
A L L - I N - O N E

Making Everything Easier!™

$39.99 US / $47.99 CN / £27.99 UK

ISBN 978-0-470-53755-8

Programming Languages/HTML

Go to Dummies.com®

for videos, step-by-step examples,
how-to articles, or to shop!

Harris

spine=2.16”

H
TM

L, XH
TM

L,
&

 CSS
A

L
L

-IN
-O

N
E

HTML, XHTML,
& CSS

• Creating the HTML/XHTML Foundation
• Styling with CSS
• Using Positional CSS
• Client-Side Programming with JavaScript®
• Server-Side Programming with PHP
• Managing Data with MySQL®
• Into the Future with AJAX
• Moving from Pages to Sites

Andy Harris

 Open the book and find:

• The basics of building XHTML
documents

• What to do with selectors,
classes, and styles

• How to build flexible layouts

• Tips on using HTML5

• Secrets of managing files and
directories

• All about SQL coding

• AJAX essentials and how to
add events with jQuery

• The advantages of a Content
Management System

You too can become a
Web wizard! Here’s how to go
from simple pages to super sites
Contemplating your first dip into Web page creation, or
ready to take your sites to the next level? All you need are
these eight minibooks. Newbies can start at the beginning
for a complete understanding of basic page creation with
HTML5, XHTML, and CSS. If you’ve been there and done
that, jump ahead to managing data with MySQL, building
AJAX connections, and more!

• Lay the foundation — build the skeleton of your pages with
XHTML, use CSS to add color and formatting, and create dynamic
buttons or menus

• Serve it up — move to the server and use PHP to program
responses to Web requests or connect to databases

• Manage data — set up a secure data server and create a reliable
and trustworthy data back-end for your site

• Explore AJAX — learn the essentials of AJAX, how to add events
and animation, and cool ways to use the UI library

• Create super sites — understand clients and servers, work with
content management systems, and more

Andy Harris taught himself programming because it was fun. Today he
teaches computer science, game development, and Web programming at
the university level; is a technology consultant for the state of Indiana; and
has helped people with disabilities to form their own Web development
companies.

8 IN 1
BOOKSBOOKS

Valuable bonus programs on CD-ROM

Bonus CD Includes
Firefox browser plus valuable extensions and plugins

Aptana programmer’s editor that simplifies the process

XAMPP, an easy-to-install server package

Visit the companion Web site at www.dummies.com/
go/htmlxhtmlandcssaiofd2e for code and other
supporting materials

Valuable bonus
tools on CD-ROM!

Covers HTML5 and prior versions of HTML!
2nd Edition

2nd Edition

www.it-ebooks.info

http://www.it-ebooks.info/

Mobile Apps

There’s a Dummies App for This and That
With more than 200 million books in print and over 1,600 unique
titles, Dummies is a global leader in how-to information. Now
you can get the same great Dummies information in an App. With
topics such as Wine, Spanish, Digital Photography, Certification,
and more, you’ll have instant access to the topics you need to
know in a format you can trust.

To get information on all our Dummies apps, visit the following:

www.Dummies.com/go/mobile from your computer.

www.Dummies.com/go/iphone/apps from your phone.

Start with FREE Cheat Sheets
Cheat Sheets include
 • Checklists
 • Charts
 • Common Instructions
 • And Other Good Stuff!

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
 • Videos
 • Illustrated Articles
 • Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
 • Digital Photography
 • Microsoft Windows & Office
 • Personal Finance & Investing
 • Health & Wellness
 • Computing, iPods & Cell Phones
 • eBay
 • Internet
 • Food, Home & Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/htmlxhtmlandcss

spine=2.16”

www.it-ebooks.info

http://www.dummies.com
http://www.dummies.com
http://www.dummies.com
http://www.dummies.com
http://www.dummies.com
http://www.dummies.com
http://www.dummies.com/cheatsheet/htmlxhtmlandcss
http://www.it-ebooks.info/

HTML, XHTML,
& CSS

A L L - I N - O N E

FOR

DUMmIES
‰

2ND EDITION

01_9780470537558-ffirs.indd i01_9780470537558-ffirs.indd i 10/7/10 8:24 PM10/7/10 8:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

01_9780470537558-ffirs.indd ii01_9780470537558-ffirs.indd ii 10/7/10 8:24 PM10/7/10 8:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

by Andy Harris

HTML, XHTML,
& CSS

A L L - I N - O N E

FOR

DUMmIES
‰

2ND EDITION

01_9780470537558-ffirs.indd iii01_9780470537558-ffirs.indd iii 10/7/10 8:24 PM10/7/10 8:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies®, 2nd Edition

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permission Department, John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://
www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or
its affi liates in the United States and other countries, and may not be used without written permission. All
other trademarks are the property of their respective owners. Wiley Publishing, Inc. is not associated with
any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZA-
TION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE
OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES
THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS
WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND
WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2010937814

ISBN: 978-0-470-53755-8

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

01_9780470537558-ffirs.indd iv01_9780470537558-ffirs.indd iv 10/7/10 8:24 PM10/7/10 8:24 PM

Disclaimer: This eBook does not include ancillary media that was packaged with the
printed version of the book.

www.it-ebooks.info

http:/www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://www.it-ebooks.info/

About the Author
Andy Harris began his teaching life as a special education teacher. As he was
teaching young adults with severe disabilities, he taught himself enough com-
puter programming to support his teaching habit with freelance program-
ming. Those were the exciting days when computers started to have hard
drives, and some computers began communicating with each other over an
arcane mechanism some were calling the Internet.

All this time Andy was teaching computer science part time. He joined the
faculty of the Indiana University-Purdue University Indianapolis Computer
Science department in 1995. He serves as a Senior Lecturer, teaching the
introductory courses to freshmen as well as numerous courses on Web
development, general programming, and game programming. As manager
of the Streaming Media Laboratory, he developed a number of online video-
based courses, and worked on a number of international distance education
projects including helping to start a computer science program in Tetevo,
Macedonia FYR.

Andy is the author of several other computing books including JavaScript For
Dummies, Flash Game Programming For Dummies, and Game Programming:
the L Line. He invites your comments and questions at andy@aharris
books.net. You can visit his main site and fi nd a blog, forum, and links to
other books at http://www.aharrisbooks.net.

01_9780470537558-ffirs.indd v01_9780470537558-ffirs.indd v 10/7/10 8:24 PM10/7/10 8:24 PM

www.it-ebooks.info

http://www.aharrisbooks.net
http://www.it-ebooks.info/

01_9780470537558-ffirs.indd vi01_9780470537558-ffirs.indd vi 10/7/10 8:24 PM10/7/10 8:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Dedication
I dedicate this book to Jesus Christ, my personal savior, and to Heather, the
joy in my life. I also dedicate this project to Elizabeth, Matthew, Jacob, and
Benjamin. I love each of you.

Author’s Acknowledgments
Thank you fi rst to Heather. Even though I type all the words, this book is a
real partnership, like the rest of our life. Thanks for being my best friend and
companion. Thanks also for doing all the work it takes for us to sustain a
family when I’m in writing mode.

Thank you to Mark Enochs. It’s great to have an editor who gets me, and
who’s willing to get excited about a project. I really enjoy working with you.

Thanks very much to Katie Feltman. It’s fun to see how far a few wacky ideas
have gone. Thanks for continuing to believe in me, and for helping me to
always fi nd an interesting new project.

Thank you to the copy editors: fi rst and foremost, I thank Brian Walls for his
all his hard work in making this edition presentable. Thanks also go to Teresa
Artman, John Edwards, and Melba Hopper for their help. I appreciate your
efforts to make my geeky mush turn into something readable. Thanks for
improving my writing.

A special thanks to Jeff Noble for his technical editing. I appreciate your vigi-
lance. You have helped to make this book as technically accurate as possible.

Thank you to the many people at Wiley who contribute to a project like
this. The author only gets to meet a few people, but so many more are
involved in the process. Thank you very much for all you’ve done to help
make this project a reality.

Thanks to Chris McCulloh for all you did on the fi rst edition, and I thank you
for your continued friendship.

A big thank you to the open source community which has created so many
incredible tools and made them available to all. I’d especially like to thank the
creators of Firefox, Firebug, Aptana, HTML Validator, the Web Developer tool-
bar, Ubuntu and the Linux community, Notepad++, PHP, Apache, jQuery, and
the various jQuery plugins. This is an amazing and generous community effort.

I’d fi nally like to thank the IUPUI computer science family for years of support
on various projects. Thank you especially to all my students, current and
past. I’ve learned far more from you than the small amount I’ve taught. Thank
you for letting me be a part of your education.

01_9780470537558-ffirs.indd vii01_9780470537558-ffirs.indd vii 10/7/10 8:24 PM10/7/10 8:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments through our online registration form
located at http://dummies.custhelp.com. For other comments, please contact our Customer
Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and Media

Development

Senior Project Editor: Mark Enochs

Senior Acquisitions Editor: Katie Feltman

Copy Editors: Brian Walls, Teresa Artman,
John Edwards, Melba Hopper

Technical Editor: Jeff Noble

Editorial Manager: Leah Cameron

Media Development Project Manager:
Laura Moss-Hollister

Media Development Assistant Project

Manager: Jenny Swisher

Media Development Assistant Producer:
Shawn Patrick

Editorial Assistant: Amanda Graham

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinators: Katherine Crocker,
Lynsey Stanford

Layout and Graphics: Carl Byers,
Timothy C. Detrick

Proofreaders: Lauren Mandelbaum,
Christine Sabooni

Indexer: BIM Indexing & Proofreading Services

Special Help: Tonya Cupp,
Colleen Totz Diamond

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Composition Services

Debbie Stailey, Director of Composition Services

01_9780470537558-ffirs.indd viii01_9780470537558-ffirs.indd viii 10/7/10 8:24 PM10/7/10 8:24 PM

www.it-ebooks.info

http://www.dummies.custhelp.com
http://www.the5thwave.com
http://www.it-ebooks.info/

Contents at a Glance
Introduction .. 1

Book I: Creating the HTML/XHTML Foundation 7
Chapter 1: Sound HTML Foundations ... 9
Chapter 2: It’s All about Validation ... 19
Chapter 3: Choosing Your Tools .. 41
Chapter 4: Managing Information with Lists and Tables .. 65
Chapter 5: Making Connections with Links .. 83
Chapter 6: Adding Images ... 93
Chapter 7: Creating Forms .. 121
Chapter 8: The Future of HTML: HTML 5 .. 141

Book II: Styling with CSS ... 157
Chapter 1: Coloring Your World .. 159
Chapter 2: Styling Text .. 177
Chapter 3: Selectors, Class, and Style ... 201
Chapter 4: Borders and Backgrounds ... 219
Chapter 5: Levels of CSS.. 239

Book III: Using Positional CSS 257
Chapter 1: Fun with the Fabulous Float .. 259
Chapter 2: Building Floating Page Layouts ... 279
Chapter 3: Styling Lists and Menus ... 299
Chapter 4: Using Alternative Positioning .. 317

Book IV: Client-Side Programming with JavaScript 335
Chapter 1: Getting Started with JavaScript .. 337
Chapter 2: Making Decisions with Conditions ... 359
Chapter 3: Loops and Debugging ... 373
Chapter 4: Functions, Arrays, and Objects ... 395
Chapter 5: Talking to the Page ... 423
Chapter 6: Getting Valid Input .. 445
Chapter 7: Animating Your Pages .. 467

02_9780470537558-ftoc.indd ix02_9780470537558-ftoc.indd ix 10/7/10 8:26 PM10/7/10 8:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V: Server-Side Programming with PHP 499
Chapter 1: Getting Started on the Server .. 501
Chapter 2: PHP and XHTML Forms .. 519
Chapter 3: Control Structures .. 539
Chapter 4: Working with Arrays .. 559
Chapter 5: Using Functions and Session Variables ... 579
Chapter 6: Working with Files and Directories .. 591
Chapter 7: Connecting to a MySQL Database... 613

Book VI: Managing Data with MySQL 635
Chapter 1: Getting Started with Data .. 637
Chapter 2: Managing Data with SQL .. 665
Chapter 3: Normalizing Your Data ... 691
Chapter 4: Putting Data Together with Joins ... 705

Book VII: Into the Future with AJAX 729
Chapter 1: AJAX Essentials ... 731
Chapter 2: Improving JavaScript and AJAX with jQuery .. 747
Chapter 3: Animating jQuery .. 771
Chapter 4: Using the jQuery User Interface Toolkit .. 797
Chapter 5: Improving Usability with jQuery ... 823
Chapter 6: Working with AJAX Data .. 843

Book VIII: Moving from Pages to Sites 867
Chapter 1: Managing Your Servers .. 869
Chapter 2: Planning Your Sites .. 895
Chapter 3: Introducing Content Management Systems .. 915
Chapter 4: Editing Graphics ... 941
Chapter 5: Taking Control of Content ... 961

Appendix A: What’s on the CD 979

Index .. 985

02_9780470537558-ftoc.indd x02_9780470537558-ftoc.indd x 10/7/10 8:26 PM10/7/10 8:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Introduction ... 1
No Experience Necessary ... 2
Great for Advanced Folks, Too! ... 2
Use Any Computer ... 3
Don’t Buy Any Software .. 3
How This Book Is Organized .. 4
New for the Second Edition .. 5
Icons Used in This Book ... 6
What’s Next? ... 6

Book I: Creating the HTML/XHTML Foundation 7

Chapter 1: Sound HTML Foundations .9

Creating a Basic Page .. 9
Understanding the HTML in the Basic Page ... 11
Meeting Your New Friends, the Tags .. 12
Setting Up Your System .. 15

Displaying fi le extensions ... 15
Setting up your software ... 16

Chapter 2: It’s All about Validation .19

Somebody Stop the HTML Madness! .. 19
XHTML to the rescue ... 20
There’s XHTML and there’s good XHTML .. 21

Building an XHTML Document ... 22
Don’t memorize all this! .. 22
The DOCTYPE tag .. 22
The xmlns attribute ... 23
The meta tag ... 23
You validate me ... 23

Validating Your Page ... 25
Aesop visits W3C ... 27
Showing off your mad skillz .. 35
Using Tidy to repair pages .. 37

02_9780470537558-ftoc.indd xi02_9780470537558-ftoc.indd xi 10/7/10 8:26 PM10/7/10 8:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Editionxii

Chapter 3: Choosing Your Tools. .41

What’s Wrong with the Big Boys? ... 41
Alternative Web Development Tools .. 43

The features you need on your computer .. 43
Building a basic toolbox.. 43

Picking a Text Editor ... 44
Tools to avoid unless you have nothing else 44
A noteworthy editor: Notepad++ ... 45
The old standards: VI and Emacs .. 46
Other text editors .. 49

The Web Developer’s Browser .. 49
A little ancient history ... 49
Overview of the prominent browsers ... 50
Other notable browsers .. 52
The bottom line in browsers .. 53

Tricking Out Firefox .. 53
Validating your pages with HTML Validator 54
Using the Web Developer toolbar .. 55
Using Firebug .. 57

Using a Full-Blown IDE .. 58
Introducing Aptana .. 58
Customizing Aptana... 60

Introducing Komodo Edit ... 62

Chapter 4: Managing Information with Lists and Tables 65

Making a List and Checking It Twice ... 65
Creating an unordered list .. 65
Creating ordered lists .. 67
Making nested lists .. 69
Building the defi nition list .. 72

Building Tables .. 74
Defi ning the table ... 75
Spanning rows and columns... 77
Avoiding the table-based layout trap .. 80

Chapter 5: Making Connections with Links .83

Making Your Text Hyper ... 83
Introducing the anchor tag ... 84
Comparing block-level and inline elements...................................... 85
Analyzing an anchor .. 86
Introducing URLs ... 86

Making Lists of Links ... 88
Working with Absolute and Relative References 89

Understanding absolute references .. 89
Introducing relative references .. 89

02_9780470537558-ftoc.indd xii02_9780470537558-ftoc.indd xii 10/7/10 8:26 PM10/7/10 8:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents xiii

Chapter 6: Adding Images. .93

Adding Images to Your Pages .. 93
Adding links to images .. 94
Adding inline images using the tag .. 96

Choosing an Image Manipulation Tool ... 98
An image is worth 3.4 million words! .. 98
Introducing IrfanView .. 101

Choosing an Image Format ... 102
BMP .. 102
JPG/JPEG ... 102
GIF .. 103
PNG .. 105
Summary of Web image formats .. 106

Manipulating Your Images .. 106
Changing formats in IrfanView ... 106
Resizing your images ... 108
Enhancing image colors .. 109
Using built-in effects .. 110
Other effects you can use ... 115
Batch processing ... 115

Using Images as Links ... 117
Creating thumbnail images ... 118
Creating a thumbnail-based image directory 120

Chapter 7: Creating Forms. .121

You Have Great Form .. 121
Forms must have some form .. 123
Organizing a form with fi eldsets and labels 123

Building Text-Style Inputs .. 126
Making a standard text fi eld ... 126
Building a password fi eld .. 127
Making multi-line text input .. 128

Creating Multiple Selection Elements ... 130
Making selections .. 130
Building check boxes... 132
Creating radio buttons .. 134

Pressing Your Buttons .. 136
Making input-style buttons ... 137
Building a Submit button .. 138
It’s a do-over: The Reset button ... 138
Introducing the <button> tag ... 139

Chapter 8: The Future of HTML: HTML 5. .141

Can’t We Just Stick with XHTML? .. 141
Using the HTML 5 doctype ... 142
Browser support for HTML 5 ... 142
Validating HTML 5 ... 142

02_9780470537558-ftoc.indd xiii02_9780470537558-ftoc.indd xiii 10/7/10 8:26 PM10/7/10 8:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Editionxiv

Semantic Elements .. 142
Using New Form Elements .. 144
Using Embedded Fonts ... 147
Audio and Video Tags ... 149
The Canvas Tag .. 152
Other Promising Features .. 155
Limitations of HTML 5 ... 156

Book II: Styling with CSS .. 157

Chapter 1: Coloring Your World. .159

Now You Have an Element of Style ... 159
Setting up a style sheet ... 161
Changing the colors ... 162

Specifying Colors in CSS ... 163
Using color names ... 163
Putting a hex on your colors .. 164
Coloring by number ... 165
Hex education... 165
Using the Web-safe color palette ... 167

Choosing Your Colors ... 168
Starting with Web-safe colors .. 169
Modifying your colors ... 169
Doing it on your own pages .. 170
Changing CSS on the fl y... 170

Creating Your Own Color Scheme ... 172
Understanding hue, saturation, and value 172
Using the Color Scheme Designer .. 173
Selecting a base hue .. 174
Picking a color scheme ... 175

Chapter 2: Styling Text .177

Setting the Font Family ... 177
Applying the font-family style attribute .. 179
Using generic fonts .. 180
Making a list of fonts ... 181

The Curse of Web-Based Fonts .. 183
Understanding the problem ... 183
Examining possible solutions ... 184
Using images for headlines ... 185

Specifying the Font Size .. 188
Size is only a suggestion!... 188
Using the font-size style attribute .. 188
Absolute measurement units ... 189
Relative measurement units ... 190

02_9780470537558-ftoc.indd xiv02_9780470537558-ftoc.indd xiv 10/7/10 8:26 PM10/7/10 8:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents xv

Determining Other Font Characteristics .. 191
Using font-style for italics ... 192
Using font-weight for bold .. 193
Using text-decoration .. 194
Using text-align for basic alignment .. 196
Other text attributes.. 197
Using the font shortcut ... 197
Working with subscripts and superscripts 199

Chapter 3: Selectors, Class, and Style .201

Selecting Particular Segments .. 201
Defi ning more than one kind of paragraph 201
Styling identifi ed paragraphs ... 203

Using Emphasis and Strong Emphasis .. 203
Adding emphasis to the page ... 204
Modifying the display of em and strong ... 204

Defi ning Classes ... 206
Adding classes to the page ... 207
Combining classes ... 208

Introducing div and span .. 210
Organizing the page by meaning.. 211
Why not make a table? .. 212

Using Pseudo-Classes to Style Links ... 213
Styling a standard link ... 213
Styling the link states .. 213
Best link practices ... 215

Selecting in Context ... 216
Defi ning Multiple Styles at Once .. 217

Chapter 4: Borders and Backgrounds. .219

Joining the Border Patrol ... 219
Using the border attributes .. 219
Defi ning border styles ... 221
Using the border shortcut .. 222
Creating partial borders.. 222

Introducing the Box Model ... 224
Borders, margin, and padding .. 224
Positioning elements with margins and padding 226

Changing the Background Image ... 228
Getting a background check ... 230
Solutions to the background conundrum 230

Manipulating Background Images ... 234
Turning off the repeat ... 234
Making effective gradients with repeat-x and repeat-y 235

Using Images in Lists ... 237

02_9780470537558-ftoc.indd xv02_9780470537558-ftoc.indd xv 10/7/10 8:26 PM10/7/10 8:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Editionxvi

Chapter 5: Levels of CSS .239

Managing Levels of Style .. 239
Using local styles ... 239
Using an external style sheet ... 242

Understanding the Cascading Part of Cascading Style Sheets 246
Inheriting styles ... 247
Hierarchy of styles ... 248
Overriding styles .. 249
Precedence of style defi nitions .. 250

Using Conditional Comments ... 251
Coping with incompatibility ... 251
Making Internet Explorer–specifi c code ... 252
Using a conditional comment with CSS .. 253
Checking the Internet Explorer version .. 256

Book III: Using Positional CSS 257

Chapter 1: Fun with the Fabulous Float .259

Avoiding Old-School Layout Pitfalls .. 259
Problems with frames ... 259
Problems with tables ... 260
Problems with huge images.. 261
Problems with Flash .. 261

Introducing the Floating Layout Mechanism ... 262
Using fl oat with images ... 263
Adding the fl oat property ... 264

Using Float with Block-Level Elements ... 265
Floating a paragraph.. 265
Adjusting the width ... 267
Setting the next margin ... 268

Using Float to Style Forms .. 270
Using fl oat to beautify the form ... 272
Adjusting the fi eldset width.. 275
Using the clear attribute to control page layout 276

Chapter 2: Building Floating Page Layouts .279

Creating a Basic Two-Column Design ... 279
Designing the page ... 279
Building the XHTML .. 281
Adding preliminary CSS .. 282
Using temporary borders ... 283
Setting up the fl oating columns ... 285
Tuning up the borders .. 285
Advantages of a fl uid layout ... 287

02_9780470537558-ftoc.indd xvi02_9780470537558-ftoc.indd xvi 10/7/10 8:26 PM10/7/10 8:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents xvii

Building a Three-Column Design ... 287
Styling the three-column page ... 289
Problems with the fl oating layout.. 290
Specifying a min-height ... 291

Building a Fixed-Width Layout ... 293
Setting up the XHTML ... 293
Using an image to simulate true columns 294

Building a Centered Fixed-Width Layout .. 295
Making a surrogate body with an all div ... 296
How the jello layout works ... 298
Limitations of the jello layout .. 298

Chapter 3: Styling Lists and Menus. .299

Revisiting List Styles ... 299
Defi ning navigation as a list of links .. 300
Turning links into buttons .. 300
Building horizontal lists .. 302

Creating Dynamic Lists ... 304
Building a nested list ... 304
Hiding the inner lists ... 306
Getting the inner lists to appear on cue ... 307

Building a Basic Menu System ... 310
Building a vertical menu with CSS ... 312
Building a horizontal menu .. 314

Chapter 4: Using Alternative Positioning. .317

Working with Absolute Positioning ... 317
Setting up the HTML .. 318
Adding position guidelines ... 318
Making absolute positioning work... 319

Managing z-index ... 320
Handling depth ... 320
Working with z-index ... 322

Building a Page Layout with Absolute Positioning 322
Overview of absolute layout ... 322
Writing the XHTML .. 324
Adding the CSS ... 324

Creating a More Flexible Layout .. 326
Designing with percentages.. 326
Building the layout... 328

Exploring Other Types of Positioning ... 329
Creating a fi xed menu system .. 330
Setting up the XHTML ... 331
Setting the CSS values ... 332

Determining Your Layout Scheme ... 334

02_9780470537558-ftoc.indd xvii02_9780470537558-ftoc.indd xvii 10/7/10 8:26 PM10/7/10 8:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Editionxviii

Book IV: Client-Side Programming with JavaScript 335

Chapter 1: Getting Started with JavaScript. .337

Working in JavaScript ... 337
Choosing a JavaScript editor .. 338
Picking your test browser ... 339

Writing Your First JavaScript Program ... 340
Embedding your JavaScript code .. 341
Creating comments .. 342
Using the alert() method for output ... 342
Adding the semicolon.. 342

Introducing Variables .. 342
Creating a variable for data storage .. 344
Asking the user for information ... 344
Responding to the user ... 345

Using Concatenation to Build Better Greetings 345
Comparing literals and variables ... 347
Including spaces in your concatenated phrases 347

Understanding the String Object ... 347
Introducing object-based programming (and cows)..................... 348
Investigating the length of a string .. 348
Using string methods to manipulate text 349

Understanding Variable Types .. 352
Adding numbers ... 352
Adding the user’s numbers .. 353
The trouble with dynamic data .. 354
The pesky plus sign ... 355

Changing Variables to the Desired Type .. 356
Using variable conversion tools .. 356
Fixing the addInput code .. 357

Chapter 2: Making Decisions with Conditions359

Working with Random Numbers ... 359
Creating an integer within a range... 359
Building a program that rolls dice ... 360

Using if to Control Flow .. 361
The basic if statement ... 362
All about conditions .. 363
Comparison operators .. 363

Using the else Clause .. 364
Using if-else for more complex interaction 365
Solving the mystery of the unnecessary else 367

Using switch for More Complex Branches ... 367
Creating an expression.. 368
Switching with style ... 369

02_9780470537558-ftoc.indd xviii02_9780470537558-ftoc.indd xviii 10/7/10 8:26 PM10/7/10 8:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents xix

Nesting if Statements .. 370
Building the nested conditions .. 371
Making sense of nested ifs .. 372

Chapter 3: Loops and Debugging. .373

Building Counting Loops with for .. 373
Building a standard for loop ... 374
Counting backward .. 375
Counting by 5 ... 375

Looping for a while .. 377
Creating a basic while loop .. 377
Avoiding loop mistakes ... 378

Introducing Bad Loops ... 378
Managing the reluctant loop .. 379
Managing the obsessive loop ... 379

Debugging Your Code ... 380
Letting Aptana help ... 380
Debugging JavaScript on Internet Explorer 381
Finding errors in Firefox ... 383
Finding errors with Firebug .. 383

Catching Logic Errors ... 384
Logging to the console with Firebug ... 385
Looking at console output .. 386

Using the Interactive Debug Mode .. 387
Setting up the Firebug debugger .. 388
Setting a breakpoint ... 389
Adding a debugger directive .. 389
Examining debug mode ... 390
Debugging your code... 392

Chapter 4: Functions, Arrays, and Objects. .395

Breaking Code into Functions .. 395
Thinking about structure .. 396
Building the antsFunction.html program.. 397

Passing Data to and from Functions ... 398
Examining the main code .. 399
Looking at the chorus ... 400
Handling the verses ... 400

Managing Scope ... 402
Introducing local and global variables .. 402
Examining variable scope ... 402

Building a Basic Array ... 405
Accessing array data ... 405
Using arrays with for loops .. 406
Revisiting the ants song .. 407

02_9780470537558-ftoc.indd xix02_9780470537558-ftoc.indd xix 10/7/10 8:26 PM10/7/10 8:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Editionxx

Working with Two-Dimension Arrays ... 409
Setting up the arrays ... 410
Getting a city .. 411
Creating a main() function ... 411

Creating Your Own Objects .. 413
Building a basic object .. 413
Adding methods to an object ... 414
Building a reusable object .. 415
Using your shiny new objects .. 417

Introducing JSON ... 417
Storing data in JSON format ... 418
Building a more complex JSON structure 419

Chapter 5: Talking to the Page. .423

Understanding the Document Object Model ... 423
Navigating the DOM ... 423
Changing DOM properties with Firebug ... 425
Examining the document object .. 425

Harnessing the DOM through JavaScript ... 427
Getting the blues, JavaScript-style .. 427
Writing JavaScript code to change colors 428

Managing Button Events ... 428
Embedding quotes within quotes .. 431
Writing the changeColor function ... 431

Managing Text Input and Output ... 432
Introducing event-driven programming .. 432
Creating the XHTML form ... 433
Using GetElementById to get access to the page 434
Manipulating the text fi elds .. 435

Writing to the Document .. 436
Preparing the HTML framework .. 436
Writing the JavaScript ... 437
Finding your innerHTML ... 438

Working with Other Text Elements ... 438
Building the form ... 440
Writing the function... 441
Understanding generated source .. 442

Chapter 6: Getting Valid Input .445

Getting Input from a Drop-Down List .. 445
Building the form ... 446
Reading the list box ... 447

Managing Multiple Selections .. 448
Coding a multiple selection select object 449
Writing the JavaScript code ... 450

02_9780470537558-ftoc.indd xx02_9780470537558-ftoc.indd xx 10/7/10 8:26 PM10/7/10 8:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents xxi

Check, Please: Reading Check Boxes .. 452
Building the check box page .. 452
Responding to the check boxes ... 453

Working with Radio Buttons .. 454
Interpreting radio buttons .. 456

Working with Regular Expressions ... 457
Introducing regular expressions .. 460
Using characters in regular expressions .. 462
Marking the beginning and end of the line 463
Working with special characters ... 463
Conducting repetition operations ... 464
Working with pattern memory ... 465

Chapter 7: Animating Your Pages .467

Making Things Move ... 467
Looking over the HTML... 468
Getting an overview of the JavaScript ... 470
Creating global variables .. 471
Initializing.. 472
Moving the sprite ... 472
Checking the boundaries .. 474

Reading Input from the Keyboard ... 475
Building the keyboard page .. 476
Overwriting the init() function .. 477
Setting up an event handler .. 478
Responding to keystrokes .. 479
Deciphering the mystery of key codes .. 480

Following the Mouse ... 481
Looking over the HTML... 481
Initializing the code ... 482
Building the mouse listener .. 483

Creating Automatic Motion .. 483
Creating a setInterval() call ... 485

Building Image-Swapping Animation ... 486
Preparing the images ... 487
Building the page ... 487
Building the global variables .. 488
Setting up the interval ... 489
Animating the sprite .. 489

Preloading Your Images .. 490
Movement and swapping .. 492
Building the code ... 494
Defi ning global variables ... 495
Initializing your data .. 496
Preloading the images ... 496
Animating and updating the image .. 497
Moving the sprite ... 497

02_9780470537558-ftoc.indd xxi02_9780470537558-ftoc.indd xxi 10/7/10 8:26 PM10/7/10 8:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Editionxxii

Book V: Server-Side Programming with PHP 499

Chapter 1: Getting Started on the Server .501

Introducing Server-Side Programming .. 501
Programming on the server .. 501
Serving your programs .. 502
Picking a language ... 503

Installing Your Web Server ... 504
Inspecting phpinfo() ... 505
Building XHTML with PHP .. 508
Coding with Quotation Marks .. 510
Working with Variables PHP-Style ... 511

Concatenation .. 512
Interpolating variables into text .. 513

Building XHTML Output ... 514
Using double quote interpolation .. 515
Generating output with heredocs .. 515
Switching from PHP to XHTML .. 517

Chapter 2: PHP and XHTML Forms .519

Exploring the Relationship between PHP and XHTML 519
Embedding PHP inside XHTML .. 520
Viewing the results .. 521

Sending Data to a PHP Program ... 522
Creating a form for PHP processing .. 523
Receiving data in PHP ... 525

Choosing the Method of Your Madness ... 527
Using get to send data ... 527
Using the post method to transmit form data 529
Getting data from the form ... 530

Retrieving Data from Other Form Elements ... 532
Building a form with complex elements ... 532
Responding to a complex form .. 535

Chapter 3: Control Structures. .539

Introducing Conditions (Again) ... 539
Building the Classic if Statement ... 540

Rolling dice the PHP way .. 541
Checking your six... 541
Understanding comparison operators .. 545
Taking the middle road ... 545
Building a program that makes its own form 547

Making a switch ... 549
Looping with for .. 552
Looping with while .. 555

02_9780470537558-ftoc.indd xxii02_9780470537558-ftoc.indd xxii 10/7/10 8:26 PM10/7/10 8:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents xxiii

Chapter 4: Working with Arrays .559

Using One-Dimensional Arrays .. 559
Creating an array ... 559
Filling an array .. 560
Viewing the elements of an array .. 560
Preloading an array ... 562

Using Loops with Arrays .. 562
Simplifying loops with foreach ... 564
Arrays and HTML ... 565

Introducing Associative Arrays ... 567
Using foreach with associative arrays .. 568

Introducing Multidimensional Arrays ... 570
We’re going on a trip ... 570
Looking up the distance .. 572

Breaking a String into an Array .. 574
Creating arrays with explode ... 574
Creating arrays with preg_split.. 576

Chapter 5: Using Functions and Session Variables579

Creating Your Own Functions .. 579
Rolling dice the old-fashioned way .. 579
Improving code with functions .. 582
Managing variable scope .. 583
Returning data from functions ... 585

Managing Persistence with Session Variables ... 586
Understanding session variables ... 587
Adding session variables to your code ... 589

Chapter 6: Working with Files and Directories 591

Text File Manipulation .. 591
Writing text to fi les .. 592
Writing a basic text fi le.. 594
Reading from the fi le ... 599

Using Delimited Data ... 601
Storing data in a CSV fi le ... 601
Viewing CSV data directly ... 603
Reading the CSV data in PHP .. 604

Working with File and Directory Functions ... 608
opendir() .. 608
readdir() ... 608
chdir() .. 609
Generating the list of fi le links .. 609

Chapter 7: Connecting to a MySQL Database .613

Retrieving Data from a Database ... 613
Understanding data connections ... 616
Building a connection .. 617

02_9780470537558-ftoc.indd xxiii02_9780470537558-ftoc.indd xxiii 10/7/10 8:26 PM10/7/10 8:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Editionxxiv

Passing a query to the database .. 618
Processing the results ... 619
Extracting the rows ... 620
Extracting fi elds from a row ... 621
Printing the data .. 622

Improving the Output Format .. 623
Building defi nition lists ... 623
Using XHTML tables for output ... 625

Allowing User Interaction ... 628
Building an XHTML search form .. 629
Responding to the search request... 630
Breaking the code into functions ... 631
Processing the input .. 632
Generating the output ... 633

Book VI: Managing Data with MySQL 635

Chapter 1: Getting Started with Data .637

Examining the Basic Structure of Data ... 637
Determining the fi elds in a record ... 639
Introducing SQL data types .. 639
Specifying the length of a record ... 640
Defi ning a primary key .. 641
Defi ning the table structure .. 642

Introducing MySQL .. 643
Why use MySQL? .. 643
Understanding the three-tier architecture 644
Practicing with MySQL .. 645

Setting Up phpMyAdmin ... 646
Changing the root password .. 648
Adding a user.. 653
Using phpMyAdmin on a remote server ... 656

Making a Database with phpMyAdmin ... 659

Chapter 2: Managing Data with SQL. .665

Writing SQL Code by Hand ... 665
Understanding SQL syntax rules.. 666
Examining the buildContact.sql script .. 666
Dropping a table... 667
Creating a table .. 667
Adding records to the table.. 668
Viewing the sample data ... 669

Running a Script with phpMyAdmin ... 669
Using AUTO_INCREMENT for Primary Keys .. 672
Selecting Data from Your Tables ... 674

Selecting only a few fi elds ... 675
Selecting a subset of records ... 677

02_9780470537558-ftoc.indd xxiv02_9780470537558-ftoc.indd xxiv 10/7/10 8:26 PM10/7/10 8:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents xxv

Searching with partial information .. 679
Searching for the ending value of a fi eld ... 680
Searching for any text in a fi eld.. 681
Searching with regular expressions .. 681
Sorting your responses ... 682

Editing Records .. 684
Updating a record .. 684
Deleting a record.. 684

Exporting Your Data and Structure ... 685
Exporting SQL code ... 688
Creating XML data ... 690

Chapter 3: Normalizing Your Data. .691

Recognizing Problems with Single-Table Data ... 691
The identity crisis .. 692
The listed powers .. 692
Repetition and reliability .. 694
Fields that change .. 695
Deletion problems ... 695

Introducing Entity-Relationship Diagrams ... 695
Using MySQL Workbench to draw ER diagrams 696
Creating a table defi nition in Workbench 696

Introducing Normalization ... 700
First normal form ... 700
Second normal form .. 701
Third normal form ... 702

Identifying Relationships in Your Data ... 703

Chapter 4: Putting Data Together with Joins .705

Calculating Virtual Fields .. 705
Introducing SQL Functions ... 706
Knowing when to calculate virtual fi elds .. 707

Calculating Date Values .. 707
Using DATEDIFF to determine age ... 708
Adding a calculation to get years .. 709
Converting the days integer into a date.. 710
Using YEAR() and MONTH() to get readable values 711
Concatenating to make one fi eld.. 712

Creating a View .. 713
Using an Inner Join to Combine Tables .. 715

Building a Cartesian join and an inner join 717
Enforcing one-to-many relationships .. 719
Counting the advantages of inner joins .. 720
Building a view to encapsulate the join .. 721

Managing Many-to-Many Joins ... 721
Understanding link tables ... 723
Using link tables to make many-to-many joins 724

02_9780470537558-ftoc.indd xxv02_9780470537558-ftoc.indd xxv 10/7/10 8:26 PM10/7/10 8:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Editionxxvi

Book VII: Into the Future with AJAX 729

Chapter 1: AJAX Essentials .731

AJAX Spelled Out ... 733
A is for asynchronous ... 733
J is for JavaScript ... 733
A is for . . . and? ... 734
And X is for . . . data... 734

Making a Basic AJAX Connection .. 734
Building the HTML form .. 737
Creating an XMLHttpRequest object ... 738
Opening a connection to the server .. 739
Sending the request and parameters .. 740
Checking the status ... 740

All Together Now — Making the Connection Asynchronous 741
Setting up the program ... 743
Building the getAJAX() function ... 743
Reading the response .. 745

Chapter 2: Improving JavaScript and AJAX with jQuery 747

Introducing jQuery .. 749
Installing jQuery ... 750
Importing jQuery from Google ... 750

Your First jQuery App ... 751
Setting up the page .. 752
Meet the jQuery node object .. 753

Creating an Initialization Function .. 754
Using $(document).ready() ... 755
Alternatives to document.ready .. 756

Investigating the jQuery Object ... 757
Changing the style of an element ... 757
Selecting jQuery objects ... 759
Modifying the style .. 759

Adding Events to Objects ... 760
Adding a hover event .. 760
Changing classes on the fl y .. 762

Making an AJAX Request with jQuery ... 764
Including a text fi le with AJAX .. 765
Building a poor man’s CMS with AJAX .. 766

Chapter 3: Animating jQuery .771

Playing Hide and Seek ... 771
Getting transition support .. 773
Writing the HTML and CSS foundation ... 775

02_9780470537558-ftoc.indd xxvi02_9780470537558-ftoc.indd xxvi 10/7/10 8:26 PM10/7/10 8:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents xxvii

Initializing the page.. 776
Hiding and showing the content .. 777
Toggling visibility... 778
Sliding an element .. 778
Fading an element in and out ... 779

Changing Position with jQuery .. 779
Creating the framework .. 782
Setting up the events ... 782
Don’t go chaining . . . okay, do it all you want................................ 783
Building the move() function with chaining 784
Building time-based animation with animate() 785
Move a little bit: Relative motion ... 785

Modifying Elements on the Fly ... 786
Building the basic page ... 791
Initializing the code ... 792
Adding text ... 792
Attack of the clones ... 793
It’s a wrap.. 794
Alternating styles ... 795
Resetting the page ... 795
More fun with selectors and fi lters .. 796

Chapter 4: Using the jQuery User Interface Toolkit797

What the jQuery User Interface Brings to the Table 797
It’s a theme park .. 798
Using the themeRoller to get an overview of jQuery 798
Wanna drag? Making components draggable 802
Downloading the library ... 803
Writing the program .. 805

Resizing on a Theme ... 805
Examining the HTML and standard CSS.. 809
Importing the fi les .. 809
Making a resizable element .. 809
Adding themes to your elements ... 810
Adding an icon ... 812

Dragging, Dropping, and Calling Back ... 814
Building the basic page ... 816
Initializing the page.. 817
Handling the drop .. 818
Beauty school dropout events ... 819
Cloning the elements ... 819

Chapter 5: Improving Usability with jQuery .823

Multi-element Designs ... 823
Playing the accordion widget ... 824
Building a tabbed interface .. 827
Using tabs with AJAX... 830

02_9780470537558-ftoc.indd xxvii02_9780470537558-ftoc.indd xxvii 10/7/10 8:26 PM10/7/10 8:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Editionxxviii

Improving Usability ... 833
Playing the dating game .. 834
Picking numbers with the slider .. 836
Selectable elements ... 838
Building a sortable list .. 839
Creating a custom dialog box ... 840

Chapter 6: Working with AJAX Data .843

Sending Requests AJAX Style ... 843
Sending the data .. 844
Simplifying PHP for AJAX .. 846

Building a Multipass Application ... 847
Setting up the HTML framework .. 849
Loading the select element ... 850
Writing the loadList.php program ... 851
Responding to selections .. 852
Writing the showHero.php script .. 853

Working with XML Data .. 854
Review of XML .. 855
Manipulating XML with jQuery .. 856
Creating the HTML ... 858
Retrieving the data .. 858
Processing the results ... 859
Printing the pet name .. 859

Working with JSON Data ... 860
Knowing JSON’s pros .. 860
Reading JSON data with jQuery ... 862
Managing the framework .. 864
Retrieving the JSON data .. 864
Processing the results ... 865

Book VIII: Moving from Pages to Sites 867

Chapter 1: Managing Your Servers .869

Understanding Clients and Servers ... 869
Parts of a client-side development system 870
Parts of a server-side system ... 871

Creating Your Own Server with XAMPP ... 872
Running XAMPP ... 873
Testing your XAMPP confi guration ... 874
Adding your own fi les .. 874
Setting the security level .. 876
Compromising between functionality and security 877

Choosing a Web Host .. 878
Finding a hosting service .. 879
Connecting to a hosting service... 880

02_9780470537558-ftoc.indd xxviii02_9780470537558-ftoc.indd xxviii 10/7/10 8:26 PM10/7/10 8:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents xxix

Managing a Remote Site .. 881
Using Web-based fi le tools .. 881
Understanding fi le permissions ... 884
Using FTP to manage your site... 884

Naming Your Site ... 887
Understanding domain names ... 887
Registering a domain name .. 888

Managing Data Remotely .. 891
Creating your database ... 892
Finding the MySQL server name .. 893

Chapter 2: Planning Your Sites .895

Creating a Multipage Web Site ... 895
Planning a Larger Site ... 896
Understanding the Client .. 896

Ensuring that the client’s expectations are clear 897
Delineating the tasks ... 898

Understanding the Audience ... 899
Determining whom you want to reach .. 899
Finding out the user’s technical expertise 900

Building a Site Plan .. 901
Creating a site overview .. 902
Building the site diagram .. 903

Creating Page Templates .. 905
Sketching the page design .. 905
Building the XHTML template framework 907
Creating page styles .. 909
Building a data framework .. 912

Fleshing Out the Project ... 913
Making the site live .. 913
Contemplating effi ciency .. 914

Chapter 3: Introducing Content Management Systems.915

Overview of Content Management Systems ... 916
Previewing Common CMSs ... 917

Moodle... 917
WordPress .. 918
Drupal .. 919
Building a CMS site with Website Baker ... 920
Installing your CMS .. 921
Getting an overview of Website Baker .. 925
Adding your content .. 925
Using the WYSIWYG editor ... 927
Changing the template .. 931
Adding additional templates .. 932
Adding new functionality .. 934

02_9780470537558-ftoc.indd xxix02_9780470537558-ftoc.indd xxix 10/7/10 8:26 PM10/7/10 8:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Editionxxx

Building Custom Themes .. 935
Starting with a prebuilt template ... 935
Changing the info.php fi le ... 937
Modifying index.php .. 938
Modifying the CSS fi les .. 939
Packaging your template .. 940

Chapter 4: Editing Graphics .941

Using a Graphic Editor .. 941
Choosing an editor .. 942

Introducing Gimp ... 942
Creating an image .. 944
Painting tools .. 945
Selection tools .. 947
Modifi cation tools .. 949
Managing tool options ... 950
Utilities .. 950

Understanding Layers ... 952
Introducing Filters ... 954
Solving Common Web Graphics Problems ... 954

Changing a color .. 955
Building a banner graphic... 956
Building a tiled background ... 958

Chapter 5: Taking Control of Content .961

Building a “Poor Man’s CMS” with Your Own Code 961
Using Server-Side Includes (SSIs) .. 961
Using AJAX and jQuery for client-side inclusion 964
Building a page with PHP includes .. 966

Creating Your Own Data-Based CMS ... 967
Using a database to manage content .. 967
Writing a PHP page to read from the table 970
Allowing user-generated content ... 973
Adding a new block ... 976
Improving the dbCMS design ... 978

Appendix A: What’s on the CD 979
System Requirements ... 979
Using the CD .. 980
What You’ll Find on the CD .. 980

Author-created material ... 981
Aptana Studio 2.0 ... 981
Dia 0.97.1 ... 981
FileZilla 3.3.1 ... 981
Firefox 3.6 and Extensions .. 981

02_9780470537558-ftoc.indd xxx02_9780470537558-ftoc.indd xxx 10/7/10 8:26 PM10/7/10 8:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents xxxi

GIMP 2.6 .. 982
HTML Tidy .. 982
IrfanView 4.25 ... 982
IZArc 4.1 .. 982
jEdit .. 982
jQuery 1.4 .. 982
Komodo Edit ... 983
KompoZer 0.7.10 .. 983
Notepad++ ... 983
SQLite 3.6.22 ... 983
WebsiteBaker 2.8.1 .. 983
XAMPP 1.7.3 .. 983
XnView 1.97 .. 983

Troubleshooting .. 984

Index .. 985

02_9780470537558-ftoc.indd xxxi02_9780470537558-ftoc.indd xxxi 10/7/10 8:26 PM10/7/10 8:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Editionxxxii

02_9780470537558-ftoc.indd xxxii02_9780470537558-ftoc.indd xxxii 10/7/10 8:26 PM10/7/10 8:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

I love the Internet, and if you picked up this book, you probably do, too.
The Internet is dynamic, chaotic, exciting, interesting, and useful, all at

the same time. The Web is pretty fun from a user’s point of view, but that’s
only part of the story. Perhaps the best part of the Internet is how partici-
patory it is. You can build your own content — free! It’s really amazing.
There’s never been a form of communication like this before. Anyone with
access to a minimal PC and a little bit of knowledge can create his or her
own homestead in one of the most exciting platforms in the history of com-
munication.

The real question is how to get there. A lot of Web development books are
really about how to use some sort of software you have to buy. That’s okay,
but it isn’t necessary. Many software packages have evolved that purport to
make Web development easier — and some work pretty well — but regard-
less what software package you use, there’s still a need to know what’s
really going on under the surface. That’s where this book comes in.

You’ll find out exactly how the Web works in this book. You’ll figure out
how to use various tools, but, more importantly, you’ll create your piece of
the Web. You’ll discover:

 ✦ How Web pages are created: You’ll figure out the basic structure of
Web pages. You’ll understand the structure well because you build
pages yourself. No mysteries here.

 ✦ How to separate content and style: You’ll understand the foundation
of modern thinking about the Internet — that style should be separate
from content.

 ✦ How to use Web standards: The Web is pretty messy, but, finally, some
standards have arisen from the confusion. You’ll discover how these
standards work and how you can use them.

 ✦ How to create great-looking Web pages: Of course, you want a terrific-
looking Web site. With this book, you’ll find out how to use layout, style,
color, and images.

 ✦ How to build modern layouts: Many Web pages feature columns,
menus, and other fancy features. You’ll figure out how to build all
these things.

 ✦ How to add interactivity: Adding forms to your pages, validating
form data, and creating animations are all possible with the JavaScript
language.

03_9780470537558-intro.indd 103_9780470537558-intro.indd 1 10/7/10 8:27 PM10/7/10 8:27 PM

www.it-ebooks.info

http://www.it-ebooks.info/

2 No Experience Necessary

 ✦ How to write programs on the server: Today’s Web is powered by pro-
grams on Web servers. You’ll discover the powerful PHP language and
figure out how to use it to create powerful and effective sites.

 ✦ How to harness the power of data: Every Web developer eventually
needs to interact with data. You’ll read about how to create databases
that work. You’ll also discover how to connect databases to your Web
pages and how to create effective and useful interfaces.

 ✦ How AJAX is changing everything: The hottest Web technology on the
horizon is AJAX (Asynchronous JavaScript and XML). You’ll figure out
how to harness this way of working and use it to create even more pow-
erful and interesting applications.

No Experience Necessary
I’m not assuming anything in this book. If you’ve never built a Web page
before, you’re in the right hands. You don’t need any experience, and you
don’t have to know anything about HTML, programming, or databases. I dis-
cuss everything you need.

If you’re reasonably comfortable with a computer (you can navigate the Web
and use a word processor), you have all the skills you need.

Great for Advanced Folks, Too!
If you’ve been around Web development for a while, you’ll still find this
book handy.

If you’ve used HTML but not XHTML, see how things have changed and dis-
cover the powerful combination of XHTML and CSS.

If you’re still using table-based layouts, you’ll definitely want to read about
newer ways of thinking. After you get over the difference, you’ll be amazed at
the power, the flexibility, and the simplicity of CSS-based layout and design.

If you’re already comfortable with XHTML and CSS, you’re ready to add
JavaScript functionality for form validation and animation. If you’ve never
used a programming language before, JavaScript is a really great place
to start.

If you’re starting to get serious about Web development, you’ve probably
already realized that you’ll need to work with a server at some point. PHP
is a really powerful, free, and easy language that’s extremely prominent on
the Web landscape. You’ll use this to have programs send e-mails, store and
load information from files, and work with databases.

03_9780470537558-intro.indd 203_9780470537558-intro.indd 2 10/7/10 8:27 PM10/7/10 8:27 PM

www.it-ebooks.info

http://www.it-ebooks.info/

3Don’t Buy Any Software

If you’re messing with commercial development, you’ll definitely need to
know more about databases. I get e-mails every week from companies look-
ing for people who can create a solid relational database and connect it to a
Web site with PHP.

If you’re curious about AJAX, you can read about what it is, how it works,
and how to use it to add functionality to your site. You’ll also read about a
very powerful and easy AJAX library that can add tremendous functionality
to your bag of tricks.

I wrote this book as the reference I wish I had. If you have only one Web
development book on your shelf, this should be the one. Wherever you are
in your Web development journey, you can find something interesting and
new in this book.

Use Any Computer
One of the great things about Web development is how accessible it can
be. You don’t need a high-end machine to build Web sites. Whatever you’re
using now will probably do fine. I built most of the examples in this book
with Windows XP and Ubuntu Linux, but a Mac is perfectly fine, too. Most of
the software I use in the book is available free for all major platforms. Similar
alternatives for all platforms are available in the few cases when this isn’t
true.

Don’t Buy Any Software
 Everything you need for Web development is on the CD-ROM. I’ve used only

open-source software for this book. The CD contains a ton of tools and help-
ful programs. See Appendix A in the back of this book for a complete listing.
Following are the highlights:

 ✦ Aptana: A full-featured programmer’s editor that greatly simplifies creat-
ing Web pages, CSS documents, and code in multiple languages.

 ✦ Firefox extensions: I’ve included several extensions to the Firefox Web
browser that turn it into a thoroughbred Web development platform.
The Web Developer toolbar adds all kinds of features for creating and
testing pages; the HTML Validator checks your pages for standards
compliance; and the Firebug extension adds incredible features for
JavaScript and AJAX debugging.

 ✦ XAMPP: When you’re ready to move to the server, XAMPP is a com-
plete server package that’s easy to install and incredibly powerful. This
includes the incredible Apache Web server, the PHP programming lan-
guage, the MySQL database manager, and tons of useful utilities.

03_9780470537558-intro.indd 303_9780470537558-intro.indd 3 10/7/10 8:27 PM10/7/10 8:27 PM

www.it-ebooks.info

http://www.it-ebooks.info/

4 How This Book Is Organized

 ✦ Useful tools: Every time I use a tool (such as a data mapper, a diagram
tool, or an image editor) in this book, I make it available on the CD-ROM.

There’s no need to buy any expensive Web development tools. Everything
you need is here and no harder than the more expensive Web editors.

How This Book Is Organized
Web development is about solving a series of connected but different prob-
lems. This book is organized into eight minibooks based on specific technol-
ogies. You can read them in any order you wish, but you’ll find that the later
books tend to rely on topics described in the earlier books. (For example,
JavaScript doesn’t make much sense without XHTML because it’s usually
embedded in a Web page.) The following describes these eight minibooks:

 ✦ Book I: Creating the HTML/XHTML Foundation — Web development
incorporates a lot of languages and technologies, but HTML is the foun-
dation. Here I show you XHTML, the latest incarnation of HTML, and
describe how it’s used to form the basic skeleton of your pages. I also
preview the upcoming HTML 5 standard.

 ✦ Book II: Styling with CSS — In the old days, HTML had a few tags to
spruce up your pages, but they weren’t nearly powerful enough. Today,
developers use Cascading Style Sheets (CSS) to add color and formatting
to your pages.

 ✦ Book III: Using Positional CSS — Discover the best ways to set up lay-
outs with floating elements, fixed positioning, and absolute positioning.
Figure out how to build various multicolumn page layouts and how to
create dynamic buttons and menus.

 ✦ Book IV: Client-Side Programming with JavaScript — Figure out essen-
tial programming skills with the easy and powerful JavaScript language —
even if you’ve never programmed before. Manipulate data in Web forms
and use powerful regular expression technology to validate form entries.
Also discover how to create animations with JavaScript.

 ✦ Book V: Server-Side Programming with PHP — Move your code to the
server and take advantage of this powerful language. Figure out how to
respond to Web requests; work with conditions, functions, objects, and
text files; and connect to databases.

 ✦ Book VI: Managing Data with MySQL — Most serious Web projects are
eventually about data. Figure out how databases are created, how to set
up a secure data server, the basics of data normalization, and how to
create a reliable and trustworthy data back end for your site.

03_9780470537558-intro.indd 403_9780470537558-intro.indd 4 10/7/10 8:27 PM10/7/10 8:27 PM

www.it-ebooks.info

http://www.it-ebooks.info/

5New for the Second Edition

 ✦ Book VII: Into the Future with AJAX — Look forward to the technology
that has the Web abuzz. AJAX isn’t really a language but rather a new
way of thinking about Web development. Get the skinny on what’s going
on here, build an AJAX connection or two by hand, and use the really
cool jQuery library for adding advanced features and functionality to
your pages.

 ✦ Book VIII: Moving from Pages to Sites — This minibook ties together
many of the threads throughout the rest of the book. Discover how to
create your own complete Web server solution or pick a Web host. Walk
through the process of designing a complex multipage Web site. Build
graphics for your Web site. Discover how to use content management
systems to simplify complex Web sites and, finally, to build your own
content management system with skills taught throughout the book.

New for the Second Edition
This second edition keeps the organization and content of the first edition. I
have made a few changes to keep up with advances in technology:

 ✦ Preview of HTML 5: HTML 5 and CSS 3 offer promising new features.
While it may be too early to incorporate these features into every page,
it’s time to learn what’s coming. Book I, Chapter 8 highlights these wel-
come new advances.

 ✦ Improved PHP coverage: I greatly enhanced and streamlined the PHP
content, making it easier to follow. You’ll see these improvements
throughout Book V.

 ✦ Enhanced jQuery coverage: The jQuery AJAX library has improved
dramatically since the first edition. I provide much more detailed cover-
age including full support for jQuery UI and numerous cool widgets and
tools. Book VII is much longer and more detailed than it was in the first
edition.

 ✦ A new graphics chapter: A number of readers asked for more coverage
of graphics tools, especially Gimp. I added a new chapter to Book VIII
describing how to use Gimp to enhance your Web pages.

 ✦ Support for the Website Baker CMS: I use this CMS quite a bit in my
Web business, and I find it especially easy to modify. I changed Book
VIII, Chapter 3 to explain how to use and modify this excellent CMS.

 ✦ Various tweaks and improvements: No book is perfect (though I really
try). There were a few passages in the previous edition that readers
found difficult. I tried hard to clean up each of these areas. Many thanks
to those who provided feedback!

03_9780470537558-intro.indd 503_9780470537558-intro.indd 5 10/7/10 8:27 PM10/7/10 8:27 PM

www.it-ebooks.info

http://www.it-ebooks.info/

6 Icons Used in This Book

Icons Used in This Book
This is a For Dummies book, so you have to expect some snazzy icons, right?
I don’t disappoint. Here’s what you’ll see:

This is where I pass along any small insights I may have gleaned in my travels.

 I can’t really help being geeky once in a while. Every so often, I want to
explain something a little deeper. Read this to impress people at your next
computer science cocktail party or skip it if you really don’t need the details.

 A lot of details are here. I point out something important that’s easy to forget
with this icon.

 Watch out! Anything I mark with this icon is a place where things have blown
up for me or my students. I point out any potential problems with this icon.

 A lot of really great examples and software are on the CD. Whenever I men-
tion software or examples that are available on the CD, I highlight it with
this icon.

What’s Next?
Well, that’s really up to you. I sincerely believe you can use this book to turn
into a top-notch Web developer. That’s my goal for you.

Although this is a massive book, there’s still more to figure out. If you
have questions or just want to chat, feel free to e-mail me at andy@
aharrisbooks.net. You can also visit my Web site at www.aharris
books.net for code examples, updates, and other good stuff. (You can also
visit www.dummies.com/go/htmlxhtmlandcssaiofd2e for code exam-
ples from the book.)

I try hard to answer all reader e-mails but sometimes I get behind. Please be
patient with me, and I’ll do my best to help.

I can’t wait to hear from you and see the incredible Web sites you develop.
Have a great time, discover a lot, and stay in touch!

03_9780470537558-intro.indd 603_9780470537558-intro.indd 6 10/7/10 8:27 PM10/7/10 8:27 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Creating the HTML/
XHTML Foundation

04_9780470537558-pp01.indd 704_9780470537558-pp01.indd 7 10/7/10 8:27 PM10/7/10 8:27 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance
Chapter 1: Sound HTML Foundations .9

Creating a Basic Page .. 9
Understanding the HTML in the Basic Page ... 11
Meeting Your New Friends, the Tags .. 12
Setting Up Your System .. 15

Chapter 2: It’s All about Validation .19
Building an XHTML Document ... 22
Validating Your Page ... 25

Chapter 3: Choosing Your Tools. .41
Alternative Web Development Tools .. 43
Picking a Text Editor ... 44
The Web Developer’s Browser .. 49
Tricking Out Firefox .. 53
Using a Full-Blown IDE .. 58
Introducing Komodo Edit ... 62

Chapter 4: Managing Information with Lists and Tables 65
Making a List and Checking It Twice ... 65
Building Tables .. 74

Chapter 5: Making Connections with Links .83
Making Your Text Hyper ... 83
Making Lists of Links ... 88
Working with Absolute and Relative References 89

Chapter 6: Adding Images. .93
Adding Images to Your Pages .. 93
Choosing an Image Manipulation Tool ... 98
Choosing an Image Format ... 102
Manipulating Your Images .. 106
Using Images as Links ... 117

Chapter 7: Creating Forms. .121
You Have Great Form .. 121
Building Text-Style Inputs .. 126
Creating Multiple Selection Elements ... 130
Pressing Your Buttons .. 136

Chapter 8: The Future of HTML: HTML 5. .141
Can’t We Just Stick with XHTML? .. 141
Semantic Elements .. 142
Using New Form Elements .. 144
Using Embedded Fonts ... 147
Audio and Video Tags ... 149
The Canvas Tag .. 152
Limitations of HTML 5 ... 156

04_9780470537558-pp01.indd 804_9780470537558-pp01.indd 8 10/7/10 8:27 PM10/7/10 8:27 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Sound HTML
Foundations

In This Chapter
✓ Creating a basic Web page

✓ Understanding the most critical HTML tags

✓ Setting up your system to work with HTML

✓ Viewing your pages

This chapter is your introduction to building Web pages. Before this
slim chapter is finished, you’ll have your first page up and running.

Creating a basic page isn’t difficult, but building pages that can grow and
expand while you discover more sophisticated techniques takes a little
foresight. Most of this book uses the XHTML standard. In this first chapter,
I show part of an older standard called HTML. HTML is a little bit easier to
start with, and everything I show in this chapter translates perfectly to the
XHTML you use throughout the book.

In this minibook, you discover the modern form of Web design using
XHTML. Your Web pages will be designed from the ground up, which makes
them easy to modify and customize. While you figure out more advanced
techniques throughout this book, you’ll take the humble pages you discover
in this chapter and make them do all kinds of exciting things.

Creating a Basic Page
Here’s the great news: The most important Web technology you need is also
the easiest. You don’t need any expensive or complicated software, and you
don’t need a powerful computer. You probably have everything you need to
get started already.

No more talking! Fire up a computer and let’s build a Web page!

 1. Open a text editor.

 You can use any text editor you want, as long as it lets you save files
as plain text. If you’re using Windows, Notepad is fine for now. (Later,
I show you some other free alternatives, but start with something you
already know.)

05_9780470537558-bk01ch01.indd 905_9780470537558-bk01ch01.indd 9 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

10 Creating a Basic Page

 Don’t use a word processor like Microsoft Word. It doesn’t save things in
the right format, and not all the nifty features, like fonts and centering,
work right. I promise that you’ll figure out how to do all that stuff but
without using a word processor. Even the Save as HTML feature doesn’t
work right. You really need a very simple text editor, and that’s it. In
Chapter 3 of this minibook, I show you a few more editors that make
your life easier. You’ll never use Word.

 2. Type the following code.

 Really. Type it in your text editor so you get some experience writing the
actual code. I explain very soon what all this means, but type it now to
get a feel for it:

<html>
<head>
<!-- myFirst.html -->

<title>My very first web page!</title>
</head>

<body>

<h1>This is my first web page!</h1>

<p>
This is the first web page I’ve ever made,
and I’m extremely proud of it.
It is so cool!
</p>

</body>
</html>

 3. Save the file as myFirst.html.

 It’s important that your filename has no spaces and ends with the .html
extension. Spaces cause problems on the Internet (which is, of course,
where all good pages go to live), and the .html extension is how most
computers know that this file is an HTML file (which is another name for
a Web page). It doesn’t matter where you save the file, as long as you
can find it in the next step.

 4. Open your Web browser.

 The Web browser is the program used to look at pages. After you post
your page on a Web server somewhere, your Great Aunt Gertrude can
use her Web browser to view your page. You also need one (a browser,
not a Great Aunt Gertrude) to test your page. For now, use whatever
browser you ordinarily use. Most Windows users already have Internet
Explorer installed. If you’re a Mac user, you probably have Safari. Linux
folks generally have Firefox. Any of these are fine. In Chapter 3 of this
minibook, I explain why you probably need more than one browser and
how to configure them for maximum usefulness.

05_9780470537558-bk01ch01.indd 1005_9780470537558-bk01ch01.indd 10 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 1

S
o

u
n

d
 H

T
M

L
Fo

u
n

d
a

tio
n

s

11Understanding the HTML in the Basic Page

 5. Load your page into the browser.

 You can do this a number of ways. You can use the browser’s File menu
to open a local file, or you can simply drag the file from your Desktop (or
wherever) to the open browser window.

 6. Bask in your newfound genius.

 Your simple text file is transformed! If all went well, it looks like Figure 1-1.

Figure 1-1:
Congratula-
tions! You’re
now a Web
developer!

Understanding the HTML in the Basic Page
The page you create in the previous section uses an extremely simple
notation — HTML (HyperText Markup Language), which has been around
since the beginning of the Web. HTML is a terrific technology for several
reasons:

 ✦ It uses plain text. Most document systems (like word processors) use
special binary encoding schemes that incorporate formatting directly into
the computer’s internal language, which locks a document into a par-
ticular computer or software. That is, a document stored in Word format
can’t be read without a program that understands Word formatting.
HTML gets past this problem by storing everything in plain text.

05_9780470537558-bk01ch01.indd 1105_9780470537558-bk01ch01.indd 11 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

12 Meeting Your New Friends, the Tags

 ✦ It works on all computers. The main point of HTML is to have a univer-
sal format. Any computer should be able to read and write it. The plain-
text formatting aids in this.

 ✦ It describes what documents mean. HTML isn’t really designed to
indicate how a page or its elements look. HTML is about describing the
meaning of various elements (more on that very soon). This has some
distinct advantages when you figure out how to use HTML properly.

 ✦ It doesn’t describe how documents look. This one seems strange. Of
course, when you look at Figure 1-1, you can see that the appearance of the
text on the Web page has changed from the way the text looked in your
text editor. Formatting a document in HTML does cause the document’s
appearance to change. That’s not the point of HTML, though. You discover
in Book II and Book III how to use another powerful technology — CSS — to
change the appearance of a page after you define its meaning. This sepa-
ration of meaning from layout is one of the best features of HTML.

 ✦ It’s easy to write. Sure, HTML gets a little more complicated than this
first example, but you can easily figure out how to write HTML without
any specialized editors. You only have to know a handful of elements,
and they’re pretty straightforward.

 ✦ It’s free. HTML doesn’t cost anything to use, primarily because it isn’t
owned by anyone. No corporation has control of it (although a couple
have tried), and nobody has a patent on it. The fact that this technology
is freely available to anyone is a huge advantage.

Meeting Your New Friends, the Tags
The key to writing HTML code is the special text inside angle braces (<>).
These special elements are tags. They aren’t meant to be displayed on the
Web page but offer instructions to the Web browser about the meaning of
the text. The tags are meant to be embedded into each other to indicate the
organization of the page. This basic page introduces you to all the major
tags you’ll encounter. (There are more, but they can wait for a chapter or
two.) Each tag has a beginning and an end tag. The end tag is just like the
beginning tag, except the end tag has a slash (/):

 ✦ <html></html>: The <html> tag is the foundation of the entire Web
page. The tag begins the page. Likewise, </html> ends the page. For
example, the page begins with <html> and ends with </html>. The
<html></html> combination indicates that everything in the page is
defined as HTML code.

 Some books teach you to write your HTML tags in uppercase letters.
This was once a standard, but it is no longer recommended. When you
move to XHTML code (which is a slightly stricter form of HTML) in
Chapter 2 of this minibook, you’ll see that XHTML requires all tags to be
lowercase.

05_9780470537558-bk01ch01.indd 1205_9780470537558-bk01ch01.indd 12 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 1

S
o

u
n

d
 H

T
M

L
Fo

u
n

d
a

tio
n

s

13Meeting Your New Friends, the Tags

 ✦ <head></head>: These tags define a special part of the Web page called
the head (or sometimes header). This part of the Web page reminds me
of the engine compartment of a car. This is where you put some great
stuff later, but it’s not where the main document lives. For now, the only
thing you’ll put in the header is the document’s title. Later, you’ll add
styling information and programming code to make your pages sing and
dance.

 ✦ <!-- -->: This tag indicates a comment, which is ignored by the
browser. However, a comment is used to describe what’s going on in a
particular part of the code.

 ✦ <title></title>: This tag is used to determine the page’s title. The
title usually contains ordinary text. Whatever you define as the title
will appear in some special ways. Many browsers put the title text in the
browser’s title bar. Search engines often use the title to describe
the page.

 Throughout this book, I use the filename of the HTML code as the title.
That way, you can match any figure or code listing to the correspond-
ing file on the Web site that accompanies this book. Typically, you’ll use
something more descriptive, but this is a useful technique for a book
like this.

 It’s not quite accurate to say that the title text always shows up in the
title bar because a Web page is designed to work on lots of different
browsers. Sure, the title does show up on most major browsers that
way, but what about cellphones and personal digital assistants? HTML
never legislates what will happen; it only suggests. This may be hard to
get used to, but it’s a reality. You trade absolute control for widespread
capability, which is a good deal.

 ✦ <body></body>: The page’s main content is contained within these
tags. Most of the HTML code and the stuff the user sees are in the body
area. If the header area is the engine compartment, the body is where
the passengers go.

 ✦ <h1></h1>: H1 stands for heading level one. Any text contained within
this markup is treated as a prominent headline. By default, most brows-
ers add special formatting to anything defined as H1, but there’s no
guarantee. An H1 heading doesn’t really specify any particular font or
formatting, just the meaning of the text as a level one heading. When
you find out how to use CSS in Book II, you’ll discover that you can make
your headline look however you want. In this first minibook, keep all
the default layouts for now and make sure you understand that HTML
is about semantic meaning, not about layout or design. There are other
levels of headings, of course, through <h6> where <h2> indicates a
heading slightly less important than <h1>, <h3> is less important than
<h2>, and so on.

05_9780470537558-bk01ch01.indd 1305_9780470537558-bk01ch01.indd 13 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

14 Meeting Your New Friends, the Tags

 Beginners are sometimes tempted to make their first headline an <h1>
tag and then use an <h2> for the second headline and an <h3> for the
third. That’s not how it works. Web pages, like newspapers and books,
use different headlines to point out the relative importance of various
elements on the page, often varying the point size of the text. You can
read more about that in Book II.

 ✦ <p></p>: In HTML, p stands for the paragraph tag. In your Web pages,
you should enclose each standard paragraph in a <p></p> pair. You
might notice that HTML doesn’t preserve the carriage returns or white
space in your HTML document. That is, if you press Enter in your code
to move text to a new line, that new line isn’t necessarily preserved in
the final Web page.

 The <p></p> structure is one easy way to manage spacing before and
after each paragraph in your document.

 Some older books recommend using <p> without a </p> to add space
to your documents, similar to pressing the Enter key. This way of think-
ing could cause you problems later because it doesn’t truthfully reflect
the way Web browsers work. Don’t think of <p> as the carriage return.
Instead, think of <p> and </p> as defining a paragraph. The paragraph
model is more powerful because soon enough, you’ll figure out how
to take any properly defined paragraph and give it yellow letters on a
green background with daisies (or whatever else you want). If things are
marked properly, they’ll be much easier to manipulate later.

Be proud of this first page. It may be simple, but
it’s the foundation of greater things to come.
Before moving on, take a moment to ponder
some important HTML/XHTML principles
shown in this humble page you’ve created:

 ✓ All tags are lowercase. Although HTML
does allow uppercase tags, the XHTML
variation you’ll be using throughout most
of this book requires only lowercase tags.

 ✓ Tag pairs are containers, with a beginning
and an end. Tags contain other tags or text.

 ✓ Some elements can be repeated. There’s
only one <html> , <title> , and
<body> tag per page, but a lot of the
other elements (<h1> and <p>) can be
repeated as many times as you like.

 ✓ Carriage returns are ignored. In the
Notepad document, there are a number
of carriage returns. The formatting of the
original document has no effect on the
HTML output. The markup tags indicate
how the output looks.

A few notes about the basic page

05_9780470537558-bk01ch01.indd 1405_9780470537558-bk01ch01.indd 14 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 1

S
o

u
n

d
 H

T
M

L
Fo

u
n

d
a

tio
n

s

15Setting Up Your System

Setting Up Your System
You don’t need much to make Web pages. Your plain text editor and a Web
browser are about all you need. Still, some things can make your life easier
as a Web developer.

Displaying file extensions
The method discussed in this section is mainly for Windows users, but
it’s a big one. Windows uses the extension (the part of the filename after
the period) to determine what type of file you’re dealing with. This is very
important in Web development. The files you create are simple text files, but
if you store them with the ordinary .txt extension, your browser can’t read
them properly. What’s worse, the default Windows setting hides these exten-
sions from you, so you have only the icons to tell you what type of file you’re
dealing with, which causes all kinds of problems. I recommend you have
Windows explicitly describe your file extensions. Here’s how to set that up:

 1. Open the file manager (My Computer in XP or Computer in Vista and
Windows 7).

 Use the My Computer window to open a directory on your hard drive. It
doesn’t matter which directory you’re looking at. You just need the tool
open.

 2. Choose Tools➪Folder Options.

 The Folder Options dialog box appears.

 3. Select the View tab.

 You see the Folder Options dialog box.

 4. Don’t hide extensions.

 By default, Windows likes to hide the extensions for known file types.
However, you’re a programmer now, so you deserve to see these things.
Uncheck the Hide Extensions for Known File Types box, as shown in
Figure 1-2.

 5. Show the path and hidden folders.

 I like to see my hidden files and folders (after all, they’re mine, right?)
and I like to list the full path. Click the appropriate check boxes to
enable these features. You’ll often find them to be helpful.

 6. Apply these change to all the folders on your computer by clicking the
Apply to All Folders button.

 This causes the file extensions to appear everywhere, including
the Desktop.

05_9780470537558-bk01ch01.indd 1505_9780470537558-bk01ch01.indd 15 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

16 Setting Up Your System

Figure 1-2:
Don’t
hide file
extensions
(deselect
that last
check box).

Although my demonstration uses Windows XP, the technique is the same in
Windows Vista and Windows 7.

Setting up your software
You’ll write a lot of Web pages, so it makes sense to set up your system to
make that process as easy as possible. I talk a lot more about some software
you should use in Chapter 3 of this minibook, but for now, here are a couple
of easy suggestions:

 ✦ Put a Notepad icon on your Desktop. You’ll edit a lot of text files, so it’s
helpful to have an icon for Notepad (or whatever other text editor you
use) available directly on the Desktop. That way, you can quickly edit
any Web page by dragging it to the Desktop. When you use more sophis-
ticated editors than Notepad, you’ll want links to them, too.

 ✦ Get another Web browser. You may just love your Web browser, and
that’s fine, but you can’t assume that everybody likes the same browser
you do. You need to know how other browsers will interpret your code.
Firefox is an incredibly powerful browser, and it’s completely free. If you
don’t have them already, I suggest having links to at least two browsers
directly on your Desktop.

05_9780470537558-bk01ch01.indd 1605_9780470537558-bk01ch01.indd 16 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 1

S
o

u
n

d
 H

T
M

L
Fo

u
n

d
a

tio
n

s

17Setting Up Your System

Most of the problems people have with the Web
are from misunderstandings about how this
medium really works. Most people are com-
fortable with word processors, and we know
how to make a document look how we want.
Modern applications use WYSIWYG tech-
nology, promising that what you see is what
you get. That’s a reasonable promise when it
comes to print documents, but it doesn’t work
that way on the Web.

How a Web page looks depends on a lot of
things that you don’t control. The user may read
your pages on a smaller or larger screen than
you. She may use a different operating system
than you. She may have a dialup connection or
may turn off the graphics for speed. She may
be blind and use screen-reader technology to
navigate Web pages. She may be reading your
page on a PDA or a cellphone. You can’t make

a document that looks the same in all these
situations.

A good compromise is to make a document
that clearly indicates how the information fits
together and makes suggestions about the
visual design. The user and her browser can
determine how much of those suggestions
to use.

You get control of the visual design but never
complete control, which is okay because
you’re trading total control for accessibility.
People with devices you’ve never heard of can
visit your page.

Practice a few times until you can easily build
a page without looking anything up. Soon
enough, you’re ready for the next step — build-
ing pages like the pros.

Understanding the magic

05_9780470537558-bk01ch01.indd 1705_9780470537558-bk01ch01.indd 17 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

18 Book I: Creating the HTML/XHTML Foundation

05_9780470537558-bk01ch01.indd 1805_9780470537558-bk01ch01.indd 18 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: It’s All about Validation

In This Chapter
✓ Introducing the concept of valid pages

✓ Using a doctype

✓ Introducing XHTML 1.0 Strict

✓ Setting the character set

✓ Meeting the W3C validator

✓ Fixing things when they go wrong

✓ Using HTML Tidy to clean your pages

Web development is undergoing a revolution. As the Web matures and
becomes a greater part of everyday life XX, it’s important to ensure

that Web pages perform properly—thus, a call for Web developers to follow
voluntary standards of Web development.

Somebody Stop the HTML Madness!
In the bad old days, the Web was an informal affair. People wrote HTML
pages any way they wanted. Although this was easy, it led to a lot of
problems:

 ✦ Browser manufacturers added features that didn’t work on all brows-
ers. People wanted prettier Web pages with colors, fonts, and doodads,
but there wasn’t a standard way to do these things. Every browser had
a different set of tags that supported enhanced features. As a developer,
you had no real idea if your Web page would work on all the browsers
out there. If you wanted to use some neat feature, you had to ensure
your users had the right browser.

 ✦ The distinction between meaning and layout was blurred. People
expected to have some kind of design control of their Web pages, so
all kinds of new tags popped up that blurred the distinction between
describing and decorating a page.

 ✦ Table-based layout was used as a hack. HTML didn’t have a good
way to handle layout, so clever Web developers started using tables
as a layout mechanism. This worked, after a fashion, but it wasn’t easy
or elegant.

06_9780470537558-bk01ch02.indd 1906_9780470537558-bk01ch02.indd 19 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

20 Somebody Stop the HTML Madness!

 ✦ People started using tools to write pages. Web pages soon became so
ugly that people began to believe that they couldn’t do HTML by hand
anymore and that some kind of editor was necessary to handle all that
complexity for them. Although these editing programs introduced new
features that made things easier upfront, these tools also made code
almost impossible to change without the original editor. Web develop-
ers began thinking they couldn’t design Web pages without a tool from a
major corporation.

 ✦ The nature of the Web was changing. At the same time, these factors
were making ordinary Web development more challenging. Innovators
were recognizing that the Web wasn’t really about documents but was
about applications that could dynamically create documents. Many of
the most interesting Web pages you visit aren’t Web pages at all but pro-
grams that produce Web pages dynamically every time you visit. This
meant that developers had to make Web pages readable by programs, as
well as humans.

In short, the world of HTML was a real mess.

XHTML to the rescue
In 2000, the World Wide Web Consortium (usually abbreviated as W3C) got
together and proposed some fixes for HTML. The basic plan was to create a
new form of HTML that complied with a stricter form of markup, or eXtensi-
ble Markup Language (XML). The details are long and boring, but essentially,
they came up with some agreements about how Web pages are standard-
ized. Here are some of those standards:

 ✦ All tags have endings. Every tag comes with a beginning and an end tag.
(Well, a few exceptions come with their own ending built in. I’ll explain
when you encounter the first such tag in Chapter 6 of this minibook.)
This was a new development because end tags were considered optional
in old-school HTML, and many tags didn’t even have end tags.

 ✦ Tags can’t be overlapped. In HTML, sometimes people had the ten-
dency to be sloppy and overlap tags, like this: <a>my stuff
. That’s not allowed in XHTML, which is a good thing because it
confuses the browser. If a tag is opened inside some container tag, the
tag must be closed before that container is closed.

 ✦ Everything’s lowercase. Some people wrote HTML in uppercase, some
in lowercase, and some just did what they felt like. It was inconsistent
and made it harder to write browsers that could read all the variations.

 ✦ Attributes must be in quotes. If you’ve already done some HTML, you
know that quotes used to be optional — not anymore. (Turn to Chapter 4
for more about attributes.)

06_9780470537558-bk01ch02.indd 2006_9780470537558-bk01ch02.indd 20 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 2

It’s A
ll a

b
o

u
t

V
a

lid
a

tio
n

21Somebody Stop the HTML Madness!

 ✦ Layout must be separate from markup. Old-school HTML had a bunch
of tags (like and <center>) that were more about formatting
than markup. These were useful, but they didn’t go far enough. XHTML
(at least the Strict version covered here) eliminates all these tags. Don’t
worry, though; CSS gives you all the features of these tags and a lot more.

This sounds more like strict librarian rules. Really, they aren’t restricting
at all because most of the good HTML coders were already following these
guidelines or something similar.

There’s XHTML and there’s good XHTML
In old-style HTML, you never really knew how your pages would look on vari-
ous browsers. In fact, you never really knew if your page was even written
properly. Some mistakes would look fine on one browser but cause another
browser to blow up.

The idea of validation is to take away some of the uncertainty of HTML. It’s
like a spell checker for your code. My regular spell checker makes me feel
a little stupid sometimes because I make mistakes. I like it, though, because
I’m the only one who sees the errors. I can fix the spelling errors before I
pass the document on to you, so I look smart. (Well, maybe.)

It’d be cool if you could have a special kind of checker that does the same
things for your Web pages. Instead of checking your spelling, it’d test your
page for errors and let you know if you made any mistakes. It’d be even
cooler if you could have some sort of certification that your page follows a
standard of excellence.

That’s how page validation works. You can designate that your page will
follow a particular standard and use a software tool to ensure that your page
meets that standard’s specifications. The software tool is a validator. I show
you two different validators in the upcoming “Validating Your Page” section.

The browsers also promise to follow a particular standard. If your page vali-
dates to a given standard, any browser that validates to that same standard
can reproduce your document correctly, which is a big deal.

While XHTML is the standard emphasized in
this book, it has a few problems of its own. Not
all browsers read it the same way, and it’s a
bit wordier than it needs to be. It looks like the
next generation will go back to a form of HTML

(HTML 5). However, proper HTML 5 coding will
resemble XHTML more than HTML 4. In this
edition, I focus on XHTML Strict. See Chapter 8
of this minibook for a complete overview of this
important standard.

XHTML isn’t perfect

06_9780470537558-bk01ch02.indd 2106_9780470537558-bk01ch02.indd 21 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

22 Building an XHTML Document

Building an XHTML Document
You create an XHTML document the same way you build ordinary HTML.
You can still use an ordinary text editor, but the code is slightly more
involved. Look at the following code (template.html on this book’s
CD-ROM) to see a bare-bones XHTML document:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />
<title></title>
</head>
<body>
<h1></h1>
<p>
</p>

</body>
</html>

At first, this new document looks a lot more complicated than the HTML you
see in Chapter 1 of this minibook, but it isn’t as bad as it seems.

Don’t memorize all this!
Before you freak out, don’t feel you have to memorize this nonsense. Even
people who write books about Web development (um, like me) don’t have
this stuff memorized because it’s too awkward and too likely to change.

Keep a copy of template.html on your local drive (I keep a copy on my
Desktop) and begin all your new pages with this template. When you start
to use a more complex editor (see Chapter 3 of this minibook), you can
often customize the editor so that it automatically starts with the framework
you want.

You don’t have to have all this stuff down cold, but you should understand
the basics of what’s going on, so the following is a quick tour.

The DOCTYPE tag
The scariest looking XHTML feature is the <!DOCTYPE> tag. This monster
is ugly, no doubt, but it does serve a purpose. Officially, it’s a document
type definition. Your doctype declares to the world what particular flavor of
HTML or XHTML you’re using. When you begin your page with the doctype
that I suggest here, you’re telling the browser: “Hey, browser, my page fol-
lows the XHTML Strict guidelines, and if you aren’t sure what that is, go to
this Web site to get it.”

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

06_9780470537558-bk01ch02.indd 2206_9780470537558-bk01ch02.indd 22 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 2

It’s A
ll a

b
o

u
t

V
a

lid
a

tio
n

23Building an XHTML Document

Many doctypes are available, but it’s really a lot simpler than it seems. In
this book, I show you XHTML 1.0 Strict, which is the primary doctype you
need today. The other variations you might find on the Web (HTML 4.0,
Frameset, and Transitional doctypes) are really designed for backwards
compatibility. If you’re going to go the standards-compliant route, you might
as well go whole hog. (And, until Microsoft supports HTML 5, it’s not a mean-
ingful option for real development.)

Even though standards will change, the techniques you learn with XHTML
Strict will serve you well as you move to other standards.

 The doctype for the upcoming HTML 5 standard is a lot easier than this
XHTML nonsense. HTML 5 replaces this complicated doctype with one that’s
a lot easier to remember: <!DOCTYPE html>. That’s it. I can’t wait

The xmlns attribute
The html tag looks a little different from the one in Chapter 1 of this mini-
book. It has the term xmlns after it, which stands for XML NameSpace. This
acronym helps clarify the definitions of the tags in your document:

<html xmlns=”http://www.w3.org/1999/xhtml”>

Truthfully, not all validators require this part, but it doesn’t hurt to add it.

The meta tag
The last tag is the funky meta tag, which has been part of HTML for a long
time. They allow you to describe various characteristics of a Web page:

<meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />

The particular form of the meta tag you see here defines the character set to
use. The utf character set handles a number of Western languages well.

The truth is, if you start with this framework, you’ll have everything you
need to make official XHTML pages that validate properly.

You validate me
All this doctype and xmlns nonsense is worth it because of a nifty program —
a validator. The most important validator is the W3C validator at http://
validator.w3.org, as shown in Figure 2-1.

06_9780470537558-bk01ch02.indd 2306_9780470537558-bk01ch02.indd 23 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

24 Building an XHTML Document

Figure 2-1:
The W3C
validator
page isn’t
exciting,
but it sure is
useful.

A validator is actually the front end of a piece of software that checks pages
for validity. It looks at your Web page’s doctype and sees if the page con-
forms to the rules of that doctype. If not, it tells you what might have
gone wrong.

You can submit code to a validator in three ways:

 ✦ Validate by URL. This option is used when a page is hosted on a Web
server. Files stored on local computers can’t be checked with this tech-
nique. Book VIII describes all you need to know about working with Web
servers, including how to create your own.

 ✦ Validate by File Upload. This technique works fine with files you
haven’t posted to a Web server. It works great for pages you write on
your computer but you haven’t made visible to the world. This is the
most common type of validation for beginners.

 ✦ Validate by Direct Input. The validator page has a text box you can
simply paste your code into. It works, but I usually prefer to use the
other methods because they’re easier.

Validation might sound like a big hassle, but it’s really a wonderful tool
because sloppy HTML code can cause lots of problems. Worse, you might
think everything’s okay until somebody else looks at your page, and sud-
denly, the page doesn’t display correctly.

06_9780470537558-bk01ch02.indd 2406_9780470537558-bk01ch02.indd 24 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 2

It’s A
ll a

b
o

u
t

V
a

lid
a

tio
n

25Validating Your Page

 As of this writing, there is not yet a validator for HTML 5 code. That will
change as soon as HTML 5 becomes mainstream. In the meantime, validate
for XHTML Strict and you’ll be more than prepared for the HTML 5 switch.

Validating Your Page
To explain all this, I created a Web page the way Aesop might have done in
ancient Greece. Okay, maybe Aesop didn’t write his famous fables as Web
pages, but if he had, they might have looked like the following code listing:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=iso-8859-1” />

<!-- oxWheels1.html -->

<!-- note this page has deliberate errors! Please see the text
 and oxWheelsCorrect.html for a corrected version.
-->

</head>
<body>
<title>The Oxen and the Wheels</title>
<h1>The Oxen and the Wheels
<h2></h1>From Aesop’s Fables</h2>

<p>
 A pair of Oxen were drawing a heavily loaded wagon along a
 miry country road. They had to use all their strength to pull
 the wagon, but they did not complain.
<p>

<p>
 The Wheels of the wagon were of a different sort. Though the
 task they had to do was very light compared with that of the
 Oxen, they creaked and groaned at every turn. The poor Oxen,
 pulling with all their might to draw the wagon through the
 deep mud, had their ears filled with the loud complaining of
 the Wheels. And this, you may well know, made their work so
 much the harder to endure.
</p>

<p>
 “Silence!” the Oxen cried at last, out of patience. “What have
 you Wheels to complain about so loudly? We are drawing all the
 weight, not you, and we are keeping still about it besides.”
</p>

<h2>
They complain most who suffer least.
</h2>

</body>
</html>

06_9780470537558-bk01ch02.indd 2506_9780470537558-bk01ch02.indd 25 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

26 Validating Your Page

The code looks okay, but actually has a number of problems. Aesop may
have been a great storyteller, but from this example, it appears he was a
sloppy coder. The mistakes can be hard to see, but trust me, they’re there.
The question is how do you find the problems before your users do?

You might think that the problems would be evident if you viewed the page
in a Web browser. The Firefox and Internet Explorer Web browsers seem to
handle the page decently, even if they don’t display it in an identical way.
Figure 2-2 shows oxWheels1.html in Firefox, and Figure 2-3 shows it in
Internet Explorer.

Firefox appears to handle the page pretty well, but From Aesop’s Fables
is supposed to be a headline level two, or H2, and it appears as plain text.
Other than that, there’s very little indication that something is wrong.

Microsoft Internet Explorer also tries to display the page, and it does a
decent job. Notice that From Aesop’s Fables appears to be a level one
header, or H1. That’s odd. Still, the page looks pretty good in both browsers,
so you might assume everything’s just fine. That gets you into trouble.

Figure 2-2:
oxWheels1.
html in
Firefox.

06_9780470537558-bk01ch02.indd 2606_9780470537558-bk01ch02.indd 26 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 2

It’s A
ll a

b
o

u
t

V
a

lid
a

tio
n

27Validating Your Page

Figure 2-3:
oxWheels1.
html in
Internet
Explorer.

If it looks fine, who cares if it’s exactly right? You might wonder why we care
if there are mistakes in the underlying code, as long as everything works
okay. After all, who’s going to look at the code if the page displays properly?

The problem is, you don’t know if it’ll display properly, and mistakes in your
code will eventually come back to haunt you. If possible, you want to know
immediately what parts of your code are problematic so you can fix them
and not worry.

Aesop visits W3C
To find out what’s going on with this page, pay a visit to the W3C validator
at http://validator.w3.org. Figure 2-4 shows me visiting this site and
uploading a copy of oxWheels1.html to it.

Hold your breath and hit the Check button. You might be surprised at the
results shown in Figure 2-5.

The validator is a picky beast, and it doesn’t seem to like this page at all. The
validator does return some useful information and gives enough hints that
you can decode things soon enough.

06_9780470537558-bk01ch02.indd 2706_9780470537558-bk01ch02.indd 27 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

28 Validating Your Page

Figure 2-4:
I’m
checking
the
oxWheels
page to
look for any
problems.

Figure 2-5:
Twelve
errors? That
can’t be
right!

06_9780470537558-bk01ch02.indd 2806_9780470537558-bk01ch02.indd 28 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 2

It’s A
ll a

b
o

u
t

V
a

lid
a

tio
n

29Validating Your Page

Examining the overview
Before you look at the specific complaints, take a quick look at the Web page
the validator sends you. The Web page is chock-full of handy information.
The top of the page tells you a lot of useful things:

 ✦ Result: This is really the important thing. You’ll know the number of
errors remaining by looking at this line. Don’t panic, though. The errors
in the document are probably fewer than the number you see here.

 ✦ File: The name of the file you’re working on.

 ✦ Encoding: The text encoding you’ve set. If you didn’t explicitly set text
encoding, you may see a warning here.

 ✦ Doctype: This is the doctype extracted from your document. It indicates
the rules that the validator is using to check your page. This should usu-
ally say XHTML 1.0 Strict.

 ✦ Root Namespace: If you use the template I give you, you always see the
same namespace, and you don’t have any surprises.

 ✦ The dreaded red banner: Experienced Web developers don’t even have
to read the results page to know if there is a problem. If everything goes
well, there’s a green congratulatory banner. If there are problems, the
banner is red. It doesn’t look good, Aesop.

Don’t panic because you have errors. The mistakes often overlap, so one
problem in your code often causes more than one error to pop up. Most
of the time, you have far fewer errors than the page says, and a lot of the
errors are repeated, so after you find the error once, you’ll know how to fix it
throughout the page.

Validating the page
The validator doesn’t always tell you everything you need to know, but it
does give you some pretty good clues. Page validation is tedious but not
as difficult as it might seem at first. Here are some strategies for working
through page validation:

 ✦ Focus only on the first error. Sure, 100 errors might be on the page,
but solve them one at a time. The only error that matters is the first one
on the list. Don’t worry at all about other errors until you’ve solved the
first one.

 ✦ Note where the first error is. The most helpful information you get is the
line and column information about where the validator recognized the
error. This isn’t always where the error is, but it does give you some clues.

 ✦ Look at the error message. It’s usually good for a laugh. The error mes-
sages are sometimes helpful and sometimes downright mysterious.

06_9780470537558-bk01ch02.indd 2906_9780470537558-bk01ch02.indd 29 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

30 Validating Your Page

 ✦ Look at the verbose text. Unlike most programming debuggers, the W3C
validator tries to explain what went wrong in something like English. It
still doesn’t always make sense, but sometimes the text gives you a hint.

 ✦ Scan the next couple of errors. Sometimes, one mistake shows up as
more than one error. Look over the next couple of errors, as well, to see
if they provide any more insight; sometimes, they do.

 ✦ Revalidate. Check the page again after you save it. If the first error is
now at a later line number than the previous one, you’ve succeeded.

 ✦ Don’t worry if the number of errors goes up. The number of perceived
errors will sometimes go up rather than down after you successfully fix
a problem. This is okay. Sometimes, fixing one error uncovers errors
that were previously hidden. More often, fixing one error clears up many
more. Just concentrate on clearing errors from the beginning to the end
of the document.

 ✦ Lather, rinse, and repeat. Look at the new top error and get it straight-
ened out. Keep going until you get the coveted Green Banner of
Validation. (If I ever write an XHTML adventure game, the Green Banner
of Validation will be one of the most powerful talismans.)

Examining the first error
Look again at the results for the oxWheels1.html page. The first error mes-
sage looks like Figure 2-6.

Figure 2-6:
It doesn’t
like the end
of the head?

06_9780470537558-bk01ch02.indd 3006_9780470537558-bk01ch02.indd 30 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 2

It’s A
ll a

b
o

u
t

V
a

lid
a

tio
n

31Validating Your Page

Figure 2-6 shows the first two error messages. The first complains about
where the </head> tag is. The second message complains about the
<title> tag. Look at the source code, and you see that the relevant code
looks like this:

<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=iso-8859-1” />

<!-- oxWheels1.html -->

<!-- note this page has deliberate errors! Please see the text
 and oxWheelsCorrect.html for a corrected version.
-->

</head>
<body>
<title>The Oxen and the Wheels</title>
<h1>The Oxen and the Wheels

Look carefully at the head and title tag pairs, and review the notes in the
error messages, and you’ll probably see the problem. The <title> element
is supposed to be in the heading, but I accidentally put it in the body! (Okay,
it wasn’t accidental; I made this mistake deliberately here to show you what
happens. However, I have made this mistake for real in the past.)

Fixing the title
If the title tag is the problem, a quick change in the HTML should fix this
problem. oxWheels2.html shows another form of the page with my pro-
posed fix:

<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=iso-8859-1” />

<!-- oxWheels2.html -->

<!-- Moved the title tag inside the header -->

<title>The Oxen and the Wheels</title>
</head>

<body>

Note: I’m only showing the parts of the page that I changed. The entire page
is available on this book’s CD-ROM.

The fix for this problem is pretty easy:

 1. Move the title inside the head.

 I think the problem here is having the <title> element inside the body,
rather than in the head where it belongs. If I move the title to the body,
the error should be eliminated.

06_9780470537558-bk01ch02.indd 3106_9780470537558-bk01ch02.indd 31 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

32 Validating Your Page

 2. Change the comments to reflect the page’s status.

 It’s important that the comments reflect what changes I make.

 3. Save the changes.

 Normally, you simply make a change to the same document, but I’ve
elected to change the filename so you can see an archive of my changes
as the page improves. This can actually be a good idea because you then
have a complete history of your document’s changes, and you can always
revert to an older version if you accidentally make something worse.

 4. Note the current first error position.

 Before you submit the modified page to the validator, make a mental
note of the position of the current first error. Right now, the validator’s
first complaint is on line 13, column 6. I want the first mistake to be
somewhere later in the document.

 5. Revalidate by running the validator again on the modified page.

 6. Review the results and do a happy dance.

 It’s likely you still have errors, but that’s not a failure! Figure 2-7 shows
the result of my revalidation. The new first error is on line 16, and it
appears to be very different from the last error. I solved it!

Figure 2-7:
Document
type does
not allow
element
“h2” here.

06_9780470537558-bk01ch02.indd 3206_9780470537558-bk01ch02.indd 32 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 2

It’s A
ll a

b
o

u
t

V
a

lid
a

tio
n

33Validating Your Page

Solving the next error
One down, but more to go. The next error (refer to Figure 2-7) looks strange,
but it’s one you see a lot.

The document type does not allow error is very common. What it usu-
ally means is you forgot to close something or you put something in the wrong
place. The error message indicates a problem in line 16. The next error is line
16, too. See if you can find the problem here in the relevant code:

<body>
<h1>The Oxen and the Wheels
<h2></h1>From Aesop’s Fables</h2>

After you know where to look, the problem becomes a bit easier to spot.
I got sloppy and started the <h2> tag before I finished the <h1>. In many
cases, one tag can be completely embedded inside another, but you can’t
have tag definitions overlap as I’ve done here. The <h1> has to close before I
can start the <h2> tag.

This explains why the two main browsers displayed From Aesop’s Fables
differently. It isn’t clear whether this code should be displayed in H1 or H2
format, or perhaps with no special formatting at all. It’s much better to know
the problem and fix it than to remain ignorant until something goes wrong.

The third version — oxWheels3.html — fixes this part of the program:

<!-- oxWheels3.html -->

<!-- sort out the h1 and h2 tags at the top -->

<title>The Oxen and the Wheels</title>
</head>

<body>
<h1>The Oxen and the Wheels</h1>
<h2>From Aesop’s Fables</h2>

Checking the headline repair
The heading tags look a lot better, and a quick check of the validator con-
firms this fact, as shown in Figure 2-8, which now shows only six errors.

