRkXnL,  and 

J,; ( r )  = [ g] = 

B. An Example Image Jacobian 

Suppose that the end-effector is moving with angular ve- 
locity ‘12, = [w,, w y ,  w.] and translational velocity ‘T, = 
[T,. T?,) TZ] (as described in Section 11-B) both with respect to 
the camera frame in a fixed camera system. Let P be a point 
rigidly attached to the end-effector. The velocity of the point 
P ,  expressed relative to the camera frame, is given by 

‘’P = ‘R, x ‘ P  + ‘T?. (39) 

To simplify notation, let ‘ P  = [x. y. z]*.  Substituting the 
perspective projection equations (16) into (10) and (1 l), we 
can write the derivatives of the coordinates of “ P  in terms of 
the image feature parameters U , ? )  as 

(40) 

(41) 

(42) 

Cl 6 
.i. = Z W ~  - -U, + Tr 

G = - w ,  - ZW, +Ty  
x 

U Z  

x 
x 
z z = -(vw, - uw,) + T,. 

Now, let f = [U, U]*. as above and using the quotient rule, 

(43 ) 
2.r. - 22. 

i l=A- 
2 2  

(44) 

Similarly 

x u  - A 2  - v2 uv 
i i  = -T z Y  - -T, + wT + -wY x +uw,. (46) 

(37) Finally, we may rewrite these two equations in matrix form 
to obtain 

Recall that m, is the dimension of the task space, 7. Thus the 
number of columns in the image Jacobian will vary depending 
on the task. 

The image Jacobian was first introduced by Weiss et al. 
[21 J ,  who referred to it as the feature seizsitivity matrix. It is 
also referred to as the interaction matrix [ 111 and the B matrix 
[16], [17]. Other applications of the image Jacobian include 

The relationship given by (37) describes how image feature 
parameters change with respect to changing manipulator pose. 
In visual servoing we are interested in determining the ma- 
nipulator velocity, i ,  required to achieve some desired value 
of i. This requires solving the system given by (37). We will 
discuss this problem in Section V-C, but first we present an 
example image Jacobian. 

~101, 1141, [151, ~ 4 1 .  

‘If the image featurc parameters are point coordinates these rates arc image 
planc point velocities. 

x [;I = [, 
0 

0 
x 
- 

z 

U 

z 
u 

?1 v 

z x 

x2 + u2 
x 

x 
UV - 

(47) 

which relates image-plane velocity of a point to the relative 
velocity of the point with respect to the camera. Alternative 
derivations for this example can be found in a number of 
references including [63], [64]. 

It is straightforward to extend this result to the general 
case of using k / 2  image points for the visual control by 
simply stacking the Jacobians for each pair of image point 
coordinates; see (48), shown at the bottom of the next page. 

Finally, note that the Jacobian matrices given in (47) and 
(48) are functions of z,, the distance to the point being imaged. 
For a fixed camera system, when the target is the end-effector 
these x values can be computed using the forward kinematics 
of the robot and the camera calibration information. For an 
eye-in-hand system, determining z can be more difficult, and 
this problem is discussed further in Section V-F. 
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C. Using the Image Jacobian to Compute 
End-Effector Velocity 

The results of the previous sections show how to relate 
robot end-effector motion to perceived motion in a camera 
image. However, visual servo control applications typically 
require the reverse-computation of i given f as input. There 
are three cases that must be considered: k = 7n, k < m, and 
k. > m. We now discuss each of these. 

When k = m, and J ,  is nonsingular, J,' exists. Therefore, 
in this case, r = Ji'f. Such an approach has been used 
by Feddema [20], who also describes an automated approach 
to image feature selection in order to minimize the condition 
number of J u .  

When k # m: J L 1  does not exist. In this case, assuming that 
J , ,  is full rank (i.e., rank(J,,) = min(k, m ) ) ,  we can compute 
a least squares solution, which, in general, is given by 

i = Jrff + ( I  - J ; f J , , ) b  (49) 

where Jrf is a suitable pseudoinverse for J,, and b is an 
arbitrary vector of the appropriate dimension. The least squares 
solution gives a value f o r i  that minimizes the norm l l f -  J l , ill .  

We first consider the case k > m; that is ,  there are more 
feature parameters than task degrees of freedom. By the 
implicit function theorem [65],  if, in some neighborhood of 
r ,m  5 k: and rank(d,,) = m (i.e., J,: is full rank), we 
can express the coordinates fTrL+1 Jllc as smooth functions 
of f l  . . , fnL .  From this, we deduce that there are k - m 
redundant visual features. Typically, this will result in a set 
of inconsistent equations (since the k visual features will be 
obtained from a computer vision system and are likely to be 
noisy). In this case, the appropriate pseudoinverse is given by 

J: = (J:J?,)-'J;. (50) 

Here, we have ( I  - J:J,) = 0 (the rank of the null space of 
J ,  is 0, since the dimension of the column space of J , :  m, 
equals rank( J ( , ) ) .  Therefore, the solution can be written more 
concisely as 

r = J : f .  (5  1) 

Such approaches have been used by Hashimoto [lS] and Jang 
[661. 

When k < n, the system is under-constrained. In the visual 
servo application, this implies that we are not observing 
enough features to uniquely determine the object motion i, 

-0 
0 
0 
U 
V 

-x 

i.e., there are certain components of the object motion that can 
not be observed. In this case, the appropriate pseudoinverse is 
given by 

In general, for k < m, ( I - S T J , )  # 0, and all vectors of the 
form ( I -  J ;  J , ) b  lie in the null space of J,, and correspond to 
those components of the object velocity that are unobservable. 
In this case, the solution is given by (49). For example, as 
shown in [64], the null space of the image Jacobian given in 
(47), is spanned by the four vectors 

In some instances, there is a physical interpretation for the 
vectors that span the null space of the image Jacobian. For 
example, the vector [U.  v ,  A, 0, 0, 0IT reflects that the motion of 
a point along a projection ray cannot be observed. The vector 
[O, 0, 0, U ,  v ,  A]' reflects the fact that rotation of a point on a 
projection ray about that projection ray cannot be observed. 
Unfortunately, not all basis vectors for the null space have 
such an obvious physical interpretation. The null space of the 
image Jacobian plays a significant role in hybrid methods, in 
which some degrees of freedom are controlled using visual 
servo, while the remaining degrees of freedom are controlled 
using some other modality [14]. 

D. Resolved-Rate Methods 

The earliest approaches to image-based visual servo control 
[lo], [21] were based on resolved-rate motion control [30], 
which we will briefly describe here. Suppose that the goal of 
a particular task is to reach a desired image feature parameter 
vector, fd. If the control input is defined as in Section IV to be 
an end-effector velocity, then we have U = r ,  and assuming for 
the moment that the image Jacobian is square and nonsingular, 

If we define the error function as e(f)  = f d  - f ,  a simple 
proportional control law is given by 

x 
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where K is a constant gain matrix of the appropriate di- 
mension. For the case of a nonsquare image Jacobian, the 
techniques described in Section V-C would be used to compute 
for U .  Similar results have been presented in [14], [15]. More 
advanced techniques based on optimal control are discussed 
in 1161. 

E. Examde Servoinn Tasks 

proof proceeds as follows. The origin of the coordinate frame 
for the left camera, together with the projections of S1 and 
S2 onto the left image forms a plane. Likewise, the origin of 
the coordinate frame for the right camera, together with the 
projections of SI and onto the right image forms a plane. 
The intersection of these two planes is exactly the line joining 
SI and S2 in the workspace. When P lies on this line, it must 
lie simultaneously in both of these planes, and therefore, must - 

In this section, we revisit some of the problems introduced 
in Section IV-A and describe image-based solutions for these 
problems. In all cases, we assume two fixed cameras are 
observing the scene. 

1) Point to Point Positioning: Consider the task of bring- 
ing some point P on the manipulator to a desired stationing 
point S. The kinematic error function was given in (20). If 
two cameras are viewing the scene, a necessary and sufficient 
condition for P and S to coincide in the workspace is that the 
projections of P and S coincide in each image. 

If we let [U’, 71‘1~ and [ur,  vrIT be the image coordinates for 
the projection of P in the left and right images, respectively, 
then we may take f = [ , ~ ‘ , d , u ~ , v ~ ] ~ .  If we let ‘T = R,?, 
then in (19), F is a mapping from 7 to R4. 

Let the projection of S have coordinates [U:, TI,:] and [7~:, ?I;] 

in the left and right images. We then define the desired feature 
vector to be f C i  = [U; .  U;, ,U:, yielding 

The image Jacobian for this problem can be constructed 
by “stacking” (47) for each camera. Note, however, that 
a coordinate transformation must be used for each camera 
in order to relate the end-effector velocity screw in camera 
coordinates to the robot reference frame. 

Unfortunately, the resulting Jacobian matrix cannot be in- 
verted as it is a matrix with four rows and six columns which is 
of rank three. This is a reflection of the fact that although two 
cameras provide four measurements, the point observed has 
only three degrees of freedom. Hence, one measurement value 
is redundant, or equivalently the observations are constrained 
to lie on a three-dimensional subspace of four-dimensional 
measurement space. The constraint defining this subspace is 
known as the epipolar constraint in the vision literature [67]. 