Here’s another form of that document type does not allow error. This
one seems strange because surely <p> tags are allowed in the body! The
secret to this particular problem is to look carefully at the error message.
This document has a lot of <p> tags in it. Which one is it complaining about?

06_9780470537558-bk01ch02.indd 3306_9780470537558-bk01ch02.indd 33 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

34 Validating Your Page

 A pair of Oxen were drawing a heavily loaded wagon along a
 miry country road. They had to use all their strength to pull
 the wagon, but they did not complain.
<p>

<p>
 The Wheels of the wagon were of a different sort. Though the
 task they had to do was very light compared with that of the
 Oxen, they creaked and groaned at every turn. The poor Oxen,
 pulling with all their might to draw the wagon through the
 deep mud, had their ears filled with the loud complaining of
 the Wheels. And this, you may well know, made their work so
 much the harder to endure.
</p>

Aha! Line 22 is supposed to be the end of the paragraph, but I somehow
forgot the slash character, so the validator thinks I’m beginning a new para-
graph inside the previous one, which isn’t allowed. This causes a bunch of
other errors, too. Because the validator can’t see the end of this paragraph,
it thinks that all the rest of the code is inside this first paragraph. Try chang-
ing the <p> of line 22 into a </p> and see if it works better:

<p>
 A pair of Oxen were drawing a heavily loaded wagon along a
 miry country road. They had to use all their strength to pull
 the wagon, but they did not complain.
</p>

Figure 2-8:
Document
type doesn’t
allow “p”
here. That’s
odd.

06_9780470537558-bk01ch02.indd 3406_9780470537558-bk01ch02.indd 34 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 2

It’s A
ll a

b
o

u
t

V
a

lid
a

tio
n

35Validating Your Page

The complaint is about the <p> tag on line 22. Unfortunately, Notepad
doesn’t have an easy way to know which line you’re on, so you just have to
count until I show you some better options in Chapter 3 of this minibook. To
make things easier, I’ve reproduced the key part of the code here and high-
lighted line 22. Try to find the problem before I explain it to you:

<h1>The Oxen and the Wheels</h1>
<h2>From Aesop’s Fables</h2>

<p>

Figure 2-9 shows the validation results for oxWheels4.html.

Showing off your mad skillz
Sometimes, that green bar makes little tears of joy run down my cheeks.
Congratulations! It’s only the second chapter in this minibook, and you’re
already writing better Web pages than many professionals.

Seriously, a Web page that validates to XHTML Strict is a big deal, and you
deserve to be proud of your efforts. The W3C is so proud of you that they
offer you a little badge of honor you can put on your page.

Figure 2-10 shows more of the page you get when your page finally validates
correctly. You can see a little button and some crazy-looking HTML code.

Figure 2-9:
Hooray! We
have a valid
page!

06_9780470537558-bk01ch02.indd 3506_9780470537558-bk01ch02.indd 35 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

36 Validating Your Page

Figure 2-10:
The validator
gives you a
little virtual
badge of
honor to
show how
cool you are.

If you want, you can copy and paste that code into your page. oxWheels5.
html has that special code added at the end of the body, shown in Figure 2-11.

Figure 2-11:
Look, I have
a medal
from the
W3C!

 Special code

06_9780470537558-bk01ch02.indd 3606_9780470537558-bk01ch02.indd 36 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 2

It’s A
ll a

b
o

u
t

V
a

lid
a

tio
n

37Validating Your Page

This little code snippet does a bunch of neat things, such as

 ✦ Establishing your coding prowess: Any page that has this image on it
has been tested and found compliant to XHTML Strict standards. When
you see pages with this marker, you can be confident of the skill and
professionalism of the author.

 ✦ Placing a cool image on the page: You’ll read how to add your own
images in Chapter 6 of this minibook, but it’s nice to see one already.
This particular image is hosted at the W3C site.

 ✦ Letting users check the page for themselves: When the user clicks the
image, they’re taken directly to the W3C validator to prove that the
page is in fact valid XHTML Strict. Unfortunately, this link works only on
pages that are posted to a Web server, so it doesn’t work correctly on a
page just sitting on your computer. Scope out Book VIII for suggestions
on finding and using a server.

Using Tidy to repair pages
The W3C validator isn’t the only game in town. Another great resource —
HTML Tidy — can be used to fix your pages. You can download Tidy or just
use the online version at http://infohound.net/tidy. Figure 2-12 illus-
trates the online version with oxWheels1.html being loaded.

I can hear the angry e-mails coming in. “Andy,
I’ve been writing Web pages since 1998, and I
never used a validator.” Okay, it’s true. A lot of
people, even some professional Web develop-
ers, work without validating their code. Some
of my older Web pages don’t validate at all.
(You can run the W3C validator on any page
you want, not just one you wrote. This can be
a source of great joy if you like feeling supe-
rior to sloppy coders.) When I became more
proficient and more prolific in my Web devel-
opment, I found that those little errors often
caused a whole lot of grief down the road. I
really believe you should validate every single
page you write. Get into the habit now, and it’ll
pay huge dividends. When you’re figuring out
this stuff for the first time, do it right.

If you already know some HTML, you’re gonna
hate the validator for a while because it rejects
coding habits that you might think are perfectly
fine. Unlearning a habit is a lot harder than
learning a new practice, so I feel your pain. It’s
still worth it.

After you discipline yourself to validate your
pages, you’ll find you’ve picked up good habits,
and validation becomes a lot less painful.
Experienced programmers actually like the
validation process because it becomes much
easier and prevents problems that could cause
lots of grief later.

Is validation really that big a deal?

06_9780470537558-bk01ch02.indd 3706_9780470537558-bk01ch02.indd 37 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

38 Validating Your Page

Figure 2-12:

HTML
Tidy is an
alternative
to the W3C
validator.

Unlike W3C’s validator, Tidy actually attempts to fix your page. Figure 2-13
displays how Tidy suggests the oxWheels.html page be fixed.

Figure 2-13:
Tidy fixes
the page,
but the fix
is a little
awkward.

06_9780470537558-bk01ch02.indd 3806_9780470537558-bk01ch02.indd 38 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 2

It’s A
ll a

b
o

u
t

V
a

lid
a

tio
n

39Validating Your Page

Tidy examines the page for a number of common errors and does its best to
fix the errors. However, the result is not quite perfect:

 ✦ Tidy adds a new meta tag, indicating the page was created by Tidy.
I always get nervous when a program I didn’t write starts messing with
my pages.

 ✦ Tidy tends to choose a sloppier doctype. If you don’t specify otherwise,
Tidy checks against XHTML 1.0 Transitional, rather than Strict. This defi-
nition isn’t as stringent. You can (and should) specify the Strict doctype
manually in the submission form.

 ✦ Tidy got confused by the title. Tidy correctly diagnosed the title in the
wrong place, but it added a blank title, as well as the intended one.

 ✦ Sometimes, the indentation is off. I set Tidy to indent every element, so
it is easy to see how tag pairs are matched up. If I don’t set up the inden-
tation explicitly, I find Tidy code very difficult to read.

 ✦ The changes aren’t permanent. Anything Tidy does is just a suggestion.
If you want to keep the changes, you need to save the results in your
editor.

I sometimes use Tidy when I’m stumped because I find the error messages
are easier to understand than the W3C validator. However, I never trust it
completely. There’s really no substitute for good old detective skills and the
official W3C validator.

If you find the W3C validator and Tidy to be a little tedious to use, look over
the HTML validator extension described in Chapter 3 of this minibook. This
handy tool adds both the W3C validator and Tidy to Firefox and automati-
cally checks every page you visit. It also has Tidy support, so it can even fix
most of your errors. That’s how I do it.

06_9780470537558-bk01ch02.indd 3906_9780470537558-bk01ch02.indd 39 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

40 Book I: Creating the HTML/XHTML Foundation

06_9780470537558-bk01ch02.indd 4006_9780470537558-bk01ch02.indd 40 10/7/10 8:28 PM10/7/10 8:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Choosing Your Tools

In This Chapter
✓ Choosing a text editor

✓ Using a dedicated HTML editor

✓ Comparing common browsers

✓ Introducing Integrated Development Environments (IDEs)

✓ Adding important Firefox extensions

Web development is a big job. You don’t go to a construction site with-
out a belt full of tools (and a cool hat), and the same thing is true

with Web development (except you don’t normally need a hard hat for Web
development). An entire industry has evolved trying to sell tools that help
make Web development easier. The funny thing is that the tools you need
might not be the ones that people are trying to sell you. Some of the very
best Web development tools are free, and some of the most expensive tools
aren’t that helpful.

This chapter tells you what you need and how to set up your workshop with
great programs that simplify Web development.

What’s Wrong with the Big Boys?
Many Web development books are really books about how to use a par-
ticular type of software. Microsoft’s FrontPage/Expression Web and
Macromedia/Adobe Dreamweaver are the two primary applications in this
category. These tools are powerful and offer some seemingly great features:

 ✦ WYSIWYG editing: What you see is what you get is an idea borrowed
from word processors. You can create a Web page much like a word-
processing document and use menus, as well as tools, to handle all the
formatting. The theory is that you don’t have to know any icky codes.

 ✦ Templates: You can create a template that stays the same and build
several pages from that template. If you need to change the template,
everything else changes automatically.

 ✦ Site management: The interaction between the various pages on your
site can be maintained automatically.

07_9780470537558-bk01ch03.indd 4107_9780470537558-bk01ch03.indd 41 10/7/10 8:29 PM10/7/10 8:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

42 What’s Wrong with the Big Boys?

These sound like pretty good features, and they are. The tools (and the
newer replacements, like Microsoft’s Expression suite) are very powerful
and can be an important part of your Web development toolkit. However,
the same powerful programs introduce problems, such as the following:

 ✦ Code maintenance: The commercial editors that concentrate on visual
design tend to create pretty unmanageable code. If you find there’s
something you need to change by hand, it’s pretty hard to fix the code.

 ✦ Vendor lock-in: These tools are written by corporations that want you
to buy other tools from them. If you’re using Dreamweaver, you’ll find
it easy to integrate with other Adobe applications (like ColdFusion),
but it’s not as simple to connect to non-Adobe technology. Likewise,
Microsoft’s offerings are designed to work best with other Microsoft
technologies.

 ✦ Cost: The cost of these software packages keeps going up. Expression
Web (Microsoft’s replacement for FrontPage) costs about $300, and
Dreamweaver weighs in at $400. Both companies encourage you to buy
the software as part of a package, which can easily cost more than $500.

 ✦ Complexity: They’re complicated. You can take a full class or buy a
huge book on how to use only one of these technologies. If it’s that hard
to figure out, is it really saving you any effort?

 ✦ Code: You still need to understand it. No matter how great your plat-
form is, at some point, you have to dig into your code. After you plunk
down all that money and spend all that time figuring out an application,
you still have to understand how the underlying code works because
things still go wrong. For example, if your page fails to work with Safari,
you’ll have to find out why and fix the problem yourself.

 ✦ Spotty standards compliance: The tools are getting better here, but if
you want your pages to comply with the latest standards, you have to
edit them heavily after the tool is finished.

 ✦ Display variations: WYSIWYG is a lie. This is really the big problem.
WYSIWYG works for word processors because it’s possible to make
the screen look like the printed page. After a page is printed, it stays
the same. You don’t know what a Web page will look like because that
depends on the browser. What if the user loads your page on a cell-
phone or handheld device? The editors tend to perpetuate the myth that
you can treat a Web page like a printed document when, in truth, it’s a
very different kind of beast.

 ✦ Incompatibility with other tools: Web development is now moving
toward content management systems (CMS) — programs which create
Web sites dynamically. Generally, CMS systems provide the same ease-
of-use as a visual editor but with other benefits. However, transitioning
code created in a commercial editor to a CMS is very difficult. I describe
CMS systems in detail in Book VIII, Chapter 3.

07_9780470537558-bk01ch03.indd 4207_9780470537558-bk01ch03.indd 42 10/7/10 8:29 PM10/7/10 8:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 3

C
h

o
o

sin
g

 Y
o

u
r

T
o

o
ls

43Alternative Web Development Tools

Alternative Web Development Tools
For Web development, all you really need is a text editor and a Web browser.
You probably already have a basic set of tools on your computer. If you read
Chapters 1 and 2 of this minibook, you’ve already written a couple of Web
pages. However, the very basic tools that come with every computer might
not be enough for serious work. Web development requires a specialized
kind of text editor, and a number of tools have evolved that make the
job easier.

The features you need on your computer
Here are a few features your text editor and browser might not have that
you need:

 ✦ Line numbers: Notepad doesn’t have an easy way to figure out what
line you’re on. And counting lines every time you want to find a problem
noted by the validator is pretty tedious.

 ✦ Help features: Having an editor help with your code is ideal. Some tools
can recognize HTML code, help with indentation, and warn you when
something is wrong.

 ✦ Macros: You type the same code many times. A program that can record
and play keyboard macros can save a huge amount of time.

 ✦ Testing and validation: Testing your code in one or more browsers
should be simple, and there should be an easy way to check your code
for standards.

 ✦ Multiple browsers: An Internet user having only one browser is fine, but
a Web developer needs to know how things look in a couple different
environments.

 ✦ Browser features: You can customize some browsers (especially
Firefox) to help you a lot. With the right attachments, the browser can
point out errors and help you see the structure of your page.

 ✦ Free and open tools: The Web is exciting because it’s free and open
technology. If you can find tools that follow the same philosophy, all
the better.

Building a basic toolbox
I’ve found uses for five types of programs in Web development:

 ✦ Enhanced text editors: These tools are text editors, but they’re souped-
up with all kinds of fancy features, like syntax checkers, code-coloring
tools, macro tools, and multiple document interfaces.

07_9780470537558-bk01ch03.indd 4307_9780470537558-bk01ch03.indd 43 10/7/10 8:29 PM10/7/10 8:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

44 Picking a Text Editor

 ✦ Browsers and plugins: The browser you use can make a huge difference.
You can also install free add-ons that can turn your browser into a pow-
erful Web development tool.

 ✦ Integrated Development Environments (IDE): Programmers generally
use IDEs, which combine text editing, visual layout, code testing, and
debugging tools.

 ✦ Programming technologies: This book covers all pertinent info about
incorporating other technologies, like Apache, PHP, and MySQL. I show
you how to install everything you need for these technologies in Book
VIII, Chapter 1. You don’t need to worry about these things yet, but you
should develop habits that are compatible with these enhanced tech-
nologies from the beginning.

 ✦ Multimedia tools: If you want various multimedia elements on your
page, you’ll need tools to manage them, as well. These could involve
graphics and audio editors, as well as full-blown multimedia technolo-
gies, like Flash.

Picking a Text Editor
As a programmer, you come to see your text editor as a faithful companion.
You spend a lot of time with this tool, so use one that works with you.

A text editor should save plain text without any formatting at all. You don’t
want anything that saves colors, font choices, or other text formatting
because these things don’t automatically translate to HTML.

Fortunately, you have several choices, as the following sections reveal.

Tools to avoid unless you have nothing else
A text editor may be a simple program, but that doesn’t mean they’re all the
same. Some programs have a history of causing problems for beginners (and
experienced developers, too). There’s usually no need to use some of these
weaker choices.

Microsoft Word
 Just don’t use it for Web development. Word is a word processor. Even

though, theoretically, it can create Web pages, the HTML code it writes is
absolutely horrific. As an example, I created a blank document, wrote “Hello
World” in it, changed the font, and saved it as HTML. The resulting page was
non-compliant code, was not quite HTML or XHTML, and was 114 lines long.
Word is getting better, but it’s just not a good Web development tool. In fact,
don’t use any word processor. They’re just not designed for this kind
of work.

07_9780470537558-bk01ch03.indd 4407_9780470537558-bk01ch03.indd 44 10/7/10 8:29 PM10/7/10 8:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 3

C
h

o
o

sin
g

 Y
o

u
r

T
o

o
ls

45Picking a Text Editor

Windows Notepad
Notepad is everywhere, and it’s free. That’s the good news. However,
Notepad doesn’t have a lot of the features you might need, such as line
numbers, multiple documents, or macros. Use it if you’re on an unfamil-
iar machine, but try something else if you can. Many people begin with
Notepad, but it won’t be long until you outgrow its limitations.

Mac TextEdit
Mac has a simple text editor built in — TextEdit — that’s similar to Notepad,
but closer to a word processor than a programmer’s text editor. TextEdit
saves files in a number of formats. If you want to use it to write Web pages,
you must save your files in plain-text format, and you must not use any of
TextEdit’s formatting features. It’s probably best not to use TextEdit unless
you really have to.

A noteworthy editor: Notepad++
A number of developers have come up with good text editors. Some of the
best are free, such as Notepad++ by Don Ho. Notepad++ is designed for text
editing, especially in programming languages. Figure 3-1 shows Notepad++
with an HTML file loaded.

Figure 3-1:
Notepad++
has many of
the features
you need in
a text editor.

07_9780470537558-bk01ch03.indd 4507_9780470537558-bk01ch03.indd 45 10/7/10 8:29 PM10/7/10 8:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

46 Picking a Text Editor

Notepad++ has a lot of interesting features. Here are a few highlights:

 ✦ Syntax highlighting: Notepad++ can recognize key HTML terms and put
different types of terms in different colors. For example, all HTML tags
are rendered blue, and text is black, making it easy to tell if you’ve made
certain kinds of mistakes, such as forgetting to end a tag. Note that the
colors aren’t saved in the document. The coloring features are there to
help you understand the code.

 ✦ Multiple files: You’ll often want to edit more than one document at a
time. You can have several different documents in memory at the
same time.

 ✦ Multi-language support: Currently, your pages consist of nothing but
XHTML. Soon enough, you’ll use some other languages, like SQL, CSS,
and PHP. Notepad++ is smart enough to recognize these languages, too.

 ✦ Macros: Whenever you find yourself doing something over and over,
consider writing a keyboard macro. Notepad++ has a terrific macro
feature. Macros are easy to record and play back a series of keystrokes,
which can save you a lot of work.

 ✦ Page preview: When you write a page, test it. Notepad++ has short-
cut keys built in to let you quickly view your page in Internet Explorer
(Ctrl+Alt+Shift+I) and Firefox (Ctrl+Alt+Shift+X).

 ✦ TextFX: The open-source design of Notepad++ makes it easy to add fea-
tures. The TextFX extension (built into Notepad++) allows you to do all
sorts of interesting things. One especially handy set of tools runs HTML
Tidy on your page and fixes any problems.

Sadly, Notepad++ is a Windows-only editor. If you’re using Mac or Linux,
you need to find something else. Gedit is the closest alternative in the Linux
world, but a few quality free editors exist for the Mac.

The old standards: VI and Emacs
No discussion of text editors is complete without a mention of the venerable
UNIX editors that were the core of the early Internet experience. Most of the
pioneering work on the Web was done in the UNIX and Linux operating sys-
tems, and these environments had two extremely popular text-editor fami-
lies. Both might seem obscure and difficult to modern sensibilities, but they
still have passionate adherents, even in the Windows community. (Besides,
Linux is more popular than ever!)

VI and VIM
VI stands for VIsual Editor. That name seems strange now because most
developers can’t imagine an editor that’s not visual. Back in the day, it was a
very big deal that VI could use the entire screen for editing text. Before that
time, line-oriented editors were the main way to edit text files. Trust me, you
have it good now. Figure 3-2 shows a variant of VI (called VIM) in action.

07_9780470537558-bk01ch03.indd 4607_9780470537558-bk01ch03.indd 46 10/7/10 8:29 PM10/7/10 8:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 3

C
h

o
o

sin
g

 Y
o

u
r

T
o

o
ls

47Picking a Text Editor

Figure 3-2:
VI isn’t
pretty, but
after you
know it,
it’s very
powerful.

VI is a modal editor, which means that the same key sometimes has more
than one job, depending on the editor’s current mode. For example, the I key
is used to indicate where you want to insert text. The D key is used to delete
text, and so on. Of course, when you’re inserting text, the keys have their
normal meanings. This multimode behavior is baffling to modern users, but
it can be amazingly efficient after you get used to it. Skilled VI users swear by
it and often use nothing else.

VI is a little too obscure for some users, so a number of variants are floating
around, such as VIM, or VI Improved. (Yeah, it should be VII but maybe they
were afraid people would call it the Roman numeral seven.) VIM is a little
friendlier than VI. It tells you which mode it’s in and includes such modern
features as mouse support, menus, and icons. Even with these features, VIM
is not intuitive for most people.

Versions of VI are available for nearly any operating system being used. If
you already know VI, you might enjoy using it for Web page development
because it has all the features you might need. If you don’t already know VI,
it’s probably more efficient for you to start with a more standard text editor,
such as Notepad++.

07_9780470537558-bk01ch03.indd 4707_9780470537558-bk01ch03.indd 47 10/7/10 8:29 PM10/7/10 8:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

48 Picking a Text Editor

Emacs
The other popular editor from the UNIX world is Emacs. Like VI, you prob-
ably don’t need this tool if you never use Linux or UNIX. Also like VI, if you
know it already, you probably don’t need anything else. Emacs has been a
programmer’s editor for a very long time (it has been in continuous develop-
ment since 1976) and has nearly every feature you can think of.

Emacs also has a lot of features you haven’t thought of, including a built-in
text adventure game and even a psychotherapist simulator. I really couldn’t
make this stuff up if I tried.

Emacs has very powerful customization and macro features and allows you
to view and edit more than one file at a time. Emacs also has the ability to
view and manipulate the local file system, manage remote files, access the
local operating system (OS) shell, and even browse the Web or check e-mail
without leaving the program. If you’re willing to invest in a program that
takes some effort to understand, you’ll have an incredibly powerful tool in
your kit. Versions of Emacs are available for most major operating systems.
Emacs is one of the first programs I install on any new computer because it’s
so powerful. A version of Emacs is shown in Figure 3-3.

Figure 3-3:
Emacs is
powerful but
somewhat
eccentric.

07_9780470537558-bk01ch03.indd 4807_9780470537558-bk01ch03.indd 48 10/7/10 8:29 PM10/7/10 8:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 3

C
h

o
o

sin
g

 Y
o

u
r

T
o

o
ls

49The Web Developer’s Browser

An enhanced version — XEmacs — uses standard menus and icons like
modern programs, so it’s reasonably easy to get started with.

 Emacs has an astonishing number of options and a nonstandard interface, so
it can be challenging for beginners.

Other text editors
Many other text editors are used in Web development. The most important
thing is to find one that matches the way you work. If you don’t like any of
the editors I’ve suggested so far, here are a few more you might want to try:

 ✦ SynEdit: Much like Notepad++ and very popular with Web developers

 ✦ Scintilla: Primarily a programming editor, but has nice support for
XHTML coding

 ✦ jEdit: A popular text editor written in Java with nice features, but some
developers consider it slower than the other choices

The Web Developer’s Browser
Web pages are meant to display in a browser; so, of course, you need brows-
ers for testing. Not all browsers are the same, though, so you need more
than one. As of this writing, there are two major browsers and a number of
other significant players in the browser world. It’s important to know a little
about the major browsers, which I discuss later in this section.

A little ancient history
You’ve probably already noticed that browsers are inconsistent in the way
they display and handle Web pages. It’s useful to understand how we got
into this mess.

Mosaic/Netscape — the killer application
In the beginning, browsers were written by small teams. The most important
early browser was Mosaic, written by a team based at the National Center
for Supercomputing Applications (NCSA) in Champaign–Urbana, Illinois.

Several members of that NCSA team decided to create a completely com-
mercial Web browser. Netscape was born, and it quickly became the most
prominent and important browser, with 97 percent market share at the peak
of its popularity.

07_9780470537558-bk01ch03.indd 4907_9780470537558-bk01ch03.indd 49 10/7/10 8:29 PM10/7/10 8:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

50 The Web Developer’s Browser

Microsoft enters (and wins) the battle
Microsoft came onto the scene with Internet Explorer (IE). A bitter fight
(sometimes called the Browser Wars) ensued between Microsoft and
Netscape. Each browser added new features regularly. Eventually, entire
sets of tags evolved, so a Web page written for IE would not always work in
Netscape and vice versa. Developers had three bad choices: pick only one
browser to support, write two versions of the page, or stick with the more
limited set of features common to both browsers.

Netscape 6.0 was a technical disappointment, and Microsoft capitalized,
earning a nearly complete lock on the browser market. Microsoft’s version
of standards became the only standards because there was virtually no com-
petition. After Microsoft won the fight, there was a period of stability but
very little innovation.

Firefox shakes up the world
A new browser rose from the ashes of Netscape (in fact, its original name
was Firebird, after the mythical birds that rise from their own ashes). The
name was later changed to Firefox, and it breathed new life into the Web.
Firefox has several new features that are very appealing to Web developers:

 ✦ Solid compliance to standards: Firefox followed the W3C standards
almost perfectly.

 ✦ Tabbed browsing: One browser window can have several panels, each
with its own page.

 ✦ Easy customization: Firefox developers encouraged people to add
improvements and extensions to Firefox. This led to hundreds of inter-
esting add-ons.

 ✦ Improved security: By this time, a number of security loopholes in IE
were publicized. Although Firefox has many of the same problems, it has
a much better reputation for openness and quick solutions.

Overview of the prominent browsers
The browser is the primary tool of the Web. All your users view your
page with one browser or another, so you need to know a little about
each of them.

Microsoft Internet Explorer 7 and 8
Microsoft Internet Explorer (MSIE or simply IE) is the most popular browser
on the planet. Before Firefox came along, a vast majority of Web users used
IE. Explorer is still extremely prevalent because it comes installed with
Microsoft Windows. Of course, it also works exclusively with Microsoft
Windows. Mac and Linux aren’t supported (users don’t seem too upset
about it, though).

07_9780470537558-bk01ch03.indd 5007_9780470537558-bk01ch03.indd 50 10/7/10 8:29 PM10/7/10 8:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 3

C
h

o
o

sin
g

 Y
o

u
r

T
o

o
ls

51The Web Developer’s Browser

IE7 featured some welcome additions, including tabbed browsing and
improved compliance with the W3C standards. Cynics have suggested these
improvements were a response to Firefox. IE7 was quickly replaced with the
most recent version, Internet Explorer 8. IE8 has much improved speed and
standards-compliance, but it still lags behind the other major browsers in
these regards.

If you write your code to XHTML 1.0 Strict standards, it almost always dis-
plays as expected in IE7/8.

IE versions 7 and 8 do not fully support HTML 5. If you want to experience
these features, you need to use one of the other modern browsers described
in this chapter.

Older versions of Internet Explorer
The earlier versions of IE are still extremely important because so many
computers out there don’t have IE7 or IE8 installed yet.

Microsoft made a version of IE available for programmers to embed in their
own software; therefore, many custom browsers are actually IE with a dif-
ferent skin. Most of the custom browsers that are installed with the various
broadband services are simply dressed up forms of IE. Therefore, IE is even
more common than you might guess because people might be using a ver-
sion of it while thinking it’s something else.

IE6 and earlier versions used Microsoft’s own variation of standards. They
display old-style HTML well, but these browsers don’t comply perfectly
with all the W3C standards. Having a version of one of these older browsers
around is important so you can see how your pages display in them. If you
write standards-compliant code, you’ll find that it doesn’t work perfectly in
these variations. You need to do some tweaking to make some features come
out right. Don’t panic, because they’re relatively small details, and I point
out the strategies you need as we go.

Checking your pages on IE6 or earlier is necessary. Unfortunately, if you
have IE8 (or whatever comes next), you probably don’t have IE6 any longer.
You can’t have two versions of IE running on the same machine at once (at
least, not easily), so you might need to keep an older machine just for testing
purposes. You can use a testing site, such as Spoon.net (www.spoon.net/
browsers), to check how various browsers render your pages if you don’t
want to install all the other browsers.

Mozilla Firefox
Developers writing standards-compliant code frequently test their pages in
Firefox because it has a great reputation for standards compliance. Firefox
has other advantages, as well, such as

07_9780470537558-bk01ch03.indd 5107_9780470537558-bk01ch03.indd 51 10/7/10 8:29 PM10/7/10 8:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

52 The Web Developer’s Browser

 ✦ Better code view: If you view the HTML code of a page, you see the code
in a special window. The code has syntax coloring, which makes it easy
to read. IE often displays code in Notepad, which is confusing because
you think you can edit the code, but you’re simply editing a copy.

 ✦ Better error-handling: You’ll make mistakes. Generally, Firefox does
a better job of pointing out errors than IE, especially when you begin
using JavaScript and other advanced technologies.

 ✦ Great extensions: As you see later in this chapter, Firefox has some
wonderful extensions that make Web development a lot easier. These
extensions allow you to modify your code on the fly, automatically vali-
date your code, and explore the structure of your page dynamically.

Google Chrome
Google has jumped into the fray with an interesting browser called Chrome.
Google sees the future of computing in browser-based applications using
AJAX technologies. The Chrome browser is extremely fast, especially in the
JavaScript technology that serves as the foundation to this strategy. Chrome
complies quite well with common standards, so if your pages look good in
Firefox, they’ll also do well in Chrome.

Other notable browsers
Firefox and IE are the big players in the browser world, but they certainly
aren’t the only browsers you will encounter.

Opera
The Opera Web browser, one of the earliest standards-compliant browsers,
is a technically solid browser that has never been widely used. If you design
your pages with strict compliance in mind, users with Opera have no prob-
lems accessing them.

Webkit/Safari
Apple includes a Web browser in all recent versions of Mac OS. The current
incarnation — Safari — is an excellent standards-compliant browser. Safari
was originally designed only for the Mac, but a Windows version has been
released recently. The Webkit framework, the foundation for Safari, is used
in a number of other online applications, mainly on the Mac. It’s also the
foundation of the browsers on the iPhone and iPad.

Mozilla
There’s still a Mozilla browser, but it has been replaced largely with Firefox.
Because Mozilla uses the same underlying engine, it renders code the same
way Firefox does.

07_9780470537558-bk01ch03.indd 5207_9780470537558-bk01ch03.indd 52 10/7/10 8:29 PM10/7/10 8:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 3

C
h

o
o

sin
g

 Y
o

u
r

T
o

o
ls

53Tricking Out Firefox

Portable browsers
The Web isn’t just about desktops anymore. Lots of people browse the
Web with cellphones, iPhones, and PDAs. These devices often have special-
ized Web browsers designed to handle the particular needs of the portable
gadget. However, these devices usually have tiny screens, small memory
capacity, and slower download speeds than their desktop cousins. A por-
table browser rarely displays a page the way it’s intended to appear on
a desktop machine. Portable browsers usually do a good job of making
standards-compliant code work, but they really struggle with other types of
HTML (especially tables used for formatting and fixed layouts).

Text-only browsers
Some browsers that don’t display any graphics at all (such as Lynx) are
intended for the old command-line interfaces. This may seem completely
irrelevant today, but these browsers are incredibly fast because they don’t
display graphics. Auditory browsers read the contents of Web pages. They
were originally intended for people with visual disabilities, but people with-
out any disabilities often use them as well. Fire Vox is a variant of Firefox
that reads Web pages aloud.

 Worrying about text-only readers may seem unnecessary because people
with visual disabilities are a relatively small part of the population, and you
may not think they’re part of your target audience. You probably should
think about these users anyway, because it isn’t difficult to help them.
There’s another reason, too. The search engines (Google is the main game in
town) read your page just like a text-only browser. Therefore, if an element
is invisible to a text-based browser, it won’t appear on the search engine.

The bottom line in browsers
Really, you need to have access to a couple browsers, but you can’t possibly
have them all. I tend to do my initial development testing with Firefox. I then
check pages on IE7 and IE6. I also check the built-in browser on my cell-
phone and PDA to see how the pages look there. Generally, if you get a page
that gives you suitable results on IE6, IE7, and Firefox, you can be satisfied
that it works on most browsers. However, there’s still no guarantee. If you
follow the standards, your page displays on any browser, but you might not
get the exact layout you expect.

Tricking Out Firefox
One of the best features of Firefox is its support for extensions. Hundreds of
clever and generous programmers have written tools to improve and alter
Firefox’s performance. Three of these tools — HTML Validator, Web Developer
toolbar, and Firebug — are especially important to Web developers.

07_9780470537558-bk01ch03.indd 5307_9780470537558-bk01ch03.indd 53 10/7/10 8:29 PM10/7/10 8:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

54 Tricking Out Firefox

Validating your pages with HTML Validator
In Chapter 2 of this minibook, I explain how important Web standards are
and how to use online services such as http://validator.w3.org and
HTML Tidy (http://infohound.net/tidy). These are terrific services,
but it would be even better to have these validators built directly into your
browser. The HTML Validator extension by Marc Gueury is a tool that does
exactly that: It adds both the W3C validator and HTML Tidy to your Firefox
installation.

When you have the HTML Validator extension (available on this book’s
CD-ROM) running, you have an error count in the footer of every page you
visit. (You’ll be amazed how many errors are on the Web.) You’ll be able to
tell immediately if a page has validation errors.

With the HTML Validator, your View Source tool is enhanced, as shown in
Figure 3-4.

Figure 3-4:
The HTML
Validator
explains all
errors in
your page.

Page repairView Source window

Error suggestionsValidation errors

07_9780470537558-bk01ch03.indd 5407_9780470537558-bk01ch03.indd 54 10/7/10 8:29 PM10/7/10 8:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 3

C
h

o
o

sin
g

 Y
o

u
r

T
o

o
ls

55Tricking Out Firefox

The View Source tool becomes much more powerful when you run HTML
Validator, as follows:

 ✦ Each error is listed in an errors panel. You see this same error list
from W3C.

 ✦ Clicking an error highlights it in the source code listing. This makes it
easy to see exactly what line of code triggers each error.

 ✦ Complete help is shown for every error. The HTML Validator toolbar
presents much more helpful error messages than the W3C results.

 ✦ Automated clean-up. You can click the Clean Up link, and the HTML
Validator extension automatically applies HTML Tidy to your page. This
can be a very effective way to fix older pages with many errors.

The HTML Validator tool will revolutionize your Web development experi-
ence, helping you create standards-compliant sites easily and discover the
compliance level of any page you visit. (It’s fun to feel superior.)

Using the Web Developer toolbar
The Web Developer toolbar by Chris Pederick provides all kinds of useful
tools for Web developers. The program installs as a new toolbar in Firefox,
as shown in Figure 3-5.

Figure 3-5:
The Web
Developer
toolbar adds
several
features to
Firefox.

CSS editor Block outlines Web Developer toolbar

07_9780470537558-bk01ch03.indd 5507_9780470537558-bk01ch03.indd 55 10/7/10 8:29 PM10/7/10 8:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

56 Tricking Out Firefox

Figure 3-5 shows the Wiley home page with some of the Web Developer tool-
bar features active. The Edit CSS frame on the left allows you to modify the
look of the page in real time, and the thick outlines help visualize the page
organization. (I describe these ideas in detail in Books III and IV.)

When you activate the Web Developer toolbar (use the View➪Toolbars
menu command to hide or show it), you can use it to do the following:

 ✦ Edit your page on the fly. The Edit HTML Entry option on the
Miscellaneous drop-down menu opens a small text editor on the left side
of the screen. You can make changes to your HTML here and immedi-
ately see the results in the main screen. The changes aren’t permanent,
but you can save them.

 ✦ Validate your pages. Choosing CSS➪Edit CSS is the command to vali-
date your page, but the Web Developer toolbar also adds some hotkeys
to Firefox so you can instantly send your page to the W3C validator.
Pressing Ctrl+Shift+A contacts the W3C validator and then sends your
page to it. It’s much easier than memorizing the validator address. This
feature alone is worth the short download time. You can also do other
kinds of validation, check your CSS, or see how well your page conforms
to various guidelines for people with disabilities.

 ✦ Manipulate CSS code. After you define your page with XHTML, use CSS
to dress it up. The CSS menu has a number of great tools for seeing how
CSS is set up and experimenting with it on the fly. I explain how to use
the CSS tools in Books II and III, where I describe CSS.

 ✦ View your page in different sizes. Not everybody has a huge flat-panel
display. It’s important to see how your page looks in a number of stan-
dard screen resolutions.

 ✦ Get a speed report. Your Web page may load great on your broadband
connection, but how does it work on Aunt Judy’s dialup? Web Developer
has a tool that analyzes all the components of the page, reports how
long each component takes to download over various connections, and
suggests ways to improve the speed of your page downloads.

 ✦ Check accessibility. You can run a number of automated tests to deter-
mine how accessible your page is. Use the accessibility tests to see how
your page will work for people with various disabilities and whether you
pass certain required standards (for example, requirements of govern-
ment sites).

The Web Developer toolbar can do a lot more, but these are some of the
highlights. The toolbar is a small and fast download, and it makes Web
development a lot easier. There’s really no good reason not to use it.

07_9780470537558-bk01ch03.indd 5607_9780470537558-bk01ch03.indd 56 10/7/10 8:29 PM10/7/10 8:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 3

C
h

o
o

sin
g

 Y
o

u
r

T
o

o
ls

57Tricking Out Firefox

Using Firebug
The Firebug extension is another vital tool for Web developers. Firebug
concentrates more on JavaScript development rather than pure XHTML
development, but it’s also useful for XHTML beginners. Figure 3-6 shows the
Firebug extension opened as a panel in Firefox.

Firebug’s Inspect mode allows you to compare the HTML code to the output.
When you move your mouse over a part of the rendered page, Firebug high-
lights the relevant part of the code in the other panel. Likewise, you can
move the mouse over a code fragment and see the affected code segment,
which can be extremely handy when things aren’t working out the way
you expect.

You can view the HTML code as an outline, which helps you see the overall
structure of the code. You can also edit the code in the panel and see the
results immediately, as you can with the Web Developer toolbar, which I dis-
cuss in the previous section. Changes you make in Firebug aren’t permanent,
but you can copy them to your text editor.

Firebug really shows off when you get to more sophisticated techniques,
such as CSS, DOM Manipulation, JavaScript, and AJAX. Books IV and VII
show you how Firebug can be used to aid in these processes.

Figure 3-6:
Firebug
gives a
detailed
view of your
page.

 CSS informationSource code window

07_9780470537558-bk01ch03.indd 5707_9780470537558-bk01ch03.indd 57 10/7/10 8:29 PM10/7/10 8:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

58 Using a Full-Blown IDE

Using a Full-Blown IDE
You might think I hate dedicated Web page editors, but I don’t. I use them all the
time for other kinds of programming. The problem is that up until recently, there
weren’t any real IDEs (Integrated Development Environments) for Web develop-
ment. Most of the tools try to be visual development tools that automate the
design of visual pages, rather than programming environments. They have flaws
because Web development is really a programming problem with visual design
aspects, rather than a visual design problem with programming underneath.

A couple of IDEs have popped up recently in the open-source community.
One tries to be like the commercial tools (and ends up replicating some of
their flaws). Some other editors have emerged that seem to be a good com-
promise between helping you write solid code and growing with you while
you become more sophisticated.

Introducing Aptana
My preferred editor for beginners who intend to advance is Aptana (avail-
able on this book’s CD-ROM or at www.aptana.com). Aptana Studio is a full-
blown IDE, based on the popular Eclipse editor. Aptana has many features
that make it a good choice for Web developers:

 ✦ Syntax completion: Aptana has built-in knowledge of HTML (and several
other languages). When you start to type HTML code, it recognizes the
code and pops up a list of suggestions. Figure 3-7 shows Aptana helping
on some HTML code.

 ✦ Automatic ending tags: As soon as you write a beginning tag, Aptana
automatically generates the corresponding end tag. This makes it much
less likely that you’ll forget an ending tag — one of the most common
coding errors.

 ✦ Automatically generated XHTML template: When you tell Aptana to
create an HTML page, it can generate the page template with all the
messy doctype stuff built in. (I explain how to customize this feature in
the next section.)

 ✦ Error detection: Aptana can look at the code and detect certain errors.
Although it isn’t a replacement for a validator, it can be a very handy
tool, especially when you begin to write JavaScript code.

 ✦ File management tools: Aptana makes it easy to work with both the
local file system and pages that reside on Internet servers.

 ✦ Page preview: You can preview your page directly within Aptana, or you
can view it in your primary browser.

 ✦ Outline view: This panel displays the page structure as an outline to
help you see the overall structure of the page. You can also use this
panel as a table of contents to get to any particular part of your page in
the editor quickly. Figure 3-8 shows the Outline view in action.

07_9780470537558-bk01ch03.indd 5807_9780470537558-bk01ch03.indd 58 10/7/10 8:29 PM10/7/10 8:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 3

C
h

o
o

sin
g

 Y
o

u
r

T
o

o
ls

59Using a Full-Blown IDE

Figure 3-7:
Aptana
recognizes
HTML and
suggests
code for
you.

Code outlineMultiple files

Syntax highlighting

Automatic code completion

File management
system

Error list Code snippetsCode hints

Figure 3-8:
The Outline
view acts
as a table of
contents for
your page.

07_9780470537558-bk01ch03.indd 5907_9780470537558-bk01ch03.indd 59 10/7/10 8:29 PM10/7/10 8:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

60 Using a Full-Blown IDE

 ✦ Advanced features: When you’re ready to try JavaScript and AJAX,
Aptana has nice support for these more advanced technologies. The
syntax-highlighting features work in CSS, JavaScript, and PHP the same
way they do in HTML. This means you can use the same editor for all
your Web languages, which is a great thing.

Aptana Studio previously had two different versions, but now the features
are combined, and the community edition is the only version offered. Studio
is completely free to use and redistribute, although it has multiple licens-
ing models. It provides all the features you might need and a few advanced
features (such as integrated support for cloud-based computing) you may
never use.

Customizing Aptana
Aptana is a great editor, but I recommend you change a few settings after
you install it on your system.

Getting to the HTML editor preferences
Aptana can be customized in many ways. For now, the only preferences
you need to change are in the HTML editor. Choose Windows➪Preferences,
and in the Preferences dialog box, expand the Aptana link and select HTML
Editor. The dialog box is shown in Figure 3-9.

Figure 3-9:
Aptana’s
HTML Editor
Preferences
dialog box.

07_9780470537558-bk01ch03.indd 6007_9780470537558-bk01ch03.indd 60 10/7/10 8:29 PM10/7/10 8:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 3

C
h

o
o

sin
g

 Y
o

u
r

T
o

o
ls

61Using a Full-Blown IDE

Changing the extension
By default, Aptana saves files with the .htm extension. Because this is the
extension normally used only by Microsoft servers, I prefer to save pages
with the .html extension. All Web pages in this book are stored with the
.html extension.

Enter .html in the Default Extension for New HTML Files (Prefix with '.') field
to make this change, if you wish.

Changing the initial contents
When you create a new Web page in Aptana, a basic template appears. This
is convenient, but it creates an HTML 4.0 doctype. Open template.html in
a normal text editor, copy it, and paste it to the provided text area, and your
pages will begin with the standard template.

Changing the view
Aptana allows you to split the screen with your code in one panel and a
browser view in another. Every time you save your code, the browser view
immediately updates. This is a really good tool, especially for a beginner,
because you can get very quick feedback on how your page looks. In the
HTML Editor Mode section in the Preferences dialog box (refer to Figure
3-9), you can indicate whether you want the browser preview to be in a sepa-
rate tab, in a horizontal split screen, or in a vertical split screen. I use tabs
because I like to see as much code as possible on-screen.

The latest version of Aptana tries to force you into a project mode, where
you combine all your files into a large project. Although this is fine for large
projects, it’s probably not what you want when you first get started. To build
a file without a project, use the File tab (on the left) to move to the directory
where you want to create the file. Right-click the directory and choose New.

Aptana issues
I use Aptana quite a bit, and it’s one of my favorite tools. However, it isn’t per-
fect; it’s a large program that can take some time to load. I have also run into
some display bugs here and there, and the debugging model doesn’t always
seem to cooperate the way it should. Aptana is quite a good tool, but if these
things bother you, you might want to look at the following alternative.

07_9780470537558-bk01ch03.indd 6107_9780470537558-bk01ch03.indd 61 10/7/10 8:29 PM10/7/10 8:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

62 Introducing Komodo Edit

Introducing Komodo Edit
Komodo Edit is another very powerful Web editor (similar to Aptana) that
may suit some developers more. Komodo doesn’t try to do everything that
Aptana does, but it’s faster and a bit more reliable. Mainly a text editor,
Komodo does have some great features. My favorite part about Komodo is
how easy it is to modify.

 ✦ Abbreviations: Although many editors have features like this, the abbre-
viations tool in Komodo is especially useful. Komodo comes with a huge
number of abbreviations built in, and a very easy mechanism to use
them. For example, if you type xhtml and then press Ctrl-T, Komodo will
replace the text with a complete XHTML framework. Creating new abbre-
viations is very easy, so you can quickly customize.

 ✦ Macros: I think one of Aptana’s biggest weaknesses is the clumsy macro
features. Aptana doesn’t have an easy way to record keystroke com-
mands and play them back. (To be fair, Aptana has an incredibly power-
ful scripting system, but it isn’t super easy to use.) Komodo has a really
super macro-recording feature.

 ✦ Snippets: Komodo has a terrific built-in library of code snippets contain-
ing the code you frequently use. Adding new snippets is easy, so soon
enough you’ll have most of the code you use a lot available at your
fingertips.

 ✦ Commands: Komodo allows you to define commands you can run from
within the editor. For example, you can create a DOS command to list all
the files in the current directory and run the command without leaving
Komodo. This can be useful if you’re writing code that creates files (as
you do in Book V, Chapter 7). It’s also used to run external programs,
such as compilers (if you were writing code in a language like C or Java
that requires such things).

Figure 3-10 shows Komodo Edit being used to modify a Web page.

07_9780470537558-bk01ch03.indd 6207_9780470537558-bk01ch03.indd 62 10/7/10 8:29 PM10/7/10 8:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 3

C
h

o
o

sin
g

 Y
o

u
r

T
o

o
ls

63Introducing Komodo Edit

Figure 3-10:
Komodo Edit
has many
of the same
features as
Aptana, but
it’s a little
smaller and
snappier.

Keyboard macros Code snippets

07_9780470537558-bk01ch03.indd 6307_9780470537558-bk01ch03.indd 63 10/7/10 8:29 PM10/7/10 8:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

64 Book I: Creating the HTML/XHTML Foundation

07_9780470537558-bk01ch03.indd 6407_9780470537558-bk01ch03.indd 64 10/7/10 8:29 PM10/7/10 8:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Managing Information
with Lists and Tables

In This Chapter
✓ Understanding basic lists

✓ Creating unordered, ordered, and nested lists

✓ Building definition lists

✓ Building basic tables

✓ Using rowspan and colspan attributes

You’ll often need to present large amounts of organized information,
and XHTML has some wonderful tools to manage this task. XHTML has

three kinds of lists and a powerful table structure for organizing the content
of your page. Figure out how these tools work, and you can manage complex
information with ease.

Making a List and Checking It Twice
XHTML supports three types of lists. Unordered lists generally contain bullet
points. They’re used when the order of elements in the list isn’t important.
Ordered lists usually have some kind of numeric counter preceding each list
item. Definition lists contain terms and their definitions.

Creating an unordered list
All the list types in XHTML are closely related. The simplest and most
common kind of list is an unordered list.

Looking at an unordered list
Look at the simple page shown in Figure 4-1. In addition to a couple of head-
ers, it has a list of information.

08_9780470537558-bk01ch04.indd 6508_9780470537558-bk01ch04.indd 65 10/7/10 8:30 PM10/7/10 8:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

66 Making a List and Checking It Twice

Figure 4-1:
An un-
ordered
list of Web
browsers.

This list of browsers has some interesting visual characteristics:

 ✦ The items are indented. There’s some extra space between the left
margin and the beginning of each list item.

 ✦ The list elements have bullets. That little dot in front of each item is a
bullet. Bullets are commonly used in unordered lists like this one.

 ✦ Each item begins a new line. When a list item is displayed, it’s shown
on a new line.

These characteristics help you see that you have a list, but they’re just
default behaviors. Defining something as a list doesn’t force it to look a par-
ticular way; the defaults just help you see that these items are indeed part of
a list.

Remember the core idea of XHTML here. You aren’t really describing how
things look, but what they mean. You can change the appearance later when
you figure out CSS, so don’t get too tied up in the particular appearance of
things. For now, just recognize that HTML (and by extension, XHTML) can
build lists, and make sure you know how to use the various types.

08_9780470537558-bk01ch04.indd 6608_9780470537558-bk01ch04.indd 66 10/7/10 8:30 PM10/7/10 8:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 4

M
a

n
a

g
in

g

In
fo

rm
a

tio
n

 w
ith

Lists a

n
d

 T
a

b
le

s
67Making a List and Checking It Twice

Building an unordered list
Lists are made with two kinds of tags. One tag surrounds the entire list and
indicates the general type of list. This first example demonstrates an unor-
dered list, which is surrounded by the pair.

Note: Indenting all the code inside the set is common. The unordered
list can go in the main body.

Inside the set is a number of list items. Each element of the
list is stored between a (list item) and a tag. Normally, each
 pair goes on its own line of the source code, although you can
make a list item as long as you want.

Look to Book II, Chapter 4 for information on how to change the bullet to all
kinds of other images, including circles, squares, and even custom images.

The code for the unordered list is pretty straightforward:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=“content-type“ content=“text/xml; charset=utf-8“ />

 <title>basicUL.html</title>
 </head>
 <body>
 <h1>Basic Lists</h1>
 <h2>Common Web Browsers</h2>

 Firefox
 Internet Explorer
 Opera
 Safari

 </body>
</html>

Creating ordered lists
Ordered lists are almost exactly like unordered lists. Ordered lists tradi-
tionally have numbers rather than bullets (although you can change this
through CSS if you want; see Book III, Chapter 3).

Viewing an ordered list
Figure 4-2 demonstrates a page with a basic ordered list — basicOL.html.

08_9780470537558-bk01ch04.indd 6708_9780470537558-bk01ch04.indd 67 10/7/10 8:30 PM10/7/10 8:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

68 Making a List and Checking It Twice

Figure 4-2:
A simple
ordered list.

Figure 4-2 shows a list where the items are numbered. When your data is a
list of steps or information with some type of numerical values, an ordered
list is a good choice.

Building the ordered list
The code for basicOL.html is remarkably similar to the previous unor-
dered list:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=“content-type“ content=“text/xml; charset=utf-8“ />
 <title>basicOL.html</title>
 </head>

 <body>
 <h1>Basic Ordered List</h1>
 <h2>Top ten dog names in the USA</h2>

 Max
 Jake
 Buddy
 Maggie
 Bear
 Molly
 Bailey
 Shadow
 Sam
 Lady

 <p>
 data from http://www.bowwow.com.au
 </p>
 </body>
</html>

08_9780470537558-bk01ch04.indd 6808_9780470537558-bk01ch04.indd 68 10/7/10 8:30 PM10/7/10 8:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 4

M
a

n
a

g
in

g

In
fo

rm
a

tio
n

 w
ith

Lists a

n
d

 T
a

b
le

s
69Making a List and Checking It Twice

The only change is the list tag itself. Rather than the tag, the ordered
list uses the indicator. The list items are the same pairs
used in the unordered list.

You don’t indicate the item number anywhere; it generates automatically
based on the position of each item within the list. Therefore, you can change
the order of the items, and the numbers are still correct.

 This is where it’s great that XHTML is about meaning, not layout. If you
specified the actual numbers, it’d be a mess to move things around. All that
really matters is that the element is inside an ordered list.

Making nested lists
Sometimes, you’ll want to create outlines or other kinds of complex data in
your pages. You can easily nest lists inside each other, if you want. Figure
4-3 shows a more complex list describing popular cat names in the U.S. and
Australia.

Figure 4-3:
An ordered
list inside an
unordered
list!

Figure 4-3 uses a combination of lists to do its work. This figure contains a
list of two countries: the U.S. and Australia. Each country has an H3 heading
and another (ordered) list inside it. You can nest various elements inside a
list, but you have to do it carefully if you want the page to validate.

In this example, there’s an unordered list with only two elements. Each of
these elements contains an <h3> heading and an ordered list. The page han-
dles all this data in a relatively clean way and validates correctly.

Examining the nested list example
The entire code for nestedList.html is reproduced here:

08_9780470537558-bk01ch04.indd 6908_9780470537558-bk01ch04.indd 69 10/7/10 8:30 PM10/7/10 8:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

70 Making a List and Checking It Twice

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=“content-type“ content=“text/xml; charset=utf-8“ />
 <title>nestedList.html</title>
 </head>

 <body>
 <h1>Nested Lists</h1>

 <h2>Popular Cat Names</h2>

 <h3>USA</h3>

 Tigger
 Tiger
 Max
 Smokey
 Sam

 <h3>Australia</h3>

 Oscar
 Max
 Tiger
 Sam
 Misty

 </body>
</html>

Here are a few things you might notice in this code listing:

 ✦ There’s a large set surrounding the entire main list.

 ✦ The main list has only two list items.

 ✦ Each of these items represents a country.

 ✦ Each country has an <h3> element, describing the country name inside
the .

 ✦ Each country also has an set with a list of names.

 ✦ The indentation really helps you see how things are connected.

Indenting your code
You might have noticed that I indent all the XHTML code in this book. The
browsers ignore all indentation, but it’s still an important coding habit.

08_9780470537558-bk01ch04.indd 7008_9780470537558-bk01ch04.indd 70 10/7/10 8:30 PM10/7/10 8:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 4

M
a

n
a

g
in

g

In
fo

rm
a

tio
n

 w
ith

Lists a

n
d

 T
a

b
le

s
71Making a List and Checking It Twice

There are many opinions about how code should be formatted, but the
standard format I use in this book will serve you well until you develop your
own style.

Generally, I use the following rules to indent HTML/XHTML code:

 ✦ Indent each nested element. Because the <head> tag is inside the
<html> element, I indent to indicate this. Likewise, the elements
are always indented inside or pairs.

 ✦ Line up your elements. If an element takes up more than one line, line
up the ending tag with the beginning tag. This way, you know what ends
what.

 ✦ Use spaces, not tabs. The tab character often causes problems in source
code. Different editors format tabs differently, and a mixture of tabs and
spaces can make your carefully formatted page look awful when you
view it in another editor.

 If you are using Aptana (and you really should consider it if you’re not —
see Chapter 3 in this minibook for more information about it), note
that Aptana’s autoformatting defaults to tabs. From the Window menu,
select Preferences. Then find the Aptana➪Editors panel and select Insert
Spaces Instead of Tabs.

 ✦ Use two spaces. Most coders use two or four spaces per indentation
level. HTML elements can be nested pretty deeply. Going seven or eight
layers deep is common. If you use tabs or too many spaces, you’ll have
so much white space that you can’t see the code.

 Aptana defaults to four spaces, but you can change it to two. From the
General menu, choose Editors➪Text Editors, and set the Displayed Tab
Width option to 2.

 ✦ End at the left margin. If you finish the page and you’re not back at
the left margin, you’ve forgotten to end something. Proper indentation
makes seeing your page organization easy. Each element should line up
with its closing tag.

Building a nested list
When you look over the code for the nested list, it can look intimidating, but
it isn’t really that hard. The secret is to build the list outside in:

 1. Create the outer list first.

 Build the primary list (whether it’s ordered or unordered). In my exam-
ple, I began with just the unordered list with the two countries in it.

 2. Add list items to the outer list.

 If you want text or headlines in the larger list (as I did), you can put
them here. If you’re putting nothing but a list inside your primary list,

08_9780470537558-bk01ch04.indd 7108_9780470537558-bk01ch04.indd 71 10/7/10 8:30 PM10/7/10 8:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

72 Making a List and Checking It Twice

you may want to put some placeholder tags in there just so you
can be sure everything’s working.

 3. Validate before adding the next list level.

 Nested lists can confuse the validator (and you). Validate your code
with the outer list to make sure there are no problems before you add
inner lists.

 4. Add the first inner list.

 After you know the basic structure is okay, add the first interior list. For
my example, this was the ordered list of cat names in the U.S.

 5. Repeat until finished.

 Keep adding lists until your page looks right.

 6. Validate frequently.

 It’s much better to validate while you go than to wait until everything’s
finished. Catch your mistakes early so you don’t replicate them.

Building the definition list
One more type of list — the definition list — is very useful, even if it’s used
infrequently. The definition list was originally designed to format dictionary-
style definitions, but it’s really useful any time you have name and value
pairs. Figure 4-4 shows a sample definition list in action.

Figure 4-4:
A basic
definition
list.

Definition lists don’t use bullets or numbers. Instead, they have two ele-
ments. Definition terms are usually words or short phrases. In Figure 4-4, the
browser names are defined as definition terms. Definition descriptions are the
extended text blocks that contain the actual definition.

The standard layout of definition lists indents each definition description.
Of course, you can change the layout to what you want after you understand
the CSS in Books II and III.

08_9780470537558-bk01ch04.indd 7208_9780470537558-bk01ch04.indd 72 10/7/10 8:30 PM10/7/10 8:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 4

M
a

n
a

g
in

g

In
fo

rm
a

tio
n

 w
ith

Lists a

n
d

 T
a

b
le

s
73Making a List and Checking It Twice

You can use definition lists any time you want a list marked by key terms,
rather than bullets or numbers. The definition list can also be useful in other
situations, such as forms, figures with captions, and so on.

Here’s the code for basicDL.html:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=“content-type“ content=“text/xml; charset=utf-8“ />
 <title>BasicDL.html</title>
 </head>

 <body>
 <h1>Basic Definition List</h1>
 <h2>Common Web Browsers</h2>
 <dl>
 <dt>Mosaic</dt>
 <dd>
 The mother of all modern browsers. The first widely used
 visual browser.
 </dd>

 <dt>Netscape</dt>
 <dd>
 The commercial successor to Mosaic. Widely popular, but
 eventually eclipsed by Internet Explorer
 </dd>

 <dt>IE</dt>
 <dd>
 Microsoft’s entry into the browser market, and a dominant
 player.
 </dd>

 <dt>Firefox</dt>
 <dd>
 An open-source browser that has shaken up the world.
 </dd>
 </dl>
 </body>
</html>

As you can see, the definition list uses three tag pairs:

 ✦ <dl></dl> defines the entire list.

 ✦ <dt></dt> defines each definition term.

 ✦ <dd></dd> defines the definition data.

Definition lists aren’t used often, but they can be extremely useful. Any time
you have a list that will be a combination of terms and values, a definition
list is a good choice.

08_9780470537558-bk01ch04.indd 7308_9780470537558-bk01ch04.indd 73 10/7/10 8:30 PM10/7/10 8:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

74 Building Tables

Building Tables
Sometimes, you’ll encounter data that fits best in a tabular format. XHTML
supports several table tags for this kind of work. Figure 4-5 illustrates a very
basic table.

Figure 4-5:
Tables are
useful for
some data
representa-
tion.

Sometimes, the best way to show data in a meaningful way is to organize it
in a table. XHTML defines a table with the (cleverly named) <table> tag.
The table contains a number of table rows (defined with the <tr> tag).
Each table row can consist of a number of table data (<td>) or table header
(<th>) tags.

Compare the output in Figure 4-5 with the code for basicTable.html that
creates it:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=“content-type“ content=“text/xml; charset=utf-8“ />
 <title>basicTable.html</title>
 </head>

 <body>
 <h1>A Basic Table</h1>
 <h2>XHTML Super Heroes</h2>
 <table border = “1“>
 <tr>
 <th>Hero</th>
 <th>Power</th>
 <th>Nemesis</th>
 </tr>

 <tr>
 <td>The XMLator</td>
 <td>Standards compliance</td>
 <td>Sloppy Code Boy</td>
 </tr>

 <tr>
 <td>Captain CSS</td>

08_9780470537558-bk01ch04.indd 7408_9780470537558-bk01ch04.indd 74 10/7/10 8:30 PM10/7/10 8:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 4

M
a

n
a

g
in

g

In
fo

rm
a

tio
n

 w
ith

Lists a

n
d

 T
a

b
le

s
75Building Tables

 <td>Super-layout</td>
 <td>Lord Deprecated</td>
 </tr>

 <tr>
 <td>Browser Woman</td>
 <td>Mega-Compatibility</td>
 <td>Ugly Code Monster</td>
 </tr>

 </table>
 </body>
</html>

Defining the table
The XHTML table is defined with the <table></table> pair. It makes a lot
of sense to indent and space your code carefully so you can see the struc-
ture of the table in the code. Just by glancing at the code, you can guess that
the table consists of three rows and each row consists of three elements.

In a word processor, you typically create a blank table by defining the
number of rows and columns, and then fill it in. In XHTML, you define the
table row by row, and the elements in each row determine the number of
columns. It’s up to you to make sure each row has the same number of
elements.

By default (in most browsers, anyway), tables don’t show their borders. If
you want to see basic table borders, you can turn on the table’s border
attribute. (An attribute is a special modifier you can attach to some tags.)

 <table border = “1”>

This tag creates a table and specifies that it will have a border of size 1. If
you leave out the border = “1” business, some browsers display a border
and some don’t. You can set the border value to 0 or to a larger number. The
larger number makes a bigger border, as shown in Figure 4-6.

 Although this method of making table borders is perfectly fine, I show a
much more flexible and powerful technique in Book II, Chapter 4.

Figure 4-6:
I set the
border
attribute
to 10.

08_9780470537558-bk01ch04.indd 7508_9780470537558-bk01ch04.indd 75 10/7/10 8:30 PM10/7/10 8:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

76 Building Tables

Setting a table border is a good idea because you can’t count on browsers to
have the same default. Additionally, the border value is always in quotes.
When you read about CSS in Book II (are you getting tired of hearing that?),
you discover how to add more complex and interesting borders than this
simple attribute allows.

Adding your first row
After you define a table, you need to add some rows. Each row is indicated
by a <tr></tr> pair.

Inside the <tr></tr> set, you need some table data. The first row often
consists of table headers. These special cells are formatted differently to
indicate that they’re labels, rather than data.

 Table headers have some default formatting to help you remember they’re
headers, but you can change the way they look. You can change the table
header’s appearance in all kinds of great ways in Books II and III. Define the
table header so when you discover formatting and decide to make all your
table headers chartreuse, you’ll know where in the HTML code all the table
headers are.

Indent your headers inside the <tr> set. If your table contains three col-
umns, your first row might begin like this:

<tr>
 <th></th>
 <th></th>
 <th></th>
</tr>

Place the text you want shown in the table headers between the <th> and
</th> elements. The contents appear in the order they’re defined.

Headings don’t have to be on the top row. If you want headings on the left, just
put a <th></th> pair as the first element of each row. You can have headings
at both the top and the left, if you want. In fact, you can have headings any-
where, but it usually makes sense to put headings only at the top or left.

Making your data rows
The next step is to create another row. The data rows are just like the head-
ing row, except they use <td></td> pairs, rather than <th></th> pairs, to
contain the data elements. Typically, a three-column table has blank rows
that look like this:

<tr>
 <td></td>
 <td></td>
 <td></td>
</tr>

08_9780470537558-bk01ch04.indd 7608_9780470537558-bk01ch04.indd 76 10/7/10 8:30 PM10/7/10 8:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 4

M
a

n
a

g
in

g

In
fo

rm
a

tio
n

 w
ith

Lists a

n
d

 T
a

b
le

s
77Building Tables

Place the data elements inside the <td></td> segments and you’re ready
to go.

Building tables in the text editor
Some people think that tables are a good reason to use WYSIWYG (what you
see is what you get) editors because they think it’s hard to create tables in
text mode. You have to plan a little, but it’s really quite quick and easy to
build an HTML table without graphical tools if you follow this plan:

 1. Plan ahead.

 Know how many rows and columns will be in the table. Sketch it on
paper first might be helpful. Changing the number of rows later is easy,
but changing the number of columns can be a real pain after some of the
code has been written.

 2. Create the headings.

 If you’re going to start with a standard headings-on-top table, begin by
creating the heading row. Save, check, and validate. You don’t want mis-
takes to multiply when you add more complexity. This heading row tells
how many columns you’ll need.

 3. Build a sample empty row.

 Make a sample row with the correct number of td elements with one
<td></td> pair per line. Build one td set and use copy and paste to
copy this data cell as many times as you need. Make sure the number of
<td> pairs equals the number of <th> sets in the heading row.

 4. Copy and paste the empty row to make as many rows as you need.

 5. Save, view, and validate.

 Be sure everything looks right and validates properly before you put a
lot of effort into adding data.

 6. Populate the table with the data you need.

 Go row by row, adding the data between the <td></td> pairs.

 7. Test and validate again to make sure you didn’t accidentally break
something.

Spanning rows and columns
Sometimes, you need a little more flexibility in your table design. Figure 4-7
shows a page from an evil overlord’s daily planner.

08_9780470537558-bk01ch04.indd 7708_9780470537558-bk01ch04.indd 77 10/7/10 8:30 PM10/7/10 8:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

78 Building Tables

Figure 4-7:
Some
activities
take up
more than
one cell.

Being an evil overlord is clearly a complex business. From a code stand-
point, the items that take up more than one cell are the most interesting.
Designing traps takes two mornings, and improving the lair takes three. All
Friday afternoon and evening are spent on world domination. Take a look at
the code, and you’ll see how it works:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=“content-type“ content=“text/xml; charset=utf-8“ />
 <title>tableSpan.html</title>
 </head>

 <body>
 <h1>Using colspan and rowspan</h1>
 <table border = “1“>
 <caption>My Schedule</caption>
 <tr>
 <th></th>
 <th>Monday</th>
 <th>Tuesday</th>
 <th>Wednesday</th>
 <th>Thursday</th>
 <th>Friday</th>
 </tr>

 <tr>
 <th>Breakfast</th>
 <td>In lair</td>
 <td>with cronies</td>
 <td>In lair</td>
 <td>in lair</td>
 <td>in lair</td>
 </tr>

 <tr>
 <th>Morning</th>
 <td colspan = “2“>Design traps</td>
 <td colspan = “3“>Improve Hideout</td>
 </tr>

 <tr>
 <th>Afternoon</th>
 <td>train minions</td>
 <td>train minions</td>
 <td>train minions</td>

08_9780470537558-bk01ch04.indd 7808_9780470537558-bk01ch04.indd 78 10/7/10 8:30 PM10/7/10 8:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 4

M
a

n
a

g
in

g

In
fo

rm
a

tio
n

 w
ith

Lists a

n
d

 T
a

b
le

s
79Building Tables

 <td>train minions</td>
 <td rowspan = “2“>world domination</td>
 </tr>

 <tr>
 <th>Evening</th>
 <td>maniacal laughter</td>
 <td>maniacal laughter</td>
 <td>maniacal laughter</td>
 <td>maniacal laughter</td>
 </tr>

 </table>

 </body>
</html>

The secret to making cells larger than the default is two special attributes:
rowspan and colspan.

Spanning multiple columns
The morning activities tend to happen over several days. Designing traps
will take both Monday and Tuesday morning, and improving the hideout
will occupy the remaining three mornings. Take another look at the Morning
row; here’s how this is done:

 <tr>
 <th>Morning</th>
 <td colspan = “2”>Design traps</td>
 <td colspan = “3”>Improve Hideout</td>
 </tr>

The Design Traps cell spans over two normal columns. The colspan attri-
bute tells how many columns this cell will take. The Improve Hideout cell
has a colspan of 3.

The Morning row still takes up six columns. The <th> is one column wide, like
normal, but the Design Traps cell spans two columns and the Improve Hideout
cell takes three, which totals six columns wide. If you increase the width of a
cell, you need to eliminate some other cells in the row to compensate.

Spanning multiple rows
A related property — rowspan — allows a cell to take up more than one
row of a table. Look back at the Friday column in Figure 4-7, and you’ll see
the World Domination cell takes up two time slots. (If world domination was
easy, everybody would do it.) Here’s the relevant code:

 <tr>
 <th>Afternoon</th>
 <td>train minions</td>
 <td>train minions</td>
 <td>train minions</td>

08_9780470537558-bk01ch04.indd 7908_9780470537558-bk01ch04.indd 79 10/7/10 8:30 PM10/7/10 8:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

80 Building Tables

 <td>train minions</td>
 <td rowspan = “2“>world domination</td>
 </tr>

 <tr>
 <th>Evening</th>
 <td>maniacal laughter</td>
 <td>maniacal laughter</td>
 <td>maniacal laughter</td>
 <td>maniacal laughter</td>
 </tr>

The Evening row has only five entries because the World Domination cell
extends into the space that would normally be occupied by a <td> pair.

If you want to use rowspan and colspan, don’t just hammer away at the
page in your editor. Sketch out what you want to accomplish first. I’m pretty
good at this stuff, and I still needed a sketch before I was able to create the
tableSpan.html code.

Avoiding the table-based layout trap
Tables are pretty great. They’re a terrific way to present certain kinds of
data. When you add the colspan and rowspan concepts, you can use tables
to create some pretty interesting layouts. In fact, because old-school HTML
didn’t really have any sort of layout technology, a lot of developers came up
with some pretty amazing layouts based on tables. You still see a lot of Web
pages today designed with tables as the primary layout mechanism.

Using tables for layout causes some problems though, such as

 ✦ Tables aren’t meant for layout. Tables are designed for data presenta-
tion, not layout. To make tables work for layout, you have to do a lot
of sneaky hacks, such as tables nested inside other tables or invisible
images for spacing.

 ✦ The code becomes complicated fast. Tables involve a lot of HTML
markup. If the code involves tables nested inside each other, it’s very
difficult to remember which <td> element is related to which row of
which table. Table-based layouts are very difficult to modify by hand.

 ✦ Formatting is done cell by cell. A Web page could be composed of hun-
dreds of table cells. Making a change in the font or color often involves
making changes in hundreds of cells throughout the page. This makes
your page less flexible and harder to update.

 ✦ Presentation is tied tightly to data. A table-based layout tightly inter-
twines the data and its presentation. This runs counter to a primary goal
of Web design — separation of data from its presentation.

08_9780470537558-bk01ch04.indd 8008_9780470537558-bk01ch04.indd 80 10/7/10 8:30 PM10/7/10 8:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 4

M
a

n
a

g
in

g

In
fo

rm
a

tio
n

 w
ith

Lists a

n
d

 T
a

b
le

s
81Building Tables

 ✦ Table-based layouts are hard to change. After you create a layout
based on tables, it’s very difficult to make modifications because all the
table cells have a potential effect on other cells.

 ✦ Table-based layouts cause problems for screen-readers. People with
visual disabilities use special software to read Web pages. These screen-
readers are well adapted to read tables as they were intended (to
manage tabular data), but the screen-readers have no way of knowing
when the table is being used as a layout technique rather than a data
presentation tool. This makes table-based layouts less compliant to
accessibility standards.

Resist the temptation to use tables for layout. Use tables to do what they’re
designed for: data presentation. Book III is entirely about how to use
CSS to generate any kind of visual layout you might want. The CSS-based
approaches are easier, more dependable, and much more flexible.

08_9780470537558-bk01ch04.indd 8108_9780470537558-bk01ch04.indd 81 10/7/10 8:30 PM10/7/10 8:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

82 Book I: Creating the HTML/XHTML Foundation

08_9780470537558-bk01ch04.indd 8208_9780470537558-bk01ch04.indd 82 10/7/10 8:30 PM10/7/10 8:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Making Connections
with Links

In This Chapter
✓ Understanding hyperlinks

✓ Building the anchor tag

✓ Recognizing absolute and relative links

✓ Building internal links

✓ Creating lists of links

The basic concept of the hyperlink is common today, but it was a major
breakthrough back in the day. The idea is still pretty phenomenal, if you

think about it: When you click a certain piece of text (or a designated image,
for that matter), your browser is instantly transported somewhere else. The
new destination might be on the same computer as the initial page, or it
could be literally anywhere in the world.

Any page is theoretically a threshold to any other page, and all information
has the ability to be linked. This is still a profound idea. In this chapter, you
discover how to add links to your pages.

Making Your Text Hyper
The hyperlink is truly a wonderful thing. Believe it or not, there was a time
when you had to manually type in the address of the Web page you wanted
to go to. Not so anymore. Figure 5-1 illustrates a page that describes some of
my favorite Web sites.

In Figure 5-1, the underlined words are hyperlinks. Clicking a hyperlink takes
you to the indicated Web site. Although this is undoubtedly familiar to you
as a Web user, a few details are necessary to make this mechanism work:

 ✦ Something must be linkable. Some text or other element must provide
a trigger for the linking behavior.

 ✦ Things that are links should look like links. This is actually easy to
do when you write plain XHTML because all links have a standard (if
ugly) appearance. Links are usually underlined blue text. When you
can create color schemes, you may no longer want links to look like the
default appearance, but they should still be recognizable as links.

09_9780470537558-bk01ch05.indd 8309_9780470537558-bk01ch05.indd 83 10/7/10 8:30 PM10/7/10 8:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

84 Making Your Text Hyper

 ✦ The browser needs to know where to go. When the user clicks the
link, the browser is sent to some address somewhere on the Internet.
Sometimes that address is visible on the page, but it doesn’t need to be.

 ✦ It should be possible to integrate links into text. In this example, each
link is part of a sentence. It should be possible to make some things act
like links without necessarily standing on their own (like heading tags do).

 ✦ The link’s appearance sometimes changes. Links sometimes begin as
blue underlined text, but after a link has been visited, the link is shown
in purple, instead. After you know CSS, you can change this behavior.

Of course, if your Web page mentions some other Web site, you should pro-
vide a link to that other Web site.

Figure 5-1:
You can
click the
links to visit
the other
sites.

Introducing the anchor tag
The key to hypertext is an oddly named tag called the anchor tag. This tag is
encased in an <a> set of tags and contains all the information needed
to manage links between pages.

09_9780470537558-bk01ch05.indd 8409_9780470537558-bk01ch05.indd 84 10/7/10 8:30 PM10/7/10 8:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 5

M
a

k
in

g

C
o

n
n

e
c

tio
n

s
w

ith
 Lin

k
s

85Making Your Text Hyper

The code for the basicLinks.html page is shown here:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=“EN“ dir=“ltr“ xmlns=“http://www.w3.org/1999/xhtml“>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>basicLinks.html</title>
 </head>

 <body>
 <h1>Some of my favorite sites</h1>
 <h2>Wikipedia</h2>
 <p>
 One of my favorite Web sites is called
 wikipedia.
 This terrific site allows ordinary users to enter
 encyclopedia definitions. Over time, the entries
 can be as reliable as a commercial encyclopedia,
 and a lot more complete.
 </p>

 <h2>Dummies</h2>
 <p>
 You can find out a lot about upcoming and current
 Dummies books at
 www.dummies.com. You might even find this
 book mentioned there.
 </p>

 <h2>PopURLS</h2>
 <p>
 Web 2.0 is all about social networking. If you want
 to know what’s happening on the Internet today,
 check out
 popurls.com. This site aggregates a bunch of
 social networking sites.
 </p>
 </body>
</html>

As you can see, the anchor tag is embedded into paragraphs. The text gener-
ally flows around an anchor, and you can see the anchor code is embedded
inside the paragraphs.

Comparing block-level and inline elements
All the tags described so far in this book have been block-level tags. Block-
level tags typically begin and end with carriage returns. For example, three
<h1> tags occupy three lines. Each <p></p> set has implied space above
and below it. Most XHTML tags are block-level.

Some tags are meant to be embedded inside block-level tags and don’t inter-
rupt the flow of the text. The anchor tag is one such tag. Anchors never
stand on their own in the HTML body. This type of tag is an inline tag.
They’re meant to be embedded inside block-level tags, such as list items,
paragraphs, and headings.

09_9780470537558-bk01ch05.indd 8509_9780470537558-bk01ch05.indd 85 10/7/10 8:30 PM10/7/10 8:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

86 Making Your Text Hyper

Analyzing an anchor
The first link shows all the main parts of an anchor in a pretty straightfor-
ward way:

 wikipedia.

 ✦ The anchor tag itself: The anchor tag is simply the <a> pair. You
don’t type the entire word anchor, just the a.

 ✦ The hypertext reference (href) attribute: Almost all anchors contain
this attribute. It’s very rare to write <a without href. The href attri-
bute indicates a Web address will follow.

 ✦ A Web address in quotes: The address that the browser will follow is
encased in quotes. See the next section in this chapter for more informa-
tion on Web addresses. In this example, http://www.wikipedia.org
is the address.

 ✦ The text that appears as a link: The user will typically expect to click
specially formatted text. Any text that appears between the <a href>
part and the part is visible on the page and formatted as a link. In
this example, the word wikipedia is the linked text.

 ✦ The marker: This marker indicates that the text link is finished.

Introducing URLs
The special link addresses are a very important part of the Web. You prob-
ably already type Web addresses into the address bar of your browser
(http://www.google.com), but you may not be completely aware of
how they work. Web addresses are technically URLs (Uniform Resource
Locators), and they have a very specific format.

Sometimes, you’ll see the term URI (Uniform Resource Identifier) instead of
URL. URI is technically a more correct name for Web addresses, but the term
URL has caught on. The two terms are close enough to be interchangeable.

A URL usually contains the following parts:

 ✦ Protocol: A Web protocol is a standardized agreement on how communi-
cation occurs. The Web primarily uses HTTP (hypertext transfer proto-
col), but occasionally, you encounter others. Most addresses begin with
http:// because this is the standard on the Web. Protocols usually end
with a colon and two slashes (://).

 ✦ Host name: It’s traditional to name your primary Web server www.
There’s no requirement for this, but it’s common enough that users
expect to type www right after the http:// stuff. Regardless, the text
right after http:// (and up to the first period) is the name of the actual
computer you’re linking to.

09_9780470537558-bk01ch05.indd 8609_9780470537558-bk01ch05.indd 86 10/7/10 8:30 PM10/7/10 8:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 5

M
a

k
in

g

C
o

n
n

e
c

tio
n

s
w

ith
 Lin

k
s

87Making Your Text Hyper

 ✦ Domain name: The last two or three characters indicate a particular
type of Web server. These letters can indicate useful information about
the type of organization that houses the page. Three-letter domains usu-
ally indicate the type of organization, and two-letter domains indicate a
country. Sometimes, you’ll even see a combination of the two. See Table
5-1 for a list of common domain names.

 ✦ Subdomain: Everything between the host name (usually www) and the
domain name (often .com) is the subdomain. This is used so that large
organizations can have multiple servers on the same domain. For exam-
ple, my department Web page is http://www.cs.iupui.edu. www is
the name of the primary server, and this is the computer science depart-
ment at IUPUI (Indiana University–Purdue University Indianapolis),
which is an educational organization.

 ✦ Page name: Sometimes, an address specifies a particular document
on the Web. This page name follows the address and usually ends with
.html. Sometimes, the page name includes subdirectories and user-
name information, as well. For example, my Web design course is in the
N241 directory of my (aharris) space at IUPUI, so the page’s full address
is http://www.cs.iupui.edu/~aharris/n241/index.html.

 ✦ Username: Some Web servers are set up with multiple users.
Sometimes, an address will indicate a specific user’s account with a tilde
(~) character. My address has ~aharris in it to indicate the page is
found in my (aharris) account on the machine.

 The page name is sometimes optional. Many servers have a special
name set up as the default page, which appears if no other name is
specified. This name is usually index.html but sometimes home.htm.
On my server, index.html is the default name, so I usually just point to
www.cs.iupui.edu/~aharris/n241, and the index page appears.

Table 5-1 Common Domain Names

Domain Explanation

.org Non-profit institution

.com Commercial enterprise

.edu Educational institution

.gov Governing body

.ca Canada

.uk United Kingdom

.tv Tuvali

09_9780470537558-bk01ch05.indd 8709_9780470537558-bk01ch05.indd 87 10/7/10 8:30 PM10/7/10 8:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

88 Making Lists of Links

Making Lists of Links
Many Web pages turn out to be lists of links. Because lists and links go so
well together, it’s good to look at an example. Figure 5-2 illustrates a list of
links to books written by a certain (cough) devilishly handsome author.

Figure 5-2:
Putting links
in a list is
common.

This example has no new code to figure out, but the page shows some inter-
esting components:

 ✦ The list: An ordinary unordered list.

 ✦ Links: Each list item contains a link. The link has a reference (which you
can’t see immediately) and linkable text (which is marked like an ordi-
nary link).

 ✦ Descriptive text: After each link is some ordinary text that describes the
link. Writing some text to accompany the actual link is very common.

This code shows the way the page is organized:

<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=“content-type“ content=“text/xml; charset=utf-8“ />
 <title>listLinks.html</title>
 </head>

 <body>
 <h1>Some nice programming books</h1>

 HTML / XHTML / CSS AIO for Dummies
 A complete resource to web development

 JavaScript / AJAX for Dummies
 Using JavaScript, AJAX, and jQuery

 Game Programming - the L Line
 Game development in Python

 Flash Game Programming for Dummies
 Game development using Flash

09_9780470537558-bk01ch05.indd 8809_9780470537558-bk01ch05.indd 88 10/7/10 8:30 PM10/7/10 8:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 5

M
a

k
in

g

C
o

n
n

e
c

tio
n

s
w

ith
 Lin

k
s

89Working with Absolute and Relative References

 </body>
</html>

The indentation is interesting here. Each list item contains an anchor and
some descriptive text. To keep the code organized, Web developers tend to
place the anchor inside the list item. The address sometimes goes on a new
line if it’s long, with the anchor text on a new line and the description on suc-
ceeding lines. I normally put the tag at the end of the last line, so the
beginning tags look like the bullets of an unordered list. This makes it
easier to find your place when editing a list later.

Working with Absolute and Relative References
There’s more than one kind of address. So far, you’ve seen only absolute ref-
erences, used for links to outside pages. Another kind of reference — a rela-
tive reference — links multiple pages inside your own Web site.

Understanding absolute references
The type of link used in basicLinks.html is an absolute reference.
Absolute references always begin with the protocol name (usually
http://). An absolute reference is the complete address to a Web page,
just as you’d use in the browser’s address bar. Absolute references are
used to refer to a site somewhere else on the Internet. Even if your Web site
moves (say, from your desktop machine to a Web server somewhere on the
Internet), all the absolute references will work fine because they don’t rely
on the current page’s position for any information.

Introducing relative references
Relative references are used when your Web site includes more than one
page. You might choose to have several pages and a link mechanism for
moving among them. Figure 5-3 shows a page with several links on it.

Figure 5-3:
These little
piggies sure
get around.

09_9780470537558-bk01ch05.indd 8909_9780470537558-bk01ch05.indd 89 10/7/10 8:30 PM10/7/10 8:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

90 Working with Absolute and Relative References

The page isn’t so interesting on its own, but it isn’t meant to stand alone.
When you click one of the links, you go to a brand-new page. Figure 5-4
shows what happens when you click the market link.

Figure 5-4:
The market
page lets
you move
back.

The market page is pretty simple, but it also contains a link back to the ini-
tial page. Most Web sites aren’t single pages at all, but an interconnected
web of pages. The relative reference is very useful when you have a set of
pages with interlacing links.

The code for pigs.html shows how relative references work:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=“content-type“ content=“text/xml; charset=utf-8“ />
 <title>pigs.html</title>
 </head>

 <body>
 <h1>Destinations of Porcine Mammals</h1>

 This little pig went to
 market
 This little pig stayed
 home.
 This little pig had
 roast beef
 This little pig had
 none.
 This little pig went
 ’wee wee wee’
 all the way home.

 </body>
</html>

Most of the code is completely familiar. The only thing surprising is what’s
not there. Take a closer look at one of the links:

 home.

09_9780470537558-bk01ch05.indd 9009_9780470537558-bk01ch05.indd 90 10/7/10 8:30 PM10/7/10 8:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 5

M
a

k
in

g

C
o

n
n

e
c

tio
n

s
w

ith
 Lin

k
s

91Working with Absolute and Relative References

There’s no protocol (the http:// part) and no address at all, just a file-
name. This is a relative reference. Relative references work by assuming
the address of the current page. When the user clicks market.html, the
browser sees no protocol, so it assumes that market.html is in the same
directory on the same server as pigs.html.

Relative references work like directions. For example, if you’re in my lab and
ask where the water fountain is, I’d say, “Go out into the hallway, turn left,
and turn left again at the end of the next hallway.” Those directions get you
to the water fountain if you start in the right place. If you’re somewhere else
and you follow the same directions, you don’t really know where you’ll
end up.

Relative references work well when you have a bunch of interconnected Web
pages. If you create a lot of pages about the same topic and put them in the
same directory, you can use relative references between the pages. If you
decide to move your pages to another server, all the links still work
correctly.

In Book VIII, you discover how to set up a permanent Web server. It’s often
most convenient to create and modify your pages on the local machine and
then ship them to the Web server for the world to see. If you use relative ref-
erences, it’s easy to move a group of pages together and know the links will
still work.

If you’re referring to a page on somebody else’s site, you have to use an
absolute reference. If you’re linking to another page on your site, you typi-
cally use a relative reference.

09_9780470537558-bk01ch05.indd 9109_9780470537558-bk01ch05.indd 91 10/7/10 8:30 PM10/7/10 8:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

92 Book I: Creating the HTML/XHTML Foundation

09_9780470537558-bk01ch05.indd 9209_9780470537558-bk01ch05.indd 92 10/7/10 8:30 PM10/7/10 8:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Adding Images

In This Chapter
✓ Understanding the main uses of images

✓ Choosing an image format

✓ Creating inline images

✓ Using IrfanView and other image software

✓ Changing image sizes

✓ Modifying images with filters

You have the basics of text, but pages without images are . . . well, a
little boring. Pictures do a lot for a Web page, and they’re not that hard

to work with. Still, you should know some things about using pictures in
your pages. In this chapter, you get all the fundamentals of adding images to
your pages.

Adding Images to Your Pages
Every time you explore the Web, you’re bound to run into tons of pictures
on just about every page you visit. Typically, images are used in four ways
on Web pages:

 ✦ External link: The page has text with a link embedded in it. When the
user clicks the link, the image replaces the page in the Web browser.
To make an externally linked image, just make an ordinary link (as I
describe in Chapter 5 of this minibook) but point toward an image file,
rather than an HTML (HyperText Markup Language) file.

 ✦ Embedded images: The image is embedded into the page. The text of
the page usually flows around the image. This is the most common type
of image used on the Web.

 ✦ Background images: An image can be used as a background for the
entire page or for a specific part of the page. Images usually require
some special manipulation to make them suitable for background use.

 ✦ Custom bullets: With CSS, you can assign a small image to be a bullet
for an ordered or unordered list. This allows you to make any kind of
customized list markers you can draw.

10_9780470537558-bk01ch06.indd 9310_9780470537558-bk01ch06.indd 93 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

94 Adding Images to Your Pages

The techniques you read about in this chapter apply to all type of images,
but a couple of specific applications (such as backgrounds and bullets) use
CSS. For details on using images in CSS, see Book II, Chapter 4.

Adding links to images
The easiest way to incorporate images is to link to them. Figure 6-1 shows
the externalImage.html page.

The page’s code isn’t much more than a simple link:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=“content-type“ content=“text/xml; charset=utf-8“ />
 <title>externalImage.html</title>
 </head>

 <body>
 <h1>Linking to an External Image</h1>
 <p>

 Susan B. Constant

 </p>
 </body>
</html>

Figure 6-1:
This page
has a link to
an image.

10_9780470537558-bk01ch06.indd 9410_9780470537558-bk01ch06.indd 94 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 6

A
d

d
in

g
 Im

a
g

e
s

95Adding Images to Your Pages

The href points to an image file, not an HTML page. You can point to any
type of file you want in an anchor tag. If the browser knows the file type (for
example, HTML and standard image formats), the browser displays the file.
If the browser doesn’t know the file format, the user’s computer tries to dis-
play the file using whatever program it normally uses to open that type of file.

See Chapter 5 of this minibook for a discussion of anchor tags if you need a
refresher.

This works fine for most images because the image is displayed directly in
the browser.

 You can use this anchor trick with any kind of file, but the results can
be very unpredictable. If you use the link trick to point to some odd file
format, there’s no guarantee the user has the appropriate software to view
it. Generally, save this trick for very common formats, like GIF and JPG. (If
these formats are unfamiliar to you, they are described later in this chapter.)

Most browsers automatically resize the image to fit the browser size. This
means a large image may appear to be smaller than it really is, but the user
still has to wait for the entire image to download.

Because this is a relative reference, the indicated image must be in the
same directory as the HTML file. When the user clicks the link, the page is
replaced by the image, as shown in Figure 6-2.

Figure 6-2:
The image
appears in
place of the
page.

10_9780470537558-bk01ch06.indd 9510_9780470537558-bk01ch06.indd 95 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

96 Adding Images to Your Pages

External links are easy to create, but they have some problems:

 ✦ They don’t preview the image. The user has only the text description to
figure out what the picture might be.

 ✦ They interrupt the flow. If the page contains a series of images, the user
has to keep leaving the page to view images.

 ✦ The user must back up to return to the main page. The image looks like
a Web page, but it isn’t. No link or other explanatory text in the image
indicates how to get back to the Web page. Most users know to click the
browser’s Back button, but don’t assume all users know what to do.

Adding inline images using the tag
The alternative to providing links to images is to embed your images into the
page. Figure 6-3 displays an example of this technique.

The code shows how this image was included into the page:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=“content-type“ content=“text/xml; charset=utf-8“ />
 <title>embeddedImage.html</title>
 </head>

 <body>
 <h1>The Susan B. Constant</h1>
 <p>
 <img src = “shipStandard.jpg“
 height = “480“
 width = “640“
 alt = “Susan B. Constant“ />
 </p>

 <p>
 The Susan B. Constant was flagship of the
 fleet of three small ships that brought settlers to Jamestown, the first
 successful English Colony in the new world. This is a replica housed
 near Jamestown, Virginia.
 </p>
 </body>
</html>

The image (img) tag is the star of this page. This tag allows you to grab an
image file and incorporate it into the page directly. The image tag is a one-
shot tag. It doesn’t end with . Instead, use the /> characters at the
end of the img definition to indicate that this tag doesn’t have content.

You might have noticed that I italicized Susan B. Constant in the page,
and I used the tag to get this effect. stands for emphasis, and
 means strong emphasis. By default, any text within an
pair is italicized, and text is boldfaced. Of course, you
can change this behavior with CSS.

10_9780470537558-bk01ch06.indd 9610_9780470537558-bk01ch06.indd 96 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 6

A
d

d
in

g
 Im

a
g

e
s

97Adding Images to Your Pages

Figure 6-3:
The ship
image is
embedded
into the
page.

The image tag has a number of important attributes, which I discuss in the
following sections.

src (source)
The src attribute allows you to indicate the URL (Uniform Resource
Locator) of the image. This can be an absolute or relative reference. Linking
to an image in your own directory structure is generally best because you
can’t be sure an external image will still be there when the user gets to the
page. (For more on reference types, turn to Chapter 5 of this minibook.)

height and width
The height and width attributes are used to indicate the size of the image.
The browser uses this information to indicate how much space to reserve on
the page.

 Using height and width attributes to change the size of an image on a Web
page is tempting, but it’s a bad idea. Change the image size with your image
editor (I show you how later in this chapter). If you use the height and
width attributes, the user has to wait for the full image, even if she’ll see a
smaller version. Don’t make the user wait for information she won’t see. If
you use these attributes to make the image larger than its default size, the
resulting image has poor resolution. Find the image’s actual size by looking

10_9780470537558-bk01ch06.indd 9710_9780470537558-bk01ch06.indd 97 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

98 Choosing an Image Manipulation Tool

at it in your image tool and use these values. If you leave out height and
width, the browser determines the size automatically, but you aren’t guar-
anteed to see the text until all the images have downloaded. Adding these
attributes lets the browser format the page without waiting for the images.

alt (alternate text)
The alt attribute gives you an opportunity to specify alternate text describ-
ing the image. Alternate text information is used when the user has images
turned off and by screen-readers. Internet Explorer (IE) automatically cre-
ates a ToolTip (floating text) based on the alternate text.

You can actually add a floating ToolTip to any element using the title attri-
bute. This works in all standards-compliant browsers, with nearly any HTML
element.

 The alt attribute is required on all images if you want to validate
XHTML Strict.

Additionally, the tag is an inline tag, so it needs to be embedded
inside a block-level tag, like a <p> or .

Choosing an Image Manipulation Tool
You can’t just grab any old picture off your digital camera and expect it to
work on a Web page. The picture might work, but it could cause problems
for your viewers. It’s important to understand that digital images (any kind of
images you see on a computer or similar device) are different from the kind
of images you see on paper.

An image is worth 3.4 million words!
Digital cameras and scanners are amazing these days. Even moderately
priced cameras can now approach the resolution of old-school analog cam-
eras. Scanners are also capable of taking traditional images and converting
them into digital formats that computers use. In both cases, though, the
default image can be in a format that causes problems. Digital images are
stored as a series of dots, or pixels. In print, the dots are very close together,
but computer screens have larger dots. Figure 6-4 shows how the ship image
looks straight from the digital camera.

My camera handles pictures at 6 megapixels (MP). That’s a pretty good reso-
lution, and it sounds very good in the electronics store. If I print that picture
on paper, all those dots are very tiny, and I get a nice picture. If I try to show
the same picture on the computer screen, I see only one corner. This actual
picture came out at 2,816 pixels wide by 2,112 pixels tall. You only see a
small corner of the image because the screen shots for this book are taken at
1024 x 768 pixels. Less than a quarter of the image is visible.

10_9780470537558-bk01ch06.indd 9810_9780470537558-bk01ch06.indd 98 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 6

A
d

d
in

g
 Im

a
g

e
s

99Choosing an Image Manipulation Tool

Figure 6-4:
Wow. That
doesn’t look
like much.

When you look at a large image in most browsers, it’s automatically resized
to fit the page. The cursor usually turns into some kind of magnifying glass,
and if you click the image, you can see it in its full size or the smaller size.

 Some image viewers take very large images and automatically resize them so
they fit the screen. (This is the default behavior of Windows’ default image
viewer and most browsers.) The image may appear to be a reasonable size
because of this feature, but it’ll be huge and difficult to download in an actual
Web page. Make sure you know the actual size of an image before you use it.

Although shrinking an image so that it’s completely visible is obvious,
there’s an even more compelling reason to do so. Each pixel on the screen
requires 3 bytes of computer memory. (A byte is the basic unit of memory
in a computer.) For comparison purposes, one character of text requires
roughly 1 byte. The uncompressed image of the ship weighs a whopping 17
megabytes (MB). If you think of a word as five characters long, one picture
straight from the digital camera takes up the same amount of storage space
and transmission time as roughly 3,400,000 words. This image requires
nearly three minutes to download on a 56K modem!

In a Web page, small images are often shown at about 320 x 240 pixels, and
larger images are often 640 x 480 pixels. If I use software to resample the
image to the size I actually need and use an appropriate compression algo-
rithm, I can get the image to look like Figure 6-5.

10_9780470537558-bk01ch06.indd 9910_9780470537558-bk01ch06.indd 99 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

100 Choosing an Image Manipulation Tool

Figure 6-5:
The resized
image is
a lot more
manageable.

The new version of the image is the size and file format I need, it looks just
as good, and it weighs a much more reasonable 88 kilobytes. That’s 2 per-
cent of the original image size.

Although this picture is a lot smaller than the original image, it still takes
up a lot more memory than text. Even this smaller image takes up as much
transmission time and storage space as 1,600 words! It still takes 10 seconds
to download on a 56K modem. Use images wisely.

Images are great, but keep some things in mind when you use them:

 ✦ Make sure the images are worth displaying. Don’t use a picture without
some good reason because each picture makes your page dramatically
slower to access.

 ✦ Use software to resize your image. Later in this chapter, I show
you how to use free software to change the image to exactly the size
you need.

 ✦ Use a compressed format. Images are almost never used in their native
format on the Web because they’re just too large. Several formats have
emerged that are useful for working with various types of images. I
describe these formats in the section “Choosing an Image Format,” later
in this chapter.

10_9780470537558-bk01ch06.indd 10010_9780470537558-bk01ch06.indd 100 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 6

A
d

d
in

g
 Im

a
g

e
s

101Choosing an Image Manipulation Tool

If you’re curious how I determined the download speed of these images, it’s
pretty easy. The Web Developer toolbar (which I mention in Chapter 3 of
this minibook) has a View Speed Report option on the Tools menu that does
the job for you.

Introducing IrfanView
IrfanView, by Irfan Skiljan, is a freeware program that can handle your
basic image manipulation needs and quite a bit more. I used it for all the
screenshots in this book, and I use it as my primary image viewer. A copy is
included on the CD-ROM that accompanies this book, or you can get a copy
at www.irfanview.net. Of course, you can use any software you want,
but if something’s really good and free, it’s a great place to start. In the rest
of this chapter, I show you how to do the main image-processing jobs with
IrfanView, but you can use any image editor you want.

A Web developer needs to have an image manipulation program to help
with all these chores. Like other Web development tools, you can pay quite
a bit for an image manipulation tool, but you don’t have to. Your image tool
should have at least the following capabilities:

 ✦ Resizing: Web pages require smaller images than printing on paper. You
need a tool that allows you to resize your image to a specific size for
Web display.

 ✦ Saving to different formats: There’s a dizzying number of image formats
available, but only three formats work reliably on the Web (which I dis-
cuss in the next section). You need a tool that can take images in a wide
variety of formats and reliably switch it to a Web-friendly format.

 ✦ Cropping: You may want only a small part of the original picture. A
cropping tool allows you to extract a rectangular region from an image.

 ✦ Filters: You may find it necessary to modify your image in some way.
You may want to reduce red-eye, lighten or darken your image, or adjust
the colors. Sometimes, images can be improved with sharpen or blur fil-
ters, or more artistic filters, such as canvas or oil-painting tools.