There are a variety of methods for dealing with this problem. 
The simplest is to note that most stereo camera systems are 
arranged so that the camera z (horizontal) axes are roughly 
co-planar. In this case, the redundant information is largely 
concentrated in the y (vertical) coordinates, and so one can be 
discarded. Doing so removes a row from the Jacobian, and the 
resulting matrix has a well-defined inverse. 

2) Point to Line Positioning: Consider again the task in 
which some point P on the manipulator end-effector is to 
be brought to the line joining two fixed points SI and S z  in 
the world. The kinematic error function is given by (29). 

If two cameras are viewing the workspace, it can be shown 
that a necessary and sufficient condition for P to be colinear 
with the line joining S1 and 5 2  is that the projection of P 
be colinear with the projections of the points S1 and sz in 
both images (for nondegenerate camera configurations). The 

be colinear with the the projections of the points S1 and S2 

in both images. 
We now tum to conditions that determine when the pro- 

jection of P is colinear with the projections of the points SI 
and Sz? and will use the knowledge that three vectors are 
coplanar if and only if their scalar triple product is zero. For 
the left image, let the projection of SI have image coordinates 
[U;, 41. the projection of Sz have image coordinates [ U ; ,  wk], 
and the projection of P have image coordinates [d. U‘]. If the 
three vectors from the origin of the left camera to these image 
points are coplanar, then the three image points are colinear. 
Thus, we construct the scalar triple product 

and proceeding in a similar fashion for the right image, derive 
from which we construct the error function 

where f = [U‘, d, U”; uUTlT. It is important to note that this 
error is a linear projection of the image coordinates of the 
point P ,  and hence the Jacobian is also a linear transformation 
of the image Jacobian for P .  To make this explicit, let $;(E‘) 
denote the image Jacobian for P in the left camera. Then it 
follows that the image Jacobian for efr  is 

The derivation of the image Jacobian in the right camera is 
similar. The full Jacobian is the “stack’ consisting of Jhi 
and -7Ll multiplied with a coordinate transformation to relate 
the end-effector velocity screw in robot coordinates to the 
equivalent motion in the camera coordinate frame. Note that 
given a second point on the end-effector, a four degree of 
freedom positioning operation can be defined by simply stack- 
ing the two “point-to-line” errors and their image Jacobians. 
Likewise, choosing yet another point in the world and on 
the manipulator, and setting up an additional independent 
“point-to-line” problem yields a rigid six degree of freedom 
positioning problem 

F. Discussion 

It is interesting to note that image-based solutions to the 
point-to-line problem discussed above perform with an ac- 
curacy that is independent of calibration. This follows from 
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the fact that by construction, when the image error function 
is zero, the kinematic error must also be zero. Even if the 
hand-eye system is miscalibrated, if the feedback system is 
asymptotically stable, the image error will tend to zero, and 
hence so will the kinematic error. This is not the case with the 
position-based system described in Section IV [68]. Thus, one 
of the chief advantages to image-based control over position- 
based control is that the positioning accuracy of the system is 
less sensitive to camera calibration errors. 

There are also often computational advantages to image- 
based control, particularly in ECL configurations. For example, 
a position-based relative pose solution for an ECL single- 
camera system must perform two nonlinear least squares 
optimizations in order to compute the error function. The 
comparable image-based system must only compute a sim- 
ple image error function, an inverse Jacobian solution, and 
possibly a single position or pose calculation to parameterize 
the Jacobian. In practice, as described in Section V-B, the un- 
known parameter for Jacobian calculation is distance from the 
camera. Some recent papers present adaptive approaches for 
estimating this depth value [16], or develop feedback methods 
which do not use depth in the feedback formulation [69]. 

One disadvantage of image-based methods compared to 
position-based methods is the presence of singularities in the 
feature mapping function which reflect themselves as unstable 
points in the inverse Jacobian control law. These instabili- 
ties are often less prevalent in the equivalent position-based 
scheme. Returning again to the point-to-line example, the 
Jacobian calculation becomes singular when the two stationing 
points are coplanar with the optical centers of both cameras. In 
this configuration, rotations and translations of the setpoints in 
the plane are not observable. This singular configuration does 
not exist for the position-based solution. 