 ✦ Batch processing: You may have a number of images you want to work
with at one time. A batch processing utility can perform an operation on
a large number of images at once, as you see later in this chapter.

You may want some other capabilities, too, such as the ability to make
composite images, images with transparency, and more powerful effects.
You can use commercial tools or the excellent open-source program Gimp,
which is included on this book’s CD-ROM. This chapter focuses on IrfanView
because it’s simpler, but investigate Gimp (or its cousin GimpShop, for
people used to Photoshop) for a more complete and even more powerful
tool. I use IrfanView for basic processing, and I use Gimp when I need a
little more power. See Book VIII, Chapter 4 for a more complete discussion
of Gimp.

10_9780470537558-bk01ch06.indd 10110_9780470537558-bk01ch06.indd 101 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

102 Choosing an Image Format

Here are a few free alternatives if you want some other great software to try:

 ✦ XnView: Similar to IrfanView, allows you to preview and modify pictures
in hundreds of formats, create thumbnails, and more. It’s available for
Mac and Linux. (IrfanView is Windows-only.)

 ✦ Pixia: A full-blown graphic editor from Japan. Very powerful.

 ✦ GimpShop: A version of Gimp modified to have menus like Photoshop.

 ✦ Paint.net: A powerful Windows-only paint program.

Use Google or another search engine to locate any of these programs.

Choosing an Image Format
Almost nobody uses raw images on the Web because they’re just too big and
unwieldy. Usually, Web images are compressed to take up less space. All
the types of image files you see in the computer world (BMP, JPG, GIF, and
so on) are essentially different ways to make an image file smaller. Not all
the formats work on the Web, and they have different characteristics, so it’s
good to know a little more about them.

BMP
The BMP format is Microsoft’s standard image format. Although it’s com-
pressed sometimes, usually it isn’t. The BMP format creates very detailed
images with little to no compression, and the file is often too large to use on
the Web. Many Web browsers can handle BMP images, but you shouldn’t
use them. Convert to one of the other formats, instead.

JPG/JPEG
The JPG format (also called JPEG) is a relatively old format designed by the
Joint Photographic Experts Group. (Get it? JPEG!) It works by throwing away
data that’s less important to human perception. Every time you save an
image in the JPG format, you lose a little information. This sounds terrible,
but it really isn’t. The same image that came up as 13MB in its raw format
is squeezed down to 1.5MB when stored as a JPG. Most people can’t tell
the difference between the compressed and non-compressed version of the
image by looking at them.

 The JPG algorithm focuses on the parts of the image that are important to
perception (brightness and contrast, for example) and throws away data
that isn’t as important. (Actually, much of the color data is thrown away, but
the colors are re-created in an elaborate optical illusion.)

JPG works best on photographic-style images with a lot of color and detail.
Many digital cameras save images directly as JPGs.

10_9780470537558-bk01ch06.indd 10210_9780470537558-bk01ch06.indd 102 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 6

A
d

d
in

g
 Im

a
g

e
s

103Choosing an Image Format

One part of the JPG process allows you to determine the amount of compres-
sion. When you save an image as a JPG, you can often determine the quality
on a scale between accuracy and compression.

The JPG compression scheme causes some particular problems with text.
JPG is not good at preserving sharp areas of high contrast (such as letters
on a background). JPG is not the best format for banner images or other
images with text on them. Use GIF or PNG instead.

Even if you choose 100 percent accuracy, the file is still greatly compressed.
The adjustable compression operates only on a small part of the process.
Compressing the file too much can cause visible square shadows, or arti-
facts. Experiment with your images to see how much compression they can
take and still look like the original.

 Keep a high-quality original around when you’re making JPG versions of an
image because each copy loses some detail. If you make a JPG from a JPG
that came from another JPG, the loss of detail starts to add up, and the pic-
ture loses some visual quality.

GIF
The GIF format was developed originally for CompuServe, way before the
Web was invented. This format was a breakthrough in its time and still has
some great characteristics.

GIF is a lossless algorithm so, potentially, no data is lost when converting an
image to GIF (compare that to the lossy JPG format). GIF does its magic with
a color palette trick and a run-length encoding trick.

The color palette works like a paint-by-number set where an image has a
series of numbers printed on it, and each of the paint colors has a corre-
sponding number. What happens in a GIF image is similar. GIF images have
a list of 256 colors, automatically chosen from the image. Each of the colors
is given a number. A raw (uncompressed) image requires 3 bytes of informa-
tion for each pixel (1 each to determine the amount of red, green, and blue).
In a GIF image, all that information is stored one time in the color palette.
The image itself contains a bunch of references to the color palette.

For example, if blue is stored as color 1 in the palette, a strip of blue might
look like this:

1, 1, 1, 1, 1, 1, 1, 1, 1, 1

GIF uses its other trick — run-length encoding — when it sees a list of identi-
cal colors. Rather than store the above value as 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, the
GIF format can specify a list of 10 ones. That’s the general idea of run-length
encoding. The ship image in this example weighs 2.92MB as a full-size
GIF image.

10_9780470537558-bk01ch06.indd 10310_9780470537558-bk01ch06.indd 103 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

104 Choosing an Image Format

The GIF format works best for images with a relatively small number of
colors and large areas of the same color. Most drawings you make in a draw-
ing program convert very well to the GIF format. Photos aren’t ideal because
they usually have more than 256 colors in them, and the subtle changes in
color mean there are very few solid blotches of color to take advantage of
run-length encoding.

GIF does have a couple of great advantages that keep it popular. First, a GIF
image can have a transparent color defined. Typically, you’ll choose some
awful color not found in nature (kind of like choosing bridesmaid dresses) to
be the transparent color. Then, when the GIF encounters a pixel that color,
it displays whatever is underneath instead. This is a crude but effective form
of transparency. Figure 6-6 shows an image with transparency.

Whenever you see an image on a Web page that doesn’t appear to be rectan-
gular, there’s a good chance the image is a GIF. The image is still a rectangle,
but it has transparency to make it look more organic. Typically, whatever
color you set as the background color when you save a GIF becomes the
transparent color.

Creating a complex transparent background, like the statue, requires a more
complex tool than IrfanView. I used Gimp, but any high-end graphics tool can do
the job. IrfanView is more suited to operations that work on the entire image.

Figure 6-6:
This statue
is a GIF with
transparency.

10_9780470537558-bk01ch06.indd 10410_9780470537558-bk01ch06.indd 104 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 6

A
d

d
in

g
 Im

a
g

e
s

105Choosing an Image Format

Another interesting feature of GIF is the ability to create animations.
Animated GIFs are a series of images stored in the same file. You can embed
information, determining the interval between images. You can create ani-
mated GIFs with Gimp, which is included on this book’s CD-ROM.

Animated GIFs were overused in the early days of the Web, and many now
consider them the mark of an amateur. Nobody really thinks that animated
mailbox is cute anymore.

 For a while, there were some legal encumbrances regarding a part of the GIF
scheme. The owners of this algorithm tried to impose a license fee. This was
passed on to people using commercial software but became a big problem
for free software creators.

Fortunately, it appears that the legal complications have been resolved for
now. Still, you’ll see a lot of open-software advocates avoiding the GIF algo-
rithm altogether because of this problem.

PNG
Open-source software advocates created a new image format that combines
some of the best features of both JPG and GIF, with no legal problems. The
resulting format is Portable Network Graphics, or PNG. This format has a
number of interesting features, such as

 ✦ Lossless compression: Like GIF, PNG stores data without losing any
information.

 ✦ Dynamic color palette: PNG supports as many colors as you want. You
aren’t limited to 256 colors as you are with GIF.

Coming soon — vector formats
Here’s another form of image format that I
hope will gain more prominence. All the for-
mats described so far are raster-based image
formats. This type of image stores an image
as a series of dots. Vector-based image for-
mats use formulas to store the instructions
to draw an image. Certain kinds of images
(especially charts and basic line art) can be far
more efficient when stored as vector formats.
Unfortunately, IE and Firefox support different
and incompatible vector formats, so it doesn’t
look like vector-based images will be a factor

soon. Flash also uses vector-based tech-
niques, but this technique requires expensive
proprietary software to create vector images
and a third-party plugin to use them.

The most promising new technology is the
<canvas> tag in HTML 5. This tag allows pro-
grammers to draw directly on a portion of the
screen using JavaScript code. If it becomes a
standard, the <canvas> tag will unleash many
new possibilities for Web-based graphics.

10_9780470537558-bk01ch06.indd 10510_9780470537558-bk01ch06.indd 105 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

106 Manipulating Your Images

 ✦ No software patents: The underlying technology of PNG is completely
open source, with no worries about whether somebody will try to
enforce a copyright down the road.

 ✦ True alpha transparency: The PNG format has a more sophisticated
form of transparency than GIF. Each pixel can be stored with an alpha
value. Alpha refers to the amount of transparency. The alpha can be
adjusted from completely transparent to completely opaque.

With all its advantages, you might expect PNG to be the most popular image
format on the Web. Surprisingly, it’s been slow to catch on. The main reason
for this is spotty support for PNG in Internet Explorer (IE). Most versions of
IE don’t support PNG’s alpha transparency correctly.

Summary of Web image formats
All these formats may seem overwhelming, but choosing an image format is
easy because each format has its own advantages and disadvantages:

 ✦ GIF is best when you need transparency or animation. Avoid using GIF
on photos, as you won’t get optimal compression, and you’ll lose color
data.

 ✦ JPG is most useful for photographic images, which are best suited for
the JPG compression technique. However, keep in mind that JPG isn’t
suitable for images that require transparency. Text in JPG images tends
to become difficult to read because of the lossy compression technique.

 ✦ PNG is useful in most situations, but be aware that IE (especially ver-
sion 6) doesn’t handle PNG transparency correctly. (You sometimes see
strange color blotches where you expect transparency.)

 ✦ BMP and other formats should be avoided entirely. Although you can
make other formats work in certain circumstances, there’s no good
reason to use any other image formats most of the time.

Manipulating Your Images
All this talk of compression algorithms and resizing images may be dandy,
but how do you do it?

Fortunately, IrfanView can do nearly anything you need for free. IrfanView
has nice features for all the main types of image manipulation you need.

Changing formats in IrfanView
Changing image formats with IrfanView is really easy. For example, find an
image file on your computer and follow these steps:

10_9780470537558-bk01ch06.indd 10610_9780470537558-bk01ch06.indd 106 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 6

A
d

d
in

g
 Im

a
g

e
s

107Manipulating Your Images

 1. Load the image into IrfanView by dragging the image into IrfanView
or using the File➪Open menu command.

 2. Make any changes you may want to the image before saving.

 3. Use the File➪Save As command to save the file.

 4. Pick the image format from the Save Picture As dialog box, as shown
in Figure 6-7.

 5. Save the file with a new filename.

 Keep the original file and save any changes in a new file. That way, you
don’t overwrite the original file. This is especially important if you’re
converting to JPG because each successive save of a JPG causes some
image loss.

Figure 6-7:
IrfanView
can save
in all these
formats.

Don’t use spaces in your filenames. Your files may move to other comput-
ers on the Internet, and some computers have trouble with spaces. It’s best
to avoid spaces and punctuation (except the underscore character) on any
files that will be used on the Internet. Also, be very careful about capitaliza-
tion. It’s likely that your image will end up on a Linux server someday, and
the capitalization makes a big difference there.

10_9780470537558-bk01ch06.indd 10710_9780470537558-bk01ch06.indd 107 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

108 Manipulating Your Images

Resizing your images
All the other image-manipulation tricks may be optional, but you should
really resize your images. Although high-speed modems may have no trouble
with a huge image, nothing makes a Web page inaccessible to dialup users
faster than bloated image sizes.

To resize an image with IrfanView, perform the following steps:

 1. Load the image into IrfanView.

 You can do this by dragging the image onto the IrfanView icon, dragging
into an open instance of IrfanView, or using the menus within IrfanView.

 2. From the Image menu, choose Resize/Resample.

 You can also use Ctrl+R for this step. Figure 6-8 shows the resulting
dialog box.

Figure 6-8:
IrfanView’s
Resize/
Resample
Image
dialog box.

 3. Determine the new image size.

 A number of standard image sizes are available. 800 x 600 pixels will
create a large image in most browsers. If you want the image smaller,
you need to enter a size in the text boxes. Images embedded in Web
pages are often 320 pixels wide by 240 pixels tall. That’s a very good
starting point. Anything smaller will be hard to see, and anything larger
might take up too much screen space.

 4. Preserve the aspect ratio using the provided check box.

 This makes sure the ratio between height and width is maintained.
Otherwise, the image may be distorted.

 5. Save the resulting image as a new file.

10_9780470537558-bk01ch06.indd 10810_9780470537558-bk01ch06.indd 108 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 6

A
d

d
in

g
 Im

a
g

e
s

109Manipulating Your Images

 When you make an image smaller, you lose data. That’s perfectly fine for
the version you put on the Web, but you should hang on to the original
large image in case you want to resize again.

 6. Resample, rather than resize.

 Resampling is a slower but more accurate technique for changing the
image size. This is IrfanView’s default behavior, so leave it alone. It’s still
quite fast on a modern computer. The default (Lanczos) filter is fine,
although you can experiment with other filters to get a faster conver-
sion, if you want.

Enhancing image colors
Sometimes, you can make improvements to an image by modifying the
colors. The Enhance Colors dialog box on the Images menu gives you a wide
range of options, as shown in Figure 6-9.

Figure 6-9:
You can
change
several
options in
the Enhance
Colors
dialog box.

You can do a surprising number of helpful operations on an image with
this tool:

 ✦ Brightness: When adjusted to a higher value, the image becomes closer
to white. When adjusted to a negative value, the image becomes closer
to black. This is useful when you want to make an image lighter or
darker for use as a background image.

 If your image is too dark or too bright, you may be tempted to use the
Brightness feature to fix it. The Gamma Correction feature described
later in this section is more useful for this task.

 ✦ Contrast: You usually use the Contrast feature in conjunction with the
Brightness feature to adjust an image. Sometimes, an image can be
improved with small amounts of contrast adjustments.

10_9780470537558-bk01ch06.indd 10910_9780470537558-bk01ch06.indd 109 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

110 Manipulating Your Images

 ✦ Color Balance: Sometimes, an image has poor color balance (for exam-
ple, indoor lighting sometimes creates a bluish cast). You can adjust the
amount of red, green, and blue with a series of sliders. The easiest way
to manage color balance is to look at a part of the image that’s supposed
to be white and play with the slider until it looks truly white.

 ✦ Gamma Correction: This is used to correct an image that is too dark or
too light. Unlike the Brightness adjustment, Gamma Correction automat-
ically adjusts the contrast. Small adjustments to this slider can some-
times fix images that are a little too dark or too light.

 ✦ Saturation: When saturation is at its smallest value, the image becomes
black and white. At its largest value, the colors are enhanced. Use this
control to create a grayscale image or to enhance colors for artistic effect.

Using built-in effects
IrfanView has a few other effects available that can sometimes be extremely
useful. These effects can be found individually on the Image menu or with
the Image Effects browser on the Image menu. The Image Effects browser
(as shown in Figure 6-10) is often a better choice because it gives you a little
more control of most effects and provides interactive feedback on what the
effect will do. Sometimes, effects are called filters because they pass the
original image through a math function, which acts like a filter or processor
to create the modified output.

Figure 6-10:
The Image
Effects
browser lets
you choose
special
effects.

Here’s a rundown of some of the effects, including when you would use them:

 ✦ None: Just for comparison purposes, Figure 6-11 shows the ship image
without any filters turned on.

10_9780470537558-bk01ch06.indd 11010_9780470537558-bk01ch06.indd 110 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 6

A
d

d
in

g
 Im

a
g

e
s

111Manipulating Your Images

Figure 6-11:
Here’s the
standard
ship image,
at full-
screen
resolution.

 I’ve exaggerated the effects for illustration purposes, but it may still be
difficult to see the full effect of these filters on the printed page. The
grayscale images in this book are a poor representation of the actual
color images. Use the images in this chapter as a starting point, but to
understand these filters, you really need to experiment with your own
images in IrfanView or a similar tool. I’ve also added all these images
to my Web site so you can see them there (www.aharrisbooks.net/
xfd2ed).

 ✦ Blur: This filter reduces contrast between adjacent pixels. (Really, we
could go over the math, but let’s leave that for another day, huh?) You
might wonder why you’d make an image blurry on purpose. Sometimes,
the Blur filter can fix graininess in an image. You can also use Blur in
conjunction with Sharpen (which I cover in just a moment) to fix small
flaws in an image. I applied the Blur filter to the standard ship image in
Figure 6-12.

 ✦ Sharpen: The opposite of Blur, the Sharpen filter enhances the contrast
between adjacent pixels. When used carefully, it can sometimes improve
an image. The Sharpen filter is most effective in conjunction with the
Blur filter to remove small artifacts. Figure 6-13 shows the ship image
with the Sharpen filter applied.

10_9780470537558-bk01ch06.indd 11110_9780470537558-bk01ch06.indd 111 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

112 Manipulating Your Images

Figure 6-12:
The Blur
filter
reduces
contrast.

Figure 6-13:
The
Sharpen
filter
increases
contrast.

10_9780470537558-bk01ch06.indd 11210_9780470537558-bk01ch06.indd 112 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 6

A
d

d
in

g
 Im

a
g

e
s

113Manipulating Your Images

 If you believe crime shows on TV, you can take a blurry image and keep
applying a sharpen filter to read a license plate on a blurry image from a
security camera. However, it just doesn’t usually work that way. You
can’t make detail emerge from junk, but sometimes, you can make small
improvements.

 ✦ Emboss: This filter creates a grayscale image that looks like embossed
metal, as shown in Figure 6-14. Sometimes, embossing can convert an
image into a useful background image because embossed images have
low contrast. You can use the Enhance Colors dialog box to change the
gray embossed image to a more appealing color.

 ✦ Oil Paint: This filter applies a texture reminiscent of an oil painting to an
image, as shown in Figure 6-15. It can sometimes clean up a picture and
give it a more artistic appearance. The higher settings make the painting
more abstract.

 ✦ 3D Button: This feature can be used to create an image, similar to Figure
6-16, that appears to be a button on the page. This will be useful later
when you figure out how to use CSS or JavaScript to swap images for vir-
tual buttons. You can set the apparent height of the image in the filter.
Normally, you apply this filter to smaller images that you intend to make
into buttons the user can click.

Figure 6-14:
Embossing
creates
a low-
contrast 3D
effect.

10_9780470537558-bk01ch06.indd 11310_9780470537558-bk01ch06.indd 113 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

114 Manipulating Your Images

Figure 6-15:
Oil Paint
makes
an image
slightly more
abstract.

Figure 6-16:
The image
appears
to stick up
from the
page like a
button.

10_9780470537558-bk01ch06.indd 11410_9780470537558-bk01ch06.indd 114 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 6

A
d

d
in

g
 Im

a
g

e
s

115Manipulating Your Images

 ✦ Red Eye Reduction: You use this filter to fix a common problem with
flash photography. Sometimes, a person’s eyes appear to have a reddish
tinge to them. Unlike the other filters, this one is easier to access from
the Image menu. Use the mouse to select the red portion of the image
and then apply the filter to turn the red areas black. It’s best not to per-
form this filter on the entire image because you may inadvertently turn
other red things black.

Other effects you can use
Many more effects and filters are available. IrfanView has a few more built
in that you can experiment with. You can also download a huge number of
effects in the Adobe Photoshop 8BF format. These effects filters can often be
used in IrfanView and other image-manipulation programs.

Some effects allow you to explode the image, add sparkles, map images onto
3D shapes, create old-time sepia effects, and much more.

If you want to do even more image manipulation, consider a full-blown image
editor. Adobe Photoshop is the industry standard, but Gimp is an open-source
alternative (included on this book’s CD-ROM) that does almost as much. See
Book VIII, Chapter 4 for more about using Gimp for image processing.

Batch processing
Often, you’ll have a lot of images to modify at one time. IrfanView has a
wonderful batch-processing tool that allows you to work on several images at
once. I frequently use this tool to take all the images I want to use on a page
and convert them to a particular size and format. The process seems a little
complicated, but after you get used to it, you can modify a large number of
images quickly and easily.

If you want to convert a large number of images at the same time, follow
these steps:

 1. Identify the original images and place them in one directory.

 I find it easiest to gather all the images into one directory, whether they
come from a digital camera, scanner, or other device.

 2. Open the Batch Conversion dialog box by choosing File➪Batch
Conversion — Rename.

 This Batch Conversion dialog box appears, as shown in Figure 6-17.

 3. Find your original images by navigating the directory window in the
Batch Conversion dialog box.

10_9780470537558-bk01ch06.indd 11510_9780470537558-bk01ch06.indd 115 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

116 Manipulating Your Images

Figure 6-17:
IrfanView
has a
powerful
batch
conversion
tool.

Files to convert File selector

Conversion options

 4. Copy your images to the Input Files workspace by clicking the
Add button.

 Select the images you want to modify and press the Add button. The
selected image names are copied to the Input Files workspace.

 5. Specify the output directory.

 If you want to put the new images in the same directory as the input
files, click the Use This Directory as Output button. If not, choose the
directory where you want the new images to go.

 6. In the Work As box, choose Batch Conversion — Rename Result Files.

 You can use this setting to rename your files, to do other conversions,
or both. Generally, I recommend both.

 7. Set the output format to the format you want.

 For photos, you probably want JPG format.

 8. Change renaming settings in the Batch Rename Settings area if you
want to specify some other naming convention for your images.

 By default, each image is called image### where ### is a three-digit
number. They are numbered according to the listing in the Input Files
workspace. You can use the Move Up and Move Down buttons to change
the order images appear in this listing.

 9. Click the Set Advanced Options button to change the image size.

 This displays the Settings for All Images dialog box, as shown in Figure 6-18.

10_9780470537558-bk01ch06.indd 11610_9780470537558-bk01ch06.indd 116 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 6

A
d

d
in

g
 Im

a
g

e
s

117Using Images as Links

Figure 6-18:
Use the
Settings for
All Images
dialog box
to resize
images in
batch mode.

 10. Specify the new size of the image in the Resize area.

 Several common sizes are preset. If you want another size, use the given
options. I set my size to 320 x 240.

 11. Close the Settings for All Images dialog box and then, in the Batch
Conversion dialog box, press the Start button.

 In a few seconds, the new images are created.

Using Images as Links
Sometimes, you’ll want to use images as links. For example, look at thumbs.
html, as shown in Figure 6-19.

This page uses thumbnail images. A thumbnail is a small version of the full-
size image. The thumbnail is embedded, and the user clicks it to see the full-
size version in the browser.

Thumbnails are good because they allow the user to preview a small version
of each image without having to wait for the full-size versions to be rendered
on-screen. If the user wants to see a complete image, he can click the thumb-
nail to view it on its own page.

10_9780470537558-bk01ch06.indd 11710_9780470537558-bk01ch06.indd 117 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

118 Using Images as Links

Figure 6-19:
Small
images can
be links
to larger
images.

Creating thumbnail images
Thumbnails are simply scaled-down versions of ordinary images. Because
this process is fairly common, IrfanView comes with a wonderful tool to
automate thumbnail creation. To make a batch of thumbnails in IrfanView

 1. Organize your images.

 Any page that has a large number of images can get confusing. I prefer
to organize everything that will be used by a particular page into its own
directory. I created a thumbs directory that contains thumbs.html, all
the full-size images, and all the thumbnails. I usually don’t find it helpful
to have separate directories for images. It’s more helpful to organize by
project or page than by media type.

 2. Rename images, if necessary.

 Images that come from a digital camera or scanner often have cryptic
names. Your life is a lot easier if your image names are easier to under-
stand. I named my images ship_1.jpg, ship_2.jpg, and ship_3.jpg.

 3. Make any changes you want to the originals before you make the
thumbnails.

 Use the tips described in this chapter to clean up or improve your
images before you make thumbnails, or the thumbnails won’t represent
the actual images accurately.

10_9780470537558-bk01ch06.indd 11810_9780470537558-bk01ch06.indd 118 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 6

A
d

d
in

g
 Im

a
g

e
s

119Using Images as Links

 4. Open the IrfanView Thumbnails tool by choosing File➪Thumbnails or
by pressing the T key.

 The Thumbnails tool appears, as shown in Figure 6-20.

 5. Select the thumbnails you want to create.

 Use the mouse to select any images you want to make thumbnails from.

 6. Choose Save Selected Thumbs as Individual Images from the File menu.

 You have other options, but this gives the behavior you probably want.
The other options create automatic contact sheets, open the batch
editor, or create slide shows. These are great things, but for now, you
want thumbnails.

 7. Specify the output directory.

 You can put the thumbnails in the same directory as the originals. The
thumbnails have the same name as the originals, but the filenames end
with _t.

 8. Review the new thumbnail images.

 You should see a new set of smaller images (default size is 80 x 80
pixels) in the directory.

Figure 6-20:
IrfanView’s
Thumbnails
tool helps
you create
thumbnail
images.

10_9780470537558-bk01ch06.indd 11910_9780470537558-bk01ch06.indd 119 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

120 Using Images as Links

Creating a thumbnail-based image directory
Now, you have everything you need to build a page similar to thumbs.html.
Here’s an overview of the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=“content-type“ content=“text/xml; charset=utf-8“ />
 <title>thumbs.html</title>
 </head>

 <body>
 <h1>Images of the Susan B. Constant</h1>

 <h2>The Stern</h2>

 <img src = “ship_1_t.jpg“
 height = “80“
 width = “80“
 alt = “ship 1“ />

 <h2>The Mast</h2>

 <img src = “ship_2_t.jpg“
 height = “80“
 width = “80“
 alt = “ship 2“ />

 <h2>The Rigging</h2>

 <img src = “ship_3_t.jpg“
 height = “80“
 width = “80“
 alt = “ship 3“ />

 </body>
</html>

This code looks complicated, but it’s really just a combination of techniques
described in this chapter. Look over the code and use the indentation to
determine the structure.

The page is an unordered list. Each list item contains an H2 headline and an
anchor. The anchor contains an image, rather than text. When you include
an image inside an anchor tag, it’s outlined in blue.

The key is to use the thumbnails as inline images inside the page, and the full-
size image as the href of the anchor. The user sees the small image, but this
small image is also a link to the full-size version of the image. This way, the user
can see the small image easily but can view the full-size image if she wishes.

10_9780470537558-bk01ch06.indd 12010_9780470537558-bk01ch06.indd 120 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Creating Forms

In This Chapter
✓ Adding form to your pages

✓ Creating input and password text boxes

✓ Building multi-line text inputs

✓ Making list boxes and check boxes

✓ Building groups of radio buttons

✓ Creating buttons

XHTML gives you the ability to describe Web pages, but today’s Web
isn’t a one-way affair. Users want to communicate through Web pages,

by typing in information, making selections from drop-down lists, and inter-
acting, rather than simply reading. In this chapter, you learn how to build
these interactive elements in your pages.

You Have Great Form
There’s one more aspect to XHTML that you need to understand — the abil-
ity to make forms. Forms are the parts of the page that allow user interac-
tion. Figure 7-1 shows a page with all the primary form elements in place.

The form demo (or formDemo.html on this book’s CD-ROM, if you’re play-
ing along at home) exemplifies the main form elements in XHTML. In this
chapter, you discover how to build all these elements.

You can create forms with ordinary XHTML, but to make them do some-
thing, you need a programming language. Book IV explains how to use
JavaScript to interact with your forms, and Book V describes the PHP lan-
guage. Use this chapter to figure out how to build the forms and then jump
to another minibook to figure out how to make them do stuff. If you aren’t
ready for full-blown programming yet, feel free to skip this chapter for now
and move on to CSS in Books II and III. Come back here when you’re ready
to make forms to use with JavaScript or PHP.

11_9780470537558-bk01ch07.indd 12111_9780470537558-bk01ch07.indd 121 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

122 You Have Great Form

Figure 7-1:
Form
elements
allow user
interaction.

The formDemo.html page shows the following elements:

 ✦ A form: A container for form elements. Although the form element itself
isn’t usually a visible part of the page (like the body tag), it could be
with appropriate CSS.

 ✦ Text boxes: These standard form elements allow the user to type text
into a one-line element.

 ✦ Password boxes: These boxes are like text boxes, except they automati-
cally obscure the text to discourage snooping.

 ✦ Text areas: These multi-line text boxes accommodate more text than the
other types of text boxes. You can specify the size of the text area the
user can type into.

 ✦ Select lists: These list boxes give the user a number of options. The user
can select one element from the list. You can specify the number of rows
to show or make the list drop down when activated.

 ✦ Check boxes: These non-text boxes can be checked or not. Check boxes
act independently — more than one can be selected at a time (unlike
radio buttons).

 ✦ Radio buttons: Usually found in a group of options, only one radio
button in a group can be selected at a time. Selecting one radio button
deselects the others in its group.

11_9780470537558-bk01ch07.indd 12211_9780470537558-bk01ch07.indd 122 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 7

C
re

a
tin

g
 Fo

rm
s

123You Have Great Form

 ✦ Buttons: These elements let the user begin some kind of process. The
Input button is used in JavaScript coding (which I describe in Book IV),
whereas the Standard and Submit buttons are used for server-side pro-
gramming (see Book V). The Reset button is special because it automati-
cally resets all the form elements to their default configurations.

 ✦ Labels: Many form elements have a small text label associated with
them. Although labels are not required, they can make a form easier to
style with CSS and easier for the user.

 ✦ Fieldsets and legends: These set off parts of the form. They’re optional,
but they can add a lot of visual appeal to a form.

Now that you have an overview of form elements, it’s time to start building
some forms!

Forms must have some form
All the form elements must be embedded inside a <form></form> pair. The
code for basicForm.html illustrates the simplest possible form:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=“content-type“ content=“text/xml; charset=utf-8“ />
 <title>basicForm.html</title>
 </head>

 <body>
 <h1>A basic form</h1>
 <form action = ““>
 <h2>Form elements go here</h2>
 <h3>Other HTML is fine, too.</h3>
 </form>

 </body>
</html>

The <form></form> pair indicates a piece of the page that may contain
form elements. All the other form doohickeys and doodads (buttons,
select objects, and so on) must be inside a <form> pair.

The action attribute indicates what should happen when the form is sub-
mitted. This requires a programming language, so a full description of the
action attribute is in Book IV. Still, you must indicate an action to validate,
so for now just leave the action attribute null with a pair of quotes (“”).

Organizing a form with fieldsets and labels
Forms can contain many components, but the most important are the
input elements (text boxes, buttons, drop-down lists, and the like) and the
text labels that describe the elements. Traditionally, Web developers used

11_9780470537558-bk01ch07.indd 12311_9780470537558-bk01ch07.indd 123 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

124 You Have Great Form

tables to set up forms, but this isn’t really the best way to go because forms
aren’t tabular information. XHTML includes some great features to help you
describe the various parts of a form. Figure 7-2 shows a page with fieldsets,
layouts, and basic input.

A fieldset is a special element used to supply a visual grouping to a set of
form elements.

The form still doesn’t look very good, I admit, but that’s not the point. Like
all XHTML tags, the form elements aren’t about describing how the form
looks; they’re about what all the main elements mean. (Here I go again. . . .)
You use CSS to make the form look the way you want. The XHTML tags
describe the parts of the form, so you have something to hook your CSS to.
It all makes sense very soon, I promise.

Here’s the code for the fieldset demo (fieldsetDemo.html on this book’s
CD-ROM):

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=“content-type“ content=“text/xml; charset=utf-8“ />
 <title>fieldsetDemo.html</title>
 </head>

 <body>
 <h1>Sample Form with a Fieldset</h1>
 <form action = ““>
 <fieldset>
 <legend>Personal Data</legend>
 <p>
 <label>Name</label>
 <input type = “text“ />
 </p>

 <p>
 <label>Address</label>
 <input type = “text“ />
 </p>

 <p>
 <label>Phone</label>
 <input type = “text“ />
 </p>

 </fieldset>
 </form>
 </body>
</html>

11_9780470537558-bk01ch07.indd 12411_9780470537558-bk01ch07.indd 124 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 7

C
re

a
tin

g
 Fo

rm
s

125You Have Great Form

Figure 7-2:
This form
has a
legend and
labels.

Legend

Labels Field setInput boxes

The form has these elements:

 ✦ The <form> and </form> tags: These define the form as a part of the
page. Don’t forget the null action attribute.

 ✦ The <fieldset> pair: This pair describes the included elements as a
set of fields. This element isn’t necessary, but it does give you some nice
organization and layout options later when you use CSS. You can think of
the fieldset as a blank canvas for adding visual design to your forms. By
default, the fieldset places a border around all the contained elements.

 ✦ The <legend> tag: A part of the fieldset, this tag allows you to specify a
legend for the entire fieldset. The legend is visible to the user.

 ✦ The paragraphs: I sometimes place each label and its corresponding
input element in a paragraph. This provides some nice formatting capa-
bilities and keeps each pair together.

 ✦ The <label> tag: This tag allows you to specify a particular chunk of
text as a label. No formatting is done by default, but you can add format-
ting later with CSS.

11_9780470537558-bk01ch07.indd 12511_9780470537558-bk01ch07.indd 125 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

126 Building Text-Style Inputs

 ✦ The <input> elements: The user types data into these elements. For
now, I’m just using very basic text inputs so the form has some kind of
input. In the next section, I explain how to build more complete
text inputs.

Building Text-Style Inputs
Most of the form elements are variations of the same tag. The <input> tag
can create single-line text boxes, password boxes, buttons, and even invis-
ible content (such as hidden fields). Most of these objects share the same
basic attributes, although the outward appearance can be different.

Making a standard text field
Figure 7-3 shows the most common form of the input element — a plain
text field.

Figure 7-3:
The input
element is
often used
to make a
text field.

To make a basic text input, you need a form and an input element. Adding a
label so that the user knows what he’s supposed to enter into the text box is
also common. Here’s the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=“content-type“ content=“text/xml; charset=utf-8“ />
 <title>textbox.html</title>
 </head>

 <body>
 <form action = ““>
 <p>
 <label>Name</label>
 <input type = “text“
 id = “txtName“
 value = “Joe“/>
 </p>
 </form>

 </body>
</html>

11_9780470537558-bk01ch07.indd 12611_9780470537558-bk01ch07.indd 126 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 7

C
re

a
tin

g
 Fo

rm
s

127Building Text-Style Inputs

An input element has three common attributes:

 ✦ type: The type attribute indicates the type of input element this is.
This first example sets type to text, creating a standard text box.
Other types throughout this chapter create passwords, hidden fields,
check boxes, and buttons.

 ✦ id: The id attribute creates an identifier for the field. When you use a
programming language to extract data from this element, use id to spec-
ify which field you’re referring to. An id field often begins with a hint
phrase to indicate the type of object it is (for instance, txt indicates a
text box).

 ✦ value: This attribute determines the default value of the text box. If you
leave this attribute out, the text field begins empty.

Text fields can also have other attributes, which aren’t used as often, such as

 ✦ size: This attribute determines the number of characters that are dis-
played.

 ✦ maxlength: Use this attribute to set the largest number of characters
that are allowed.

There is no </input> tag. Input tags are a holdover from the days when
many tags did not have ending tags. You just end the original tag with a
slash character (/), as shown in the preceding sample code.

You might wonder why I added the <label> tag if it doesn’t have any effect
on the appearance or behavior of the form. In this particular example, the
<label> tag doesn’t have an effect, but like everything else in HTML, you
can do amazing style things with it in CSS. Even though labels don’t typically
have a default style, they are still useful.

Building a password field
Passwords are just like text boxes, except the text isn’t displayed. Instead, a
series of asterisks appears. Figure 7-4 shows a basic password field.

Figure 7-4:
Enter the
secret
password.

11_9780470537558-bk01ch07.indd 12711_9780470537558-bk01ch07.indd 127 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

128 Building Text-Style Inputs

The following code reveals that passwords are almost identical to ordinary
text fields:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=“content-type“ content=“text/xml; charset=utf-8“ />
 <title>password.html</title>
 </head>

 <body>
 <form action = ““>
 <fieldset>
 <legend>Enter a password</legend>
 <p>
 <label>Type password here</label>
 <input type = “password“
 id = “pwd“
 value = “secret“ />
 </p>
 </fieldset>
 </form>
 </body>
</html>

In this example, I’ve created a password field with the ID pwd. The default
value of this field is secret. The term secret won’t actually appear in the
field; it will be replaced with six asterisk characters.

 The password field offers virtually no meaningful security. It protects the
user from the KGB glancing over his shoulder to read a password, but that’s
about it. The open standards of XHTML and the programming languages
mean passwords are often passed in the open. There are solutions — such
as the SSL (Secure Socket Layer) technology — but for now, just be aware
that the password field just isn’t suitable for protecting the recipe of your
secret sauce.

This example doesn’t really do anything with the password, but you’ll use
other technologies for that.

Making multi-line text input
The single-line text field is a powerful feature, but sometimes, you want
something with a bit more space. The essay.html program, as shown in
Figure 7-5, demonstrates how you might create a page for an essay question.

11_9780470537558-bk01ch07.indd 12811_9780470537558-bk01ch07.indd 128 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 7

C
re

a
tin

g
 Fo

rm
s

129Building Text-Style Inputs

Figure 7-5:
This quiz
might
require a
multi-line
response.

The star of this program is a new tag — <textarea>:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=“content-type“ content=“text/xml; charset=utf-8“ />
 <title>essay.html</title>
 </head>

 <body>
 <form action = ““>
 <fieldset>
 <legend>Quiz</legend>

 <p>
 <label>Name</label>
 <input type = “text“
 id = “txtName“ />
 </p>

 <p>
 <label>
 Please enter the sum total of
 Western thought. Be brief.
 </label>
 </p>

 <p>
 <textarea id = “txtAnswer“

11_9780470537558-bk01ch07.indd 12911_9780470537558-bk01ch07.indd 129 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

130 Creating Multiple Selection Elements

 rows = “10“
 cols = “40“></textarea>
 </p>
 </fieldset>
 </form>
 </body>
</html>

Here are a few things to keep in mind when using the <textarea> tag:

 ✦ It needs an id attribute, just like an input element.

 ✦ You can specify the size with rows and cols attributes.

 ✦ The content goes between the tags. The text area can contain a lot
more information than the ordinary <input> tags, so rather than plac-
ing the data in the value attribute, the content of the text goes between
the <textarea> and </textarea> tags.

Anything placed between <textarea> and </textarea> in the code ends
up in the output, too. This includes spaces and carriage returns. If you don’t
want any blank spaces in the text area, place the ending tag right next to the
beginning tag, as I did in the essay example.

Creating Multiple Selection Elements
Sometimes, you want to present the user with a list of choices and then have
the user pick one of these elements. XHTML has a number of interesting
ways to do this.

Making selections
The drop-down list is a favorite selection tool of Web developers for the fol-
lowing reasons:

 ✦ It saves screen space. Only the current selection is showing. When the
user clicks the list, a series of choices drop down and then disappear
again after the selection is made.

 ✦ It limits input. The only things the user can choose are things you’ve
put in the list. This makes it much easier to handle the potential inputs
because you don’t have to worry about typing errors.

 ✦ The value can be different from what the user sees. This seems like an
odd advantage, but it does turn out to be very useful sometimes. I show
an example when I describe color values later in this chapter.

Figure 7-6 shows a simple drop-down list in action.

11_9780470537558-bk01ch07.indd 13011_9780470537558-bk01ch07.indd 130 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 7

C
re

a
tin

g
 Fo

rm
s

131Creating Multiple Selection Elements

Figure 7-6:
The user
can choose
from a list of
colors.

The code for this simple drop-down list follows:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=“content-type“ content=“text/xml; charset=utf-8“ />
 <title>basicSelect.html</title>
 </head>

 <body>
 <form action = ““>
 <p>
 <label>What is your favorite color?</label>
 <select id = “selColor“>
 <option value = “#ff0000“>Red</option>
 <option value = “#00ff00“>Green</option>
 <option value = “#0000ff“>Blue</option>
 <option value = “#00ffff“>Cyan</option>
 <option value = “#ff00ff“>Magenta</option>
 <option value = “#ffff00“>Yellow</option>
 <option value = “#000000“>Black</option>
 <option value = “#ffffff“>White</option>
 </select>
 </p>
 </form>
 </body>
</html>

11_9780470537558-bk01ch07.indd 13111_9780470537558-bk01ch07.indd 131 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

132 Creating Multiple Selection Elements

The select object is a bit different from some of the other input elements
you’re used to, such as

 ✦ It’s surrounded by a <select></select> pair. These tags indicate the
entire list.

 ✦ The select object has an id attribute. Although the select object
has many other tags inside, typically only the select object itself has
an id attribute.

 ✦ It contains a series of <option></option> pairs. Each individual
selection is housed in an <option></option> set.

 ✦ Each <option> tag has a value associated with it. The value is used by
code. The value isn’t necessarily what the user sees. (See the sidebar
“What are those funky #ff00ff things?” for an example.)

 ✦ The content between <option></option> is visible to the user. The
content is what the user actually sees.

Select boxes don’t require the drop-down behavior. If you want, you can
specify the number of rows to display with the size attribute. In this case,
the number of rows you specify will always be visible on the screen.

Building check boxes
Check boxes are used when you want the user to turn a particular choice on
or off. For example, look at Figure 7-7.

Each check box represents a true or false value that can be selected or not
selected, and the status of each check box is completely independent
from the others. The user can check none of the options, all of them, or
any combination.

If you look carefully at the code for basic-
Select.html, you see that the values are
all strange text with pound signs and weird
characters. These are hex codes, and they’re
a good way to describe colors for computers.
I explain all about how these work in Book
II, Chapter 1. This coding mechanism is not
nearly as hard to understand as it seems. For

now though, this code with both color names
and hex values is a good example of wanting
to show the user one thing (the name of a color
in English) and send some other value (the hex
code) to a program. You see this code again in
Book IV, Chapter 5, where I use a list box just
like this to change the background color of the
form with JavaScript.

What are those funky #ff00ff things?

11_9780470537558-bk01ch07.indd 13211_9780470537558-bk01ch07.indd 132 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 7

C
re

a
tin

g
 Fo

rm
s

133Creating Multiple Selection Elements

Figure 7-7:
Any number
of check
boxes can
be selected
at once.

This code shows that check boxes use your old friend the <input> tag:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=“content-type“ content=“text/xml; charset=utf-8“ />
 <title>checkBoxes.html</title>
 </head>

 <body>
 <form action = ““>
 <fieldset>
 <legend>Please check off your life goals...</legend>
 <p>
 <input type = “checkbox“
 id = “chkPeace“
 value = “peace“ />World peace
 </p>

 <p>
 <input type = “checkbox“
 id = “chkHarmony“
 value = “harmony“ />Harmony and brotherhood
 </p>

 <p>
 <input type = “checkbox“
 id = “chkCash“
 value = “cash“ />Cash
 </p>

 </fieldset>
 </form>
 </body>
</html>

11_9780470537558-bk01ch07.indd 13311_9780470537558-bk01ch07.indd 133 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

134 Creating Multiple Selection Elements

You’re using the same attributes of the <input> tag, but they work a bit dif-
ferently than the way they do in a plain old text box:

 ✦ The type is checkbox. That’s how the browser knows to make a check
box, rather than a text field.

 ✦ The checkbox still requires an ID. If you’ll be writing programming
code to work with this thing (and you will, eventually), you’ll need an ID
for reference.

 ✦ The value is hidden from the user. The user doesn’t see the actual
value. That’s for the programmer (like the select object). Any text fol-
lowing the check box only appears to be the text associated with it.

Creating radio buttons
Radio buttons are used when you want to let the user pick only one option
from a group. Figure 7-8 shows an example of a radio button group in action.

Figure 7-8:
You can
choose
only one of
these radio
buttons.

Sometimes, the value of a form element is
visible to users, and sometimes it’s hidden.
Sometimes, the text the user sees is inside the
tag, and sometimes it isn’t. It’s a little confusing.
The standards evolved over time, and they hon-
estly could have been a little more consistent.

Still, this is the set of elements you have, and
they’re not really that hard to understand. Write
forms a few times, and you’ll remember. You
can always start by looking over my code and
borrowing it as a starting place.

This all seems inconsistent

11_9780470537558-bk01ch07.indd 13411_9780470537558-bk01ch07.indd 134 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 7

C
re

a
tin

g
 Fo

rm
s

135Creating Multiple Selection Elements

Radio buttons might seem similar to check boxes, but they have some
important differences:

 ✦ Only one can be checked at a time. The term radio button came from
the old-style car radios. When you pushed the button for one station, all
the other buttons popped out. I still have one of those radios. (I guess I
have a Web-design car.)

 ✦ They have to be in a group. Radio buttons make sense only in a group
context. The point of a radio button is to interact with its group.

 ✦ They all have the same name! Each radio button has its own ID (like
other input elements), but they also have a name attribute. The name
attribute indicates the group a radio button is in.

 ✦ You can have more than one group on a page. Just use a different name
attribute for each group.

 ✦ One of them has to be selected. The group should always have one
value and only one. Some browsers check the first element in a group
by default, but just in case, you should select the element you want
selected. Add the checked = “checked” attribute (developed by
the Department of Redundancy Department) to the element you want
selected when the page appears. In this example, I preselected the most
expensive option, all in the name of good capitalistic suggestive selling.

Here’s some code that explains it all:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=“content-type“ content=“text/xml; charset=utf-8“ />
 <title>radioButtons.html</title>
 </head>

 <body>
 <form action = ““>
 <fieldset>
 <legend>How much do you want to spend?</legend>
 <p>
 <input type = “radio“
 name = “radPrice“
 id = “rad100“
 value = “100“ />Too much
 </p>

 <p>
 <input type = “radio“
 name = “radPrice“
 id = “rad200“
 value = “200“ />Way too much
 </p>

 <p>
 <input type = “radio“

11_9780470537558-bk01ch07.indd 13511_9780470537558-bk01ch07.indd 135 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

136 Pressing Your Buttons

 name = “radPrice“
 id = “rad5000“
 value = “5000“
 checked = “checked“ />You’ve got to be kidding.
 </p>
 </fieldset>
 </form>
 </body>
</html>

Pressing Your Buttons
XHTML also comes with several types of buttons. You use these guys to
make something actually happen. Generally, the user sets up some kind of
input by typing in text boxes and then selecting from lists, options, or check
boxes. Then, the user clicks a button to trigger a response. Figure 7-9 dem-
onstrates four types of buttons.

The code for this button example is shown here:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=“content-type“ content=“text/xml; charset=utf-8“ />
 <title>buttons.html</title>
 </head>

 <body>
 <h1>Button Demo</h1>
 <form action = ““>
 <fieldset>
 <legend>
 input-style buttons
 </legend>

 <input type = “button“
 value = “input type = button“ />

 <input type = “submit“ />
 <input type = “reset“ />
 </fieldset>

 <fieldset>
 <legend>button tag buttons</legend>

 <button type = “button“>
 button tag
 </button>
 <button>
 <img src = “clickMe.gif“
 alt = “click me“ />
 </button>
 </fieldset>
 </form>
 </body>
</html>

11_9780470537558-bk01ch07.indd 13611_9780470537558-bk01ch07.indd 136 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 7

C
re

a
tin

g
 Fo

rm
s

137Pressing Your Buttons

Figure 7-9:
XHTML
supports
several
types of
buttons.

Each button type is described in this section.

Making input-style buttons
The most common form of button is just another form of your old friend, the
<input> tag. If you set the input’s type attribute to “button”, you gener-
ate a basic button:

 <input type = “button”
 value = “input type = button” />

The ordinary Input button has a few key features:

 ✦ The input type is set to “button”. This makes an ordinary button.

 ✦ The value attribute sets the button’s caption. Change the value
attribute to make a new caption. This button’s caption shows how the
button was made: input type = “button”.

 ✦ This type of button doesn’t imply a link. Although the button appears
to depress when it’s clicked, it doesn’t do anything. You have to write
some JavaScript code to make it work.

11_9780470537558-bk01ch07.indd 13711_9780470537558-bk01ch07.indd 137 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

138 Pressing Your Buttons

 ✦ Later, you’ll add event-handling to the button. After you discover
JavaScript in Book IV, you use a special attribute to connect the button
to code.

 ✦ This type of button is for client-side programming. This type of code
resides on the user’s computer. I discuss client-side programming with
JavaScript in Book IV.

Building a Submit button
Submit buttons are usually used in server-side programming. In this form of
programming, the code is on the Web server. In Book V, you use PHP to create
server-side code. The <input> tag is used to make a Submit button, too!

 <input type = “submit” />

Although they look the same, the Submit button is different than the ordi-
nary button in a couple subtle ways:

 ✦ The value attribute is optional. If you leave it out, the button displays
Submit Query. Of course, you can change the value to anything you
want, and this becomes the caption of the Submit button.

 ✦ Clicking it causes a link. This type of button is meant for server-side
programming. When you click the button, all the information in the form
is gathered and sent to some other page on the Web.

 ✦ Right now, it goes nowhere. When you set the form’s action attribute
to null (“”), you told the Submit button to just reload the current page.
When you figure out real server-side programming, you change the
form’s action attribute to a program that works with the data.

 ✦ Submit buttons aren’t for client-side. Although you can attach an event
to the Submit button (just like the regular Input button), the linking
behavior often causes problems. Use regular Input buttons for client-
side and Submit buttons for server-side.

It’s a do-over: The Reset button
Yet another form of the versatile <input> tag creates the Reset button:

 <input type = “reset” />

This button has a very specific purpose. When clicked, it resets all the ele-
ments of its form to their default values. Like the Submit button, it has a
default value (“reset”), and it doesn’t require any code.

11_9780470537558-bk01ch07.indd 13811_9780470537558-bk01ch07.indd 138 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 7

C
re

a
tin

g
 Fo

rm
s

139Pressing Your Buttons

Introducing the <button> tag
The button has been a useful part of the Web for a long time, but it’s a bit
boring. HTML 4.0 introduced the <button> tag, which works like this:

 <button type = “button”>
 button tag
 </button>

The <button> tag acts more like a standard XHTML tag, but it can also act
like a Submit button. Here are the highlights:

 ✦ The type attribute determines the style. You can set the button to
ordinary (by setting its type to button), submit, or reset. If you
don’t specify the type, buttons use the Submit style. The button’s type
indicates its behavior, just like the Input-style buttons.

 ✦ The caption goes between the <button></button> pair. There’s
no value attribute. Instead, just put the intended caption inside the
<button> pair.

 ✦ You can incorporate other elements. Unlike the Input button, you can
place images or styled text inside a button. This gives you some other
capabilities. The second button in the buttons.html example uses a
small GIF image to create a more colorful button.

11_9780470537558-bk01ch07.indd 13911_9780470537558-bk01ch07.indd 139 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

140 Book I: Creating the HTML/XHTML Foundation

11_9780470537558-bk01ch07.indd 14011_9780470537558-bk01ch07.indd 140 10/7/10 8:31 PM10/7/10 8:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8: The Future of HTML:
HTML 5

In This Chapter
✓ Previewing HTML 5

✓ Using new semantic markup tags

✓ Embedding fonts

✓ Using the new canvas tag for custom graphics

✓ Audio and video support

✓ Advanced features

The Web world is always changing. A new version of HTML — HTML 5 —
is on the horizon, and it has some very interesting features. In this chap-

ter, I preview the new features in HTML 5 and show you a few examples.
When HTML becomes the standard, you’ll be ahead of the game.

Can’t We Just Stick with XHTML?
XHTML is great. When you add CSS to it, you can do a lot with XHTML.
However, it isn’t perfect. The Web is evolving, and we’re now commonly
doing things with Web pages that were once unheard of:

 ✦ Sophisticated structure: Web-based documents frequently have naviga-
tion elements, footer elements, page sections, and individual articles.
Developers often use many variations of the <div> tag to manage these
elements. HTML 5 has them built in.

 ✦ Multimedia: It’s now common for Web pages to incorporate audio and
video, yet these elements aren’t built into HTML like image support.
Instead, developers have to rely on external software, such as Flash.

 ✦ Vector/real-time graphics: The graphics capabilities of current brows-
ers are fine, but they don’t allow real-time modification. Programmers
often use third-party software, such as Flash or Silverlight, to bring in
this capability.

 ✦ Enhanced programming: Developers are no longer satisfied with Web
pages as documents. Today’s Web pages are the foundation of entire
applications. Developers (and their customers) want advanced capabili-
ties, such as dragging and dropping, local data storage, and geolocation
(a fancy term for a browser that can tell where the device using the
page is in the world).

12_9780470537558-bk01ch08.indd 14112_9780470537558-bk01ch08.indd 141 10/7/10 8:32 PM10/7/10 8:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

142 Semantic Elements

Using the HTML 5 doctype
The XHTML doctype is remarkably ugly. I’ll be honest. I can’t code it from
memory, and I write books about this stuff. My favorite part about HTML 5
might be the sensible doctype:

<!DOCTYPE html>

That’s it. No messy XMLNS business, no crazy URLs, no http-equiv non-
sense. Just <!DOCTYPE html>. This replaces both the <doctype> and the
<HTML> tags. It’s beautiful, in a geeky sort of way.

 You might still want to add this line inside your heading:

 <meta http-equiv=”Content-Type” content=”text/html;charset=utf-8” >

It specifies the character set as a standard text encoding. Typically, the
server sends this, so it isn’t really necessary, but including the line elimi-
nates a possible validator warning that no typeface was defined.

Browser support for HTML 5
Before you get too excited about HTML 5, you have to realize it’s still experi-
mental. All the examples in this chapter were tested in Firefox 3.5, which
supports many HTML 5 features. The latest versions of Chrome, Safari, and
Opera all have support for key features of HTML 5, but Microsoft Internet
Explorer (at least up to version 8) does not incorporate most features of
HTML 5.

Validating HTML 5
Because the final specification for HTML 5 is still under review, validating
HTML 5 code is not an exact science. The W3C validator has provisional sup-
port for HTML 5, but HTML 5 validation isn’t built into Tidy or other valida-
tion tools, yet.

Still, it makes sense to validate your HTML 5 code as much as you can
because validation will prevent problems down the road.

Semantic Elements
One of the key features of HTML is the support for new semantic features.
HTML is supposed to be about describing the meaning of elements, yet Web
pages frequently have elements without HTML tags. Look at the following
example of HTML 5 code:

12_9780470537558-bk01ch08.indd 14212_9780470537558-bk01ch08.indd 142 10/7/10 8:32 PM10/7/10 8:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 8

T
h

e
 Fu

tu
re

 o
f

H
T

M
L: H

T
M

L 5

143Semantic Elements

<!DOCTYPE html>
 <head>
 <title>semanticTags.html</title>
 </head>
 <body>
 <h1>Semantic Tags Demo</h1>
 <nav>
 <h2>Navigation</h2>

 one
 two
 three
 four
 five

 </nav>

 <section>
 <h2>Section</h2>

 <article>
 <h3>Article 1</h3>
 <p>
 This is an article. It’s just a logical part of a page.
 </p>
 </article>

 <article>
 <h3>Article 1</h3>
 <p>
 This is an article. It’s just a logical part of a page.
 </p>
 </article>
 </section>
 </body>
 </html>

This code validates perfectly as HTML 5, but it has several tags that were
not allowed in XHTML or previous versions of HTML:

 ✦ <nav>: It’s very common for Web pages to have navigation sections.
These often are menus or some other list of links. You can have several
navigation elements on the page. The <nav></nav> tags indicate that
the block contains some sort of navigation elements.

 ✦ <section>: This is a generic tag for a section of the page. You can have
several sections if you wish. Sections are indicated by the <section>
</section> pair.

 ✦ <article>: The <article> tag is used to denote an article, say a blog
posting. In my example, I put two articles inside the section.

None of these tags has any particular formatting. The tags just indicate
the general layout of the page. You’ll use CSS to make these sections look
exactly how you want. (I didn’t show a screen shot for this reason; you won’t
see anything special.)

12_9780470537558-bk01ch08.indd 14312_9780470537558-bk01ch08.indd 143 10/7/10 8:32 PM10/7/10 8:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

144 Using New Form Elements

The semantic tags aren’t absolutely necessary. They were added because
many Web developers already do something similar with the generic <div>
tag. Use of these semantic tags will clarify your code and reduce some of the
excessive use of divs that tends to clutter even modern XHTML designs.

Using New Form Elements
Even the earliest forms of HTML had support for user forms — tools for
retrieving information from a user. The basic form elements have changed
very little since the original versions of HTML. HTML 5 finally adds a few
form elements to make certain kinds of data input much easier to manage.
Although browsers have been slow to accept these features, they promise a
much-improved user experience while the Web becomes a primary form
of application development. Figure 8-1 shows a number of the new
HTML 5 elements.

As with any HTML tag, the tag itself indicates a certain kind of data, not any
particular appearance or behavior. Likely, these specialized input elements
will make data entry easier for users.

Figure 8-1:
HTML 5
supports
several new
variants of
the input
elements.

12_9780470537558-bk01ch08.indd 14412_9780470537558-bk01ch08.indd 144 10/7/10 8:32 PM10/7/10 8:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 8

T
h

e
 Fu

tu
re

 o
f

H
T

M
L: H

T
M

L 5

145Using New Form Elements

 The screen captures of the code that follows are shown in Opera 10.10. As of
this writing, Opera is the only major browser that supports these form ele-
ments. As you look over the code, you’ll see that the extensions to the input
element make a lot of sense.

<!DOCTYPE html>
<head>
 <title>formDemo.html</title>
 <link rel = “stylesheet”
 type = “text/css”
 href = “formDemo.css” />

</head>

<body>
 <h1>HTML 5 Form Demo</h1>
 <form action = “”>
 <label for = “email”>email</label>
 <input type = “email”
 id = “email”/>

 <label for = “url”>url</label>
 <input type = ”url”
 id = ”url” />

 <label for = ”number”>number</label>
 <input type = ”number”
 id = ”number”
 min = ”0”
 max = ”10”
 step = ”2”
 value = ”5” />

 <label for = ”range”>range</label>
 <input type = ”range”
 id = ”range”
 min = ”0”
 max = ”10”
 step = ”2”
 value = ”5” />

 <label for = ”date”>date</label>
 <input type = ”date”>

 <label for = ”time”>time</label>
 <input type = ”time”>

 </form>

</body>
</html>

Nothing surprising in these elements, but the new capabilities are interesting:

 ✦ E-mail: An email input element is optimized for accepting e-mail
addresses. Some browsers may incorporate format-checking for this
type. Mobile browsers may pop up specialized keyboards (making the @
sign more prominent, for example) when a user is entering data into an
e-mail field.

12_9780470537558-bk01ch08.indd 14512_9780470537558-bk01ch08.indd 145 10/7/10 8:32 PM10/7/10 8:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

146 Using New Form Elements

 ✦ Url: Like an email input element, a url input element creates a field
for entering links. Usually, the url input element doesn’t have any par-
ticular formatting, but it may have a specialized pop-up keyboard in
mobile devices.

 ✦ Number: A number input element specifies a numeric field. If you des-
ignate a field a number input element, you can indicate maximum (max)
and minimum (min) values as well as a step value that indicates how
much the data will change. Some browsers will check to see that the
data is within the given range, and some will add a visual component
that allows a user to select a number with small arrow buttons.

 ✦ Range: A range input element is similar to a number input element,
but browsers that support it often use a small scrollbar to simplify
user input.

 ✦ Date: Dates are especially difficult to get accurately from a user. By
using a date input element, a date field can show an interactive calen-
dar when a user begins to enter a date. Figure 8-2 illustrates this field
in action.

 ✦ Time: By using the time input element, a time field can show a small
dialog simplifying the process of retrieving time information from a user.

Figure 8-2:
When a
user enters
a date,
a small
calendar
appears.

12_9780470537558-bk01ch08.indd 14612_9780470537558-bk01ch08.indd 146 10/7/10 8:32 PM10/7/10 8:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 8

T
h

e
 Fu

tu
re

 o
f

H
T

M
L: H

T
M

L 5

147Using Embedded Fonts

 These effects aren’t guaranteed. Different browsers will respond differently.
Right now, Opera is the only browser that supports these features. However,
since the effects are all variants of the input element, you can use these tags
without penalty in earlier versions of HTML and XHTML. Any browser that
does not understand these fancier form elements will simply replace them
with ordinary text input fields.

Using Embedded Fonts
Technically, it’s not part of HTML 5, but the new browsers have another great
feature: embeddable fonts. Until now, there was no reliable way to use an
arbitrary font in a Web page. You could suggest any font you wished, but that
font would only work if the user already had it installed on her computer.

The current crop of browsers finally supports an embedded font technique
that allows you to post a font file on your server and use that font in your
page (much like the background image mechanism). This means you can
finally have much better control of your typography on the Web. Figure 8-3
illustrates a page with an embedded font.

Figure 8-3:
The
fonts are
embedded
directly into
the page.

12_9780470537558-bk01ch08.indd 14712_9780470537558-bk01ch08.indd 147 10/7/10 8:32 PM10/7/10 8:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

148 Using Embedded Fonts

The code for including a font is not difficult. Take a look at the code for
embeddedFont.html to see how it’s done:

<!DOCTYPE html>
 <head>
 <title>EmbeddedFont</title>
 <style type = “text/css”>
 @font-face {
 font-family: “Miama”;
 src: url(“Miama.otf”);
 }

 @font-face {
 font-family: “spray”;
 src: url(“ideoma_SPRAY.otf”);
 }

 h1 {
 font-family: Miama;
 font-size: 300%;
 }

 h2 {
 font-family: spray;
 }
 </style>
 </head>

 <body>
 <h1>Embedded Font Demo</h1>
 <h2>Here’s another custom font</h2>
 </body>

</html>

Here’s how you do it.

 1. Identify your font: Find a font file you want to use. Most commercial
fonts are licensed for single-computer use, so stick with open font for-
mats, such as the ones you’ll find at http://openfontlibrary.org.

 2. Pick a font format: Unfortunately, this part of the standard is still non-
standard. Most browsers that support embedded fonts use TTF (the
most common font format) or OTF (a somewhat more open variant of
TTF). A new standard, WOFF, is on the horizon and may be more accept-
able to font developers, but it isn’t widely used yet. Internet Explorer
uses only the proprietary EOT format. Look up the WEFT utility for con-
verting fonts for use in Internet Explorer.

 3. Place the font file near your code: Your Web page will need a copy of
the font file somewhere on the server; put it in the same directory as
your page. Remember, when you move the page to the server, you also
need to make a copy of the font file on the server.

 4. Build a font-face: Near the top of your CSS, designate a new font face
using your custom font. This is slightly different CSS syntax than you
may have used before. The @ sign indicates you are preparing a new
CSS element.

12_9780470537558-bk01ch08.indd 14812_9780470537558-bk01ch08.indd 148 10/7/10 8:32 PM10/7/10 8:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 8

T
h

e
 Fu

tu
re

 o
f

H
T

M
L: H

T
M

L 5

149Audio and Video Tags

 5. Specify the font-family: This is the name used to designate the font in
the rest of your CSS. Typically, this is similar to the font name, but easier
to type.

 6. Indicate where the font file can be found: The src attribute indicates
where the file can be found. Typically, this is the filename of the font
file in the same directory as the page. You can include several src attri-
butes if you want to have more than one version of the file. (You might
include EOT and OTF formats, for example, so the font is likely to work
on any browser.)

 7. Use your new font in your CSS: You now can use the font-family name
in your CSS the same way you do with any other font. If the user doesn’t
have that font installed, the font is used for this Web page but not
installed on the client’s machine. Some fonts (like Miama in my example)
may require some size adjustments to look right.

Just because you can use any font file doesn’t mean you should. Many fonts
are commercial products and cannot be distributed without permission.
However, many excellent free and open-source fonts are available. See
the open font library at http://openfontlibrary.org to find several
great fonts.

Audio and Video Tags
Multimedia has been a promise of Web technology since the beginning but
isn’t integrated fully into HTML. Developers have had to rely on third-party
technologies, such as plugins and the embed tag, to incorporate audio and
video into Web pages. HTML 5 finally supports audio (with an <audio> tag)
and video (with a <video> tag). For the first time, audio and video com-
ponents can play natively in Web browsers without requiring any external
technology.

This is a major breakthrough, or it will be if the browser developers cooper-
ate. As an example, look at this code:

<!DOCTYPE html>
<head>
 <title>audioDemo.html</title>
</head>

<body>
 <h1>HTML 5 Audio Demo</h1>
 <audio src = “Do You Know Him.ogg” controls>
 This example uses the HTML 5 audio tag.
 Try using Firefox 3.5 or greater.
 </audio>

 <p>
 This song was written by a friend of mine, Daniel Rassum. He sings about
 hard life and redemption.

12_9780470537558-bk01ch08.indd 14912_9780470537558-bk01ch08.indd 149 10/7/10 8:32 PM10/7/10 8:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

150 Audio and Video Tags

 If you like this song, I encourage you to check out his album at
 www.noisetrade.com.
 It’s a “free trade” music site where you pay
 what you think is fair for an artist’s work.
 </p>
</body>
</html>

The only new feature is the <audio> tag. This tag pair allows you to place
an audio file directly into the Web page. You can set the audio to play
automatically, or you can indicate player controls. Player controls are the
preferred approach because it’s considered polite to let the user choose
whether audio plays when the page is loaded. If the browser does not sup-
port the <audio> tag, any text between the <audio> and </audio> tags is
displayed.

Figure 8-4 illustrates audioDemo.html playing a song.

The HTML 5 specification (at the moment) does not specify any particular
file format for the audio tag. The key browsers support the open-source Ogg
Vorbis format and uncompressed .wav files. Browser manufacturers are
having difficulty agreeing on what the standard should be. Some organiza-
tions with a stake in proprietary formats aren’t excited about supporting an
unencumbered format that currently is known only to geeks.

Figure 8-4:
The HTML
5 audio
tag puts a
simple audio
player on
the page.

12_9780470537558-bk01ch08.indd 15012_9780470537558-bk01ch08.indd 150 10/7/10 8:32 PM10/7/10 8:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 8

T
h

e
 Fu

tu
re

 o
f

H
T

M
L: H

T
M

L 5

151Audio and Video Tags

If you remember old-school HTML, you might wonder if the <audio> tag is
an improvement over the old <embed> tag. The <embed> tag was power-
ful but very difficult to use. If you use the <embed> tag to embed an audio
file into a Web page, the client machine looks for the default player for
the particular file format and attempts to embed that player into the page
(which might or might not work). The developer has no control of exactly
what plugin will be used, which makes it very difficult to manage or control
the element’s behavior. The <audio> tag is built into the browser, and the
browser manages the audio rather than some external program. This gives
the developer much more control over what happens.

The <video> tag works much the same way as the audio tag but gives the
Web browser native support for video. The following code shows a sample
video playing in Firefox 3.5:

<!DOCTYPE html>
<head>
 <title>videoDemo</title>
</head>

<body>
 <h1>Video Demo</h1>
 <video src = “bigBuck.ogv” controls>
 Your browser does not support embedded video
 through HTML 5. Try Firefox 3.5 or greater.
 </video>

 <p>
 This video is a trailer for the incredible short move
 “Big Buck Bunny.” This experiment proves that talented
 volunteers can produce a high-quality professional video
 using only open-source tools.
 Go to
 http://www.bigbuckbunny.org to see the entire video.
 </p>
</body>
</html>

As with audio, the W3 standard does not specify any particular video format,
so the various browser manufacturers are free to interpret this require-
ment differently. Most of the current browsers support the open-source Ogg
Theora format. (Yep, it’s related to Ogg Vorbis.)

Video is more complex because the file format doesn’t necessarily imply
a particular coding mechanism. I encoded this video with the Ogg Vorbis
wrapper using the AVI codec for the video portion and MP3 for the audio
portion. This approach seems to be working in the two HTML 5 browsers
I access.

Figure 8-5 is an example of a page showing a fun video created with free tools.

12_9780470537558-bk01ch08.indd 15112_9780470537558-bk01ch08.indd 151 10/7/10 8:32 PM10/7/10 8:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

152 The Canvas Tag

Figure 8-5:
The video
tag allows
you to
embed
videos
into HTML
5 pages
easily.

The actual movie I show in the example is a trailer to the excellent short
movie Big Buck Bunny. This incredible cartoon shows what can be done with
completely open-source tools and rivals works from commercial studios.
Thanks to the Blender foundation for releasing this hilarious and impressive
film under a creative commons license.

The Canvas Tag
HTML 5 offers at least one more significant new feature. The <canvas> tag
allows developers to draw directly on a portion of the form using program-
ming commands. Although this technique requires some JavaScript skills, it
opens substantial new capabilities. Figure 8-6 shows a simple page illustrat-
ing the <canvas> tag.

12_9780470537558-bk01ch08.indd 15212_9780470537558-bk01ch08.indd 152 10/7/10 8:32 PM10/7/10 8:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 8

T
h

e
 Fu

tu
re

 o
f

H
T

M
L: H

T
M

L 5

153The Canvas Tag

Figure 8-6:
The canvas
tag allows
programmers
to create
dynamic
graphics.

The code for canvasDemo.html relies on JavaScript, so check Book IV for
details on how to write this code and much more. As an overview, though,
here’s the code:

<!DOCTYPE html>
<head>
 <title>canvasDemo.html</title>
 <script type = “text/javascript”>
 //<![CDATA[

 function draw(){
 var myCanvas = document.getElementById(“myCanvas”);
 var context = myCanvas.getContext(“2d”);
 context.fillStyle = “blue”;
 context.strokeStyle = “red”;
 circle(context, 1, 1, 1);

 for (i = 1; i <= 200; i+= 2){
 circle(context, i, i, i, “blue”);
 circle(context, 300-i, 200-i, i, “red”);
 circle(context, 300-i, i, i, “blue”);
 circle(context, i, 200-i, i, “red”);
 } // end for

 } // end draw

 function circle(context, x, y, radius, color){
 context.strokeStyle = color;

12_9780470537558-bk01ch08.indd 15312_9780470537558-bk01ch08.indd 153 10/7/10 8:32 PM10/7/10 8:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

154 The Canvas Tag

 context.beginPath();
 context.arc(x, y, radius, 0, Math.PI * 2, true);
 context.stroke();
 } // end circle
 //]]>
 </script>
</head>

<body>
 <h1>Canvas Demo</h1>

 <canvas id = “myCanvas”
 width = “300”
 height = “200”>
 This example requires HTML 5 canvas support
 </canvas>

 <button type = “button”
 onclick = “draw()”>
 click me to see a drawing
 </button>

</body>
</html>

There’s quite a bit going on in this program. The image doesn’t come
from the server as most Web images do; it’s drawn on demand by a small
JavaScript program.

 ✦ Create an HTML page with a <canvas> tag: Of course, you need the
<canvas> tag in your document; the element designates a part of the
page that displays a graphic. The image of a canvas element is not
pulled from an external file but created with JavaScript code.

 ✦ Extract a drawing context from the canvas: It’s only possible to do
2D graphics with a <canvas> tag, but 3D canvases are expected in the
future.

 ✦ Use special drawing commands to modify the context: The canvas
mechanism supports a number of special JavaScript commands that
allow you to draw and manipulate shapes directly on the surface. This
example draws a number of circles in different colors to create an inter-
esting pattern.

Although the <canvas> tag may not be that interesting, it’s one of the most
important features of HTML 5 because it changes the way programmers
think about Web development. Because the client program draws the image,
the image can be modified in real time and interact with the user. Here are
some examples:

 ✦ Dynamic graphs: A Web page describing data can have graphs that
automatically change when the underlying data changes.

 ✦ Custom components: A programmer can create entire new widgets to
replace the ordinary buttons and list boxes. This will likely lead to Web-
based user interfaces as rich as those now on the desktop.

12_9780470537558-bk01ch08.indd 15412_9780470537558-bk01ch08.indd 154 10/7/10 8:32 PM10/7/10 8:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book I

Chapter 8

T
h

e
 Fu

tu
re

 o
f

H
T

M
L: H

T
M

L 5

155Other Promising Features

 ✦ Gaming and animation: Until now, online gaming has required third-
party applications (such as Flash or Java). The <canvas> tag promises
full graphics capability directly in the browser. Enterprising program-
mers have already written some very interesting games using the
<canvas> tag.

 ✦ An entire operating system: It’s possible that high-powered Web brows-
ers with very fast JavaScript engines will be able to recreate much of an
entire operating system using the <canvas> tag as a graphical interface.
A number of interesting devices are already using Web-based tools as
the foundation of the GUI. It’s probably not a coincidence that the new
browser and the new operating system by Google have the exact same
name (Chrome).

The <canvas> tag will likely have a profound effect on Web development,
but it isn’t heavily used yet. One major browser (guess which one) has
decided not to implement the <canvas> tag. (Okay, I’ll tell you. It’s Internet
Explorer.) Canvas is so important to the Web that Google has built a canvas
plugin so canvas-based apps will work in IE.

Other Promising Features
HTML 5 offers some other very interesting capabilities. Most of the
advanced tools won’t be used by beginning Web developers, but they’ll add
very interesting new capabilities to the Web if they are adopted universally.

 ✦ Geolocation: If a device has GPS or Wi-Fi triangulation hardware built in
(as many high-end cellphones, PDAs, and smartphones do), the geoloca-
tion tool will allow the programmer to determine the current position
of the browser. This will have interesting consequences, as a search for
gas stations can be automatically limited to gas stations within a certain
radius of the current position (as one example).

 ✦ Local storage: Developers are working to build complete applications
(replacements for word processors, spreadsheets, and other common
tools) that are based on the Web browser. Of course, this won’t work
when the computer is not online. HTML 5 will have mechanisms for
automatically storing data locally when the machine is not online, and
synchronizing it when possible.

 ✦ Drag-and-drop: Currently, you can implement a form of drag and drop
inside the Web browser (see Book VII, Chapter 4 for an example). The
next step is to allow users to drag a file from the desktop to an applica-
tion running in the browser and have the browser app use that data.
HTML 5 supports this mechanism.

12_9780470537558-bk01ch08.indd 15512_9780470537558-bk01ch08.indd 155 10/7/10 8:32 PM10/7/10 8:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

156 Limitations of HTML 5

Limitations of HTML 5
HTML 5 looks very exciting, and it points to fascinating new capabilities.
However, it isn’t here yet. Most of the browser manufacturers support at
least some form of HTML 5, but none support every feature. One notable
developer has stayed far away from the HTML 5 specification. As of IE8,
Microsoft does not support the <audio> or <video> tags, the <canvas>
tag, or the semantic elements described in this chapter. To be fair, Microsoft
has allowed embedded fonts for quite some time, but only using the pro-
prietary EOT font format. Microsoft has not committed to including any
HTML 5 features in IE9. If Microsoft continues to go its own way and Internet
Explorer remains a dominant browser, HTML 5 technologies may never gain
traction. It’s also possible that Microsoft’s refusal to abide by standards will
finally erode its market share enough that they will decide to go along with
developer requests and support these new standards in an open way.

HTML 5 is not yet an acknowledged standard, and one of the most promi-
nent browsers in use doesn’t support it. For that reason, I still use XHTML
1.0 strict as my core language, and most examples in this book use that stan-
dard. However, I do highlight potential uses of HTML 5 when they occur in
this book.

12_9780470537558-bk01ch08.indd 15612_9780470537558-bk01ch08.indd 156 10/7/10 8:32 PM10/7/10 8:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Styling with CSS

Change your fonts, colors, and backgrounds with CSS.

13_9780470537558-pp02.indd 15713_9780470537558-pp02.indd 157 10/7/10 8:32 PM10/7/10 8:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

Chapter 1: Coloring Your World. .159

Now You Have an Element of Style ... 159
Specifying Colors in CSS ... 163
Choosing Your Colors ... 168
Creating Your Own Color Scheme ... 172

Chapter 2: Styling Text .177

Setting the Font Family ... 177
The Curse of Web-Based Fonts .. 183
Specifying the Font Size .. 188
Determining Other Font Characteristics .. 191

Chapter 3: Selectors, Class, and Style .201

Selecting Particular Segments .. 201
Using Emphasis and Strong Emphasis .. 203
Defining Classes ... 206
Introducing div and span .. 210
Using Pseudo-Classes to Style Links ... 213
Selecting in Context ... 216
Defining Multiple Styles at Once .. 217

Chapter 4: Borders and Backgrounds. .219

Joining the Border Patrol ... 219
Introducing the Box Model ... 224
Changing the Background Image ... 228
Manipulating Background Images ... 234
Using Images in Lists ... 237

Chapter 5: Levels of CSS .239

Managing Levels of Style .. 239
Understanding the Cascading Part of Cascading Style Sheets 246
Using Conditional Comments ... 251

13_9780470537558-pp02.indd 15813_9780470537558-pp02.indd 158 10/7/10 8:32 PM10/7/10 8:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Coloring Your World

In This Chapter
✓ Introducing the style element

✓ Adding styles to tags

✓ Modifying your page dynamically

✓ Specifying foreground and background colors

✓ Understanding hex colors

✓ Developing a color scheme

XHTML does a good job of setting up the basic design of a page, but
face it: The pages it makes are pretty ugly. In the old days, developers

added a lot of other tags to HTML to make it prettier, but it was a haphazard
affair. Now, XHTML disallows all the tags that made pages more attractive.
That sounds bad, but it isn’t really a loss. Today, XHTML is almost always
written in concert with CSS (Cascading Style Sheets). It’s amazing how much
you can do with CSS to beautify your XHTML pages.

CSS allows you to change the color of any image on the page, add back-
grounds and borders, change the visual appearance of elements (like lists
and links), as well as customize the entire layout of your page. Additionally,
CSS allows you to keep your XHTML simple because all the formatting is
stored in the CSS. CSS is efficient, too, because it allows you to reuse a
style across multiple pages. If XHTML gives your pages structure, CSS gives
them beauty.

This chapter gets you started by describing how to add color to your pages.

Now You Have an Element of Style
The secret to CSS is the style sheet, a set of rules for describing how various
objects will display. For example, look at basicColors.html in Figure 1-1.

14_9780470537558-bk02ch01.indd 15914_9780470537558-bk02ch01.indd 159 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

160 Now You Have an Element of Style

Figure 1-1:
This page is
in color!

As always, don’t take my word for it. This chapter is about color, and
you need to look at these pages from the CD or Web site to see what I’m
talking about.

Nothing in the XHTML code provides color information. What makes this
page different from plain XHTML pages is a new section that I’ve stashed in
the header. Take a gander at the code to see what’s going on:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>basicColors.html</title>
 <style type = “text/css”>
 body {
 color: yellow;
 background-color: red;
 }

 h1 {
 color: red;
 background-color: yellow;
 }
 </style>
 </head>

14_9780470537558-bk02ch01.indd 16014_9780470537558-bk02ch01.indd 160 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 1

C
o

lo
rin

g
 Y

o
u

r W
o

rld

161Now You Have an Element of Style

 <body>
 <h1>Red text on a yellow background</h1>
 <p>
 Yellow text on a red background
 </p>
 </body>
</html>

As you can see, nothing is dramatically different in the XHTML code. The
body simply contains an h1 and a p. Although the text mentions the colors,
nothing in the XHTML code makes the colors really happen.

The secret is the new <style></style> pair I put in the header area:

 <style type = “text/css”>
 body {
 color: yellow;
 background-color: red;
 }

 h1 {
 color: red;
 background-color: yellow;
 }
 </style>

The <style> tag is an HTML tag, but what it does is special: It switches lan-
guages! Inside the style elements, you’re not writing XHTML anymore. You’re
in a whole new language — CSS. CSS has a different job than XHTML, but
they’re made to work well together.

 It may seem that the CSS code is still part of HTML because it’s inside the
XHTML page, but it’s best to think of XHTML and CSS as two distinct (if
related) languages. XHTML describes the content, and CSS describes the
layout. CSS (as you soon see) has a different syntax and style than XHTML
and isn’t always embedded in the Web page.

Setting up a style sheet
Style sheets describe presentation rules for XHTML elements. If you look at
the preceding style sheet (the code inside the <style> tags), you can see
that I’ve described presentation rules for two elements: the <body> and
<h1> tags. Whenever the browser encounters one of these tags, it attempts
to use these style rules to change that tag’s visual appearance.

Styles are simply a list of selectors (places in the page that you want to
modify). For now, I use tag names (body and h1) as selectors. However, in
Chapter 3 of this minibook, I show many more selectors that you can use.

Each selector can have a number of style rules. Each rule describes some
attribute of the selector. To set up a style, keep the following in mind:

14_9780470537558-bk02ch01.indd 16114_9780470537558-bk02ch01.indd 161 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

162 Now You Have an Element of Style

 ✦ Begin with the style tags. The type of style you’ll be working with
is embedded into the page. You should describe your style in the
header area.

 ✦ Include the style type in the header area. The style type is always
“text/css”. The beginning <style> tag always looks like this:

<style type = “text/css”>

 ✦ Define an element. Use the element name (the tag name alone) to begin
the definition of a particular element’s style. You can define styles for
all the XHTML elements (and other things, too, but not today). The style
rule for the body is designated like this:

 body {

 ✦ Use braces ({}) to enclose the style rules. Each style’s rules are
enclosed in a set of braces. Similar to many programming languages,
braces mark off special sections of code. It’s traditional to indent inside
the braces.

 ✦ Give a rule name. In this chapter, I’m working with two very simple
rules: color and background-color. Throughout this minibook, you
can read about many more CSS rules (sometimes called attributes) that
you can modify. A colon (:) character always follows the rule name.

 ✦ Enter the rule’s value. Different rules take different values. The attribute
value is followed by a semicolon. Traditionally, each name-value pair is
on one line, like this:

 body {
 color: yellow;
 background-color: red;
 }

Changing the colors
In this very simple example, I just changed some colors around. Here are the
two primary color attributes in CSS:

 ✦ color: This refers to the foreground color of any text in the element.

 ✦ background-color: The background color of the element. (The
hyphen is a formal part of the name. If you leave it out, the browser
won’t know what you’re talking about.)

With these two elements, you can specify the color of any element. For
example, if you want all your paragraphs to have white text on a blue back-
ground, add the following text to your style:

p {
 color: white;
 background-color: blue;
}

14_9780470537558-bk02ch01.indd 16214_9780470537558-bk02ch01.indd 162 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 1

C
o

lo
rin

g
 Y

o
u

r W
o

rld

163Specifying Colors in CSS

Like XHTML Strict, CSS is case-sensitive. CSS styles should be written
entirely in lowercase.

You’ll figure out many more style elements in your travels, but they all
follow the same principles illustrated by the color attributes.

Specifying Colors in CSS
Here are the two main ways to define colors in CSS. You can use color
names, such as pink and fuchsia, or you can use hex values. (Later in this
chapter, in the section “Creating Your Own Color Scheme,” you find out how
to use special numeric designators to choose colors.) Each approach has its
advantages.

Using color names
Color names seem like the easiest solution, and, for basic colors like red and
yellow, they work fine. However, here are some problems with color names
that make them troublesome for Web developers:

 ✦ Only 16 color names will validate. Although most browsers accept
hundreds of color names, only 16 are guaranteed to validate in CSS and
XHTML validators. See Table 1-1 for a list of those 16 colors.

 ✦ Color names are somewhat subjective. You’ll find different opinions on
what exactly constitutes any particular color, especially when you get
to the more obscure colors. (I personally wasn’t aware that PeachPuff
and PapayaWhip are colors. They sound more like dessert recipes to
me.)

 ✦ It can be difficult to modify a color. For example, what color is a tad
bluer than Gainsboro? (Yeah, that’s a color name, too. I had no idea
how extensive my color disability really was.)

 ✦ They’re hard to match. Let’s say you’re building an online shrine to
your cat and you want the text to match your cat’s eye color. It’ll be
hard to figure out exactly what color name corresponds to your cat’s
eyes. I guess you could ask.

Table 1-1 Legal Color Names and Hex Equivalents

Color Hex Value

Black #000000

Silver #C0C0C0

Gray #808080
(continued)

14_9780470537558-bk02ch01.indd 16314_9780470537558-bk02ch01.indd 163 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

164 Specifying Colors in CSS

Table 1-1 (continued)

Color Hex Value

White #FFFFFF

Maroon #800000

Red #FF0000

Purple #800080

Fuchsia #FF00FF

Green #008800

Lime #00FF00

Olive #808000

Yellow #FFFF00

Navy #000080

Blue #0000FF

Teal #008080

Aqua #00FFFF

The mysterious hex codes are included in this table for completeness. It’s
okay if you don’t understand what they’re about. All is revealed in the next
section.

 Obviously, I can’t show you actual colors in this black-and-white book, so I
added a simple page to the CD-ROM and Web site that displays all the named
colors. Check namedColors.html to see the actual colors.

Putting a hex on your colors
Colors in HTML are a strange thing. The “easy” way (with color names)
turns out to have many problems. The method most Web developers really
use sounds a lot harder, but it isn’t as bad as it may seem at first. The hex
color scheme uses a seemingly bizarre combination of numbers and letters
to determine color values. #00FFFF is aqua. #FFFF00 is yellow. It’s a scheme
only a computer scientist could love. Yet, after you get used to it, you’ll find
the system has its own geeky charm. (And isn’t geeky charm the best kind?)

Hex colors work by describing exactly what the computer is doing, so you
have to know a little more about how computers work with color. Each dot
(or pixel) on the screen is actually composed of three tiny beams of light
(or LCD diodes or something similar). Each pixel has tiny red, green, and
blue beams.

14_9780470537558-bk02ch01.indd 16414_9780470537558-bk02ch01.indd 164 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 1

C
o

lo
rin

g
 Y

o
u

r W
o

rld

165Specifying Colors in CSS

The light beams work kind of like stage lights. Imagine a black stage with
three spotlights (red, green, and blue) trained on the same spot. If all the
lights are off, the stage is completely dark. If you turn on only the red light,
you see red. You can turn on combinations to get new colors. For example,
turning on red and green creates a spot of yellow light. Turning on all three
lights makes white.

Coloring by number
You could devise a simple system to describe colors by using 1 to represent
on and 0 to represent off. In this system, three digits represent each color,
with one digit each for red, green, and blue. So, red would be 100 (turn
on red, but turn off green and blue), and 111 would be white (turn on all
three lights).

This system produces only eight colors. In a computer system, each of the
little lights can be adjusted to various levels of brightness. These values
measure from 0 (all the way off) to 255 (all the way on). Therefore, you could
describe red as rgb(255, 0, 0) and yellow as rgb(255, 255, 0).

The 0 to 255 range of values seems strange because you’re probably
used to base 10 mathematics. The computer actually stores values
in binary notation. The way a computer sees it, yellow is actually
111111111111111100000000. Ack! There has to be an easier way to handle
all those binary values. That’s why we use hexadecimal notation. Read on. . . .

Hex education
All those 1s and 0s get tedious. Programmers like to convert to another
format that’s easier to work with. It’s easier to convert numbers to base 16
than base 10, so that’s what programmers do. You can survive just fine with-
out understanding base 16 (also called hexadecimal or hex) conversion, but
you should understand a few key features, such as:

 ✦ Each hex digit is shorthand for four digits of binary. The whole reason
programmers use hex is to simplify working with binary.

 ✦ Each digit represents a value between 0 and 15. Four digits of binary
represent a value between 0 and 15.

 ✦ We have to invent some digits. The whole reason hex looks so weird is the
inclusion of characters. This is for a simple reason: There aren’t enough
numeric digits to go around! Table 1-2 illustrates the basic problem.

14_9780470537558-bk02ch01.indd 16514_9780470537558-bk02ch01.indd 165 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

166 Specifying Colors in CSS

Table 1-2 Hex Representation of Base Ten Numbers

Decimal (Base 10) Hex (Base 16)

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 A

11 B

12 C

13 D

14 E

15 F

The ordinary digits 0–9 are the same in hex as they are in base 10, but the
values from 10–15 (base ten) are represented by alphabetic characters
in hexadecimal.

 You’re very used to seeing the value 10 as equal to the number of fingers on
both hands, but that’s not always the case when you start messing around
with numbering systems like we’re doing here. The number 10 simply means
one of the current base. Until now, you may have never used any base but
base ten, but all that changes here. 10 is ten in base ten, but in base two, 10
means two. In base eight, 10 means eight, and in base sixteen, 10 means six-
teen. This is important because when you want to talk about the number of
digits on your hands in hex, you can’t use the familiar notation 10 because in
hex 10 means sixteen. We need a single-digit value to represent ten, so com-
puter scientists legislated themselves out of this mess by borrowing letters.
10 is A, 11 is B, and 15 is F.

If all this math theory is making you dizzy, don’t worry. I show in the next
section some shortcuts for creating great colors using this scheme. For now,
though, here’s what you need to understand to use hex colors:

14_9780470537558-bk02ch01.indd 16614_9780470537558-bk02ch01.indd 166 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 1

C
o

lo
rin

g
 Y

o
u

r W
o

rld

167Specifying Colors in CSS

 ✦ A color requires six digits of hex. A pixel requires three colors, and
each color uses eight digits of binary. Two digits of hex cover each
color. Two digits represent red, two for green, and finally two for blue.

 ✦ Hex color values usually begin with a pound sign. To warn the browser
that a value will be in hexadecimal, the value is usually preceded with a
pound sign (#). So, yellow is #FFFF00.

Working with colors in hex may seem really crazy and difficult, but it has
some important advantages:

 ✦ Precision: Using this system gives you a huge number of colors to work
with (over 16 million, if you really want to know). There’s no way you
could come up with that many color names on your own. Well, you
could, but you’d be very, very old by the time you were done.

 ✦ Objectivity: Hex values aren’t a matter of opinion. There could be some
argument about the value of burnt sienna, but hex value #666600 is
unambiguous.

 ✦ Portability: Most graphic editors use the hex system, so you can pick
any color of an image and get its hex value immediately. This would
make it easy to find your cat’s eye color for that online shrine.

 ✦ Predictability: After you understand how it works, you can take any hex
color and convert it to a value that’s a little darker, a little brighter, or
that has a little more blue in it. This is difficult to do with named colors.

 ✦ Ease of use: This one may seem like a stretch, but after you understand
the Web-safe palette, which I describe in the next section, it’s very easy
to get a rough idea of a color and then tweak it to make exactly the form
you’re looking for.

Using the Web-safe color palette
A long time ago, browsers couldn’t even agree on what colors they’d display
reliably. Web developers responded by working within a predefined palette
of colors that worked pretty much the same on every browser. Today’s
browsers have no problems showing lots of colors, but the so-called Web-
safe color palette is still sometimes used because it’s an easy starting point.

The basic idea of the Web-safe palette (shown in Table 1-3) is this: Each
color can have only one of the following values: 00, 33, 66, 99, CC, or FF. 00 is
the darkest value for each color, and FF is the brightest. The primary colors
are all made of 0s and Fs: #FF0000 is red (all red, no green, no blue). A Web-
safe color uses any combination of these values, so #33CC00 is Web-safe, but
#112233 is not.

14_9780470537558-bk02ch01.indd 16714_9780470537558-bk02ch01.indd 167 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

168 Choosing Your Colors

Table 1-3 Web-Safe Color Values

Description Red Green Blue

Very bright FF FF FF

CC CC CC

99 99 99

66 66 66

33 33 33

Very dark 00 00 00

To pick a Web-safe value from this chart, determine how much of each color
you want. A bright red will have red turned on all the way (FF) with no green
(00) and no blue (00), making #FF0000. If you want a darker red, you might
turn the red down a little. The next darker Web-safe red is #CC0000. If that
isn’t dark enough, you might try #990000. Let’s say you like that, but you
want it a little purple. Simply add a notch or two of blue: #990033 or #990066.

 If you’re having trouble following this, look at colorTester.html on the
CD-ROM. It allows you to pick a Web-safe color by clicking buttons organized
like Table 1-3.

The original problem Web-safe colors were designed to alleviate is long
resolved, but they’re still popular as a starting point. Web-safe colors give
you a dispersed and easily understood subset of colors you can start with.
You don’t have to stay there, but it’s a great place to start.

Choosing Your Colors
Figure 1-2 shows the colorTester.html program I added to the Web page
and CD-ROM. This page lets you experiment with colors. I refer to it during
this discussion.

The colorTester.html page uses techniques that I describe primarily in
Book IV, Chapter 5. Feel free to look over the source code to get a preview
of JavaScript and Dynamic HTML (DHTML) concepts. By the end of Book IV,
you can write this program.

The best way to understand colors is to do some hands-on experimentation.
You can use the colorTester.html page to do some quick tests, or you
can write and modify your own pages that use color.

14_9780470537558-bk02ch01.indd 16814_9780470537558-bk02ch01.indd 168 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 1

C
o

lo
rin

g
 Y

o
u

r W
o

rld

169Choosing Your Colors

Figure 1-2:
This
program lets
you quickly
test color
combinations.

Starting with Web-safe colors
The colorTester.html program works by letting you quickly enter a Web-
safe value. To make red, press the FF button in the red column. The blue and
green values have the default value of 00, so the background is red.

The Web-safe colors give you a lot of room to play, and they’re very easy to
work with. In fact, they’re so common that you can use a shortcut. Because
the Web-safe colors are all repeated, you can write a repeated digit (FF) as a
single digit (F). You can specify magenta as either #FF00FF or as #FOF and
the browser understands, giving you a headache-inducing magenta.

To make a darker red, change the FF to the next smallest value, making
#CC0000. If you want it darker yet, try #990000. Experiment with all the red
values and see how easy it is to get several different types of red. If you want
a variation of pink, raise the green and blue values together. #FF6666 is a
dusty pink color; #FF9999 is a bit brighter; and #FFCCCC is a very white pink.

Modifying your colors
The Web-safe palette is convenient, but it gives you a relatively small
number of colors (216, if you’re counting). Two hundred and sixteen cray-
ons in the box are pretty nice, but you might need more. Generally, I start

14_9780470537558-bk02ch01.indd 16914_9780470537558-bk02ch01.indd 169 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

170 Choosing Your Colors

with Web-safe colors and then adjust as I go. If you want a lighter pink than
#FFCCCC, you can jump off the Web-safe bandwagon and use #FFEEEE or any
other color you wish!

In the colorTester.html program, you can use the top and bottom button
in each row to fine-tune the adjustments to your color.

Doing it on your own pages
Of course, it doesn’t really matter how the colors look on my page. The point
is to make things look good on your pages. To add color to your pages, do
the following:

 1. Define the XHTML as normal.

 The XHTML shouldn’t have any relationship to the colors. Add the color
strictly in CSS.

 2. Add a <style> tag to the page in the header area.

 Don’t forget to set the type = “text/css“ attribute.

 3. Add a selector for each tag you want to modify.

 You can modify any HTML tag, so if you want to change all the para-
graphs, add a p { } selector. Use the tag name without the angle
braces, so <h1> becomes h1{ }.

 4. Add color and background-color attributes.

 You’ll discover many more CSS elements you can modify throughout
Books II and III but for now, stick to color and background-color.

 5. Specify the color values with color names or hex color values.

Changing CSS on the fly
If you’ve installed the Web Developer toolbar to Firefox (which I describe
in Book I, Chapter 3) you have some nifty CSS tools at your disposal. I really
love the CSS editor. To make it work, take any page (with or without CSS)
and open it in Firefox. For this example, I use a list example from Book I,
Chapter 4.

Be sure the Web Developer toolbar is installed and then choose Edit CSS
from the CSS menu. A new panel that looks similar to Figure 1-3 appears.

You can simply type CSS code into the little text editor, and the page
updates instantly! Figure 1-4 shows the same page after I made a few
changes.

14_9780470537558-bk02ch01.indd 17014_9780470537558-bk02ch01.indd 170 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 1

C
o

lo
rin

g
 Y

o
u

r W
o

rld

171Choosing Your Colors

Figure 1-3:
The Web
Developer
toolbar has
a great CSS
feature.

Figure 1-4:
The CSS
changes
show
immediately.

14_9780470537558-bk02ch01.indd 17114_9780470537558-bk02ch01.indd 171 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

172 Creating Your Own Color Scheme

I used color to make the definition list easier to view. I changed both the
foreground and background colors in the heading level 1. I set the definition
terms (dt) to red and added a yellow background to the definitions (dd).
Check Book I, Chapter 4 if you need a refresher on definition lists in XHTML.

The Web Developer CSS editor is great because you can see the results in
real time. It’s a super way to play around with your colors (and other CSS
elements). You can also use it to view and modify an existing CSS document.
Pull up any page you want and open the CSS editor. You can change colors
all you want without making a commitment.

The changes made using the Web Developer CSS editor aren’t permanent.
You’re making changes only in the copy in your own browser. If you really
like the CSS code that you’ve written in the editor, copy it to the clipboard
and paste it into your page to make it permanent, or save it to a file for
later use.

Creating Your Own Color Scheme
The technical side of setting colors isn’t too difficult, but deciding what
colors to use can be a challenge. Entire books have been written about how
to determine a color scheme. A little bit of subjectivity is in the process, but
a few tools and rules can get you started.

Understanding hue, saturation, and value
The RGB color model is useful because it relates directly to how comput-
ers generate color, but it’s not perfect. It’s a bit difficult to visualize varia-
tions of a color in RGB. For that reason, other color schemes are often used.
The most common variation is Hue, Saturation, and Value, or HSV. The HSV
system organizes colors in a way more closely related to the color wheel.

To describe a color using HSV, you specify three characteristics of a color
using numeric values:

 ✦ Hue: The basic color. The color wheel is broken into a series of hues.
These are generally middle of the road colors that can be made brighter
(closer to white) and darker (closer to black).

 ✦ Saturation: How pervasive the color is. A high saturation is very bright.
A low saturation has very little color. If you reduce all the saturation in
an image, the image is grayscale, with no color at all.

 ✦ Value: The brightness of the color. The easiest way to view value is to
think about how the image would look when reduced to grayscale (by
pulling down the saturation). All the brighter colors will be closer to
white, and the darker colors will be nearly black.

14_9780470537558-bk02ch01.indd 17214_9780470537558-bk02ch01.indd 172 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 1

C
o

lo
rin

g
 Y

o
u

r W
o

rld

173Creating Your Own Color Scheme

The HSV model is useful because it allows you to pick colors that go well
together. Use the hue property to pick the basic colors. Because there’s a
mathematical relationship between the various color values, it becomes
easy to predict which colors work well together. After you have all the hues
worked out, you can change the saturation and value to modify the overall
tone of the page. Generally, all the colors in a particular scheme have similar
saturation and values.

Unfortunately, you can’t specify CSS colors in HSV mode. Instead, you have to
use another tool to get the colors you want and convert them to RGB format.

Using the Color Scheme Designer
Some people have great color sense. Others (like me) struggle a little bit
because it all seems a little subjective. If you’re already confident with
colors, you may not need this section — although, you still might find it
interesting validation of what you already know. On the other hand, if you
get perplexed in a paint store, you might find it helpful to know that some
really useful tools are available.

One great way to get started is with a free tool: the Color Scheme Designer,
shown in Figure 1-5. This tool created by Petr Stanicek uses a variation of
the HSV model to help you pick color schemes. You can find this program at
http://colorschemedesigner.com.

Figure 1-5:
The Color
Scheme
Designer
helps you
pick colors.

14_9780470537558-bk02ch01.indd 17314_9780470537558-bk02ch01.indd 173 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

174 Creating Your Own Color Scheme

The Color Scheme Designer has several areas, such as:

 ✦ The color wheel: This tool may bring back fond memories of your ele-
mentary school art class. The wheel arranges the colors in a way famil-
iar to artists. You can click the color wheel to pick a primary color for
your page.

 ✦ The color scheme selector: You can pick from a number of color
schemes. I describe these schemes a little later in this section.

 ✦ A preview area: This area displays the selected colors in action so you
can see how the various colors work together.

 ✦ Hex values: The hex values for the selected colors display on the page
so you can copy them to your own application.

 ✦ Variations: You can look at variations of the selected scheme. These
variations are often useful because they show differences in the satura-
tion and value without you doing the math.

 ✦ Color-blindness simulation: This very handy tool lets you see your color
scheme as it appears to people with various types of color-blindness.

This won’t make sense without experimentation. Be sure to play with this
tool and see how easy it is to create colors that work well together.

Selecting a base hue
The Color Scheme Designer works by letting you pick one main hue and then
uses one of a number of schemes for picking other hues that work well with
the base one. To choose the base hue you want for your page, click a color
on the color wheel.

The color wheel is arranged according to the traditional artist’s color
scheme based on HSV rather than the RGB scheme used for computer graph-
ics. When you select a color, the closest RGB representation is returned.
This is nice because it allows you to apply traditional (HSV-style) color
theory to the slightly different RGB model.

When you pick a color on the color wheel, you’re actually picking a hue. If
you want any type of red, you can pick the red that appears on the wheel.
You can then adjust the variations to modify the saturation and value of all
the colors in the scheme together.

To pick a color using this scheme, follow these steps:

 1. Pick a hue.

 The colors on the color wheel represent hues in the HSV model. Find a
primary color you want to use as the foundation of your page.

14_9780470537558-bk02ch01.indd 17414_9780470537558-bk02ch01.indd 174 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 1

C
o

lo
rin

g
 Y

o
u

r W
o

rld

175Creating Your Own Color Scheme

 2. Determine a scheme.

 The scheme indicates which other colors you will use and how they
relate to the primary hue. More information on the various schemes is
available in the next section.

 3. Adjust your scheme.

 The main schemes are picked using default settings for saturation and
value. The Adjust Scheme tab allows you to modify the saturation and
value settings to get much more control of your color scheme. You can
also adjust the level of contrast to get very interesting effects.

 4. Preview the scheme.

 The Designer has several options for previewing your color scheme,
including the ability to create quick Web pages using the scheme. You
might also look at the color blindness simulators to see how your page
appears to people with different kinds of color blindness.

 5. Export the color settings.

 If you want, you can export the color settings to a number of formats,
including a very nice HTML/CSS format. You can also save the colors to
a special file for importing into GIMP or Photoshop, so the exact colors
used in your page will be available to your image editor, too.

Picking a color scheme
The various color schemes use mathematical relationships around the color
wheel to predict colors that work well with the primary color. Here are the
basic schemes, including what they do:

 ✦ Mono (monochromatic): Takes the base hue and offers a number of
variations in saturation and value. This scheme is nice when you really
want to emphasize one particular color (for example, if you’re doing a
Web site about rain forests and want a lot of greens). Be sure to use high
contrast between the foreground and background colors so your text is
readable.

 ✦ Complement: Uses the base hue and the complementary (opposite)
color. Generally, this scheme uses several variations of the base hue and
a splash of the complementary hue for contrast.

 ✦ Triad: Selects the base hue and two opposite hues. When you select the
Triad scheme, you can also choose the angular distance between the
opposite colors. If this distance is zero, you have the complementary
color scheme. When the angle increases, you have a split complementary
system, which uses the base hue and two hues equidistant from the con-
trast. Such schemes can be jarring at full contrast, but when adjusted for
saturation and value, you can create some very nice color schemes.

14_9780470537558-bk02ch01.indd 17514_9780470537558-bk02ch01.indd 175 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

176 Creating Your Own Color Scheme

 ✦ Tetrad: Generates four hues. As with the Triad scheme, when you add
more hues, keeping your page unified becomes more difficult unless you
adjust the variations for lower contrast.

 ✦ Analogic: Schemes use the base hue and its two neighbors.

 ✦ Accented Analogic: Just like the Analogic scheme, but with the addition
of the complementary color.

14_9780470537558-bk02ch01.indd 17614_9780470537558-bk02ch01.indd 176 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Styling Text

In This Chapter
✓ Introducing fonts and typefaces

✓ Specifying the font family

✓ Determining font size

✓ Understanding CSS measurement units

✓ Managing other font characteristics

✓ Using the font rule to simplify font styles

Web pages are still primarily a text-based media, so you’ll want to add
some formatting capabilities. XHTML doesn’t do any meaningful text

formatting on its own, but CSS adds a wide range of tools for choosing the
typeface, font size, decorations, alignment, and much more. In this chapter,
you discover how to manage text the CSS way.

A bit of semantics is in order. The thing most people dub a font is more
properly a typeface. Technically, a font is a particular typeface at a particu-
lar size with a specific set of decorations (underlining, italic, and so on).
The distinction is honestly not that important in a digital setting. You don’t
explicitly set the font in CSS. You determine the font family (which is essen-
tially a typeface), and then you modify its characteristics (creating a font
as purists would think of it). Still, when I’m referring to the thing that most
people call a font (a file in the operating system that describes the appear-
ance of an alphabet set), I use the familiar term font.

Setting the Font Family
To assign a font family to part of your page, use some new CSS. Figure 2-1
illustrates a page with the heading set to Comic Sans MS.

If this page is viewed on a Windows machine, it generally displays the
font correctly because Comic Sans MS is installed with most versions of
Windows. If you’re on another type of machine, you may get something else.
More on that in a moment, but for now, look at the simple case.

15_9780470537558-bk02ch02.indd 17715_9780470537558-bk02ch02.indd 177 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

178 Setting the Font Family

Here’s the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>comicHead.html</title>
 <style type = ”text/css”>
 h1 {
 font-family: “Comic Sans MS”;
 }
 </style>
 </head>

 <body>
 <h1>This is a heading</H1>
 <p>
 This is ordinary text.
 </p>
 </body>
</html>

Figure 2-1:
The
headline is
in the Comic
Sans font
(most of the
time).

15_9780470537558-bk02ch02.indd 17815_9780470537558-bk02ch02.indd 178 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 2

S
tylin

g
 T

e
x

t

179Setting the Font Family

Applying the font-family style attribute
The secret to this page is the CSS font-family attribute. Like most CSS ele-
ments, this can be applied to any HTML tag on your page. In this particular
case, I applied it to my level one heading.

 h1 {
 font-family: “Comic Sans MS”;
 }

You can then attach any font name you wish, and the browser attempts to
use that font to display the element.

 Even though a font may work perfectly fine on your computer, it may not
work if that font isn’t installed on the user’s machine.

If you run exactly the same page on a Linux machine, you might see the
result shown in Figure 2-2.

The specific font Comic Sans MS is installed on Windows machines, but the
MS stands for Microsoft. This font isn’t always installed on Linux or Mac.
(Sometimes it’s there, and sometimes it isn’t.) You can’t count on users
having any particular fonts installed.

The Comic Sans font is fine for an example, but it has been heavily over-used
in Web development. Serious Web developers avoid using it in real applica-
tions because it tends to make your page look amateurish.

Figure 2-2:
Under Linux,
the heading
might not
be the same
font!

15_9780470537558-bk02ch02.indd 17915_9780470537558-bk02ch02.indd 179 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

180 Setting the Font Family

Using generic fonts
It’s a little depressing. Even though it’s easy to use fonts, you can’t use them
freely because you don’t know if the user has them. Fortunately, you can do
a few things that at least increase the odds in your favor. The first trick is to
use generic font names. These are virtual font names that every compliant
browser agrees to support. Figure 2-3 shows a page with all the generic fonts.

Figure 2-3:
Here are all
the generic
fonts.

I used browser controls to make the fonts larger than normal so you can
see the details in this figure. Both the programmer and the user should be
able to change the font size. Later, I describe how to change the font size
through code.

The generic fonts really are families of fonts:

 ✦ Serif: These fonts have those little serifs (the tiny cross strokes that
enhance readability). Print text (like the paragraph you’re reading now)
tends to use serif fonts, and they’re the default font for most browsers.
The most common serif typeface is Times New Roman or Times.

 ✦ Sans Serif: Sans serif fonts don’t have the little feet. Generally, they’re
used for headlines or other emphasis. Sometimes, they’re seen as more
modern and cleaner than serif fonts, so sometimes they’re used for body
text. Arial is the most common sans serif font. In this book, the figure
captions use a sans serif font.

 ✦ Cursive: These fonts look a little like handwriting. In Windows, the script
font is usually Comic Sans MS. Script fonts are used when you want a
less formal look. For Dummies books use script fonts all over the place
for section and chapter headings.

15_9780470537558-bk02ch02.indd 18015_9780470537558-bk02ch02.indd 180 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 2

S
tylin

g
 T

e
x

t

181Setting the Font Family

 ✦ Fantasy: Fantasy fonts are decorative. Just about any theme you can
think of is represented by a fantasy font, from Klingon to Tolkien. You
can also find fonts that evoke a certain culture, making English text
appear to be Persian or Chinese. Fantasy fonts are best used sparingly,
for emphasis, as they often trade readability for visual appeal.

 ✦ Monospace: Monospace fonts produce a fixed-width font like typewrit-
ten text. Monospace fonts are frequently used to display code. Courier
is a common monospace font. All code listings in this book use a mono-
spaced font.

Because the generic fonts are available on all standards-compliant browsers,
you’d think you could use them confidently. Well, you can be sure they’ll
appear, but you still might be surprised at the result. Figure 2-4 shows the
same page as Figure 2-3 (in Windows) but in Linux.

Macs display yet another variation because the fonts listed here aren’t
actual fonts. Instead, they’re virtual fonts. A standards-compliant browser
promises to select an appropriate stand in. For example, if you choose sans
serif, one browser may choose to use Arial. Another may choose Chicago.
You can always use these generic font names and know the browser can find
something close, but there’s no guarantee exactly what font the browser
will choose. Still, it’s better than nothing. When you use these fonts, you’re
assured something in the right neighborhood, if not exactly what you
intended.

Figure 2-4:
Windows
and Linux
disagree on
fantasy.

Making a list of fonts
This uncertainty is frustrating, but you can take some control. You can
specify an entire list of font names if you want. The browser tries each font
in turn. If it can’t find the specified font, it goes to the next font and on down
the line.

15_9780470537558-bk02ch02.indd 18115_9780470537558-bk02ch02.indd 181 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

182 Setting the Font Family

You might choose a font that you know is installed on all Windows
machines, a font found on Macs, and finally one found on all Linux machines.
The last font on your list should be one of the generic fonts, so you’ll have
some control over the worst-case scenario.

Table 2-1 shows a list of fonts commonly installed on Windows, Mac, and
Linux machines.

Table 2-1 Font Equivalents

Windows Mac Linux

Arial Arial Nimbus Sans L

Arial Black Arial Black

Comic Sans MS Comic Sans MS TSCu_Comic

Courier New Courier New Nimbus Mono L

Georgia Georgia Nimbus Roman No9 L

Lucida Console Monaco

Palatino Palatino FreeSerif

Tahoma Geneva Kalimati

Times New Roman Times FreeSerif

Trebuchet MS Helvetica FreeSans

Verdana Verdana Kalimati

You can use this chart to derive a list of fonts to try. For example, look at the
following style:

p {
 font-family: “Trebuchet MS”, Helvetica, FreeSans, sans-serif;
}

This style has a whole smorgasbord of options. First, the browser tries to
load Trebuchet MS. If it’s a Windows machine, this font is available, so that
one displays. If that doesn’t work, the browser tries Helvetica (a default Mac
font). If that doesn’t work, it tries FreeSans, a font frequently installed on
Linux machines. If this doesn’t work, it defaults to the old faithful sans serif,
which simply picks a sans serif font.

Note that font names of more than one word must be encased in quotes, and
commas separate the list of font names.

15_9780470537558-bk02ch02.indd 18215_9780470537558-bk02ch02.indd 182 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 2

S
tylin

g
 T

e
x

t

183The Curse of Web-Based Fonts

Don’t get too stressed about Linux fonts. It’s true that the equivalencies are
harder to find, but Linux users tend to fall into two camps: They either don’t
care if the fonts are exact, or they do care and they’ve installed equivalent
fonts that recognize the common names. In either case, you can focus on
Mac and Windows people for the most part, and, as long as you’ve used a
generic font name, things work okay on a Linux box. Truth is, I mainly use
Linux, and I’ve installed all the fonts I need.

The Curse of Web-Based Fonts
Fonts seem pretty easy at first, but some big problems arise with actually
using them.

Understanding the problem
The problem with fonts is this: Font resources are installed in each operat-
ing system. They aren’t downloaded with the rest of the page. Your Web
page can call for a specific font, but that font isn’t displayed unless it’s
already installed on the user’s computer.

Say I have a cool font called Happygeek. (I just made that up. If you’re a font
designer, feel free to make a font called that. Just send me a copy. I can’t
wait.) It’s installed on my computer, and when I choose a font in my word
processor, it shows up in the list. I can create a word-processing document
with it, and everything will work great.

If I send a printout of a document using Happygeek to my grandma, every-
thing’s great because the paper doesn’t need the actual font. It’s just ink. If I
send her the digital file and tell her to open it on her computer, we’ll have a
problem. See, she’s not that hip and doesn’t have Happygeek installed. Her
computer will pick some other font.

There used to be a tag in old-school HTML
called the tag. You could use this tag
to change the size, color, and font family. There
were also specific tags for italic (<i>), boldface
(), and centering (<center>). These tags
were very easy to use, but they caused some
major problems. To use them well, you ended
up littering your page with all kinds of tags
trying to describe the markup, rather than the

meaning. There was no easy way to reuse font
information, so you often had to repeat things
many times throughout the page, making it dif-
ficult to change. XHTML Strict no longer allows
the , <i>, , or <center> tags.
The CSS elements I show in this chapter more
than compensate for this loss. You now have a
more flexible, more powerful alternative.

The death of the font tag

15_9780470537558-bk02ch02.indd 18315_9780470537558-bk02ch02.indd 183 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

184 The Curse of Web-Based Fonts

This isn’t a big problem in word processing because people don’t gener-
ally send around digital copies of documents with elaborate fonts in them.
However, Web pages are passed around only in digital form. To know which
fonts you can use, you have to know what fonts are installed on the user’s
machine, and that’s impossible.

 Part of the concern is technical (figuring out how to transfer the font infor-
mation to the browser), but the real issue is digital rights management. If
you’ve purchased a font for your own use, does that give you the right to
transfer it to others, so now they can use it without paying?

Examining possible solutions
This has been a problem since the beginning of the Web. Many people have
tried to come up with solutions. None of the solutions are good, but here are
a few compromises:

 ✦ Embedded fonts: Netscape and Internet Explorer (IE) both came up with
techniques to embed fonts into a Web page. Both techniques involved
using a piece of software to convert the font into a proprietary format
that allows it to be used for the specific page and nothing else. The two
systems were incompatible, and both were a little awkward. Almost
nobody used them. Firefox now completely ignores this technology, and
IE can do it but with a separate tool. Until browsers come up with a com-
patible solution, I don’t recommend this technique.

 ✦ CSS 3 embedded fonts: CSS 3 (the next version of CSS on the horizon)
promises a way to import a font file purely through CSS. You’ll be able
to specify a particular filename and pass a URL (Uniform Resource
Locator) to the file on your server, and it’ll be used for that particular
page but not installed on the user’s system. Custom fonts have been
handled this way in games for years. Take a look at Book I, Chapter 8 for
a preview of this technology. It looks extremely promising.

 ✦ Flash: Flash is a vector format that’s very popular on the Web. Flash
has very nice features for converting fonts to a binary format within the
flash output, and most users have some kind of flash player installed.
The Flash editor is expensive, somewhat challenging to figure out, and
defeats many of the benefits of XHTML. These disadvantages outweigh
the potential benefit of custom fonts.

 I’m certainly not opposed to using Flash. I just don’t think it’s a good
idea to build entire Web pages in Flash, or to use Flash simply to get
access to fonts. If you’re interested in using Flash, you might want to
check out another book I wrote, Flash Game Programming For Dummies.
In the book, you learn how to make Flash literally sing and dance.

 ✦ Images: Some designers choose to forego HTML altogether and create
their pages as huge images. This requires a huge amount of bandwidth,
makes the pages impossible to search, and makes them difficult to
modify. This is a really bad idea. Although you have precise control of

15_9780470537558-bk02ch02.indd 18415_9780470537558-bk02ch02.indd 184 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 2

S
tylin

g
 T

e
x

t

185The Curse of Web-Based Fonts

the visual layout, you lose most of the advantages of XHTML. Content in
images cannot be read by search engines and is entirely inaccessible to
people with screen-readers. An image large enough to fill the screen will
take many times longer to download than equivalent XHTML markup.
The user cannot resize an image-based page, and this type of page does
not scale well to phones or other portable browsers.

Using images for headlines
Generally, you should use standard fonts for the page’s main content, so
having a limited array of fonts isn’t such a big problem. Sometimes, though,
you want to use fonts in your headlines. You can use a graphical editor,
like GIMP, to create text-based images and then incorporate them into your
pages. Figure 2-5 shows an example of this technique.

Figure 2-5:
The font
shows up
because it’s
an image.

In this case, I want to use my special cow font. (I love my cow font.)

Here’s the process:

 1. Plan your page.

 When you use graphics, you lose a little flexibility. You need to know
exactly what the headlines should be. You also need to know what head-
line will display at what level. Rather than relying on the browser to dis-
play your headlines, you’re creating graphics in your graphic tool (I’m
using GIMP) and placing them directly in the page.

 2. Create your images.

 I used the wonderful Logos feature in GIMP (choose Xtns➪Script-
fu➪logos) to create my cow text. I built an image for each headline with
the Bovination tool. I’m just happy to have a Bovination tool. It’s some-
thing I’ve always wanted. If only it could be converted to a weapon.

15_9780470537558-bk02ch02.indd 18515_9780470537558-bk02ch02.indd 185 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

186 The Curse of Web-Based Fonts

 3. Specify font sizes directly.

 In the image, it makes sense to specify font sizes in pixels because here
you’re really talking about a specific number of pixels. You’re creating
“virtual text” in your graphic editor, so make the text whatever size you
want it to be in the finished page.

 4. Use any font you want.

 You don’t have to worry about whether the user has the font because
you’re not sending the font, just an image composed with the font.

 5. Create a separate image for each headline.

 This particular exercise has two images — a level 1 heading and a level
2. Because I’m creating images directly, it’s up to me to keep track of
how the image will communicate its headline level.

 6. Consider the headline level.

 Be sure to make headline level 2 values look a little smaller or less
emphasized than level 1. That is, if you have images that will be used
in a heading 1 setting, they should use a larger font than images that
will be used in a less emphasized heading level. Usually, this is done by
adjusting the font size in your images.

 7. Build the page the way you normally would.

 After you create these specialty images, build a regular Web page. Put
<h1> and <h2> tags in exactly the same places you usually do.

 8. Put tags inside the headings.

 Rather than ordinary text, place image tags inside the <h1> and <h2> tags.
See the upcoming code imageTitles.html if you’re a little confused.

 9. Put headline text in the alt attribute.

 The alt attribute is especially important here because if the user has
graphics turned off, the text still appears as an appropriately styled
heading. People with slow connections see the text before the images
load, and people using text readers can still read the image’s alt text.

Here’s the code used to generate the image-based headers:

 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>imageTitles.html</title>
 </head>

 <body>
 <h1>
 <img src = ”cowsHistory.png”
 alt = ”Cows in History” />
 </h1>

15_9780470537558-bk02ch02.indd 18615_9780470537558-bk02ch02.indd 186 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 2

S
tylin

g
 T

e
x

t

187The Curse of Web-Based Fonts

 <p>
 This page describes famous cows in history
 </p>

 <h2>
 <img src = ”cowpens.png”
 alt = ”Battle of Cowpens” />
 </h2>

 <p>
 Most people are unaware that cattle actually took
 part in the battle. They didn’t of course. I just
 made that up.
 </p>

 </body>
</html>

This technique is a nice compromise between custom graphics and ordinary
XHTML as follows:

 ✦ You have great control of your images. If you’re skilled with your
graphics tool, you can make any type of image you want act as a head-
line. There’s literally no limit except your skill and creativity.

 ✦ The page retains its structure. You still have heading tags in place, so
it’s easy to see that you mean for a particular image to act as a headline.
You can still see the page organization in the XHTML code.

 ✦ You have fallback text. The alt attributes will activate if the images
can’t be displayed.

 ✦ The semantic meaning of image headlines is preserved. The alt tags
provide another great feature. If they replicate the image text, this text
is still available to screen readers and search engines, so the text isn’t
buried in the image.

 This technique is great for headlines or other areas, but notice that I was
careful to repeat the headline text in the <alt> tag. This is important
because I don’t want to lose the text. Search engine tools and screen readers
need the text.

Don’t be tempted to use this technique for larger amounts of body text.
Doing so causes some problems:

 ✦ The text is no longer searchable. Search engines can’t find text if it’s
buried in images.

 ✦ The text is harder to change. You can’t update your page with a text editor.
Instead, you have to download the image, modify it, and upload it again.

 ✦ Images require a lot more bandwidth than text. Don’t use images if
they don’t substantially add to your page. You can make the case for a
few heading images, but it’s harder to justify having your entire page
stored as an image just to use a particular font.

15_9780470537558-bk02ch02.indd 18715_9780470537558-bk02ch02.indd 187 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

188 Specifying the Font Size

Specifying the Font Size
Like font names, font sizes are easy to change in CSS, but there are some
hidden traps.

Size is only a suggestion!
In print media, after you determine the size of the text, it pretty much stays
there. The user can’t change the font size in print easily. By comparison,
Web browsers frequently change the size of text. A cellphone-based browser
displays text differently than one on a high-resolution LCD panel. Further,
most browsers allow the user to change the size of all the text on the screen.
Use Ctrl++ (plus sign) and Ctrl+– (minus sign) to make the text larger or
smaller. In older versions of IE (prior to IE7), choose the Text Size option
from the Page menu to change the text size.

The user should really have the ability to adjust the font size in the browser.
When I display a Web page on a projector, I often adjust the font size so stu-
dents in the back can read. Some pages have the font size set way too small
for me to read. (It’s probably my high-tech monitor. It couldn’t possibly have
anything to do with my age.)

Determining font sizes precisely is counter to the spirit of the Web. If you
declare that your text will be exactly 12 points, for example, one of two
things could happen:

 ✦ The browser might enforce the 12-point rule literally. This takes con-
trol from the user, so users who need larger fonts are out of luck. Older
versions of IE do this.

 ✦ The user might still change the size. If this is how the browser behaves
(and it usually is), 12 points doesn’t always mean 12 points. If the user
can change font sizes, the literal size selection is meaningless.

The Web developer should set up font sizes, but only in relative terms. Don’t
bother using absolute measurements (in most cases) because they don’t
really mean what you think. Let the user determine the base font size and
specify relative changes to that size.

Using the font-size style attribute
The basic idea of font size is pretty easy to grasp in CSS. Take a look at fon-
tSize.html in Figure 2-6.

This page obviously shows a number of different font sizes. The line “Font
Sizes” is an ordinary h1 element. All the other lines are paragraph tags. They
appear in different sizes because they have different styles applied to them.

15_9780470537558-bk02ch02.indd 18815_9780470537558-bk02ch02.indd 188 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 2

S
tylin

g
 T

e
x

t

189Specifying the Font Size

Figure 2-6:
You can
easily
modify font
sizes in your
pages.

Font sizes are changed with the (cleverly named) font-size attribute:

p {
 font-size: small;
}

Simply indicate the font-size rule, and, well, the size of the font. In this
example, I used the special value small, but there are many other ways to
specify sizes in CSS.

Absolute measurement units
Many times, you need to specify the size of something in CSS. Of course,
font size is one of these cases. The different types of measurement have
different implications. It’s important to know there are two distinct kinds
of units in CSS. Absolute measurements attempt to describe a particular
size, as in the real world. Relative measurements are about changes to
some default value. Generally, Web developers are moving toward relative
measurement for font sizes.

Points (pt)
In word processing, you’re probably familiar with points as a measurement
of font size. You can use the abbreviation pt to indicate you’re measuring in
points, for example:

p {
 font-size: 12pt;
}

There is no space between 12 and pt.

Unfortunately, points aren’t an effective unit of measure for Web pages.
Points are an absolute scale, useful for print, but they aren’t reliable on
the Web because you don’t know what resolution the user’s screen has. A
12-point font might look larger or smaller on different monitors.

15_9780470537558-bk02ch02.indd 18915_9780470537558-bk02ch02.indd 189 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

190 Specifying the Font Size

In some versions of IE, after you specify a font size in points, the user can no
longer change the size of the characters. This is unacceptable from a usabil-
ity standpoint. Relative size schemes (which I describe later in this chapter)
prevent this problem.

Pixels (px)
Pixels refer to the small dots on the screen. You can specify a font size in
pixels, although that’s not the way it’s usually done. For one thing, different
monitors make pixels in different sizes. You can’t really be sure how big a
pixel will be in relationship to the overall screen size. Different letters are dif-
ferent sizes, so the pixel size is a rough measurement of the width and height
of the average character. Use the px abbreviation to measure fonts in pixels:

p {
 font-size: 20px;
}

Traditional measurements (in, cm)
You can also use inches (in) and centimeters (cm) to measure fonts, but
this is completely impractical. Imagine you have a Web page displayed on
both your screen and a projection system. One inch on your own monitor
may look like ten inches on the projector. Real-life measurement units aren’t
meaningful for the Web. The only time you might use them is if you’ll be
printing something and you have complete knowledge of how the printer is
configured. If that’s the case, you’re better off using a print-oriented layout
tool (like a word processor) rather than HTML.

Relative measurement units
Relative measurement is a wiser choice in Web development. Use these
schemes to change sizes in relationship to the standard size.

Named sizes
CSS has a number of font size names built in:

xx-small large

x-small x-large

small xx-large

medium

 It may bother you that there’s nothing more specific about these sizes: How
big is large? Well, it’s bigger than medium. That sounds like a flip answer,
but it’s the truth. The user sets the default font size in the browser (or leaves
it alone), and all other font sizes should be in relation to this preset size. The
medium size is the default size of paragraph text on your page. For compari-
son purposes, <h1> tags are usually xx-large.

15_9780470537558-bk02ch02.indd 19015_9780470537558-bk02ch02.indd 190 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 2

S
tylin

g
 T

e
x

t

191Determining Other Font Characteristics

Percentage (%)
The percentage unit is a relative measurement used to specify the font in
relationship to its normal size. Use 50% to make a font half the size it would
normally appear and 200% to make it twice the normal size. Use the %
symbol to indicate percentage, as shown here:

p {
 font-size: 150%;
}

Percentages are based on the default size of ordinary text, so an <h1> tag at
100% is the same size as text in an ordinary paragraph.

Em (em)
In traditional typesetting, the em is a unit of measurement equivalent to the
width of the “m” character in that font. In actual Web use, it’s really another
way of specifying the relative size of a font. For instance, 0.5 ems is half the
normal size, and 3 ems is three times the normal size. The term em is used to
specify this measurement.

p {
 font-size: 1.5em;
}

Here are the best strategies for font size:

 ✦ Don’t change sizes without a good reason. Most of the time, the
browser default sizes are perfectly fine, but there may be some times
when you want to adjust fonts a little more.

 ✦ Define an overall size for the page. If you want to define a font size for
the entire page, do so in the <body> tag. Use a named size, percentage,
or ems to avoid the side effects of absolute sizing. The size defined in the
body is applied to every element in the body automatically.

 ✦ Modify any other elements. You might want your links a little larger
than ordinary text, for example. You can do this by applying a font-
size attribute to an element. Use relative measurement if possible.

Determining Other Font Characteristics
In addition to size and color (see Chapter 1 of this minibook), you can
change fonts in a number of other ways.

Figure 2-7 shows a number of common text modifications you can make.

15_9780470537558-bk02ch02.indd 19115_9780470537558-bk02ch02.indd 191 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

192 Determining Other Font Characteristics

Figure 2-7:
Here are a
few of the
things you
can do to
modify text.

The various paragraphs in this page are modified in different ways. You can
change the alignment of the text as well as add italic, bold, underline, or
strikethrough to the text.

CSS uses a potentially confusing set of rules for the various font manipulation
tools. One rule determines the font style, and another determines boldness.

I describe these techniques in the following sections for clarity.

I used a trick I haven’t shown yet to produce this comparison page.
I have multiple paragraphs, each with their own style. Look to Chapter 3
of this minibook to see how to have more than one paragraph style in a
particular page.

Using font-style for italics
The font-style attribute allows you to make italic text, as shown in
Figure 2-8.

Figure 2-8:
You can
make italic
text with the
font-style
attribute.

15_9780470537558-bk02ch02.indd 19215_9780470537558-bk02ch02.indd 192 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 2

S
tylin

g
 T

e
x

t

193Determining Other Font Characteristics

Here’s some code illustrating how to add italic formatting:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>italics.html</title>
 <style type = ”text/css”>
 p {
 font-style: italic;
 }
 </style>
 </head>

 <body>
 <h1>Italics</h1>
 <p>This paragraph is in italic form.</p>
 </body>
</html>

The font-style values can be italic, normal, or oblique (tilted toward
the left).

If you want to set a particular segment to be set to italic, normal, or oblique
style, use the font-style attribute.

Using font-weight for bold
You can make your font bold by using the font-weight CSS attribute, as
shown in Figure 2-9.

Figure 2-9:
The font-
weight
attribute
affects the
boldness of
your text.

If you want to make some of your text bold, use the font-weight CSS attri-
bute, like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />

15_9780470537558-bk02ch02.indd 19315_9780470537558-bk02ch02.indd 193 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

194 Determining Other Font Characteristics

 <title>bold.html</title>
 <style type = ”text/css”>
 p {
 font-weight: bold;
 }
 </style>
 </head>

 <body>
 <h1>Boldface</h1>
 <p>
 This paragraph is bold.
 </p>
 </body>
</html>

Font weight can be defined a couple ways. Normally, you simply indicate
bold in the font-weight rule, as I did in this code. You can also use a
numeric value from 100 (exceptionally light) to 900 (dark bold).

Using text-decoration
Text-decoration can be used to add a couple other interesting formats to
your text, including underline, strikethrough, overline, and blink.

For example, the following code produces an underlined paragraph:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>underline.html</title>
 <style type = ”text/css”>
 p {
 text-decoration: underline;
 }
 </style>
 </head>

 <body>
 <h1>Underline</h1>
 <p>
 This paragraph is underlined.
 </p>
 </body>
</html>

 Be careful using underline in Web pages. Users have been trained that under-
lined text is a link, so they may click your underlined text expecting it to take
them somewhere.

The underline.html code produces a page similar to Figure 2-10.

15_9780470537558-bk02ch02.indd 19415_9780470537558-bk02ch02.indd 194 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 2

S
tylin

g
 T

e
x

t

195Determining Other Font Characteristics

Figure 2-10:
You can
underline
text with
text-
decoration.

You can also use text-decoration for other effects, such as strikethrough
(called “line-through” in CSS,) as shown in the following code:

C “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>strikethrough.html</title>
 <style type = ”text/css”>
 p {
 text-decoration: line-through;
 }
 </style>
 </head>

 <body>
 <h1>Strikethrough</h1>
 <p>
 This paragraph has strikethrough text.
 </p>
 </body>
</html>

The strikethrough.html code produces a page similar to Figure 2-11.

Figure 2-11:
Text-
decoration
can be
used for a
strikethrough
effect.

15_9780470537558-bk02ch02.indd 19515_9780470537558-bk02ch02.indd 195 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

196 Determining Other Font Characteristics

Text-decoration has a few other rarely used options, such as

 ✦ Overline: The overline attribute places a line over the text. Except for
a few math and chemistry applications (which would be better done in
an equation editor and imported as images), I can’t see when this might
be used.

 ✦ Blink: The blink attribute is a distant cousin of the legendary <blink>
tag in Netscape and causes the text to blink on the page. The <blink>
tag (along with gratuitous animated GIFs) has long been derided as the
mark of the amateur. Avoid blinking text at all costs.

There’s an old joke among Internet developers: The only legitimate place to use
the <blink> tag is in this sentence: Schrodinger’s cat is <blink>not</blink>
dead. Nothing is funnier than quantum mechanics illustrated in HTML.

Using text-align for basic alignment
You can use the text-align attribute to center, left-align, or right-align
text, as shown in the following code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>center.html</title>
 <style type = ”text/css”>
 p {
 text-align: center;
 }
 </style>
 </head>

 <body>
 <h1>Centered</h1>
 <p>This paragraph is centered.</p>

 </body>
</html>

You can also use the text-align attribute to right- or left-justify your text.
The page shown in Figure 2-12 illustrates the text-align attribute.

 You can apply the text-align attribute only to text. The old <center>
tag could be used to center nearly anything (a table, some text, or images),
which was pretty easy but caused problems. Book III explains how to posi-
tion elements in all kinds of powerful ways, including centering anything.
Use text-align to center text inside its own element (whether that’s a
heading, a paragraph, a table cell, or whatever).

15_9780470537558-bk02ch02.indd 19615_9780470537558-bk02ch02.indd 196 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 2

S
tylin

g
 T

e
x

t

197Determining Other Font Characteristics

Figure 2-12:
This text is
centered
with text-
align.

Other text attributes
CSS offers a few other text manipulation tools, but they’re rarely used:

 ✦ Font-variant: Can be set to small-caps to make your text use only
capital letters. Lowercase letters are shown in a smaller font size.

 ✦ Letter-spacing: Adjusts the spacing between letters. It’s usually mea-
sured in ems. (See the section “Relative measurement units” earlier in
the chapter for more on ems.) Fonts are so unpredictable on the Web
that if you’re trying to micromanage this much, you’re bound to be dis-
appointed by the results.

 ✦ Word-spacing: Allows you to adjust the spacing between words.

 ✦ Text-indent: Lets you adjust the indentation of the first line of an ele-
ment. This value uses the normal units of measurement. Indentation can
be set to a negative value, causing an outdent if you prefer.

 ✦ Vertical-align: Used when you have an element with a lot of vertical
space (often a table cell). You can specify how the text behaves in this
situation.

 ✦ Text-transform: Helps you convert text into uppercase, lowercase, or
capitalized (first letter uppercase) forms.

 ✦ Line-height: Indicates the vertical spacing between lines in the element.
Like letter and word spacing, you’ll probably be disappointed if you’re
this concerned about exactly how things are displayed.

Using the font shortcut
It can be tedious to recall all the various font attributes and their possible
values. Aptana and other dedicated CSS editors make it a lot easier, but
there’s another technique often used by the pros. The font rule provides
an easy shortcut to a number of useful font attributes. The following code
shows you how to use the font rule:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

15_9780470537558-bk02ch02.indd 19715_9780470537558-bk02ch02.indd 197 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

198 Determining Other Font Characteristics

 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>fontTag.html</title>
 <style type = ”text/css”>
 p {
 font: bold italic 150% “Dadhand”, cursive;
 }
 </style>
 </head>

 <body>
 <h1>Using Font shortcut</h1>
 <p>
 This paragraph has many settings.
 </p>
 </body>
</html>

Figure 2-13 illustrates the powerful font rule in action.

Figure 2-13:
The font rule
can change
many things
at once.

The great thing about the font rule is how it combines many of the other
font-related rules for a simpler way to handle most text-formatting needs.

The font attribute is extremely handy. Essentially, it allows you to roll all
the other font attributes into one. Here’s how it works:

 ✦ Specify the font rule in the CSS.

 ✦ List any font-style attributes. You can mention any attributes nor-
mally used in the font-style rule (italic or oblique). If you don’t
want either, just move on.

 ✦ List any font-variant attributes. If you want small caps, you can indi-
cate it here. If you don’t, just leave this part blank.

 ✦ List any font-weight values. This can be “bold” or a font-weight
number (100–900).

 ✦ Specify the font-size value in whatever measurement system you want
(but ems or percentages are preferred). Don’t forget the measurement
unit symbol (em or %) because that’s how the font rule recognizes that
this is a size value.

15_9780470537558-bk02ch02.indd 19815_9780470537558-bk02ch02.indd 198 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 2

S
tylin

g
 T

e
x

t

199Determining Other Font Characteristics

 ✦ Indicate a font-family list last. The last element is a list of font families
you want the browser to try. This list must be last, or the browser may
not interpret the font attribute correctly. (Dadhand is a custom font I
own; cursive will be used if Dadhand is not available.)

The font rule is great, but it doesn’t do everything. You still may need sepa-
rate CSS rules to define your text colors and alignment. These attributes
aren’t included in the font shortcut.

Don’t use commas to separate values in the font attribute list. Use commas
only to separate values in the list of font-family declarations.

You can skip any values you want as long as the order is correct.
For example

 font: italic “Comic Sans MS”, cursive;

is completely acceptable, as is

 font: 70% sans-serif;

Working with subscripts and superscripts
Occasionally, you’ll need superscripts (characters that appear a little bit
higher than normal text, like exponents and footnotes) or subscripts (char-
acters that appear lower, often used in mathematical notation). Figure 2-14
demonstrates a page with these techniques.

Figure 2-14:
This page
has super-
scripts and
subscripts
(and, ooooh,
math!).

Surprisingly, you don’t need CSS to produce superscripts and subscripts.
These properties are managed through HTML tags. You can still style them
the way you can any other HTML tag.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>SuperSub.html</title>

15_9780470537558-bk02ch02.indd 19915_9780470537558-bk02ch02.indd 199 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

200 Determining Other Font Characteristics

 </head>

 <body>
 <p>
 A² + B² = C²
 </p>

 <p>
 i₀ = 0
 </p>
 </body>
</html>

15_9780470537558-bk02ch02.indd 20015_9780470537558-bk02ch02.indd 200 10/7/10 8:33 PM10/7/10 8:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Selectors,
Class, and Style

In This Chapter
✓ Modifying specific named elements

✓ Adding and modifying emphasis and strong emphasis

✓ Creating classes

✓ Introducing span and div

✓ Using pseudo-classes and the link tag

✓ Selecting specific contexts

✓ Defining multiple styles

You know how to use CSS to change all the instances of a particular tag,
but what if you want to be more selective? For example, you might

want to change the background color of only one paragraph, or you might
want to define some special new type of paragraph. Maybe you want to
specify a different paragraph color for part of your page, or you want visited
links to appear differently from unselected links. The part of the CSS style
that indicates what element you want to style is a selector. In this chapter,
you discover powerful new ways to select elements on the page.

Selecting Particular Segments
Figure 3-1 illustrates how you should refer to someone who doesn’t appreci-
ate your Web development prowess.

Defining more than one kind of paragraph
Apart from its cultural merit, this page is interesting because it has three dif-
ferent paragraph styles. The introductory paragraph is normal. The quote is
set in italicized font, and the attribution is monospaced and right-aligned.

The quote in the following code was generated by one of my favorite sites
on the Internet: the Shakespearean insult generator. Nothing is more satisfy-
ing than telling somebody off in iambic pentameter.

16_9780470537558-bk02ch03.indd 20116_9780470537558-bk02ch03.indd 201 10/7/10 8:34 PM10/7/10 8:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

202 Selecting Particular Segments

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>quote.html</title>
 <style type = ”text/css”>
 #quote {
 font: bold italic 130% Garamond, Comic Sans MS, fantasy;
 text-align: center;
 }

 #attribution {
 font: 80% monospace;
 text-align: right;
 }
 </style>
 </head>

 <body>
 <h1>Literature Quote of the day</h1>
 <p>
 How to tell somebody off the classy way:
 </p>

 <p id = ”quote”>
 [Thou] leathern-jerkin, crystal-button, knot-pated,
 agatering, puke-stocking, caddis-garter, smooth-tongue, Spanish pouch!
 </p>

 <p id = ”attribution”>
 -William Shakespeare (Henry IV Part I)
 </p>

 </body>
</html>

Figure 3-1:
This page
has three
kinds of
paragraphs.

16_9780470537558-bk02ch03.indd 20216_9780470537558-bk02ch03.indd 202 10/7/10 8:34 PM10/7/10 8:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 3

S
e

le
c

to
rs, C

la
ss,

a
n

d
 S

tyle

203Using Emphasis and Strong Emphasis

Styling identified paragraphs
Until now, you’ve used CSS to apply a particular style to an element all
across the page. For example, you can add a style to the <p> tag, and that
style applies to all the paragraphs on the page.

Sometimes (as in the Shakespeare insult page), you want to give one element
more than one style. You can do this by naming each element and using the
name in the CSS style sheet. Here’s how it works:

 1. Add an id attribute to each HTML element you want to modify.

 For example, the paragraph with the attribution now has an id attribute
with the value attribution.

 <p id = “attribution”>

 2. Make a style in CSS.

 Use a pound sign followed by the element’s ID in CSS to specify you’re
not talking about a tag type any more, but a specific element: For exam-
ple, the CSS code contains the selector #attribution, meaning, “Apply
this style to an element with the attribution id.”

 #attribution {

 3. Add the style.

 Create a style for displaying your named element. In this case, I want
the paragraph with the attribution ID right-aligned, monospace,
and a little smaller than normal. This style will be attached only to the
specific element.

 #attribution {
 font: 80% monospace;
 text-align: right;
 }

The ID trick works great on any named element. IDs have to be unique (you
can’t repeat the same ID on one page), so this technique is best when you have
a style you want to apply to only one element on the page. It doesn’t matter
what HTML element it is (it could be an h1, a paragraph, a table cell, or what-
ever). If it has the ID quote, the #quote style is applied to it. You can have
both ID selectors and ordinary (element) selectors in the same style sheet.

Using Emphasis and Strong Emphasis
You may be shocked to know that XHTML doesn’t allow italics or bold.
Old-style HTML had the <i> tag for italics and the tag for bold. These
seem easy to use and understand. Unfortunately, they can trap you. In your
XHTML, you shouldn’t specify how something should be styled. You should
specify instead the purpose of the styling. The <i> and tags are removed
from XHTML Strict and replaced with and .

16_9780470537558-bk02ch03.indd 20316_9780470537558-bk02ch03.indd 203 10/7/10 8:34 PM10/7/10 8:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

204 Using Emphasis and Strong Emphasis

Adding emphasis to the page
The tag means emphasized. By default, em italicizes your text. The
 tag stands for strong emphasis. It defaults to bold.

Figure 3-2 illustrates a page with the default styles for em and strong.

The code for the emphasis.html page is pretty straightforward. It has no
CSS at all:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>emphasis.html</title>
 </head>

 <body>
 <h1>Emphasis and Strong Emphasis</h1>
 <p>
 This paragraph illustrates two main kinds of emphasis.
 This sentence uses the em tag.
 By default, emphasis is italic.
 This sentence uses strong emphasis.
 The default formatting of strong emphasis is bold.
 </p>

 <p>
 Of course you can change the formatting with CSS.
 This is a great example of semantic formatting.
 Rather than indicating the formatting
 of some text, you indicate how much it is emphasized.
 </p>

 <p>
 This way, you can go back and change things, like adding color
 to emphasized text without the formatting commands
 muddying your actual text.
 </p>
 </body>
</html>

It’d be improper to think that em is just another way to say italic and strong
is another way to say bold. In the old scheme, after you define something
as italic, you’re pretty much stuck with that. The XHTML way describes the
meaning, and you can define it how you want.

Modifying the display of em and strong
Figure 3-3 shows how you might modify the levels of emphasis. I used yellow
highlighting (without italics) for em and a larger red font for strong.

16_9780470537558-bk02ch03.indd 20416_9780470537558-bk02ch03.indd 204 10/7/10 8:34 PM10/7/10 8:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 3

S
e

le
c

to
rs, C

la
ss,

a
n

d
 S

tyle

205Using Emphasis and Strong Emphasis

Figure 3-2:
You can
use em
and strong
to add
emphasis.

Figure 3-3:
You can
change the
way that em
and strong
modify text.

The code for emphasisStyle.html (as shown in Figure 3-3) is identical to
the code for emphasis.html (as shown in Figure 3-2). The only difference
is the addition of a style sheet. The style sheet is embedded in the Web page
between style tags. Check out Chapter 1 of this minibook for a refresher on
how to incorporate CSS styles in your Web pages.

 <style type = “text/css”>
 em {
 font-style: normal;

16_9780470537558-bk02ch03.indd 20516_9780470537558-bk02ch03.indd 205 10/7/10 8:34 PM10/7/10 8:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

206 Defining Classes

 background-color: yellow;
 }

 strong {
 color: red;
 font-size: 110%;
 }
 </style>

The style is used to modify the XHTML. The meaning in the XHTML stays the
same — only the style changes.

The semantic markups are more useful than the older (more literal) tags
because they still tell the truth even if the style has been changed. (In the
XHTML code, the important thing is whether the text is emphasized, not
what it means to emphasize the text. That job belongs to CSS.)

What’s funny about the following sentence?

 is always bold.

Get it? That’s a bold-faced lie! Sometimes I crack myself up.

Defining Classes
You can easily apply a style to all the elements of a particular type in a
page, but sometimes you might want to have tighter control of your styles.
For example, you might want to have more than one paragraph style. As an
example, look at the classes.html page featured in Figure 3-4.

Figure 3-4:
Each joke
has a
question
and an
answer.

16_9780470537558-bk02ch03.indd 20616_9780470537558-bk02ch03.indd 206 10/7/10 8:34 PM10/7/10 8:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 3

S
e

le
c

to
rs, C

la
ss,

a
n

d
 S

tyle

207Defining Classes

Once again, multiple formats are on this page:

 ✦ Questions have a large italic sans serif font. There’s more than one
question.

 ✦ Answers are smaller, blue, and in a cursive font. There’s more than
one answer, too.

Questions and answers are all paragraphs, so you can’t simply style the
paragraph because you need two distinct styles. There’s more than one
question and more than one answer, so the ID trick would be problematic.
Two different elements can’t have the same ID — you don’t want to create
more than one identical definition. This is where the notion of classes comes
into play.

Adding classes to the page
CSS allows you to define classes in your XHTML and make style definitions
that are applied across a class. It works like this:

 1. Add the class attribute to your XHTML questions.

 Unlike ID, several elements can share the same class. All my questions
are defined with this variation of the <p> tag. Setting the class to ques-
tion indicates these paragraphs will be styled as questions:

 <p class = “question”>
 What kind of cow lives in the Arctic?
 </p>

 2. Add similar class attributes to the answers by setting the class of the
answers to answer:

 <p class = “answer”>
 An Eskimoo!
 </p>

 Now you have two different subclasses of paragraph: question and
answer.

 3. Create a class style for the questions.

 The class style is defined in CSS. Specify a class with the period (.)
before the class name. Classes are defined in CSS like this:

 <style type = “text/css”>
 .question {
 font: italic 150% arial, sans-serif;
 text-align: left;
 }

 In this situation, the question class is defined as a large sans serif font
aligned to the left.

16_9780470537558-bk02ch03.indd 20716_9780470537558-bk02ch03.indd 207 10/7/10 8:34 PM10/7/10 8:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

208 Defining Classes

 4. Define the look of the answers.

 The answer class uses a right-justified cursive font.
 .answer {
 font: 120% “Comic Sans MS”, cursive;
 text-align: right;
 color: #00F;
 }
 </style>

Combining classes
Here’s the code for the classes.html page, showing how to use CSS
classes:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>classes.html</title>
 <style type = ”text/css”>
 .question {
 font: italic 150% arial, sans-serif;
 text-align: left;
 }

 .answer {
 font: 120% ”Comic Sans MS”, cursive;
 text-align: right;
 color: #00F;
 }
 </style>
 </head>

 <body>
 <h1>Favorite jokes</h1>

 <p class = ”question”>
 What kind of cow lives in the Arctic?
 </p>

 <p class = ”answer”>
 An Eskimoo!
 </p>

 <p class = ”question”>
 What goes on top of a dog house?
 </p>

 <p class = ”answer”>
 The woof!
 </p>
 </body>
</html>

Sometimes you see selectors, like

p.fancy

16_9780470537558-bk02ch03.indd 20816_9780470537558-bk02ch03.indd 208 10/7/10 8:34 PM10/7/10 8:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 3

S
e

le
c

to
rs, C

la
ss,

a
n

d
 S

tyle

209Defining Classes

that include both an element and a class name. This style is applied only to
paragraphs with the fancy class attached. Generally, I like classes because
they can be applied to all kinds of things, so I usually leave the element name
out to make the style as reusable as possible.

One element can use more than one class. Figure 3-5 shows an example of
this phenomenon.

Figure 3-5:
There’s
red, there’s
script, and
then there’s
both.

The paragraphs in Figure 3-5 appear to be in three different styles, but only
red and script are defined. The third paragraph uses both classes. Here’s
the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>redScript.html</title>
 <style type = ”text/css”>
 .red {
 color: white;
 background-color: red;
 }

 .script {
 font-family: cursive;
 }
 </style>
 </head>

 <body>
 <h1>Multiple Classes</h1>
 <p class = ”red”>
 This paragraph uses the red class
 </p>

16_9780470537558-bk02ch03.indd 20916_9780470537558-bk02ch03.indd 209 10/7/10 8:34 PM10/7/10 8:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

210 Introducing div and span

 <p class = ”script”>
 This paragraph uses the script class
 </p>

 <p class = ”red script”>
 This paragraph uses both classes
 </p>
 </body>
</html>

The style sheet introduces two classes. The red class makes the paragraph
red (well, white text with a red background), and the script class applies a
cursive font to the element.

The first two paragraphs each have a class, and the classes act as you’d
expect. The interesting part is the third paragraph because it has two classes.

 <p class = “red script”>

This assigns both the red and script classes to the paragraph. Both styles
will be applied to the element in the order they are written. Note that both
class names occur inside quotes and no commas are needed (or allowed).
You can apply more than two classes to an element if you wish. If the classes
have conflicting rules (say one makes the element green and the next makes
it blue), the latest class in the list will overwrite earlier values.

An element can also have an ID. The ID style, the element style, and all the
class styles are taken into account when the browser tries to display the
object.

 Normally, I don’t like to use colors or other specific formatting instructions
as class names. Usually, it’s best to name classes based on their meaning
(like mainColorScheme). You might decide that green is better than red,
so you either have to change the class name or you have to have a red class
that colored things green. That’d be weird.

Introducing div and span
So far, I’ve applied CSS styles primarily to paragraphs (with the <p> tag),
but you can really use any element you want. In fact, you may want to invent
your own elements. Perhaps you want a particular style, but it’s not quite
a paragraph. Maybe you want a particular style inside a paragraph. XHTML
has two very useful elements that are designed as generic elements. They
don’t have any predefined meaning, so they’re ideal candidates for modifica-
tion with the id and class attributes.

16_9780470537558-bk02ch03.indd 21016_9780470537558-bk02ch03.indd 210 10/7/10 8:34 PM10/7/10 8:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 3

S
e

le
c

to
rs, C

la
ss,

a
n

d
 S

tyle

211Introducing div and span

 ✦ div: A block-level element (like the p element). It acts just like a para-
graph. A div usually has carriage returns before and after it. Generally,
you use div to group a series of paragraphs.

 ✦ span: An inline element. It doesn’t usually cause carriage returns
because it’s meant to be embedded into some other block-level element
(usually a paragraph or a div). Usually, a span is used to add some type
of special formatting.

Organizing the page by meaning
To see why div and span are useful, take a look at Figure 3-6.

Figure 3-6:
This page
has names
and phone
numbers.

The formatting of the page isn’t complete (read about positioning CSS in
Book III), but some formatting is in place. Each name and phone number pair
is clearly a group of things. Names and phone numbers are formatted differ-
ently. The interesting thing about this page is the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>divSpan.html</title>
 <style type = ”text/css”>
 .contact {
 background-color: #CCCCFF;
 }
 .name {
 font: italic 110% arial, sans-serif;
 }

 .phone {
 font: 100% monospace;
 }

 </style>
 </head>

 <body>
 <div class = ”contact”>
 Andy
 111-1111
 </div>

16_9780470537558-bk02ch03.indd 21116_9780470537558-bk02ch03.indd 211 10/7/10 8:34 PM10/7/10 8:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

212 Introducing div and span

 <div class = ”contact”>
 Elizabeth
 222-2222
 </div>

 <div class = ”contact”>
 Matthew
 333-3333
 </div>

 </body>
</html>

What’s exciting about this code is its clarity. When you look at the XHTML,
it’s very clear what type of data you’re talking about because the structure
describes the data. Each div represents a contact. A contact has a name
and a phone number.

 The XHTML doesn’t specify how the data displays, just what it means.

Why not make a table?
This is where experienced HTML 4 people shake their heads in disbelief.
This page seems like a table, so why not make it one? What matters here
isn’t that the information is in a table, but that names and phone numbers
are part of contacts. There’s no need to bring in artificial table elements if
you can describe the data perfectly well without them.

If you still want to make the data look like a table, that’s completely possible,
as shown in Figure 3-7. See Book III to see exactly how some of the styling
code works. Of course, you’re welcome to look at the source code for this
styled version (dubbed divSpanStyled.html on the CD-ROM) if you want
a preview.

Figure 3-7:
After you
define the
data, you
can style it
as a table if
you want.

The point is this: After you define the data, you can control it as much as
you want. Using span and div to define your data gives you far more con-
trol than tables and leaves your XHTML code much cleaner.

16_9780470537558-bk02ch03.indd 21216_9780470537558-bk02ch03.indd 212 10/7/10 8:34 PM10/7/10 8:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 3

S
e

le
c

to
rs, C

la
ss,

a
n

d
 S

tyle

213Using Pseudo-Classes to Style Links

div and span aren’t simply a replacement for tables. They’re tools for
organizing your page into segments based on meaning. After you have
them in place, you can use CSS to apply all kinds of interesting styles to
the segments.

Using Pseudo-Classes to Style Links
Now that you have some style going in your Web pages, you may be a bit
concerned about how ugly links are. The default link styles are useful, but
they may not fit with your color scheme.

Styling a standard link
Adding a style to a link is easy. After all, <a> (the tag that defines links) is
just an XHTML tag, and you can add a style to any tag. Here’s an example,
where I make my links black with a yellow background:

a {
 color: black;
 background-color: yellow;
}

That works fine, but links are a little more complex than some other ele-
ments. Links actually have three states:

 ✦ Normal: This is the standard state. With no CSS added, most browsers
display unvisited links as blue underlined text.

 ✦ Visited: This state is enabled when the user visits a link and returns to
the current page. Most browsers use a purple underlined style to indi-
cate that a link has been visited.

 ✦ Hover: The hover state is enabled when the user’s mouse is linger-
ing over the element. Most browsers don’t use the hover state in their
default settings.

If you apply a style to the <a> tags in a page, the style is applied to all the
states of all the anchors.

Styling the link states
You can apply a different style to each state, as illustrated by Figure 3-8. In
this example, I make ordinary links black on a white background. A visited
link is black on yellow; and, if the mouse is hovering over a link, the link is
white with a black background.

16_9780470537558-bk02ch03.indd 21316_9780470537558-bk02ch03.indd 213 10/7/10 8:34 PM10/7/10 8:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

214 Using Pseudo-Classes to Style Links

Figure 3-8:
Links can
have three
states:
normal,
visited, and
hover.

Take a look at the code and see how it’s done:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>linkStates.html</title>
 <style type = ”text/css”>
 a{
 color: black;
 background-color: white;
 }

 a:visited {
 color: black;
 background-color: #FFFF33;
 }

 a:hover {
 color: white;
 background-color: black;
 }
 </style>
 </head>

 <body>
 <h1>Pseudo-classes and links</h1>

 <p>
 This link is normal
 </p>

 <p>
 This link has been visited
 </p>

 <p>
 The mouse is hovering over this link
 </p>
 </body>
</html>

Nothing is special about the links in the HTML part of the code. The links
change their state dynamically while the user interacts with the page. The
style sheet determines what happens in the various states. Here’s how you
approach putting the code together:

16_9780470537558-bk02ch03.indd 21416_9780470537558-bk02ch03.indd 214 10/7/10 8:34 PM10/7/10 8:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 3

S
e

le
c

to
rs, C

la
ss,

a
n

d
 S

tyle

215Using Pseudo-Classes to Style Links

 1. Determine the ordinary link style first by making a style for the <a> tag.

 If you don’t define any other pseudo-classes, all links will follow the ordi-
nary link style.

 2. Make a style for visited links.

 A link will use this style after that site is visited during the current
browser session. The a:visited selector indicates links that have
been visited.

 3. Make a style for hovered links.

 The a:hover style is applied to the link only when the mouse is hover-
ing over the link. As soon as the mouse leaves the link, the style reverts
to the standard or visited style, as appropriate.

Best link practices
Link styles have some special characteristics. You need to be a little bit care-
ful how you apply styles to links. Consider the following issues when apply-
ing styles to links:

 ✦ The order is important. Be sure to define the ordinary anchor first. The
pseudo-classes are based on the standard anchor style.

 ✦ Make sure they still look like links. It’s important that users know
something is intended to be a link. If you take away the underlining and
the color that normally indicates a link, your users might be confused.
Generally, you can change colors without trouble, but links should be
either underlined text or something that clearly looks like a button.

 ✦ Test visited links. Testing visited links is a little tricky because, after
you visit a link, it stays visited. If you have the Web Developer tool-
bar installed on Firefox, you can choose the Miscellaneous➪Visited
Links command to mark all links as visited or unvisited. In IE, choose
Tools➪Delete Browsing History and then select the Delete History
button. You then need to refresh the page for the change to take effect.

 ✦ Don’t change font size in a hover state. Unlike most styles, hover
changes the page in real time. A hover style with a different font size
than the ordinary link can cause problems. The page is automatically
reformatted to accept the larger (or smaller) font, which can move a
large amount of text on the screen rapidly. This can be frustrating and
disconcerting for users. It’s safest to change colors or borders on hover
but not the font family or font size.

The hover pseudo-class is supposed to be supported on other elements, but
browser support is spotty. You can define a hover pseudo-class for div and
<p> elements with some confidence if users are using the latest browsers.
Earlier browsers are less likely to support this feature, so don’t rely on it
too much.

16_9780470537558-bk02ch03.indd 21516_9780470537558-bk02ch03.indd 215 10/7/10 8:34 PM10/7/10 8:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

216 Selecting in Context

Selecting in Context
CSS allows some other nifty selection tricks. Take a look at Figure 3-9 and
you see a page with two kinds of paragraphs in it.

The code for the context-style.html page is deceptively simple:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>context-style</title>
 <style type = ”text/css”>
 #special p {
 text-align: right;
 }
 </style>
 </head>

 <body>
 <h1>Selecting By Context</h1>

 <div>
 <p>This paragraph is left-justified.</p>
 <p>This paragraph is left-justified.</p>
 <p>This paragraph is left-justified.</p>
 </div>

 <div id = ”special”>
 <p>The paragraphs in this div are different.</p>
 <p>The paragraphs in this div are different.</p>
 <p>The paragraphs in this div are different.</p>
 </div>
 </body>
</html>

Figure 3-9:
Obviously
two kinds of
paragraphs
are here —
or are
there?

16_9780470537558-bk02ch03.indd 21616_9780470537558-bk02ch03.indd 216 10/7/10 8:34 PM10/7/10 8:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 3

S
e

le
c

to
rs, C

la
ss,

a
n

d
 S

tyle

217Defining Multiple Styles at Once

If you look at the code for context-style.html, you see some interesting
things:

 ✦ The page has two divs. One div is anonymous, and the other is
special.

 ✦ None of the paragraphs has an ID or class. The paragraphs in this page
don’t have names or classes defined, yet they clearly have two different
types of behavior. The first three paragraphs are aligned to the left, and
the last three are aligned to the right.

 ✦ The style rule affects paragraphs inside the special div. Take
another look at the style:

 #special p {

 This style rule means, “Apply this style to any paragraph appearing
inside something called special.” You can also define a rule that could
apply to an image inside a list item or emphasized items inside a par-
ticular class. When you include a list of style selectors without commas,
you’re indicating a nested style.

 ✦ Paragraphs defined outside special aren’t affected. This nested selec-
tion technique can help you create very complex style combinations. It
becomes especially handy when you start building positioned elements,
like menus and columns.

Defining Multiple Styles at Once
Sometimes, you want a number of elements to share similar styles. As an
example, look at Figure 3-10.

Figure 3-10:
H1, H2, and
H3 have
similar style
rules.

16_9780470537558-bk02ch03.indd 21716_9780470537558-bk02ch03.indd 217 10/7/10 8:34 PM10/7/10 8:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

218 Defining Multiple Styles at Once

As shown in Figure 3-10, the top three headings all have very similar styles.
Creating three different styles would be tedious, so CSS includes a shortcut:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>multiStyle.html</title>
 <style type = ”text/css”>
 h1, h2, h3 {
 text-align: center;
 font-family: ”Bradley Hand ITC”, cursive;
 background-color: yellow;
 }

 h3 {
 font-family: monospace;
 }
 </style>
 </head>

 <body>
 <h1>H1 Heading</h1>
 <h2>H2 Heading</h2>
 <h3>H3 Heading</h3>
 </body>
</html>

One style element (the one that begins h1, h2, h3) provides all the informa-
tion for all three heading types. If you include more than one element in a
style selector separated by commas, the style applies to all the elements in
the list. In this example, the centered cursive font with a yellow background
is applied to heading levels 1, 2, and 3 all in the same style.

If you want to make modifications, you can do so. I created a second h3 rule,
changing the font-family attribute to monospace. Style rules are applied
in order, so you can always start with the general rule and then modify spe-
cific elements later in the style if you wish.

 If you have multiple elements in a selector rule, it makes a huge difference
whether you use commas. If you separate elements with spaces (but no
commas), CSS looks for an element nested within another element. If you
include commas, CSS applies the rule to all the listed elements.

16_9780470537558-bk02ch03.indd 21816_9780470537558-bk02ch03.indd 218 10/7/10 8:34 PM10/7/10 8:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Borders and
Backgrounds

In This Chapter
✓ Creating borders

✓ Managing border size, style, and color

✓ Using the border shortcut style

✓ Understanding the box model

✓ Setting padding and margin

✓ Creating background and low-contrast images

✓ Changing background image settings

✓ Adding images to list items

CSS offers some great features for making your elements more colorful,
including a flexible and powerful system for adding borders to your ele-

ments. You can also add background images to all or part of your page. This
chapter describes how to use borders and backgrounds for maximum effect.

Joining the Border Patrol
You can use CSS to draw borders around any HTML element. You have some
freedom in the border size, style, and color. Here are two ways to define
border properties: using individual border attributes, and using a shortcut.
Borders don’t actually change the layout, but they do add visual separation
that can be appealing, especially when your layouts are more complex.

Using the border attributes
Figure 4-1 illustrates a page with a simple border drawn around the heading.

Figure 4-1:
This page
features a
double red
border.

17_9780470537558-bk02ch04.indd 21917_9780470537558-bk02ch04.indd 219 10/7/10 8:35 PM10/7/10 8:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

220 Joining the Border Patrol

The code for the borderProps.html page demonstrates the basic prin-
ciples of borders in CSS:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>borderProps.html</title>
 <style type = ”text/css”>
 h1 {
 border-color: red;
 border-width: .25em;
 border-style: double;
 }
 </style>
 </head>

 <body>
 <h1>This has a border</h1>
 </body>
</html>

Each element can have a border defined. Borders require three attributes:

 ✦ width: The width of the border. This can be measured in any CSS
unit, but border width is normally described in pixels (px) or ems.
(Remember: An em is roughly the width of the capital letter “M” in the
current font.)

 ✦ color: The color used to display the border. The color can be defined
like any other color in CSS, with color names or hex values.

Shades of danger
Several border styles rely on shading to pro-
duce special effects. Here are a couple things
to keep in mind when using these shaded styles:

 ✓ You need a wide border. The shading
effects are typically difficult to see if the
border is very thin.

 ✓ Browsers shade differently. All the shad-
ing tricks modify the base color (the color
you indicate with the border-color
attribute) to simulate depth. Unfortunately,
the browsers don’t all do this in the same
way. The Firefox/Mozilla browsers create
a new color lighter than the base color to
simulate areas in the light (the top and left

sides of an outset border, for example).
Internet Explorer (IE) uses the base color
for the lighter regions and creates a darker
shade to simulate areas in darkness. I
show a technique to define different color
schemes for each browser in Chapter 5 of
this minibook. For now, avoid shaded styles
if this bothers you.

 ✓ Black shading doesn’t work in IE. IE makes
colors darker to get shading effects. If your
base color is black, IE can’t make anything
darker, so you don’t see the shading effects
at all. Likewise, white shading doesn’t work
well on Firefox.

17_9780470537558-bk02ch04.indd 22017_9780470537558-bk02ch04.indd 220 10/7/10 8:35 PM10/7/10 8:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 4

B
o

rd
e

rs a
n

d

B
a

c
k

g
ro

u
n

d
s

221Joining the Border Patrol

 ✦ style: CSS supports a number of border styles. For the example in the
following section, I chose a double border. This draws a border with two
thinner lines around the element.

 You must define all three attributes if you want borders to appear properly.
You can’t rely on the default values to work in all browsers.

Defining border styles
After you define the three attributes, it’s time to pick your border style. CSS
has a predetermined list of border styles you can choose from. Figure 4-2
shows a page with all the primary border styles displayed.

Figure 4-2:
This page
shows the
main border
styles.

You can choose any of these styles for any border:

 ✦ Solid: A single solid line around the element.

 ✦ Double: Two lines around the element with a gap between them. The
border width is the combined width of both lines and the gap.

 ✦ Groove: Uses shading to simulate a groove etched in the page.

 ✦ Ridge: Uses shading to simulate a ridge drawn on the page.

 ✦ Inset: Uses shading to simulate a pressed-in button.

 ✦ Outset: Uses shading to simulate a button sticking out from the page.

 ✦ Dashed: A dashed line around the element.

 ✦ Dotted: A dotted line around the element.

17_9780470537558-bk02ch04.indd 22117_9780470537558-bk02ch04.indd 221 10/7/10 8:35 PM10/7/10 8:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

222 Joining the Border Patrol

 I didn’t reprint the source of borderStyles.html here, but it’s included on
the CD-ROM and Web site if you want to look it over. I added a small margin
to each list item to make the borders easier to distinguish. Margins are dis-
cussed later in this chapter in the “Borders, margin, and padding” section.

Using the border shortcut
Defining three different CSS attributes for each border is a bit tedious.
Fortunately, CSS includes a handy border shortcut that makes borders a lot
easier to define, as Figure 4-3 demonstrates.

Figure 4-3:
This border
is defined
with only
one CSS
rule.

You can’t tell the difference from the output, but the code for border-
Shortcut.html is extremely simple:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>borderShortcut.html</title>
 <style type = ”text/css”>
 h1 {
 border: red 5px solid;
 }
 </style>
 </head>

 <body>
 <h1>This page uses the border shortcut</h1>
 </body>
</html>

The order in which you describe border attributes doesn’t matter. Just spec-
ify a color, a size, and a border style.

Creating partial borders
If you want, you can have more precise control of each side of a border.
There are a number of specialized border shortcuts for each of the sub-
borders. Figure 4-4 shows how you can add borders to the top, bottom, or
sides of your element.

17_9780470537558-bk02ch04.indd 22217_9780470537558-bk02ch04.indd 222 10/7/10 8:35 PM10/7/10 8:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 4

B
o

rd
e

rs a
n

d

B
a

c
k

g
ro

u
n

d
s

223Joining the Border Patrol

Figure 4-4 applies a border style to the bottom of the heading and to the left
side of the paragraph. Partial borders are pretty easy to build, as you can
see from the code listing:

Figure 4-4:
You can
specify
parts of your
border if you
want.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>subBorders.html</title>
 <style type = ”text/css”>
 h1 {
 border-bottom: 5px black double;
 }

 p {
 border-left:3px black dotted;
 border-right: 3px black dotted;
 border-top: 3px black dashed;
 border-bottom: 3px black groove;
 }
 </style>
 </head>

 <body>
 <h1>This heading has a bottom border</h1>

 <p>
 Paragraphs have several borders defined.
 </p>

 <p>
 Paragraphs have several borders defined.
 </p>

 </body>
</html>

17_9780470537558-bk02ch04.indd 22317_9780470537558-bk02ch04.indd 223 10/7/10 8:35 PM10/7/10 8:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

224 Introducing the Box Model

Notice the border styles. CSS has style rules for each side of the border:
border-top, border-bottom, border-left, and border-right. Each of
these styles acts like the border shortcut, but it only acts on one side of the
border.

There’s also specific border attributes for each side (bottom-border-width
adjusts the width of the bottom border, for example), but they’re almost
never used because the shortcut version is so much easier.

Introducing the Box Model
XHTML and CSS use a specific type of formatting called the box model.
Understanding how this layout technique works is important. If you don’t
understand some of the nuances, you’ll be surprised by the way your pages
flow.

The box model relies on two types of elements: inline and block-level. Block-
level elements include <div> tags, paragraphs, and all headings (h1–h6);
whereas, strong, a, and image are examples of inline elements.

The main difference between inline and block-level elements is this: Block-
level elements always describe their own space on the screen; whereas,
inline elements are allowed only within the context of a block-level element.

Your overall page is defined in block-level elements, which contain inline ele-
ments for detail.

Each block-level element (at least in the default setting) takes up the entire
width of the screen. The next block-level element goes directly underneath
the last element defined.

Inline elements flow differently. They tend to go immediately to the right of
the previous element. If there’s no room left on the current line, an inline ele-
ment drops down to the next line and goes to the far left.

Borders, margin, and padding
Each block-level element has several layers of space around it, such as:

 ✦ Padding: The space between the content and the border.

 ✦ Border: Goes around the padding.

 ✦ Margin: Space outside the border between the border and the parent
element.

Figure 4-5 shows the relationship among margin, padding, and border.

17_9780470537558-bk02ch04.indd 22417_9780470537558-bk02ch04.indd 224 10/7/10 8:35 PM10/7/10 8:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 4

B
o

rd
e

rs a
n

d

B
a

c
k

g
ro

u
n

d
s

225Introducing the Box Model

Figure 4-5:
Margin is
outside
the border;
padding is
inside.

You can change settings for the margin, border, and padding to adjust the
space around your elements. The margin and padding CSS rules are used
to set the sizes of these elements, as shown in Figure 4-6.

Figure 4-6:
Margins
and padding
affect the
positioning
of an
element.

In Figure 4-6, I applied different combinations of margin and padding to a
series of paragraphs. To make things easier to visualize, I drew a border
around the <div> containing all the paragraphs and each individual para-
graph element. You can see how the spacing is affected.

17_9780470537558-bk02ch04.indd 22517_9780470537558-bk02ch04.indd 225 10/7/10 8:35 PM10/7/10 8:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

226 Introducing the Box Model

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>marginPadding.html</title>
 <style type = ”text/css”>
 div {
 border: red 5px solid;
 }
 p {
 border: black 2px solid;
 }
 #margin {
 margin: 5px;
 }
 #padding {
 padding: 5px;
 }
 #both {
 margin: 5px;
 padding: 5px;
 }
 </style>
 </head>

 <body>
 <h1>Margins and padding</h1>
 <div id = ”main”>
 <p>This paragraph has the default margins and padding</p>
 <p id = ”margin”>This paragraph has a margin but no padding</p>
 <p id = ”padding”>This paragraph has padding but no margin</p>
 <p id = ”both”>This paragraph has a margin and padding</p>
 </div>
 </body>
</html>

You can determine margin and padding using any of the standard CSS mea-
surement units, but the most common are pixels and ems.

Positioning elements with margins and padding
As with borders, you can use variations of the margin and padding rules to
affect spacing on a particular side of the element. One particularly important
form of this trick is centering.

In old-style HTML, you could center any element or text with the <center>
tag. This was pretty easy, but it violated the principle of separating content
from style. The text-align: center rule is a nice alternative, but it only
works on the contents of an element. If you want to center an entire block-
level element, you need another trick, as you can see in Figure 4-7.

This page illustrates a few interesting ideas:

17_9780470537558-bk02ch04.indd 22617_9780470537558-bk02ch04.indd 226 10/7/10 8:35 PM10/7/10 8:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 4

B
o

rd
e

rs a
n

d

B
a

c
k

g
ro

u
n

d
s

227Introducing the Box Model

Figure 4-7:
Using
margins
to adjust
positioning.

 ✦ You can adjust the width of a block. The main div that contains all the
paragraphs has its width set to 75 percent of the page body width.

 ✦ Center an element by setting margin-left and margin-right to
auto. Set both the left and right margins to auto to make an element
center inside its parent element. This trick is most frequently used to
center divs and tables.

 ✦ Use margin-left to indent an entire paragraph. You can use
margin-left or margin-right to give extra space between the
border and the contents.

 ✦ Percentages refer to percent of the parent element. When you use
percentages as the unit measurement for margins and padding, you’re
referring to the percentage of the parent element; so a margin-left of
50 percent leaves the left half of the element blank.

 ✦ Borders help you see what’s happening. I added a border to the main-
Body div to help you see that the div is centered.

 ✦ Setting the margins to auto doesn’t center the text. It centers the div
(or other block-level element). Use text-align: center to center
text inside the div.

The code that demonstrates these ideas is shown here:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>center.html</title>
 <style type = ”text/css”>
 #mainBody {
 border: 5px double black;
 width: 75%;

17_9780470537558-bk02ch04.indd 22717_9780470537558-bk02ch04.indd 227 10/7/10 8:35 PM10/7/10 8:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

228 Changing the Background Image

 margin-left: auto;
 margin-right: auto;
 }
 .indented {
 margin-left: 50%;
 }
 </style>
 </head>

 <body>
 <h1>Centering</h1>
 <div id = “mainBody”>
 <p>
 This paragraph is part of the centered main body.
 </p>
 <p class = “indented”>
 This paragraph is indented to the right.
 </p>
 </div>
 </body>
</html>

Changing the Background Image
You can use another CSS rule — background-image — to apply a back-
ground image to a page or elements on a page. Figure 4-8 shows a page with
this feature.

Figure 4-8:
This page
has a
background
image for
the body
and another
for the
heading.

17_9780470537558-bk02ch04.indd 22817_9780470537558-bk02ch04.indd 228 10/7/10 8:35 PM10/7/10 8:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 4

B
o

rd
e

rs a
n

d

B
a

c
k

g
ro

u
n

d
s

229Changing the Background Image

Background images are easy to apply. The code for backgroundImage.
html shows how:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>backgroundImage.html</title>
 <style type = ”text/css”>
 body {
 background-image: url(“ropeBG.jpg”);
 }
 h1 {
 background-image: url(“ropeBGLight.jpg”);
 }
 p {
 background-color: white;
 }
 </style>
 </head>

 <body>
 <h1>Using Background Images</h1>

 <p>
 The heading uses a lighter version of the background,
 and the paragraph uses a solid color background.
 The heading uses a lighter version of the background,
 and the paragraph uses a solid color background.
 The heading uses a lighter version of the background,
 and the paragraph uses a solid color background.
 </p>
 </body>
</html>

Attaching the background image to an element through CSS isn’t difficult.
Here are the general steps:

 1. Find or create an appropriate image and place it in the same directory
as the page so it’s easy to find.

 2. Attach the background-image style rule to the page you want to
apply the image to.

 If you want to apply the image to the entire page, use the body element.

 3. Tell CSS where background-image is by adding a url identifier.

 Use the keyword url() to indicate that the next thing is an address.

 4. Enter the address of the image.

 It’s easiest if the image is in the same directory as the page. If that’s the
case, you can simply type the image name. Make sure you surround the
URL with quotes.

17_9780470537558-bk02ch04.indd 22917_9780470537558-bk02ch04.indd 229 10/7/10 8:35 PM10/7/10 8:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

230 Changing the Background Image

 5. Test your background image by viewing the Web page in your browser.

 A lot can go wrong with background images. The image may not be in
the right directory, you might have misspelled its name, or you may
have forgotten the url() bit. (I do all those things sometimes.)

Getting a background check
It’s pretty easy to add backgrounds, but background images aren’t perfect.
Figure 4-9 demonstrates a page with a nice background. Unfortunately, the
text is difficult to read.

Background images can add a lot of zing to your pages, but they can intro-
duce some problems, such as:

 ✦ Background images can add to the file size. Images are very large,
so a big background image can make your page much larger and harder
to download.

 ✦ Some images can make your page harder to read. An image in the
background can interfere with the text, so the page can be much harder
to read.

 ✦ Good images don’t make good backgrounds. A good picture draws the
eye and calls attention to it. The job of a background image is to fade
into the background. If you want people to look at a picture, embed it.
Background images shouldn’t jump into the foreground.

 ✦ Backgrounds need to be low contrast. If your background image is
dark, you can make light text viewable. If the background image is light,
dark text shows up. If your image has areas of light and dark (like nearly
all good images), it’ll be impossible to find a text color that looks good
against it.

Solutions to the background conundrum
Web developers have come up with a number of solutions to background
image issues over the years. I used several of these solutions in the back-
groundImage.html page (the readable one shown in Figure 4-8).

Using a tiled image
If you try to create an image the size of an entire Web page, the image will
be so large that dialup users will almost never see it. Even with compression
techniques, a page-sized image is too large for quick or convenient loading.

17_9780470537558-bk02ch04.indd 23017_9780470537558-bk02ch04.indd 230 10/7/10 8:35 PM10/7/10 8:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 4

B
o

rd
e

rs a
n

d

B
a

c
k

g
ro

u
n

d
s

231Changing the Background Image

Figure 4-9:
The text is
very hard to
read. Don’t
do this to
your users!

Fortunately, you can use a much smaller image and fool the user into think-
ing it takes up the entire screen. Figure 4-10 shows the ropeBG.jpg that I
used to cover the entire page.

Figure 4-10:
The image
is only 500 x
500 pixels.

 Image courtesy of Julian Burgess (Creative Commons License)

17_9780470537558-bk02ch04.indd 23117_9780470537558-bk02ch04.indd 231 10/7/10 8:35 PM10/7/10 8:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

232 Changing the Background Image

I used a specially created image for the background. Even though it’s only
500 pixels wide by 500 pixels tall, it’s been carefully designed to repeat so you
can’t see the seams. If you look carefully, you can tell that the image repeats,
but you can’t tell exactly where one copy ends and the next one begins.

This type of image is a tiled background or sometimes a seamless texture.

Getting a tiled image
If you want an image that repeats seamlessly, you have two main options:

 ✦ Find an image online. A number of sites online have free seamless back-
grounds for you to use on your site. Try a search and see what you come
up with.

 ✦ Make your own image. If you can’t find a pre-made image that does
what you want, you can always make your own. All the main image
editing tools have seamless background tools. In GIMP, choose
Filters➪Map➪Make Seamless. Check Book VIII, Chapter 4 for a technique
to build your own tiled backgrounds in GIMP.

By default, a background image repeats as many times as necessary in both the
horizontal and vertical dimensions to fill up the entire page. This fills the entire
page with your background, but you only have to download a small image.

Setting background colors
Background colors can be a great tool for improving readability. If you set the
background color of a specific element, that background color will appear on
top of the underlying element’s background image. For the background
Image.html example, I set the background color of all p objects to white, so
the text will appear on white regardless of the complex background. This is a
useful technique for body text (like <p> tags) because text tends to be smaller
and readability is especially important. If you want, you can set a background
color that’s similar to the background image. Just be sure the foreground
color contrasts with the background color so the text is easy to read.

When you use a dark background image with light text, be sure to also set
the background-color to a dark color. This way the text is readable.
Images take longer to load than colors and may be broken. Make sure the
user can read the text immediately.

Reducing the contrast
In backgroundImage.html, the heading text is pretty dark, which won’t
show up well against the dark background image. I used a different trick for
the h1 heading. The heading uses a different version of the ropes image; this
one is adjusted to be much brighter. The image is shown in Figure 4-11.

17_9780470537558-bk02ch04.indd 23217_9780470537558-bk02ch04.indd 232 10/7/10 8:35 PM10/7/10 8:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 4

B
o

rd
e

rs a
n

d

B
a

c
k

g
ro

u
n

d
s

233Changing the Background Image

Figure 4-11:
This is the
ropes image
with the
brightness
turned
way up.

With this element, I kept the ropes image, but I made a much brighter back-
ground so the dark text would show up well underneath. This technique
allows you to use the background image even underneath text, but here are
a few things to keep in mind if you use it:

 ✦ Make the image very dark or very light. Use the Adjust Colors com-
mand in IrfanView or your favorite image editor to make your image
dark or light. Don’t be shy. If you’re creating a lighter version, make it
very light. (See Book I, Chapter 6 for details on color manipulation in
IrfanView and Book VIII, Chapter 4 for how to change colors in GIMP.)

 ✦ Set the foreground to a color that contrasts with the background. If
you have a very light version of the background image, you can use dark
text on it. A dark background will require light text. Adjust the text color
with your CSS code.

 ✦ Set a background color. Make the background color representative of
the image. Background images can take some time to appear, but the
background color appears immediately because it is defined in CSS. This
is especially important for light text because white text on the default
white background is invisible. After the background image appears, it
overrides the background color. Be sure the text color contrasts with
the background, whether that background is an image or a solid color.

 ✦ Use this trick for large text. Headlines are usually larger than body text,
and they can be easier to read, even if they have a background behind
them. Try to avoid putting background images behind smaller body text.
This can make the text much harder to read.

17_9780470537558-bk02ch04.indd 23317_9780470537558-bk02ch04.indd 233 10/7/10 8:35 PM10/7/10 8:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

234 Manipulating Background Images

Manipulating Background Images
After you place your background image, you might not be completely
pleased with the way it appears. Don’t worry. You still have some control.
You can specify how the image repeats and how it’s positioned.

Turning off the repeat
Background images repeat both horizontally and vertically by default. You
may not want a background image to repeat, though. Figure 4-12 is a page
with the ropes image set to not repeat at all.

Figure 4-12:
The
background
doesn’t
repeat at all.

The code uses the background-repeat attribute to turn off the automatic
repetition.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>noRepeat.html</title>

17_9780470537558-bk02ch04.indd 23417_9780470537558-bk02ch04.indd 234 10/7/10 8:35 PM10/7/10 8:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 4

B
o

rd
e

rs a
n

d

B
a

c
k

g
ro

u
n

d
s

235Manipulating Background Images

 <style type = ”text/css”>
 body {
 background-image: url(”ropeBG.jpg”);
 background-repeat: no-repeat;
 }
 h1 {
 background-color: white;
 }
 </style>
 </head>

 <body>
 <h1>Background with no-repeat</h1>
 </body>
</html>

The background-repeat attribute can be set to one of four values:

 ✦ repeat: The default value; the image is repeated indefinitely in both x-
and y-axes.

 ✦ no-repeat: Displays the image one time; no repeat in x- or y-axis.

 ✦ repeat-x: Repeats the image horizontally but not vertically.

 ✦ repeat-y: Repeats the image vertically but not horizontally.

Making effective gradients with
repeat-x and repeat-y
Gradients are images that smoothly flow from one color to another. They
can have multiple colors, but simplicity is a virtue here. The repeat-x and
repeat-y techniques discussed in the previous section can be combined
with a special image to create a nice gradient background image that’s very
quick to download. Figure 4-13 shows an example of this technique.

Figure 4-13:
The page
appears to
have a large
background
image.

17_9780470537558-bk02ch04.indd 23517_9780470537558-bk02ch04.indd 235 10/7/10 8:35 PM10/7/10 8:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

236 Manipulating Background Images

Even though the entire page is covered in a background image, I made the
actual background quite small. The outlined area in Figure 4-13 is the actual
image used in the background (displayed with an img tag and a border). You
can see that the image used is very short (5 pixels tall). I used background-
repeat: y to make this image repeat as many times as necessary to fill the
height of the page.

The code is pretty straightforward:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>gradient.html</title>
 <style type = ”text/css”>
 body {
 background-image: url(”blueGrad.jpg”);
 background-repeat: repeat-y;
 }
 img {
 border: 1px solid black;
 }
 </style>
 </head>

 <body>
 <h1>Using a thin gradient background</h1>
 <p>
 Here’s the actual gradient height:

 alt = ”blue gradient” />
 </p>

 </body>
</html>

Here’s how you make a gradient background:

 1. Obtain or create a gradient image.

 Most image editing tools can make gradient fills easily. In GIMP, you
simply select the gradient tool, choose an appropriate foreground and
background color, and apply the gradient to the image.

 2. Set the image size.

 If you want your image to tile vertically (as I did), you’ll want to make it
very short (5 px) and very wide (I chose 1,600 px, so it would fill nearly
any browser).

 3. Apply the image as the background image of the body or of any other
element, using the background-image attribute.

 4. Set the background-repeat attribute to repeat-x to make the image
repeat as many times as necessary vertically.

17_9780470537558-bk02ch04.indd 23617_9780470537558-bk02ch04.indd 236 10/7/10 8:35 PM10/7/10 8:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 4

B
o

rd
e

rs a
n

d

B
a

c
k

g
ro

u
n

d
s

237Using Images in Lists

 Use a vertical gradient image if you prefer. If you want to have a color
that appears to change down the page, create a tall, skinny gradient and
set background-repeat to repeat-x.

The great thing about this technique is how it uses a relatively small image
to fill a large Web site. It looks good, but it’ll still download reasonably fast.

Using Images in Lists
It’s not quite a background, but you can also use images for list items.
Sometimes, you might want some type of special bullet for your lists, as
shown in Figure 4-14.

Figure 4-14:
I can’t get
enough
of those
Arrivivi
Gusanos.

On this page, I’ve listed some of my (many) favorite varieties of peppers.
For this kind of list, a custom pepper bullet is just the thing. Of course, CSS
is the answer:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>listImages.html</title>
 <style type = ”text/css”>
 li {
 list-style-image: url(”pepper.gif”);
 }
 </style>
 </head>

 <body>
 <h1>My Favorite Peppers</h1>

 Green
 Habenero
 Arrivivi Gusano

17_9780470537558-bk02ch04.indd 23717_9780470537558-bk02ch04.indd 237 10/7/10 8:35 PM10/7/10 8:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

238 Using Images in Lists

 </body>
</html>

The list-style-image attribute allows you to attach an image to a list
item. To create custom bullets:

 1. Begin with a custom image.

 Bullet images should be small, so you may have to make something
little. I took a little pepper image and resized it to be 25 x 25 pixels. The
image will be trimmed to an appropriate width, but it will have all the
height of the original image, so make it small.

 2. Specify the list-style-image with a url attribute.

 You can set the image as the list-style-image, and all the bullets
will be replaced with that image.

 3. Test the list in your browser.

 Be sure everything is working correctly. Check to see that the browser
can find the image, that the size is right, and that everything looks like
you expect.

17_9780470537558-bk02ch04.indd 23817_9780470537558-bk02ch04.indd 238 10/7/10 8:35 PM10/7/10 8:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Levels of CSS

In This Chapter
✓ Building element-level styles

✓ Creating external style sheets

✓ Creating a multipage style

✓ Managing cascading styles

✓ Using conditional comments

CSS is a great tool for setting up the visual display of your pages. When
you first write CSS code, you’re encouraged to place all your CSS rules

in a style element at the top of the page. CSS also allows you to define
style rules inside the body of the HTML and in a separate document. In this
chapter, you read about these alternative methods of applying style rules,
when to use them, and how various style rules interact with each other.

Managing Levels of Style
Styles can be applied to your pages at three levels:

 ✦ Local styles: Defined by specifying a style within an XHTML element’s
attributes.

 ✦ Page-level styles: Defined in the page’s header area. This is the type of
style used in Chapters 1 through 4 of this minibook.

 ✦ External styles: Defined on a separate document and linked to the page.

Using local styles
A style can be defined directly in the HTML body. Figure 5-1 is an example
of this type of code. A local style is also sometimes called an element-level
style, because it modifies a particular instance of an element on the page.

18_9780470537558-bk02ch05.indd 23918_9780470537558-bk02ch05.indd 239 10/7/10 8:36 PM10/7/10 8:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

240 Managing Levels of Style

Figure 5-1:
This page
has styles,
but they’re
defined in a
new way.

You can’t see the difference from Figure 5-1, but if you look over the
code, you’ll see it’s not like the style code you see in the other chapters in
this minibook:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>localStyles.html</title>
 </head>

 <body>
 <h1>Local Styles</h1>
 <p style = ”border: 2em #FF00FF groove”>
 This paragraph has a locally-defined border
 </p>

 <p style = ”font-family: sans-serif;
 font-size: 1.2em;
 font-style: italic”>
 This paragraph has a series of font and text rules applied.
 </p>
 </body>
</html>

While you look over this code, a couple things should become evident:

 ✦ No <style> element is in the header. Normally, you use a <style>
section in the page header to define all your styles. This page doesn’t
have such a segment.

 ✦ Paragraphs have their own style attributes. I added a style attribute
to each paragraph in the HTML body. All XHTML elements support the
style attribute.

 ✦ The entire style code goes in a single pair of quotes. For each styled
element, the entire style goes into a pair of quotes because it’s one
HTML attribute. You can use indentation and white space (as I did) to
make things easier to understand.

18_9780470537558-bk02ch05.indd 24018_9780470537558-bk02ch05.indd 240 10/7/10 8:36 PM10/7/10 8:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 5

Le
ve

ls o
f C

S
S

241Managing Levels of Style

When to use local styles
Local styles should not be your first choice, but they can be useful in some
circumstances.

If you’re writing a program to translate from a word processor or other tool,
local styles are often the easiest way to make the translation work. If you use
a word processor to create a page and you tell it to save the page as HTML, it
will often use local styles because word processors often use this technique in
their own proprietary format. Usually when you see an HTML page with a lot
of local styles, it’s because an automatic translation tool made the page.

Sometimes, you see local styles used in code examples. For example, the fol-
lowing code could be used to demonstrate different border styles:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>localBorders.html</title>
 </head>

 <body>
 <h1>Inline Borders</h1>
 <p style = ”border: 5px solid black”>
 This paragraph has a solid black border
 </p>

 <p style = ”border: 5px double black”>
 This paragraph has a double black border
 </p>

 </body>
</html>

For example purposes, it’s helpful to see the style right next to the element.
This code would be fine for demonstration or testing purposes (if you just
want to get a quick look at some border styles), but it wouldn’t be a good
idea for production code.

Local styles have very high priority, so anything you apply in a local style
overrides the other style rules. This can be a useful workaround if things
aren’t working like you expect, but it’s better to get your styles working cor-
rectly than to rely on a workaround.

The other place you’ll occasionally see local styles is in Dynamic HTML
(DHTML) applications, such as animation and motion. This technique often
involves writing JavaScript code to change various style elements on the
fly. The technique is more reliable when the style elements in question are
defined locally. See Book IV, Chapter 7 for a complete discussion of this topic.

18_9780470537558-bk02ch05.indd 24118_9780470537558-bk02ch05.indd 241 10/7/10 8:36 PM10/7/10 8:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

242 Managing Levels of Style

The drawbacks of local styles
It’s pretty easy to apply a local style, but for the most part, the technique
isn’t usually recommended because it has some problems, such as:

 ✦ Inefficiency: If you define styles at the element level with the style
attribute, you’re defining only the particular instance. If you want to set
paragraph colors for your whole page this way, you’ll end up writing a
lot of style rules.

 ✦ Readability: If style information is interspersed throughout the page, it’s
much more difficult to find and modify than if it’s centrally located in the
header (or in an external document, as you’ll see shortly).

 ✦ Lack of separation: Placing the styles at the element level defeats the
goal of separating content from style. It becomes much more difficult
to make changes, and the mixing of style and content makes your code
harder to read and modify.

 ✦ Awkwardness: An entire batch of CSS rules has to be stuffed into a
single HTML attribute with a pair of quotes. This can be tricky to read
because you have CSS integrated directly into the flow of HTML.

 ✦ Quote problems: The XHTML attribute requires quotes, and some CSS
elements also require quotes (font families with spaces in them, for
example). Having multiple levels of quotes in a single element is a recipe
for trouble.

Using an external style sheet
CSS supports another way to use styles, called external style sheets. This
technique allows you to define a style sheet as a separate document and
import it into your Web pages. To see why this might be attractive, take a
look at the following figure.

Figure 5-2 shows a page with a distinctive style.

Figure 5-2:
This page
has styles
for the body,
h1, and
paragraph
tags.

18_9780470537558-bk02ch05.indd 24218_9780470537558-bk02ch05.indd 242 10/7/10 8:36 PM10/7/10 8:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 5

Le
ve

ls o
f C

S
S

243Managing Levels of Style

When you look at the code for externalStyle.html, you might be sur-
prised to see no obvious style information at all!

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>externalStyle.html</title>
 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”myStyle.css” />
 </head>

 <body>
 <h1>External Style</h1>
 <p>
 This page has styles set for paragraphs, body, and header 1.
 </p>

 <p>
 The styles are defined in an external style sheet.
 </p>
 </body>
</html>

Where you normally see style tags (in the header), there is no style. Instead,
you see a <link> tag. This special tag is used to connect the current docu-
ment with another document.

Defining the external style
When you use a page-level style, the style elements aren’t embedded in the
page header but in an entirely separate document.

In this case, the page is connected to a special file called myStyle.css. This
file contains all the CSS rules:

/* myStyle.css */

body {
 background-color: #333300;
 color: #FFFFFF;
}

h1 {
 color: #FFFF33;
 text-align: center;
 font: italic 200% fantasy;
}

p {
 background-color: #FFFF33;
 color: #333300;
 text-align: right;
 border: 3px groove #FFFF33;
}

18_9780470537558-bk02ch05.indd 24318_9780470537558-bk02ch05.indd 243 10/7/10 8:36 PM10/7/10 8:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

244 Managing Levels of Style

The style sheet looks just like a page-level style, except for a few key differences:

 ✦ The style sheet rules are contained in a separate file. The style is no
longer part of the HTML page but is an entirely separate file stored on
the server. CSS files usually end with the .css extension.

 ✦ There are no <style></style> tags. These aren’t needed because the
style is no longer embedded in HTML.

 ✦ The code begins with a comment. The /* */ pair indicates a comment
in CSS. Truthfully, you can put comments in CSS in the page level just
like I did in this external file. External CSS files frequently have com-
ments in them.

 ✦ The style document has no HTML. CSS documents contain nothing but
CSS. This comes closer to the goal of separating style (in the CSS docu-
ment) and content (in the HTML document).

 ✦ The document isn’t tied to any particular page. The great advantage
of external CSS is reuse. The CSS document isn’t part of any particular
page, but any page can use it.

Reusing an external CSS style
External style sheets are really fun when you have more than one page that
needs the same style. Most Web sites today use multiple pages, and they
should share a common style sheet to keep consistency. Figure 5-3 shows a
second page using the same myStyle.css style sheet.

Figure 5-3:
Another
page using
exactly the
same style.

The code shows how easily this is done:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>SecondPage.html</title>
 <link rel = ”stylesheet”
 type = ”text/css”

18_9780470537558-bk02ch05.indd 24418_9780470537558-bk02ch05.indd 244 10/7/10 8:36 PM10/7/10 8:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 5

Le
ve

ls o
f C

S
S

245Managing Levels of Style

 href = ”myStyle.css” />
 </head>

 <body>
 <h1>Second Page</h1>
 <p>
 This page uses the same style as
 externalStyle.html.
 </p>
 </body>
</html>

External style sheets have some tremendous advantages:

 ✦ One style sheet can control many pages: Generally, you have a large
number of different pages in a Web site that all share the same general
style. You can define the style sheet in one document and have all the
HTML files refer to the CSS file.

 ✦ Global changes are easier: Say you have a site with a dozen pages, and
you decide you want some kind of chartreuse background (I don’t know
why — go with me here). If each page has its own page-level style defi-
nition, you have to make the change 12 times. If you’re using external
styles, you make the change in one place and it’s automatically propa-
gated to all the pages in the system.