In the above discussion we have referred to f as the desired 
feature parameter vector, and implied that it is a constant. If 
it is a constant then the robot will move to the desired pose 
with respect to the target. If the target is moving the system 
will endeavor to track the target and maintain relative pose, 
but the tracking performance will be a function of the system 
dynamics, as discussed below in Section VII. However many 
tasks can be described in terms of the motion of image features, 
for instance by aligning visual cues within the scene. Jang et 
ul. [66] describe a generalized approach to servoing on image 
features, with trajectories specified in feature space which 
results in trajectories (tasks) that are independent of target 
geometry. Feddema [lo] also uses a feature space trajectory 
generator to interpolate feature parameter values due to the low 
update rate of the vision system used. Skaar et al. [IS] describe 
the example of a lDOF robot catching a ball by observing 
visual cues such as the ball, the arm’s pivot point, and another 
point on the arm. The interception task can then be specified, 
even if the relationship between camera and arm is not known 
a priori. 

VI. IMAGE FEATURE EXTRACTION AND TRACKING 

Irrespective of the control approach used, a vision system 
is required to extract the information needed to perform the 

servoing task. Hence, visual servoing pre-supposes the solution 
to a set of potentially difficult static and dynamic vision 
problems. To this end many reported implementations contrive 
the vision problem to be simple: e.g. painting objects white, 
using artificial targets, and so forth [lo], [14], [37], [70]. Other 
authors use extremely task-specific clues: e.g. Allen [36] uses 
motion detection for locating a moving object to be grasped, 
and a fruit picking system looks for the characteristic fruit 
color. A review of tracking approaches used by researchers in 
this field is given in [3]. 

In less structured situations, vision has typically relied on the 
extraction of sharp contrast changes, referred to as “comers” 
or “edges”, to indicate the presence of object boundaries or 
surface markings in an image. Processing the entire image to 
extract these features necessitates the use of extremely high- 
speed hardware in order to work with a sequence of images 
at camera rate. However not all pixels in the image are of 
interest, and computation time can be greatly reduced if only 
a small region around each image feature is processed. Thus, 
a promising technique for making vision cheap and tractable 
is to use window-based tracking techniques [4], [37], [71]. 
Window-based methods have several advantages, among them: 
computational simplicity, little requirement for special hard- 
ware, and easy reconfiguration for different applications. We 
note, however, that initial positioning of each window typically 
presupposes an automated or human-supplied solution to a 
potentially complex vision problem. 

This section describes a window-based approach to tracking 
features in an image. The methods are capable of tracking a 
number of point or edge features at frame rate on a workstation 
computer and require a framestore, no specialized image pro- 
cessing hardware, and have been incorporated into a publicly 
available software “toolkit” [4]. A discussion of methods 
which use specialized hardware combined with temporal and 
geometric constraints can be found in [67]. The remainder of 
this section is organized as follows. Section VI-A describes 
how window-based methods can be used to implement fast 
detection of edge segments, a common low-level primitive 
for vision applications. Section VI-B describe an approach 
based on temporally correlating image regions over time. 
VI-C describes some general issues related to the use of 
temporal and geometric constraints, and Section VI-D briefly 
summarizes some of the issues surrounding the choice of a 
feature extraction method for tracking. 

A. Feature Bused Methods 

In this section, we illustrate how window-based processing 
techniques can be used to perform fast detection of isolated 
straight edge segments of fixed length. Edge segments are 
intrinsic to applications where man-made parts contain comers 
or other patterns formed from physical edges. 

Images are comprised of pixels organized into a two- 
dimensional coordinate system. We adopt the notation 1(x, t )  
to denote the pixel at location 2 [U, .IT in an image captured 
at time k .  A window can be thought of as a two-dimensional 
array of pixels related to a larger image by an invertible 
mapping from window coordinates to image coordinates. We 
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consider rigid transformations consisting of a translation vector 
c = [J ,  1/]' and a rotation 8. A pixel value at x = [U.  U]'' in 
window coordinates is related to the larger image by 

W ( z :  c, 0,  t )  = I ( c  + B ( Q ) X ,  t )  (60) 

where R is a two dimensional rotation matrix. We adopt the 
conventions that x = 0 is the center of the window, and the 
set X represents the set of all values of x. 

Window-based tracking algorithms typically operate in two 
stages. In the first stage, one or more windows are acquired 
using a nominal set of window parameters. The pixel values 
for all x E X are copied into a two-dimensional array that is 
subsequently treated as a rectangular image. Such acquisitions 
can be implemented extremely efficiently using line-drawing 
and region-fill algorithms commonly developed for graphics 
applications [72]. In the second stage, the windows are pro- 
cessed to locate image features and from their parameters 
a new set of window parameters, 0 and e, are computed. 
These parameters may be modified using external geometric 
constraints or temporal prediction, and the cycle repeats. 