 ✦ Separation of content and design: With external CSS, all the design is
housed in the CSS, and the data is in XHTML.

 ✦ Easy upgrades: Because the design parameters of the entire site are
defined in one file, you can easily change the site without having to mess
around with individual HTML files.

Understanding the link tag
The <link> tag is the key to adding a CSS reference to an HTML document.
The <link> tag has the following characteristics:

 ✦ The <link> tag is part of the HTML page. Use a <link> tag in your HTML
document to specify which CSS document will be used by the HTML page.

 ✦ The <link> tag only occurs in the header. Unlike the <a> tag, the
<link> tag can occur only in the header.

 ✦ The tag has no visual presence. The user can’t see the <link> tag, only
its effects.

 ✦ The link tag is used to relate the document with another document.
You use the <link> tag to describe the relationship between documents.

 ✦ The <link> tag has a rel attribute, which defines the type of
relationship. For now, the only relationship you’ll use is the
stylesheet attribute.

 ✦ The <link> tag also has an href attribute, which describes the loca-
tion of the other document.

18_9780470537558-bk02ch05.indd 24518_9780470537558-bk02ch05.indd 245 10/7/10 8:36 PM10/7/10 8:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

246 Understanding the Cascading Part of Cascading Style Sheets

Link tags are often used to connect a page to an externally defined style
document (more on them in the next section).

 Most people refer to the hyperlinks created by the anchor (<a>) tag as hyper-
links or links. This can lead to some confusion because, in this sense, the
link tag doesn’t create that type of link. If it were up to me, the <a> tag would
have been called the <link> tag, and the tag now called link would have
been called rel or something. Maybe Tim Berners-Lee meant to call me the
day he named these elements, and he just forgot. That’s what I’m thinking.

Specifying an external link
To use the <link> tag to specify an external style sheet, follow these steps:

 1. Define the style sheet.

 External style sheets are very similar to the ones you already know. Just
put all the styles in a separate text document without the <style> and </
style> tags. In my example, I created a new text file called myStyle.css.

 2. Create a link element in the HTML page’s head area to define the
link between the HTML and CSS pages.

 My link element looks like this:
 <link rel = “stylesheet”
 type = “text/css”
 href = “myStyle.css” />

 3. Set the link’s relationship by setting the rel = “stylesheet“
attribute.

 Honestly, stylesheet is almost the only relationship you’ll ever use, so
this should become automatic.

 4. Specify the type of style by setting type = “text/css“ (just like you
do with page-level styles).

 5. Determine the location of the style sheet with the href attribute.

Understanding the Cascading Part
of Cascading Style Sheets

The C in CSS stands for cascading, which is an elegant term for an equally
elegant and important idea. Styles cascade or flow among levels. An ele-
ment’s visual display may be affected by rules in another element or even
another document.

18_9780470537558-bk02ch05.indd 24618_9780470537558-bk02ch05.indd 246 10/7/10 8:36 PM10/7/10 8:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 5

Le
ve

ls o
f C

S
S

247Understanding the Cascading Part of Cascading Style Sheets

Inheriting styles
When you apply a style to an element, you change the appearance of that
element. If the element contains other elements, the style is often passed on
to those containers. Take a look at Figure 5-4 for an illustration.

Figure 5-4:
The last
paragraph
inherits
several style
rules.

Figure 5-4 shows several paragraphs, all with different font styles. Each para-
graph is white with a black background. All the paragraphs use a fantasy
font. Two of the paragraphs are italicized, and one is also bold. Look at the
code to see how the CSS is defined.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>CascadingStyles</title>
 <style type = ”text/css”>
 body {
 color: white;
 background-color: black;
 }

 p {
 font-family: comic sans ms, fantasy;
 }

 .italicized {
 font-style: italic;
 }

 #bold {
 font-weight: bold;
 }
 </style>
 </head>

 <body>
 <h1>Cascading Styles</h1>

18_9780470537558-bk02ch05.indd 24718_9780470537558-bk02ch05.indd 247 10/7/10 8:36 PM10/7/10 8:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

248 Understanding the Cascading Part of Cascading Style Sheets

 <p>This is an ordinary paragraph</p>

 <p class = ”italicized”>
 This paragraph is part of a special class
 </p>

 <p class = ”italicized”
 id = ”bold”>
 This paragraph has a class and an ID</p>
 </body>

</html>

Take a look at the page, and you’ll notice some interesting things:

 ✦ Everything is white on a black background. These styles were defined
in the body. Paragraphs without specific colors will inherit the colors of
the parent element (in this case, the body). There’s no need to specify
the paragraph colors because the body takes care of them.

 ✦ Paragraphs all use the fantasy font. I set the paragraph’s font-family
attribute to fantasy. All paragraphs without an explicit font-family
attribute will use this rule.

 ✦ A class is used to define italics. The second paragraph is a member of
the italicized class, which gives it italics. Because it’s also a para-
graph, it gets the paragraph font, and it inherits the color rules from
the body.

 ✦ The bold ID only identifies font weight. The third paragraph has all
kinds of styles associated with it. This paragraph displays all the styles
of the second, plus the added attributes of its own ID.

In the cascadingStyles.html example, the final paragraph inherits the
font from the generic p definition, italics from its class, and boldfacing
from its ID. Any element can attain style characteristics from any of
these definitions.

Hierarchy of styles
An element will display any style rules you define for it, but certain rules are
also passed on from other places. Generally, this is how style rules cascade
through the page:

 ✦ The body defines overall styles for the page. Any style rules that you
want the entire page to share should be defined in the body. Any ele-
ment in the body begins with the style of the page. This makes it easy to
define an overall page style.

 ✦ A block-level element passes its style to its children. If you define a
div with a particular style, any elements inside that div will inherit
the div’s style attributes. Likewise, defining a list will also define the
list items.

18_9780470537558-bk02ch05.indd 24818_9780470537558-bk02ch05.indd 248 10/7/10 8:36 PM10/7/10 8:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 5

Le
ve

ls o
f C

S
S

249Understanding the Cascading Part of Cascading Style Sheets

 ✦ You can always override inherited styles. Of course, if you don’t want
paragraphs to have a particular style inherited from the body, you can
just change them.

 Not all style rules are passed on to child elements. The text formatting and
color styles are inherited, but border and positioning rules are not. This actu-
ally makes sense. Just because you define a border around a div doesn’t
mean you want the same border around the paragraphs inside that div.

Overriding styles
The other side of inherited style is the ability to override an inherited style
rule. For example, take a look at this code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>overRide.html</title>
 <style type = ”text/css”>
 body { color: red; }
 p {color: green; }
 .myClass { color: blue; }
 #whatColor { color: purple; }
 </style>
 </head>

 <body>
 <p class = ”myClass”
 id = ”whatColor”>
 This paragraph is a member of a class and has an ID,
 both with style rules. It has four conflicting
 color rules!
 </p>
 </body>
</html>

The code listing has a different indentation scheme than I’ve used in the rest
of the chapter. Because all the styles had one rule, I chose not to indent to
save space.

The question is this: What color will the whatColor element display? It’s a
member of the body, so it should be red. It’s also a paragraph, and paragraphs
are green. It’s also a member of the myClass class, so it should be blue.
Finally, it’s named whatColor, and elements with this ID should be purple.

Four seemingly conflicting color rules are all dropped on this poor element.
What color will it be?

CSS has a clear ranking system for handling this type of situation. In general,
more specific rules trump more general rules. Here’s the precedence (from
highest to lowest precedence):

18_9780470537558-bk02ch05.indd 24918_9780470537558-bk02ch05.indd 249 10/7/10 8:36 PM10/7/10 8:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

250 Understanding the Cascading Part of Cascading Style Sheets

 1. User preference: The user always has the final choice about what styles
are used. Users aren’t required to use any styles at all and can always
change the style sheet for their own local copy of the page. If a user
needs to apply a special style (for example, high contrast for people
with visual disabilities), he should always have that option.

 2. Local style: A local style (defined with the style attribute in the HTML)
has the highest precedence of developer-defined styles. It overrules any
other styles.

 3. id: A style attached to an element id has a great deal of weight because
it overrides any other styles defined in the style sheet.

 4. Class: Styles attached to a class override the style of the object’s ele-
ment. So, if you have a paragraph with a color green that belongs to a
class colored blue, the element will be blue because class styles outrank
element styles.

 5. Element: The element style takes precedence over any of its containers.
For example, if a paragraph is inside a div, the paragraph style has the
potential to override both the div and the body.

 6. Container element: divs, tables, lists, and other elements used as con-
tainers pass their styles on. If an element is inside one or more of these
containers, it can inherit style attributes from them.

 7. Body: Anything defined in the body style is an overall page default, but
it will be overridden by any other styles.

In the overRide.html example, the id rule will take precedence, so the
paragraph will display in green.

 If you want to see a more complete example, look at cascadingStyles.
html on the CD-ROM. It extends the whatColor example with other para-
graphs that demonstrate the various levels of the hierarchy.

Precedence of style definitions
When you have styles defined in various places (locally, page level, or
externally) the placement of the style rule also has a ranking. Generally, an
external style has the weakest rank. You can write a page-level style rule to
override an external style.

You might do this if you decide all your paragraphs will be blue, but you
have one page where you want the paragraphs green. Define paragraphs as
green in the page-level style sheet, and your page will have the green para-
graphs without interfering with the other page’s styles.

Page-level styles (defined in the header) have medium weight. They can
override external styles but are overridden by local styles.

18_9780470537558-bk02ch05.indd 25018_9780470537558-bk02ch05.indd 250 10/7/10 8:36 PM10/7/10 8:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 5

Le
ve

ls o
f C

S
S

251Using Conditional Comments

Locally defined styles (using the HTML style attribute) have the highest pre-
cedence, but they should be avoided as much as possible. Use classes or IDs
if you need to override the page-level default styles.

Using Conditional Comments
While we’re messing around with style sheets, there’s one more thing you
should know. Every once in a while, you’ll encounter a page that needs
one set of style rules for most browsers and has some exceptions for
Internet Explorer.

Most of what you know works equally well in any browser. I’ve focused
on the established standards, which work very well on most browsers.
Unfortunately, Internet Explorer (especially before version 7) is notorious
for not following the standards exactly. Internet Explorer (IE) doesn’t do
everything exactly right. When IE had unquestioned dominance, everybody
just made things work for IE. Now you have a bigger problem. You need to
make your code work for standards-compliant browsers, and sometimes you
need to make a few changes to make sure that IE displays things correctly.

Coping with incompatibility
This has been a problem since the beginning of Web development, and a
number of solutions have been proposed over the years, such as:

 ✦ “Best viewed with” disclaimers: One common technique is to code for
one browser or another and then ask users to agree with your choice by
putting up this disclaimer. This isn’t a good technique because the user
shouldn’t have to adapt to you. Besides, sometimes the choice is out of
the user’s hands. More and more small devices (such as PDAs and cell-
phones) have browsers built in, which are difficult to change. IE isn’t avail-
able on Linux machines, and not everyone can install a new browser.

 ✦ Parallel pages: You might be tempted to create two versions of your
page, one for IE and one for the standards-compliant browsers (Firefox,
Netscape Navigator, Opera, Safari, and so on). This is also a bad solution
because it’s twice (or more) as much work. You’ll have a lot of trouble
keeping track of changes in two different pages. They’ll inevitably fall
out of synch.

 ✦ JavaScript-based browser detection: In Book IV, you see that JavaScript
has features for checking on the browser. This is good, but it still
doesn’t quite handle the differences in style sheet implementation
between the browsers.

18_9780470537558-bk02ch05.indd 25118_9780470537558-bk02ch05.indd 251 10/7/10 8:36 PM10/7/10 8:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

252 Using Conditional Comments

 ✦ CSS hacks: The CSS community has frequently relied on a series of
hacks (unofficial workarounds) to handle CSS compatibility problems.
This approach works by exploiting certain flaws in IE to overcome
others. The biggest problem with this is that when Microsoft fixes some
flaws (as they’ve done with IE 7), many of the flaws you relied on to fix a
problem may be gone, but the original problem is still there.

 ✦ Conditional comments: Although IE has bugs, it also has some innova-
tive features. One of these features, conditional comments, lets you write
code that displays only in IE. Because the other browsers don’t support
this feature, the IE-specific code is ignored in any browser not based on
IE. This is the technique currently preferred by coders who adhere to
Web standards.

Making Internet Explorer–specific code
It’s a little easier for you to see how conditional comments work if I show
you a simple example and then show you how to use the conditional com-
ment trick to fix CSS incompatibility problems.

Figure 5-5 shows a simple page with Firefox. Figure 5-6 shows the exact same
page displayed in IE 7.

Figure 5-5:
This isn’t IE.

Figure 5-6:
And this
is IE.
Somehow
the code
knows the
difference.

Take a look at the code for whatBrowser.html and see how it works.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />

18_9780470537558-bk02ch05.indd 25218_9780470537558-bk02ch05.indd 252 10/7/10 8:36 PM10/7/10 8:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 5

Le
ve

ls o
f C

S
S

253Using Conditional Comments

 <title>IEorNot.html</title>

 </head>

 <body>
 <p>
 I will now use a conditional comment to determine your
 browser. I’ll let you know if you’re using IE.
 </p>

 <!--[if IE]>
 <h1>You’re using IE</h1>
 <![endif]-->

 </body>
</html>

The only part that’s new is the strange comments:

 <!--[if IE]>
 <h1>You’re using IE</h1>
 <![endif]-->

Conditional comments are a special feature available only in Internet
Explorer. They allow you to apply a test to your browser. You can place any
XHTML code you wish between <!-- [if IE]> and <![endif]-->, but
that code will only be rendered by versions of Internet Explorer. Any other
browser will read the entire block as a comment and ignore it completely.

So, when you look at whatBrowser in IE, it sees the conditional comment,
says to itself, “Why yes, I’m Internet Explorer,” and displays the “Using IE”
headline. If you look at the same page with Firefox, the browser doesn’t
understand the conditional comment but sees an HTML comment (which
begins with <!-- and ends with -->). HTML comments are ignored, so the
browser does nothing.

Using a conditional comment with CSS
Conditional comments on their own aren’t that interesting, but they can be
a very useful tool for creating compatible CSS. You can use conditional com-
ments to create two different style sheets, one that works for IE and one that
works with everything else. Figures 5-7 and 5-8 illustrate a simple example of
this technique:

Figure 5-7:
This page
has a yellow
background
in most
browsers.

18_9780470537558-bk02ch05.indd 25318_9780470537558-bk02ch05.indd 253 10/7/10 8:36 PM10/7/10 8:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

254 Using Conditional Comments

Most browsers will read a standard style sheet that creates a yellow
background.

Figure 5-8:
The same
page uses
a different
style sheet
in IE.

If the page is rendered in IE, it uses a second style sheet.

Look at the code, and you’ll see it’s very similar to the IEorNot.html page.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>WhatBrowser.html</title>

 <!-- default style -->
 <style type = ”text/css”>
 body {
 background-color: yellow;
 color: blue;
 }
 </style>

 <!-- IE only style overrides default -->
 <!--[if IE]>
 <style type = ”text/css”>
 body {
 background-color: red;
 color: yellow;
 }
 </style>
 <![endif]-->

 </head>

 <body>

 <p>
 This page has a red background in IE, and a yellow
 background in other browsers.
 </p>
 </body>
</html>

If you want a page to use different styles in IE and other browsers, do
the following:

18_9780470537558-bk02ch05.indd 25418_9780470537558-bk02ch05.indd 254 10/7/10 8:36 PM10/7/10 8:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book II

Chapter 5

Le
ve

ls o
f C

S
S

255Using Conditional Comments

 1. Define the default style first.

 Begin by creating the style that will work in most browsers. Most of
the time, this style will also work in IE. You can create the style at the
page level (with the <style></style> pair) or externally (with the
<link> tag).

 2. Create a conditional comment in the header.

 Create a conditional comment after the primary style, as shown in this
code snippet.

 <!-- default style -->
 <style type = “text/css”>
 body {
 background-color: yellow;
 color: blue;
 }
 </style>

 <!-- IE only style overrides default -->
 <!--[if IE]>

 <![endif]-->

 3. Build a new IE-specific style inside the comment.

 The style inside the comment will be applied only to IE browsers, such
as in the following lines:

 <!--[if IE]>
 <style type = “text/css”>
 body {
 background-color: red;
 color: yellow;
 }
 </style>
 <![endif]-->

 4. The commented style can be page level or external.

 Like the default style, you can use the <style></style> pair to make
a page-level style or you can use the <link> tag to pull in an externally
defined style sheet.

 5. Only place code that solves IE issues in the conditional style.

 IE will read the code in both styles, so there’s no need to repeat every-
thing. Use the conditional style for only those areas where IE doesn’t do
what you expect.

 6. Don’t forget to end the conditional comment.

 If you leave off the end of your conditional comment (or any comment,
for that matter), most of your page won’t appear. That could be bad.

18_9780470537558-bk02ch05.indd 25518_9780470537558-bk02ch05.indd 255 10/7/10 8:36 PM10/7/10 8:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

256 Using Conditional Comments

Checking the Internet Explorer version
So far, you haven’t encountered many situations that require conditional
comments, but they’re handy when you need them. One more trick can be
useful. You can specify which version of IE you’re using. This is important
when you read about positionable CSS in Book III because IE 7 works pretty
well with standards-compliant code, but the earlier versions do not. You can
use this variation to specify code only for IE 6 and earlier.

<!--[if lte IE 6]>
...
<[endif]-->

The lte signifies less than or equal to, so code inside this condition will run
only on early versions of IE.

18_9780470537558-bk02ch05.indd 25618_9780470537558-bk02ch05.indd 256 10/7/10 8:36 PM10/7/10 8:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Using Positional CSS

19_9780470537558-pp03.indd 25719_9780470537558-pp03.indd 257 10/7/10 8:36 PM10/7/10 8:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

Chapter 1: Fun with the Fabulous Float .259

Avoiding Old-School Layout Pitfalls .. 259
Introducing the Floating Layout Mechanism ... 262
Using Float with Block-Level Elements ... 265
Using Float to Style Forms .. 270

Chapter 2: Building Floating Page Layouts .279

Creating a Basic Two-Column Design ... 279
Building a Three-Column Design ... 287
Building a Fixed-Width Layout ... 293
Building a Centered Fixed-Width Layout .. 295

Chapter 3: Styling Lists and Menus. .299

Revisiting List Styles ... 299
Creating Dynamic Lists ... 304
Building a Basic Menu System ... 310

Chapter 4: Using Alternative Positioning. .317

Working with Absolute Positioning ... 317
Managing z-index ... 320
Building a Page Layout with Absolute Positioning 322
Creating a More Flexible Layout .. 326
Exploring Other Types of Positioning ... 329
Determining Your Layout Scheme ... 334

19_9780470537558-pp03.indd 25819_9780470537558-pp03.indd 258 10/7/10 8:36 PM10/7/10 8:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Fun with
the Fabulous Float

In This Chapter
✓ Understanding the pitfalls of traditional layout tools

✓ Using float with images and block-level tags

✓ Setting the width and margins of floated elements

✓ Creating attractive forms with float

✓ Using the clear attribute with float

One of the big criticisms against HTML is that it lacks real layout tools.
You can do a lot with your page, but it’s still basically a list of ele-

ments arranged vertically on the screen. As the Web matures and screen
resolutions improve, people want Web pages to look more like print matter,
with columns, good-looking forms, and more layout options. CSS provides
several great tools for building nice layouts. After you get used to them, you
can build just about any layout you can imagine. This chapter describes the
amazing float attribute and how it can be used as the foundation of great
page layouts.

Avoiding Old-School Layout Pitfalls
Back in the prehistoric (well, pre-CSS) days, no good option was built into
HTML for creating a layout that worked well. Clever Web developers and
designers found some ways to make things work, but these proposed solu-
tions all had problems.

Problems with frames
Frames were a feature of the early versions of HTML. They allowed you to
break a page into several segments. Each segment was filled with a different
page from the server. You could change pages independently of each other,
to make a very flexible system. You could also specify the width and height
of each frame.

At first glance, frames sound like an ideal solution to layout problems. In
practice, they had a lot of disadvantages, such as

20_9780470537558-bk03ch01.indd 25920_9780470537558-bk03ch01.indd 259 10/7/10 8:37 PM10/7/10 8:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

260 Avoiding Old-School Layout Pitfalls

 ✦ Complexity: If you had a master page with four segments, you had to
keep track of five Web pages. A master page kept track of the relative
positions of each section but had no content of its own. Each of the
other pages had content but no built-in awareness of the other pages.

 ✦ Linking issues: The default link action caused content to pop up in the
same frame as the original link, which isn’t usually what you want. Often,
you’d put a menu in one frame and have the results of that menu pop up
in another frame. This meant most anchors had to be modified to make
them act properly.

 ✦ Backup nightmares: If the user navigated to a page with frames and then
caused one of the frames to change, what should the backup button
do? Should it return to the previous state (with only the one segment
returned to its previous state) or was the user’s intent to move entirely
off the master page to what came before? There are good arguments for
either and no good way to determine the user’s intention. Nobody ever
came up with a reasonable compromise for this problem.

 ✦ Ugliness: Although it’s possible to make frames harder to see, they did
become obvious when the user changed the screen size and scroll bars
would automatically pop up.

 ✦ Search engine problems: Search engines had a lot of problems with
frame-based pages. The search engine might only index part of a frame-
based site, and the visitor might get incomplete Web sites missing navi-
gation or sidebars.

For all these reasons, frames aren’t allowed in XHTML Strict documents. The
layout techniques you read about in this chapter more than compensate for
the loss of frames as layout tools. Read how to integrate content from other
pages on the server with AJAX in Book VIII, Chapter 5.

Problems with tables
When it became clear that frames weren’t the answer, Web designers turned
to tables. HTML has a flexible and powerful table tool, and it’s possible to
do all kinds of creative things with that tool to create layouts. Many HTML
developers still do this, but you’ll see that flow-based layout is cleaner and
easier. Tables are meant for tabular data, not as a layout tool. When you use
tables to set up the visual layout of your site, you’ll encounter these problems:

 ✦ Complexity: Although table syntax isn’t that difficult, a lot of nested
tags are in a typical table definition. To get exactly the look you want,
you probably won’t use an ordinary table but tricks, like rowspan and
colspan, special spacer images, and tables inside tables. It doesn’t take
long for the code to become bulky and confusing.

20_9780470537558-bk03ch01.indd 26020_9780470537558-bk03ch01.indd 260 10/7/10 8:37 PM10/7/10 8:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 1

Fu
n

 w
ith

 th
e

Fa

b
u

lo
u

s Flo
a

t

261Avoiding Old-School Layout Pitfalls

 ✦ Content and display merging: Using a table for layout violates the prin-
ciple of separating content from display. If your content is buried inside
a complicated mess of table tags, it’ll be difficult to move and update.

 ✦ Inflexibility: If you create a table-based layout and then decide you
don’t like it, you basically have to redesign the entire page from scratch.
It’s no simple matter to move a menu from the left to the top in a table-
based design, for example.

Tables are great for displaying tabular data. Avoid using them for layout
because you have better tools available.

Problems with huge images
Some designers skip HTML altogether and create Web pages as huge images.
Tools, like Photoshop, include features for creating links in a large image.
Again, this seems ideal because a skilled artist can have control over exactly
what is displayed. Like the other techniques, this has some major draw-
backs, such as

 ✦ Size and shape limitations: When your page is based on a large image,
you’re committed to the size and shape of that image for your page. If a
person wants to view your page on a cellphone or PDA, it’s unlikely to
work well, if at all.

 ✦ Content issues: If you create all the text in your graphic editor, it isn’t
really stored to the Web page as text. In fact, the Web page will have no
text at all. This means that search engines can’t index your page, and
screen-readers for people with disabilities won’t work.

 ✦ Difficult updating: If you find an error on your page, you have to modify
the image, not just a piece of text. This makes updating your page more
challenging than it would be with a plain XHTML document.

 ✦ File size issues: An image large enough to fill a modern browser window
will be extremely large and slow to download. Using this technique will
all but eliminate users with dialup access from using your site.

Problems with Flash
Another tool that’s gained great popularity is the Flash animation tool from
Adobe (formerly Macromedia). This tool allows great flexibility in how
you position things on a page and supports techniques that are difficult or
impossible in ordinary HTML, such as sound and video integration, auto-
matic motion tweening, and path-based animation. Flash certainly has a
place in Web development (especially for embedded games — check out my
earlier book, Beginning Flash Game Programming For Dummies). Even though
Flash has great possibilities, you should avoid its use for ordinary Web
development for the following reasons:

20_9780470537558-bk03ch01.indd 26120_9780470537558-bk03ch01.indd 261 10/7/10 8:37 PM10/7/10 8:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

262 Introducing the Floating Layout Mechanism

 ✦ Cost: The Flash editor isn’t cheap, and it doesn’t look like it’ll get
cheaper. The tool is great, but if free or low-cost alternatives work just
as well, it’s hard to justify the cost.

 ✦ Binary encoding: All text in a Flash Web page is stored in the Flash
file itself. It’s not visible to the browser. Flash pages (like image-based
pages) don’t work in Web searches and aren’t useful for people with
screen-readers.

 ✦ Updating issues: If you need to change your Flash-based page, you need
the Flash editor installed. This can make it more difficult to keep your
page up to date.

 ✦ No separation of content: As far as the browser is concerned, there’s
no content but the Flash element, so there’s absolutely no separation of
content and layout. If you want to make a change, you have to change
the Flash application.

 ✦ Search engine problems: Code written in Flash can’t always be read by
search engines (though Google is working on the problem).

 ✦ Technical issues: Flash is not integrated directly into the browser,
which leads to a number of small complications. The Forward and Back
buttons don’t work as expected, printing can be problematic, and sup-
port is not universal.

Adobe has recently released a very interesting tool called Flex. It’s based
on the Flash engine, and it’s specifically designed to overcome some of the
shortcomings I list here. It’ll be interesting to see if this becomes an impor-
tant technology. Advances in HTML 5 and CSS3 also show some promise, so
perhaps Flash will become less necessary.

Introducing the Floating Layout Mechanism
CSS supplies a couple techniques for layout. The preferred technique for
most applications is a floating layout. The basic idea of this technique is to
leave the XHTML layout as simple as possible but to provide style hints that
tell the various elements how to interact with each other on the screen.

In a floating layout, you don’t legislate exactly where everything will go.
Instead, you provide hints and let the browser manage things for you. This
ensures flexibility because the browser will try to follow your intentions, no
matter what size or shape the browser window becomes. If the user resizes
the browser, the page will flex to fit to the new size and shape, if possible.

Floating layouts typically involve less code than other kinds of layouts
because only a few elements need specialized CSS. In most of the other
layout techniques, you need to provide CSS for every single element to make
things work as you expect.

20_9780470537558-bk03ch01.indd 26220_9780470537558-bk03ch01.indd 262 10/7/10 8:37 PM10/7/10 8:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 1

Fu
n

 w
ith

 th
e

Fa

b
u

lo
u

s Flo
a

t

263Introducing the Floating Layout Mechanism

Using float with images
The most common place to use the float attribute is with images. Figure
1-1 has a paragraph with an image embedded inside.

It’s more likely that you want the image to take up the entire left part of the
paragraph. The text should flow around the paragraph, similar to Figure 1-2.

Figure 1-1:
The image
acts like
a single
character
without a
flow setting.

Figure 1-2:
Now the
text wraps
around the
image.

20_9780470537558-bk03ch01.indd 26320_9780470537558-bk03ch01.indd 263 10/7/10 8:37 PM10/7/10 8:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

264 Introducing the Floating Layout Mechanism

When you add a float:left attribute to the img element, the image tends
to move to the left, pushing other content to the right. Now, the text flows
around the image. The image is actually removed from the normal flow of
the page layout, so the paragraph takes up all the space. Inside the para-
graph, the text avoids overwriting the image.

Adding the float property
The code for adding the float property is pretty simple:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>imgFloat.html</title>
 <style type = ”text/css”>
 img {
 float: left;
 }
 </style>
 </head>

 <body>
 <p>
 <img src = “ball.gif”
 alt = “ball” />
 The image now has its float attribute set to left. That means
 that the text will flow around the image as it normally does
 in a magazine.
 The image now has its float attribute set to left. That means
 that the text will flow around the image as it normally does
 in a magazine.
 The image now has its float attribute set to left. That means
 that the text will flow around the image as it normally does
 in a magazine.
 The image now has its float attribute set to left. That means
 that the text will flow around the image as it normally does
 in a magazine.
 The image now has its float attribute set to left. That means
 that the text will flow around the image as it normally does
 in a magazine.
 </p>
 </body>
</html>

The only new element in the code is the CSS float attribute. The img object
has a float:left attribute. It isn’t necessary to change any other attri-
butes of the paragraph because the paragraph text knows to float around
the image.

Of course, you don’t have to simply float to the left. Figure 1-3 shows the
same page with the image’s float attribute set to the right.

20_9780470537558-bk03ch01.indd 26420_9780470537558-bk03ch01.indd 264 10/7/10 8:37 PM10/7/10 8:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 1

Fu
n

 w
ith

 th
e

Fa

b
u

lo
u

s Flo
a

t

265Using Float with Block-Level Elements

Figure 1-3:
Now the
image is
floated to
the right.

Using Float with Block-Level Elements
The float attribute isn’t only for images. You can also use it with any ele-
ment (typically p or div) to create new layouts. Using the float attribute to
set the page layout is easy after you understand how things really work.

Floating a paragraph
Paragraphs and other block-level elements have a well-defined default
behavior. They take the entire width of the page, and the next element
appears below. When you apply the float element to a paragraph, the
behavior of that paragraph doesn’t change much, but the behavior of suc-
ceeding paragraphs is altered.

To illustrate, I take you all the way through the process of building two side-
by-side paragraphs.

Begin by looking at a page with three paragraphs. Paragraph 2 has its float
property set to left. Figure 1-4 illustrates such a page.

Figure 1-4:
Paragraphs
2 and 3
are acting
strangely.

20_9780470537558-bk03ch01.indd 26520_9780470537558-bk03ch01.indd 265 10/7/10 8:37 PM10/7/10 8:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

266 Using Float with Block-Level Elements

As you can see, some strange formatting is going on here. I improve on
things later to make the beginnings of a two-column layout, but for now, just
take a look at what’s going on:

 ✦ I’ve added borders to the paragraphs. As you’ll see, the width of an ele-
ment isn’t always obvious by looking at its contents. When I’m messing
around with float, I often put temporary borders on key elements so I
can see what’s going on. You can always remove the borders when you
have it working right.

 ✦ The first paragraph acts normally. The first paragraph has the same
behavior you see in all block-style elements. It takes the entire width of
the page, and the next element will be placed below it.

 ✦ The second paragraph is pretty normal. The second paragraph has
its float attribute set to left. This means that the paragraph will be
placed in its normal position, but that other text will be placed to the left
of this element.

 ✦ The third paragraph seems skinny. The third paragraph seems to
surround the second, but the text is pushed to the right. The float
parameter in the previous paragraph causes this one to be placed in any
remaining space (which currently isn’t much). The remaining space is
on the right and eventually underneath the second paragraph.

The code to produce this is simple HTML with equally simple CSS markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>floatDemo</title>
 <style type = ”text/css”>
 p {
 border: 2px black solid;
 }
 .floated {
 float: left;
 }
 </style>

 </head>

 <body>
 <h1>Float Demo</h1>
 <p>
 Paragraph 1.
 This paragraph has the normal behavior of a block-level element.
 It takes up the entire width of the page, and the next element
 is placed underneath.
 </p>

 <p class = “floated”>
 Paragraph 2.
 This paragraph is floated left. It is placed to the left, and the

20_9780470537558-bk03ch01.indd 26620_9780470537558-bk03ch01.indd 266 10/7/10 8:37 PM10/7/10 8:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 1

Fu
n

 w
ith

 th
e

Fa

b
u

lo
u

s Flo
a

t

267Using Float with Block-Level Elements

 next element will be placed to the right of it.
 </p>

 <p>
 Paragraph 3.
 This paragraph has no floating, width or margin. It takes whatever
 space it can to the right of the floated element, and then flows
 to the next line.
 </p>
 </body>
</html>

As you can see from the code, I have a simple class called floated with the
float property set to left. The paragraphs are defined in the ordinary
way. Even though paragraph 2 seems to be embedded inside paragraph 3
in the screen shot, the code clearly shows that this isn’t the case. The two
paragraphs are completely separate.

I added a black border to each paragraph so you can see that the size of the
element isn’t always what you’d expect.

Adjusting the width
When you float an element, the behavior of succeeding elements is highly
dependent on the width of the first element. This leads to a primary prin-
ciple of float-based layout:

If you float an element, you must also define its width.

The exception to this rule is elements with a predefined width, such as
images and many form elements. These elements already have an implicit
width, so you don’t need to define width in the CSS. If in doubt, try setting
the width at various values until you get the layout you’re looking for.

Figure 1-5 shows the page after I adjusted the width of the floated paragraph
to 50 percent of the page width.

Figure 1-5:
The floated
paragraph
has a
width of 50
percent of
the page.

20_9780470537558-bk03ch01.indd 26720_9780470537558-bk03ch01.indd 267 10/7/10 8:37 PM10/7/10 8:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

268 Using Float with Block-Level Elements

Things look better in Figure 1-5, but paragraph 2 still seems to be embedded
inside paragraph 3. The only significant change is in the CSS style:

 <style type = “text/css”>
 p {
 border: 2px black solid;
 }
 .floated {
 float: left;
 width: 50%;
 }
 </style>

I’ve added a width property to the floated element.

Elements that have the float attribute enabled will generally also have a
width defined, except for images or other elements with an inherent width.

When you use a percentage value in the context of width, you’re expressing
a percentage of the parent element (in this case, the body because the para-
graph is embedded in the document body). Setting the width to 50% means
I want this paragraph to span half the width of the document body.

Setting the next margin
Things still don’t look quite right. I added the borders around each para-
graph so you can see an important characteristic of floating elements. Even
though the text of paragraph 3 wraps to the right of paragraph 2, the actual
paragraph element still extends all the way to the left side of the page. The
element doesn’t necessarily flow around the floated element, but its contents
do. The background color and border of paragraph 3 still take as much
space as they normally would if paragraph 2 didn’t exist.

This is because a floated element is removed from the normal flow of the
page. Paragraph 3 has access to the space once occupied by paragraph 2,
but the text in paragraph 3 will try to find its own space without stepping on
text from paragraph 2.

Somehow, you need to tell paragraph 3 to move away from the paragraph 2
space. This isn’t a difficult problem to solve once you recognize it. Figure 1-6
shows a solution.

The margin-left property of paragraph 3 is set to 53 percent. Because the
width of paragraph 2 is 50 percent, this provides a little gap between the col-
umns. Take a look at the code to see what’s going on here:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>

20_9780470537558-bk03ch01.indd 26820_9780470537558-bk03ch01.indd 268 10/7/10 8:37 PM10/7/10 8:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 1

Fu
n

 w
ith

 th
e

Fa

b
u

lo
u

s Flo
a

t

269Using Float with Block-Level Elements

 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>floatWidthMargin.html</title>
 <style type = ”text/css”>
 p {
 border: 2px black solid;
 }
 .floated {
 float: left;
 width: 50%;
 }
 .right {
 margin-left: 52%;
 }
 </style>

 </head>

 <body>
 <h1>Specifying the width</h1>
 <p>
 Paragraph 1.
 This paragraph has the normal behavior of a block-level element.
 It takes up the entire width of the page, and the next element
 is placed underneath.
 </p>

 <p class = “floated”>
 Paragraph 2.
 This paragraph is floated left. The
 next element will be placed to the right of it. Now this has a width
 of 50%.
 </p>

 <p class = “right”>
 Paragraph 3.
 This paragraph now has a margin-left so it is separated from the
 previous paragraph. Its width is still automatically
 determined.
 </p>

 </body>
</html>

Figure 1-6:
The left
margin of
paragraph
3 is set
to give a
two-column
effect.

20_9780470537558-bk03ch01.indd 26920_9780470537558-bk03ch01.indd 269 10/7/10 8:37 PM10/7/10 8:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

270 Using Float to Style Forms

Using Float to Style Forms
Many page layout problems appear to require tables. Some clever use of the
CSS float can help elements with multiple columns without the overhead
of tables.

Forms cause a particular headache because a form often involves labels in a
left column followed by input elements in the right column. You’d probably
be tempted to put such a form in a table. Adding table tags will make the
HTML much more complex and isn’t required. It’s much better to use CSS to
manage the layout.

You can float elements to create attractive forms without requiring tables.
Figure 1-7 shows a form with float used to line up the various elements.

Figure 1-7:
This is a
nice-looking
form defined
without a
table.

As page design gets more involved, it makes more sense to think of the HTML
and the CSS separately. The HTML will give you a sense of the overall intent of
the page, and the CSS can be modified separately. Using external CSS is a natu-
ral extension of this philosophy. Begin by looking at floatForm.html and
concentrate on the XHTML structure before worrying about style:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>floatForm.html</title>
 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”floatForm.css” />

 </head>

 <body>
 <form action = “”>
 <fieldset>
 <label>Name</label>
 <input type = “text”
 id = “txtName” />
 <label>Address</label>

20_9780470537558-bk03ch01.indd 27020_9780470537558-bk03ch01.indd 270 10/7/10 8:37 PM10/7/10 8:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 1

Fu
n

 w
ith

 th
e

Fa

b
u

lo
u

s Flo
a

t

271Using Float to Style Forms

 <input type = “text”
 id = “txtAddress” />
 <label>Phone</label>
 <input type = “text”
 id = “txtPhone” />
 <button type = “button”>
 submit request
 </button>
 </fieldset>
 </form>
 </body>
</html>

While you look over this code, note several interesting things about how the
page is designed:

 ✦ The CSS is external. CSS is defined in an external document. This makes
it easy to change the style and helps you to focus on the XHTML docu-
ment in isolation.

 ✦ The XHTML code is minimal. The code is very clean. It includes a form
with a fieldset. The fieldset contains labels, input elements, and
a button.

 ✦ There isn’t a table. There’s no need to add a table as an artificial organi-
zation scheme. A table wouldn’t add to the clarity of the page. The form
elements themselves provide enough structure to allow all the format-
ting you need.

 ✦ Labels are part of the design. I used the label element throughout the
form, giving me an element that can be styled however I wish.

 ✦ Everything is selectable. I’ll want to apply one CSS style to labels,
another to input elements, and a third style to the button. I’ve set
up the XHTML so I can use CSS selectors without requiring any id or
class attributes.

 ✦ There’s a button. I used a button element instead of <input type =
“button”> on purpose. This way, I can apply one style to all the input
elements and a different style to the button element.

Designing a page like this one so its internal structure provides all the selec-
tors you need is wonderful. This keeps the page very clean and easy to read.
Still, don’t be afraid to add classes or IDs if you need them.

Figure 1-8 demonstrates how the page looks with no CSS.

It’s often a good idea to look at your page with straight XHTML before you
start messing around with CSS.

If you have a page with styles and you want to see how it will look without
the style rules, use the Web Developer toolbar. You can temporarily disable
some or all CSS style rules to see the default content underneath. This can
sometimes be extremely handy.

20_9780470537558-bk03ch01.indd 27120_9780470537558-bk03ch01.indd 271 10/7/10 8:37 PM10/7/10 8:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

272 Using Float to Style Forms

Figure 1-8:
The plain
XHTML is
a start, but
some CSS
would help
a lot.

Using float to beautify the form
It’d be very nice to give the form a tabular feel, with each row containing a
label and its associated input element. My first attempt at a CSS file for this
page looked like this:

/* floatNoClear.css
 CSS file to go with float form
 Demonstrates use of float, width, margin
 Code looks fine but the output is horrible.
*/

fieldset {
 background-color: #AAAAFF;
}
label {
 float: left;
 width: 5em;
 text-align: right;
 margin-right: .5em;
}
input {
 background-color: #CCCCFF;
 float: left;
}
button {
 float: left;
 width: 10em;
 margin-left: 7em;
 margin-top: 1em;
 background-color: #0000CC;
 color: #FFFFFF;
}

This CSS looks reasonable, but you’ll find it doesn’t quite work right. (I show
the problem and how to fix it later in this chapter.) Here are the steps to
build the CSS:

 1. Add colors to each element.

 Colors are a great first step. For one thing, they ensure that your selec-
tors are working correctly so that everything’s where you think it is.
This color scheme has a nice modern feel to it, with a lot of blues.

20_9780470537558-bk03ch01.indd 27220_9780470537558-bk03ch01.indd 272 10/7/10 8:37 PM10/7/10 8:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 1

Fu
n

 w
ith

 th
e

Fa

b
u

lo
u

s Flo
a

t

273Using Float to Style Forms

 2. Float the labels to the left.

 Labels are all floated to the left, meaning they should move as far left as
possible, and other things should be placed to the right of them.

 3. Set the label width to 5em.

 This gives you plenty of space for the text the labels will contain.

 4. Set the labels to be right-aligned.

 Right-aligning the labels will make the text snug up to the input ele-
ments but give them a little margin-right so the text isn’t too close.

 5. Set the input’s float to left.

 This tells each input element to go as far to the left (toward its label)
as it can. The input element goes next to the label if possible and on
the next line, if necessary. Like images, input elements have a default
width, so it isn’t absolutely necessary to define the width in CSS.

 6. Float the button, too, but give the button a little top margin so it has
a respectable space at the top. Set the width to 10em.

This seems to be a pretty good CSS file. It follows all the rules, but if you
apply it to floatForm.html, you’ll be surprised by the results shown in
Figure 1-9.

Figure 1-9:
This form
is…well…
ugly.

After all that talk about how nice float-based layout is, you’re probably
expecting something a bit neater. If you play around with the page in your
browser, you’ll find that everything works well when the browser is narrow,
but when you expand the width of the browser, it gets ugly. Figure 1-10
shows the form when the page is really skinny. (I used the CSS editor on the
Web Developer toolbar to adjust the width of the page display.)

Things get worse when the page is a little wider, as you can see in
Figure 1-11.

20_9780470537558-bk03ch01.indd 27320_9780470537558-bk03ch01.indd 273 10/7/10 8:37 PM10/7/10 8:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

274 Using Float to Style Forms

Figure 1-10:
The form
looks great
when the
page is
skinny.

Figure 1-11:
With a
slightly
wider
browser,
things get
strange.

20_9780470537558-bk03ch01.indd 27420_9780470537558-bk03ch01.indd 274 10/7/10 8:37 PM10/7/10 8:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 1

Fu
n

 w
ith

 th
e

Fa

b
u

lo
u

s Flo
a

t

275Using Float to Style Forms

If you make the page as wide as possible, you’ll get a sense of what the
browser was trying to accomplish in Figure 1-12.

When CSS doesn’t do what you want, it’s usually acting on some false
assumptions, which is the case here. Floating left causes an element to go as
far to the left as possible and on the next line, if necessary. However, that’s
not really what you want on this page. The inputs should float next to the
labels, but each label should begin its own line. The labels should float all
the way to the left margin with the inputs floating left next to the labels.

Adjusting the fieldset width
One approach is to consider how well the page behaves when it’s skinny
because the new label and input combination will simply wrap down to
the next line. You can always make a container narrow enough to force the
behavior you’re expecting. Because all the field elements are inside the
fieldset, you can simply make it narrower to get a nice layout, as shown
in Figure 1-13.

When you want to test changes in CSS, nothing beats the CSS editor in the
Web Developer Extension. I made Figure 1-13 by editing the CSS on the fly
with this tool. You can see that the new line of CSS is still highlighted.

Figure 1-12:
The browser
is trying to
put all the
inputs on
the same
line.

20_9780470537558-bk03ch01.indd 27520_9780470537558-bk03ch01.indd 275 10/7/10 8:37 PM10/7/10 8:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

276 Using Float to Style Forms

Figure 1-13:
With a
narrower
fieldset,
all the
elements
look much
nicer.

Setting the width of the fieldset to 15em does the job. Because the widths
of the other elements are already determined, forcing them into a 15em-wide
box makes everything line up nicely with the normal wrapping behavior of
the float attribute. If you don’t want the width change to be so obvious,
you can apply it to the form element, which doesn’t have any visible attri-
butes (unless you add them, such as color or border).

Unfortunately, this doesn’t always work because the user may adjust the
font size and mess up all your careful design.

Using the clear attribute to control page layout
Adjusting the width of the container is a suitable solution, but it does feel
like a bit of a hack. There should be some way to make the form work right,
regardless of the container’s width. There is exactly such a mechanism.

The clear attribute is used on elements with a float attribute. The clear
attribute can be set to left, right, or both. Setting the clear attribute to
left means you want nothing to the left of this element. In other words, the
element should be on the left margin of its container. That’s exactly what
you want here. Each label should begin its own line, so set its clear attri-
bute to left.

20_9780470537558-bk03ch01.indd 27620_9780470537558-bk03ch01.indd 276 10/7/10 8:37 PM10/7/10 8:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 1

Fu
n

 w
ith

 th
e

Fa

b
u

lo
u

s Flo
a

t

277Using Float to Style Forms

To force the button onto its own line, set its clear attribute to both. This
means that the button should have no elements to the left or the right. It
should occupy a line all its own.

If you want an element to start a new line, set both its float and clear
attributes to left. If you want an element to be on a line alone, set float to
left and clear to both.

Using the clear attribute allows you to have a flexible-width container and
still maintain reasonable control of the form design. Figure 1-14 shows that
the form can be the same width as the page and still work correctly. This
version works, no matter the width of the page.

Figure 1-14:
When you
apply clear
to floating
elements,
you can
control the
layout.

Here’s the final CSS code, including clear attributes in the labels
and button:

/* floatForm.css
 CSS file to go with float form
 Demonstrates use of float, width, margin, and clear
*/

fieldset {
 background-color: #AAAAFF;
}

label {
 clear: left;
 float: left;
 width: 5em;
 text-align: right;
 margin-right: .5em;
}

input {
 float: left;
 background-color: #CCCCFF;
}

button {
 float: left;
 clear: both;

20_9780470537558-bk03ch01.indd 27720_9780470537558-bk03ch01.indd 277 10/7/10 8:37 PM10/7/10 8:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

278 Using Float to Style Forms

 margin-left: 7em;
 margin-top: 1em;
 background-color: #0000CC;
 color: #FFFFFF;
}

You now have the basic tools in place to use flow layout. Look to Chapter 2
of this minibook to see how these tools are put together to build a complete
page layout.

20_9780470537558-bk03ch01.indd 27820_9780470537558-bk03ch01.indd 278 10/7/10 8:37 PM10/7/10 8:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Building Floating
Page Layouts

In This Chapter
✓ Creating a classic two-column page

✓ Creating a page-design diagram

✓ Using temporary borders

✓ Creating fluid layouts and three-column layouts

✓ Working with and centering fixed-width layouts

The floating layout technique provides a good alternative to tables,
frames, and other layout tricks formerly used. You can build many ele-

gant multi-column page layouts with ordinary XHTML and CSS styles.

Creating a Basic Two-Column Design
Many pages today use a two-column design with a header and footer. Such a
page is quite easy to build with the techniques you read about in this chapter.

Designing the page
It’s best to do your basic design work on paper, not on the computer. Here’s
my original sketch in Figure 2-1.

Draw the sketch first so you have some idea what you’re aiming for. Your
sketch should include the following information:

 ✦ Overall page flow: How many columns do you want? Will it have a
header and footer?

 ✦ Section names: Each section needs a name, which will be used in both
the XHTML and the CSS.

 ✦ Width indicators: How wide will each column be? (Of course, these
widths should add up to 100 percent or less.)

 ✦ Fixed or percentage widths: Are the widths measured in percentages
(of the browser size) or in a fixed measurement (pixels)? This has
important implications. For this example, I’m using a dynamic width
with percentage measurements.

21_9780470537558-bk03ch02.indd 27921_9780470537558-bk03ch02.indd 279 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

280 Creating a Basic Two-Column Design

 ✦ Font considerations: Do any of the sections require any specific font
styles, faces, or colors?

 ✦ Color scheme: What are the main colors of your site? What will be the
color and background color of each section?

This particular sketch (in Figure 2-1) is very simple because the page will
use default colors and fonts. For a more complex job, you need a much more
detailed sketch. The point of the sketch is to separate design decisions from
coding problems. Solve as much of the design stuff as possible first so you
can concentrate on building the design with XHTML and CSS.

Figure 2-1:
This is
a very
standard
two-column
style.

If you’re really into detail and control, you’ll find
this chapter frustrating. People accustomed to
having complete control of a design (as you
often do in the print world) tend to get really
stressed when they realize how little actual
control they have over the appearance of a
Web page.

Really, it’s okay. This is a good thing. When you
design for the Web, you give up absolute con-
trol, but you gain unbelievable flexibility. Use

the ideas outlined in this chapter to get your
page looking right on a standards-compliant
browser. Take a deep breath and look at it on
something else (like Internet Explorer 6 if you
want to suffer a heart attack!). Everything you
positioned so carefully is all messed up! Take
another deep breath and use conditional com-
ments to fix the offending code without chang-
ing how it works in those browsers that do
things correctly.

A note to perfectionists

21_9780470537558-bk03ch02.indd 28021_9780470537558-bk03ch02.indd 280 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 2

B
u

ild
in

g
 Flo

a
tin

g

P
a

g
e

 La
yo

u
ts

281Creating a Basic Two-Column Design

Building the XHTML
After you have a basic design in place, you’re ready to start building the
XHTML code that will be the framework. Start with basic CSS but create a
div for each section that will be in your final work. You can put a place-
holder for the CSS, but don’t add any CSS yet. Here’s my basic code (I
removed some of the redundant text to save space):

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>twoColumn.html</title>
 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”twoCol.css” />
 </head>

 <body>
 <div id = ”head”>
 <h1>Two Columns with Float</h1>
 </div>

 <div id = ”left”>
 <h2>Left Column</h2>
 </div>

 <div id = ”right”>
 <h2>Right Column</h2>
 </div>

 <div id = ”footer”>
 <h3>Footer</h3>
 </div>
 </body>
</html>

The flexible layouts built throughout this chap-
ter require some kind of text so the browser
knows how big to make things. The actual
text isn’t important, but something needs to be
there.

Typesetters have a long tradition of using
phony Latin phrases as filler text. Traditionally,
this text has begun with the words “Lorem
Ipsum,” so it’s called Lorem Ipsum text.

This particular version is semi-randomly gener-
ated from a database of Latin words.

If you want, you can also use Lorem Ipsum in your
page layout exercises. Conduct a search for Lorem
Ipsum generators on the Web to get as much fake
text as you want for your mockup pages.

Although Lorem Ipsum text is useful in the
screen shots, it adds nothing to the code list-
ings. Throughout this chapter, I remove the
Lorem Ipsum text from the code listings to save
space. See the original files on the CD-ROM or
Web site for the full pages in all their Cesarean
goodness.

What’s up with the Latin?

21_9780470537558-bk03ch02.indd 28121_9780470537558-bk03ch02.indd 281 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

282 Creating a Basic Two-Column Design

Nothing at all is remarkable about this XHTML code, but it has a few impor-
tant features, such as

 ✦ It’s standards-compliant. It’s good to check and make sure the basic
XHTML code is well formed before you do a lot of CSS work with it.
Sloppy XHTML can cause you major headaches later.

 ✦ It contains four divs. The parts of the page that will be moved later are
all encased in div elements.

 ✦ Each div has an ID. All the divs have an ID determined from the sketch.

 ✦ No formatting is in the XHTML. The XHTML code contains no format-
ting at all. That’s left to the CSS.

 ✦ It has no style yet. Although a <link> tag is pointing to a style sheet,
the style is currently empty.

Figure 2-2 shows what the page looks like before you add any CSS to it.

Figure 2-2:
The plain
XHTML
is plain
indeed;
some CSS
will come in
handy.

Adding preliminary CSS
You can write CSS in your editor, but the Web Developer toolbar’s CSS editor
is an especially handy tool because it allows you to see the effects of your
CSS immediately. Here’s how to use this tool:

21_9780470537558-bk03ch02.indd 28221_9780470537558-bk03ch02.indd 282 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 2

B
u

ild
in

g
 Flo

a
tin

g

P
a

g
e

 La
yo

u
ts

283Creating a Basic Two-Column Design

 1. Use Firefox for your primary testing.

 Firefox has much better standards support than IE. Get your code work-
ing in Firefox first. Besides, the extremely handy Web Developer isn’t
available for Internet Explorer.

 2. Be sure the Web Developer toolbar is installed.

 See Chapter 3 of Book I for more information on this wonderful free tool.
You use this tool to modify your CSS and see the results immediately in
the Web browser.

 3. Activate the CSS editor by choosing Tools➪Edit CSS or pressing
Ctrl+Shift+E.

 4. Create CSS rules.

 Type the CSS rules in the provided window. Throughout this chapter, I
show what rules you use and the order in which they go. The key thing
about this editor is you can type a rule in the text window, and the page
in the browser is immediately updated.

 5. Check the results.

 Watch the main page for interactive results. As soon as you finish a
CSS rule, the Web page automatically refreshes, showing the results of
your work.

 6. Save your work.

 The changes made during an edit session are temporary. If you specified
a CSS file in your document, but it doesn’t exist, the Save button auto-
matically creates and saves that file.

Using temporary borders
And now for one of my favorite CSS tricks. . . . Before doing anything else,
create a selector for each of the named divs and add a temporary border to
each div. Make each border a different color. The CSS might look like this:

#head {
 border: 1px black solid;
}

#left {
 border: 1px red solid;
}

#right {
 border: 1px blue solid;
}

#footer {
 border: 1px green solid;
}

21_9780470537558-bk03ch02.indd 28321_9780470537558-bk03ch02.indd 283 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

284 Creating a Basic Two-Column Design

You won’t keep these borders, but they provide some very useful cues while
you’re working with the layout:

 ✦ Testing the selectors: While you create a border around each selector,
you can see whether you’ve remembered the selector’s name correctly.
It’s amazing how many times I’ve written code that I thought was broken
just because I didn’t write the selector properly.

 ✦ Identifying the divs: If you make each border a different color, it’ll be
easier to see which div is which when they begin to overlap.

 ✦ Specifying the size of each div: The text inside a div isn’t always a good
indicator of the actual size. The border tells you what’s really going on.

Of course, you won’t leave these borders in place. They’re just helpful tools
for seeing what’s going on during the design process. Look at borders.
html and borders.css on the CD-ROM or Web site to see the full code.

Figure 2-3 displays how the page looks with the color borders turned on.

 It’s fine that you can’t see the actual colors in the black-and-white image in
Figure 2-3. Just appreciate that when you see the page in its full-color splen-
dor, the various colors will help you see what’s going on.

Figure 2-3:
Colored
borders
make it
easier to
manipulate
the divs.

21_9780470537558-bk03ch02.indd 28421_9780470537558-bk03ch02.indd 284 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 2

B
u

ild
in

g
 Flo

a
tin

g

P
a

g
e

 La
yo

u
ts

285Creating a Basic Two-Column Design

Setting up the floating columns
This particular layout doesn’t require major transformation. A few CSS rules
will do the trick:

#head {
 border: 3px black solid;
}

#left {
 border: 3px red solid;
 float: left;
 width: 20%;
}

#right {
 border: 3px blue solid;
 float: left;
 width: 75%
}

#footer {
 border: 3px green solid;
 clear: both;
}

I made the following changes to the CSS:

 ✦ Float the #left div. Set the #left div’s float property to left so
other divs (specifically the #right div) are moved to the right of it.

 ✦ Set the #left width. When you float a div, you must also set its width.
I’ve set the margin to 20 percent of the page width as a starting point.

 ✦ Float the #right div, too. The right div can also be floated left, and it’ll
end up snug to the left div. Don’t forget to add a width. I set the width of
#right to 75 percent, leaving another 5 percent available for padding,
margins, and borders.

 ✦ Clear the footer. The footer should take up the entire width of the page,
so set its clear property to both.

Figure 2-4 shows how the page looks with this style sheet in place
(see floated.html and floated.css on the CD-ROM or Web site for
complete code).

Tuning up the borders
The colored borders in Figure 2-4 point out some important features of this
layout scheme. For instance, the two columns are not the same size. This
can have important implications.

21_9780470537558-bk03ch02.indd 28521_9780470537558-bk03ch02.indd 285 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

286 Creating a Basic Two-Column Design

Figure 2-4:
Now, the
left column
is floated.

You can change the borders to make the page look more like a column
layout. I’m going for a newspaper-style look, so I use simple double borders.
I put a black border under the header, a gray border to the left of the right
column, and a gray border on top of the bottom segment. Tweaking the pad-
ding and centering the footer complete the look. Here’s the complete CSS:

#head {
 border-bottom: 3px double black;
}
#left {
 float: left;
 width: 20%;
}
#right {
 float: left;
 width: 75%;
 border-left: 3px double gray;
}
#footer {
 clear: both;
 text-align: center;
 border-top: 3px double gray;
}

The final effect is shown in Figure 2-5.

21_9780470537558-bk03ch02.indd 28621_9780470537558-bk03ch02.indd 286 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 2

B
u

ild
in

g
 Flo

a
tin

g

P
a

g
e

 La
yo

u
ts

287Building a Three-Column Design

Figure 2-5:
This is a
decent
design,
which
adjusts with
the page
width.

Advantages of a fluid layout
This type of layout scheme (with floats) is often called a fluid layout because
it has columns but the sizes of the columns are dependent on the browser
width. This is an important issue because, unlike layout in the print world, you
really have no idea what size the browser window that displays your page will
be. Even if the user has a widescreen monitor, the browser may be in a much
smaller window. Fluid layouts can adapt to this situation quite well.

Fluid layouts (and indeed all other float-based layouts) have another great
advantage. If the user turns off CSS or can’t use it, the page still displays.
The elements will simply be printed in order vertically, rather than in the
intended layout. This can be especially handy for screen readers or devices
with exceptionally small screens, like phones and PDAs.

Building a Three-Column Design
Sometimes, you’ll prefer a three-column design. It’s a simple variation of the
two-column approach. Figure 2-6 shows a simple three-column layout.

This design uses very basic CSS with five named divs. Here’s the code (with
the dummy paragraph text removed for space):

21_9780470537558-bk03ch02.indd 28721_9780470537558-bk03ch02.indd 287 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

288 Building a Three-Column Design

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>threeColumn.html</title>
 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”threeColumn.css” />
 </head>

 <body>
 <div id = ”head”>
 <h1>Three-Column Layout</h1>
 </div>

 <div id = ”left”>
 <h2>Left Column</h2>
 </div>

 <div id = ”center”>
 <h2>Center Column</h2>
 </div>

 <div id = ”right”>
 <h2>Right Column</h2>
 </div>

 <div id = ”footer”>
 <h3>Footer</h3>
 </div>
 </body>
</html>

Figure 2-6:
This is
a three-
column
floating
layout.

21_9780470537558-bk03ch02.indd 28821_9780470537558-bk03ch02.indd 288 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 2

B
u

ild
in

g
 Flo

a
tin

g

P
a

g
e

 La
yo

u
ts

289Building a Three-Column Design

Styling the three-column page
As you can see from the HTML, there isn’t really much to this page. It has
five named divs, and that’s about it. All the really exciting stuff happens in
the CSS:

#head {
 text-align: center;
}

#left {
 float: left;
 width: 20%;
 padding-left: 1%;
}

#center {
 float: left;
 width: 60%;
 padding-left: 1%;
}

#right {
 float: left;
 width: 17%;
 padding-left: 1%;
}

#footer {
 border: 1px black solid;
 float: left;
 width: 100%;
 clear: both;
 text-align: center;
}

Each element (except the head) is floated with an appropriate width. The
process for generating this page is similar to the two-column layout:

 1. Diagram the layout.

 Begin with a general sense of how the page will look and the relative
width of the columns. Include the names of all segments in this diagram.

 2. Create the XHTML framework.

 Create all the necessary divs, including id attributes. Add representa-
tive text so you can see the overall texture of the page.

 3. Add temporary borders.

 Add a temporary border to each element so you can see what’s going
on when you start messing with float attributes. This also ensures you
have all the selectors spelled properly.

 4. Float the leftmost element.

 Add the float attribute to the leftmost column. Don’t forget to specify a
width (in percentage).

21_9780470537558-bk03ch02.indd 28921_9780470537558-bk03ch02.indd 289 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

290 Building a Three-Column Design

 5. Check your work.

 Work in the Web Developer CSS editor (where you can see changes on
the fly) or frequently save your work and view it in a browser.

 6. Float the center element.

 Add float and width attributes to the center element.

 7. Float the right-most element.

 Incorporate float and width in the right element.

 8. Ensure the widths total around 95 percent.

 You want the sum of the widths to be nearly 100 percent but not quite.
Generally, you need a little space for margins and padding. Final adjust-
ments come later, but you certainly don’t want to take up more than 100
percent of the available real estate.

 9. Float and clear the footer.

 To get the footer acting right, you need to float it and clear it on both
margins. Set its width to 100 percent, if you want.

 10. Tune up.

 Remove the temporary borders, adjust the margins and padding, and
set alignment as desired. Use percentages for margins and padding, and
then adjust so all percentages equal 100 percent.

 Early versions of Internet Explorer (6 and earlier) have a well-documented
problem with margins and padding. According to the standards, the width
of an element is supposed to be the width of the content, with borders, mar-
gins, and padding outside. A properly behaved browser won’t shrink your
content when you add borders and margins. The early versions of Internet
Explorer (IE) counted the width as including all borders, padding, and
margin, effectively shrinking the content when you added these elements.
If your page layout is looking a little off with IE, this may be the problem.
Use the conditional comment technique described in Chapter 5 of Book II to
make a variant style for IE if this bothers you.

Problems with the floating layout
The floating layout solution is very elegant, but it does have one drawback.
Figure 2-7 shows the three-column page with the borders drawn around
each element.

Figure 2-7 shows an important aspect of this type of layout. The columns are
actually blocks, and each is a different height. Typically, I think of a column
as stretching the entire height of a page, but this isn’t how CSS does it. If you
want to give each column a different background color, for example, you’ll
want each column to be the same height. This can be done with a CSS trick
(at least, for the compliant browsers).

21_9780470537558-bk03ch02.indd 29021_9780470537558-bk03ch02.indd 290 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 2

B
u

ild
in

g
 Flo

a
tin

g

P
a

g
e

 La
yo

u
ts

291Building a Three-Column Design

Figure 2-7:
The
columns
aren’t really
columns;
each is a
different
height.

Specifying a min-height
The standards-compliant browsers (all versions of Firefox and Opera, and
IE 7) support a min-height property. This specifies a minimum height
for an element. You can use this property to force all columns to the same
height. Figure 2-8 illustrates this effect.

The CSS code simply adds the min-height attribute to all the column
elements:

#head {
 text-align: center;
 border-bottom: 3px double gray;
}

#left {
 float: left;
 width: 20%;
 min-height: 30em;
 background-color: #EEEEEE;
}

#center {
 float: left;
 width: 60%;
 padding-left: 1%;
 padding-right: 1%;
 min-height: 30em;
}

#right {

21_9780470537558-bk03ch02.indd 29121_9780470537558-bk03ch02.indd 291 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

292 Building a Three-Column Design

 float: left;
 width: 17%;
 padding-left: 1%;
 min-height: 30em;
 background-color: #EEEEEE;
}

#footer {
 border: 1px black solid;
 float: left;
 width: 100%;
 clear: both;
 text-align: center;
}

 Some guesswork is involved still. You have to experiment a bit to determine
what the min-height should be. If you guess too short, one column will be
longer than the min-height, and the columns won’t appear correctly. If you
guess too tall, you’ll have a lot of empty space at the bottom of the screen.

Unfortunately, the min-height trick works only with the latest browsers. IE
versions 6 and earlier don’t support this attribute. For these browsers, you
may need a fixed-width layout.

Figure 2-8:
The min-
height
attribute
forces all
columns to
be the same
height.

21_9780470537558-bk03ch02.indd 29221_9780470537558-bk03ch02.indd 292 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 2

B
u

ild
in

g
 Flo

a
tin

g

P
a

g
e

 La
yo

u
ts

293Building a Fixed-Width Layout

Building a Fixed-Width Layout
Fluid layouts are terrific. They’re very flexible, and they’re not hard to build.
Sometimes, though, it’s nice to use a fixed-width layout, particularly if you
want your layout to conform to a particular background image.

The primary attribute of a fixed-width layout is the use of a fixed measure-
ment (almost always pixels), rather than the percentage measurements used
in a fluid layout.

Figure 2-9 shows a two-column page with a nicely colored background.

Figure 2-9:
A fixed-
width layout
can work
well with a
background
image.

Setting up the XHTML
As usual, the XHTML code is minimal. It contains a few named divs. (Like
usual, I’ve removed filler text for space reasons.)

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>fixedWidth.html</title>

21_9780470537558-bk03ch02.indd 29321_9780470537558-bk03ch02.indd 293 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

294 Building a Fixed-Width Layout

 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”fixedWidth.css” />
 </head>

 <body>
 <div id = ”header”>
 <h1>Fixed Width Layout</h1>
 </div>

 <div id = ”left”>
 <h2>Left Column</h2>
 </div>

 <div id = ”right”>
 <h2>Right Column</h2>
 </div>

 <div id = ”footer”>
 <h3>Footer</h3>
 </div>
 </body>
</html>

Using an image to simulate true columns
If you need to overcome the limitations of older browsers, you can use a
background image to simulate colored columns. Figure 2-10 shows the basic
background image I’m using for this page.

Figure 2-10:
This image
is repeated
vertically
to simulate
two
columns.

The image has been designed with two segments. The image is exactly 640
pixels wide, with one color spanning 200 pixels and the other 440 pixels.
When you know the exact width you’re aiming for, you can position the col-
umns to exactly that size. Here’s the CSS code:

body { background-image: url(“fixedBG.gif”);
 background-repeat: repeat-y;
}

#header {
 background-color: #e2e393;
 border-bottom: 3px double black;
 text-align: center;
 float: left;
 width: 640px;

21_9780470537558-bk03ch02.indd 29421_9780470537558-bk03ch02.indd 294 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 2

B
u

ild
in

g
 Flo

a
tin

g

P
a

g
e

 La
yo

u
ts

295Building a Centered Fixed-Width Layout

 clear: both;
 margin-left: -8px;
 margin-top: -10px;
}

#left {
 float: left;
 width: 200px;
 clear: left;
}

#right {
 float: left;
 width: 440px;
}

#footer {
 float: left;
 width: 640px;
 clear: both;
 text-align: center;
 background-color: #e2e393;
 margin-left:-8px;
 border-top: 3px double black;
}

This code works a lot like the other floating layouts, except for the
following changes:

 ✦ The body has a background image attached. I attached the two-color
background image to the entire body. This makes the page look like it has
two columns. Remember to set the background-repeat attribute to
repeat-y so the background repeats indefinitely in the vertical y-axis.

 ✦ The header and footer areas need background colors or images
defined so the fake columns don’t appear to stretch underneath these
segments.

 ✦ Header and footer will need some margin adjustments. The browsers
tend to put a little bit of margin on the header and footer divs, so com-
pensate by setting negative values for margin-left on these elements.

 ✦ All measurements are now in pixels. This will ensure that the layout
corresponds to the image, also measured in pixels.

 If you use a fixed-width layout and the user changes the font size, the results
will be unpredictable. A fluid layout will change with the font size, but a fixed
layout may have problems rendering a larger font in the indicated space.

Building a Centered Fixed-Width Layout
Fixed-width layouts are common, but they look a little strange if the browser
isn’t the width specified in the CSS. If the browser is too narrow, the layout
won’t work, and the second column will (usually) drop down to the next line.

21_9780470537558-bk03ch02.indd 29521_9780470537558-bk03ch02.indd 295 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

296 Building a Centered Fixed-Width Layout

If the browser is too wide, the page will appear to be scrunched onto the left
margin with a great deal of white space on the right.

The natural solution would be to make a relatively narrow fixed-width design
that’s centered inside the entire page. Figure 2-11 illustrates a page with
this technique.

Some have called this type of design (fixed-width floating centered in the
browser) a jello layout because it’s not quite fluid and not quite fixed.

Figure 2-11:
Now the
fixed-width
layout is
centered in
the browser.

Making a surrogate body with an all div
In any case, the HTML requires only one new element, an all div that encases
everything else inside the body (as usual, I removed the placeholder text):

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>fixedWidthCentered.html</title>
 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”fixedWidthCentered.css” />
 </head>

 <body>
 <div id = “all”>

21_9780470537558-bk03ch02.indd 29621_9780470537558-bk03ch02.indd 296 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 2

B
u

ild
in

g
 Flo

a
tin

g

P
a

g
e

 La
yo

u
ts

297Building a Centered Fixed-Width Layout

 <div id = “header”>
 <h1>Fixed Width Centered Layout</h1>
 </div>

 <div id = “left”>
 <h2>Left Column</h2>
 </div>

 <div id = “right”>
 <h2>Right Column</h2>
 </div>

 <div id = “footer”>
 <h3>Footer</h3>
 </div>
 </div>
 </body>
</html>

The entire page contents are now encapsulated in a special all div. This
div will be resized to a standard width (typically 640 or 800 pixels). The all
element will be centered in the body, and the other elements will be placed
inside all as if it were the body:

#all {
 background-image: url(“fixedBG.gif”);
 background-repeat: repeat-y;
 width: 640px;
 height: 600px;
 margin-left: auto;
 margin-right: auto;
}

#header {
 background-color: #e2e393;
 border-bottom: 3px double black;
 text-align: center;
 float: left;
 width: 640px;
 clear: both;
}

#left {
 float: left;
 width: 200px;
 clear: left;
}

#right {
 float: left;
 width: 440px;
}

#footer {
 float: left;
 width: 640px;
 clear: both;
 text-align: center;
 background-color: #e2e393;
 border-top: 3px double black;
}

21_9780470537558-bk03ch02.indd 29721_9780470537558-bk03ch02.indd 297 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

298 Building a Centered Fixed-Width Layout

How the jello layout works
This code is very similar to the fixedWidth.css style, but it has some
important new features:

 ✦ The background image is now applied to all. The all div is now
acting as a surrogate body element, so the background image is applied
to it instead of the background.

 ✦ The all element has a fixed width. This element’s width will determine
the width of the fixed part of the page.

 ✦ all also needs a fixed height. If you don’t specify a height, all will be 0
pixels tall because all the elements inside it are floated. Set the height large
enough to make the background image extend as far down as necessary.

 ✦ Center all. Remember, to center divs (or any other block-level ele-
ments) you set margin-left and margin-right both to auto.

 ✦ Do not float all. The margin: auto trick doesn’t work on floated ele-
ments. all shouldn’t have a float attribute set.

 ✦ Ensure the interior widths add up to all’s width. If all has a width of
640 pixels, be sure that the widths, borders, and margins of all the ele-
ments inside all add up to exactly 640 pixels. If you go even one pixel
over, something will spill over and mess up the effect.

Limitations of the jello layout
Jello layouts represent a compromise between fixed and fluid layouts, but
they aren’t perfect:

 ✦ Implicit minimum width: Very narrow browsers (like cellphones) can’t
render the layout at all. Fortunately, these browsers usually allow you to
turn off CSS, so the page will still be visible.

 ✦ Wasted screen space: If you make the rendered part of the page narrow,
a lot of space isn’t being used in higher-resolution browsers. This can be
frustrating.

 ✦ Complexity: Although this layout technique is far simpler than table-
based layouts, it’s still a bit involved. You do have to plan your divs to
make this type of layout work.

 ✦ Browser support: Layout is an area where little differences in browser
implementations can lead to big headaches. Be prepared to use condi-
tional comments to handle inconsistencies, like IE’s strange margin and
padding support.

21_9780470537558-bk03ch02.indd 29821_9780470537558-bk03ch02.indd 298 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Styling Lists and Menus

In This Chapter
✓ Using CSS styles with lists

✓ Building buttons from lists of links

✓ Dynamically displaying sublists

✓ Managing vertical and horizontal lists

✓ Building CSS-based menus

Most pages consist of content and navigation tools. Almost all pages
have a list of links somewhere on the page. Navigation menus are

lists of links, but lists of links in plain HTML are ugly. There has to be a way
to make ’em prettier.

It’s remarkably easy to build solid navigation tools with CSS alone (at
least, in the modern browsers that support CSS properly). In this chapter,
you rescue your lists from the boring 1990s sensibility, turning them into
dynamic buttons, horizontal lists, and even dynamically cascading menus.

Revisiting List Styles
XHTML does provide some default list styling, but it’s pretty dull. You often
want to improve the appearance of a list of data. Most site navigation is
essentially a list of links. One easy trick is to make your links appear as a set
of buttons, as shown in Figure 3-1.

Figure 3-1:
These
buttons are
actually a
list. Note
that one
button is
depressed.

22_9780470537558-bk03ch03.indd 29922_9780470537558-bk03ch03.indd 299 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

300 Revisiting List Styles

The buttons in Figure 3-1 are pretty nice. They look like buttons, with the
familiar three-dimensional look of buttons. They also act like buttons, with
each button depressing when the mouse hovers over it. When you click one
of these buttons, it acts like a link, taking you to another page.

Defining navigation as a list of links
If you look at the HTML, you’ll be astonished at its simplicity:

<!DOCTYPE html PUBLIC ”-//W3C//DTD XHTML 1.0 Strict//EN”
”http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>buttonList.html</title>
 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”buttonList.css” />
 </head>

 <body>
 <h1>Button Lists</h1>
 <div id = ”menu”>

 Google
 Wiley
 Wikipedia
 Reddit

 </div>
 </body>
</html>

Turning links into buttons
As far as the XHTML code is concerned, it’s simply a list of links. There’s
nothing special here that makes this act like a group of buttons, except the
creation of a div called menu. All the real work is done in CSS:

#menu li {
 list-style-type: none;
 width: 7em;
 text-align: center;
 margin-left: -2.5em;
}

#menu a {
 text-decoration: none;
 color: black;
 display: block;
 border: 3px blue outset;
 background-color: #CCCCFF;
}

#menu a:hover {
 border: 3px blue inset;
}

22_9780470537558-bk03ch03.indd 30022_9780470537558-bk03ch03.indd 300 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 3

S
tylin

g
 Lists a

n
d

M

e
n

u
s

301Revisiting List Styles

The process for turning an ordinary list of links into a button group like this
is simply an application of CSS tricks:

 1. Begin with an ordinary list that will validate properly.

 It doesn’t matter if you use an unordered or ordered list. Typically, the
list will contain anchors to other pages. In this example, I’m using this
list of links to some popular Web sites:

 <div id = ”menu”>

 Google
 Wiley
 Wikipedia
 Reddit

 </div>

 2. Enclose the list in a named div.

 Typically, you still have ordinary links on a page. To indicate that these
menu links should be handled differently, put them in a div named menu.
All the CSS-style tricks described here refer to lists and anchors only
when they’re inside a menu div.

 3. Remove the bullets by setting the list-style-type to none.

 This removes the bullets or numbers that usually appear in a list
because these features distract from the effect you’re aiming for (a
group of buttons). Use CSS to specify how list items should be formatted
when they appear in the context of the menu ID:

#menu li {
 list-style-type: none;
 width: 5em;
 text-align: center;
 margin-left: -2.5em;
}

 4. Specify the width of each button:

 width: 5em;

 A group of buttons looks best if they’re all the same size. Use the CSS
width attribute to set each li to 5em.

 5. Remove the margin by using a negative margin-left value, as shown
here:

 margin-left: -2.5em;

 Lists have a default indentation of about 2.5em to make room for the
bullets or numbers. Because this list won’t have bullets, it doesn’t need
the indentations. Overwrite the default indenting behavior by setting
margin-left to a negative value.

 6. Clean up the anchor by setting text-decoration to none and setting
the anchor’s color to something static, such as black text on light blue
in this example:

22_9780470537558-bk03ch03.indd 30122_9780470537558-bk03ch03.indd 301 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

302 Revisiting List Styles

#menu a {
 text-decoration: none;
 color: black;
 display: block;
 border: 3px blue outset;
 background-color: #CCCCFF;
}

 The button’s appearance will make it clear that users can click it, so
this is one place you can remove the underlining that normally goes
with links.

 7. Give each button an outset border, as shown in the following:

 border: 3px blue outset;

 The outset makes it look like a 3D button sticking out from the page.
This is best attached to the anchor, so you can swap the border when
the mouse is hovering over the button.

 8. Set the anchor’s display to block.

 This is a sneaky trick. Block display normally makes an element act like
a block-level element inside its container. In the case of an anchor, the
entire button becomes clickable, not just the text. This makes your page
easier to use:

 display: block;

 9. Swap for an inset border when the mouse hovers on an anchor by
using the #menu a:hover selector to change the border to an inset:

#menu a:hover {
 border: 3px blue inset;
}

 When the mouse hovers on the button, it appears to be pressed down,
enhancing the 3D effect.

This list makes an ideal navigation menu, especially when placed inside one
column of a multicolumn floating layout.

The inset/outset border trick is easy, but the results are a tad ugly. If you
prefer, you can build two empty button images (one up and one down) in
your image editor and simply swap the background images rather than
the borders.

Building horizontal lists
Sometimes, you want horizontal button bars. Because XHTML lists tend to
be vertical, you might be tempted to think that a horizontal list is impos-
sible. In fact, CSS provides all you need to convert exactly the same XHTML
to a horizontal list. Figure 3-2 shows such a page.

22_9780470537558-bk03ch03.indd 30222_9780470537558-bk03ch03.indd 302 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 3

S
tylin

g
 Lists a

n
d

M

e
n

u
s

303Revisiting List Styles

Figure 3-2:
This list uses
the same
XHTML but
different
CSS.

There’s no need to show the XHTML again because it hasn’t changed at all
(ain’t CSS grand?). Even the CSS hasn’t changed much:

#menu ul {
 margin-left: -2.5em;
}

#menu li {
 list-style-type: none;
 float: left;
 width: 5em;
 text-align: center;
}

#menu a {
 text-decoration: none;
 color: black;
 display: block;
 border: 3px blue outset;
 background-color: #CCCCFF;
}

#menu a:hover {
 border: 3px blue inset;
}

The modifications are incredibly simple:

 1. Float each list item by giving each li a float:left value:

#menu li {
 list-style-type: none;
 float: left;
 width: 5em;
 text-align: center;
}

 2. Move the margin-left of the entire ul by taking the margin-left
formatting from the li elements and transferring it to the ul:

#menu ul {
 margin-left: -2.5em;
}

 3. Add a horizontal element.

 Now that the button bar is horizontal, it makes more sense to put in
some type of horizontal page element. For example, you may want to use
this type of element inside a heading div.

22_9780470537558-bk03ch03.indd 30322_9780470537558-bk03ch03.indd 303 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

304 Creating Dynamic Lists

Creating Dynamic Lists
A simple list of buttons can look better than ordinary XHTML links, but
sometimes, your page needs to have a more complex navigation scheme.
For example, you may want to create a menu system to help the user see the
structure of your site.

When you think of a complex hierarchical organization (which is how most
multipage Web sites end up), the easiest way to describe the structure is in
a set of nested lists. XHTML lists can contain other lists, and this can be a
great way to organize data.

Nested lists are a great way to organize a lot of information, but they can
be complicated. You can use some special tricks to make parts of your list
appear and disappear when needed. In the sections “Hiding the inner lists”
and “Getting the inner lists to appear on cue,” later in this chapter, you
expand this technique to build a menu system for your pages.

Building a nested list
Begin by creating a system of nested lists without any CSS at all. Figure 3-3
shows a page with a basic nested list.

Figure 3-3:
This nested
list has no
styles yet.

22_9780470537558-bk03ch03.indd 30422_9780470537558-bk03ch03.indd 304 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 3

S
tylin

g
 Lists a

n
d

M

e
n

u
s

305Creating Dynamic Lists

No CSS styling is in place yet, but the list has its own complexities:

 ✦ The primary list has three entries. This is actually a multilayer list. The
top level indicates categories, not necessarily links.

 ✦ Each element in the top list has its own sublist. A second layer of links
has various links in most elements.

 ✦ The Web Development element has another layer of sublists. The
general layout of this list entry corresponds to a complex hierarchy of
information — like most complex Web sites.

 ✦ The list validates to the XHTML Strict standard. It’s especially impor-
tant to validate your code before adding CSS when it involves somewhat
complex XHTML code, like the multilevel list. A small problem in the
XHTML structure that may go unnoticed in a plain XHTML document
can cause all kinds of strange problems in your CSS.

Here is the code for the nested list in plain XHTML:

 <!DOCTYPE html PUBLIC ”-//W3C//DTD XHTML 1.0 Strict//EN”
”http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>nestedList.html</title>
 </head>

 <body>
 <h1>Some of my favorite links</h1>

 Social networking

 dig
 reddit
 stumbleupon

 Reference

 google
 wikipedia
 dictionary

 Web development

 XHTML/CSS

 w3 schools
 htmlHelp
 CSS Zen Garden

 Programming

 javascript.com
 php.net
 mysql.com

22_9780470537558-bk03ch03.indd 30522_9780470537558-bk03ch03.indd 305 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

306 Creating Dynamic Lists

 </body>
</html>

 Take special care with your indentation when making a complex nested list
like this one. Without proper indentation, it becomes very difficult to estab-
lish the structure of the page. Also, a list item can contain text and another
list. Any other arrangement (putting text between list items, for example)
will cause a validation error and big headaches when you try to apply CSS.

Hiding the inner lists
The first step of creating a dynamic menu system is to hide any lists that are
embedded in a list item. Add the following CSS style to your page:

li ul {
 display: none;
}

In reality, you usually apply this technique only to a specially marked div,
like a menu system. Don’t worry about that for now. Later in this chapter, I
show you how to combine this technique with a variation of the button tech-
nique for complex menu systems.

Your page will undergo a startling transformation, as shown in Figure 3-4.

Figure 3-4:
Where did
everything
go?

That tiny little snippet of CSS code is a real powerhouse. It does some fasci-
nating things, such as

 ✦ Operating on unordered lists that appear inside list items: What this
really means is the topmost list won’t be affected, but any unordered list
that appears inside a list item will have the style applied.

 ✦ Using display: none to make text disappear: Setting the display
attribute to none tells the XHTML page to hide the given data altogether.

22_9780470537558-bk03ch03.indd 30622_9780470537558-bk03ch03.indd 306 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 3

S
tylin

g
 Lists a

n
d

M

e
n

u
s

307Creating Dynamic Lists

This code works well on almost all browsers. It’s pretty easy to make text disap-
pear. Unfortunately, it’s a little trickier to make all the browsers bring it back.

Getting the inner lists to appear on cue
The fun part is getting the interior lists to pop up when the mouse is over
the parent element. A second CSS style can make this happen:

li ul {
 display: none;
}

li:hover ul {
 display: block;
}

The new code is pretty interesting. When the page initially loads, it appears
the same as what’s shown in Figure 3-4, but see the effect of holding the
mouse over the Social Networking element in Figure 3-5.

Figure 3-5:
Holding the
mouse over
a list item
causes its
children to
appear.

 This code doesn’t work on all browsers! Internet Explorer 6 (IE6) and earlier
versions don’t support the :hover pseudo-class on any element except a.
Provide a conditional comment with an alternative style for early versions of
IE. All modern browsers (including IE 7 and 8) work fine.

Here’s how the list-reappearing code works:

 ✦ All lists inside lists are hidden. The first style rule hides any list that’s
inside a list element.

 ✦ li:hover refers to a list item that’s being hovered on. That is, if the
mouse is situated on top of a list item, this rule pertains to it.

 ✦ li:hover ul refers to an unordered list inside a hovered list item. In
other words, if some content is an unordered list that rests inside a list
that currently has the mouse hovering over it, apply this rule. (Whew!)

22_9780470537558-bk03ch03.indd 30722_9780470537558-bk03ch03.indd 307 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

308 Creating Dynamic Lists

 ✦ Display the list as a block. display:block overrides the previous
display:none instruction and displays the particular element as a
block. The text reappears magically.

This hide-and-seek trick isn’t all that great on its own. It’s actually quite
annoying to have the contents pop up and go away like that. There’s another
more annoying problem. Look at Figure 3-6 to see what can go wrong.

To see why this happens, take another look at the CSS code that causes the
segment to reappear:

li:hover ul {
 display: block;
}

This code means set display to block for any ul that’s a child of a hovered
li. The problem is that the Web Development li contains a ul that con-
tains two more uls. All the lists under Web Development appear, not just the
immediate child.

Figure 3-6:
If the mouse
hovers
on Web
Development,
both
submenus
appear.

22_9780470537558-bk03ch03.indd 30822_9780470537558-bk03ch03.indd 308 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 3

S
tylin

g
 Lists a

n
d

M

e
n

u
s

309Creating Dynamic Lists

One more modification of the CSS fixes this problem:

li ul {
 display: none;
}

li:hover > ul {
 display: block;
}

The greater than symbol (>) is a special selector tool. It indicates a direct
relationship. In other words, the ul must be a direct child of the hovered li,
not a grandchild or great-grandchild. With this indicator in place, the page
acts correctly, as shown in Figure 3-7.

Figure 3-7:
Now, only
the next
menu level
shows up
on a mouse
hover.

This trick allows you to create nested lists as deeply as you wish and to
open any segment by hovering on its parent.

My current code has a list with three levels of nesting, but you can add
as many nested lists as you want and use this code to make it act as a
dynamic menu.

Figure 3-8 illustrates how to open the next section of the list.

22_9780470537558-bk03ch03.indd 30922_9780470537558-bk03ch03.indd 309 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

310 Building a Basic Menu System

Figure 3-8:
You can
create these
lists as deep
as you wish.

 I’m not suggesting that this type of menu is a good idea. Having stuff pop
around like this is actually pretty distracting. With a little more formatting,
you can use these ideas to make a functional menu system. I’m just starting
here so you can see the hide-and-seek behavior in a simpler system before
adding more details.

Building a Basic Menu System
You can combine the techniques of buttons and collapsing lists to build a
menu system entirely with CSS. Figure 3-9 shows a page with a vertically
arranged menu.

When the user hovers over a part of the menu, the related subelements
appear, as shown in Figure 3-10.

This type of menu has a couple interesting advantages, such as:

 ✦ It’s written entirely with CSS. You don’t need any other code or pro-
gramming language.

 ✦ The menus are simply nested lists. The XHTML is simply a set of nested
lists. If the CSS turns off, the page is displayed as a set of nested lists,
and the links still function normally.

 ✦ The relationships between elements are illustrated. When you select
an element, you can see its parent and sibling relationships easily.

22_9780470537558-bk03ch03.indd 31022_9780470537558-bk03ch03.indd 310 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 3

S
tylin

g
 Lists a

n
d

M

e
n

u
s

311Building a Basic Menu System

Figure 3-9:
Only the
top-level
elements
are visible
by default.

Figure 3-10:
The user
can select
any part of
the original
nested list.

 Nice as this type of menu system is, it isn’t perfect. Because it relies on the
li:hover trick, it doesn’t work in versions of Internet Explorer (IE) prior to
7.0. You need alternate CSS for these users.

22_9780470537558-bk03ch03.indd 31122_9780470537558-bk03ch03.indd 311 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

312 Building a Basic Menu System

Building a vertical menu with CSS
The vertical menu system works with exactly the same HTML as the hidden
List example — only the CSS changed. Here’s the new CSS file:

/* horizMenu.css */
/* unindent entire list */
#menu ul {
 margin-left: -2.5em;
}

/* set li as buttons */
#menu li {
 list-style-type: none;
 border: 1px black solid;;
 width: 10em;
 background-color: #cccccc;
 text-align: center;
}

/* display anchors as buttons */
#menu a {
 color: black;
 text-decoration: none;
 display: block;
}

/* flash white on anchor hover */
#menu a:hover {
 background-color: white;
}

/* collapse menus */
#menu li ul {
 display: none;
}

/* show submenus on hover */
#menu li:hover > ul {
 display: block;
 margin-left: -2em;
}

Of course, the CSS uses a few tricks, but there’s really nothing new. It’s just a
combination of techniques you already know:

 1. Un-indent the entire list by setting the ul’s margin-left to a negative
value to compensate for the typical indentation. 2.5em is about the
right amount.

 Because you’re removing the list-style types, the normal indenta-
tion of list items will become a problem.

22_9780470537558-bk03ch03.indd 31222_9780470537558-bk03ch03.indd 312 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 3

S
tylin

g
 Lists a

n
d

M

e
n

u
s

313Building a Basic Menu System

 2. Format the li tags.

 Each li tag inside the menu structure should look something like a
button. Use CSS to accomplish this task:

/* set li as buttons */
#menu li {
 list-style-type: none;
 border: 1px black solid;;
 width: 10em;
 background-color: #cccccc;
 text-align: center;
}

 a. Set list-style-type to none.

 b. Set a border with the border attribute.

 c. Center the text by setting text-align to center.

 d. Add a background color or image, or you’ll get some strange border
bleed-through later when the buttons overlap.

 3. Format the anchors as follows:

/* display anchors as buttons */
#menu a {
 color: black;
 text-decoration: none;
 display: block;
}

 a. Take out the underline with text-decoration: none.

 b. Give the anchor a consistent color.

 c. Set display to block (so the entire area will be clickable, not just the
text).

 4. Give some indication it’s an anchor by changing the background
when the user hovers on the element:

/* flash white on anchor hover */
#menu a:hover {
 background-color: white;
}

 Because the anchors no longer look like anchors, you have to do some-
thing else to indicate there’s something special about these elements.
When the user moves the mouse over any anchor tag in the menu div,
that anchor’s background color will switch to white.

 5. Collapse the menus using the hidden menus trick (discussed in the
section “Hiding the inner lists,” earlier in this chapter) to hide all the
sublists:

/* collapse menus *#menu li ul {
 display: none;
}

22_9780470537558-bk03ch03.indd 31322_9780470537558-bk03ch03.indd 313 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

314 Building a Basic Menu System

 6. Display the hidden menus when the mouse hovers on the parent ele-
ment by adding the code described in the “Getting the inner lists to
appear on cue” section:

/* show submenus on hover */
#menu li:hover > ul {
 display: block;
 margin-left: -2em;
}

 This trick won’t work on IE6 or earlier versions. You have to provide an
alternate style sheet (with conditional commenting) or a JavaScript tech-
nique for these earlier browsers.

Building a horizontal menu
You can make a variation of the menu structure that will work along the top
of a page. Figure 3-11 shows how this might look.

The submenus come straight down from their parent elements. I find a little
bit of indentation helpful for deeply nested lists, as shown in Figure 3-12.

Again, the HTML is identical. The CSS for a horizontal menu is surprisingly
close to the vertical menu. The primary difference is floating the list items:

/* vertMenu.css */
/* unindent each unordered list */

#menu ul {
 margin-left: -2.5em;
}

/* turn each list item into a solid gray block */
#menu li {
 list-style-type: none;
 border: black solid 1px;
 float: left;
 width: 10em;
 background-color: #CCCCCC;
 text-align: center;
}

/* set anchors to act like buttons */
#menu a {
 display: block;
 color: black;
 text-decoration: none;
}

/* flash anchor white when hovered */
#menu a:hover {
 background-color: white;
}

/* collapse nested lists */

22_9780470537558-bk03ch03.indd 31422_9780470537558-bk03ch03.indd 314 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 3

S
tylin

g
 Lists a

n
d

M

e
n

u
s

315Building a Basic Menu System

#menu li ul {
 display: none;
}

/* display sublists on hover */
#menu li:hover > ul {
 display: block;
}

/* indent third-generation lists */
#menu li li li{
 margin-left: 1em;
}

Figure 3-11:
The same
list is now
a horizontal
menu.

Figure 3-12:
For the
multilevel
menus, a
little bit of
indentation
is helpful.

22_9780470537558-bk03ch03.indd 31522_9780470537558-bk03ch03.indd 315 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

316 Building a Basic Menu System

The CSS code has just a few variations from the vertical menu CSS:

 ✦ Float each list item by adding float and width attributes.
/* turn each list item into a solid gray block */
#menu li {
 list-style-type: none;
 border: black solid 1px;
 float: left;
 width: 10em;
 background-color: #CCCCCC;
 text-align: center;
}

 This causes the list items to appear next to each other in the same line.

 ✦ Give each list item a width. In this case, 10em seems about right.

 ✦ Indent a deeply nested list by having the first-order sublists appear
directly below the parent.

 A list nested deeper than its parent is hard to read. A little indentation
helps a lot with clarity.

 ✦ Use #menu li li li to indent nested list items, as shown here:
/* indent third-generation lists */
#menu li li li{
 margin-left: 1em;
}

 This selector is active on an element which has #menu and three list
items in its family tree. It will work only on list items three levels deep.
This special formatting isn’t needed at the other levels but is helpful to
offset the third-level list items.

These tricks are just the beginning of what you can do with some creativity
and the amazing power of CSS and HTML. You can adopt the simple exam-
ples presented here to create your own marvels of navigation.

These menu systems work pretty well, but if they’re used in a standard
layout system, the rest of the page can shift around to fit the changing shape
of the menus. To avoid this, place the menu using the fixed mechanisms
described in Chapter 4 of this minibook.

22_9780470537558-bk03ch03.indd 31622_9780470537558-bk03ch03.indd 316 10/7/10 8:38 PM10/7/10 8:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Using Alternative
Positioning

In This Chapter
✓ Setting position to absolute

✓ Managing z-index

✓ Creating fixed and flexible layouts

✓ Working with fixed and relative positioning

Floating layouts (described in Chapter 3 of this minibook) are the
preferred way to set up page layouts today but, sometimes, other

alternatives are useful. You can use absolute, relative, or fixed positioning
techniques to put all your page elements exactly where you want them.
Well, almost exactly. It’s still Web development, where nothing’s exact.

Still, the techniques described in this chapter will give you even more capa-
bilities when it comes to setting up great-looking Web sites.

Working with Absolute Positioning
Begin by considering the default layout mechanism. Figure 4-1 shows a page
with two paragraphs on it.

I used CSS to give each paragraph a different color (to aid in discussion
later) and to set a specific height and width. The positioning is left to the
default layout manager, which positions the second (black) paragraph
directly below the first (blue) one.

Figure 4-1:
These two
paragraphs
have a set
height and
width, but
default
positioning.

23_9780470537558-bk03ch04.indd 31723_9780470537558-bk03ch04.indd 317 10/7/10 8:39 PM10/7/10 8:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

318 Working with Absolute Positioning

Setting up the HTML
The code is unsurprising:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>boxes.html</title>
 <style type = ”text/css”>
 #blueBox {
 background-color: blue;
 width: 100px;
 height: 100px;
 }
 #blackBox {
 background-color: black;
 width: 100px;
 height: 100px;
 }
 </style>
 </head>

 <body>
 <p id = ”blueBox”></p>
 <p id = ”blackBox”></p>
 </body>
</html>

If you provide no further guidance, paragraphs (like other block-level ele-
ments) tend to provide carriage returns before and after themselves, stack-
ing on top of each other. The default layout techniques ensure that nothing
ever overlaps.

Adding position guidelines
Figure 4-2 shows something new: The paragraphs are overlapping!

Figure 4-2:
Now the
paragraphs
overlap
each other.

This feat is accomplished through some new CSS attributes:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

23_9780470537558-bk03ch04.indd 31823_9780470537558-bk03ch04.indd 318 10/7/10 8:39 PM10/7/10 8:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 4

U
sin

g
 A

lte
rn

a
tive

P

o
sitio

n
in

g

319Working with Absolute Positioning

<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>absPosition.html</title>
 <style type = ”text/css”>

 #blueBox {
 background-color: blue;
 width: 100px;
 height: 100px;
 position: absolute;
 left: 0px;
 top: 0px;
 margin: 0px;
 }
 #blackBox {
 background-color: black;
 width: 100px;
 height: 100px;
 position: absolute;
 left: 50px;
 top: 50px;
 margin: 0px;
 }
 </style>
 </head>

 <body>
 <p id = “blueBox”></p>
 <p id = “blackBox”></p>
 </body>
</html>

So, why do I care if the boxes overlap? Well, you might not care, but the
interesting part is this: You can have much more precise control over where
elements live and what size they are. You can even override the browser’s
normal tendency to keep elements from overlapping, which gives you some
interesting options.

Making absolute positioning work
A few new parts of CSS allow this more direct control of the size and position
of these elements. Here’s the CSS for one of the boxes:

 #blueBox {
 background-color: blue;
 width: 100px;
 height: 100px;
 position: absolute;
 left: 0px;
 top: 0px;
 margin: 0px;
 }

 1. Set the position attribute to absolute.

 Absolute positioning can be used to determine exactly (more or less)
where the element will be placed on the screen:

 position: absolute;

23_9780470537558-bk03ch04.indd 31923_9780470537558-bk03ch04.indd 319 10/7/10 8:39 PM10/7/10 8:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

320 Managing z-index

 2. Specify a left position in the CSS.

 After you determine that an element will have absolute position, it’s
removed from the normal flow, so you’re obligated to fix its position.
The left attribute determines where the left edge of the element will
go. This can be specified with any of the measurement units, but it’s
typically measured in pixels:

 left: 0px;

 3. Specify a top position with CSS.

 The top attribute indicates where the top of the element will go. Again,
this is usually specified in pixels:

 top: 0px;

 4. Use the height and width attributes to determine the size.

 Normally, when you specify a position, you also want to determine
the size:

 width: 100px;
 height: 100px;

 5. Set the margins to 0.

 When you’re using absolute positioning, you’re exercising quite a bit of
control. Because browsers don’t treat margins identically, you’re better
off setting margins to 0 and controlling the spacing between elements
manually:

 margin: 0px;

Generally, you use absolute positioning only on named elements, rather than
classes or general element types. For example, you won’t want all the para-
graphs on a page to have the same size and position, or you couldn’t see
them all. Absolute positioning works on only one element at a time.

Managing z-index
When you use absolute positioning, you can determine exactly where
things are placed, so it’s possible for them to overlap. By default, elements
described later in HTML are positioned on top of elements described earlier.
This is why the black box appears over the top of the blue box in Figure 4-2.

Handling depth
You can use a special CSS attribute called z-index to change this default
behavior. The z-axis refers to how close an element appears to be to the
viewer. Figure 4-3 demonstrates how this works.

23_9780470537558-bk03ch04.indd 32023_9780470537558-bk03ch04.indd 320 10/7/10 8:39 PM10/7/10 8:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 4

U
sin

g
 A

lte
rn

a
tive

P

o
sitio

n
in

g

321Managing z-index

Figure 4-3:
The z-index
allows you
to change
which
elements
appear
closer to
the user.

The z-index attribute requires a numeric value. Higher numbers mean the
element is closer to the user (or on top). Any value for z-index places the ele-
ment higher than elements with the default z-index. This can be very useful
when you have elements that you want to appear over the top of other ele-
ments (for example, menus that temporarily appear on top of other text).

Here’s the code illustrating the z-index effect:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>zindex.html</title>
 <style type = ”text/css”>

 #blueBox {
 background-color: blue;
 width: 100px;
 height: 100px;
 position: absolute;
 left: 0px;
 top: 0px;
 margin: 0px;
 z-index: 1;
 }
 #blackBox {
 background-color: black;
 width: 100px;
 height: 100px;
 position: absolute;
 left: 50px;
 top: 50px;
 margin: 0px;
 }
 </style>
 </head>

 <body>
 <p id = “blueBox”></p>
 <p id = “blackBox”></p>
 </body>
</html>

23_9780470537558-bk03ch04.indd 32123_9780470537558-bk03ch04.indd 321 10/7/10 8:39 PM10/7/10 8:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

322 Building a Page Layout with Absolute Positioning

Working with z-index
The only change in this code is the addition of the z-index property. Here
are a couple things to keep in mind when using z-index:

 ✦ One element can totally conceal another. When you start position-
ing things absolutely, one element can seem to disappear because it’s
completely covered by another. The z-index attribute is a good way to
check for this situation.

 ✦ Negative z-index is undefined. The value for z-index must be
positive. A negative value is undefined and may cause your element
to disappear.

 ✦ It may be best to give all values a z-index. If you define the z-index
for some elements and leave the z-index undefined for others, you have
no guarantee exactly what will happen. If in doubt, just give every value
its own z-index, and you’ll know exactly what should overlap what.

 ✦ Don’t give two elements the same z-index. The point of the z-index
is to clearly define which element should appear closer. Don’t defeat
this purpose by assigning the same z-index value to two different ele-
ments on the same page.

Building a Page Layout with Absolute Positioning
You can use absolute positioning to create a page layout. This process
involves some trade-offs. You tend to get better control of your page with
absolute positioning (compared to floating techniques), but absolute layout
requires more planning and more attention to detail. Figure 4-4 shows a page
layout created with absolute positioning techniques.

The technique for creating an absolutely positioned layout is similar to the
floating technique (in the general sense).

Overview of absolute layout
Before you begin putting your page together with absolute positioning,
it’s good to plan the entire process. Here’s an example of how the process
should go:

 1. Plan the site.

 Having a drawing that specifies how your site layout will look is really
important. In absolute positioning, your planning is even more impor-
tant than the floating designs because you’ll need to specify the size and
position of every element.

23_9780470537558-bk03ch04.indd 32223_9780470537558-bk03ch04.indd 322 10/7/10 8:39 PM10/7/10 8:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 4

U
sin

g
 A

lte
rn

a
tive

P

o
sitio

n
in

g

323Building a Page Layout with Absolute Positioning

Figure 4-4:
This layout
was created
with
absolute
positioning.

 2. Specify an overall size.

 This particular type of layout has a fixed size. Create an all div housing
all the other elements and specify the size of this div (in a fixed unit for
now, usually px or em).

 3. Create the XHTML.

 The XHTML page should have a named div for each part of the page (so
if you have headers, columns, and footers, you need a div for each).

 4. Build a CSS style sheet.

 The CSS styles can be internal or linked, but because absolute position-
ing tends to require a little more markup than floating, external styles
are preferred.

 5. Identify each element.

 It’s easier to see what’s going on if you assign a different colored border
to each element.

 6. Make each element absolutely positioned.

 Set position: absolute in the CSS for each element in the layout.

 7. Specify the size of each element.

 Set the height and width of each element according to your diagram.
(You did make a diagram, right?)

23_9780470537558-bk03ch04.indd 32323_9780470537558-bk03ch04.indd 323 10/7/10 8:39 PM10/7/10 8:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

324 Building a Page Layout with Absolute Positioning

 8. Determine the position of each element.

 Use the left and top attributes to determine where each element goes
in the layout.

 9. Tune-up your layout.

 You’ll probably want to adjust margins and borders. You may need
to do some adjustments to make it all work. For example, the menu is
150px wide, but I added padding-left and padding-right of 5px
each. This means the width of the menu needs to be adjusted to 140px
to make everything still fit.

Writing the XHTML
The HTML code is pretty straightforward:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>absLayout.html</title>
 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”absLayout.css” />
 </head>

 <body>
 <div id = ”all”>
 <div id = ”head”>
 <h1>Layout with Absolute Positioning</h1>
 </div>

 <div id = “menu”>
 </div>

 <div id = ”content”>
 </div>
 </div>
 </body>
</html>

The HTML file calls an external style sheet called absLayout.css.

Adding the CSS
The CSS code is a bit lengthy but not too difficult:

/* absLayout.css */
#all {
 border: 1px solid black;
 width: 800px;
 height: 600px;
 position: absolute;
 left: 0px;
 top: 0px;
}

23_9780470537558-bk03ch04.indd 32423_9780470537558-bk03ch04.indd 324 10/7/10 8:39 PM10/7/10 8:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 4

U
sin

g
 A

lte
rn

a
tive

P

o
sitio

n
in

g

325Building a Page Layout with Absolute Positioning

#head {
 border: 1px solid green;
 position: absolute;
 width: 800px;
 height: 100px;
 top: 0px;
 left: 0px;
 text-align: center;
}

#menu {
 border: 1px solid red;
 position: absolute;
 width: 140px;
 height: 500px;
 top: 100px;
 left: 0px;
 padding-left: 5px;
 padding-right: 5px;
}

#content{
 border: 1px solid blue;
 position: absolute;
 width: 645px;
 height: 500px;
 top: 100px;
 left: 150px;
 padding-left: 5px;
}

A static layout created with absolute positioning has a few important fea-
tures to keep in mind:

 ✦ You’re committed to position everything. After you start using absolute
positioning, you need to use it throughout your site. All the main page
elements require absolute positioning because the normal flow mecha-
nism is no longer in place.

 You can still use floating layout inside an element with absolute position,
but all your main elements (heading, columns, and footing) need to have
absolute position if one of them does.

 ✦ You should specify size and position. With a floating layout, you’re still
encouraging a certain amount of fluidity. Absolute positioning means
you’re taking the responsibility for both the shape and size of each ele-
ment in the layout.

 ✦ Absolute positioning is less adaptable. With this technique, you’re
pretty much bound to a specific screen width and height. You’ll have
trouble adapting to PDAs and cellphones. (A more flexible alternative is
shown in the next section.)

 ✦ All the widths and the heights have to add up. When you determine the
size of your display, all the heights, widths, margins, padding, and bor-
ders have to add up, or you’ll get some strange results. When you use
absolute positioning, you’re also likely to spend some quality time with
your calculator, figuring out all the widths and the heights.

23_9780470537558-bk03ch04.indd 32523_9780470537558-bk03ch04.indd 325 10/7/10 8:39 PM10/7/10 8:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

326 Creating a More Flexible Layout

Creating a More Flexible Layout
You can build a layout with absolute positioning and some flexibility.
Figure 4-5 illustrates such a design.

The size of this layout is attached to the size of the browser screen. It
attempts to adjust to the browser while it’s resized. You can see this effect
in Figure 4-6.

The page simply takes up a fixed percentage of the browser screen. The pro-
portions are all maintained, no matter what the screen size is.

 Having the page resize with the browser works, but it’s not a complete solu-
tion. When the browser window is small enough, the text will no longer fit
without some ugly bleed-over effects.

Designing with percentages
This absolute but flexible trick is achieved by using percentage measure-
ments. The position is still set to absolute, but rather than defining size
and position with pixels, use percentages instead. Here’s the CSS:

/* absPercent.css */

#all {
 border: 1px black solid;
 position: absolute;
 left: 5%;
 top: 5%;
 width: 90%;
 height: 90%;
}

#head {
 border: 1px black solid;
 position: absolute;
 left: 0%;
 top: 0%;
 width: 100%;
 height: 10%;
 text-align: center;
}

#head h1 {
 margin-top: 1%;
}

#menu {
 border: 1px green solid;
 position: absolute;
 left: 0%;
 top: 10%;
 width: 18%;
 height: 90%;
 padding-left: 1%;
 padding-right: 1%;
}

23_9780470537558-bk03ch04.indd 32623_9780470537558-bk03ch04.indd 326 10/7/10 8:39 PM10/7/10 8:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 4

U
sin

g
 A

lte
rn

a
tive

P

o
sitio

n
in

g

327Creating a More Flexible Layout

#content {
 border: 1px black solid;
 position: absolute;
 left: 20%;
 top: 10%;
 width: 78%;
 height: 90%;
 padding-left: 1%;
 padding-right: 1%;
}

Figure 4-5:
This page
uses
absolute
layout, but
it doesn’t
have a fixed
size.

Figure 4-6:
The layout
resizes in
proportion
to the
browser
window.

23_9780470537558-bk03ch04.indd 32723_9780470537558-bk03ch04.indd 327 10/7/10 8:39 PM10/7/10 8:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

328 Creating a More Flexible Layout

The key to any absolute positioning (even this flexible kind) is math. When
you just look at the code, it isn’t clear where all those numbers come from.
Look at the diagram for the page in Figure 4-7 to see where all these numbers
come from.

Figure 4-7:
The diagram
is the key to
a successful
layout.

Building the layout
Here’s how the layout works:

 1. Create an all container by building a div with the all ID.

 The all container will hold all the contents of the page. It isn’t
absolutely necessary in this type of layout, but it does allow for a
centering effect.

 2. Specify the size and position of all.

 I want the content of the page to be centered in the browser window,
so I set its height and width to 90 percent, and its margin-left and
margin-top to 5 percent. In effect, this sets the margin-right and
margin-bottom to 5 percent also. These percentages refer to the all
div’s container element, which is the body, with the same size as the
browser window.

 3. Other percentages are in relationship to the all container.

 Because all the other elements are placed inside all, the percentage
values are no longer referring to the entire browser window. The widths
and heights for the menu and content areas are calculated as percent-
ages of their container, which is all.

23_9780470537558-bk03ch04.indd 32823_9780470537558-bk03ch04.indd 328 10/7/10 8:39 PM10/7/10 8:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 4

U
sin

g
 A

lte
rn

a
tive

P

o
sitio

n
in

g

329Exploring Other Types of Positioning

 4. Determine the heights.

 Height is usually pretty straightforward because you don’t usually have
to change the margins. Remember, though, that the head accounts for
10 percent of the page space, so the height of both the menu and con-
tent needs to be 90 percent.

 5. Figure the general widths.

 In principle, the width of the menu column is 20 percent, and the con-
tent column is 80 percent. This isn’t entirely accurate, though.

 6. Compensate for margins.

 You probably want some margins, or the text looks cramped. If you want
1 percent margin-left and 1 percent margin-right on the menu
column, you have to set the menu’s width to 18 percent to compensate
for the margins. Likewise, set the content width to 78 percent to com-
pensate for margins.

 As if this weren’t complex enough, remember that Internet Explorer 6 (IE6)
and earlier browsers calculate margins differently! In these browsers, the
margin happens inside the content, so you don’t have to compensate for
them (but you have to remember that they make the useable content area
smaller). You’ll probably have to make a conditional comment style sheet to
handle IE6 if you use absolute positioning.

Exploring Other Types of Positioning
If you use the position attribute, you’re most likely to use absolute.
However, here are other positioning techniques that can be handy in certain
circumstances:

 ✦ Relative: Set position: relative when you want to move an ele-
ment from its default position. For example, if you set position to rela-
tive and top: -10px, the element would be placed 10 pixels higher on
the screen than normal.

 ✦ Fixed: Use fixed position when you want an element to stay in the same
place, even when the page is scrolled. This is sometimes used to keep a
menu on the screen when the contents are longer than the screen width.
If you use fixed positioning, be sure you’re not overwriting something
already on the screen.

The real trick is to use appropriate combinations of positioning schemes to
solve interesting problems.

23_9780470537558-bk03ch04.indd 32923_9780470537558-bk03ch04.indd 329 10/7/10 8:39 PM10/7/10 8:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

330 Exploring Other Types of Positioning

Creating a fixed menu system
Figure 4-8 illustrates a very common type of Web page — one with a menu
on the left and a number of stories or topics in the main area.

Something is interesting about this particular design. The button list on the
left refers to specific segments of the page. When you click one of these but-
tons (say, the Gamma button), the appropriate part of the page is called up,
as shown in Figure 4-9.

Normally, when you scroll down the page, things on the top of the page (like
the menu) disappear. In this case, the menu stays on the screen, even though
the part of the page where it was originally placed is now off the screen.

Gamma isn’t necessarily moved to the top of the page. Linking to an element
ensures that it’s visible but doesn’t guarantee where it will appear.

You can achieve this effect using a combination of positioning techniques.

Figure 4-8:
At first
glance,
this is yet
another
two-column
layout.

23_9780470537558-bk03ch04.indd 33023_9780470537558-bk03ch04.indd 330 10/7/10 8:39 PM10/7/10 8:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 4

U
sin

g
 A

lte
rn

a
tive

P

o
sitio

n
in

g

331Exploring Other Types of Positioning

Figure 4-9:
The page
scrolls to
the Gamma
content, but
the menu
stays put.

Setting up the XHTML
The HTML for the fixed menu page is simple (as you’d expect by now):

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>fixedRelative.html</title>
 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”fixedRelative.css” />
 </head>

 <body>
 <h1>Fixed Position</h1>
 <div id = “menu”>

 Alpha
 Beta
 Gamma
 Delta

 </div>

 <div class = “content”
 id = “alpha”>
 <h2>Alpha</h2>
 </div>

23_9780470537558-bk03ch04.indd 33123_9780470537558-bk03ch04.indd 331 10/7/10 8:39 PM10/7/10 8:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

332 Exploring Other Types of Positioning

 <div class = “content”
 id = “beta”>
 <h2>Beta</h2>
 </div>

 <div class = “content”
 id = “gamma”>
 <h2>Gamma</h2>
 </div>

 <div class = ”content“
 id = ”delta“>
 <h2>Delta</h2>
 </div>

 </body>
</html>

The XHTML has only a few noteworthy characteristics:

 ✦ It has a menu. The div named menu contains a list of links (like
most menus).

 ✦ The menu has internal links. A menu can contain links to external
documents or (like this one) links inside the current document. The
Alpha code means create a link to the
element in this page with the ID alpha.

 ✦ The page has a series of content divs. Most of the page’s content
appears in one of the several divs with the content class. This class
indicates all these divs will share some formatting.

 ✦ The content divs have separate IDs. Although all the content divs
are part of the same class, each has its own ID. This allows the menu
to select individual items (and would also allow individual styling, if
desired).

As normal for this type of code, I left out the filler paragraphs from the
code listing.

Setting the CSS values
The interesting work happens in CSS. Here’s an overview of the code:

/* fixedRelative.css */

body {
 background-color: #fff9bf;
}

h1 {
 text-align: center;
}

#menu {
 position: fixed;
 width: 18%;
}

23_9780470537558-bk03ch04.indd 33223_9780470537558-bk03ch04.indd 332 10/7/10 8:39 PM10/7/10 8:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book III

Chapter 4

U
sin

g
 A

lte
rn

a
tive

P

o
sitio

n
in

g

333Exploring Other Types of Positioning

#menu li {
 list-style-type: none;
 margin-left: -2em;
 text-align: center;
}

#menu a{
 display: block;
 border: 2px gray outset;
 text-decoration: none;
 color: black;
}

#menu a:hover{
 color: white;
 background-color: black;
 border: 2px gray inset;
}

#menu h2 {
 text-align: center;
}

.content {
 position: relative;
 left: 20%;
 width: 80%;
}

.content h2 {
 border-top: 3px black double;
}

Most of the CSS is familiar if you’ve looked over the other chapters in this
minibook. I changed the menu list to make it look like a set of buttons, and I
added some basic formatting to the headings and borders. The interesting
thing here is how I positioned various elements.

Here’s how you build a fixed menu:

 1. Set the menu position to fixed by setting the position attribute
to fixed.

 The menu div should stay on the same spot, even while the rest of the
page scrolls. Fixed positioning causes the menu to stay put, no matter
what else happens on the page.

 2. Give the menu a width with the width attribute.

 It’s important that the width of the menu be predictable, both for aes-
thetic reasons and to make sure the content isn’t overwritten by the
menu. In this example, I set the menu width to 18 percent of the page
width (20 percent minus some margin space).

 3. Consider the menu position by explicitly setting the top and left
attributes.

23_9780470537558-bk03ch04.indd 33323_9780470537558-bk03ch04.indd 333 10/7/10 8:39 PM10/7/10 8:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

334 Determining Your Layout Scheme

 When you specify a fixed position, you can determine where the element
is placed on the screen with the left and top attributes. I felt that the
default position was fine, so I didn’t change it.

 4. Set content position to relative.

 By default, all members of the content class will fill out the entire page
width. Because the menu needs the leftmost 20 percent of the page, set
the content class position to relative.

 5. Change content’s left attribute to 20 percent.

 Because content has relative positioning, setting the left to 20 per-
cent will add 20 percent of the parent element to each content’s left
value. This will ensure that there’s room for the menu to the left of all
the content panes.

 6. Give content a width property.

 If you don’t define the width, content panels may bleed off the right
side of the page. Use the width property to ensure this doesn’t happen.

Determining Your Layout Scheme
All these layout options might just make your head spin. What’s the right
strategy? Well, that depends.

The most important thing is to find a technique you’re comfortable with that
gives you all the flexibility you need.

Absolute positioning seems very attractive at first because it promises so
much control. The truth is, it’s pretty complicated to pull off well, it isn’t
quite as flexible as the floating layout techniques, and it’s hard to make it
work right in older browsers.

Floating layouts are generally your best bet, but it’s good to know how abso-
lute positioning works. Every once in a while, you find a situation where
absolute positioning is a good idea. You see another example of absolute
positioning in Chapter 7 of Book IV: animating the position of an element on
the screen.

Sometimes, fixed and relative positioning schemes are handy, as in the
example introduced in the preceding section.

Sometimes, you’ll find it’s best to combine schemes. (It’s difficult to combine
absolute positioning with another scheme, but you can safely combine float-
ing, fixed, and relative positioning techniques most of the time.)

There really aren’t any set answers. CSS layout is still an art in progress,
and there’s plenty to find out about that I can’t describe in this book. Keep
practicing and keep exploring, and you’ll be building beautiful and functional
layouts in no time.

23_9780470537558-bk03ch04.indd 33423_9780470537558-bk03ch04.indd 334 10/7/10 8:39 PM10/7/10 8:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Client-Side Programming
with JavaScript

JavaScript code adds interactivity for checking input and even making
games and animations.

24_9780470537558-pp04.indd 33524_9780470537558-pp04.indd 335 10/7/10 8:39 PM10/7/10 8:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

Chapter 1: Getting Started with JavaScript. .337

Writing Your First JavaScript Program ... 340
Introducing Variables .. 342
Using Concatenation to Build Better Greetings 345
Understanding the String Object ... 347
Understanding Variable Types .. 352

Chapter 2: Making Decisions with Conditions359

Working with Random Numbers ... 359
Using if to Control Flow .. 361
Using the else Clause .. 364
Using switch for More Complex Branches ... 367
Nesting if Statements .. 370

Chapter 3: Loops and Debugging. .373

Building Counting Loops with for .. 373
Looping for a while .. 377
Debugging Your Code ... 380
Catching Logic Errors ... 384
Using the Interactive Debug Mode .. 387

Chapter 4: Functions, Arrays, and Objects. .395

Passing Data to and from Functions ... 398
Managing Scope ... 402
Building a Basic Array ... 405
Working with Two-Dimension Arrays ... 409
Creating Your Own Objects .. 413
Introducing JSON ... 417

Chapter 5: Talking to the Page. .423

Understanding the Document Object Model ... 423
Managing Button Events ... 428
Managing Text Input and Output ... 432
Writing to the Document .. 436

Chapter 6: Getting Valid Input .445

Getting Input from a Drop-Down List .. 445
Check, Please: Reading Check Boxes .. 452
Working with Radio Buttons .. 454
Working with Regular Expressions ... 457

Chapter 7: Animating Your Pages .467

Making Things Move ... 467
Reading Input from the Keyboard ... 475
Following the Mouse ... 481
Creating Automatic Motion .. 483
Building Image-Swapping Animation ... 486
Preloading Your Images .. 490

24_9780470537558-pp04.indd 33624_9780470537558-pp04.indd 336 10/7/10 8:39 PM10/7/10 8:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Getting Started
with JavaScript

In This Chapter
✓ Adding JavaScript code to your pages

✓ Setting up your environment for JavaScript

✓ Creating variables

✓ Inputting and outputting with modal dialogs

✓ Using concatenation to build text data

✓ Understanding data types

✓ Using string methods and properties

✓ Using conversion functions

Web pages are defined by the XHTML code and fleshed out by CSS.
But to make them move and breathe, sing, and dance, you need to

add a programming language or two. If you thought building Web pages
was cool, you’re going to love what you can do with a little programming.
Programming is what makes pages interact with the user. Interactivity is the
“new” in “new media” (if you ask me, anyway). Learn to program, and your
pages come alive.

Sometimes people are nervous about programming. It seems difficult
and mysterious, and only super-geeks do it. That’s a bunch of nonsense.
Programming is no more difficult than XHTML and CSS. It’s a natural exten-
sion, and you’re going to like it.

In this chapter, you discover how to add code to your Web pages. You use a
language called JavaScript, which is already built into most Web browsers.
You don’t need to buy any special software, compilers, or special tools
because you build JavaScript just like XHTML and CSS — in an ordinary text
editor or a specialty editor such as Aptana.

Working in JavaScript
JavaScript is a programming language first developed by Netscape
Communications. It is now standard on nearly every browser. You should
know a few things about JavaScript right away:

25_9780470537558-bk04ch01.indd 33725_9780470537558-bk04ch01.indd 337 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

338 Working in JavaScript

 ✦ It’s a real programming language. Don’t let anybody tell you otherwise.
Sure, JavaScript doesn’t have all the same features as a monster, such as
C++ or VB.NET, but it still has all the hallmarks of a complete program-
ming language.

 ✦ It’s not Java. Sun Microsystems developed a language called Java, which
is also sometimes used in Web programming. Despite the similar names,
Java and JavaScript are completely different languages. The original plan
was for JavaScript to be a simpler language for controlling more com-
plex Java applets, but that never really panned out.

 Don’t go telling people you’re programming in Java. Java people love to
act all superior and condescending when JavaScript programmers make
this mistake. If you’re not sure, ask a question on my Web page. I can
help you with either language.

 ✦ It’s a scripting language. As programming languages go, JavaScript’s
pretty friendly. It’s not quite as strict or wordy as some other languages.
It also doesn’t require any special steps (such as compilation), so it’s
pretty easy to use. These things make JavaScript a great first language.

Choosing a JavaScript editor
Even though JavaScript is a programming language, it is still basically text.
Because it’s normally embedded in a Web page, you can work in the same
text editor you’re using for XHTML and CSS. If you aren’t already, I recom-
mend that you use the powerful Aptana editor. Aptana is great for XHTML
and CSS, but it’s very useful when you use it to incorporate JavaScript code
in your pages.

JavaScript is an entirely different language and syntax than HTML and CSS.
It isn’t hard to learn, but there’s a lot to learning any programming language.
Aptana has a number of great features that help you tremendously when
writing JavaScript code:

 ✦ Syntax highlighting: Like HTML and CSS, Aptana automatically adjusts
code colors to help you see what’s going on in your program. As you see
in the later sidebar “Concatenation and your editor,” this adjustment
can be a big benefit when things get complicated.

 ✦ Code completion: When you type the name of an object, Aptana pro-
vides you with a list of possible completions. This shortcut can be really
helpful because you don’t have to memorize all the details of the various
functions and commands.

 ✦ Help files: The Start page (available from the File menu if you’ve dis-
missed it) has links to great help pages for HTML, CSS, and JavaScript.
The documentation is actually easier to read than some of what you’ll
find on the Web.

25_9780470537558-bk04ch01.indd 33825_9780470537558-bk04ch01.indd 338 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 1

G
e

ttin
g

 S
ta

rte
d

w

ith
 J

a
va

S
c

rip
t

339Working in JavaScript

 ✦ Integrated help: Hover the mouse on a JavaScript command or method,
and a nifty little textbox pops up to explain exactly how the feature
works. Often, it even includes an example or two.

 ✦ Error warnings: When Aptana can tell something is going wrong, it gives
you an error message and places a red squiggly (such as the one spell
checkers use) under the suspect code.

While Aptana is a very good choice, not everyone likes it. I’m also a big fan
of Komodo edit, which has all the same features as Aptana, works on any OS,
and is a little bit faster than Aptana. If you find Aptana too complicated, take
a look at Komodo and see if it fits your style better.

Of course, you can use any text editor if you don’t want or need those fea-
tures. Any of the following text editors (all mentioned in Book I, Chapter 3)
are suitable for JavaScript work:

 ✦ Notepad++

 ✦ VI / VIM

 ✦ Emacs

 ✦ Scintilla

 ✦ jEdit

 There’s one strange characteristic I’ve noticed in Aptana. The Preview tab
isn’t as reliable a technique for checking JavaScript code as it was in XHTML
and CSS. I find it better to run the code directly in my browser or use the
Run button to have Aptana run it in the external browser for me.

Picking your test browser
In addition to your editor, you should think again about your browser when
you’re testing JavaScript code. All the major browsers support JavaScript;
and the support for JavaScript is relatively similar across the browsers (at
least for the stuff in this chapter). However, browsers aren’t equal when it
comes to testing your code.

Things will go wrong when you write JavaScript code, and the browser is
responsible for telling you what went wrong. Firefox is way ahead of Internet
Explorer when it comes to reporting errors. Firefox errors are much easier
to read and understand, and Firefox supports a thing called the javascript
console (described in Chapter 3) that makes it much easier to see what’s
going on. If at all possible, use Firefox to test your code and then check for
discrepancies in Internet Explorer.

You can discover more about finding and fixing errors in Chapter 3 of
this minibook.

25_9780470537558-bk04ch01.indd 33925_9780470537558-bk04ch01.indd 339 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

340 Writing Your First JavaScript Program

Writing Your First JavaScript Program
The foundation of any JavaScript program is a standard Web page like the
ones featured in the first three minibooks.

To create your first JavaScript program, you need to add JavaScript code to
your pages. Figure 1-1 shows the classic first program in any language.

This page has a very simple JavaScript program in it that pops up the phrase
“Hello, World!” in a special element called a dialog box. It’s pretty cool.

Here’s an overview of the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>HelloWorld.html</title>
 <script type = “text/javascript”>
 //<![CDATA[
 // Hello, world!
 alert(“Hello, World!”);
 //]]>
 </script>
 </head>

 <body>

 </body>
</html>

Figure 1-1:
A Java
Script
program
caused this
little dialog
box to
pop up!

25_9780470537558-bk04ch01.indd 34025_9780470537558-bk04ch01.indd 340 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 1

G
e

ttin
g

 S
ta

rte
d

w

ith
 J

a
va

S
c

rip
t

341Writing Your First JavaScript Program

As you can see, this page contains nothing in the HTML body. You can incor-
porate JavaScript with XHTML content. For now, though, you can simply
place JavaScript code in the head area in a special tag and make it work.

Embedding your JavaScript code
JavaScript code is placed in your Web page via the <script> tag. JavaScript
code is placed inside the <script></script> pair. The <script> tag
has one required attribute, type, which will usually be text/javascript.
(Other types are possible, but they’re rarely used.)

The other funny thing in this page is that crazy CDATA stuff. Immediately
inside the script tag, the next line is

//<![CDATA[

This bizarre line is a special marker explaining that the following code is
character information and shouldn’t be interpreted as XHTML. The end of
the script finishes off the character data marker with this code:

//]]>

In modern browsers, it’s a good idea to mark your JavaScript code as char-
acter data. If you don’t, the XHTML validator can sometimes get confused
and claim you have errors when you don’t.

That CDATA business is bizarre. It’s hard to memorize, I know, but just type
it a few times, and you’ll own it.

A lot of older books and Web sites don’t recommend the character data
trick, but it’s well worth learning. You’ve invested too much effort into build-
ing standards-compliant pages to have undeserved error messages pop up
because the browser thinks your JavaScript is badly formatted XHTML.

There’s a long tradition in programming lan-
guages that your first program in any language
should simply say, “Hello, World!” and do noth-
ing else. There’s actually a very good practical
reason for this habit. Hello World is the sim-
plest possible program you can write that you
can prove works. Hello World programs are

used to help you figure out the mechanics of
the programming environment — how the pro-
gram is written, what special steps you have
to do to make the code run, and how it works.
There’s no point in making a more complicated
program until you know you can get code to
pop up and say hi.

Hello World?

25_9780470537558-bk04ch01.indd 34125_9780470537558-bk04ch01.indd 341 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

342 Introducing Variables

Creating comments
Just like XHTML and CSS, comments are important. Because programming
code can be more difficult to decipher than XHTML or CSS, it’s even more
important to comment your code in JavaScript than it is in these environ-
ments. The comment character in JavaScript is two slashes (//).The browser
ignores everything from the two slashes to the end of the line. You can also
use a multi-line comment (/* */) just like the one in CSS.

Using the alert() method for output
You can output data in JavaScript in a number of ways. In this chapter, I
focus on the simplest to implement and understand — the alert().

This technique pops up a small dialog box containing text for the user to
read. The alert box is an example of a modal dialog. Modal dialogs interrupt
the flow of the program until the user pays attention to them. Nothing else
will happen in the program until the user acknowledges the dialog by click-
ing the OK button. The user can’t interact with the page until he clicks the
button.

 Modal dialogs may seem a bit rude. In fact, you probably won’t use them
much once you discover other input and output techniques. The fact that
the dialog box demands attention makes it a very easy tool to use when you
start programming. I use it (and one of its cousins) throughout this chapter
because it’s easy to understand and use.

Adding the semicolon
Each command in JavaScript ends with a semicolon (;) character. The semi-
colon in most computer languages acts like the period in English. It indicates
the end of a logical thought. Usually, each line of code is also one line in the
editor.

To tell the truth, JavaScript will usually work fine if you leave out the semi-
colons. However, you should add them anyway because they help clarify
your meaning. Besides, most other languages, including PHP (see Book V),
require semicolons. You may as well start a good habit now.

Introducing Variables
Computer programs get their power by working with information. Figure 1-2
shows a program that gets user data from the user to include in a custom-
ized greeting.

25_9780470537558-bk04ch01.indd 34225_9780470537558-bk04ch01.indd 342 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 1

G
e

ttin
g

 S
ta

rte
d

w

ith
 J

a
va

S
c

rip
t

343Introducing Variables

Figure 1-2:
First, the
program
asks the
user for her
name.

This program introduces a new kind of dialog that allows the user to enter
some data. The information is stored in the program for later use. After the
user enters her name, she gets a greeting, as shown in Figure 1-3.

Figure 1-3:
The
beginning of
the greeting.
Press the
button for
the rest.

The rest of the greeting happens in a second dialog box, shown in Figure 1-4.
It incorporates the username supplied in the first dialog box.

Figure 1-4:
Now the
greeting is
complete.

The output may not seem that incredible, but take a look at the source code
to see what’s happening:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN“
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>prompt.html</title>
 <script type = ”text/javascript”>
 //<![CDATA[

 var person = “”;
 person = prompt(“What is your name?”);

25_9780470537558-bk04ch01.indd 34325_9780470537558-bk04ch01.indd 343 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

344 Introducing Variables

 alert(“Hi”);
 alert(person);

 //]]>
 </script>
 </head>

 <body>

 </body>
</html>

Creating a variable for data storage
This program is interesting because it allows user interaction. The user
can enter a name, which is stored in the computer and then returned in
a greeting. The key to this program is a special element called a variable.
Variables are simply places in memory for holding data. Any time you want a
computer program to “remember” something, you can create a variable and
store your information in it.

Variables typically have the following characteristics:

 ✦ The var statement: You can indicate that you’re creating a variable with
the var command.

 ✦ A name: When you create a variable, you’re required to give it a name.

 ✦ An initial value: It’s useful to give each variable a value immediately.

 ✦ A data type: JavaScript automatically determines the type of data in a
variable (more on this in the upcoming “Understanding Variable Types”
section), but you should still be clear in your mind what type of data
you expect a variable to contain.

Asking the user for information
The prompt statement does several interesting things:

 ✦ Pops up a dialog box. This modal dialog box is much like the one the
alert() method creates.

 ✦ Asks a question. The prompt() command expects you to ask the user
a question.

 ✦ Provides space for a response. The dialog box contains a space for the
user to type a response and buttons for the user to click when he’s fin-
ished or wants to cancel the operation.

 ✦ Passes the information to a variable. The purpose of a prompt() com-
mand is to get data from the user, so prompts are nearly always con-
nected to a variable. When the code is finished, the variable contains the
indicated value.

25_9780470537558-bk04ch01.indd 34425_9780470537558-bk04ch01.indd 344 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 1

G
e

ttin
g

 S
ta

rte
d

w

ith
 J

a
va

S
c

rip
t

345Using Concatenation to Build Better Greetings

Responding to the user
This program uses the alert() statement to begin a greeting to the user.
The first alert works just like the one from the helloWorld program,
described earlier in this chapter in the “Writing Your First JavaScript
Program” section:

 alert(“Hi”);

The content of the parentheses is the text you want the user to see. In this
case, you want the user to see the literal value “Hi”.

The second alert() statement is a little bit different:

 alert(person);

This alert() statement has a parameter with no quotes. Because the
parameter has no quotes, JavaScript understands that you don’t really want
to say the text person. Instead, it looks for a variable named person and
returns the value of that variable.

The variable can take any name, store it, and return a customized greeting.

Using Concatenation to Build Better Greetings
To have a greeting and a person’s name on two different lines seems a little
awkward. Figure 1-5 shows a better solution.

The program asks for a name again and stores it in a variable. This time, the
greeting is combined into one alert (see Figure 1-6), which looks a lot better.

Figure 1-5:
Once again,
I ask the
user for a
name.

Figure 1-6:
Now the
user’s name
is integrated
into the
greeting.

25_9780470537558-bk04ch01.indd 34525_9780470537558-bk04ch01.indd 345 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

346 Using Concatenation to Build Better Greetings

The secret to Figure 1-6 is one of those wonderful gems of the computing
world: a really simple idea with a really complicated name. The term concat-
enation is a delightfully complicated word for a basic process. Look at the
following code, and you see that combining variables with text is not all that
complicated:

 <script type = “text/javascript”>
 //<![CDATA[
 // from concat.html

 var person = “”;
 person = prompt(“What is your name?”);
 alert(“Hi there, “ + person + “!”);

 //]]>
 </script>

For the sake of brevity, I include only the script tag and its contents through-
out this chapter. The rest of this page is a standard blank XHTML page. You
can see the complete document on the Web site or CD-ROM. I do include a
comment in each JavaScript snippet that indicates where you can get the
entire file on the CD-ROM.

The hard part about concatenation is figuring
out which part of your text is a literal value and
which part is a string. It won’t take long before
you go cross-eyed trying to understand where
the quotes go.

Modern text editors (like Aptana and Komodo)
have a wonderful feature that can help you
here. They color different kinds of text. By
default, Aptana colors variable names black
and literal text dark green (at least when you’re
in JavaScript — in HTML, literal text is blue).

I find it hard to differentiate the dark green
from black, so I changed the Aptana color
scheme. I have string literals blue whether I’m
in JavaScript or HTML. I find this color more
consistent and easier for me to read. With this
setting, I can easily see what part of the state-
ment is literal text and what’s being read as a

variable name. That makes concatenation a lot
easier.

To change the color scheme in Aptana, choose
Window➪Preferences. An expandable outline
appears in the resulting dialog box. In the sec-
tion Aptana — Editors — JavaScript Editor —
Colors, scroll down to find color settings for
any type of data. I found string (another term
for text) under literals and changed the color
from dark green to blue.

If you make a mistake, clicking the Restore
Defaults button reverts to the default values.

Most editors that have syntax highlighting
allow you to change settings to fit your needs.
Don’t be afraid to use these tools to help you
program better.

Concatenation and your editor

25_9780470537558-bk04ch01.indd 34625_9780470537558-bk04ch01.indd 346 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 1

G
e

ttin
g

 S
ta

rte
d

w

ith
 J

a
va

S
c

rip
t

347Understanding the String Object

Comparing literals and variables
The program concat.html contains two kinds of text. “Hi there, ” is a
literal text value. That is, you really mean to say “Hi there, ” (including the
comma and the space). person is a variable. (For more on variables, see the
section “Introducing Variables,” earlier in this chapter.)

You can combine literal values and variables in one phrase if you want:

 alert(“Hi there, “ + person + “!”);

The secret to this code is to follow the quotes. “Hi there, ” is a literal
value because it is in quotes. On the other hand, person is a variable name
because it is not in quotes; “!” is a literal value. You can combine any
number of text snippets together with the plus sign.

Using the plus sign to combine text is called concatenation. (I told you it was
a complicated word for a simple idea.)

Including spaces in your concatenated phrases
You may be curious about the extra space between the comma and the
quote in the output line:

 alert(“Hi there, “ + person + “!”);

This extra space is important because you want the output to look like a
normal sentence. If you don’t have the space, the computer doesn’t add one,
and the output looks like this:

Hi there,Rachael!

 You need to construct the output as it should look, including spaces and
punctuation.

Understanding the String Object
The person variable used in the previous program is designed to hold text.
Programmers (being programmers) devised their own mysterious term to
refer to text. In programming, text is referred to as string data.

The term string comes from the way text is stored in computer memory.
Each character is stored in its own cell in memory, and all the characters
in a word or phrase reminded the early programmers of beads on a string.
Surprisingly poetic for a bunch of geeks, huh?

25_9780470537558-bk04ch01.indd 34725_9780470537558-bk04ch01.indd 347 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

348 Understanding the String Object

Introducing object-based programming (and cows)
JavaScript (and many other modern programming languages) uses a power-
ful model called object-oriented programming (OOP). This style of program-
ming has a number of advantages. Most important for beginners, it allows
you access to some very powerful objects that do interesting things out of
the box.

Objects are used to describe complicated things that can have a lot of char-
acteristics — like a cow. You can’t really put an adequate description of a
cow in an integer variable.

In many object-oriented environments, objects can have the following char-
acteristics. (Imagine a cow object for the examples.)

 ✦ Properties: Characteristics about the object, such as breed and age

 ✦ Methods: Things the objects can do, such as moo() and giveMilk()

 ✦ Events: Stimuli the object responds to, such as onTip

I describe each of these ideas throughout this minibook, as not all objects
support all these characteristics.

If you have a variable of type cow, it describes a pretty complicated thing.
This thing might have properties, methods, and events, all which can be
used together to build a good representation of a cow. (Believe it or not,
I’ve built cow programming constructs more than once in my life — and you
thought programming was dull!)

Most variable types in Java are actually objects, and most JavaScript objects
have a full complement of properties and methods; many even have event
handlers. Master how these things work and you’ve got a powerful and com-
pelling programming environment.

 Okay, before you send me any angry e-mails, I know debate abounds about
whether JavaScript is a truly object-oriented language. I’m not going to get
into the (frankly boring and not terribly important) details in this beginner
book. We’re going to call JavaScript object-oriented for now, because it’s
close enough for beginners. If that bothers you, you can refer to JavaScript
as an object-based language. Nearly everyone agrees with that. You can find
out more information on this topic throughout this minibook while you dis-
cover how to make your own objects in Chapter 4 and use HTML elements
as objects in Chapter 5.

Investigating the length of a string
When you assign text to a variable, JavaScript automatically treats the vari-
able as a string object. The object instantly takes on the characteristics of a

25_9780470537558-bk04ch01.indd 34825_9780470537558-bk04ch01.indd 348 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 1

G
e

ttin
g

 S
ta

rte
d

w

ith
 J

a
va

S
c

rip
t

349Understanding the String Object

string object. Strings have a couple of properties and a bunch of methods.
The one interesting property (at least for beginners) is length. Look at the
example in Figure 1-7 to see the length property in action.

Figure 1-7:
This
program
reports the
length of
any text.

That’s kind of cool how the program can figure out the length of a phrase.
The cooler part is the way it works. As soon as you assign a text value to a
variable, JavaScript treats that variable as a string, and because it’s a string,
it now has a length property. This property returns the length of the string
in characters. Here’s how it’s done in the code.

 <script type = “text/javascript”>
 //<![CDATA[
 //from nameLength.html

 var person = prompt(“Please enter your name.”);
 var length = person.length;

 alert(“Hi, “ + person + “!”);
 alert(“The name “ + person + “ is “ + length + “ characters long.”);

 //]]>
 </script>

A property is used like a special subvariable. For example, person is a vari-
able in the previous example. person.length is the length property of
the person variable. In JavaScript, an object and a variable are connected
by a period (with no spaces).

 The string object in JavaScript has only two other properties (con-
structor and prototype). Both of these properties are needed only for
advanced programming, so I skip them for now.

Using string methods to manipulate text
The length property is kind of cool, but the string object has a lot more up
its sleeve. Objects also have methods (things the object can do). Strings in
JavaScript have all kinds of methods. Here are a few of my favorites:

 ✦ toUpperCase() makes an entirely uppercase copy of the string.

 ✦ toLowerCase() makes an entirely lowercase copy of the string.

25_9780470537558-bk04ch01.indd 34925_9780470537558-bk04ch01.indd 349 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

350 Understanding the String Object

 ✦ substring() returns a specific part of the string.

 ✦ indexOf() determines whether one string occurs within another.

 The string object has many other methods, but I’m highlighting the pre-
ceding because they’re useful for beginners. Many string methods, such
as big() and fontColor(), simply add HTML code to text. They aren’t
used very often because they produce HTML code that won’t validate, and
they don’t really save a lot of effort anyway. Some other methods, such as
search(), replace(), and slice(), use advanced constructs like arrays
and regular expressions that aren’t necessary for beginners. (To find out
more about working with arrays, see Chapter 4 of this minibook. You can
find out more about regular expressions in Chapter 6.)

Don’t take my word for it. Look up the JavaScript string object in the
Aptana’s online help (or one of the many other online JavaScript references)
and see what properties and methods it has.

Like properties, methods are attached to an object by the period. Methods
are distinguished by a pair of parentheses, which sometimes contain special
information called parameters.

The best way to see how methods work is to look at some in action. Look at
the code for stringMethods.html:

 <script type = “text/javascript”>
 //<![CDATA[
 //from stringMethods.html

 var text = prompt(“Please enter some text.”);

 alert(“I’ll shout it out:”);
 alert(text.toUpperCase());

 alert(“Now in lowercase...”);
 alert(text.toLowerCase());

 alert(“The first ‘a’ is at letter...”);
 alert(text.indexOf(“a”));

 alert(“The first three letters are ...”);
 alert(text.substring(0, 3));

 //]]>
 </script>

Figure 1-8 displays the output produced by this program.

25_9780470537558-bk04ch01.indd 35025_9780470537558-bk04ch01.indd 350 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 1

G
e

ttin
g

 S
ta

rte
d

w

ith
 J

a
va

S
c

rip
t

351Understanding the String Object

Figure 1-8:
String
methods
can be fun.

Here’s another cool thing about Aptana. When you type text, Aptana under-
stands that you’re talking about a string variable and automatically pops
up a list of all the possible properties and methods. I wish I had that when I
started doing this stuff!

You can see from the preceding code that methods are pretty easy to use.
When you have a string variable, you can invoke the variable name followed
by a period and the method name. Some methods require more information
to do their job. Here are the specifics:

 ✦ toUpperCase() and toLowerCase() take the value of the variable
and convert it entirely to the given case. This method is often used when
you aren’t concerned about the capitalization of a variable.

 ✦ indexOf(substring) returns the character position of the substring
within the variable. If the variable doesn’t contain the substring, it
returns the value –1.

 ✦ substring(begin, end) returns the substring of the variable from
the beginning character value to the end.

25_9780470537558-bk04ch01.indd 35125_9780470537558-bk04ch01.indd 351 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

352 Understanding Variable Types

Understanding Variable Types
JavaScript isn’t too fussy about whether a variable contains text or a
number, but the distinction is still important because it can cause some
surprising problems. To illustrate, take a look at a program that adds two
numbers together, and then see what happens when you try to get numbers
from the user to add.

Adding numbers
First, take a look at the following program:

 <script type = “text/javascript”>
 //<![CDATA[
 //from addNumbers.html

 var x = 5;
 var y = 3;
 var sum = x + y;

 alert(x + ” plus ” + y + ” equals ” + sum);

 //]]>
 </script>

(As usual for this chapter, I’m only showing the script part because the rest
of the page is blank.)

This program features three variables. I’ve assigned the value 5 to x and 3 to
y. I then add x + y and assign the result to a third variable, sum. The last line
prints the results, which are also shown in Figure 1-9.

The character locations for JavaScript
(and most programming languages) will
seem somewhat strange to you until you
know the secret. You may expect text.
substring(1,3) to return the first three
characters of the variable text, yet I used
text.substring(0,3). Here’s why: The
indices don’t refer to the character numbers
but to the indices between characters.

|a|b|c|d|
0 1 2 3 4

So, if I want the first three characters of the
string “abcd”, I use substring(0,3). If I
want the “cd” part, it’s substring(2,4).

Why are the first three characters (0, 3)?

25_9780470537558-bk04ch01.indd 35225_9780470537558-bk04ch01.indd 352 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 1

G
e

ttin
g

 S
ta

rte
d

w

ith
 J

a
va

S
c

rip
t

353Understanding Variable Types

Figure 1-9:
This
program
(correctly)
adds two
numbers
together.

Note a few important things from this example:

 ✦ You can assign values to variables. It’s best to read the equal sign as
“gets” so that the first assignment is read as “variable x gets the value 5.”

var x = 5;

 ✦ Numeric values aren’t enclosed in quotes. When you refer to a text
literal value, it’s always enclosed in quotes. Numeric data, such as the
value 5, isn’t placed in quotes.

 ✦ You can add numeric values. Because x and y both contain numeric
values, you can add them together.

 ✦ You can replace the results of an operation in a variable. The result of
the calculation x + y is placed in a variable called sum.

 ✦ Everything works as expected. The behavior of this program works as
expected. That’s important because it’s not always true. (You can see an
example of this behavior in the next section — I love writing code that
blows up on purpose!)

 Adding the user’s numbers
The natural extension of the addNumbers.html program is a feature that
allows the user to input two values and then returns the sum. This program
can be the basis for a simple adding machine. Here’s the JavaScript code:

 <script type = “text/javascript”>
 //<![CDATA[
 //from addInputWrong.html

 var x = prompt(“first number:”);
 var y = prompt(“second number:”);
 var sum = x + y;

 alert(x + “ plus “ + y + “ equals “ + sum);

 //]]>
 </script>

25_9780470537558-bk04ch01.indd 35325_9780470537558-bk04ch01.indd 353 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

354 Understanding Variable Types

This code seems reasonable enough. It asks for each value and stores them
in variables. It then adds the variables and returns the results, right? Well,
look at Figure 1-10 to see a surprise.

Figure 1-10:
Wait a
minute . . .
3 + 5 = 35?

Something’s obviously not right here. To understand the problem, you need
to see how JavaScript makes guesses about data types (see the next section).

The trouble with dynamic data
Ultimately, all the information stored in a computer, from music videos to
e-mails, is stored as a bunch of ones and zeroes. The same value 01000001
can mean all kinds of things: It may mean the number 65 or the character
A. (In fact, it does mean both those things in the right context.) The same
binary value may mean something entirely different if it’s interpreted as a
real number, a color, or a part of a sound file.

The theory isn’t critical here, but one point is really important: Somehow
the computer has to know what kind of data is stored in a specific variable.
Many languages, such as C and Java, have all kinds of rules about defining
data. If you create a variable in one of these languages, you have to define
exactly what kind of data will go in the variable, and you can’t change it.

JavaScript is much more easygoing about variable types. When you make
a variable, you can put any kind of data in it that you want. In fact, the data
type can change. A variable can contain an integer at one point, and the
same variable may contain text in another part of the program.

25_9780470537558-bk04ch01.indd 35425_9780470537558-bk04ch01.indd 354 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 1

G
e

ttin
g

 S
ta

rte
d

w

ith
 J

a
va

S
c

rip
t

355Understanding Variable Types

JavaScript uses the context to determine how to interpret the data in a par-
ticular variable. When you assign a value to a variable, JavaScript puts the
data in one of the following categories:

 ✦ Integers are whole numbers (no decimal part). They can be positive or
negative values.

 ✦ A floating point number has a decimal point — for example, 3.14. You can
also express floating point values in scientific notation, such as 6.02e23
(Avogadro’s number –6.02 times 10 to the 23rd). Floating point numbers
can also be negative.

 ✦ A Boolean value can only be true or false.

 ✦ Text is usually referred to as string data in programming languages.
String values are usually enclosed in quotes.

 ✦ Arrays and objects are more complex data types that you can ignore
for now.

Most of the time, when you make a variable, JavaScript guesses right,
and you have no problems. But sometimes, JavaScript makes some faulty
assumptions, and things go wrong.

The pesky plus sign
I use the plus sign in two ways throughout this chapter. The following code
uses the plus sign in one way (concatenating two string values):

var x = “Hi, “;
var y = “there!”;

result = x + y;
alert(result);

In this code, x and y are text variables. The result = x + y line is inter-
preted as “concatenate x and y,” and the result is “Hi, there!”

Here’s the strange thing: The following code is almost identical.

var x = 3;
var y = 5;

result = x + y;
alert(result);

Strangely, the behavior of the plus sign is different here, even though the
statement result = x + y is identical in the two code snippets.

In this second case, x and y are numbers. The plus operator has two entirely
different jobs. If it’s surrounded by numbers, it adds. If it’s surrounded by
text, it concatenates.

25_9780470537558-bk04ch01.indd 35525_9780470537558-bk04ch01.indd 355 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

356 Changing Variables to the Desired Type

That’s what happened to the first adding machine program. When the user
enters data in prompt dialogs, JavaScript assumes that the data is text.
When I try to add x and y, it “helpfully” concatenates instead.

There’s a fancy computer science word for this phenomenon (an operator
doing different things in different circumstances). Those Who Care about
Such Things call this mechanism an overloaded operator. Smart people some-
times have bitter arguments about whether overloaded operators are a good
idea because they can cause problems like this one, but they can also make
things easier in other contexts. I’m not going to enter into that debate here.
It’s not really a big deal, as long as you can see the problem and fix it.

Changing Variables to the Desired Type
If JavaScript is having a hard time figuring out what type of data is in a vari-
able, you can give it a friendly push in the right direction with some handy
conversion functions, as shown in Table 1-1.

Table 1-1 Variable Conversion Functions

Function From To Example Result

parseInt() String Integer parseInt(“23”) 23

parse
Float()

String Floating
point

parseFloat(“21.5”) 21.5

toString() Any
variable

String myVar.toString() varies

eval() Expression Result eval(“5 + 3”) 8

Math.
ceil()

Math.
floor()

Math.
round()

Floating
point

Integer Math.ceil(5.2)

Math.floor(5.2)

Math.round(5.2)

6

5

5

Using variable conversion tools
The conversion functions are incredibly powerful, but you only need them if
the automatic conversion causes you problems. Here’s how they work:

25_9780470537558-bk04ch01.indd 35625_9780470537558-bk04ch01.indd 356 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 1

G
e

ttin
g

 S
ta

rte
d

w

ith
 J

a
va

S
c

rip
t

357Changing Variables to the Desired Type

 ✦ parseInt() is used to convert text to an integer. If you put a text value
inside the parentheses, the function returns an integer value. If the
string has a floating-point representation (“4.3” for example) an integer
value (4) is returned.

 ✦ parseFloat() converts text to a floating-point value.

 ✦ toString() takes any variable type and creates a string representa-
tion. Usually, using this function isn’t necessary to use because it’s
invoked automatically when needed.

 ✦ eval() is a special method that accepts a string as input. It then
attempts to evaluate the string as JavaScript code and return the
output. You can use this method for variable conversion or as a simple
calculator — eval(“5 + 3”) returns the integer 8.

 ✦ Math.ceil() is one of several methods of converting a floating-point
number to an integer. This technique always rounds upward, so Math.
ceil(1.2) is 2, and Math.ceil(1.8) is also 2.

 ✦ Math.floor() is similar to Math.ceil(), except it always rounds
downward, so Math.floor(1.2) and Math.floor(1.8) will both
evaluate to 1.

 ✦ Math.round() works like the standard rounding technique used in
grade school. Any fractional value less than .5 rounds down, and greater
than or equal to .5 rounds up, so Math.round(1.2) is 1, and Math.
round(1.8) is 2.

Fixing the addInput code
With all this conversion knowledge in place, it’s pretty easy to fix up the
addInput program so that it works correctly. Just use parseFloat() to
force both inputs into floating-point values before adding them. You don’t
have to explicitly convert the result to a string. That’s automatically done
when you invoke the alert() method.

 //<![CDATA[
 // from addInput.html

 var x = prompt(“first number:”);
 var y = prompt(“second number:”);
 var sum = parseFloat(x) + parseFloat(y);

 alert(x + ” plus ” + y + ” equals ” + sum);

 //]]>

You can see the program works correctly in Figure 1-11.

25_9780470537558-bk04ch01.indd 35725_9780470537558-bk04ch01.indd 357 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

358 Changing Variables to the Desired Type

Figure 1-11:
Now the
program
asks for
input and
correctly
returns
the sum.

Conversion methods allow you to ensure that the data is in exactly the
format you want.

25_9780470537558-bk04ch01.indd 35825_9780470537558-bk04ch01.indd 358 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Making Decisions
with Conditions

In This Chapter
✓ Generating random numbers and integers

✓ Working with conditions

✓ Using the if-else and switch structures

✓ Handling unusual conditions

One of the most important aspects of computers is their apparent abil-
ity to make decisions. Computers can change their behavior based on

circumstances. In this chapter, you discover how to maximize this decision-
making ability.

Working with Random Numbers
Random numbers are a big part of computing. They add uncertainty to
games, but they’re also used for serious applications, such as simulations,
security, and logic. Most languages have a feature for creating random num-
bers, and JavaScript is no exception. The Math.random() function returns
a random floating-point value between zero and one.

 Technically, computers can’t create truly random numbers. Instead, they
use a complex formula that starts with one value and creates a second semi-
predictable value. In JavaScript, the first value (called the random seed)
is taken from the system clock in milliseconds, so the results of a random
number call seem truly random.

Creating an integer within a range
Creating a random floating-point number between zero and one is easy,
thanks to the Math.random() function. What if you want an integer within
a specific range? For example, say that you want to simulate rolling a
six-sided die. How do you get from the 0-to-1 floating-point value to a
1-to-6 integer?

26_9780470537558-bk04ch02.indd 35926_9780470537558-bk04ch02.indd 359 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

360 Working with Random Numbers

Here’s the standard approach:

 1. Get a random float between 0 and 1 using the Math.random() function.

 2. Multiply that value by 6.

 This step gives you a floating-point value between 0 and 5.999 (but never 6).

 3. Use math.ceil() to round up.

 At this point, you need to convert the number to an integer. In Book
IV, Chapter 1, I mention three functions you can use to convert from a
float to an integer. Math.ceil() always rounds up, which means you’ll
always get an integer between 1 and 6.

Building a program that rolls dice
The following rollDie.html code helps you simulate rolling a six-sided die.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>rollDie.html</title>
 <script type = ”text/javascript”>
 //<![CDATA[
 // from rollDie.html

 var number = Math.random();
 alert(number);

 var biggerNumber = number * 6;
 alert(biggerNumber);

 var die = Math.ceil(biggerNumber);
 alert(die);

 //]]>

 </script>
 </head>

 <body>
 <div id = ”output”>

 </div>
 </body>
</html>

As you can see, I converted the strategy from the previous section directly
into JavaScript code:

 1. Create a random float.

 The Math.random() function creates a random floating-point number
and stores it in the variable number.

26_9780470537558-bk04ch02.indd 36026_9780470537558-bk04ch02.indd 360 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 2

M
a

k
in

g
 D

e
c

isio
n

s
w

ith
 C

o
n

d
itio

n
s

361Using if to Control Flow

 2. Multiply the number by 6 to move the number into the appropriate
range (6 values).

 I multiplied by 6 and stored the result in biggerNumber.

 3. Round up.

 I used the Math.ceil() function to round the number up to the next
highest integer.

Figure 2-1 shows the program running.

Figure 2-1:
This
program
generates
a value
between 1
and 6.

You may need to run the rollDice.html page a few times to confirm that
it works as suspected.

If you want to rerun a program you’ve loaded into the browser, just hit the
page refresh button on the browser toolbar.

Using if to Control Flow
If you can roll a die, you’ll eventually want different things to happen based
on the results of the die roll. Figure 2-2 shows two different runs of a simple
game called deuce.html.

Okay, it’s not that exciting. I promise to add dancing hippos in a later version.

In any case, the “You got a Deuce!” message happens only when you roll a 2.
The code is simple but profound:

 <script type = “text/javascript”>
 //<![CDATA[
 // get a random number
 // If it’s a two, you win

26_9780470537558-bk04ch02.indd 36126_9780470537558-bk04ch02.indd 361 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

362 Using if to Control Flow

 var die = Math.ceil(Math.random() * 6);
 alert(die);
 if (die == 2){
 alert (“You got a Deuce!”);
 } // end if

 //]]>
 </script>

 As usual, I’m showing only the script tag and its contents here, because the
rest of the page is blank.

Figure 2-2:
Something
exciting
happens
when you
roll a two.

The basic if statement
The key to deuce.html is the humble if statement. This powerful com-
mand does a number of important things:

 ✦ It sets up a condition. The main idea behind a condition is that it’s
a true or false question. An if statement always includes some type
of condition in parentheses. (For more on conditions, see the next
section.)

 ✦ It begins a block of code. An if statement sets up a chunk of code that
doesn’t always execute. The end of the if line includes a left brace ({).

 ✦ It usually has indented code under it. The line or lines immediately
after the if statement are part of the block, so they’re indented to indi-
cate that they’re special.

 ✦ It ends several lines later. The end of the if statement is actually the
right brace (}) several lines down in the code. In essence, an if state-
ment contains other code.

 ✦ It’s indented. The convention is to indent all the code between the if
statement and its ending brace.

26_9780470537558-bk04ch02.indd 36226_9780470537558-bk04ch02.indd 362 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 2

M
a

k
in

g
 D

e
c

isio
n

s
w

ith
 C

o
n

d
itio

n
s

363Using if to Control Flow

Although not required, many programmers add a comment to indicate that
the right brace ends an if statement. In the C-like languages, the same
symbol (}) is used to end a bunch of things, so it’s nice to remind yourself
what you think you’re ending here.

All about conditions
A condition is the central part of if and several other important structures.
Conditions deserve a little respect of their own. A condition is an expression
that can be evaluated to true or false. Conditions come in three flavors:

 ✦ Comparison: By far the most common kind of condition. Typically, you
compare a variable to a value, or two variables to each other. Table 2-1
describes a number of different types of comparisons.

 ✦ Boolean variable: A variable that contains only true or false. In
JavaScript, any variable can be a Boolean, if you assign it true or
false as a value. You don’t need to compare a Boolean to anything else
because it’s already true or false.

 ✦ Boolean function: Returns a true or false value, and you can also use
this type of function as a condition.

 Incidentally, Boolean variables are the only primitive variable type capital-
ized in most languages. They were named after a person, George Boole, a
nineteenth-century mathematician who developed a form of binary arithme-
tic. Boole died thinking his research a failure. His work eventually became
the foundation of modern computing. Drop a mention of George at your next
computer science function to earn mucho geek points.

Comparison operators
JavaScript supports a number of comparison types, summarized in Table 2-1.

Table 2-1 Comparison Operators

Name Operator Example Notes

Equality == (x==3) Works with all variable types, includ-
ing strings.

Not equal != (x != 3) True if values are not equal

Less than < (x < 3) Numeric or alphabetical comparison

Greater than > (x > 3) Numeric or alphabetical comparison

Less than or
equal to

<= (x <= 3) Numeric or alphabetical comparison

Greater than
or equal to

>= (x >= 3) Numeric or alphabetical comparison

26_9780470537558-bk04ch02.indd 36326_9780470537558-bk04ch02.indd 363 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

364 Using the else Clause

You should consider a few things when working with conditions:

 ✦ Be sure the variable types are compatible. You’ll get unpredictable
results if you compare a floating-point value to a string.

 ✦ You can compare string values. In JavaScript, you can use the inequal-
ity operators to determine the alphabetical order of two values. (This
ability isn’t possible in most other languages.)

 ✦ Equality uses a double equal sign. The single equal sign (=) is used
to indicate assignment. When you’re comparing variables, use a double
equal (==) instead.

 Don’t confuse assignment with comparison! If you accidentally say (x = 3)
instead of (x == 3), your code won’t crash, but it won’t work properly.
The first statement simply assigns the value 3 to the variable x. It returns the
value true if the assignment was successful (which it will be). You’ll think
you’re comparing x to 3, but you’re assigning 3 to x, and the condition will
always be true. Keeping these two straight is a nightmare. I still mess it up
once in a while.

Using the else Clause
The deuce.html game, described in the section “Using if to control flow,” is
pretty exciting and all, but it would be even better if you had one comment
when the roll is a 2 and another comment when it’s something else. Figure 2-3
shows a program with exactly this behavior.

Figure 2-3:
You get one
message
for deuces
and another
message for
everything
else.

 This program uses the same type of condition as the earlier deuce.html
game, but it adds an important section:

 <script type = “text/javascript”>
 //<![CDATA[
 // from deuceOrNot.html

 var die = Math.ceil(Math.random() * 6);
 if (die == 2){

26_9780470537558-bk04ch02.indd 36426_9780470537558-bk04ch02.indd 364 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 2

M
a

k
in

g
 D

e
c

isio
n

s
w

ith
 C

o
n

d
itio

n
s

365Using the else Clause

 alert(”You got a deuce!”);
 } else {
 alert(”It’s only a ” + die + ”.”);
 } // end if

 //]]>
 </script>

The if statement is unchanged, but now an else clause appears. Here’s
how the program works:

 1. The if statement sets up a condition.

 The if statement indicates the beginning of a code branch, and it pre-
pares the way for a condition.

 2. The condition establishes a test.

 Conditions are true or false expressions, so the condition indicates
something that can be true or false.

 3. If the condition is true, the code between the condition and the else
clause runs.

 After this code is finished, control moves past the end of the if
structure.

 4. If the condition is false, the code between else and the end of the if
statement runs instead.

The else clause acts like a fork in the road. The code goes along one path
or another (depending on the condition) but never both paths at one time.

You can put as much code as you want inside an if or else clause, includ-
ing more if statements!

 The else clause is used only in the context of an if statement. You can’t
use else by itself.

Using if-else for more complex interaction
The if-else structure is pretty useful when you have only two branches,
but what if you want to have several options? Figure 2-4 shows a die only a
geek could love. All its values are output in binary notation. (For more on
binary notation, see the sidebar “Binary?”)

Figure 2-4:
A die for the
true geek
gamer.

26_9780470537558-bk04ch02.indd 36526_9780470537558-bk04ch02.indd 365 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

366 Using the else Clause

A simple if-else structure isn’t sufficient here because you have six
options. (if-else gives you only two choices). Here’s some code that uses
another variation of if and else:

 <script type = “text/javascript”>
 //<![CDATA[
 // from binaryDice.html

 var die = Math.ceil(Math.random() * 6);
 if (die == 1){
 alert(“001”);
 } else if (die == 2){
 alert(“010”);
 } else if (die == 3){
 alert(”011”);
 } else if (die == 4){
 alert(”100”);
 } else if (die == 5){
 alert(”101”);
 } else if (die == 6){
 alert(”110”);
 } else {
 alert(”something strange is happening...”);
 } // end if

 //]]>
 </script>

This program begins with an ordinary if statement, but it has a number of
else clauses. You can include as many else clauses as you want if each
includes its own condition.

Binary notation is the underlying structure of all data in a computer. It uses ones and zeroes to
store other numbers, which you can combine to form everything you see on the computer, from
graphics to text to music videos and adventure games. Here’s a quick conversion chart so that
you can read the dice:

 Die Number Binary Notation

 1 001

 2 010

 3 011

 4 100

 5 101

 6 110

You can survive just fine without knowing binary (unless you’re a computer science major — then
you’re expected to dream in binary). Still, it’s kind of cool to know how things really work.

Binary?

26_9780470537558-bk04ch02.indd 36626_9780470537558-bk04ch02.indd 366 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 2

M
a

k
in

g
 D

e
c

isio
n

s
w

ith
 C

o
n

d
itio

n
s

367Using switch for More Complex Branches

To see how this program works, imagine the computer generates the value 3.

 1. The first condition (die == 1) is false, so the program immediately
jumps to the next else.

 2. Step 1 sets up another condition (die == 2), which is also false, so
control goes to the next else clause.

 3. This step has yet another condition (die == 3), which is true, so the
code inside this clause executes (alerting the value “011”).

 4. A condition has finally been triggered, so the computer skips all the
other else conditions and moves to the line after the end if.

 5. This step is the last line of code, so the program ends.

Solving the mystery of the unnecessary else
When you use multiple conditions, you can (and should) still indicate an
ordinary else clause without a condition as your last choice. This special
condition sets up code that should happen if none of the other conditions
is triggered. It’s useful as a fallback position, in case you didn’t anticipate a
condition in the else if clauses.

If you think carefully about the binary dice program, the else clause seems
superfluous. (I love that word.) It isn’t really necessary! You went through all
that trouble to create a random number scheme that guarantees you’ll have
an integer between 1 and 6. If you checked for all six values, why have an
else clause? It should never be needed.

There’s a big difference between what should happen and what does
happen. Even if you think you’ve covered every single case, you’re going to
be surprised every once in a while. If you use a multiple if structure, you
should always incorporate an else clause to check for surprises. It doesn’t
need to do much but inform you that something has gone terribly wrong.

Using switch for More Complex Branches
When you have one expression that may have multiple values — as is the
case when rolling a die, as described in the preceding sections — you may
want to take advantage of a handy tool called switch for exactly this type of
situation. Take a look at Figure 2-5, which is a variation of the die roller.

Once again, I start with an ordinary 1–6 integer and assign a new value based
on the original roll. This time, I use another structure specialized for “one
expression with lots of values” situations. Take a look at the following code:

 <script type = “text/javascript”>
 //<![CDATA[
 // from RomanDice.html
 var die = Math.ceil(Math.random() * 6);

26_9780470537558-bk04ch02.indd 36726_9780470537558-bk04ch02.indd 367 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

368 Using switch for More Complex Branches

 var output = “”;
 switch(die){
 case 1:
 output = ”I”;
 break;
 case 2:
 output = ”II”;
 break;
 case 3:
 output = ”III”;
 break;
 case 4:
 output = ”IV”;
 break;
 case 5:
 output = ”V”;
 break;
 case 6:
 output = ”VI”;
 break;
 default:
 output = ”PROBLEM!!!”;
 } // end switch

Figure 2-5:
Now we
have
ancient
Roman dice.
Useful if
we come
across any
ancient
Romans.

Creating an expression
The switch structure in the preceding code is organized a little bit differ-
ently than the if--else if business.

The switch keyword is followed immediately by an expression in parenthe-
ses. The expression is usually a variable with several possible values. The
switch structure then provides a series of test values and code to execute
in each case.

To create a switch statement:

 1. Begin with the switch keyword.

 This step sets up the structure. You’ll indent everything until the right
brace (}) that ends the switch structure.

26_9780470537558-bk04ch02.indd 36826_9780470537558-bk04ch02.indd 368 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 2

M
a

k
in

g
 D

e
c

isio
n

s
w

ith
 C

o
n

d
itio

n
s

369Using switch for More Complex Branches

 2. Indicate the expression.

 The expression is usually a variable you want to compare against sev-
eral values. The variable goes inside parentheses and is followed by a
left brace ({).

 3. Identify the first case.

 Indicate the first value you want to compare the variable against. Be
sure the case is the same type as the variable.

 4. End the case description with a colon (:).

 Be careful! Case lines end with a colon (indicating the beginning of
a case) rather than the more typical semicolon. It’s easy to forget
this difference.

 5. Write code for the case.

 You can write as many lines of code as you want inside each case.
This code executes only if the expression is equal to the given case.
Typically, all the code in a case is indented.

 6. Indicate the end of the case with a break statement.

 This statement tells the computer to jump out of the switch structure
as soon as this case has been evaluated (which is almost always what
you want).

 7. Repeat with other cases.

 Build similar code for all the other cases you wish to test.

 8. Trap for surprises with default.

 The special case default works like the else in an else if structure:
It manages any cases that haven’t already been trapped. Even if you
think you have all the bases covered, you should put some default code
in place just in case.

 You don’t need to put a break statement in the default clause,
because it always happens at the end of the switch structure anyway.

Switching with style
The switch structure is powerful, but it can be tricky because the format is
a little strange. Here are a few tips to keep in mind:

 ✦ You can compare any type of expression. If you’ve used another lan-
guage (like C or Java), you may have learned that switches only work on
numeric values. You can use JavaScript switches on any data type.

 ✦ It’s up to you to get the type correct. If you’re working with a numeric
variable and you compare it against string values, you may not get the
results you’re looking for.

26_9780470537558-bk04ch02.indd 36926_9780470537558-bk04ch02.indd 369 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

370 Nesting if Statements

 ✦ Don’t forget the colons. At first glance, the switch statement uses
semicolons like most other JavaScript commands. Cases end with
colons (:). Getting confused is easy to do.

 ✦ Break each case. Use the break statement to end each case, or you’ll
get weird results.

 Wouldn’t arrays be better? If you have some programming experience,
you may argue that another solution involving something called arrays is
better for this particular problem. I tend to agree, but for that solution, go
to Chapter 4 of this minibook. Switches and if-else structures have their
place, too.

Nesting if Statements
You can combine conditions in all kinds of crazy ways. One decision can
include other decisions, which may incorporate other decisions. You can
put if statements inside each other to manage this kind of (sometimes com-
plicated) logic.

Figure 2-6 shows a particularly bizarre example. Imagine that you’re watch-
ing the coin toss at your favorite sporting event. Of course, a coin can be
heads or tails. Just for the sake of argument, the referee also has a complex
personality. Sometimes he’s a surfer, and sometimes he’s an L337 94m3r
(translation: elite gamer). Figure 2-6 shows a few tosses of the coin.

I don’t know why the referee is sometimes a surfer and sometimes an L337
94m3r. Perhaps he faced a particularly bizarre set of childhood circumstances.

Figure 2-6:
Heads or
tails? Surfer
or gamer?

26_9780470537558-bk04ch02.indd 37026_9780470537558-bk04ch02.indd 370 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 2

M
a

k
in

g
 D

e
c

isio
n

s
w

ith
 C

o
n

d
itio

n
s

371Nesting if Statements

This example is getting pretty strange, so you may as well look at some code:

 <script type = “text/javascript”>
 //<![CDATA[
 // from coinToss.html
 coin = Math.ceil(Math.random() * 2);
 character = Math.ceil(Math.random() * 2);
 if (character == 1){
 //It’s a surfer referee
 if (coin == 1){
 alert(“You got heads, Dude.”);
 } else {
 alert(“Dude! It’s totally tails!”);
 } // end coin if

 } else {
 //now it’s a L337 Referee
 if (coin == 1){
 alert(“h34D$ r0xx0r$”);
 } else {
 alert(“741L$ ruL3”);
 } // end coin if
 } // end character if

 //]]>
 </script>

Building the nested conditions
If you understand how nested if structures work, you can see how the code
all fits together.

 1. Flip a coin.

 I just used a variation of the die-rolling technique, described in the ear-
lier sections. A coin can be only heads or tails, so I rolled a value that
would be 1 or 2 for the coin variable.

 2. Flip another coin for the personality.

 The referee’s persona is reflected in another random value between 1
and 2.

Leet (L337) is a wacky social phenomenon pri-
marily born of the online gaming community.
Originally, it began as people tried to create
unique screen names for multiplayer games.
If you wanted to call yourself “gamer,” for
example, you’d usually find the name already
taken. Enterprising gamers started substituting

similar-looking letters and numbers (and some-
times creative spelling) to make original names
that are still somewhat readable. The practice
spread, and now it’s combined with text mes-
saging and online chat shortcuts as a sort of
geek code. Get it? L337 94m3r is Leet Gamer,
or Elite Gamer.

What’s this L337 stuff?

26_9780470537558-bk04ch02.indd 37126_9780470537558-bk04ch02.indd 371 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

372 Nesting if Statements

 3. Check to see whether you have a surfer.

 If the character roll is 1, we have a surfer, so set up an if statement to
handle the surfer’s output.

 4. If it’s the surfer, check the coin toss.

 Now that you know a surfer is speaking, check the coin for heads or
tails. Another if statement handles this task.

 5. Respond to the coin toss in surfer-speak.

 Use alert() statements to output the result in the surfer dialect.

 6. Handle the L337 character.

 The outer if structure determines which character is speaking. The
else clause of this case will happen if character is not 1, so all the
LEET stuff goes in the else clause.

 7. Check the coin again.

 Now that you know you’re speaking in gamer code, determine what to
say by consulting the coin in another if statement.

Making sense of nested ifs
Nested if structures aren’t all that difficult, but they can be messy, espe-
cially when you get several layers deep (as you will, eventually). The follow-
ing tips help make sure that everything makes sense:

 ✦ Watch your indentation. Be vigilant on your indentation scheme. An
editor like Aptana, which automatically indents your code, is a big plus.
Indentation is a great way to tell what level of code you’re on.

 ✦ Use comments. You can easily get lost in the logic of a nested condition.
Add comments liberally so that you can remind yourself where you are
in the logic. I specify which if statement is ending.

 ✦ Test your code. Just because you think it works doesn’t mean it will.
Surprises will happen. Test thoroughly to make sure that the code does
what you think it should do.

26_9780470537558-bk04ch02.indd 37226_9780470537558-bk04ch02.indd 372 10/7/10 8:40 PM10/7/10 8:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Loops and Debugging

In This Chapter
✓ Working with for loops

✓ Building while loops

✓ Recognizing troublesome loops

✓ Catching crashes and logic errors

✓ Using the Aptana line-by-line debugger

Computer programs can do repetitive tasks easily, thanks to a series of
constructs called loops. In this chapter, you discover the two major

techniques for managing loops.

Loops are powerful, but they can be dangerous. It’s possible to create loops
that act improperly, and these problems are difficult to diagnose. I demon-
strate several powerful techniques for identifying issues in your code.

Building Counting Loops with for
A loop is a structure that allows you to repeat a chunk of code. One stan-
dard type of loop — the for loop — repeats a chunk of code a certain
number of times. Figure 3-1 shows a for loop in action.

Figure 3-1:
This loop
repeats ten
times before
it stops.

27_9780470537558-bk04ch03.indd 37327_9780470537558-bk04ch03.indd 373 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

374 Building Counting Loops with for

Although it looks like ten different alert statements appear, only one exists;
it’s just repeated ten times.

 I show the first few dialogs and the last. You should be able to get the
idea. Be sure to look at the actual program on the CD-ROM to see how it
really works.

Building a standard for loop
You can see the structure of the for loop in the following code:

 <script type = “text/javascript”>
 //<![CDATA[
 //from BasicFor.html
 for (lap = 1; lap <= 10; lap++){
 alert(“now on lap: “ + lap + “.”);
 } // end for
 //]]>
 </script>

for loops are based on an integer, which is sometimes called a sentry vari-
able. In this example, lap serves as the sentry variable. You typically use
the sentry variable to count the number of repetitions through a loop.

The for statement has three distinct parts:

 ✦ Initialization: This segment (lap = 1) sets up the initial value of the
sentry.

 ✦ Condition: The condition (lap <= 10) is an ordinary condition
(although it doesn’t require parentheses in this context). As long as the
condition is evaluated as true, the loop will repeat.

 ✦ Modification: The last part of the for structure (lap++) indicates how
the sentry will be modified throughout the loop. In this case, I add 1 to
the lap variable each time through the loop.

The for structure has a pair of braces containing the code that will be
repeated. As usual, all code inside this structure is indented. You can have
as much code inside a loop as you want.

The lap++ operator is a special shortcut. Adding 1 to a variable is common,
so the lap++ operation means “add 1 to lap.” You can also write lap =
lap + 1, but lap++ sounds so much cooler.

 When programmers decided to improve on the C language, they called the
new language C++. Get it? It’s one better than C! Those computer scientists
are such a wacky bunch!

When you know how many times something should happen, for loops are
pretty useful.

27_9780470537558-bk04ch03.indd 37427_9780470537558-bk04ch03.indd 374 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 3

Lo
o

p
s a

n
d

D

e
b

u
g

g
in

g

375Building Counting Loops with for

Counting backward
You can modify the basic for loop so that it counts backward. Figure 3-2
shows an example of this behavior.

Figure 3-2:
This
program
counts
backward.

The backward version of the for loop uses the same general structure as
the forward version (shown in the preceding section), but with slightly dif-
ferent parameters:

 <script type = “text/javascript”>
 //<![CDATA[
 //from backwards.html

 for (lap = 10; lap >= 1; lap--){
 alert(“Backing up: “ + lap);
 } // end for

 //]]>
 </script>

If you want to count backward, just modify the three parts of the
for statement:

 ✦ Initialize the sentry to a large number. If you’re counting down, you
need to start with a number larger than 0 or 1.

 ✦ Keep going as long as the sentry is larger than some value. The code
inside the loop will execute as long as the condition is true. The number
will be getting smaller, so make sure that you’re doing a greater than (>)
or greater than or equal to (>=) comparison.

 ✦ Decrement the sentry. If you want the number to get smaller, you need
to subtract something from it. The -- operator is a quick way to do so. It
subtracts 1 from the variable.

Counting by 5
You can use the for loop to make other kinds of counting loops. If you want
to count by five, for example, you can use the following variation:

27_9780470537558-bk04ch03.indd 37527_9780470537558-bk04ch03.indd 375 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

376 Building Counting Loops with for

 <script type = “text/javascript”>
 //<![CDATA[

 //from byFive.html
 for (i = 5; i <= 25; i += 5){
 alert(i);
 } // end for

 //]]>

 </script>

This code starts i as five, repeats as long as i is less than or equal to 25,
and adds 5 to i on each pass through the loop. Figure 3-3 illustrates this
code in action.

Figure 3-3:
for loops
can also
skip values.

If you want a for loop to skip numbers, you just make a few changes to the
general pattern:

 ✦ Build a sentry variable, using a sensible initial value. If you want the
loop to start at 5, use 5 as the initial value.

 ✦ Check against a condition. It makes sense for a 5 loop to end at a mul-
tiple of 5. If you want this loop to continue until you get to 25, continue
as long as i is less than or equal to 25.

 ✦ Modify the variable on each pass. In the example, the statement
i += 5 adds 5 to i. (It’s just like saying i = i + 5.)

Fortunately, all these elements are in the for loop structure, so you prob-
ably won’t overlook them. Still, if you find that your loop isn’t working as
expected, you may need to look into the debugging tricks described in the
section “Catching Logic Errors” later in this chapter.

27_9780470537558-bk04ch03.indd 37627_9780470537558-bk04ch03.indd 376 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 3

Lo
o

p
s a

n
d

D

e
b

u
g

g
in

g

377Looping for a while

Looping for a while
The for loop is useful, but it has a cousin that’s even more handy, the
while loop. A while loop isn’t tied to any particular number of repetitions.
It simply repeats as long as its condition is true.

Creating a basic while loop
The basic while loop is deceptively simple to build. Here’s an example:

 <script type = “text/javascript”>
 //<![CDATA[
 // from while.html

 answer = “-99”;
 while (answer != “5”){
 answer = prompt(“What is 3 + 2?”);
 if (answer == “5”){
 alert(“great!”);
 } else {
 alert(“try again...”);
 } // end if
 } // end while

 //]]>
 </script>

This script asks the user a simple math question and keeps asking until the
user responds correctly. You can see it in action in Figure 3-4.

Figure 3-4:
This loop
continues
until the
user
answers
correctly.

The operation of a while loop is easy to understand. Here’s how the math
program works:

 1. Create a variable called answer to act as a sentry variable for the loop.

 2. Initialize the variable.

 The initial value of the variable is set to “-99”, which can’t possibly be
correct. That guarantees that the loop will execute at least one time.

27_9780470537558-bk04ch03.indd 37727_9780470537558-bk04ch03.indd 377 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

378 Introducing Bad Loops

 3. Evaluate the answer.

 In this particular program, the correct answer is 5. If the value of answer
is anything but 5, the loop continues. In this example, I’ve preset the value
of answer to “-99” so that the loop happens at least once.

 4. Ask the user a challenging math question.

 Well, a math question, anyway. The important thing is to change the value
of answer so that it’s possible to get 5 in the answer and exit the loop.

 5. Give the user some feedback.

 It’s probably good to let the user know how she did, so provide some
sort of feedback.

Avoiding loop mistakes
A while loop seems simpler than a for loop, but while has exactly the
same basic requirements:

 ✦ A critical sentry variable typically controls the loop. Some key variable
usually (but not always) controls a while loop.

 ✦ The sentry must be initialized. If the loop is going to behave properly,
the sentry variable must still be initialized properly. In most cases, you’ll
want to guarantee that the loop happens at least one time.

 ✦ You must have a condition. Like the for loop, while loops are based
on conditions. As long as the condition is true, the loop continues.

 ✦ You must include a mechanism for changing the sentry. Somewhere
in the loop, you need to have a line that changes the value of the sentry.
Be sure that it’s possible to make the condition false, or you’ll be in the
loop forever!

If you forget one of these steps, the while loop may not work correctly.
Making mistakes in your while loops is easy. Unfortunately, these mistakes
don’t usually result in a crash. Instead, the loop may either refuse to run
altogether or continue on indefinitely. If your loop has that problem, you’ll
want to make sure that you read the next section.

Introducing Bad Loops
Sometimes loops don’t behave. Even if you have the syntax correct, your
loop still may not do what you want. The following sections describe two
loop errors: Loops that never happen and loops that never quit.

27_9780470537558-bk04ch03.indd 37827_9780470537558-bk04ch03.indd 378 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 3

Lo
o

p
s a

n
d

D

e
b

u
g

g
in

g

379Introducing Bad Loops

Managing the reluctant loop
You may write some code and find that the loop never seems to run, as in
the following program:

 <script type = “text/javascript”>
 //<![CDATA[

 //from never.html
 //Warning! this script has a deliberate error!

 i = 1;
 while (i > 10){
 i++;
 } // end while

 //]]>
 </script>

This code looks innocent enough, but if you run it, you’ll be mystified. It
doesn’t crash, but it also doesn’t seem to do anything. If you follow the code
step by step, you eventually see why. I initialize i to 1, and then repeat as
long as i is greater than 10. See the problem? i is less than 10 right now, so
the condition starts out false, and the loop never executes! I probably meant
for the condition to be (i < 10). It’s a sloppy mistake, but exactly the kind
of bone-headed error I make all the time.

I’m not showing you a screenshot of this program, because nothing hap-
pens. Likewise, I don’t show you a screenshot of the one in the next section
because it doesn’t do anything useful either.

Managing the obsessive loop
The other kind of bad-natured loop is the opposite of the reluctant loop I de-
scribe in the preceding section. This one starts just fine, but never goes away!

The following code illustrates an endless loop:

 <script type = “text/javascript”>
 //<![CDATA[

 //from endless.html
 // Warning: this program has a deliberate
 // error! You will have to stop the browser
 // to end the loop.

 i = 0;
 j = 0;

 while (i < 10){
 j++;
 alert(j);
 } // end while

 //]]>
 </script>

27_9780470537558-bk04ch03.indd 37927_9780470537558-bk04ch03.indd 379 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

380 Debugging Your Code

 If you decide to run endless.html, be aware that it won’t work properly.
What’s worse, the only way to stop it will be to kill your browser through the
task manager. In the upcoming section “Catching Logic Errors,” I show you
how to run such code in a safe environment so that you can figure out
what’s wrong with it.

This code is just one example of the dreaded endless loop. Such a loop usu-
ally has perfectly valid syntax, but some logic error prevents it from running
properly. The logic error is usually one of the following:

 ✦ The variable wasn’t initialized properly. The initial value of the sentry
is preventing the loop from beginning correctly.

 ✦ The condition is checking for something that can’t happen. Either
the condition has a mistake in it, or something else is preventing it
from triggering.

 ✦ The sentry hasn’t been updated inside the loop. If you simply forget
to modify the sentry variable, you get an endless loop. If you modify the
variable after the loop has completed, you get an endless loop. If you ask
for input in the wrong format, you may also get a difficult-to-diagnose
endless loop.

Debugging Your Code
If you’ve written JavaScript code, you’ve encountered errors. It’s part of a
programmer’s life. Loops are especially troublesome because they can cause
problems even when the syntax is perfect. Fortunately, you can use some
great tricks to help track down pesky bugs.

Letting Aptana help
If you’re writing your code with Aptana, you already have some great
help available. Aptana gives you the same syntax-highlighting and code-
completion features as you had when writing XHTML and CSS.

Also, Aptana can often spot JavaScript errors on the fly. Figure 3-5 shows a
program with a deliberate error.

Aptana notifies you of errors in your code with a few mechanisms:

 ✦ The suspect code has a red squiggle underneath. Similar to a word pro-
cessing spell checker.

 ✦ A red circle indicates the troublesome line. You can scan the margin to
quickly see where the errors are.

27_9780470537558-bk04ch03.indd 38027_9780470537558-bk04ch03.indd 380 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 3

Lo
o

p
s a

n
d

D

e
b

u
g

g
in

g

381Debugging Your Code

 ✦ The validation pane summarizes all errors. You can see the errors and
the line number for each. Double-click an error to enter that spot in the
code. If the validation window is not visible, you can enable it by select-
ing Window➪Show View➪Validation from the menu system.

 ✦ You can hover on an error to get more help. Hover the mouse on an
error to get a summary of the error.

Aptana can catch some errors, but it’s most useful at preventing errors with
the automatic indentation and code assist features.

Debugging JavaScript on Internet Explorer
Internet Explorer has unpredictable behavior when it comes to JavaScript
errors. IE6 will take you to some type of editor, but the editors have changed
over the years and can be modified (without your knowledge or permission)
when you install new software. IE7 and IE8 (at least by default) simply do
nothing. You won’t see an error or any indication that an error occurred.
(Denial — my favorite coping mechanism.)

You can force IE to give you a little bit of help, though. All you have to do is
choose Tools➪Internet Options and then click the Advanced tab. You see a
dialog box that looks similar to Figure 3-6.

Figure 3-5:
Aptana
caught my
error and
provides
some help.

27_9780470537558-bk04ch03.indd 38127_9780470537558-bk04ch03.indd 381 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

382 Debugging Your Code

Figure 3-6:
This dialog
box allows
you to
get error
warnings
in Internet
Explorer.

In the dialog box, select Display a Notification about Every Script Error.
Leave all the other settings alone for now. (Yep, we’re going to keep script
debugging disabled, because it doesn’t work very well. I show you a better
technique in the “Finding errors in Firefox” section.)

When you reload broken.html in Internet Explorer, you see something
similar to Figure 3-7.

Figure 3-7:
I never
thought I’d
be happy to
see an error
message.

This message is actually good news because you know what the problem is
and you have a clue about how to fix it. In this particular case, the error mes-
sage is pretty useful. Sometimes that’s the case, and sometimes the error
messages seem to have been written by aliens.

27_9780470537558-bk04ch03.indd 38227_9780470537558-bk04ch03.indd 382 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 3

Lo
o

p
s a

n
d

D

e
b

u
g

g
in

g

383Debugging Your Code

 Be sure to have error notification turned on in IE so that you know about
errors right away. Of course, you also need to check your code in Firefox.

Finding errors in Firefox
Firefox has somewhat better error-handling than IE by default, and you can
use add-ons to turn it into a debugging machine. At Firefox’s default set-
ting, error notification is minimal. If you suspect JavaScript errors, open
the JavaScript Errors window by choosing Tools➪Error Console. Figure 3-8
shows the error console after running broken.html.

Figure 3-8:
The Firefox
error
console
is pretty
useful.

Generally, I find the error messages in the Firefox console more helpful than
the ones provided by IE.

The error console doesn’t automatically clear itself when you load a new
page. When you open the console, it may still contain a bunch of old error
messages, so be sure to clear the history (with the error console’s Clear
button) and refresh your page to see exactly what errors are occurring on
this page.

Finding errors with Firebug
One of the best things about Firefox is the add-on architecture. Some really
clever people have created very useful add-ons that add wonderful function-
ality. Firebug is one example. This add-on (available on the CD-ROM or at
https://addons.mozilla.org/en-US/firefox/addon/1843) adds to
your debugging bag of tricks tremendously.

27_9780470537558-bk04ch03.indd 38327_9780470537558-bk04ch03.indd 383 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

384 Catching Logic Errors

Firebug is useful for HTML and CSS editing, but it really comes into its own
when you’re trying to debug JavaScript code. (For more on Firebug, see
Book I, Chapter 3.)

When Firebug is active, it displays a little icon at the bottom of the browser
window. If it identifies any JavaScript errors, a red error icon appears. When
you click this icon, the Firebug window appears and describes the problem.
Figure 3-9 shows how the Firebug tool works.

If you click the offending code snippet, you can see it in context — especially
useful when the error isn’t on the indicated line. Generally, if I’m doing any
tricky JavaScript, I turn on Firebug to catch any problems.

Figure 3-9:
Click an
error line in
the Firebug
tool to see
the error in
context.

Catching Logic Errors
The dramatic kind of error you see in broken.html is actually easy to fix. It
crashes the browser at a particular part of the code, so you get a good idea
what went wrong. Crashes usually result in error messages, which generally
give some kind of clue about what went wrong. Most of the time, it’s a prob-
lem with syntax. You spelled something wrong, forgot some punctuation,
or did something else that’s pretty easy to fix once you spot it. This type of
error is called a syntax error.

27_9780470537558-bk04ch03.indd 38427_9780470537558-bk04ch03.indd 384 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 3

Lo
o

p
s a

n
d

D

e
b

u
g

g
in

g

385Catching Logic Errors

Loops and branches often cause a more sinister kind of problem, called a
logic error. Logic errors happen when your code doesn’t have any syntax
problems, but it’s still not doing what you want. These errors can be much
harder to pin down, because you don’t get as much information.

Of course, if you have the right tools, you can eventually track down even
the trickiest bugs. The secret is to see exactly what’s going on inside your
variables — stuff the user usually doesn’t see.

Logging to the console with Firebug
Firebug has another nifty trick. It allows you to send quick messages to the
Firebug console. Take a look at log.html:

 <script type = “text/javascript”>
 //<![CDATA[
 // from log.html
 // note this program requires firebug on firefox

 for (i = 1; i <= 5; i++){
 console.log(i);
 } // end for loop

 //another loop with a fancier output
 for (i = 1; i <= 5; i++){
 console.log(”i is now %d.”, i);
 }

 console.info(”This is info”);
 console.warn(”This is a warning”);
 console.error(”This is an error”);

 //]]>
 </script>

This code is special because it contains several references to the console
object. This object is available only to Firefox browsers with the FireBug
extension installed. When you run the program with Firebug and look at the
console tab, you see something similar to Figure 3-10.

The console object allows you to write special messages that only the
programmer in the console sees. This ability is a great way to test your
code and see what’s going on, especially if things aren’t working the way
you want.

If you want to test your code in IE, there’s a version of Firebug (called
Firebug Lite) that works on other browsers. Check the Firebug page
(https://addons.mozilla.org/en-US/firefox/addon/1843) to
download and install this tool if you want to use console commands on non-
Firefox browsers.

27_9780470537558-bk04ch03.indd 38527_9780470537558-bk04ch03.indd 385 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

386 Catching Logic Errors

Figure 3-10:
The Firebug
console
shows lots
of new
information.

Looking at console output
Here’s how the console object works:

 ✦ The first loop prints the value of i to the console. Each time through the
first loop, the console.log function prints the current value of i. This
information is useful whenever the loop isn’t working correctly. You can
use the console.log() method to print the value of any variable.

 ✦ The second loop demonstrates a more elaborate kind of printing.
Sometimes, you want to make clear exactly what value you’re sending to
the console. Firebug supports a special syntax called formatted printing
to simplify this process.

console.log(“i is now %d.”, i);

 The text string “i is now %d” indicates what you want written in the
console. The special character %d specifies that you place a numeric
variable in this position. After the comma, you can indicate the variable
you want inserted into the text.

 You can use other formatting characters as well. %s is for string, and
%o is for object. If you’re familiar with printf in C, you’ll recognize
this technique.

27_9780470537558-bk04ch03.indd 38627_9780470537558-bk04ch03.indd 386 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 3

Lo
o

p
s a

n
d

D

e
b

u
g

g
in

g

387Using the Interactive Debug Mode

 ✦ You can specify more urgent kinds of logging. If you want, you can use
alternatives to the console.log to impart more urgency in your mes-
sages. If you compare the code in log.html with the output of Figure
3-10, you can see how info, warning, and error are formatted.

When your program isn’t working properly, try using console commands to
describe exactly what’s going on with each of your variables. This approach
often helps you see problems and correct them.

 When your program works properly, don’t forget to take out the console
commands! Either remove them or render them ineffective with comment
characters. The console commands will cause an error in any browser that
doesn’t have Firebug installed. Typically, your users will not have this exten-
sion. (Nor should they need it! You’ve debugged everything for them!)

Using the Interactive Debug Mode
Traditional programming languages often feature a special debugging tool
for fixing especially troubling problems. A typical debugger has

 ✦ The ability to pause a program while it’s running. Logic errors are
hard to catch because the program keeps on going. With a debugger,
you can set a particular line as a breakpoint. When the debugger encoun-
ters the breakpoint, the program enters a pause mode. It isn’t com-
pletely running, and it isn’t completely stopped.

 ✦ A mechanism for moving through the code a line at a time. You can
normally step through code one line at a time so that you can see what’s
going on.

 ✦ A way to view the values of all variables and expressions. Knowing
what’s happening in your variables is important. (For example, is a par-
ticular variable changing when you think it should?) A debugger should
let you look at the values of all its variables.

 ✦ The ability to stop runaway processes. When you create loops, you’ll
accidentally create endless loops. (For more on endless loops, see the
earlier section “Managing the obsessive loop.”) In a typical browser, the
only way out of an endless loop is to kill the browser with the task man-
ager (or process manager in some operating systems). That step is a bit
drastic. A debugger can let you stop a runaway loop without accessing
the task manager.

Debuggers are extremely handy, and they’re very common in most pro-
gramming languages. JavaScript programmers, however, haven’t had much
access to debugging tools in the past because the technical considerations
of an embedded language made this difficult.

27_9780470537558-bk04ch03.indd 38727_9780470537558-bk04ch03.indd 387 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

388 Using the Interactive Debug Mode

Fortunately, Firebug has a wonderful debug mode that works very well and
provides all those features. To test it, I wrote a program with a deliberate
error that would be hard to find without a debugger:

 //<![CDATA[
 //from debug.html
 //has a deliberate error

 var i = 0;
 var j = 0;
 while (i <= 10){
 console.log(i);
 j++;
 } // end while

 //]]>
 </script>

This code is another version of the endless.html program from the
“Managing the obsessive loop” section earlier in this chapter. You may see
the problem right away. If not, you’ll see it when you run the debugger,
which I describe how to do in the next sections.

Aptana also has an interactive debugger, but it’s now integrated into the
Firebug debugging tool. I focus on the Firebug version, because it’s easier.

Interactive debugging is usually used when the program is running but not
doing what you want. In this case, run the program but stop it so you can
inspect the behavior of the code in a sort of “super slo-mo.” Essentially, you
can pause the program at a suspected trouble spot and look carefully at all
the variables while the program is paused. You can then advance one line at
a time and check the status of your program at each line of execution. It’s a
very powerful mechanism.

Setting up the Firebug debugger
The FireBug extension has a very powerful and easy-to-use integrated
debugger. To make it work, follow these steps:

 1. Make sure Firebug is visible.

 Use the F12 or Firebug button to make the Firebug console visible.