We consider an edge segment to be characterized by three 
parameters in the image plane: the PL and 7) coordinates 
of the center of the segment, and the orientation of the 
segment relative to the image plane coordinate system. These 
values correspond directly to the parameters of the acquisition 
window used for edge detection. Let us first assume we have 
correct prior values e- = ( P L - , v )  and Q- for an edge 
segment. A window, W -  (x) = W ( x ;  e - ,  Q-, t ) .  extracted 
with these parameters would then have a vertical edge segment 
within it. 

Isolated step edges can be localized by determining the 
location of the maximum of the first derivative of the signal 
1641, [67], [731. Let c be a l-dimensional edge detection 
kernel arranged as a single row. The convolution W,(x)  = 
(W- ~r P)(z) will have a response curve in each row which 
peaks at the location of the edge. Summing each column 
of W1 superimposes the peaks and yields a one-dimensional 
response curve. If the estimated orientation, 0- ,  was correct, 
the maximum of this response curve determines the offset of 
the edge in window coordinates. By interpolating the response 
curve about the maximum value, sub-pixel localization of the 
edge can be achieved. Here, e is taken to be a 1-dimensional 
Prewitt operator [64] which, although not optimal from a signal 
processing point of view, is extremely fast to execute on simple 
hardware. 

If the 0- was incorrect, the response curves in W1 will 
deviate slightly from one another and the superposition of 
these curves will form a lower and less sharp aggregate 
curve. Thus, maximizing the maximum value of the aggregate 
response curve is a way to determine edge orientation. This 
can be approximated by performing the detection operation 
on windows acquired at 8- as well as two bracketing angles 
8- 5 a and performing quadratic interpolation on the maxima 
of the corresponding aggregate response curves. Computing 
the three oriented edge detectors is particularly simple if the 
range of angles is small. In this case, a single window is 
processed with the initial convolution yielding W1. Three 
aggregate response curves are computed by summing along 

the columns of W1 and along diagonals corresponding to 
angles of fa. The maxima of all three curves are located 
and interpolated to yield edge orientation and position. Thus, 
for the price of one window acquisition, one complete 1- 
dimensional convolution, and three column sums, the vertical 
offset So and the orientation offset 60 can be computed. Once 
these two values are determined, the state variables of the 
acquisition window are updated as 

8+ = e -  + s o  
U+ = c - 60 sin(e+) 
v+ = ? I -  + S O C O S ( 0 + ) .  

An implementation of this method [4] has shown that 
localizing a 20 pixel long edge using a Prewitt-style mask 
15 pixels wide searching k10 pixels and ~ t 1 5  degrees takes 
1.5 ms on a Sun Sparc I1 workstation. At this rate, 22 edge 
segments can be tracked simultaneously at 30 Hz, the video 
frame rate used. Longer edges can be tracked at comparable 
speeds by sub-sampling along the edge. 

Clearly, this edge-detection scheme is susceptible to mis- 
tracking caused by background or foreground occluding edges. 
Large acquisition windows increase the range of motions that 
can be tracked, but reduce the tracking speed and increase 
the likelihood that a distracting edge will disrupt tracking. 
Likewise, large orientation brackets reduce the accuracy of the 
estimated orientation, and make it more susceptible to edges 
that are not closely oriented to the underlying edge. 

There are several ways of increasing the robustness of edge 
tracking. One is to include some type of additional information 
about the edges being tracked such as the sign or absolute 
value of the edge response. For more complex edge-based 
detection, collections of such oriented edge detectors can be 
combined to verify the location and position of the entire 
feature. Some general ideas in this direction are discussed in 
Section VI-C. 

B. Area-Based Methods 

Edge-based methods tend to work well in environments 
in which man-made objects are to be tracked. If, however, 
the desired feature is a specific pattern, then tracking can be 
based on matching the appearance of the feature (in terms 
of its spatial pattern of gray-values) in a series of images, 
and exploiting its temporal consistency-the observation that 
the appearance of small region in an image sequence changes 
little. Such techniques are well described in image registration 
literature and have been applied to other computer vision 
problems such as stereo matching and optical flow. 

Consider only windows that differ in the location of their 
center. We assume some reference window was acquired at 
time t at location c. Some small time interval, 7 ,  later, a 
candidate window of the same size is acquired at location 
c + d .  The correspondence between these two images is given 
by some similarity measure 

O ( d )  = f ( ( W ( z ;  c, i ) )  - W ( x ;  c + d ,  t + 7))1u(x) ,  
X E ' Y  

T > O  (61) 
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where w( 8 )  is a weighting function over the image region and 
f ( . )  is a scalar function. Commonly used functions include 
, f ( x )  = 1x1 for sum of absolute values (SAD) and f(x) = x2 
for sum of squared differences (SSD). 

The aim is to find the displacement, d ,  that minimizes O ( d ) .  
Since images are inherently discrete, a natural solution is to 
select a finite range of values D and compute 

d = min q d ) .  
drD 

The advantage of a complete discrete search is that the 
true minimum over the search region is guaranteed to be 
found. However, the larger the area covered, the greater 
the computational burden. This burden can be reduced by 
performing the optimization starting at low resolution and 
proceeding to higher resolution, and by ordering the candidates 
in D from most to least likely and terminating the search 
once a candidate with an acceptably low SSD value is found 
[17]. Once the discrete minimum is found, the location can 
be refined to sub-pixel accuracy by interpolation of the SSD 
values about the minimum. Even with these improvements, 
[ 171 reports that a special signal processor is required to attain 
frame-rate performance. 

It is also possible to solve (61) using continuous optimiza- 
tion methods [4] [74]-[761. The solution begins by expanding 
W ( z ; c , t )  in a Taylor series about (c , t )  yielding 

W ( z ;  c + d, t + ?-) 

N W ( ~ ; ~ , t ) f W z ( z )  dx+W,(z) dy+Wt(z)r 

where W ,  I W ,  and W,  are respectively the horizontal and ver- 
tical spatial, and temporal derivatives of the image computed 
using convolution as follows: 

Substituting into (61) yields 

O(d)  = (Wz(x) dz+W,(x) d y + W + ( 2 ) r ) 2 w ( 2 ) .  (62) 
X t ’ Y  

Define 

Expression (62) can now be written more concisely as 

O ( d )  = (g(2) ’ d + h(2)?- )2 .  
X E X  

Notice 0 is now a quadratic function of d .  Computing the 
derivatives of 0 with respect to the components of d, setting 
the result equal to zero, and rearranging yields a linear system 
of equations: 

r 1 

Solving for d yields an estimate, d of the offset that would 
cause the two windows to have maximum correlation. We 
then compute c+ = c- + d yielding the updated window 
location for the next tracking cycle. This is effectively a 
proportional control algorithm for the “servoing” the location 
of an acquisition to maintain the best match with the reference 
window over time. 

In practice this method will only work for small motions 
(it is mathematically correct only for a fraction of a pixel). 
This problem can be alleviated by first performing the opti- 
mization at low levels of resolution, and using the result as a 
seed for computing the offset at higher levels of resolution. 
For example, reducing the resolution by a factor of two 
by summing groups of four neighboring pixels doubles the 
maximum displacement between two images. It also speeds up 
the computations since fewer operations are needed to compute 
d for the smaller low-resolution image. 

Another drawback of this method is the fact that it relies 
on an exact match of the gray values-changes in contrast 
or brightness can bias the results and lead to mistracking. 
Thus, it is common to normalize the images to have zero 
mean and consistent variance. With these modifications, it is 
easy to show that solving (64) is equivalent to maximizing the 
correlation between the two windows [74]. 

Continuous optimization has two principle advantages over 
discrete optimization. Firstly, a single updating cycle is usually 
faster to compute. For example, (64) can be computed and 
solved in less than 5 ms on a Sparc I1 computer [4]. Secondly, 
it is easy to incorporate other window parameters such as 
rotation and scaling into the system without greatly increasing 
the computation time [41, [76]. Thus, SSD methods can be 
used to perform template matching as well as tracking of 
image regions. 

C. Feature Prediction 

Window-based trackmg implicitly assumes that the inter- 
frame motions of the tracked feature do not exceed the size of 
search window, or, in the case of continuous optimization, a 
few pixels from the expected location of the image region. 
In the simplest case, the previous location of the image 
feature can be used as a predictor of its current location. 
Unfortunately, as feature velocity increases the search window 
must be enlarged which adversely affects computation time. 

The robustness and speed of tracking can be significantly 
increased with knowledge about the motion of the observed 
features, which may be due to the camera and/or target moving. 
For example, given knowledge of the image feature location 
xt at time t ,  Jacobian J , ,  the end-effector velocity ut, and 
the inter-frame time r, the expected location of the search 
windows can be computed, assuming no target motion, by the 
prediction 

f t t 7  = f t  + rJvut. 