 2. Turn on script viewing.

 Interactive debugging can slow the browser significantly, so it is turned
off by default. Enable the drop-down list on Firebug’s script tab to turn
script management on.

 3. Load the page into the browser.

 It’s sometimes better to configure Firebug before you load the offending
page because some types of bugs cause the browser to hang. If you set

27_9780470537558-bk04ch03.indd 38827_9780470537558-bk04ch03.indd 388 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 3

Lo
o

p
s a

n
d

D

e
b

u
g

g
in

g

389Using the Interactive Debug Mode

things up first and then load the page, you’re less likely to run into this
sort of problem. (See the upcoming section “Adding a debugger direc-
tive” if this is still a problem.)

Setting a breakpoint
A JavaScript program can get much longer than the short examples I show
in this book. You usually won’t want to start the line-by-line debugging from
the beginning, so you need to specify a breakpoint. When you run a program
in debug mode, the program runs at normal speed until it reaches a break-
point and then it pauses so that you can control it more immediately.

To set a breakpoint:

 1. Look at the code in Firebug’s script window.

 If you followed the steps in the previous list to set up the Firebug debug-
ger, you should already see the script in this window. Find a place in the
code preceding where you expect trouble. If you suspect a loop is going
crazy, find the line right before that loop begins, for example.

 2. Click the left margin to set a breakpoint.

 Click the left margin of the script window to establish a breakpoint.
When you reload the page, code control will pause when the browser
gets to this point.

 3. Refresh the page.

 Use the browser’s refresh button or the F5 key to reload your page. This
time the program should stop when it gets to the breakpoint.

Adding a debugger directive
This approach works fine for most programs, but sometimes Firebug runs
into a problem because the browser (and thus the debugger) doesn’t get
control of a program until it finishes loading. Sometimes an endless loop pre-
vents the program from ever loading, so the debugger never gets control. If
you run into this sort of situation, there’s another way to set the breakpoint.
You can also place a breakpoint directly in your code. Here’s how:

 1. Load your script into your editor.

 2. Find the spot where you want to pause.

 Typically, this is right before the code you expect is the problem. If you
think the problem is an endless loop, move your cursor to the first line
of that loop.

 3. Add the keyword debugger; to your code.

 This special line is a signal to Firebug that it should invoke debug mode
at this point.

27_9780470537558-bk04ch03.indd 38927_9780470537558-bk04ch03.indd 389 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

390 Using the Interactive Debug Mode

 4. Load the page into Firefox.

 Even if the page has an endless loop, the debugger directive will cause
Firebug to pause so you can see what’s going on in the code.

 5. Remove the debugger; line when you finish.

 The debugger directive is used only for debugging. Obviously, you
don’t want the page to enter debug mode on the user’s machine. After
you fix the problem, remove this line from your source code.

 If you forget to remove the debugger directive, most browsers will register
a JavaScript error. This directive only makes sense if Firebug is installed,
and users should never need a debugger. (That’s your job.)

Examining debug mode
Firebug, when in debug mode, has a few new features you may not have seen
before. Figure 3-11 shows debuggerDirective.html in Firefox with the
Firebug plugin activated.

A number of important new items occur on the page:

 ✦ The main browser panel may not show anything.

 By definition, the program is not finished, so there may not be anything
on the page yet. That’s not a problem. We’re really looking under the
hood here, so we don’t expect anything yet.

 ✦ The current line of code is highlighted.

 In the script window, one line is highlighted: the line of code that is
about to be executed. The program is paused, allowing you to look over
the current state of the program before you proceed.

 ✦ You can mouse over any variable to see its current value.

 If you hover the mouse on a variable in the script, you can see its value.
In Figure 3-11 none of the variables have been created yet, so they do
not have meaningful values.

 ✦ The Watch tab window shows you the value of all variables.

 You use this window to see what is happening to your variables. Note
that JavaScript has access to tons of variables in the Web page we
haven’t discussed yet. For now, just focus on the variables under
“scopechain.”

 ✦ You can add another variable or expression to watch for.

 If you want to keep an eye on a variable, you can type it into the New
Watch Expression textbox at the top of the Watch tab window. It’s some-
times helpful to enter the condition for your while loop into this text-
box. That way you can tell if the condition is currently true or false.

27_9780470537558-bk04ch03.indd 39027_9780470537558-bk04ch03.indd 390 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 3

Lo
o

p
s a

n
d

D

e
b

u
g

g
in

g

391Using the Interactive Debug Mode

 The Stack tab window shows the complete logic path that your program
has taken so far. This is helpful information when your code becomes
more complex, but it isn’t useful yet. The Breakpoints tab window allows
you to add or remove additional breakpoints.

 ✦ The “remote control” toolbar lets you control the program execution.

 This panel has three ways to step to the next instruction. For now, the
Step Over button (or the F10 key) is the one you’ll use most often. (See
the sidebar “Controlling the flow” for information on these functions’
differences.)

Figure 3-11:
Debug mode
pauses the
program
while it’s
running.

Step
out

Step
into

Search for a variable or term in the code with this box.

Condition added in ‘New watch expression’ text area

Break on next

Step over

Built-in variable watchesActive lineBreakpoint

27_9780470537558-bk04ch03.indd 39127_9780470537558-bk04ch03.indd 391 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

392 Using the Interactive Debug Mode

Debugging your code
When the debugger is up and running, the process is pretty simple.

 1. Load the code.

 Load the offending code into your browser. If the browser freezes every
time you try to load the code, add the debugger directive to your code
to load it directly into debug mode.

 2. Add breakpoints as necessary.

 Even if you turn on the debugger directive, you may want to set break-
points to ensure the program stops where you want it to stop. Click
the margin of the Script tab’s main browser window to set or remove
breakpoints.

 3. Refresh the page.

 After you set the breakpoints, refresh the page to run the page in the
browser and stop at your first breakpoint.

 4. Look over your variables.

 Normally, if your program has a logic error, it’s because some variable
doesn’t have the value you think it does. Look carefully at the value of
each variable (especially those used to control loops) and see whether
it has the value you expect at this point. It may help to copy your condi-
tion from the code into the New Watch Expression box so you can tell
whether a condition is currently true or false.

 5. Step to the next instruction.

 When you’re sure the code is performing the way you expect, use the
Step Over button to move to the next instruction.

 6. Repeat until you find the problem.

 Look at the new state of the variables. Have things changed? Are there
any surprises?

Normally, the process of going through your code slowly with the ability to
check the state of your variables at every turn will help you find your mis-
takes. Learning how to use your debugger will save you hours of time.

 Sometimes, you’re still stuck in an endless loop. The debugger helps you
find problems, but it doesn’t fix them. When you recognize you’re still in an
endless loop, you must regain control so you can go back to the editor and
fix the problem. If you’re in debug mode, you might simply redirect your
browser to another page (use the home button, for example). However, end-
less loops are notorious; therefore, you may need a more drastic measure.
Use your operating system’s task management tool to kill the offending
browser window and then reload the browser.

27_9780470537558-bk04ch03.indd 39227_9780470537558-bk04ch03.indd 392 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 3

Lo
o

p
s a

n
d

D

e
b

u
g

g
in

g

393Using the Interactive Debug Mode

Several mechanisms step through a program
in debug mode. Most of the time they work the
same, but some subtle differences exist in their
behavior. Here’s how stepping through a pro-
gram works:

The Play button (green triangle) runs the pro-
gram at full speed until the program encoun-
ters the next breakpoint. This is useful when
you want to stop at one point to check your
variables, quickly jump through a lot of code,
and stop again after all that code has executed.

The Step Into button goes to the next line of
code. If that code is a function, the debugger
jumps into that function and examines the code
inside that function. Generally, this is useful
when you want to examine how data flows into
functions. (See Chapter 4 of this minibook for
more information about functions.)

The Step Over button goes to the next line of
code. If that code is a function, the program
executes the entire function as one line and
doesn’t go into the details of the function.
Normally, this is the behavior you want. If
you’re concerned about the code inside the
function, you should add another breakpoint
there to stop the code execution at that point.

The Step Out button completes the current
function at normal speed and stops at the next
line of code outside the current function. This is
normally used when you accidentally step into
a function you don’t need to examine; so you
can go back to the main code without having
to step through hundreds of lines of irrelevant
code.

Controlling the flow

27_9780470537558-bk04ch03.indd 39327_9780470537558-bk04ch03.indd 393 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

394 Book IV: Client-Side Programming with JavaScript

27_9780470537558-bk04ch03.indd 39427_9780470537558-bk04ch03.indd 394 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Functions,
Arrays, and Objects

In This Chapter
✓ Passing parameters into functions

✓ Returning values from functions

✓ Functions and variable scope

✓ Producing basic arrays

✓ Retrieving data from arrays

✓ Building a multidimensional array

✓ Creating objects

✓ Building object constructors

✓ Introducing JSON notation

It doesn’t take long for your code to become complex. Soon enough, you
find yourself wanting to write more sophisticated programs. When things

get larger, you need new kinds of organizational structures to handle the
added complexity.

You can bundle several lines of code into one container and give this new
chunk of code a name: that is a function. You can also take a whole bunch
of variables, put them into a container, and give it a name. That’s called an
array. If you combine functions and data, you get another interesting struc-
ture called an object.

This chapter is about how to work with more code and more data without
going crazy.

Breaking Code into Functions
Functions come in handy when you’re making complex code easier to
handle — a useful tool for controlling complexity. You can take a large,
complicated program and break it into several smaller pieces. Each piece
stands alone and solves a specific part of the overall problem.

28_9780470537558-bk04ch04.indd 39528_9780470537558-bk04ch04.indd 395 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

396 Breaking Code into Functions

You can think of each function as a miniature program. You can define vari-
ables in functions, put loops and branches in there, and do anything else you
can do with a program. A program using functions is basically a program full
of subprograms.

 After you define your functions, they’re just like new JavaScript commands.
In a sense, when you add functions, you’re adding to JavaScript.

To explain functions better, think back to an old campfire song, “The Ants Go
Marching.” Figure 4-1 re-creates this classic song for you in JavaScript format.
(You may want to roast a marshmallow while you view this program.)

Figure 4-1:
Nothing
reminds me
of functions
like a
classic
campfire
song.

If you’re unfamiliar with this song, it simply recounts the story of a bunch of
ants. The littlest one apparently has some sort of attention issues (but we
love him anyway). During each verse, the little one gets distracted by some-
thing that rhymes with the verse number. The song typically has ten verses,
but I’m just doing two for the demo.

Thinking about structure
Before you look at the code, think about the structure of the song, “The Ants
Go Marching.” Like many songs, it has two parts. The chorus is a phrase
repeated many times throughout the song. The song has several verses,
which are similar to each other, but not quite identical.

Think about the song sheet passed around the campfire. (I’m getting hungry
for a S’more.) The chorus is usually listed only one time, and each verse is
listed. Sometimes, you have a section somewhere on the song sheet that
looks like the following:

Verse 1

Chorus

28_9780470537558-bk04ch04.indd 39628_9780470537558-bk04ch04.indd 396 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 4

Fu
n

c
tio

n
s, A

rra
ys,

a
n

d
 O

b
je

c
ts

397Breaking Code into Functions

Verse 2

Chorus

Musicians call this a road map, and that’s a great name for it. A road map is
a high-level view of how you progress through the song. In the road map,
you don’t worry about the details of the particular verse or chorus. The
road map shows the big picture, and you can look at each verse or chorus
for the details.

Building the antsFunction.html program
Take a look at the code for antsFunction.html and see how it reminds
you of the song sheet for “The Ants Go Marching”:

 <script type = “text/javascript”>
 //<![CDATA[
 //from antsFunction.html

 function chorus() {
 var text = “...and they all go marching down\n”;
 text += “to the ground \n”;
 text += “to get out \n”;
 text += “of the rain. \n”;
 text += “ \n”;
 text += “boom boom boom boom boom boom boom boom \n”;
 alert(text);
 } // end chorus

 function verse1(){
 var text = “The ants go marching 1 by 1 hurrah, hurrah \n”;
 text += “The ants go marching 1 by 1 hurrah, hurrah \n”;
 text += “The ants go marching 1 by 1 \n”;
 text += “ The little one stops to suck his thumb \n”;
 alert(text);
 } // end verse1

 function verse2(){
 var text = “The ants go marching 2 by 2 hurrah, hurrah \n”;
 text += “The ants go marching 2 by 2 hurrah, hurrah \n”;
 text += “The ants go marching 2 by 2 \n”;
 text += “ The little one stops to tie his shoe \n”;
 alert(text);
 } // end verse2

 //main code
 verse1();
 chorus();
 verse2();
 chorus();

 //]]>
 </script>

The program code breaks the parts of the song into the same pieces a song
sheet does. Here are some interesting features of antsFunction.html:

28_9780470537558-bk04ch04.indd 39728_9780470537558-bk04ch04.indd 397 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

398 Passing Data to and from Functions

 ✦ I created a function called chorus(). Functions are simply collections
of code lines with a name.

 ✦ All the code for the chorus goes into this function. Anything I want
as part of printing the chorus goes into the chorus() function. Later,
when I want to print the chorus, I can just call the chorus() function
and it will perform the code I stored there.

 ✦ Each verse has a function, too. I broke the code for each verse into its
own function.

 ✦ The main code is a road map. When all the details are delegated to the
functions, the main part of the code just controls the order in which the
functions are called.

 ✦ Details are hidden in the functions. The main code handles the big pic-
ture. The details (how to print the chorus or verses) are hidden inside
the functions.

Passing Data to and from Functions
Functions are logically separated from the main program. This separation
is a good thing because it prevents certain kinds of errors. However, some-
times you want to send information to a function. You may also want a func-
tion to return some type of value. The antsParam.html page rewrites the
“The Ants Go Marching” song in a way that takes advantage of function input
and output.

 <script type = “text/javascript”>
 //<![CDATA[
 //from antsParam.html
 function chorus() {
 var text = “...and they all go marching down\n”;
 text += “to the ground \n”;
 text += “to get out \n”;
 text += “of the rain. \n”;
 text += “ \n”;
 text += “boom boom boom boom boom boom boom boom \n”;
 return text;
 } // end chorus

 function verse(verseNum){
 var distraction = “”;
 if (verseNum == 1){
 distraction = “suck his thumb.”;
 } else if (verseNum == 2){
 distraction = “tie his shoe.”;
 } else {
 distraction = “I have no idea.”;
 }

 var text = “The ants go marching “;
 text += verseNum + “ by “ + verseNum + “ hurrah, hurrah \n”;
 text += “The ants go marching “;
 text += verseNum + “ by “ + verseNum + “ hurrah, hurrah \n”;

28_9780470537558-bk04ch04.indd 39828_9780470537558-bk04ch04.indd 398 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 4

Fu
n

c
tio

n
s, A

rra
ys,

a
n

d
 O

b
je

c
ts

399Passing Data to and from Functions

 text += “The ants go marching “;
 text += verseNum + “ by “ + verseNum;
 text += “ the little one stops to “;
 text += distraction;
 return text;
 } // end verse

 //main code
 alert(verse(1));
 alert(chorus());
 alert(verse(2));
 alert(chorus());

 //]]>
 </script>

I don’t provide a figure of this program because it looks just like ants
Function.html to the user. One advantage of functions is that I can
improve the underlying behavior of a program without imposing a change in
the user’s experience.

This code incorporates a couple important new ideas. (The following list is
just the overview; the specifics are coming in the following sections.)

 ✦ These functions return a value. The functions no longer do their own
alerts. Instead, they create a value and return it to the main program.

 ✦ Only one verse function exists. Because the verses are all pretty simi-
lar, using only one verse function makes sense. This improved function
needs to know what verse it’s working on to handle the differences.

Examining the main code
The main code has been changed in one significant way. In the last program,
the main code called the functions, which did all the work. This time, the
functions don’t actually output anything themselves. Instead, they collect
information and pass it back to the main program. Inside the main code,
each function is treated like a variable.

You’ve seen this behavior. The prompt() method returns a value. Now the
chorus() and verse() methods return values. You can do anything you
want to this value, including storing it to a variable, printing it, or comparing
it to some other value.

 Separating the creation of data from its use as I’ve done here is a good idea.
That way, you have more flexibility. After a function creates some informa-
tion, you can print it to the screen, store it on a Web page, put it in a data-
base, or whatever.

28_9780470537558-bk04ch04.indd 39928_9780470537558-bk04ch04.indd 399 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

400 Passing Data to and from Functions

Looking at the chorus
The chorus of “The Ants Go Marching” song program has been changed to
return a value. Take another look at the chorus() function to see what I mean.

 function chorus() {
 var text = “...and they all go marching down\n”;
 text += “to the ground \n”;
 text += “to get out \n”;
 text += “of the rain. \n”;
 text += “ \n”;
 text += “boom boom boom boom boom boom boom boom \n”;
 return text;
 } // end chorus

Here’s what changed:

 ✦ The purpose of the function has changed. The function is no longer
designed to output some value to the screen. Instead, it now provides
text to the main program, which can do whatever it wants with the
results.

 ✦ There’s a variable called text. This variable contains all the text to be
sent to the main program. (It contained all the text in the last program,
but it’s even more important now.)

 ✦ The text variable is concatenated over several lines. I used string con-
catenation to build a complex value. Note the use of new lines (\n) to
force carriage returns.

 ✦ The return statement sends text to the main program. When you want
a function to return some value, simply use return followed by a value or
variable. Note that return should be the last line of the function.

Handling the verses
The verse() function is quite interesting:

 ✦ It can print more than one verse.

 ✦ It takes input to determine which verse to print.

 ✦ It modifies the verse based on the input.

 ✦ It returns a value, just like chorus().

To make the verse so versatile (get it? verse-atile!), it must take input from
the primary program and return output.

Passing data to the verse() function
The verse() function is always called with a value inside the parentheses.
For example, the main program sets verse(1) to call the first verse, and
verse(2) to invoke the second. The value inside the parentheses is called
an argument.

28_9780470537558-bk04ch04.indd 40028_9780470537558-bk04ch04.indd 400 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 4

Fu
n

c
tio

n
s, A

rra
ys,

a
n

d
 O

b
je

c
ts

401Passing Data to and from Functions

The verse function must be designed to accept an argument (because I call it
using values inside the parentheses). Look at the first line to see how.

 function verse(verseNum){

In the function definition, I include a variable name. Inside the function, this
variable is known as a parameter. (Don’t get hung up on the terminology.
People often use the terms parameter and argument interchangeably.) The
important idea is that whenever the verse() function is called, it automati-
cally has a variable called verseNum. Whatever argument you send to the
verse() function from the main program will become the value of the vari-
able verseNum inside the function.

You can define a function with as many parameters as you want. Each param-
eter gives you the opportunity to send a piece of information to the function.

Determining the distraction
If you know the verse number, you can determine what distracts “the little
one” in the song. You can determine the distraction in a couple ways, but a
simple if-else if structure is sufficient for this example.

 var distraction = “”;
 if (verseNum == 1){
 distraction = “suck his thumb.”;
 } else if (verseNum == 2){
 distraction = “tie his shoe.”;
 } else {
 distraction = “I have no idea.”;
 }

I initialized the variable distraction to be empty. If verseNum is 1, set dis-
traction to “suck his thumb.” If verseNum is 2, distraction should be
“tie his shoe”. Any other value for verseNum is treated as an error by
the else clause.

 If you’re an experienced coder, you may be yelling at this code. It still isn’t
optimal. Fortunately, in the section “Building a basic array” later in this
chapter, I show an even better solution for handling this particular situation
with arrays.

By the time this code segment is complete, verseNum and distraction
both contain a legitimate value.

Creating the text
When you know these variables, it’s pretty easy to construct the output text:

 var text = “The ants go marching “;
 text += verseNum + “ by “ + verseNum + “ hurrah, hurrah \n”;
 text += “The ants go marching “;
 text += verseNum + “ by “ + verseNum + “ hurrah, hurrah \n”;

28_9780470537558-bk04ch04.indd 40128_9780470537558-bk04ch04.indd 401 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

402 Managing Scope

 text += “The ants go marching “;
 text += verseNum + “ by “ + verseNum;
 text += “ the little one stops to “;
 text += distraction;
 return text;
 } // end verse1

A whole lotta’ concatenating is going on, but it’s essentially the same code
as the original verse() function. This one’s just a lot more flexible because
it can handle any verse. (Well, if the function has been preloaded to under-
stand how to handle the verseNum.)

Managing Scope
A function is much like an independent mini-program. Any variable you create
inside a function has meaning only inside that function. When the function is
finished executing, its variables disappear! This setup is actually a really good
thing. A major program will have hundreds of variables, and they can be dif-
ficult to keep track of. You can reuse a variable name without knowing it or
have a value changed inadvertently. When you break your code into functions,
each function has its own independent set of variables. You don’t have to
worry about whether the variables will cause problems elsewhere.

Introducing local and global variables
You can also define variables at the main (script) level. These variables are
global variables. A global variable is available at the main level and inside
each function. A local variable (one defined inside a function) has mean-
ing only inside the function. The concept of local versus global functions is
sometimes referred to as scope.

Local variables are kind of like local police. Local police have a limited geo-
graphical jurisdiction, but they’re very useful within that space. They know
the neighborhood. Sometimes, you encounter situations that cross local
jurisdictions. This situation is the kind that requires a state trooper or the
FBI. Local variables are local cops, and global variables are the FBI.

Generally, try to make as many of your variables local as possible. The only
time you really need a global variable is when you want some information to
be used in multiple functions.

Examining variable scope
To understand the implications of variable scope, take a look at scope.html:

 <script type = “text/javascript”>
 //<![CDATA[
 //from scope.html
 var globalVar = “I’m global!”;

28_9780470537558-bk04ch04.indd 40228_9780470537558-bk04ch04.indd 402 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 4

Fu
n

c
tio

n
s, A

rra
ys,

a
n

d
 O

b
je

c
ts

403Managing Scope

 function myFunction(){
 var localVar = “I’m local”;
 console.log(localVar);
 }

 myFunction();

 //]]>
 </script>

This program defines two variables. In the main code, globalVar is defined,
and localVar is defined inside a function. If you run the program in debug
mode while watching the variables, you can see how they behave. Figure 4-2
shows what the program looks like early in the run.

localVar doesn’t have meaning until the function is called, so it remains
undefined until the computer gets to that part of the code. Step ahead a few
lines, and you see that localVar has a value, as shown in Figure 4-3.

Be sure to use Step Into rather than Step Over on the “remote control”
toolbar for this example. When Step Over encounters a function, it runs
the entire function as one line. If you want to look into the function and see
what’s happening inside it (as you do here), use Step Into.

globalVar still has a value (it’s an FBI agent), and so does localVar
because it’s inside the function.

Figure 4-2:
globalVar is
defined, but
localVar
is not.

28_9780470537558-bk04ch04.indd 40328_9780470537558-bk04ch04.indd 403 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

404 Managing Scope

If you move a few more steps, localVar no longer has a value when the
function ends (see Figure 4-4).

Figure 4-3:
localVar
has a value
because I’m
inside the
function.

Figure 4-4:
Once again,
localVar has
no meaning.

28_9780470537558-bk04ch04.indd 40428_9780470537558-bk04ch04.indd 404 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 4

Fu
n

c
tio

n
s, A

rra
ys,

a
n

d
 O

b
je

c
ts

405Building a Basic Array

Variable scope is a good thing because it means you have to keep track of
only global variables and the variables defined inside your current function.
The other advantage of scope is the ability to reuse a variable name. You
can have ten different functions all using the same variable name, and they
won’t interfere with each other because they’re entirely different variables.

Building a Basic Array
If functions are groups of code lines with a name, arrays are groups of vari-
ables with a name. Arrays are similar to functions because they’re used
to manage complexity. An array is a special kind of variable. Use an array
whenever you want to work with a list of similar data types.

The following code shows a basic demonstration of arrays:

 <script type = “text/javascript”>
 //<![CDATA[
 //from genres.html

 //creating an empty array
 var genre = new Array(5);

 //storing data in the array
 genre[0] = “flight simulation”;
 genre[1] = “first-person shooters”;
 genre[2] = “driving”;
 genre[3] = “action”;
 genre[4] = “strategy”;

 //returning data from the array
 alert (“I like “ + genre[4] + “ games.”);

 //]]>
 </script>

The variable genre is a special variable because it contains many values.
Essentially, it’s a list of genres. The new array(5) construct creates space
in memory for five variables, all named genre.

Accessing array data
After you specify an array, you can work with the individual elements using
square-bracket syntax. An integer identifies each element of the array. The
index usually begins with zero.

 genre[0] = “flight simulation”;

The preceding code assigns the text value “flight simulation” to the
genre array variable at position 0.

28_9780470537558-bk04ch04.indd 40528_9780470537558-bk04ch04.indd 405 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

406 Building a Basic Array

 Most languages require all array elements to be the same type. JavaScript is
very forgiving. You can combine all kinds of stuff in a JavaScript array. This
flexibility can sometimes be useful, but be aware that this trick doesn’t
work in all languages. Generally, I try to keep all the members of an array the
same type.

After you store the data in the array, you can use the same square-bracket
syntax to read the information.

The line

 alert (“I like “ + genre[4] + “ games.”);

finds element 4 of the genre array and includes it in an output message.

Figure 4-5 shows a run of genre.html.

Figure 4-5:
This data
came from
an array.

Using arrays with for loops
The main reason to use arrays is convenience. When you have a lot of
information in an array, you can write code to work with the data quickly.
Whenever you have an array of data, you commonly want to do something
with each element in the array. Take a look at games.html to see how you
can do so:

 <script type = “text/javascript”>
 //<![CDATA[
 //from games.html

 //pre-loading an array
 var gameList = new Array(“Flight Gear”, “Sauerbraten”, “Future Pinball”,
 “Racer”, “TORCS”, “Orbiter”, “Step Mania”, “NetHack”,
 “Marathon”, “Crimson Fields”);

 var text = “”;
 for (i = 0; i < gameList.length; i++){
 text += “I love “ + gameList[i] + “\n”;
 } // end for loop
 alert(text);

 //]]>
 </script>

Notice several things in this code:

28_9780470537558-bk04ch04.indd 40628_9780470537558-bk04ch04.indd 406 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 4

Fu
n

c
tio

n
s, A

rra
ys,

a
n

d
 O

b
je

c
ts

407Building a Basic Array

 ✦ The array called gameList. This array contains the names of some of
my favorite freeware games.

 ✦ The array is preloaded with values. If you provide a list of values when
creating an array, JavaScript simply preloads the array with the values
you indicate. You don’t need to specify the size of the array if you pre-
load it.

 ✦ A for loop steps through the array. Arrays and for loops are natural
companions. The for loop steps through each element of the array.

 ✦ The array’s length is used in the for loop condition. Rather than speci-
fying the value 10, I used the array’s length property in my for loop.
This practice is good because the loop automatically adjusts to the size
of the array when I add or remove elements.

 ✦ Do something with each element. Because i goes from 0 to 9 (the array
indices), I can easily print each value of the array. In this example, I
simply add to an output string.

 ✦ Note the newline characters. The \n combination is a special character
that tells JavaScript to add a carriage return, such as pressing the Enter
key. Figure 4-6 shows a run of games.html.

Figure 4-6:
Now I
have a list
of games.
Arrays and
loops
are fun!

If you want to completely ruin your productivity, Google some of these game
names. They’re absolutely incredible, and every one of them is free. It’s hard
to beat that. See, even if you don’t learn how to program in this book, you
get something good from it!

Revisiting the ants song
If you read the earlier sections, you probably just got that marching ant song
out of your head. Sorry. Take a look at the following variation, which uses
arrays and loops to simplify the code even more.

 <script type = “text/javascript”>
 //<![CDATA[
 //from antsArray.html

 var distractionList = new Array(“”, “suck his thumb”, “tie his shoe”);

28_9780470537558-bk04ch04.indd 40728_9780470537558-bk04ch04.indd 407 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

408 Building a Basic Array

 function chorus() {
 var text = “...and they all go marching down\n”;
 text += “to the ground \n”;
 text += “to get out \n”;
 text += “of the rain. \n”;
 text += “ \n”;
 text += “boom boom boom boom boom boom boom boom \n”;
 return text;
 } // end chorus

 function verse(verseNum){
 //pull distraction from array
 var distraction = distractionList[verseNum];

 var text = “The ants go marching “;
 text += verseNum + “ by “ + verseNum + “ hurrah, hurrah \n”;
 text += “The ants go marching “;
 text += verseNum + “ by “ + verseNum + “ hurrah, hurrah \n”;
 text += “The ants go marching “;
 text += verseNum + “ by “ + verseNum;
 text += “ the little one stops to “;
 text += distraction;
 return text;
 } // end verse

 //main code is now a loop
 for (verseNum = 1; verseNum < distractionList.length; verseNum++){
 alert(verse(verseNum));
 alert(chorus());
 } // end for loop

 //]]>
 </script>

This code is just a little different from the antsParam program shown in the
section of this chapter called “Passing Data to and from Functions.”

 ✦ I t has an array called distractionList. This array is (despite the
misleading name) a list of distractions. I made the first one (element
zero) blank so that the verse numbers would line up properly.

 ✦ The verse() function looks up a distraction. Because distractions are
now in an array, you can use the verseNum as an index to loop up a
particular distraction. Compare this function to the verse() function in
antsParam. This program can be found in the section “Passing data to
and from Functions.” Although arrays require a little more planning than
code structures, they can highly improve the readability of your code.

 ✦ The main program is in a loop. I step through each element of the
distractionList array, printing the appropriate verse and chorus.

 ✦ The chorus() function remains unchanged. You don’t need to
change chorus().

28_9780470537558-bk04ch04.indd 40828_9780470537558-bk04ch04.indd 408 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 4

Fu
n

c
tio

n
s, A

rra
ys,

a
n

d
 O

b
je

c
ts

409Working with Two-Dimension Arrays

Working with Two-Dimension Arrays
Arrays are useful when working with lists of data. Sometimes, you encounter
data that’s best imagined in a table. For example, what if you want to build
a distance calculator that determines the distance between two cities? The
original data might look like Table 4-1.

Table 4-1 Distance between Major Cities

0) Indianapolis 1) New York 2) Tokyo 3) London

0) Indianapolis 0 648 6476 4000

1) New York 648 0 6760 3470

2) Tokyo 6476 6760 0 5956

3) London 4000 3470 5956 0

Think about how you would use Table 4-1 to figure out a distance. If you
wanted to travel from New York to London, for example, you’d pick the New
York row and the London column and figure out where they intersect. The
data in that cell is the distance (3,470 miles).

When you look up information in any kind of a table, you’re actually working
with a two-dimensional data structure — a fancy term, but it just means table.
If you want to look something up in a table, you need two indices, one to
determine the row and another to determine the column.

If this concept is difficult to grasp, think of the old game Battleship. The play-
ing field is a grid of squares. You announce I-5, meaning column I, row 5, and
the opponent looks in that grid to discover that you’ve sunk his battleship.
In programming, you typically use integers for both indices, but otherwise,
it’s exactly the same as Battleship. Any time you have two-dimensional data,
you access it with two indices.

Often, we call the indices row and column to help you think of the structure
as a table. Sometimes, other names more clearly describe how the behavior
works. Take a look at Figure 4-7, and you see that the distance.html pro-
gram asks for two cities and returns a distance according to the data table.

 Yep, you can have three, four, or more dimension arrays in programming,
but don’t worry about that yet. (It may make your head explode.) Most of
the time, one or two dimensions are all you need.

This program is a touch longer than some of the others, so I break it into
parts in the following sections for easy digestion. Be sure to look at the pro-
gram in its entirety on the CD-ROM.

28_9780470537558-bk04ch04.indd 40928_9780470537558-bk04ch04.indd 409 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

410 Working with Two-Dimension Arrays

Figure 4-7:
It’s a Tale of
Two Cities.
You even
get the
distance
between
them!

Setting up the arrays
The key to this program is the data organization. The first step is to set up
two arrays.

 <script type = “text/javascript”>
 //<![CDATA[
 //from distance.html

 //cityName has the names of the cities
 cityName = new Array(“Indianapolis”, “New York”, “Tokyo”, “London”);

 //create a 2-dimension array of distances
 distance = new Array (
 new Array (0, 648, 6476, 4000),
 new Array (648, 0, 6760, 3470),
 new Array (6476, 6760, 0, 5956),
 new Array (4000, 3470, 5956, 0)
);

The first array is an ordinary single-dimension array of city names. I’ve been
careful to always keep the cities in the same order, so whenever I refer to
city 0, I’m talking about Indianapolis (my hometown), New York is always
going to be at position 1, and so on.

 You have to be careful in your data design that you always keep things in the
same order. Be sure to organize your data on paper before you type it into
the computer, so you’ll understand what value goes where.

The cityNames array has two jobs. First, it reminds me what order all the cities
will be in, and, second, it gives me an easy way to get a city name when I know
an index. For example, I know that cityName[2] will always be “Tokyo”.

28_9780470537558-bk04ch04.indd 41028_9780470537558-bk04ch04.indd 410 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 4

Fu
n

c
tio

n
s, A

rra
ys,

a
n

d
 O

b
je

c
ts

411Working with Two-Dimension Arrays

The distance array is very interesting. If you squint at it a little bit, it looks a
lot like Table 4-1, shown earlier in this chapter. That’s because it is Table 4-1,
just in a slightly different format.

distance is an array. JavaScript arrays can hold just about everything,
including other arrays! That’s what distance does. It holds an array of
rows. Each element of the distance array is another (unnamed) array
holding all the data for that row. If you want to extract information from the
array, you need two pieces of information. First, you need the row. Then
because the row is an array, you need the column number within that array.
So, distance[1][3] means go to row one (“New York”) of distance.
Within that row go to element 3 (“London”) and return the resulting value
(3470). Cool, huh?

Getting a city
The program requires that you ask for two cities. You want the user to enter
a city number, not a name, and you want to ask this question twice. Sounds
like a good time for a function.

 function getCity(){
 // presents a list of cities and gets a number corresponding to
 // the city name
 var theCity = “”; //will hold the city number

 var cityMenu = “Please choose a city by typing a number: \n”;
 cityMenu += “0) Indianapolis \n”;
 cityMenu += “1) New York \n”;
 cityMenu += “2) Tokyo \n”;
 cityMenu += “3) London \n”;

 theCity = prompt(cityMenu);
 return theCity;
 } // end getCity

The getCity() function prints a little menu of city choices and asks for
some input. It then returns that input.

 You can improve getCity() in all kinds of ways. For one thing, maybe it
should repeat until you get a valid number so that users can’t type the city
name or do something else crazy. I’ll leave it simple for now. If you want to
find out how user interface elements help the user submit only valid input,
skip ahead to Chapter 5 of this minibook.

Creating a main() function
The main() function handles most of the code for the program.

 function main(){
 var output = “”;
 var from = getCity();
 var to = getCity();
 var result = distance[from][to];

28_9780470537558-bk04ch04.indd 41128_9780470537558-bk04ch04.indd 411 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

412 Working with Two-Dimension Arrays

 output = “The distance from “ + cityName[from];
 output += “ to “ + cityName[to];
 output += “ is “ + result + “ miles.”;
 alert(output);
 } // end main

 main();

The main() function controls traffic. Here’s what you do:

 1. Create an output variable.

 The point of this function is to create some text output describing the
distance. I begin by creating a variable called output and setting its ini-
tial value to empty.

 2. Get the city of origin.

 Fortunately, you have a great function called getCity() that handles
all the details of getting a city in the right format. Call this function and
assign its value to the new variable from.

 3. Get the destination city.

 That getCity() function sure is handy. Use it again to get the city
number you’ll call to.

 4. Get the distance.

 Because you know two indices, and you know they’re in the right format,
you can simply look them up in the table. Look up distance[from]
[to] and store it in the variable result.

 5. Output the response.

 Use concatenation to build a suitable response string and send it to
the user.

 6. Get city names from the cityNames array.

 The program uses numeric indices for the cities, but they don’t mean
anything to the user. Use the cityNames array to retrieve the two city
names for the output.

 7. Run the main() function.

 Only one line of code doesn’t appear in a function. That line calls the
main() function and starts the whole thing.

I didn’t actually write the program in the order I showed it to you in the
preceding steps. Sometimes it makes more sense to go “inside out.” I actu-
ally created the data structure first (as an ordinary table on paper) and then
constructed the main() function. This approach made it obvious that I
needed a getCity() function and gave me some clues about how getCity
should work. (In other words, it should present a list of cities and prompt for
a numerical input.)

28_9780470537558-bk04ch04.indd 41228_9780470537558-bk04ch04.indd 412 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 4

Fu
n

c
tio

n
s, A

rra
ys,

a
n

d
 O

b
je

c
ts

413Creating Your Own Objects

Creating Your Own Objects
So far you’ve used a lot of wonderful objects in JavaScript. However, that’s
just the beginning. It turns out you can build your own objects too, and
these objects can be very powerful and flexible. Objects typically have two
important components: properties and methods. A property is like a vari-
able associated with an object. It describes the object. A method is like a
function associated with an object. It describes things the object can do. If
functions allow you to put code segments together and arrays allow you to
put variables together, objects allow you to put both code segments and
variables (and functions and arrays) in the same large construct.

Building a basic object
JavaScript makes it trivially easy to build an object. Because a variable can
contain any value, you can simply start treating a variable like an object and
it becomes one.

Figure 4-8 shows a critter that has a property.

Figure 4-8:
This alert
box is
actually
using an
object.

Take a look at the following code:

 //from basicObject.html
 //create the critter
 var critter = new Object();

 //add some properties
 critter.name = “Milo”;
 critter.age = 5;

 //view property values
 alert(“the critter’s name is “ + critter.name);

The way it works is not difficult to follow:

 1. Create a new Object.

 JavaScript has a built-in object called Object. Make a variable with
the new Object() syntax, and you’ll build yourself a shiny, new
standard object.

28_9780470537558-bk04ch04.indd 41328_9780470537558-bk04ch04.indd 413 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

414 Creating Your Own Objects

 2. Add properties to the object.

 A property is a subvariable. It’s nothing more than a variable attached
to a specific object. When you assign a value to critter.name, for
example, you’re specifying that critter has a property called name
and you’re also giving it a starting value.

 3. An object can have any number of properties.

 Just keep adding properties. This allows you to group a number of vari-
ables into one larger object.

 4. Each property can contain any type of data.

 Unlike arrays where it’s common for all the elements to contain exactly
the same type of data, each property can have a different type.

 5. Use the dot syntax to view or change a property.

 If the critter object has a name property, you can use critter.name
as a variable. Like other variables, you can change the value by assigning
a new value to city.name or you can read the content of the property.

 If you’re used to a stricter object-oriented language, such as Java, you’ll find
JavaScript’s easy-going attitude quite strange and maybe a bit sloppy. Other
languages do have a lot more rules about how objects are made and used,
but JavaScript’s approach has its charms. Don’t get too tied up in the differ-
ences. The way JavaScript handles objects is powerful and refreshing.

Adding methods to an object
Objects have other characteristics besides properties. They can also have
methods. A method is simply a function attached to an object. To see what
I’m talking about, take a look at this example:

 //create the critter
 //from addingMethods.html
 var critter = new Object();

 //add some properties
 critter.name = “Milo”;
 critter.age = 5;

 //create a method
 critter.talk = function(){
 msg = “Hi! My name is “ + this.name;
 msg += “ and I’m “ + this.age;
 alert(msg);
 }; // end method

 // call the talk method
 critter.talk();

This example extends the critter object described in the last section. In
addition to properties, the new critter has a talk() method. If a property
describes a characteristic of an object, a method describes something the
object can do. Figure 4-9 illustrates the critter showing off its talk() method:

28_9780470537558-bk04ch04.indd 41428_9780470537558-bk04ch04.indd 414 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 4

Fu
n

c
tio

n
s, A

rra
ys,

a
n

d
 O

b
je

c
ts

415Creating Your Own Objects

Figure 4-9:
Now the
critter can
talk!

Here’s how it works:

 1. Build an object with whatever properties you need.

 Begin by building an object and giving it some properties.

 2. Define a method much like a property.

 In fact, methods are properties in JavaScript, but don’t worry too much
about that; it’ll make your head explode.

 3. You can assign a prebuilt function to a method.

 If you created a function that you want to use as a method, you can
simply assign it.

 4. You can also create an anonymous function.

 More often, you’ll want to create your method right away. You can
create a function immediately with the function(){ syntax.

 5. The this keyword refers to the current object.

 Inside the function, you may want to access the properties of the object.
this.name refers to the name property of the current object.

 6. You can then refer to the method directly.

 After you define an object with a method, you can invoke it. For exam-
ple, if the critter object has a talk method, use critter.talk() to
invoke this method.

Building a reusable object
These objects are nice, but what if you want to build several objects with
the same definition? JavaScript supports an idea called a constructor, which
allows you to define an object pattern and reuse it.

Here’s an example:

//building a constructor
//from constructor.html
function Critter(lName, lAge){
 this.name = lName;
 this.age = lAge;
 this.talk = function(){
 msg = “Hi! My name is “ + this.name;
 msg += “ and I’m “ + this.age;

28_9780470537558-bk04ch04.indd 41528_9780470537558-bk04ch04.indd 415 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

416 Creating Your Own Objects

 alert(msg);
 } // end talk method
} // end Critter class def

function main(){
 //build two critters
 critterA = new Critter(“Alpha”, 1);

 critterB = new Critter(“Beta”, 2);
 critterB.name = “Charlie”;
 critterB.age = 3;

 //have ‘em talk
 critterA.talk();
 critterB.talk();

} // end main
main();

This example involves creating a class (a pattern for generating objects) and
reusing that definition to build two different critters. First, look over how the
class definition works:

 ✦ Build an ordinary function: JavaScript classes are defined as extensions
of a function. The function name will also be the class name. Note that
the name of a class function normally begins with an uppercase letter.
When a function is used in this way to describe an object, the function
is called the object’s constructor. The constructor can take parameters
if you wish, but it normally does not return any values. In my particular
example, I add parameters for name and age.

 ✦ Use this to define properties: Add any properties you want to include,
including default values. Note that you can change the values of these
later if you wish. Each property should begin with this and a period.
If you want your object to have a color property, you’d say something
like this.color = “blue”. My example uses the local parameters to
define the properties. This is a very common practice because it’s an
easy way to preload important properties.

 ✦ Use this to define any methods you want: If you want your object to
have methods, define them using the this operator followed by the
function(){ keyword. You can add as many functions as you wish.

 The way JavaScript defines and uses objects is easy but a little nonstandard.
Most other languages that support object-oriented programming (OOP) do it
in a different way than the technique described here. Some would argue that
JavaScript is not a true OOP language, as it doesn’t support a feature called
inheritance, but instead uses a feature called prototyping. The difference
isn’t all that critical because most uses of OOP in JavaScript are very simple
objects like the ones described here. Just appreciate that this introduc-
tion to object-oriented programming is very cursory, but enough to get you
started.

28_9780470537558-bk04ch04.indd 41628_9780470537558-bk04ch04.indd 416 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 4

Fu
n

c
tio

n
s, A

rra
ys,

a
n

d
 O

b
je

c
ts

417Introducing JSON

Using your shiny new objects
After you define a class, you can reuse it. Look again at the main function to
see how I use my newly minted Critter class:

function main(){
 //build two critters

 critterA = new Critter(“Alpha”, 1);

 critterB = new Critter(“Beta”, 2);
 critterB.name = “Charlie”;
 critterB.age = 3;

 //have ‘em talk
 critterA.talk();
 critterB.talk();

} // end main
main();

After you define a class, you can use it as a new data type. This is a very
powerful capability. Here’s how it works:

 ✦ Be sure you have access to the class: A class isn’t useful unless
JavaScript knows about it. In this example, the class is defined within
the code.

 ✦ Create an instance of the class with the new keyword: The new key-
word means you want to make a particular critter based on the defini-
tion. Normally, you assign this to a variable. My constructor expects the
name and age to be supplied, so it automatically creates a critter with
the given name and age.

 ✦ Modify the class properties as you wish: You can change the values of
any of the class properties. In my example, I change the name and age of
the second critter just to show how it’s done.

 ✦ Call class methods: Because the critter class has a talk() method,
you can use it whenever you want the critter to talk.

Introducing JSON
JavaScript objects and arrays are incredibly flexible. In fact, they are so
well known for their power and ease of use that a special data format
called JavaScript Object Notation (JSON) has been adopted by many other
languages.

JSON is mainly used as a way to store complex data (especially multidimen-
sion arrays) and pass the data from program to program. JSON is essentially
another way of describing complex data in a JavaScript object format. When
you describe data in JSON, you generally do not need a constructor because
the data is used to determine the structure of the class.

28_9780470537558-bk04ch04.indd 41728_9780470537558-bk04ch04.indd 417 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

418 Introducing JSON

JSON data is becoming a very important part of Web programming, because
it allows an easy mechanism for transporting data between programs and
programming languages.

Storing data in JSON format
To see how JSON works, look at this simple code fragment:

 var critter = {
 “name”: “George”,
 “age”: 10
 };

This code describes a critter. The critter has two properties, a name and an
age. The critter looks much like an array, but rather than using a numeric
index like most arrays, the critter has string values to serve as indices. It is
in fact an object.

You can refer to the individual elements with a variation of array syntax,
like this:

alert(critter[“name”]);

You can also use what’s called dot notation (as used in objects) like this:

alert(critter.age);

Both notations work the same way. Most of the built-in JavaScript objects
use dot notation, but either is acceptable.

 The reason JavaScript arrays are so useful is that they are in fact objects.
When you create an array in JavaScript, you are building an object with
numeric property names. This is why you can use either array or object
syntax for managing JSON object properties.

 Look at jsonDistance.html on the Web site to see the code from this
section in action. I don’t show a screenshot here because all the interesting
work happens in the code.

To store data in JSON notation:

 1. Create the variable.

 You can use the var statement like you do any variable.

 2. Contain the content within braces ({}).

 This is the same mechanism you use to create a preloaded array (as
described earlier in this chapter).

 3. Designate a key.

28_9780470537558-bk04ch04.indd 41828_9780470537558-bk04ch04.indd 418 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 4

Fu
n

c
tio

n
s, A

rra
ys,

a
n

d
 O

b
je

c
ts

419Introducing JSON

 For the critter, I want the properties to be named “name” and “age”
rather than numeric indices. For each property, I begin with the prop-
erty name. The key can be a string or an integer.

 4. Follow the key with a colon (:).

 5. Create the value associated with that key.

 You can then associate any type of value you want with the key. In this
case, I associate the value George with the key name.

 6. Separate each name/value pair with a comma (,).

 You can add as many name value pairs as you wish.

 If you’re familiar with other languages, you might think a JSON structure sim-
ilar to a hash table or associative array. JavaScript does use JSON structures
the way these other structures are used, but it isn’t quite accurate to say
JSON is either a hash or an associative array. It’s simply an object. However,
if you want to think of it as one of these things, I won’t tell anybody.

Building a more complex JSON structure
JSON is convenient because it can be used to handle quite complex data
structures. For example, look at the following (oddly familiar) data structure
written in JSON format:

 var distance = {
 “Indianapolis” :
 { “Indianapolis”: 0,
 “New York”: 648,
 “Tokyo”: 6476,
 “London”: 4000 },

 “New York” :
 { “Indianapolis”: 648,
 “New York”: 0,
 “Tokyo”: 6760,
 “London”: 3470 },

 “Tokyo” :
 { “Indianapolis”: 6476,
 “New York”: 6760,
 “Tokyo”: 0,
 “London”: 5956 },

 “London” :
 { “Indianapolis”: 4000,
 “New York”: 3470,
 “Tokyo”: 5956,
 “London”: 0 },
 };

This data structure is another way of representing the distance data used to
describe two-dimension arrays. This is another two-dimension array, but it
is a little different than the one previously described.

28_9780470537558-bk04ch04.indd 41928_9780470537558-bk04ch04.indd 419 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

420 Introducing JSON

 ✦ distance is a JSON object: The entire data structure is stored in a
single variable. This variable is a JSON object with name/value pairs.

 ✦ The distance object has four keys: These correspond to the four rows
of the original chart.

 ✦ The keys are city names: The original 2D array used numeric indices,
which are convenient but a bit artificial. In the JSON structure, the indi-
ces are actual city names.

 ✦ The value of each entry is another JSON object: The value of a JSON
element can be anything, including another JSON object. Very complex
relationships can be summarized in a single variable.

 ✦ Each row is summarized as a JSON object: For example, the value asso-
ciated with “Indianapolis” is a list of distances from Indianapolis to the
various cities.

 ✦ The entire declaration is one “line” of code: Although it is placed on
several lines in the editor (for clarity) the entire definition is really just
one line of code.

Setting up the data in this way seems a bit tedious, but it’s very easy to work
with. The city names are used directly to extract data, so you can find the
distance between two cities with array-like syntax:

 alert(distance[“Indianapolis”][“London”]);

If you prefer, you can use the dot syntax:

 alert(distance.Indianapolis.Tokyo);

You can even go with some kind of hybrid:

 alert(distance[“London”].Tokyo);

JSON has a number of important advantages as a data format:

 ✦ Self-documenting: Even if you see the data structure on its own without
any code around it, you can tell what it means.

 ✦ The use of strings as indices makes the code more readable: It’s much
easier to understand distance[“Indianapolis”][“London”] than
distance[0][3].

 ✦ JSON data can be stored and transported as text: This turns out to
have profound implications for Web programming, especially in AJAX
(the techniques described in minibook 7).

 ✦ JSON can describe complex relationships: The example shown here
is a simple two-dimension array, but the JSON format can be used
to describe much more complex relationships including complete
databases.

28_9780470537558-bk04ch04.indd 42028_9780470537558-bk04ch04.indd 420 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 4

Fu
n

c
tio

n
s, A

rra
ys,

a
n

d
 O

b
je

c
ts

421Introducing JSON

 ✦ Many languages support JSON format: Many Web languages now offer
direct support for JSON. The most important of these is PHP, which is
frequently used with JavaScript in AJAX applications.

 ✦ JSON is more compact than XML: Another data format called XML is
frequently used to transmit complex data. However, JSON is more com-
pact and less “wordy” than XML.

 ✦ JavaScript can read JSON natively: Some kinds of data need to be
translated before they can be used. As soon as your JavaScript program
has access to JSON data, it can be used directly.

 You might wonder whether you can embed methods in JSON objects. The
answer is yes, but this isn’t usually done when you’re using JSON to trans-
port information. In minibook VII about AJAX, you see that methods are
often added to JSON objects to serve as callback functions, but that usage
won’t make sense until you learn more about events.

28_9780470537558-bk04ch04.indd 42128_9780470537558-bk04ch04.indd 421 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

422 Book IV: Client-Side Programming with JavaScript

28_9780470537558-bk04ch04.indd 42228_9780470537558-bk04ch04.indd 422 10/7/10 8:41 PM10/7/10 8:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Talking to the Page

In This Chapter
✓ Introducing the Document Object Model

✓ Responding to form events

✓ Connecting a button to a function

✓ Retrieving data from text fields

✓ Changing text in text fields

✓ Sending data to the page

✓ Working with other text-related form elements

JavaScript is fun and all, but it lives in Web browsers for a reason: to let
you change Web pages. The best thing about JavaScript is how it helps

you control the page. You can use JavaScript to read useful information
from the user and to change the page on the fly.

In the first few chapters of this minibook, I concentrate on JavaScript with-
out worrying about the HTML. The HTML code in those programs was unim-
portant, so I didn’t include it in the code listings. This chapter is about how
to integrate code with HTML, so now I incorporate the HTML as well as the
JavaScript segments. Sometimes I still print code in separate blocks, so (as
always) try to look at the code in its natural habitat, through your browser.

Understanding the Document Object Model
JavaScript programs usually live in the context of a Web page. The contents
of the page are available to the JavaScript programs through a mechanism
called the Document Object Model (DOM).

The DOM is a special set of complex variables that encapsulates the entire
contents of the Web page. You can use JavaScript to read from the DOM and
determine the status of an element. You can also modify a DOM variable and
change the page from within JavaScript code.

Navigating the DOM
The easiest way to get a feel for the DOM is to load a page in Firefox and
look at the Firebug window’s DOM tab. I do just that in Figure 5-1.

29_9780470537558-bk04ch05.indd 42329_9780470537558-bk04ch05.indd 423 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

424 Understanding the Document Object Model

Figure 5-1:
Even a
very simple
page has
a complex
DOM.

When you look over the DOM of a simple page, you can easily get over-
whelmed. You’ll see a lot of variables listed. Technically, these variables
are all elements of a special object called window. The window object has a
huge number of subobjects, all listed in the DOM view. Table 5-1 describes a
few important window variables.

Table 5-1 Primary DOM Objects

Variable Description Notes

document Represents XHTML
page

Most commonly scripted element

location Describes current URL Change location.href to
move to a new page

history A list of recently visited
pages

Access this to view previous pages

status The browser status bar Change this to set a message in
the status bar

29_9780470537558-bk04ch05.indd 42429_9780470537558-bk04ch05.indd 424 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 5

T
a

lk
in

g
 to

 th
e

 P
a

g
e

425Understanding the Document Object Model

Changing DOM properties with Firebug
To illustrate the power of the DOM, try this experiment in Firefox:

 1. Load any page.

 It doesn’t matter what page you work with. For this example, I use
simple.html, a very basic page with only an <h1> header.

 2. Enable the Firebug extension.

 You can play with the DOM in many ways, but the Firebug extension is
one of the easiest and most powerful tools for experimentation.

 3. Enable the DOM tab.

 You see a list of all the top-level variables.

 4. Scroll down until you see the status element.

 When you find the status element, double-click it.

 5. Type a message to yourself in the resulting dialog box and press
Enter.

 6. Look at the bottom of the browser.

 The status bar at the bottom of the browser window should now contain
your message.

 7. Experiment.

 Play around with the various elements in the DOM list. You can modify
many of them. Try changing window.location.href to any URL and
watch what happens. Don’t worry; you can’t permanently break any-
thing here.

Examining the document object
If the window object is powerful, its offspring, the document, is even more
amazing. (If you’re unfamiliar with the window object, see the section
“Navigating the DOM,” earlier in this chapter.)

Once again, the best way to get a feel for this thing is to do some exploring:

 1. Reload simple.html.

 If your previous experiments caused things to get really weird, you may
have to restart Firefox. Be sure the Firebug extension displays the DOM tab.

 2. Find the document object.

 It’s usually the second object in the window list. When you select this
object, it expands, showing a huge number of child elements.

 3. Look for the document.body.

29_9780470537558-bk04ch05.indd 42529_9780470537558-bk04ch05.indd 425 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

426 Understanding the Document Object Model

 Somewhere in the document you’ll see the body. Select this object to
see what you discover.

 4. Find the document.body.style.

 The document object has a body object, which has a style. Will it
never end?

 5. Look through the style elements.

 Some styles will be unfamiliar, but keep going, and you’ll probably see
some old friends.

 6. Double-click backgroundColor.

 Each CSS style attribute has a matching (but not quite identical) coun-
terpart in the DOM. Wow. Type a new color and see what happens.

 7. Marvel at your cleverness.

 You can navigate the DOM to make all kinds of changes in the page. If
you can manipulate something here, you can write code to do it, too.

If you’re lost here, Figure 5-2 shows me modifying the backgroundColor
of the style of the body of the document. A figure can’t really do this justice,
though. You have to experiment for yourself. But don’t be overwhelmed.
You don’t really need to understand all these details, just know they exist.

Figure 5-2:
Firebug lets
me modify
the DOM
of my page
directly.

29_9780470537558-bk04ch05.indd 42629_9780470537558-bk04ch05.indd 426 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 5

T
a

lk
in

g
 to

 th
e

 P
a

g
e

427Harnessing the DOM through JavaScript

Messing with the DOM through Firebug is kind of cool, and it helps you see
how the page is organized, but it doesn’t always work. Don’t worry if you
can’t make the firebug DOM business work. You see in the next section it’s
actually easier to write code that changes the DOM than it is to change it
through Firebug. The Firebug DOM tool is mainly used to look over your
DOM to see how the page is currently organized in memory.

Harnessing the DOM through JavaScript
Sure, using Firebug to trick out your Web page is geeky and all, but why
should you care? The whole purpose of the DOM is to provide JavaScript
magical access to all the inner workings of your page.

Getting the blues, JavaScript-style
It all gets fun when you start to write JavaScript code to access the DOM.
Take a look at blue.html in Figure 5-3.

Figure 5-3:
This page
is blue.
But where’s
the CSS?

The page has white text on a blue background, but there’s no CSS! Instead, it
has a small script that changes the DOM directly, controlling the page colors
through code.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>blue.html</title>

 </head>

 <body>
 <h1>I’ve got the JavaScript Blues</h1>
 <script type = ”text/javascript”>
 //<![CDATA[

 // use javascript to set the colors
 document.body.style.color = ”white”;
 document.body.style.backgroundColor = ”blue”;

 //]]>
 </script>
 </body>
</html>

29_9780470537558-bk04ch05.indd 42729_9780470537558-bk04ch05.indd 427 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

428 Managing Button Events

Writing JavaScript code to change colors
The page shown in Figure 5-3 is pretty simple, but it has a few features not
found in Chapters 1 through 4 of this minibook.

 ✦ It has no CSS. A form of CSS is dynamically created through the code.

 ✦ The script is in the body. I can’t place this particular script in the
header because it refers to the body.

 When the browser first sees the script, there must be a body for the
text to change. If I put the script in the head, no body exists when the
browser reads the code, so it gets confused. If I place the script in the
body, there is a body, so the script can change it. (It’s really okay if you
don’t get this discussion. This example is probably the only time you’ll
see this trick because I show a better way in the next example.)

 ✦ Use a DOM reference to change the style colors. That long “trail of
breadcrumbs” syntax takes you all the way from the document through
the body to the style and finally the color. It’s tedious but thorough.

 ✦ Set the foreground color to white. You can change the color property
to any valid CSS color value (a color name or a hex value). It’s just like
CSS, because you are affecting the CSS.

 ✦ Set the background color to blue. Again, this adjustment is just like
setting CSS.

Managing Button Events
Of course, there’s no good reason to write code like blue.html, which I
discuss in the section “Harnessing the DOM through JavaScript,” earlier in
this chapter. You will find that it’s just as easy to build CSS as it is to write
JavaScript. The advantage comes when you use the DOM dynamically to
change the page’s behavior after it has finished loading.

Figure 5-4 shows a page called “backgroundColors.html”.

If you’ve dug through the DOM style elements,
you’ll notice some interesting things. Many of
the element names are familiar but not quite
identical. background-color becomes
backgroundColor and font-weight
becomes fontWeight. CSS uses dashes to
indicate word breaks, and the DOM combines

words and uses capitalization for clarity. You’ll
find all your old favorite CSS elements, but the
names change according to this very predict-
able formula. Still, if you’re ever confused, just
use the Firebug DOM inspector to look over
various style elements.

Shouldn’t it be background-color?

29_9780470537558-bk04ch05.indd 42829_9780470537558-bk04ch05.indd 428 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 5

T
a

lk
in

g
 to

 th
e

 P
a

g
e

429Managing Button Events

Figure 5-4:
The page is
white. It has
two buttons
on it. I’ve
gotta click
Blue.

The page is set up with the default white background color. It has two but-
tons on it, which should change the body’s background color. Click the Blue
button, and you see that it works, as verified in Figure 5-5.

Figure 5-5:
It turned
blue! Joy!

Some really exciting things just happened.

 ✦ The page has a form. For more information on form elements, refer to
Book I, Chapter 7.

 ✦ The button does something. Plain-old XHTML forms don’t really do
anything. You’ve got to write some kind of programming code to accom-
plish a task. This program does it.

 ✦ The page has a setColor() function. The page has a function that
takes a color name and applies it to the background style.

 ✦ Both buttons pass information to setColor. Both of the buttons call
the setColor() function, but they each pass a different color value.
That’s how the program knows what color to use when changing the
background.

29_9780470537558-bk04ch05.indd 42929_9780470537558-bk04ch05.indd 429 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

430 Managing Button Events

Take a look at the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>backgroundColors</title>
 <script type = “text/javascript”>
 //<![CDATA[
 // from backgroundColors

 function changeColor(color){
 document.body.style.backgroundColor = color;
 } // end changeColor

 //]]>
 </script>
 </head>

 <body>
 <h1>Click a button to change the color</h1>
 <form action = “”>
 <fieldset>
 <input type = “button”
 value = “blue”
 onclick = “changeColor(‘blue’)”/>

 <input type = “button”
 value = “white”
 onclick = “changeColor(‘white’)” />
 </fieldset>

 </form>
 </body>
</html>

Most Web pages actually treat the XHTML page as the user interface and the
JavaScript as the event-manipulation code that goes underneath. It makes
sense, then, to look at the HTML code that acts as the playground first:

 ✦ It contains a form. Note that the form’s action attribute is still empty.
You don’t mess with that attribute until you work with the server in
Book V.

 ✦ The form has a fieldset. The input elements need to be inside some-
thing, and a fieldset seems like a pretty natural choice.

 ✦ The page has two buttons. The two buttons on the page are nothing
new, but they’ve never done anything before.

 ✦ The buttons both have onclick attributes. This special attribute can
accept one line of JavaScript code. Usually, that line calls a function, as I
do in this example.

 ✦ Each button calls the same function but with a different parameter.
Both buttons call changeColor(), but one sends the value “blue” and
the other “white”.

29_9780470537558-bk04ch05.indd 43029_9780470537558-bk04ch05.indd 430 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 5

T
a

lk
in

g
 to

 th
e

 P
a

g
e

431Managing Button Events

 ✦ Presumably, changeColor changes a color. That’s exactly what it will
do. In fact, it changes the background color.

Generally, I write the XHTML code before the script. As you can see, the form
provides all kinds of useful information that can help me make the script.
Specifically, I need to write a function called changeColor(), and this func-
tion should take a color name as a parameter and change the background to
the indicated color. With that kind of help, the function is half written!

Embedding quotes within quotes
Take a careful look at the onclick lines in the code in the preceding sec-
tion. You may not have noticed one important issue:

onclick is an XHTML parameter, and its value must be encased in quotes.
The parameter happens to be a function call, which sends a string value.
String values must also be in quotes. This setup can become confusing if you
use double quotes everywhere because the browser has no way to know the
quotes are nested.

onclick = “changeColor(“white”)” />

XHTML thinks the onclick parameter contains the value “changeColor(”
and it will have no idea what white”)” is.

Fortunately, JavaScript has an easy fix for this problem. If you want to
embed a quote inside another quote, just switch to single quotes. The line is
written with the parameter inside single quotes:

onclick = “changeColor(‘white’)” />

Writing the changeColor function
The changeColor() function is pretty easy to write.

<script type = “text/javascript”>
 //<![CDATA[
 // from backgroundColors

 function changeColor(color){
 document.body.style.backgroundColor = color;
 } // end changeColor

 //]]>
</script>

It goes in the header area as normal. It’s simply a function accepting one
parameter called color. The body’s backgroundColor property is set
to color.

29_9780470537558-bk04ch05.indd 43129_9780470537558-bk04ch05.indd 431 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

432 Managing Text Input and Output

 I can write JavaScript in the header that refers to the body because the
header code is all in a function. The function is read before the body is in
place, but it isn’t activated until the user clicks the button. By the time the
user activates the code by clicking on the button, there is a body, and
there’s no problem.

Managing Text Input and Output
Perhaps the most intriguing application of the DOM is the ability to let the
user communicate with the program through the Web page, without all
those annoying dialog boxes. Figure 5-6 shows a page with a Web form con-
taining two textboxes and a button.

Figure 5-6:
I’ve typed
a name
into the top
textbox.

When you click the button, something exciting happens, demonstrated by
Figure 5-7.

Clearly, form-based input and output is preferable to the constant interrup-
tion of dialog boxes.

Introducing event-driven programming
Graphic user interfaces usually use a technique called event-driven program-
ming. The idea is simple.

 1. Create a user interface.

 In Web pages, the user interface is usually built of XHTML and CSS.

 2. Identify events the program should respond to.

29_9780470537558-bk04ch05.indd 43229_9780470537558-bk04ch05.indd 432 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 5

T
a

lk
in

g
 to

 th
e

 P
a

g
e

433Managing Text Input and Output

 If you have a button, users will click it. (If you want to guarantee they
click it, put the text “Launch the Missiles” on the button. I don’t know
why, but it always works.) Buttons almost always have events. Some
other elements do, too.

 3. Write a function to respond to each event.

 For each event you want to test, write a function that does whatever
needs to happen.

 4. Get information from form elements.

 Now you’re accessing the contents of form elements to get information
from the user. You need a mechanism for getting information from a text
field and other form elements.

 5. Use form elements for output.

 For this simple example, I also use form elements for output. The output
goes in a second textbox, even though I don’t intend the user to type
any text there.

Figure 5-7:
I got a
greeting!
With no
alert box!

Creating the XHTML form
The first step in building a program that can manage text input and output is
to create the XHTML framework. Here’s the XHTML code:

 <title>textBoxes.html</title>

 <link rel = “stylesheet”
 type = “text/css”
 href = “textBoxes.css” />

 </head>

29_9780470537558-bk04ch05.indd 43329_9780470537558-bk04ch05.indd 433 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

434 Managing Text Input and Output

 <body>
 <h1>Text Box Input and Output</h1>
 <form action = “”>
 <fieldset>
 <label>Type your name: </label>
 <input type = “text”
 id = “txtName” />

 <input type = “button”
 value = “click me”
 onclick = “sayHi()”/>

 <input type = “text”
 id = “txtOutput” />
 </fieldset>
 </form>

 </body>
</html>

As you look over the code, note a few important ideas:

 ✦ The page uses external CSS. The CSS style is nice, but it’s not important
in the discussion here. It stays safely encapsulated in its own file. Of
course, you’re welcome to look it over or change it.

 ✦ Most of the page is a form. All form elements must be inside a form.

 ✦ A fieldset is used to contain form elements. input elements need
to be inside some sort of block-level element, and a fieldset is a
natural choice.

 ✦ There’s a text field named txtName. This text field contains the name. I
begin with the phrase txt to remind myself that this field is a textbox.

 ✦ The second element is a button. You don’t need to give the button an ID
(as it won’t be referred to in code), but it does have an onclick() event.

 ✦ The button’s onclick event refers to a (yet undefined) function. In
this example, it’s named “sayHi()”.

 ✦ A second textbox contains the greeting. This second textbox is called
txtOutput because it’s the text field meant for output.

After you set up the HTML page, the function becomes pretty easy to write
because you’ve already identified all the major constructs. You know you
need a function called sayHi(), and this function reads text from the
txtName field and writes to the txtOutput field.

Using GetElementById to get access to the page
XHTML is one thing, and JavaScript is another. You need some way to turn
an HTML form element into something JavaScript can read. The magical
getElementById() method does exactly that. First, look at the first two
lines of the sayHi() function (defined in the header as usual).

29_9780470537558-bk04ch05.indd 43429_9780470537558-bk04ch05.indd 434 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 5

T
a

lk
in

g
 to

 th
e

 P
a

g
e

435Managing Text Input and Output

 function sayHi(){
 var txtName = document.getElementById(“txtName”);
 var txtOutput = document.getElementById(“txtOutput”);

You can extract every element created in your Web page by digging through
the DOM. In the old days, this approach is how we used to access form
elements. It was ugly and tedious. Modern browsers have the wonderful
getElementById() function instead. This beauty searches through the
DOM and returns a reference to an object with the requested ID.

A reference is simply an indicator where the specified object is in memory.
You can store a reference in a variable. Manipulating this variable manipu-
lates the object it represents. If you want, you can think of it as making the
textbox into a variable.

Note that I call the variable txtName, just like the original textbox. This
variable refers to the text field from the form, not the value of that text field.
Once I have a reference to the text field object, I can use its methods and
properties to extract data from it and send new values to it.

Manipulating the text fields
Once you have access to the text fields, you can manipulate the values of
these fields with the value property:

 var name = txtName.value;
 txtOutput.value = “Hi there, “ + name + “!”

Text fields (and, in fact, all input fields) have a value property. You can
read this value as an ordinary string variable. You can also write to this
property, and the text field will be updated on the fly.

This code handles the data input and output:

 1. Create a variable for the name.

 This is an ordinary string variable.

 2. Copy the value of the textbox into the variable.

 Now that you have a variable representing the textbox, you can access
its value property to get the value typed in by the user.

 3. Create a message for the user.

 Use ordinary string concatenation.

 4. Send the message to the output textbox.

 You can also write text to the value property, which changes the con-
tents of the text field on the screen.

29_9780470537558-bk04ch05.indd 43529_9780470537558-bk04ch05.indd 435 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

436 Writing to the Document

 Text fields always return string values (like prompts do). If you want to
pull a numeric value from a text field, you may have to convert it with the
parseInt() or parseFloat() functions.

Writing to the Document
Form elements are great for getting input from the user, but they’re not ideal
for output. Placing the output in an editable field really doesn’t make much
sense. Changing the Web document is a much better approach.

The DOM supports exactly such a technique. Most XHTML elements feature
an innerHTML property. This property describes the HTML code inside the
element. In most cases, it can be read from and written to.

 So what are the exceptions? Single-element tags (like and <input>)
don’t contain any HTML, so obviously reading or changing their inner
HTML doesn’t make sense. Table elements can often be read from but not
changed directly.

Figure 5-8 shows a program with a basic form.

Figure 5-8:
Wait,
there’s no
output text
field!

This form doesn’t have a form element for the output. Enter a name and click
the button, and you see the results in Figure 5-9.

Amazingly enough, this page can make changes to itself dynamically. It isn’t
simply changing the values of form fields, but changing the HTML.

Preparing the HTML framework
To see how the page changes itself dynamically, begin by looking at the
XHTML body for innerHTML.html:

29_9780470537558-bk04ch05.indd 43629_9780470537558-bk04ch05.indd 436 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 5

T
a

lk
in

g
 to

 th
e

 P
a

g
e

437Writing to the Document

 <body>
 <h1>Inner HTML Demo</h1>
 <form action = “”>
 <fieldset>
 <label>Please type your name</label>
 <input type = “text”
 id = “txtName” />
 <button type = “button”
 onclick = “sayHi()”>
 Click Me
 </button>
 </fieldset>
 </form>

 <div id = “divOutput”>
 Watch this space.
 </div>
 </body>

Figure 5-9:
The
page has
changed
itself.

The code body has a couple of interesting features:

 ✦ The program has a form. The form is pretty standard. It has a text field
for input and a button, but no output elements.

 ✦ The button will call a sayHi() function. The page requires a function
with this name. Presumably, it says hi somehow.

 ✦ There’s a div for output. A div element in the main body is designated
for output.

 ✦ The div has an ID. The id attribute is often used for CSS styling, but
the DOM can also use it. Any HTML elements that will be dynamically
scripted should have an id field.

Writing the JavaScript
The JavaScript code for modifying innerHTML isn’t very hard:

29_9780470537558-bk04ch05.indd 43729_9780470537558-bk04ch05.indd 437 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

438 Working with Other Text Elements

 <script type = “text/javascript”>
 //<![CDATA[
 //from innerHTML.html

 function sayHi(){
 txtName = document.getElementById(“txtName”);
 divOutput = document.getElementById(“divOutput”);

 name = txtName.value;

 divOutput.innerHTML = “” + name + “<\/em>”;
 divOutput.innerHTML += “ is a very nice name.”;
 }
 //]]>
 </script>

The first step (as usual with Web forms) is to extract data from the input ele-
ments. Note that I can create a variable representation of any DOM element,
not just form elements. The divOutput variable is a JavaScript representa-
tion of the DOM div.

Finding your innerHTML
Like form elements, divs have other interesting properties you can modify.
The innerHTML property allows you to change the HTML code displayed by
the div. You can put any valid XHTML code you want inside the innerHTML
property, even HTML tags. Be sure that you still follow the XHTML rules so
that your code will be valid.

 Even with the CDATA element in place, validators get confused by forward
slashes (like the one in the tag). Whenever you want to use a /
character in JavaScript strings, precede it with a backslash (<\/em>). A
backslash helps the validator understand that you intend to place a slash
character at the next position.

Working with Other Text Elements
When you know how to work with text fields, you’ve mastered about half of
the form elements. Several other form elements work exactly like text fields,
including these:

 ✦ Password fields obscure the user’s input with asterisks, but preserve
the text.

 ✦ Hidden fields allow you to store information in a page without revealing
it to the user. (They’re used a little bit in client-side coding, but almost
never in JavaScript.)

 ✦ Text areas are a special variation of textboxes designed to handle mul-
tiple lines of input.

Figure 5-10 is a page with all these elements available on the same form.

29_9780470537558-bk04ch05.indd 43829_9780470537558-bk04ch05.indd 438 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 5

T
a

lk
in

g
 to

 th
e

 P
a

g
e

439Working with Other Text Elements

Figure 5-10:
Passwords,
hidden
fields, and
text areas
all look the
same to
JavaScript.

When the user clicks the button, the contents of all the fields (even the
password and hidden fields) appear on the bottom of the page, as shown in
Figure 5-11.

Figure 5-11:
Now you
can see
what was in
everything.

29_9780470537558-bk04ch05.indd 43929_9780470537558-bk04ch05.indd 439 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

440 Working with Other Text Elements

Building the form
Here’s the XHTML (otherText.html) that generates the form shown in
Figures 5-10 and 5-11:

 <body>
 <h1>Text Input Devices</h1>
 <form action = “”>
 <fieldset>
 <label>Normal Text field</label>
 <input type = “text”
 id = “txtNormal” />
 <label>Password field</label>
 <input type = “password”
 id = “pwd” />
 <label>Hidden</label>
 <input type = “hidden”
 id = “hidden”
 value = ”I can’t tell you” />
 <textarea id = ”txtArea”
 rows = ”10”
 cols = ”40”>
This is a big text area.
It can hold a lot of text.
 </textarea>
 <button type = ”button”
 onclick = ”processForm()”>
 Click Me
 </button>
 </fieldset>
 </form>

 <div id = ”output”>

 </div>
 </body>

The code may be familiar to you if you read about form elements in Book I,
Chapter 7. A few things are worth noting for this example:

 ✦ An ordinary text field appears, just for comparison purposes. It has an
id so that it can be identified in the JavaScript.

 ✦ The next field is a password field. Passwords display asterisks, but
store the actual text that was entered. This password has an id of pwd.

 ✦ The hidden field is a bit strange. You can use hidden fields to store
information on the page without displaying that information to the user.
Unlike the other kinds of text fields, the user can’t modify a hidden field.
(She usually doesn’t even know it’s there.) This hidden field has an id of
secret and a value (“I can’t tell you”).

 ✦ The text area has a different format. The input elements are all single-
tag elements, but the textarea is designed to contain a large amount of
text, so it has beginning and end tags. The text area’s id is txtArea.

 ✦ A button starts all the fun. As usual, most of the elements just sit there
gathering data, but the button has an onclick event associated with it,
which calls a function.

29_9780470537558-bk04ch05.indd 44029_9780470537558-bk04ch05.indd 440 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 5

T
a

lk
in

g
 to

 th
e

 P
a

g
e

441Working with Other Text Elements

 ✦ External CSS gussies it all up. The page has some minimal CSS to clean
it up. The CSS isn’t central to this discussion, so I don’t reproduce it.
Note that the page will potentially have a dl on it, so I have a CSS style
for it, even though it doesn’t appear by default.

 The password and hidden fields seem secure, but they aren’t. Anybody who
views the page source will be able to read the value of a hidden field, and
passwords transmit their information in the clear. You really shouldn’t be
using Web technology (especially this kind) to transport nuclear launch
codes or the secret to your special sauce. (Hmmm, maybe the secret sauce
recipe is the launch code — sounds like a bad spy movie.)

When I create a text field, I often suspend my rules on indentation because
the text field preserves everything inside it, including any indentation.

Writing the function
After you build the form, all you need is a function. Here’s the good news:
JavaScript treats all these elements in exactly the same way! The way you
handle a password, hidden field, or text area is identical to the technique for
a regular text field (described under “Managing Text Input and Output,” ear-
lier in this chapter). Here’s the code:

 <script type = “text/javascript”>
 //<![CDATA[

 // from otherText.html
 function processForm(){
 //grab input from form
 var txtNormal = document.getElementById(“txtNormal”);
 var pwd = document.getElementById(“pwd”);
 var hidden = document.getElementById(“hidden”);
 var txtArea = document.getElementById(“txtArea”);

 var normal = txtNormal.value;
 var password = pwd.value;
 var secret = hidden.value;
 var bigText = txtArea.value;

 //create output
 var result = ””
 result += ”<dl> \n”;
 result += “ <dt>normal<\/dt> \n”;
 result += “ <dd>” + normal + “<\/dd> \n”;
 result += “ \n”;
 result += “ <dt>password<\/dt> \n”;
 result += “ <dd>” + password + “<\/dd> \n”;
 result += “ \n”;
 result += “ <dt>secret<\/dt> \n”;
 result += ” <dd>” + secret + ”<\/dt> \n”;
 result += ” \n”;
 result += ” <dt>big text<\/dt> \n”;
 result += ” <dd>” + bigText + ”<\/dt> \n”;
 result += ”<\/dl> \n”;

 var output = document.getElementById(”output”);
 output.innerHTML = result;

 } // end function

29_9780470537558-bk04ch05.indd 44129_9780470537558-bk04ch05.indd 441 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

442 Working with Other Text Elements

The function is a bit longer than the others in this chapter, but it follows exactly
the same pattern: It extracts data from the fields, constructs a string for output,
and writes that output to the innerHTML attribute of a div in the page.

The code has nothing new, but it still has a few features you should consider:

 ✦ Create a variable for each form element. Use the document.get
ElementById mechanism.

 ✦ Create a string variable containing the contents of each element.
Don’t forget: The getElementById trick returns an object. You need to
extract the value property to see what’s inside the object.

 ✦ Make a big string variable to manage the output. When output gets
long and messy like this one, concatenate a big variable and then just
output it in one swoop.

 ✦ HTML is your friend. This output is a bit complex, but innerHTML is
HTML, so you can use any HTML styles you want to format your code.
The return string is actually a complete definition list. Whatever is
inside the textbox is (in this case) reproduced as HTML text, so if I want
carriage returns or formatting, I have to add them with code.

 ✦ Don’t forget to escape the slashes. The validator gets confused by ending
tags, so add the backslash character to any ending tags occurring in
JavaScript string variables. In other words, </dl> becomes <\/dl>.

 ✦ Newline characters (\n) clean up the output. If I were writing an ordi-
nary definition list in HTML, I’d put each line on a new line. I try to make
my programs write code just like I do, so I add newline characters every-
where I’d add a carriage return in ordinary HTML.

Understanding generated source
When you run the program in the preceding section, your JavaScript code
actually changes the page it lives on. The code that doesn’t come from
your server (but is created by your program) is sometimes called generated
source. The generated code technique is powerful, but it can have a signifi-
cant problem. Try this experiment to see what I mean:

 1. Reload the page.

 You want to view it without the form contents showing so that you can
view the source. Everything will be as expected; the source code shows
exactly what you wrote.

 2. Click the Click Me button.

 Your function runs, and the page changes. You clearly added HTML to
the output div, because you can see the output right on the screen.

29_9780470537558-bk04ch05.indd 44229_9780470537558-bk04ch05.indd 442 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 5

T
a

lk
in

g
 to

 th
e

 P
a

g
e

443Working with Other Text Elements

 3. View the source again.

 You’ll be amazed. The output div is empty, even though you can clearly
see that it has changed.

 4. Check generated code.

 Using the HTML validator extension or the W3 validator (described in
Book I, Chapter 2) doesn’t check for errors in your generated code. You
have to check it yourself, but it’s hard to see the code!

Here’s what’s going on: The view source command (on most browsers)
doesn’t actually view the source of the page as it currently stands. It goes
back to the server and retrieves the page but displays it as source rather
than rendered output. As a result, the view source command isn’t useful
for telling you how the page has changed dynamically. Likewise, the page
validators check the page as it occurs on the server without taking into
account things that may have happened dynamically.

Figure 5-12 illustrates this problem.

Figure 5-12:
The ordinary
view source
command
isn’t
showing the
contents of
the div!

Clearly there is content
in the output div…

…but the content div is empty
in the source viewer.

29_9780470537558-bk04ch05.indd 44329_9780470537558-bk04ch05.indd 443 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

444 Working with Other Text Elements

When you build regular Web pages, this approach isn’t a problem because
regular Web pages don’t change. Dynamically generated pages can change
on the fly, and the browser doesn’t expect that. If you made a mistake in
the HTML, you can’t simply view the source to see what you did wrong in
the code generated by your script. Fortunately, Firefox plugins give you two
easy solutions:

 ✦ The Web developer toolbar: This toolbar has a wonderful tool called
view generated source available on the view source menu. It
allows you to view the source code of the current page in its current
state, including any code dynamically generated by your JavaScript.

 ✦ The Firebug window: Open this window when a page is open and
browse (with the HTML tab) around your page. Firebug gives you an
accurate view of the page contents even when they’re changed dynami-
cally, which can be extremely useful.

These tools keep you sane when you’re trying to figure out why your gener-
ated code isn’t acting right. (I wish I’d had them years ago. . . .)

Figure 5-13 shows the Firebug toolbar with the dynamically generated con-
tents showing.

Figure 5-13:
Firebug
shows the
current
status of
the page,
even if it’s
dynamically
modified.

29_9780470537558-bk04ch05.indd 44429_9780470537558-bk04ch05.indd 444 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Getting Valid Input

In This Chapter
✓ Extracting data from drop-down lists

✓ Working with multiple-selection lists

✓ Getting data from check boxes and radio groups

✓ Validating input with regular expressions

✓ Using character, boundary, and repetition operators

✓ Using pattern memory

Getting input from the user is always nice, but sometimes users make
mistakes. Whenever you can, you want to make the user’s job easier

and prevent certain kinds of mistakes.

Fortunately, you can take advantage of several tools designed exactly for
that purpose. In this chapter, you discover two main strategies for improv-
ing user input: specialized input elements and pattern-matching. Together,
these tools can help ensure that the data the user enters is useful and valid.

Getting Input from a Drop-Down List
The most obvious way to ensure that the user enters something valid is to
supply him with valid choices. The drop-down list is an obvious and easy
way to do this, as you can see from Figure 6-1.

The list-box approach has a lot of advantages over text field input:

 ✦ The user can input with the mouse, which is faster and easier than
typing.

 ✦ You shouldn’t have any spelling errors because the user didn’t type the
response.

 ✦ The user knows all the answers available because they’re listed.

 ✦ You can be sure the user gives you a valid answer because you supplied
the possible responses.

 ✦ User responses can be mapped to more complex values — for example,
you can show the user Red and have the list box return the hex value
#FF0000.

30_9780470537558-bk04ch06.indd 44530_9780470537558-bk04ch06.indd 445 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

446 Getting Input from a Drop-Down List

Figure 6-1:
The user
selects from
a predefined
list of valid
choices.

If you want to know how to build a list box with the XHTML select object,
refer to Book I, Chapter 7.

Building the form
When you’re creating a predefined list of choices, create the HTML form first
because it defines all the elements you’ll need for the function. The code is a
standard form:

 <body>
 <form action = “”>
 <h1>Please select a color</h1>
 <fieldset>
 <select id = “selColor”>
 <option value = “#FFFFFF”>White</option>
 <option value = “#FF0000”>Red</option>
 <option value = “#FFCC00”>Orange</option>
 <option value = “#FFFF00”>Yellow</option>
 <option value = “#00FF00”>Green</option>
 <option value = “#0000FF”>Blue</option>
 <option value = “#663366”>Indigo</option>
 <option value = “#FF00FF”>Violet</option>
 </select>

 <input type = “button”
 value = “change color”
 onclick = “changeColor()” />

30_9780470537558-bk04ch06.indd 44630_9780470537558-bk04ch06.indd 446 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 6

G
e

ttin
g

 V
a

lid
 In

p
u

t

447Getting Input from a Drop-Down List

 </fieldset>
 </form>

 </body>
</html>

The select object’s default behavior is to provide a drop-down list. The
first element on the list is displayed, but when the user clicks the list, the
other options appear.

A select object that the code refers to should have an id field.

In this and most examples in this chapter, I add CSS styling to clean up each
form. Be sure to look over the styles if you want to see how I did it. Note
also that I’m only showing the HTML right now. The entire code listing also
includes JavaScript code, which I describe in the next section.

The other element in the form is a button. When the user clicks the button,
the changeColor() function is triggered.

 Because the only element in this form is the select object, you may want to
change the background color immediately without requiring a button click.
You can do so by adding an event handler directly onto the select object:

 <select id = “selColor”
 onchange = “changeColor()”>

The event handler causes the changeColor() function to be triggered as
soon as the user changes the select object’s value. Typically, you’ll forego
the user clicking a button only when the select is the only element in
the form. If the form includes several elements, processing doesn’t usually
happen until the user signals she’s ready by clicking a button.

Reading the list box
Fortunately, standard drop-down lists are quite easy to read. Here’s the
JavaScript code:

 <script type = “text/javascript”>
 //<![CDATA[
 // from dropdownList.html

 function changeColor(){
 var selColor = document.getElementById(“selColor”);
 var color = selColor.value;
 document.body.style.backgroundColor = color;
 } // end function
 //]]>
 </script>

As you can see, the process for reading the select object is much like
working with a text-style field:

30_9780470537558-bk04ch06.indd 44730_9780470537558-bk04ch06.indd 447 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

448 Managing Multiple Selections

 ✦ Create a variable to represent the select object. The document.
getElementById() trick works here just like it does for text fields.

 ✦ Extract the value property of the select object. The value prop-
erty of the select object reflects the value of the currently selected
option. So, if the user has chosen Yellow, the value of selColor is
“#FFFF00”.

 ✦ Set the document’s background color. Use the DOM mechanism to set
the body’s background color to the chosen value.

Managing Multiple Selections
You can use the select object in a more powerful way than the method I
describe in the preceding section. Figure 6-2 shows a page with a multiple-
selection list box.

To make multiple selection work, you have to make a few changes to both
the HTML and the JavaScript code.

Figure 6-2:
You can
pick multiple
choices
from this
list.

30_9780470537558-bk04ch06.indd 44830_9780470537558-bk04ch06.indd 448 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 6

G
e

ttin
g

 V
a

lid
 In

p
u

t

449Managing Multiple Selections

Coding a multiple selection select object
You modify the select code in two ways to make multiple selections:

 ✦ Indicate multiple selections are allowed. By default, select boxes
have only one value. You’ll need to set a switch to tell the browser to
allow more than one item to be selected.

 ✦ Make the mode a multiline select. The standard drop-down behavior
doesn’t make sense when you want multiple selections, because the
user needs to see all the options at once. Most browsers automati-
cally switch into a multiline mode, but you should control the process
directly.

The XHTML code for multiSelect.html is similar to the dropdownList
page, described in the preceding section, but note a couple of changes.

 <body>
 <h1>Multiple Selections</h1>
 <form action = “”>
 <fieldset>
 <label>
 Select the language(s) you know.
 (ctrl-click to select multiple lines)
 </label>
 <select id = “selLanguage”
 multiple = “multiple”
 size = “10”>
 <option value = “XHTML”>XHTML</option>
 <option value = “CSS”>CSS</option>
 <option value = “JavaScript”>JavaScript</option>
 <option value = “PHP”>PHP</option>
 <option value = “MySQL”>MySQL</option>
 <option value = “Java”>Java</option>
 <option value = “VB.NET”>VB.NET</option>
 <option value = ”Python”>Python</option>
 <option value = ”Flash”>Flash</option>
 <option value = ”Perl”>perl</option>
 </select>
 <button type = ”button”
 onclick = ”showChoices()”>
 Submit
 </button>
 </fieldset>
 </form>

 <div id = ”output”>

 </div>
 </body>
</html>

The code isn’t shocking, but it does have some important features:

 ✦ Call the select object selLanguage. As usual, the form elements need
an id attribute so that you can read it in the JavaScript.

30_9780470537558-bk04ch06.indd 44930_9780470537558-bk04ch06.indd 449 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

450 Managing Multiple Selections

 ✦ Add the multiple attribute to your select object. This attribute tells
the browser to accept multiple inputs using Shift+click (for contiguous
selections) or Ctrl+click (for more precise selection).

 ✦ Set the size to 10. The size indicates the number of lines to be dis-
played. I set the size to 10 because my list has ten options.

 ✦ Make a button. With multiple selection, you probably won’t want to trig-
ger the action until the user has finished making selections. A separate
button is the easiest way to make sure the code is triggered when you
want it to happen.

 ✦ Create an output div. This code holds the response.

Writing the JavaScript code
The JavaScript code for reading a multiple-selection list box is a bit different
than the standard selection code described in the section “Reading the list
box” earlier in this chapter. The value property usually returns one value,
but a multiple-selection list box often returns more than one result.

The key is to recognize that a list of option objects inside a select object
is really a kind of array, not just one value. You can look more closely at the
list of objects to see which ones are selected, which is essentially what the
showChoices() function does:

 <script type = “text/javascript”>
 //<![CDATA[
 //from multi-select.html
 function showChoices(){
 //retrieve data
 var selLanguage = document.getElementById(“selLanguage”);

 //set up output string
 var result = “<h2>Your Languages<\/h2>”;
 result += “ \n”;

 //step through options
 for (i = 0; i < selLanguage.length; i++){
 //examine current option
 currentOption = selLanguage[i];

 //print it if it has been selected
 if (currentOption.selected == true){
 result += “ ” + currentOption.value + “<\/li> \n”;
 } // end if
 } // end for loop

 //finish off the list and print it out
 result += “<\/ul> \n”;

 output = document.getElementById(“output”);
 output.innerHTML = result;
 } // end showChoices
 //]]>
 </script>

30_9780470537558-bk04ch06.indd 45030_9780470537558-bk04ch06.indd 450 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 6

G
e

ttin
g

 V
a

lid
 In

p
u

t

451Managing Multiple Selections

At first, the code seems intimidating, but if you break it down, it’s not too tricky.

 1. Create a variable to represent the entire select object.

 The standard document.getElementById() technique works fine.
 var selLanguage = document.getElementById(“selLanguage”);

 2. Create a string variable to hold the output.

 When you’re building complex HTML output, working with a string vari-
able is much easier than directly writing code to the element.

 var result = “<h2>Your Languages<\/h2>”;

 3. Build an unordered list to display the results.

 An unordered list is a good way to spit out the results, so I create one in
my result variable.

 result += “ \n”;

 4. Step through selLanguage as if it were an array.

 Use a for loop to examine the list box line by line. Note that sel
Language has a length property like an array.

 for (i = 0; i < selLanguage.length; i++){

 5. Assign the current element to a temporary variable.

 The currentOption variable holds a reference to the each option ele-
ment in the original select object as the loop progresses.

 currentOption = selLanguage[i];

 6. Check to see whether the current element has been selected.

 The object currentOption has a selected property that tells you
whether the object has been highlighted by the user. selected is a
Boolean property, so it’s either true or false.

 if (currentOption.selected == true){

 7. If the element has been selected, add an entry to the output list.

 If the user has highlighted this object, create an entry in the unordered
list housed in the result variable.

 result += “ ” + currentOption.value + “<\/li> \n”;

 8. Close up the list.

 Once the loop has finished cycling through all the objects, you can close
up the unordered list you’ve been building.

 result += “<\/ul> \n”;

 9. Print results to the output div.

 The output div’s innerHTML property is a perfect place to print the
unordered list.

 output = document.getElementById(“output”);
 output.innerHTML = result;

30_9780470537558-bk04ch06.indd 45130_9780470537558-bk04ch06.indd 451 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

452 Check, Please: Reading Check Boxes

 Something strange is going on here. The options of a select box act like an
array. An unordered list is a lot like an array. Bingo! They are arrays, just in
different forms. You can think of any listed data as an array. Sometimes you
organize the data like a list (for display), sometimes like an array (for stor-
age in memory), and sometimes it’s a select group (for user input). Now
you’re starting to think like a programmer!

Check, Please: Reading Check Boxes
Check boxes fulfill another useful data input function. They’re useful any
time you have Boolean data. If some value can be true or false, a check box
is a good tool. Figure 6-3 illustrates a page that responds to check boxes.

 Check boxes are independent of each other. Although they’re often found in
groups, any check box can be checked or unchecked regardless of the status
of its neighbors.

Building the check box page
To build the check box page shown in Figure 6-3, start by looking at the HTML:

 <body>
 <h1>What do you want on your pizza?</h1>
 <form action = “”>
 <fieldset>
 <input type = “checkbox”
 id = “chkPepperoni”
 value = “pepperoni” />
 <label>Pepperoni</label>

 <input type = “checkbox”
 id = “chkMushroom”
 value = “mushrooms” />
 <label>Mushrooms</label>

 <input type = “checkbox”
 id = “chkSausage”
 value = “sausage” />
 <label>Sausage</label>

 <button type = “button“
 onclick = “order()“>
 Order Pizza
 </button>
 </fieldset>
 </form>
 <h2>Your order:</h2>
 <div id = “output“>

 </div>
 </body>

30_9780470537558-bk04ch06.indd 45230_9780470537558-bk04ch06.indd 452 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 6

G
e

ttin
g

 V
a

lid
 In

p
u

t

453Check, Please: Reading Check Boxes

Figure 6-3:
You can
pick your
toppings
here.
Choose as
many as
you like.

Each check box is an individual input element. Note that check box values
aren’t displayed. Instead, a label (or similar text) is usually placed after the
check box. A button calls an order() function.

Responding to the check boxes
Check boxes don’t require a lot of care and feeding. Once you extract it, the
check box has two critical properties:

 ✦ You can use the value property to store a value associated with the
check box (just like you do with text fields in Chapter 5 of this minibook).

 ✦ The checked property is a Boolean value, indicating whether the check
box is checked or not.

The code for the order() function shows how it’s done:

 <script type = “text/javascript”>
 //<![CDATA[
 //from checkBoxes.html

 function order(){
 //get variables
 var chkPepperoni = document.getElementById(“chkPepperoni”);
 var chkMushroom = document.getElementById(“chkMushroom”);
 var chkSausage = document.getElementById(“chkSausage”);

 var output = document.getElementById(”output”);
 var result = ” \n”

 if (chkPepperoni.checked){
 result += ”” + chkPepperoni.value + ”<\/li> \n”;

30_9780470537558-bk04ch06.indd 45330_9780470537558-bk04ch06.indd 453 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

454 Working with Radio Buttons

 } // end if

 if (chkMushroom.checked){
 result += ”” + chkMushroom.value + ”<\/li> \n”;
 } // end if

 if (chkSausage.checked){
 result += ”” + chkSausage.value + ”<\/li> \n”;
 } // end if

 result += ”<\/ul> \n”
 output.innerHTML = result;
 } // end function

 //]]>
 </script>

For each check box:

 1. Determine whether the check box is checked.

 Use the checked property as a condition.

 2. If so, return the value property associated with the check box.

Often, in practice, the value property is left out. The important thing is
whether the check box is checked. If chkMushroom is checked, the user
obviously wants mushrooms, so you may not need to explicitly store that
data in the check box itself.

Working with Radio Buttons
Radio button groups appear pretty simple, but they’re more complex than
they seem. Figure 6-4 shows a page using radio button selection.

Figure 6-4:
One and
only one
member of a
radio group
can be
selected at
one time.

30_9780470537558-bk04ch06.indd 45430_9780470537558-bk04ch06.indd 454 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 6

G
e

ttin
g

 V
a

lid
 In

p
u

t

455Working with Radio Buttons

The most important thing to remember about radio buttons is that, like
wildebeests and power-walkers, they must be in groups. Each group of radio
buttons has only one button active. The group should be set up so that one
button is always active.

You specify the radio button group in the XHTML code. Each element of the
group can have an id (although the IDs aren’t really necessary in this appli-
cation). What’s more important here is the name attribute. Look over the
code, and you’ll notice something interesting. All the radio buttons have the
same name!

 <body>
 <h1>With what weapon will you fight the dragon?</h1>
 <form action = “”>
 <fieldset>
 <input type = “radio”
 name = “weapon”
 id = “radSpoon”
 value = “spoon”
 checked = “checked” />
 <label>Spoon</label>

 <input type = “radio”
 name = “weapon”
 id = “radFlower”
 value = “flower” />
 <label>Flower</label>

 <input type = “radio”
 name = “weapon”
 id = “radNoodle”
 value = “wet noodle” />
 <label>Wet Noodle</label>
 <button type = “button”
 onclick = “fight()”>
 fight the dragon
 </button>
 </fieldset>
 </form>
 <div id = “output”>

 </div>
 </body>
</html>

Using a name attribute when everything else has an id seems a little odd,
but you do it for a good reason. The name attribute is used to indicate the
group of radio buttons. Because all the buttons in this group have the same
name, they’re related, and only one of them will be selected.

The browser recognizes this behavior and automatically unselects the other
buttons in the group whenever one is selected.

I added a label to describe what each radio button means.

30_9780470537558-bk04ch06.indd 45530_9780470537558-bk04ch06.indd 455 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

456 Working with Radio Buttons

You need to preset one of the radio buttons to true with the checked =
“checked” attribute. If you fail to do so, you have to add code to account
for the possibility that there is no answer at all.

Interpreting radio buttons
Getting information from a group of radio buttons requires a slightly differ-
ent technique than most of the form elements. Unlike the select object,
there is no container object that can return a simple value. You also can’t
just go through every radio button on the page because you may have more
than one group. (Imagine a page with a multiple-choice test.)

This issue is where the name attribute comes in. Although ids must be
unique, multiple elements on a page can have the same name. If they do, you
can treat these elements as an array.