Likewise, if the dynamics of a moving object are known, 
then it is possible to use this information to enhance tracking 
performance. For example, Rizzi [37] describes the use of a 
Newtonian flight dynamics model to make it possible to track a 
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ping-pong ball during flight. Predictors based on (II -113 tracking 
filters and Kalman filters have also been used [36], [53], [67]. 

D. Discussion 

Prior to executing or planning visually controlled motions, 
a specific set of visual features must be chosen. Discussion 
of the issues related to feature selection for visual servo 
control applications can be found in [20], [21]. The “right” 
image feature tracking method to use is extremely application 
dependent. For example, if the goal is to track a single special 
pattern or surface marking that is approximately planar and 
moving at slow to moderate speeds, then area-based tracking 
is appropriate. It does not require special image structure (e.g.  
straight lines), is robust to large set of image distortions, and 
for small motions can be implemented to run at frame rates. 

In comparison to the edge detection methods described 
above, area-based tracking is sensitive to occlusions and 
background changes (if the template includes any background 
pixels). Thus, if a task requires tracking several occluding 
contours of an object with a changing background, edge-based 
methods are clearly faster and more robust. 

In many realistic cases, neither of these approaches by 
themselves yields the robustness and performance desired. For 
example, tracking occluding edges in an extremely cluttered 
environment is sure to distract edge tracking as “better” edges 
invade the search window, while the changing background 
would ruin the SSD match for the region. Such situations call 
for the use of more global task constraints (e.g. the geometry 
of several edges), more global tracking (e.g. extended contours 
or snakes [77]), or improved or specialized detection methods. 

To illustrate these tradeoffs, suppose a visual servoing task 
relies on tracking the image of a circular opening over time. 
In general, the opening will project to an ellipse in the camera. 
There are several candidate algorithms for detecting this ellipse 
and recovering its parameters: 

1) If the contrast between the interior of the opening and 
area around it is high, then binary thresholding followed 
by a calculation of the first and second central moments 
can be used to localize the feature [37]. 

2) If the ambient illumination changes greatly over time, 
but the brightness of the opening and the brightness of 
the surrounding region are roughly constant, a circular 
template could be localized using SSD methods aug- 
mented with brightness and contrast parameters. In this 
case, (61) must also include parameters for scaling and 
aspect ratio [4]. 

3) The opening could be selected in an initial image, 
and subsequently located using SSD methods. This 
differs from the previous method in that this calculation 
does not compute the center of the opening, only its 
correlation with the starting image. Although useful for 
servoing a camera to maintain the opening within the 
field of view, this approach is probably not useful for 
manipulation tasks that need to attain a position relative 
to the center of the opening. 

4) If the contrast and background are changing, the opening 
could be tracked by performing edge detection and 

fitting an ellipse to the edge locations. In particular, short 
edge segments could be located using the techniques 
described in Section VI-A. Once the segments have 
been fit to an ellipse, the orientation and location of the 
segments would be adjusted for the subsequent tracking 
cycle using the geometry of the ellipse. 

During task execution, other problems arise. The two most 
common problems are occlusion of features and visual singu- 
larities. Solutions to the former include intelligent observers 
that note the disappearance of features and continue to predict 
their locations based on previously observed motion [37], or 
redundant feature specifications that can perform even with 
some loss of information. Solution to the latter require some 
combination of intelligent path planning and/or intelligent ac- 
quisition and focus-of-attention to maintain the controllability 
of the system. 

It is probably safe to say that fast and robust image process- 
ing presents the greatest challenge to general-purpose hand-eye 
coordination. As an effort to help overcome this obstacle, the 
methods described above and other related methods have been 
incorporated into a publicly available software “toolkit.” The 
interested reader is referred to [4] for details. 

VII. DISCUSSION 

This paper has presented a tutorial introduction to robotic 
visual servo control, focusing on the relevant fundamentals 
of coordinate transformations, image formation, feedback al- 
gorithms, and visual tracking. In the interests of space and 
clarity, we have concentrated on presenting methods that are 
well-represented in the literature, and that can be solved using 
relatively straightforward techniques. The reader interested in 
a broader overview of the field or interested in acquiring more 
detail on a particular area is invited to consult the references 
we have provided. Another goal has been to establish a 
consistent nomenclature and to summarize important results 
here using that notation. 

Many aspects of the more general problem of vision-based 
control of motion have necessarily been omitted or abbreviated 
to a great degree. One important issue is the choice between 
using an image-based or position-based system. Many systems 
based on image-based and position-based architectures have 
been demonstrated, and the computational costs of the two 
approaches seem to be comparable and are easily within the 
capability of modem computers. In many cases the motion 
of a target, for example an object on a conveyer, is most 
naturally expressed in a Cartesian reference frame. For this 
reason, most systems dealing with moving objects ([36], [37]) 
have used position-based methods. Although there has been 
recent progress in understanding image plane dynamics [22], 
the design of stable, robust image-based servoing systems for 
capturing moving objects has not been fully explored. 

In general, the accuracy of image-based methods for static 
positioning is less sensitive to calibration than comparable 
position-based methods, however image-based methods re- 
quire online computation of the image Jacobian. Unfortu- 
nately, this quantity inherently depends on the distance from 
the camera to the target which, particularly in a monocular 
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system, is difficult to compute. Many systems utilize a constant 
image Jacobian, which is computationally efficient, but valid 
only over a small region of the task space6. Other systems 
have resorted to performing a partial pose estimation [lo], 
adaptive depth estimation [ 161, or image Jacobian estima- 
tion [78]. However, both add significantly to the complexity 
of the system design as well as introducing an additional 
computational load. 

This issue is further complicated when dynamics are in- 
troduced into the problem. Even when the target object is not 
moving, it is important to realize that a visual servo system is a 
closed-loop discrete-time dynamical system. The sampling rate 
in such a system is limited by the frame rate of the camera, 
though many reported systems operate at a sub-multiple of 
the camera frame rate due to limited computational ability. 
Negative feedback is applied to a plant that generally includes 
a time delays due to charge integration time within the camera, 
serial pixel transport from the camera to the vision system, and 
computation time for feature parameter extraction. In addition 
most reported visual servo systems employ a relatively low 
bandwidth communications link between the vision system 
and the robot controller, which introduces further latency. 
Some robot controllers operate with a sample interval that 
is not related to the sample rate of the vision system, and 
this introduces still further delay. A good example of this 
is the common Unimate Puma robot whose position loops 
operate at a sample interval of 14 or 28 ms while vision 
systems operate at sample intervals of 33 or 40 ms for RS 
170 or CCIR video respectively [29]. It is well known that a 
feedback system including delay will become unstable as the 
loop gain is increased. Many visual closed-loop systems are 
tuned empirically, increasing the loop gain until overshoot or 
oscillation becomes intolerable. 

Simple proportional controllers are commonly used and can 
be shown to drive the steady state error to zero. However this 
implies nothing about performance when tracking a moving 
object, which will typically exhibit pronounced image plane 
error and tracking lag. If the target motion is constant then 
prediction (based upon some assumption of target motion) 
can be used to compensate for the latency, and predictors 
based on autoregressive models, Kalman filters, 01 - /? and 
cv - /3 - y tracking filters have been demonstrated for visual 
servoing. However when combined with a low sample rate 
predictors can result in poor disturbance rejection and long 
reaction time to unmodeled target motion. In order for a 
visual-servo system to provide good tracking performance 
for moving targets considerable attention must be paid to 
modeling the dynamics of the robot, the target, and vision 
system and designing an appropriate control system. Other 
issues for consideration include whether or not the vision 
system should “close the loop” around robot axes which can be 
position, velocity or torque controlled. A detailed discussion 
of these dynamic issues in visual servo systems is given by 
Corke [29], [79]. 

In addition to these “low-level” considerations, other issues 
that merit consideration are vision-based path planning, and 

‘However recent results indicate that a visual servo system will converge 
dcspite quite significant image Jacobian errors. 

visual recognition. In the case of the former, although path- 
planning is a well-established discipline, the idea of combining 
image space feature path-planning with visual feedback has 
not been adequately explored. For a simple example of visual 
servoing with obstacle avoidance, see [78]. Visual recognition 
or interpretation is also important for any visual servoing 
system that is to operate without constant human intervention. 
These are but two of the many issues that the designer 
of an autonomous system that is to operate in unstructured 
environments must confront. 

It is appropriate to note that despite the long history and 
intuitive appeal of using vision to guide robotic systems, the 
applications of this technology remain limited. To some degree 
this has been due to the high costs of the specialized hardware 
and the diverse engineering skdls required to construct an 
integrated visually controlled robot system. Fortunately the 
costs of key elements such as cameras, framestores, image 
processing hardware and computers in general, continue to 
fall and appear set to do so for some time to come. Cameras 
are now becoming available with performance characteristics 
such as frame rate and image resolution beyond the limiting 
broadcast television standards which have constrained them 
for so long. 

In conclusion we hope that this paper has shown that visual 
servoing is both useful and achievable using technology that 
is readily available today. In conjunction with the cost trends 
noted above we believe that the future for visual servoing 
is bright and will become an important and common control 
modality for robot systems in the future. 
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