Look over the code to see how it works:

 <script type = “text/javascript”>
 //<![CDATA[
 // from radioGroup.html
 function fight(){

 var weapon = document.getElementsByName(“weapon”);

 for (i = 0; i < weapon.length; i++){
 currentWeapon = weapon[i];

 if (currentWeapon.checked){
 var selectedWeapon = currentWeapon.value;
 } // end if

 } // end for

 var output = document.getElementById(“output”);
 var response = “<h2>You defeated the dragon with a “;
 response += selectedWeapon + “<\/h2> \n”;
 output.innerHTML = response;
 } // end function

 //]]>
 </script>

This code looks much like all the other code in this chapter, but it has a
sneaky difference:

 ✦ It uses getElementsByName to retrieve an array of elements with
this name. Now that you’re comfortable with getElementById,
I throw a monkey wrench in the works. Note that it’s plural —
getElementsByName — because this tool is used to extract an array
of elements. It returns an array of elements. (In this case, all the radio
buttons in the weapon group.)

30_9780470537558-bk04ch06.indd 45630_9780470537558-bk04ch06.indd 456 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 6

G
e

ttin
g

 V
a

lid
 In

p
u

t

457Working with Regular Expressions

 ✦ It treats the result as an array. The resulting variable (weapon in this
example) is an array. As usual, the most common thing to do with arrays
is process them with loops. Use a for loop to step through each ele-
ment in the array.

 ✦ Assign each element of the array to currentWeapon. This variable
holds a reference to the current radio button.

 ✦ Check to see whether the current weapon is checked. The checked
property indicates whether any radio button is checked.

 ✦ If so, retain the value of the radio button. If a radio button is checked,
its value is the current value of the group, so store it in a variable for
later use.

 ✦ Output the results. You can now process the results as you would with
data from any other resource.

Working with Regular Expressions
Having the right kinds of form elements can be helpful, but things can still go
wrong. Sometimes, you have to let the user type things, and that information
must be in a particular format. As an example, take a look at Figure 6-5.

Figure 6-5:
This page is
a mess. No
username
plus an
invalid
e-mail and
phone
number.

30_9780470537558-bk04ch06.indd 45730_9780470537558-bk04ch06.indd 457 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

458 Working with Regular Expressions

A mechanism that checks whether input from a form is in the correct format
would be great. This program implements such a feature, checking whether
there is content in every field and ensuring the e-mail address and phone
number are formatted correctly. You can create this kind of testing feature
with string functions, but it can be really messy. Imagine how many if state-
ments and string methods it would take to enforce the following rules on
this page:

 ✦ An entry must appear in each field. This one is reasonably easy — just
check for non-null values.

 ✦ The e-mail must be in a valid format. That is, it must consist of a few
characters, an “at” sign (@), a few more characters, a period, and a
domain name of two to four characters. That format would be a real pain
to check for.

 ✦ The phone number must also be in a valid format. Phone numbers can
appear in multiple formats, but assume that you require an area code in
parentheses, followed by an optional space, followed by three digits, a
dash, and four digits. All digits must be numeric.

Although you can enforce these rules, it would be extremely difficult to do
so using ordinary string manipulation tools.

JavaScript strings have a match method, which helps find a substring inside
a larger string. This tool is good, but we’re not simply looking for specific
text, but patterns of text. For example, we want to know whether some-
thing’s an e-mail address (text, an @, more text, a period, and two to four
more characters).

Imagine how difficult that code would be to write; then take a look at the
code for the validate.html page:

 <script type = “text/javascript”>
 function validate(){
 // get inputs
 name = document.getElementById(“txtName”).value;
 email = document.getElementById(“txtEmail”).value;
 phone = document.getElementById(“txtPhone”).value;

 //create an empty error message
 errors = “”;

 //check name - It simply needs to exist
 if (name == “”){
 errors += “please supply a name \n”;
 } // end if

 //check email
 emailRE = /^.+@.+\..{2,4}$/;
 if (email.match(emailRE)){

30_9780470537558-bk04ch06.indd 45830_9780470537558-bk04ch06.indd 458 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 6

G
e

ttin
g

 V
a

lid
 In

p
u

t

459Working with Regular Expressions

 //console.log(“email match”);
 //do nothing.
 } else {
 //console.log(“email not a match”);
 errors += “please check email address \n”;
 } // end if

 //check phone number
 phoneRE = /^\(\d{3}\) *\d{3}-\d{4}$/;
 if (phone.match(phoneRE)){
 //console.log(“phone matches”);
 //do nothing
 } else {
 //console.log(“phone problem”);
 errors += “please check phone #\n”;
 } // end phone if

 //check for errors
 if (errors == “”){
 alert (“now processing data”);
 //process the form
 } else {
 alert(errors);
 } // end if

 } // end function

I only show the JavaScript code here to save space. Look on the CD-ROM to
see how the HTML and CSS are written.

The code isn’t really all that difficult!

 ✦ It extracts data from the form. It does so in the usual way.

 ✦ The validation is a series of nested if statements. Look at the overall
structure. The if statements go three layers deep.

 ✦ The name check is very simple. The only way it can go wrong is to have
no name.

 ✦ Don’t check anything else if the name is wrong. If the name isn’t right,
you don’t need to check the other things.

 ✦ Build a regular expression. This verification seems pretty simple
until you look at the line that contains the emailRE = /^.+@.+\..
{2,4}$/; business. It looks like a cursing cartoonist in there. That
weird-looking text is a regular expression and the key to this program.
For now, just accept it as a magic incantation. I explain it in a moment,
but focus on the big picture here.

 ✦ Match the regular expression against the e-mail address. The next
line checks to see whether the e-mail address is a match to the regu-
lar expression. The result is true if the expression matches an e-mail
address or null if it doesn’t.

30_9780470537558-bk04ch06.indd 45930_9780470537558-bk04ch06.indd 459 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

460 Working with Regular Expressions

 ✦ Check the phone number. Once again, the phone number check is
simple except the match business, which is just as mysterious: /^\
(\d{3}\) *\d{3}-\d{4}$/ (seriously, who makes this stuff up?).
That’s another regular expression.

 ✦ If everything worked, process the form. Usually, at this point, you call
some sort of function to finish handling the form processing.

 Frequently, you do validation in JavaScript before you pass information to
a program on the server. This way, your server program already knows the
data is valid by the time it gets there.

Introducing regular expressions
Of course, the secret of this program is to decode the mystical expressions
used in the match statements. They aren’t really strings at all, but very pow-
erful text-manipulation techniques called regular expression parsing. Regular
expressions have migrated from the Unix world into many programming lan-
guages, including JavaScript.

A regular expression is a powerful mini-language for searching and replacing
text patterns. Essentially, what it does is allow you to search for complex
patterns and expressions. It’s a weird-looking language, but it has a certain
charm once you know how to read the arcane-looking expressions.

Regular expressions are normally used with the string match() method in
JavaScript, but you can also use them with the replace() method and a
few other places.

Table 6-1 summarizes the main operators in JavaScript regular expressions.

Table 6-1 Regular Expression Operators in JavaScript

Operator Description Sample
Pattern

Matches Doesn’t
Match

. (period) Any single
character
except
newline

. E \n

^ Beginning of
string

^a Apple Banana

$ End of string a$ Banana Apple

[characters] Any of a list of
characters in
braces

[abcABC] A D

30_9780470537558-bk04ch06.indd 46030_9780470537558-bk04ch06.indd 460 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 6

G
e

ttin
g

 V
a

lid
 In

p
u

t

461Working with Regular Expressions

Operator Description Sample
Pattern

Matches Doesn’t
Match

[char range] Any character
in the range

[a-zA-Z] F 9

\d Any single
numerical
digit

\d\d\d-
\d\d\d\d

123-4567 The-
thing

\b A word
boundary

\bthe\b The Theater

+ One or more
occurrences
of the previ-
ous character

\d+ 1234 Text

* Zero or more
occurrences
of the previ-
ous character

[a-zA-Z]
d*

B17, g 7

{digit} Repeat pre-
ceding char-
acter digit
times

\d{3}-
\d{4}

123-4567 999-99-
9999

{min,
max}

Repeat
preceding
character at
least min but
not more than
max times

.{2,4} Ca, com,
info

water-
melon

(pattern
segment)

Store results
in pattern
memory
returned with
code

^(.).*\1$ gig, wallow Bobby

Don’t memorize this table! I explain in the rest of this chapter exactly how
regular expressions work. Keep Table 6-1 handy as a reference.

To see how regular expressions work, take a look at regex.html in
Figure 6-6.

The top textbox accepts a regular expression, and the second text field
contains text to examine. You can practice the examples in the following sec-
tions to see how regular expressions work. They’re really quite useful after
you get the hang of them. While you walk through the examples, try them
out in this tester. (I include it on the CD-ROM for you, but I don’t reproduce
the code here.)

30_9780470537558-bk04ch06.indd 46130_9780470537558-bk04ch06.indd 461 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

462 Working with Regular Expressions

Figure 6-6:
This tool
allows
you to test
regular
expressions.

Using characters in regular expressions
The main thing you do with a regular expression is search for text. Say
that you work for the bigCorp company, and you ask for employee e-mail
addresses. You can make a form that accepts only e-mail addresses with the
term bigCorp in them by using the following code:

if (email.match(/bigCorp/)){
 alert(“match”);
} else {
 alert(“no match”);
} // end if

The text in the match() method is enclosed in slashes (/) rather than quote
symbols because the expression isn’t technically a string; it’s a regular
expression. The slashes help the interpreter realize this special kind of text
requires additional processing.

If you forget and enclose a regular expression inside quotes, it will still
work most of the time. JavaScript tries to convert string values into regular
expressions when it needs to. However, if you’ve ever watched a science
fiction movie, you know it’s generally not best to trust computers. Use the
slash characters to explicitly coerce the text into regular expression format.
I’m not saying your computer will take over the world if you don’t, but you
never can tell. . . .

This match is the simplest type. I’m simply looking for the existence of the
needle (bigCorp) in a haystack (the e-mail address stored in email). If big-
Corp is found anywhere in the text, the match is true, and I can do what I
want (usually process the form on the server). More often, you want to trap
for an error and remind the user what needs to be fixed.

30_9780470537558-bk04ch06.indd 46230_9780470537558-bk04ch06.indd 462 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 6

G
e

ttin
g

 V
a

lid
 In

p
u

t

463Working with Regular Expressions

Marking the beginning and end of the line
You may want to improve the search, because what you really want are
addresses that end with bigCorp.com. You can put a special character
inside the match string to indicate where the end of the line should be:

if (email.match(/bigCorp.com$/)){
 alert(“match”);
} else {
 alert(“no match”);
} // end if

The dollar sign at the end of the match string indicates that this part of the
text should occur at the end of the search string, so andy@bigCorp.com is
a match, but not bigCorp.com announces a new Website.

 If you’re an ace with regular expressions, you know this example has a minor
problem, but it’s pretty picky. I explain it in the upcoming “Working with
special characters” section. For now, just appreciate that you can include
the end of the string as a search parameter.

 Likewise, you can use the caret character (^) to indicate the beginning of
a string.

If you want to ensure that a text field contains only the phrase oogie boogie
(and why wouldn’t you?), you can tack on the beginning and ending markers.
The code /^oogie boogie$/ is a true match only if nothing else appears
in the phrase.

Working with special characters
In addition to ordinary text, you can use a bunch of special character sym-
bols for more flexible matching:

 ✦ Matching a character with the period: The most powerful character is
the period (.), which represents a single character. Any single character
except the newline (\n) matches against the period. A character that
matches any character may seem silly, but it’s actually quite powerful.
The expression /b.g/ matches big, bag, and bug. In fact, it matches any
phrase that contains b followed by any single character and then g, so
bxg, b g, and b9g are also matches.

 ✦ Using a character class: You can specify a list of characters in square
braces, and JavaScript matches if any one of those characters matches.
This list of characters is sometimes called a character class. For example,
/b[aeiou]g/ matches on bag, beg, big, bog, or bug. This method is a
really quick way to check a lot of potential matches.

 You can also specify a character class with a range. [a-zA-Z] checks
all the letters.

30_9780470537558-bk04ch06.indd 46330_9780470537558-bk04ch06.indd 463 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

464 Working with Regular Expressions

 ✦ Specifying digits: One of the most common tricks is to look for numbers.
The special character \d represents a number (0–9). You can check for
a U.S. phone number (without the area code — yet) using a pattern that
looks for three digits, a dash, and four digits: /\d\d\d-\d\d\d\d/.

 ✦ Marking punctuation characters: You can tell that regular expressions
use a lot of funky characters, such as periods and braces. What if you’re
searching for one of these characters? Just use a backslash to indicate
that you’re looking for the actual character and not using it as a modi-
fier. For example, the e-mail address would be better searched with
bigCorp\.com because it specifies there must be a period. If you don’t
use the backslash, the regular expression tool interprets the period as
“any character” and allows something like bigCorpucom. Use the back-
slash trick for most punctuation, such as parentheses, braces, periods,
and slashes.

 If you want to include an area code with parentheses, just use back-
slashes to indicate the parentheses: /\(\d\d\d\) \d\d\d-\d\d\
d\d/. And if you want to ensure the only thing in the sample is the
phone number, just add the boundary characters: /^\(\d\d\d\)
\d\d\d \d\d\d\d$/.

 ✦ Finding word boundaries: Sometimes you want to know whether some-
thing is a word. Say that you’re searching for the, but you don’t want a
false positive on breathe or theater. The \b character means “the edge
of a word,” so /\bthe\b/ matches the but not words containing “the”
inside them.

Conducting repetition operations
All the character modifiers refer to one particular character at a time, but
sometimes you want to deal with several characters at once. Several opera-
tors can help you with this process.

 ✦ Finding one or more elements: The plus sign (+) indicates “one or
more” of the preceding character, so the pattern /ab+c/ matches on
abc, abbbbbbc, or abbbbbbbc, but not on ac (there must be at least one
b) or on afc (it’s gotta be b).

 ✦ Matching zero or more elements: The asterisk means “zero or more”
of the preceding character. So /I’m .* happy/ matches on I’m happy
(zero occurrences of any character between I’m and happy). It also
matches on I’m not happy (because characters appear in between).

 The .* combination is especially useful, because you can use it to
improve matches like e-mail addresses: /^.*@bigCorp\.com$/ does a
pretty good job of matching e-mail addresses in a fictional company.

 ✦ Specifying the number of matches: You can use braces ({}) to indi-
cate the specific number of times the preceding character should be
repeated. For example, you can rewrite a phone number pattern as /\

30_9780470537558-bk04ch06.indd 46430_9780470537558-bk04ch06.indd 464 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 6

G
e

ttin
g

 V
a

lid
 In

p
u

t

465Working with Regular Expressions

(\d{3}\) *\d{3}-\d{4}/. This structure means “three digits in
parentheses, followed by any number of spaces (zero or more), and
then three digits, a dash, and four digits. Using this pattern, you can tell
whether the user has entered the phone number in a valid format.

 You can also specify a minimum and maximum number of matches, so /
[aeiou]{1, 3}/ means “at least one and no more than three vowels.”

 Now you can improve the e-mail pattern so that it includes any number
of characters, an @ sign, and ends with a period and two to four letters:
/^.+@.+\..{2,4}$/.

Working with pattern memory
Sometimes you want to remember a piece of your pattern and reuse it. You
can use parentheses to group a chunk of the pattern and remember it. For
example, /(foo){2}/ doesn’t match on foo, but it does on foofoo. It’s the
entire segment that’s repeated twice.

You can also refer to a stored pattern later in the expression. The pattern
/^(.).*\1$/ matches any word or phrase that begins and ends with the
same character. The \1 symbol represents the first pattern in the string; \2
represents the second, and so on.

After you’ve finished a pattern match, the remembered patterns are still
available in special variables. The variable $1 is the first; $2 is the second,
and so on. You can use this trick to look for HTML tags and report what tag
was found: Match ^<(.*)>.*<\/\1>$ and then print $1 to see what the
tag was.

There’s much more to discover about regular expressions, but this basic over-
view should give you enough to write some powerful and useful patterns.

30_9780470537558-bk04ch06.indd 46530_9780470537558-bk04ch06.indd 465 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

466 Book IV: Client-Side Programming with JavaScript

30_9780470537558-bk04ch06.indd 46630_9780470537558-bk04ch06.indd 466 10/7/10 8:42 PM10/7/10 8:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Animating Your Pages

In This Chapter
✓ Moving an object on the screen

✓ Responding to keyboard input

✓ Reading mouse input

✓ Running code repeatedly

✓ Bouncing off the walls

✓ Swapping images

✓ Preloading image files

✓ Reusing code

✓ Using external script files

JavaScript has a serious side, but it can be a lot of fun, too. You can easily
use JavaScript to make things move, animate, and wiggle. In this chapter,

you find out how to make your pages dance. Even if you aren’t interested
in animation, you can discover important ideas about how to design your
pages and code more efficiently.

Making Things Move
You may think you need Flash or Java to put animation in your pages, but
that’s not the only way. You can use JavaScript to create some pretty inter-
esting motion effects. Take a look at Figure 7-1.

Because this chapter is about animation, most of the pages feature motion.
You really must see these pages in your browser to get the effect because a
static screen shot can’t really do any of these programs justice.

The general structure of this page provides a foundation for other kinds
of animation:

 ✦ The HTML is pretty simple. The page really doesn’t require much
HTML code. It’s a couple of divs and some buttons.

 ✦ The ball is in a special div called sprite. Game developers call
the little images that move around on the screen sprites, so I use the
same term.

31_9780470537558-bk04ch07.indd 46731_9780470537558-bk04ch07.indd 467 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

468 Making Things Move

Figure 7-1:
Click the
buttons
and the ball
moves.

 ✦ The sprite div has a local style. JavaScript animation requires a
locally defined style.

 ✦ The sprite div has absolute positioning. Because I’ll be moving this
thing around on the screen, it makes sense that it’s absolutely positioned.

 ✦ The code and CSS are as modular as possible. Things can get a little
complicated when you start animating things, so throughout this chap-
ter, I simplify as much as I can. The CSS styles are defined externally,
and the JavaScript code is also imported.

 ✦ Code is designed to be reused. Many programs in this chapter are very
similar to each other. To save effort, I’ve designed things so that I don’t
have to rewrite code if possible.

Looking over the HTML
The HTML code for this program provides the basic foundation:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>movement.html</title>

 <link rel = ”stylesheet”

31_9780470537558-bk04ch07.indd 46831_9780470537558-bk04ch07.indd 468 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 7

A
n

im
a

tin
g

 Y
o

u
r

P
a

g
e

s

469Making Things Move

 type = ”text/css”
 href = ”movement.css” />

 <script type = ”text/javascript”
 src = ”movement.js”>
 </script>
 </head>

 <body onload = ”init()”>
 <h1>Click buttons to move ball</h1>
 <div id = ”surface”>
 <div id = ”sprite”
 style = ”position: absolute;
 top: 100px;
 left: 100px;
 height: 25px;
 width: 25px;” >
 <img src = “ball.gif”
 alt = “ball” />
 </div>
 </div>
 <form action = ””
 id = ”controls”>
 <fieldset>
 <button type = ”button”
 onclick = ”moveSprite(-5, 0)”>
 left
 </button>
 <button type = ”button”
 onclick = ”moveSprite(5, 0)”>
 right
 </button>
 </fieldset>
 </form>
 <p id = ”output”>
 x = 100, y = 100
 </p>
 </body>
</html>

You should notice a few interesting things about this code:

 ✦ It has an external style sheet. Most of the CSS (the stuff that defines the
surface and the forms) is moved off-stage into an external style sheet.
You have to define some CSS locally, but anything that can be moved
away is in another file.

 <link rel = “stylesheet”
 type = “text/css”
 href = “movement.css” />

 ✦ The JavaScript is also outsourced. The script tag has a src attribute,
which you can use to load JavaScript code from an external file. The
browser loads the specified file and reads it as if it were directly in the
code. (Note: External scripts still require a </script> tag.) This pro-
gram gets its scripts from a file called movement.js.

 <script type = “text/javascript”
 src = “movement.js”>
 </script>

31_9780470537558-bk04ch07.indd 46931_9780470537558-bk04ch07.indd 469 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

470 Making Things Move

 ✦ The body tag calls a method. In animation (and other advanced
JavaScript), you commonly have some code you want to run right away.
The body has an onload event. You can feed it the name of a function
(just like you do with a button’s onclick event). In this case, I want the
function called init() to run as soon as the body finishes loading into
the computer’s memory.

 <body onload = “init()”>

 ✦ The yellow box is a div called surface. It isn’t absolutely necessary,
but when you have something moving around on the screen, you want
some kind of boundary so that the user knows where she can move.

 ✦ A sprite div appears inside surface. This sprite is the thing that
actually moves around.

 <div id = “sprite”
 style = “position: absolute;
 top: 100px;
 left: 100px;
 height: 25px;
 width: 25px;” >
 <img src = “ball.gif”
 alt = “ball” />
 </div>

 ✦ The sprite div has a local style. Your code can change only styles that
have been defined locally. The sprite div has a local style specifying
absolute position, left, and top properties.

 ✦ It has buttons in a form. This particular program uses form buttons to
discern the user’s intent. Those buttons are in a form.

 <button type = “button”
 onclick = “moveSprite(-5, 0)”>
 left
 </button>

 ✦ Each button calls the moveSprite() method. The moveSprite()
method is defined in the movement.js file. It accepts two parameters: dx
determines how much the sprite should move in the x (side to side) axis,
and dy controls how much the sprite will move in the y (vertical) axis.

Getting an overview of the JavaScript
The following programming concepts improve programmer efficiency, which
is good when the JavaScript code becomes more complex:

 ✦ Move code to an external file. As with CSS code, when the JavaScript
starts to get complex, it’s a good idea to move it to its own file, so it’s
easier to manage.

 ✦ Encapsulate code in functions. Rather than writing a long, complicated
function, try to break the code into smaller functions that solve indi-
vidual problems. If you design these functions well, your code is easier
to write, understand, and recycle.

31_9780470537558-bk04ch07.indd 47031_9780470537558-bk04ch07.indd 470 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 7

A
n

im
a

tin
g

 Y
o

u
r

P
a

g
e

s

471Making Things Move

 ✦ Create a few global variables. You can reuse a few key variables
throughout your code. Create global variables for these key items, but
don’t make anything global that doesn’t need to be.

 ✦ Define constants for clarity. Sometimes having a few key values stored
in special variables is handy. I’ve created some constants to help me
track the boundary of the visual surface.

Creating global variables
The first part of this document simply defines the global variables I use
throughout the program:

//movement.js
//global variables
var sprite;
var x, y; //position variables

//constants
var MIN_X = 15;
var MAX_X = 365;
var MIN_Y = 85;
var MAX_Y = 435;

The movement program has three main global variables:

 ✦ sprite represents the div that moves around on the screen.

 ✦ x is the x (horizontal) position of the sprite.

 ✦ y is the y (vertical) position of the sprite.

You don’t need to give values to global variables right away, but you should
define them outside any functions so that their values are available to all
functions. (See Chapter 4 in this minibook for more about functions and vari-
able scope.)

 In computer graphics, the y axis works differently than it does in math. Zero
is the top of the screen, and y values increase as you move down the page.
(This increase happens because video memory models the top-to-bottom
pattern of most display devices.)

This program also features some special constants. A constant is a variable
(usually global) whose value isn’t intended to change as the program runs.
Constants are almost always used to add clarity.

Through experimentation, I found that the ball’s x value should never be
smaller than 15 or larger than 365. By defining special constants with these
values, I can make it clear what these values represent. (See the section
called “Checking the boundaries” later in this chapter to see how this feature
really works.)

31_9780470537558-bk04ch07.indd 47131_9780470537558-bk04ch07.indd 471 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

472 Making Things Move

Traditionally, you put constants entirely in uppercase letters. Many languages
have special modifiers for creating constants, but JavaScript doesn’t. If you want
something to be a constant, just make a variable with an uppercase name and
treat it as a constant. (Don’t change it during the run of the program.)

Initializing
The init() function is small but mighty:

function init(){
 sprite = document.getElementById(“sprite”);
} // end init

It does a simple but important job: loading up the sprite div and storing it
into a variable named sprite. Because sprite is a global variable, all other
functions have access to the sprite variable and are able to manipulate it.

You often use the init() function to initialize key variables in your pro-
grams. You also can use this function to set up more advanced event han-
dlers, as you see in the animation sections of this chapter.

Moving the sprite
Of course, the most interesting function in the program is the one that
moves sprites around the screen. Take a look at the following code, which I
break down for you:

function moveSprite(dx, dy){
 var surface = document.getElementById(“surface”);

 x = parseInt(sprite.style.left);
 y = parseInt(sprite.style.top);

 x += dx;
 y += dy;

 checkBounds();

 // move ball to new position
 sprite.style.left = x + ”px”;
 sprite.style.top = y + “px”;

 //describe position
 var output = document.getElementById(”output”);
 output.innerHTML = ”x: ” + x + ”, y: ” + y;
} // end MoveSprite

The function works essentially by determining how much the sprite should
be moved in x and y and then manipulating the left and top properties of
its style. Here’s what happens:

31_9780470537558-bk04ch07.indd 47231_9780470537558-bk04ch07.indd 472 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 7

A
n

im
a

tin
g

 Y
o

u
r

P
a

g
e

s

473Making Things Move

 1. Accept dx and dy as parameters.

 The function expects two parameters: dx stands for delta-x, and dy
is delta-y. (You can read them difference in x and difference in y if you
prefer, but I like sounding like a NASA scientist.) These parameters tell
how much the sprite should move in each dimension.

function moveSprite(dx, dy){

 You may wonder why I’m working with dx and dy when this object
moves only horizontally. See, I’m thinking ahead. I’m going to reuse this
function in the next few programs, which I discuss in the upcoming sec-
tions. Even though I don’t need to move vertically yet, I will as I continue
programming, so I built the capability in.

 2. Get a reference to the surface.

 Use the normal document.getElementById trick to extract the sprite
from the page. Be sure the sprite you’re animating has absolute position
with top and left properties defined in a local style.

 var surface = document.getElementById(“surface”);

 3. Extract the sprite’s x and y parameters.

 The horizontal position is stored in the left property. CSS styles are
stored as strings and include a measurement. For example, the original
left value of the sprite is 100px. For the program, you need only the
numeric part. The parseInt() function pulls out only the numeric part
of the left property and turns it into an integer, which is then stored in
x. Do the same thing to get the y value.

 x = parseInt(sprite.style.left);
 y = parseInt(sprite.style.top);

 4. Increment x and y.

 Now that you have the x and y properties stored as integer variables,
you can do math on them. It isn’t complicated math. Just add dx to x
and dy to y. This syntax allows you to move the object as many pixels as
the user wants in both x and y axes.

 x += dx;
 y += dy;

 5. Check boundaries.

 If you have young children, you know this rule: Once you have some-
thing that can move, it will get out of bounds. If you let your sprite move,
it will leave the space you’ve designated. Checking the boundaries
isn’t difficult, but it’s another task, so I’m just calling a function here.
I describe checkBounds() in the next section, but basically it just
checks to see whether the sprite is leaving the surface and adjusts its
position to stay in bounds.

 checkBounds();

31_9780470537558-bk04ch07.indd 47331_9780470537558-bk04ch07.indd 473 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

474 Making Things Move

 6. Move the ball.

 Changing the x and y properties doesn’t really move the sprite. To do
that, you need to convert the integers back into the CSS format. If x is
120, you need to set left to 120px. Just concatenate “px” to the end
of each variable.

 // move ball to new position
 sprite.style.left = x + “px”;
 sprite.style.top = y + “px”;

 7. Print the position.

 For debugging purposes, I like to know exactly where the x and y posi-
tions are, so I just made a string and printed it to an output panel.

 //describe position
 var output = document.getElementById(“output”);
 output.innerHTML = “x: “ + x + “, y: “ + y;

Checking the boundaries
You can respond in a number of ways when an object leaves the playing
area. I’m going with wrapping, one of the simplest techniques. If something
leaves the rightmost border, simply have it jump all the way to the left.

The code handles all four borders:

function checkBounds(){
 //wrap
 if (x > MAX_X){
 x = MIN_X;
 } // end if
 if (x < MIN_X){
 x = MAX_X;
 } // end if
 if (y > MAX_Y){
 y = MIN_Y;
 } // end if
 if (y < MIN_Y){
 y = MAX_Y;
 } // end if
} // end function

The checkBounds() function depends on the constants, which helps in a
couple of ways. When you look at the code, you can easily see what’s
going on:

 if (x > MAX_X){
 x = MIN_X;
 } // end if

If x is larger than the maximum value for x, set it to the minimum value. You
almost can’t write it any more clearly than this. If the size of the playing sur-
face changes, you simply change the values of the constants.

31_9780470537558-bk04ch07.indd 47431_9780470537558-bk04ch07.indd 474 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 7

A
n

im
a

tin
g

 Y
o

u
r

P
a

g
e

s

475Reading Input from the Keyboard

You probably wonder how I came up with the actual values for the con-
stants. In some languages, you can come up with nice mathematical tricks to
predict exactly what the largest and smallest values should be. In JavaScript,
it’s a little tricky because the environment just isn’t that precise.

I chose a simple but effective technique. I temporarily took out the check-
bounds() call and just took a look at the output to see what the values of
x and y were. I looked to see how large x should be before the sprite wraps
and wrote down the value on paper. Likewise, I found the largest and small-
est values for y.

Once I knew these values, I simply placed them in constants. I don’t really
care that the maximum value for x is 365. I just want to know that x doesn’t
go past the MAX_X value when I’m messing around with it.

If the size of my playing surface changes, I just change the constants, and
everything works out fine.

Reading Input from the Keyboard
You can use JavaScript to read directly from the keyboard. This trick is
useful in several situations, but it’s especially handy in animation and simple
gaming applications.

Figure 7-2 shows a program with a moving ball.

In a perfect world, I would extract the posi-
tion values from the playing surface itself.
Unfortunately, JavaScript/DOM is not a per-
fect animation framework. Because I’m using
absolute positioning, the position of the sprite
isn’t attached to the surface (as it should be)
but to the main screen. It’s a little annoying,
but some experimentation can help you find
the right values.

Remember, when you start using absolute posi-
tioning on a page, you’re pretty much commit-

ted to it. If you’re using animation like the one
described in this section, you’ll probably want
to use absolute positioning everywhere or do
some other tricks to make sure that the sprite
stays where you want it to go without overwrit-
ing other parts of the page. Regardless, using
constants keeps the code easy to read and
maintain, even if you have to hack a little bit to
find the specific values you need.

Shouldn’t you just get size values from the surface?

31_9780470537558-bk04ch07.indd 47531_9780470537558-bk04ch07.indd 475 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

476 Reading Input from the Keyboard

Figure 7-2:
You can
move the
ball with the
arrow keys.

The keyboard.html page has no buttons because the keyboard arrows are
used to manage all the input.

You know what I’m going to say. Look this thing over in your browser
because it just doesn’t have any charm unless you run it and mash on some
arrow keys.

Building the keyboard page
The keyboard page is very much like the movement page.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>keyboard.html</title>

 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”keyboard.css” />

 <script type = ”text/javascript”
 src = ”movement.js”>
 </script>
 <script type = ”text/javascript”

31_9780470537558-bk04ch07.indd 47631_9780470537558-bk04ch07.indd 476 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 7

A
n

im
a

tin
g

 Y
o

u
r

P
a

g
e

s

477Reading Input from the Keyboard

 src = ”keyboard.js”>
 </script>

 </head>

 <body onload = ”init()”>
 <h1>Use arrow keys to move ball</h1>

 <div id = ”surface”>
 <div id = ”sprite”
 style = ”position: absolute;
 top: 100px;
 left: 100px;
 height: 25px;
 width: 25px;” >
 <img src = “ball.gif”
 alt = “ball” />
 </div>
 </div>

 <p id = ”output”>
 x = 100, y = 100
 </p>
 </body>
</html>

The preceding code is when it really pays off to build reusable code. I basi-
cally copied the movement.html page with a couple of important changes:

 ✦ Import the movement.js script. This page uses the same functions as
the movement.html page, so just reimport the script.

 ✦ Add another script specific to reading the keyboard. You need a
couple of modifications, which are housed in a second script file called
keyboard.js.

 ✦ Keep the rest of the page similar. You still call init() when the body
loads, and you still want the same visual design, except for the buttons.
The surface and sprite divs are identical to the movement.html
design.

 ✦ Take out the form. This page responds to the keyboard, so you no
longer need a form.

 This program begins with the movement.js script. As far as the browser is
concerned, that entire script file has been loaded before the keyboard.js
script appears. The basic foundation is already in place from movement.
The keyboard script just handles the modifications to make keyboard
support work.

Overwriting the init() function
Working with a keyboard still requires some initialization. I need a little
more work in the init() function, so I make a new version to replace the
version created in movement.js.

31_9780470537558-bk04ch07.indd 47731_9780470537558-bk04ch07.indd 477 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

478 Reading Input from the Keyboard

//assumes movement.js

function init(){
 sprite = document.getElementById(“sprite”);
 document.onkeydown = keyListener;
} // end init

 The order in which you import scripts matters. If you duplicate a function,
the browser interprets only the last script read.

Setting up an event handler
In my init() function, I still want to initialize the sprite (as I did in
movement.js, described in the “Moving the sprite” section earlier in this
chapter). When you want to read the keyboard, you need to tap into the
browser’s event-handling facility. Browsers provide basic support for page-
based events (such as body.onload and button.onclick), but they also
provide a lower level support for more fundamental input, such as keyboard
and mouse input.

If you want to read this lower level input, you need to specify a function that
will respond to the input.

 document.onkeydown = keyListener;

This line specifies that a special function called keyListener is called
whenever the user presses a key. Keep a couple of things in mind when you
create this type of event handler:

 ✦ It should be called in init(). You’ll probably want keyboard handling
to be available immediately, so setting up event handlers in the init()
function is common.

 ✦ The function is called as if it were a variable. This syntax is slightly
different than typically used in JavaScript. When you create function
handlers in HTML, you simply feed a string that represents the function
name complete with parameters (button onclick = “do
Something()”). When you call a function within JavaScript (as
opposed to calling the function in HTML), the function name is actually
much like a variable, so it doesn’t require quotes.

 If you want to know the truth, functions are variables in JavaScript. Next
time somebody tells you JavaScript is a toy language, mention that it
supports automatic dereferencing of function pointers and treats func-
tions like first-class citizens. Then run away before they ask you what
that means. (That’s what I do. . . .)

 ✦ You need to create a function with the specified name. If you’ve got
this code in init, the browser calls a function called keyListener()
whenever a key is pressed. (You can call the function something else,
but keyListener() is a pretty good name for it.)

31_9780470537558-bk04ch07.indd 47831_9780470537558-bk04ch07.indd 478 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 7

A
n

im
a

tin
g

 Y
o

u
r

P
a

g
e

s

479Reading Input from the Keyboard

Responding to keystrokes
After you’ve set up an event-handler, you need to write the function to
respond to keystrokes. Fortunately, this task turns out to be pretty easy.

function keyListener(e){
 // if e doesn’t already exist, we’re in IE so make it

 if (!e){
 e = window.event;
 } // end IE-specific code

 //left
 if (e.keyCode == 37){
 moveSprite(-10, 0);
 } // end if

 //up
 if (e.keyCode == 38){
 moveSprite(0, -10);
 } // end if

 //right
 if (e.keyCode == 39){
 moveSprite(10, 0);
 } // end if

 //down
 if (e.keyCode == 40){
 moveSprite(0, 10);
 } // end if

} // end keyListener

The keyListener() function is a good example of an event handler. These
functions are used to determine what events have happened in the system,
and to respond to those events. Here’s how to build this one:

 ✦ Event functions have event objects. Just knowing that an event has
occurred isn’t enough. You need to know which key has been pressed.
Fortunately, the browsers all have an event object available to tell you
what’s happened.

 ✦ Many browsers pass the event as a parameter. When you create an
event function, the browser automatically assigns a special parameter to
the function. This parameter (normally called e) represents the event.
Just make the function with a parameter called e, and most browsers
create e automatically.

function keyListener(e){

 ✦ Internet Explorer needs a little more help. Internet Explorer doesn’t
automatically create an event object for you, so you need to specifically
create it.

 // if e doesn’t already exist, we’re in IE so make it

 if (!e){
 e = window.event;
 } // end IE-specific code

31_9780470537558-bk04ch07.indd 47931_9780470537558-bk04ch07.indd 479 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

480 Reading Input from the Keyboard

 ✦ You can use e to figure out which key was pressed. The e object has
some nifty properties, including keyCode. This property returns a
number that tells you which key was pressed.

 Do a quick search on JavaScript event object to discover other kinds of
event tricks. I show the most critical features here, but this section is
just an introduction to the many interesting things you can do
with events.

 ✦ Compare to known keycodes. You can figure out the keycodes of any
keys on your keyboard and use basic if statements to respond appro-
priately. See the next section to discover what code is attached to your
favorite keys on the keyboard.

 //left
 if (e.keyCode == 37){
 moveSprite(-10, 0);
 } // end if

 ✦ Call appropriate variations of moveSprite. If the user presses the left
arrow, move the sprite to the left. You can use the moveSprite() func-
tion defined in movement.js (in the “Moving the sprite” section of this
chapter) for this task.

Deciphering the mystery of key codes
Of course, the big mystery of a keyboard handler is where all those funky
key numbers came from. How did I know that the left arrow is keycode 37,
for example? It’s pretty simple, really. I just wrote a program to tell me.
Figure 7-3 shows readKeys.html in action.

Run readKeys and press a few keys. You can then easily determine what
keycode is related to which key on the keyboard. You may also want to look
over this code if you’re a little confused; because all the code is in one place,
it may be a bit easier to read than the movement examples.

If you use a notebook or international keyboard, be aware that some of the
key codes may be nonstandard, especially numeric keypad keys. Try to
stick to standard keys if you want to ensure that your program works on
all keyboards.

Figure 7-3:
This
program
reads the
keyboard
and reports
the key
codes.

31_9780470537558-bk04ch07.indd 48031_9780470537558-bk04ch07.indd 480 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 7

A
n

im
a

tin
g

 Y
o

u
r

P
a

g
e

s

481Following the Mouse

Following the Mouse
You can also create an event-handler that reads the mouse. Figure 7-4 shows
such a program.

Figure 7-4:
Now the
sprite stays
with the
mouse.

The mouse-following effect is actually quite an easy effect once you know
how to read the keyboard because it works in almost exactly the same way
as the keyboard approach.

Looking over the HTML
The code for followMouse.html is simple enough that I kept it in one file:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>followMouse.html</title>
 <script type = ”text/javascript”>
 var sprite;

 function init(){
 sprite = document.getElementById(”sprite”);
 document.onmousemove = mouseListener;
 } // end init

 function mouseListener(e){
 if (!e){
 e = window.event;
 } // end IE catch

 //get width and height
 height = parseInt(sprite.style.height);
 width = parseInt(sprite.style.width);

31_9780470537558-bk04ch07.indd 48131_9780470537558-bk04ch07.indd 481 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

482 Following the Mouse

 //move center of sprite to mouse
 x = e.pageX - (width/2);
 y = e.pageY - (height/2);

 sprite.style.left = x + “px“;
 sprite.style.top = y + “px”;
 } // end function
 </script>
 </head>

 <body onload = ”init()”>
 <h1>Move the mouse and the ball will follow</h1>
 <div id = ”sprite”
 style = ”position: absolute;
 left: 100px;
 top: 100px;
 width: 50px;
 height: 50px;”>
 <img src = ”ball.gif”
 alt = ”ball” />
 </div>
 </body>
</html>

The HTML page is simple. This time I’m letting the mouse take up the entire
page. No borders are necessary because the sprite isn’t able to leave the
page. (If the mouse leaves the page, it no longer sends event messages.)

Just create a sprite with an image as normal and be sure to call init()
when the body loads.

Initializing the code
The initialization is also pretty straightforward:

 1. Create a global variable for the sprite.

 Define the sprite variable outside any functions so that it is available
to all of them.

 var sprite;

 2. Build the sprite in init().

 The init() function is a great place to create the sprite.
 function init(){
 sprite = document.getElementById(“sprite”);
 document.onmousemove = mouseListener;

 3. Set up an event handler in init() for mouse motion.

 This time, you’re trapping for mouse events, so call this one mouse
Listener.

 document.onmousemove = mouseListener;

31_9780470537558-bk04ch07.indd 48231_9780470537558-bk04ch07.indd 482 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 7

A
n

im
a

tin
g

 Y
o

u
r

P
a

g
e

s

483Creating Automatic Motion

Building the mouse listener
The mouse listener works much like a keyboard listener. It examines the
event object to determine the mouse’s current position and then uses that
value to place the sprite:

 1. Get the event object.

 Use the cross-platform technique to get the event object.
 function mouseListener(e){
 if (!e){
 e = window.event;
 } // end IE catch

 2. Determine the sprite’s width and height.

 The top and left properties point to the sprite’s top-left corner.
Placing the mouse in the center of the sprite looks more natural. To
calculate the center, you need the height and width. Don’t forget to add
these values to the local style for the sprite.

 //get width and height
 height = parseInt(sprite.style.height);
 width = parseInt(sprite.style.width);

 3. Use e.pageX and e.pageY to get the mouse position.

 These properties return the current position of the mouse.

 4. Determine x and y under the mouse cursor.

 Subtract half of the sprite’s width from the mouse’s x (e.pageX) so that
the sprite’s horizontal position is centered on the mouse. Repeat with
the y position.

 //move center of sprite to mouse
 x = e.pageX - (width/2);
 y = e.pageY - (height/2);

 5. Move the mouse to the new x and y coordinates.

 Use the conversion techniques to move the sprite to the new position.
 sprite.style.left = x + “px”;
 sprite.style.top = y + “px”;

Another fun effect is to have the sprite influenced by the mouse. Don’t make
it follow the mouse directly, but check to see where the mouse is in rela-
tionship with the sprite. Have the sprite move up if the mouse is above the
sprite, for example.

Creating Automatic Motion
You can make a sprite move automatically by attaching a special timer to
the object. Figure 7-5 shows the ball moving autonomously across the page.

31_9780470537558-bk04ch07.indd 48331_9780470537558-bk04ch07.indd 483 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

484 Creating Automatic Motion

Figure 7-5:
This sprite
is moving
on its own.
(I added
the arrow
to show
motion.)

Timer.html is surprisingly simple because it borrows almost everything
from other code.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>timer.html</title>

 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”keyboard.css” />

 <script type = ”text/javascript”
 src = ”movement.js”>
 </script>

 <script type = ”text/javascript”>
 function init(){
 sprite = document.getElementById(”sprite”);
 setInterval(“moveSprite(5, 3)”, 100);
 } // end init

 </script>
 </head>

 <body onload = “init()”>

31_9780470537558-bk04ch07.indd 48431_9780470537558-bk04ch07.indd 484 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 7

A
n

im
a

tin
g

 Y
o

u
r

P
a

g
e

s

485Creating Automatic Motion

 <h1>Timer-based movement</h1>

 <div id = “surface”>
 <div id = “sprite”
 style = “position: absolute;
 top: 100px;
 left: 100px;
 height: 25px;
 width: 25px;” >
 <img src = “ball.gif”
 alt = “ball” />
 </div>
 </div>

 <p id = ”output”>
 x = 100, y = 100
 </p>
 </body>
</html>

The HTML and CSS are exactly the same as the button.html code. Most of
the JavaScript comes from movement.js. The only thing that’s really new is
a tiny but critical change in the init() method.

Creating a setInterval() call
JavaScript contains a very useful function called setInterval. This thing
takes two parameters:

 ✦ A function call. Create a string containing a function call including any
of its parameters.

 ✦ A time interval in milliseconds. You can specify an interval in 1000ths
of a second. If the interval is 500, the given function is called twice per
second, 50 milliseconds is 20 times per second, and so on.

 You can set the interval at whatever speed you want, but that doesn’t guar-
antee things will work that fast. If you put complex code in a function and
tell the browser to execute it 1,000 times a second, it probably won’t be able
to keep up (especially if the user has a slower machine than you do).

The browser will call the specified function at the specified interval. Put any
code that you want repeated inside the given function.

 Don’t put anything in an interval function that doesn’t have to go there.
Because this code happens several times per second, it’s called a critical
path, and any wasteful processing here can severely slow down the entire
program. Try to make the code in an interval function as clean as possible.
(That’s why I created the sprite as a global variable. I didn’t want to re-
create the sprite 20 times per second, making my program impossible for
slower browsers to handle.)

31_9780470537558-bk04ch07.indd 48531_9780470537558-bk04ch07.indd 485 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

486 Building Image-Swapping Animation

Automatically moving objects are a great place to play with other kinds of
boundary detection. If you want to see how to make something bounce when
it hits the edge, look at bounce.html and bounce.js on the CD-ROM.

Building Image-Swapping Animation
The other kind of animation you can do involves rapidly changing an image.
Look at Figure 7-6 to see one frame of an animated figure.

Figure 7-6:
This sprite is
kicking!

Animation is never that easy to show in a still screen shot, so Figure 7-7
shows the sequence of images used to build the kicking sprite.

Figure 7-7:
I used this
series of
images to
build the
animation.

You can use any series of images you want. I got these images from a site
called Reiner’s Tilesets (http://reinerstileset.4players.de/
englisch.htm). It includes a huge number of sprites, each with several
animations. These animations are called Freya.

(I include all the Freya images in a Zip file on the Web site and CD-ROM if you
want to try this yourself.)

31_9780470537558-bk04ch07.indd 48631_9780470537558-bk04ch07.indd 486 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 7

A
n

im
a

tin
g

 Y
o

u
r

P
a

g
e

s

487Building Image-Swapping Animation

This page might lag when you try to run it from a server because the anima-
tion starts immediately and the images may take some time to download. I’m
going to live with this for now to keep the example simple. Look at the upcom-
ing “Preloading Your Images” section to see how to prevent this problem.

Preparing the images
You can build your own images, or you can get them from a site like
Reiner’s. In any case, here are a few things to keep in mind when building
image animations:

 ✦ Keep them small. Larger images take a long time to download and don’t
swap as smoothly as small ones. My images are 128 by 128 pixels, which
is a good size.

 ✦ Consider adding transparency. The images from Reiner have a brown
background. I changed the background to transparent using my favorite
graphics editor (Gimp).

 ✦ Change the file format. The images came in .bmp format, which is inef-
ficient and doesn’t support transparency. I saved them as .gif images
to make them smaller and enable the background transparency.

 ✦ Consider changing the names. I renamed the images to make the names
simpler and to eliminate spaces from the filenames. I called the images
kick00.gif to kick12.gif.

 ✦ Put animation images in a subdirectory. With ordinary page images,
I often find a subdirectory to be unhelpful. When you start building
animations, you can easily have a lot of little images running around. A
large number of small files is a good place for a subdirectory.

Building the page
The code for animation just uses variations of techniques described
throughout this chapter: a setInterval function and some DOM coding.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>imageSwap.html</title>
 <script type = ”text/javascript”>
 //<![CDATA[
 var imgList = new Array (
 ”freya/kick00.gif”,
 ”freya/kick01.gif”,
 ”freya/kick02.gif”,
 ”freya/kick03.gif”,
 ”freya/kick04.gif”,
 ”freya/kick05.gif”,
 ”freya/kick06.gif”,
 ”freya/kick07.gif”,
 ”freya/kick08.gif”,
 ”freya/kick09.gif”,

31_9780470537558-bk04ch07.indd 48731_9780470537558-bk04ch07.indd 487 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

488 Building Image-Swapping Animation

 ”freya/kick10.gif”,
 ”freya/kick11.gif”,
 “freya/kick12.gif”
);

 var frame = 0;
 var spriteImage

 function init(){
 setInterval(”animate()”, 100);
 spriteImage = document.getElementById(”image”);
 } // end init

 function animate(){
 frame += 1;
 if (frame >= imgList.length){
 frame = 0;
 } // end if
 spriteImage.src = imgList[frame];
 }
 //]]>
 </script>
 </head>

 <body onload = ”init()”>
 <div id = ”sprite”>
 <img id = ”image”
 src = ”freya/kick00.gif”
 alt = ”kicking sprite” />
 </div>
 </body>
</html>

The HTML is incredibly simple:

 1. Set up the body with an init() method.

 As usual, the body’s onload event calls an init() method to start
things up.

 2. Create a sprite div.

 Build a div named sprite. Because you aren’t changing the position of
this div (yet), you don’t need to worry about the local style.

 3. Name the img.

 In this program, you animate the img inside the div, so you need to give
it an id.

Building the global variables
The JavaScript code isn’t too difficult, but it requires a little bit of thought.

 1. Create an array of image names.

 You have a list of images to work with. The easiest way to support sev-
eral related images is with an array of image names. Each element of the
array is the filename of an image. Put them in the order you want the ani-
mation frames to appear.

31_9780470537558-bk04ch07.indd 48831_9780470537558-bk04ch07.indd 488 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 7

A
n

im
a

tin
g

 Y
o

u
r

P
a

g
e

s

489Building Image-Swapping Animation

 var imgList = new Array (
 “freya/kick00.gif”,
 “freya/kick01.gif”,
 “freya/kick02.gif”,
 “freya/kick03.gif”,
 “freya/kick04.gif”,
 “freya/kick05.gif”,
 “freya/kick06.gif”,
 “freya/kick07.gif”,
 “freya/kick08.gif”,
 “freya/kick09.gif”,
 “freya/kick10.gif”,
 “freya/kick11.gif”,
 “freya/kick12.gif”
);

 2. Build a frame variable to hold the current frame number.

 Because this animation has 12 frames, the frame variable goes from
0 to 11.

 var frame = 0;

 3. Set up spriteImage to reference to the img tag inside the
sprite tag.

 var spriteImage

Setting up the interval
The init() function attaches the spriteImage variable to the image
object and sets up the animate() method to run ten times per second.

 function init(){
 setInterval(“animate()”, 100);
 spriteImage = document.getElementById(“image”);
 } // end init

Animating the sprite
The actual animation happens in the (you guessed it . . .) animate() func-
tion. The function is straightforward:

 1. Increment frame.

 Add one to the frame variable.
 frame += 1;

 2. Check for bounds.

 Any time you change a variable, you should consider whether it may go
out of bounds. I’m using frame as an index in the imgList array, so I
check to see that frame is always less than the length of imgList.

 if (frame >= imgList.length){
 frame = 0;
 } // end if

31_9780470537558-bk04ch07.indd 48931_9780470537558-bk04ch07.indd 489 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

490 Preloading Your Images

 3. Reset frame, if necessary.

 If the frame counter gets too high, reset it to zero and start the anima-
tion over.

 4. Copy the image filename over from the array to the src property of
the spriteImage object.

 This step causes the given file to display.
 spriteImage.src = imgList[frame];

JavaScript is not an ideal animation framework, but it will do. You do get
some delays on the first pass while the images load. (Making the images
smaller and in the GIF or PNG formats will help with this issue.) Most brows-
ers store images locally, so the images animate smoothly after the first pass.

If you want smoother animation, you can either preload the images or com-
bine all the frames into a single image and simply change what part of the
image is displayed.

 Even if you don’t like animation, these techniques can be useful. You can
use the setInterval() technique for any kind of repetitive code you
want, including the dynamic display of menus or other page elements. In
fact, before CSS became the preferred technique, most dynamic menus used
JavaScript animation.

Preloading Your Images
The image-swapping trick is pretty cool, but it has one problem: It takes
some time for all those images to download from the server, but the anima-
tion starts immediately. The animation starting before the images are all
available can cause the initial animation to look jerky. It would be great if
there was some way to preload the images and not start the animation until
they were all available.

Yep, there is a way to do that. Take a look at this code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml;

charset=utf-8” />
 <title>preload.html</title>
 <script type = ”text/javascript”>
 //<![CDATA[
 var imgFiles = new Array (
 ”freya/kick00.gif”, “freya/kick01.gif”,

31_9780470537558-bk04ch07.indd 49031_9780470537558-bk04ch07.indd 490 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 7

A
n

im
a

tin
g

 Y
o

u
r

P
a

g
e

s

491Preloading Your Images

 “freya/kick02.gif”,
 “freya/kick03.gif”,
 “freya/kick04.gif”,
 “freya/kick05.gif”,
 “freya/kick06.gif”,
 “freya/kick07.gif”,
 “freya/kick08.gif”,
 “freya/kick09.gif”,
 “freya/kick10.gif”,
 “freya/kick11.gif”,
 “freya/kick12.gif”
);

 var frame = 0;
 var spriteImage
 var images = new Array(12);

 function init(){
 setInterval(“animate()”, 100);
 spriteImage = document.getElementById(“image”);
 loadImages();
 } // end init

 function animate(){
 frame += 1;
 if (frame >= images.length){
 frame = 0;
 } // end if
 spriteImage.src = images[frame].src;
 } // end animate

 function loadImages(){
 //preloads all the images for faster display.
 for (i=0; i < images.length; i++){
 images[i] = new Image();
 images[i].src = imgFiles[i];
 } // end for loop
 } // end loadImages

 //]]>
 </script>
 </head>

 <body onload = “init()”>
 <div id = “sprite”>
 <img id = “image”
 src = “freya/kick00.gif”
 alt = “kicking sprite” />
 </div>
 </body>
</html>

31_9780470537558-bk04ch07.indd 49131_9780470537558-bk04ch07.indd 491 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

492 Preloading Your Images

Here’s how you preload images:

 1. Change the array name to imgFiles.

 This is a subtle but important distinction. The array doesn’t represent
actual images, but the filenames of the images. You create another array
to hold the actual image data.

 2. Create an array of images.

 JavaScript has a data type designed specifically for holding image data.
The images array holds the actual image data (not just filenames, but
the actual pictures). The images array should be global.

 3. Create a function to populate the images array.

 The loadImages() function creates the array of image data. Call load-
Images() from init().

 4. Build a loop that steps through each element of the imgFiles array.

 You build an image object to correspond to each filename, so the length
of the two arrays needs to be the same.

 5. Build a new image object for each filename.

 Use the new Image() construct to build an image object representing
the image data associated with a particular file.

 6. Attach that image object to the images array.

 This array contains all the image data.

 7. Modify animate() to read from the images array.

 The animate() function reads from the images() array. Because the
image data has been preloaded into the array, it should display more
smoothly.

Preloading images doesn’t make the animation faster. It just delays the
animation until all the images are loaded into the cache, making it appear
smoother. Some browsers will still play the animation before the cache has
finished loading, but the technique still has benefits.

Movement and swapping
Finally, you can combine motion effects with image swapping to have an
image move around on the screen with animated motion. Figure 7-8 tries to
show this effect (I added the arrow just so you can see how the movement
works, but you need to use a browser to really see it).

31_9780470537558-bk04ch07.indd 49231_9780470537558-bk04ch07.indd 492 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 7

A
n

im
a

tin
g

 Y
o

u
r

P
a

g
e

s

493Preloading Your Images

Figure 7-8:
Now Freya’s
running
around the
screen. Run,
Freya, Run!

Making this program requires nothing at all new. It’s just a combination of
the techniques used throughout this chapter. Figure 7-9 shows the list of
images used to make Freya run.

Figure 7-9:
These are
the running
images from
Reiner’s
Tilesets.

The HTML is (as usual) pretty minimal here:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />

31_9780470537558-bk04ch07.indd 49331_9780470537558-bk04ch07.indd 493 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

494 Preloading Your Images

 <title>run.html</title>
 <script type = ”text/javascript”
 src = ”run.js”>
 </script>
 </head>

 <body onload = ”init()”>
 <div id = ”sprite”
 style = ”position: absolute;
 top: 100px;
 left: 100px;”>
 <img src = ”freya/run0.gif”
 id = ”image”
 alt = ”running image” />
 </div>
 </body>
</html>

When you want to create a moving image-swap animation:

 1. Import the script.

 You can build the script locally (as I did in the last example), but any
time the script gets complex, it may be better in an external file.

 2. Call an init() method.

 Most animation requires an init() method called from body.
onload(), and this one is no exception.

 3. Name the sprite.

 The sprite is a div that moves, so it needs absolute position, top, and left
all defined as local styles.

 4. Name the image.

 You also animate the image inside the sprite. The only property you
change here is the src, so no local styles are necessary.

Building the code
The JavaScript code is familiar because all the elements can be borrowed
from previous programs. Here’s the code in its entirety:

/ /run.js

var frame = 0;
var images = new Array(8);
var sprite;
var spriteImage;
var MAX_X = 500;

function init(){
 sprite = document.getElementById(“sprite”);
 spriteImage = document.getElementById(“image”);
 loadImages()

31_9780470537558-bk04ch07.indd 49431_9780470537558-bk04ch07.indd 494 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 7

A
n

im
a

tin
g

 Y
o

u
r

P
a

g
e

s

495Preloading Your Images

 setInterval(“animate()”, 100);
} // end init

function loadImages(){
 //pre-loads images into an array
 //make temporary array of image file names
 var imgList = new Array(
 “freya/run0.gif”,
 “freya/run1.gif”,
 “freya/run2.gif”,
 “freya/run3.gif”,
 “freya/run4.gif”,
 “freya/run5.gif”,
 “freya/run6.gif”,
 “freya/run7.gif”
);

 //create the array of image objects used in the
 //rest of the program
 for(i = 0; i < images.length; i++){
 images[i] = new Image();
 images[i].src = imgList[i];
 } // end for loop
} // end loadImages

function animate(){
 updateImage();
 updatePosition();
} // end animate

function updateImage(){
 frame++;
 if (frame >= images.length){
 frame = 0;
 } // end if
 spriteImage.src = images[frame].src;
} // end updateImage

function updatePosition(){
 sprite = document.getElementById(“sprite”);
 var x = parseInt(sprite.style.left);
 x += 10;
 if (x > MAX_X){
 x = 0;
 } // end if
 sprite.style.left = x + “px”;
} // end function

Defining global variables
You have a few global variables in this code:

 ✦ frame is the frame number. It is an integer from 0 to 11, which serves as
the index for the imgList array.

 ✦ imgList is an array of filenames with the animation images.

 ✦ sprite is the div that moves around the screen.

31_9780470537558-bk04ch07.indd 49531_9780470537558-bk04ch07.indd 495 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

496 Preloading Your Images

 ✦ spriteImage is the img element of sprite and the image that is
swapped.

 ✦ MAX_X is a constant holding the maximum value of X. In this program,
I’m only moving in one direction, so the only boundary I’m worried
about is MAX_X. If the sprite moved in other directions, I’d add some
other constants for the other boundary conditions.

Initializing your data
The init() function performs its normal tasks: setting up sprite variables
and calling the animate() function on an interval.

function init(){
 sprite = document.getElementById(“sprite”);
 spriteImage = document.getElementById(“image”);
 loadImages();

 setInterval(“animate()”, 100);
} // end init

When you move and swap images, sometimes you have to adjust the anima-
tion interval and the distance traveled each frame so that the animation
looks right. Otherwise, the sprite may seem to skate rather than run.

Preloading the images
I take advantage of the preloading trick described in the previous section to
make my images load properly. The loadImages() method does this job:

function loadImages(){
 //pre-loads images into an array
 //make temporary array of image file names
 var imgList = new Array(
 “freya/run0.gif”,
 “freya/run1.gif”,
 “freya/run2.gif”,
 “freya/run3.gif”,
 “freya/run4.gif”,
 “freya/run5.gif”,
 “freya/run6.gif”,
 “freya/run7.gif”
);

 //create the array of image objects used in the
 //rest of the program
 for(i = 0; i < images.length; i++){
 images[i] = new Image();
 images[i].src = imgList[i];
 } // end for loop
} // end loadImages

31_9780470537558-bk04ch07.indd 49631_9780470537558-bk04ch07.indd 496 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book IV

Chapter 7

A
n

im
a

tin
g

 Y
o

u
r

P
a

g
e

s

497Preloading Your Images

This function works just like its counterpart in the preload.html program
described earlier in this chapter.

Animating and updating the image
I really have two kinds of animation happening at once, so in the grand tra-
dition of encapsulation, the animate() function passes off its job to two
other functions:

function animate(){
 updateImage();
 updatePosition();
} // end animate

The updateImage() function handles the image-swapping duties:

function updateImage(){
 frame++;
 if (frame >= images.length){
 frame = 0;
 } // end if
 spriteImage.src = images[frame].src;
} // end updateImage

Moving the sprite
The sprite is moved in the updatePosition() function:

function updatePosition(){
 sprite = document.getElementById(“sprite”);
 var x = parseInt(sprite.style.left);
 x += 10;
 if (x > MAX_X){
 x = 0;
 } // end if
 sprite.style.left = x + “px”;
} // end function

I know what you’re thinking: You can use this stuff to make a really cool
game. It’s true. You can make games with JavaScript, but you eventually
run into JavaScript’s design limitations. JavaScript-based games have a
bright future, with advances like the canvas tag, integrated audio, and faster
JavaScript engines coming in the newest browsers. However, JavaScript is
not yet an ideal game programming platform.

I prefer Flash and Python as languages to learn game development. Now
that you mention it, I’ve written other Wiley books on exactly these topics.
Check out Beginning Flash Game Programming For Dummies and Game
Programming: The L Line (for Python development).

31_9780470537558-bk04ch07.indd 49731_9780470537558-bk04ch07.indd 497 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

498 Book IV: Client-Side Programming with JavaScript

31_9780470537558-bk04ch07.indd 49831_9780470537558-bk04ch07.indd 498 10/7/10 8:43 PM10/7/10 8:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Server-Side Programming
with PHP

32_9780470537558-pp05.indd 49932_9780470537558-pp05.indd 499 10/7/10 8:44 PM10/7/10 8:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

Chapter 1: Getting Started on the Server .501

Introducing Server-Side Programming .. 501
Installing Your Web Server ... 504
Inspecting phpinfo() .. 505
Building XHTML with PHP .. 508
Coding with Quotation Marks .. 510
Working with Variables PHP-Style ... 511
Building XHTML Output ... 514

Chapter 2: PHP and XHTML Forms .519

Exploring the Relationship between PHP and XHTML 519
Sending Data to a PHP Program ... 522
Choosing the Method of Your Madness ... 527
Retrieving Data from Other Form Elements ... 532

Chapter 3: Control Structures. .539

Introducing Conditions (Again) ... 539
Building the Classic if Statement ... 540
Making a switch ... 549
Looping with for .. 552
Looping with while .. 555

Chapter 4: Working with Arrays .559

Using One-Dimensional Arrays .. 559
Using Loops with Arrays .. 562
Introducing Associative Arrays ... 567
Introducing Multidimensional Arrays ... 570
Breaking a String into an Array .. 574

Chapter 5: Using Functions and Session Variables579

Creating Your Own Functions .. 579
Managing Persistence with Session Variables ... 586

Chapter 6: Working with Files and Directories 591

Text File Manipulation .. 591
Using Delimited Data ... 601
Working with File and Directory Functions ... 608

Chapter 7: Connecting to a MySQL Database .613

Retrieving Data from a Database ... 613
Improving the Output Format .. 623
Allowing User Interaction ... 628

32_9780470537558-pp05.indd 50032_9780470537558-pp05.indd 500 10/7/10 8:44 PM10/7/10 8:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Getting Started
on the Server

In This Chapter
✓ Introducing server-side programming

✓ Testing your installation

✓ Inspecting phpinfo()

✓ Writing XHTML with embedded PHP

✓ Understanding various types of quotation

✓ Managing concatenation and interpolation

✓ Using heredocs to simplify coding

Welcome to the server-side programming portion of the book. In this
minibook, you discover all the basics of PHP and how you can use

PHP to make your pages dynamic and relevant in today’s Internet.

In this chapter, you read about getting your server set up and ready to go.
I walk you through the process as painlessly as possible, and by the end,
you’ll be up and running, and ready to serve up your own Web pages in
a test environment. (I talk about making them available to the rest of the
world in Book VIII.)

Introducing Server-Side Programming
I begin with an introduction to server-side programming. This is a bit differ-
ent than the client-side programming you may have done in JavaScript.

Programming on the server
Server-side programming is what you use to create pages dynamically on
the server before sending them to the client. Whereas client-side program-
ming is executed on the client’s machine, server-side programming all hap-
pens on the server before the Web page is even sent to the user.

Client-side programming (as done in JavaScript) does most of the work on
the individual user’s machine. This has advantages because those machines
have doohickeys, like mice and graphics cards. Client-side programs can be
interactive in real time.

33_9780470537558-bk05ch01.indd 50133_9780470537558-bk05ch01.indd 501 10/7/10 8:44 PM10/7/10 8:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

502 Introducing Server-Side Programming

The client has a big problem, though. Programs written on the client usually
have a form of forced amnesia (no long-term memory). For security reasons,
client-side applications can’t store information in files and can’t interact with
other programs on the computer. Also, you never know exactly what kind of
setup the user has, so you can’t really be sure whether your program will work.

This is where server-side programming comes in. In a pure server-side pro-
gramming environment, all the action happens on the Web server. The user
thinks she’s asking for a Web page like normal, but the address really goes
to a computer program. The program does some magic and produces a Web
page. The user sees a Web page, perhaps never knowing this wasn’t a regu-
lar Web page, but a page that was produced instead by a program.

A program running on a Web server has some really nice advantages, such as

 ✦ A server-side program can access the local file system. Asking a server
program to load and save files on the server is no problem at all.

 ✦ A server-side program can call external programs. This is a very big
deal because many Web applications are really about working with data.
Database programs are very important to modern Web development.
See Book VI for much more on this.

 ✦ All the user sees is ordinary XHTML. You can set up your program to
do whatever you want, but the output is regular XHTML. You don’t have
to worry about what browser the user has, or whether he has a Mac, or
what browser version he’s using. Any browser that can display XHTML
can be used with PHP.

Serving your programs
When using a browser to retrieve Web pages, you send a request to a server.
The server then looks at the extension (.html, .php, .js, and so on) of
your requested file and decides what to do. If the server sees .html or .js,
it says, “Cool. Nothing doing here. Just gotta send her back as is.” When the
server sees .php, it says, “Oh, boy. They need PHP to build something here.”

The server takes the page and hollers for PHP to come along and construct
the requested Web page on the fly. PHP goes through and looks at the pro-
grammer’s blue print and then constructs the working page out of XHTML.

The server then takes that page from PHP and sends back plain XHTML to
the client for the browser to display to the user.

When you write PHP programs, a Web server must process the form before
the browser can see it. To test your PHP programs, you need to have a Web
server available and place the file in a specific place on your computer for
the server to serve it. You can’t run a PHP file directly from your desktop.

33_9780470537558-bk05ch01.indd 50233_9780470537558-bk05ch01.indd 502 10/7/10 8:44 PM10/7/10 8:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 1

G
e

ttin
g

 S
ta

rte
d

o

n
 th

e
 S

e
rve

r

503Introducing Server-Side Programming

It must be placed in a special place — often, the htdocs or public_html
directory under the server.

Picking a language
There are all sorts of different ways to go about dynamically creating Web
pages with server-side programming. Back in the day when the Internet
was still in diapers, people used things like Perl and CGI scripting to handle
all their server-side programming. Eventually, people placed more and
more demand on their Web sites, and soon these technologies just weren’t
enough.

The prevalent languages today are

 ✦ ASP.NET: Microsoft’s contender

 ✦ Java: The heavyweight offering from Sun Microsystems

 ✦ PHP: The popular language described in this minibook

ASP.NET
ASP.NET is event-driven, compiled, and object-oriented. ASP.NET replaced
the ’90s language ASP in 2002. Microsoft repurposed it for use with the .NET
framework to facilitate cross-compatibility with its desktop applications
(apps) and integration into Visual Studio (although you can write ASP.NET
apps from any text editor). ASP.NET runs on Microsoft’s Internet Information
Services (IIS) Web server, which isn’t free. I don’t recommend it for cost-
conscious users.

Java
Java has been a strong contender for a long time now. The language is
indeed named after coffee. If you work for a banking company or insurance
company, or need to build the next eBay or Amazon.com, you might want to
consider using Java. However, Java can consume a lot of time, and it’s hard
to figure out. You may have to write up to 16 lines of code to do in Java what
could take a mere 4 lines of code in PHP. Java is absolutely free, as is the
Apache Tomcat Web server that it uses to serve its Web components. Java
was originally created to write desktop applications and is still very good
at doing that. If you’re comfortable with C/C++, you’ll be very comfortable
with Java because it’s very similar. It’s fully object-oriented, and it’s com-
piled. Java is powerful, but it can be challenging for beginners. It’d be a great
second language to work with.

PHP
PHP was born from a collection of modifications for Perl and has boomed
ever since (in a way, replacing Perl, which was once considered the duct
tape and bubble gum that held the Internet together).

33_9780470537558-bk05ch01.indd 50333_9780470537558-bk05ch01.indd 503 10/7/10 8:44 PM10/7/10 8:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

504 Installing Your Web Server

PHP works great for your server-side Web development purposes. MediaWiki
(the engine that was written to run the popular Internet encyclopedia
Wikipedia) runs on PHP, as do many other popular large-, medium-, and
small-scale Web sites. PHP is a solid, easy-to-learn, well-established language
(it’s 13 years old). PHP can be object-oriented or procedural (you can take
your pick!). PHP is interpreted rather than compiled.

Installing Your Web Server
For PHP to work usefully, you have to have some other things installed on
your computer, such as

 ✦ A Web server: This special program enables a computer to process files
and send them to Web browsers. I use Apache because it’s free and pow-
erful, and works very well with PHP.

 ✦ A database backend: Modern Web sites rely heavily on data, so a pro-
gram that can manage your data needs is very important. I use MySQL (a
free and powerful tool) for this. Book VI is entirely dedicated to creating
data with MySQL and some related tools.

 ✦ A programming language: Server-side programming relies on a lan-
guage. I use PHP because it works great, and it’s free.

There are two main ways to work with a Web server:

 ✦ Install your own, using the free XAMPP software. Download from www.
apachefriends.org/en/xampp.html. Book VIII, Chapter 1 has com-
plete instructions on installing XAMPP.

 ✦ Work on a remote server that somebody has already set up. Freehostia
(www.freehostia.com) is one example that has everything you need
for free.

What’s the difference between an inter-
preted language and a compiled language? A
compiled language is compiled one time into
a more computer-friendly format for faster
processing when called by the computer.
Compiled languages are typically very fast but
not very flexible. Interpreted languages have
to be interpreted on the spot by the server

every time they’re called, which is slower
but provides more flexibility. With blazing fast
servers these days, interpreted languages can
normally stand under the load, and the ability
to handle changes without recompiling can be
an advantage in the fast-paced world of Web
development.

Compile versus interpret?

33_9780470537558-bk05ch01.indd 50433_9780470537558-bk05ch01.indd 504 10/7/10 8:44 PM10/7/10 8:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 1

G
e

ttin
g

 S
ta

rte
d

o

n
 th

e
 S

e
rve

r

505Inspecting phpinfo()

Please check out Book VIII, Chapter 1 for complete information on both tech-
niques. After you have your machine set up or you have an account some-
where with PHP access, come back here. I’ll wait.

Inspecting phpinfo()
Using your shiny new server is really quite simple, but a lot of beginners can
get confused at this point.

One thing you have to remember is that anything you want the server to
serve must be located in the server’s file structure. If you have a PHP file on
your Desktop and you want to view it in your browser, it won’t work because
it isn’t in your server. Although, yes, technically it might be on the same
machine as your server (if you’re using XAMPP), it is not in the server.

So, to serve a file from the server, it must be located in the htdocs direc-
tory of your server install. If you’ve installed XAMPP, go to the folder where
you installed XAMPP (probably either c:/xampp or c:/Program Files/
xampp) and locate the htdocs directory. This is where you’ll put all your
PHP files. Make note of it now.

If you’re using a remote server, you’ll need to use your hosts file manage-
ment tools or FTP (both described in Book VIII, Chapter 1) to transfer the
file. Normally, you can place your files anywhere on the remote file system.

To get the hang of placing your files in the correct place and accessing them,
create a test file that will display all your PHP, Apache, and MySQL settings.

To test everything, make the PHP version of the famous “Hello World!”
program. Follow these steps to make your first PHP program:

 1. Open a text editor to create a new file.

 PHP files are essentially plain text files, just like XHTML and JavaScript.
You can use the same editors to create them.

 2. Build a standard Web page.

 Generally, your PHP pages start out as standard Web pages, using your
basic XHTML template. However, start with a simpler example, so you
can begin with an empty text file.

 3. Add a PHP reference.

 Write a tag to indicate PHP. The starting tag looks like <?php, and the
ending tag looks like ?>. As far as XHTML is concerned, all the PHP code
is embedded in a single XHTML tag.

 4. Write a single line of PHP code.

33_9780470537558-bk05ch01.indd 50533_9780470537558-bk05ch01.indd 505 10/7/10 8:44 PM10/7/10 8:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

506 Inspecting phpinfo()

 You’ll learn a lot more PHP soon, but one command is especially
useful for testing your configuration to see how it works. Type the line
phpinfo();. This powerful command supplies a huge amount of diagnos-
tic information.

 5. Save the file to your server.

 A PHP file can’t be stored just anywhere. You need to place it under
an accessible directory of your Web server. If you’re running XAMPP,
that’s the htdocs directory of your xampp directory. If you’re running
a remote server, you’ll need to move the file to that server, either with
your host’s file transfer mechanism, an FTP program, or automatically
through your editor. (See the nearby sidebar “Picking a PHP editor” for
information on remote editing in Komodo.)

 6. Preview your page in the browser.

 Use your Web browser to look at the resulting page. Note that you
cannot simply load the file through the file menu or drag it to your
browser. If you have XAMPP installed, you need to refer to the file as
http://localhost/fileName.php. If the file is on a remote server,
use the full address of the file on that server: for example, http://
myhost.freehostia.com/fileName.php.

Your code from Steps 3 and 4 should look like this:

<?php
 phpinfo();
?>

Hmm. Only three lines of code, and it doesn’t seem to do much. There’s pre-
cious little HTML code there. Run it through the browser, though, and you’ll
see the page shown in Figure 1-1.

 If you see the actual PHP code rather than the results shown in Figure 1-1,
you probably didn’t refer to the page correctly. Please check the following:

 ✦ Is the file in the right place? Your file must be in htdocs or on a
remote server (or in a subdirectory of these places).

 ✦ Did you use the .php extension? The server won’t invoke PHP unless
the filename has a .php extension.

 ✦ Did you refer to the file correctly? If the URL in the address bar reads
file://, then you bypassed the server, and PHP was not activated.
Your address must begin with http://. Either use http://localhost
(for a locally stored file in XAMPP) or the URL of your remote hosting
service.

This phpinfo page of Figure 1-1 is critical in inspecting your server configu-
ration. It displays all the different settings for your server, describing what
version of PHP is running and what modules are active. This can be very
useful information.

33_9780470537558-bk05ch01.indd 50633_9780470537558-bk05ch01.indd 506 10/7/10 8:44 PM10/7/10 8:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 1

G
e

ttin
g

 S
ta

rte
d

o

n
 th

e
 S

e
rve

r

507Inspecting phpinfo()

Figure 1-1:
That
tiny PHP
program
sure puts
a lot of
information
on the
screen.

 You generally should not have a page with all the phpinfo() information
running on a live server because it tells the bad guys information they might
use to do mischief.

In the previous edition of this book, I recommend
using Aptana for PHP editing. If you already use
Aptana for your other Web editing, you may
also enjoy using it for PHP. However, Aptana
has changed, and PHP support is no longer built
into the standard version of Aptana. If you want
to have PHP support (syntax completions and
the like), you need to install a plugin. Choose My
Studio from the Window menu, click the Plugins
tab, find the PHP plugin, and then click Get It.
I’ve heard reports of the installation not work-
ing, but it worked fine for me.

I honestly prefer using Komodo Edit (also men-
tioned in Book I, Chapter 3) for PHP editing. It’s

a little simpler than Aptana, and it still has all
the important features like syntax completion
and highlighting built in with no plugins needed.

Komodo has another feature that can be a
lifesaver for PHP programmers. If you’re work-
ing on a remote Web server, you can set up
a connection to that server (choose Edit➪
Preferences➪Servers). Then you can use the
Save Remotely command to save the file
to the server directly. That way, you can use all
the features of Komodo without a local instal-
lation of Apache or PHP, and without having to
implement an extra file transfer step.

Picking a PHP editor

33_9780470537558-bk05ch01.indd 50733_9780470537558-bk05ch01.indd 507 10/7/10 8:44 PM10/7/10 8:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

508 Building XHTML with PHP

This test.php program shows one of the most interesting things about
PHP. The program itself is just a few lines long, but when you run it, the
result is a complex Web page. Take a look at the source of the Web page,
and you’ll see a lot of code that you didn’t write. That’s the magic of PHP.
You write a program, and it creates a Web page for you.

Don’t panic if you don’t understand the first thing in the page that gets pro-
duced with the phpinfo() command. It contains many details about how
PHP is configured on your server, which may not mean much now. If you have
trouble with PHP and ask me for help, though, it’s the first thing I’ll ask you
for. As you get more experienced, you’ll be able to learn a lot from this page.

The basic flow of PHP programming works like this:

 1. You build a standard page, and you include PHP code inside it.

 2. When the server recognizes the PHP code, it calls the PHP interpreter
and passes that code to it.

PHP programs are almost always designed to create HTML code, which gets
passed back to the user. The user will never see PHP code, because it will
get translated to HTML/XHTML before it gets to the browser.

By default, Apache will load index.html or index.php automatically if
you type a directory path into the Web browser. There’s already a program
in htdocs called index.php. Rename it index.php.off. Now, if you navi-
gate to http://localhost/, you’ll see a list of directories and files your
server can run, including test.php. When you have a live site, you’ll typi-
cally name one file index.html or index.php so the user doesn’t have to
type the entire filename. See Book VIII, Chapter 1 for more information on
how to set up your server to make it easiest to use.

Building XHTML with PHP
In PHP, you aren’t actually printing anything to the user. Instead, you’re
building an HTML document that will be sent to the browser, which will
interpret the HTML and then print that (the HTML) to the user. Therefore, all
your code gets interpreted twice: first on the server to generate the HTML
and then on the user’s machine to generate the output display.

If you’ve used XHTML, CSS, and JavaScript, you might have been frustrated
because all these environments run on the client, and you have no control
of the client environment. You don’t know what browser the user will have,
and thus you don’t know exactly how XHTML, CSS, and JavaScript will run
there. When you program in PHP, you’re working on a machine (the server)
that you actually control. You know exactly what the server’s capabilities
are because (in many cases) you configured it yourself.

33_9780470537558-bk05ch01.indd 50833_9780470537558-bk05ch01.indd 508 10/7/10 8:44 PM10/7/10 8:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 1

G
e

ttin
g

 S
ta

rte
d

o

n
 th

e
 S

e
rve

r

509Building XHTML with PHP

It’s still not a perfect situation, though, because your PHP code will generate
XHTML/CSS pages (sometimes even with JavaScript), and those pages still
have to contend with the wide array of client environments.

The first program you ever write in any language is invariably the “Hello
World!” program or some variant thereof. Follow these steps:

 1. Create a new PHP file in your editor.

 I prefer using Komodo Edit because it already supports PHP, but if you
add the PHP plugin to Aptana, that’s a great choice, too. (Read about
these two programs in the earlier sidebar, “Picking a PHP editor.”)

 If you’re using some other text editor, just open a plain text file however
you normally do that (often File➪New) and be sure to save it under
htdocs with a .php extension. If you’re using a remote server, transfer
your file to that server before testing.

 2. Create your standard XHTML page.

 PHP code is usually embedded into the context of an HTML page.
Begin with your standard XHTML template. (See Book I, Chapter 2 for a
refresher on XHTML.)

 3. Enter the following code in the body:

<?php
print “<h1>Hello World!</h1>”;
?>

 Depending on your installation of Apache, you may be able to use the
shorter <? ?> version of the PHP directive (instead of <?php ?>).
However, nearly all installations support the <?php ?> version, so
that’s probably the safest way to go.

 Note that you’re not just writing text, but creating an XHTML tag. PHP
creates XHTML. That’s a really important idea.

 4. Save the file.

 Remember to save directly into htdocs or a subdirectory of htdocs.
If you’re using a remote server, save remotely to that server (with
Komodo) or save it locally and transfer it to the server to view it.

 5. View the file in a Web browser, as shown in Figure 1-2.

 The address of a Web page begins with the http:// protocol and then
the server name. If the page is on the local machine, the server name is
localhost, which corresponds directly to your htdocs directory.
If you have a file named thing.php in the htdocs directory, the
address would be http://localhost/thing.php. Likewise, if it’s
in a subdirectory of htdocs called project, the address would be
http://localhost/project/thing.php. If the page is on a remote
server, the address will include the server’s name, like this:

http://www.myserver.com/thing.php

33_9780470537558-bk05ch01.indd 50933_9780470537558-bk05ch01.indd 509 10/7/10 8:44 PM10/7/10 8:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

510 Coding with Quotation Marks

Figure 1-2:
The “Hello
World!”
program
example.

So, what is it that you’ve done here? You’ve figured out how to use the
print statement. This allows you to spit out any text you want to the user.

Note that each line ends with a semicolon (;), just like JavaScript code. PHP
is pretty fussy about semicolons, and if you forget, you’re likely to get a
really strange error that can be hard to figure out.

Coding with Quotation Marks
There are many different ways to use print. The following are all legal ways
to print text, but they have subtle differences:

 print (“<p>Hello World!</p>”);
 print (“<p>Hello World!

 Hello Computer!</p>”);
 print ‘<p>Hello Google!</p>’;

Any way you cut it, you have to have some form of quotations around text
that you want printed. However, PHP is usually used to write XHTML code,
and XHTML code contains a lot of quote marks itself. All those quotations
can lead to headaches.

What if you want to print double quotation marks inside a print statement
surrounded by double quotation marks? You escape them (you tell PHP to
treat them as literal characters, rather than the end of the string) with a
backslash, like this:

 print “A Link”;

This can get tedious, so a better solution is discussed in the “Generating
output with heredocs” section, later in this chapter.

 This backslash technique works only with text encased inside double
quotes. Single quotes tell PHP to take everything inside the quotes exactly as
is. Double quotes give PHP permission to analyze the text for special charac-
ters, like escaped quotes (and variables, which you learn about in the next
section of this chapter). Single quotes do not allow for this behavior, which
is why they are rarely used in PHP programming.

33_9780470537558-bk05ch01.indd 51033_9780470537558-bk05ch01.indd 510 10/7/10 8:44 PM10/7/10 8:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 1

G
e

ttin
g

 S
ta

rte
d

o

n
 th

e
 S

e
rve

r

511Working with Variables PHP-Style

Working with Variables PHP-Style
Variables are extremely important in any programming language and no less
so in PHP.

 A variable in PHP always begins with a $.

A PHP variable can be named almost anything. There are some reserved
words that you can’t name a variable (like print, which already has a mean-
ing in PHP), so if your program isn’t working and you can’t figure out why,
try changing some variable names or looking at the reserved words list (in
the online help at http://www.php.net) to find out whether your variable
name is one of these illegal words.

PHP is very forgiving about the type of data in a variable. When you create a
variable, you simply put content in it. PHP automatically makes the variable
whatever type it needs. This is called loose typing. The same variable can
hold numeric data, text, or other more complicated kinds of data. PHP deter-
mines the type of data in a variable on the fly by examining the context.

Even though PHP is cavalier about data types, it’s important to understand
that data is still stored in one of several standard formats based on its type.
PHP supports several forms of integers and floating-point numbers. PHP also
has great support for text data. Programmers usually don’t say “text,” but
call text data string data. This is because the internal data representation of
text reminded the early programmers of beads on a string. You rarely have
to worry about what type of information you’re using in PHP, but you do
need to know that PHP is quietly converting data into formats that it can use.

echo is another way to generate your code
for the browser. In almost all circumstances,
you use echo exactly like you use print.
Everyone knows what print does, but echo
sounds like I should be making some sort of
dolphin noise.

The difference is that print returns a value,
and echo doesn’t. print can be used as part
of a complex expression, and echo can’t. It

really just comes down to the fact that print
is more dynamic, whereas echo is slightly
(and I’m talking very slightly here) faster.

I prefer print because there’s nothing that
echo can do that print can’t.

To see a more detailed discussion, go here:
www.faqts.com/knowledge_base/
view.phtml/aid/1/fid/40.

echo or print?

33_9780470537558-bk05ch01.indd 51133_9780470537558-bk05ch01.indd 511 10/7/10 8:44 PM10/7/10 8:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

512 Working with Variables PHP-Style

Concatenation
Concatenation is the process of joining smaller strings to form a larger string.
(See Book IV, Chapter 1 for a description of concatenation as it’s applied
in JavaScript.) PHP uses the period (.) symbol to concatenate two string
values. The following example code returns the phrase oogieboogie:

$word = “oogie “;
$dance = “boogie”;

Print $word . $dance

 If you already know some JavaScript or another language, most of the ideas
transfer, but details can trip you up. JavaScript uses the + sign for concat-
enation, and PHP uses the period. These are annoying details, but with prac-
tice, you’ll be able to keep it straight.

When PHP sees a period, it treats the values on either side of the period
as strings (text) and concatenates (joins) them. If PHP sees a plus sign, it
treats the values on either side of the plus sign as numbers and attempts to
perform mathematical addition on them. The operation helps PHP figure out
what type of data it’s working with.

The following program illustrates the difference between concatenation and
addition (see Figure 1-3 for the output):

<?php
 $output = “World!”;
 print “<p>Hello “ . $output . “</p>”;
 print “<p>” . $output + 5 . “</p>”;
?>

In the first section of this chapter, “Creating
Your First PHP Program,” you see that you can
escape double quotation marks with a back-
slash. Quotation marks aren’t the only thing
you can escape, though. You can give a whole
host of other special escape directives to PHP.

The most common ones are

 ✓ \t: Creates a tab in the resulting HTML

 ✓ \n: Creates a new line in the resulting
HTML

 ✓ \$: Creates a dollar sign in the resulting
HTML

 ✓ \”: Creates a double quote in the resulting
HTML

 ✓ \’: Creates a single quote in the resulting
HTML

 ✓ \\: Creates a backslash in the resulting
HTML

PHP can take care of this for you automatically
if you’re receiving these values from a form.
To read more, go here: http://us3.php.
net/types.string.

Escape sequences

33_9780470537558-bk05ch01.indd 51233_9780470537558-bk05ch01.indd 512 10/7/10 8:44 PM10/7/10 8:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 1

G
e

ttin
g

 S
ta

rte
d

o

n
 th

e
 S

e
rve

r

513Working with Variables PHP-Style

Figure 1-3:
The
difference
between
addition and
concatena-
tion.

The previous code takes the variable output with the value World and
concatenates it to Hello when printed. Next, it adds the variable output
to the number 5. When PHP sees the plus sign, it interprets the values on
either side of it as numbers. Because output has no logical numerical value,
PHP assigns it the value of 0, which it adds to 5, resulting in the output of
<p>5</p> being sent to the browser.

Interpolating variables into text
If you have a bunch of text to print with variables thrown in, it can get a little
tedious to use concatenation to add in the variables. Luckily, you don’t
have to!

With PHP, you can include the variables as follows (see Figure 1-4 for the
output):

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>

<head>
<title>helloInterpolation</title>
</head>
<body>

<?php
 $firstName = ”John”;
 $lastName = ”Doe”;

 print ”<p>Hello $firstName $lastName!</p>”;
?>

</body>
</html>

33_9780470537558-bk05ch01.indd 51333_9780470537558-bk05ch01.indd 513 10/7/10 8:44 PM10/7/10 8:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

514 Building XHTML Output

Figure 1-4:
The
variables
print without
having to do
concatena-
tions.

This process is called interpolation. Because all PHP variables begin with
quotes, you can freely put variables right inside your string values, and
when PHP sees a variable, it will automatically replace that variable with
its value.

 Interpolation works only with double-quoted strings because double quotes
indicate PHP should process the string before passing it to the user.

Building XHTML Output
The output of a PHP program is usually an XHTML page. As far as PHP is
concerned, XHTML is just string data, so your PHP program often has to
do a lot of string manipulation. You’ll often be writing long chunks of text
(XHTML code) with several variables (generated by your PHP program)
interspersed throughout the code. This type of text (XHTML output) will
often stretch over several lines, requires carriage returns to be preserved,
and often contains special characters like quotes and <> symbols. The ordi-
nary quote symbols are a little tedious if you want to use them to build a
Web page. Here’s an example.

Say you wanted to create a program which could take the value of the $name
and $address variables and put them into a table like this:

<table style = “border: 1px solid black”>
 <tr>
 <td>name</td>
 <td>John</td>
 </tr>
 <tr>
 <td>address</td>
 <td>123 Main St.</td>
 </tr>
</table>

There are a few ways to combine the PHP and XHTML code as shown in the
following sections.

33_9780470537558-bk05ch01.indd 51433_9780470537558-bk05ch01.indd 514 10/7/10 8:44 PM10/7/10 8:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 1

G
e

ttin
g

 S
ta

rte
d

o

n
 th

e
 S

e
rve

r

515Building XHTML Output

Using double quote interpolation
Using regular double quotes, the code would look something like this:

$name = “John”;
$address = “123 Main St.”;
$output = “”;
$output .= “<table style = \”border: 1px solid black\”> \n”;
$output .= “ <tr> \n”;
$output .= “ <td>name</td> \n”;
$output .= “ <td>$name</td> \n”;
$output .= “ </tr> \n”;
$output .= “ <tr> \n”;
$output .= “ <td>address</td> \n”;
$output .= “ <td>$address</td> \n”;
$output .= “ </tr> \n”;
$output .= “</table> \n”;

print $output

However, using quotes to generate XHTML output is inconvenient for the fol-
lowing reasons:

 ✦ The $output variable must be initialized. Before adding anything to
the $output variable, give it an initial null value.

 ✦ You must repeatedly concatenate data onto the $output variable.
The .= operator allows me to append something to a string variable.

 ✦ All quotes must be escaped. Because double quotes indicate the end of
the string, all internal double quotes must be preceded with the back-
slash (\).

 ✦ Every line must end with a newline (\n) sequence. PHP creates XHTML
source code. Your PHP-derived code should look as good as what you
write by hand, so you need to preserve carriage returns. This means you
need to end each line with a newline.

 ✦ The XHTML syntax is buried inside PHP syntax. The example shows
PHP code creating HTML code. Each line contains code from two lan-
guages interspersed. This can be disconcerting to a beginning
programmer.

Generating output with heredocs
PHP uses a clever solution called heredocs to resolve all these issues. A
heredoc is simply a type of multiline quote, usually beginning and ending
with the word HERE.

The best way to understand heredocs is to see one in action, so here’s the
same example written as a heredoc:

<?
$name = “John”;
$address = “123 Main St.”;
print <<<HERE

33_9780470537558-bk05ch01.indd 51533_9780470537558-bk05ch01.indd 515 10/7/10 8:44 PM10/7/10 8:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

516 Building XHTML Output

<table style = “border: 1px solid black”>
 <tr>
 <td>name</td>
 <td>$name</td>
 </tr>
 <tr>
 <td>address</td>
 <td>$address</td>
 </tr>
</table>
HERE;
?>

Figure 1-5 illustrates this code in action.

Figure 1-5:
This page
was created
with the
heredoc
mechanism.

Heredocs have some great advantages:

 ✦ All carriage returns are preserved. There’s no need to put in any new-
line characters. Whatever carriage returns are in the original text will
stay in the output.

 ✦ Heredocs preserve quote symbols. There’s also no need to escape your
quotes because the double quote is not the end-of-string character for a
heredoc.

 ✦ Variable interpolation is supported. You can use variable names in a
heredoc, just like you do for an ordinary quoted string.

 ✦ The contents of a heredoc feel like ordinary XHTML. When you’re
working inside a heredoc, you can temporarily put your mind in XHTML
mode, but with the ability to interpolate variables.

The following are some things to keep in mind about heredocs:

 ✦ A heredoc is opened with three less-than symbols (<<<) followed by
a heredoc symbol that will act as a “superquote” (instead of single or
double quotation marks, you make your own custom quotation mark
from any value that you want).

33_9780470537558-bk05ch01.indd 51633_9780470537558-bk05ch01.indd 516 10/7/10 8:44 PM10/7/10 8:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 1

G
e

ttin
g

 S
ta

rte
d

o

n
 th

e
 S

e
rve

r

517Building XHTML Output

 ✦ A heredoc symbol can be denoted by almost any text, but HERE is the
most common delimiter (thus, heredoc). You can make absolutely any-
thing you want serve as a heredoc symbol. You probably should just
stick to HERE because that’s what other programmers are expecting.

 ✦ You need only one semicolon for the whole heredoc. Technically, the
entire heredoc counts as one line. That means that the only semicolon
you need is after the closing symbol.

 ✦ A heredoc must be closed with the same word it was opened with.

 ✦ The closing word for the heredoc must be on its own line.

 ✦ You can’t indent the closing word for the heredoc; there can’t be any
spaces or tabs preceding the closing word.

 By far, the most common problem with heredocs is indenting the closing
token. The HERE (or whatever other symbol you’re using) must be flush with
the left margin of your editor, or PHP won’t recognize it. This usually means
PHP interprets the rest of your program as part of a big string and never fin-
ishes executing it.

Heredocs have one disadvantage: They tend to mess up your formatting
because you have to indent heredocs differently than the rest of the code.

 When writing a heredoc, don’t put a semicolon after the first <<<HERE. Also,
don’t forget that the last HERE; can’t have any whitespace before it — it
must be alone on a new line without any spaces preceding it. An editor that
understands the heredoc rules will highlight all the code inside the heredoc
and save you lots of grief. Komodo does this automatically, as does Aptana
(if you’ve installed the PHP plugin). Notepad++ also has this feature.

Switching from PHP to XHTML
There’s one more way to combine PHP and XHTML code. The server treats
a PHP document mainly as an XHTML document. Any code not inside the
<?php ?> symbols is treated as XHTML, and anything inside the PHP sym-
bols is interpreted as PHP.

This means you can switch in and out of PHP, like the following example:

<?php
 $name = “John”;
 $address = “123 Main St.”;
 // switch ‘out’ of PHP temporarily
?>
<table style = “border: 1px solid black”>
 <tr>
 <td>name</td>
 <td><?php print $name; ?></td>
 </tr>
 <tr>
 <td>address</td>
 <td><?php print $address; ?></td>

33_9780470537558-bk05ch01.indd 51733_9780470537558-bk05ch01.indd 517 10/7/10 8:44 PM10/7/10 8:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

518 Building XHTML Output

 </tr>
</table>
<?php
 //I’m back in PHP
?>

This option (switching back and forth) is generally used when you have a
lot of XHTML code with only a few simple PHP variables. I prefer the
heredoc approach, but feel free to experiment and find out what system
works for you.

When switching in and out of PHP, if you have
just one variable you want to print, depending
upon your server setup, you may be able to do
print the variable like this:

<?= $name ?>

You don’t have to actually write print when
using this technique. Note that this trick doesn’t
work if you have to type php after the question
mark in the opening PHP tag.

Printing shortcut

33_9780470537558-bk05ch01.indd 51833_9780470537558-bk05ch01.indd 518 10/7/10 8:44 PM10/7/10 8:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 2: PHP and XHTML Forms

In This Chapter
✓ Understanding the relationship between XHTML and PHP

✓ Using the date() function

✓ Formatting date and time information

✓ Creating XHTML forms designed to work with PHP

✓ Choosing between get and post data transmission

✓ Retrieving data from your XHTML forms

✓ Working with XHTML form elements

PHP is almost never used on its own. PHP is usually used in tight con-
junction with XHTML. Many languages have features for creating input

forms and user interfaces, but with PHP, the entire user experience is based
on XHTML. The user never really sees any PHP. Most of the input to PHP
programs comes from XHTML forms, and the output of a PHP program is an
XHTML page.

In this chapter, you discover how to integrate PHP and XHTML. You explore
how PHP code is embedded into XHTML pages, how XHTML forms can be
written so they will send information to a PHP program, how to write a PHP
program to read that data, and how to send an XHTML response back to
the user.

Exploring the Relationship between PHP and XHTML
PHP is a different language than XHTML, but the two are very closely
related. It may be best to think of PHP as an extension that allows you to do
things you cannot do easily in XHTML. See Figure 2-1 for an example.

Every time you run getTime.php, it generates the current date and time
and returns these values to the user. This would not be possible in ordinary
XHTML because the date and time (by definition) always change. While you
could make this page using JavaScript, the PHP approach is useful for dem-
onstrating how PHP works. First, take a look at the PHP code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>

34_9780470537558-bk05ch02.indd 51934_9780470537558-bk05ch02.indd 519 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

520 Exploring the Relationship between PHP and XHTML

 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>showDate.php</title>
 </head>

 <body>
 <h1>Getting the Time, PHP Style</h1>
 <?php

print ” <h2>Date: ”;
print date(”m-d”);
print ”</h2> \n”;

print ” <h2>Time: ”;
print date(”h:i”);
print ”</h2>”;

 ?>

 </body>
</html>

Figure 2-1:
This
program
gives me the
current date
and time.

Embedding PHP inside XHTML
The PHP code has some interesting characteristics:

34_9780470537558-bk05ch02.indd 52034_9780470537558-bk05ch02.indd 520 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 2

P
H

P
 a

n
d

 X
H

T
M

L
Fo

rm
s

521Exploring the Relationship between PHP and XHTML

 ✦ It’s structured mainly as an XHTML document. The doctype defini-
tion, document heading, and initial H1 heading are all ordinary XHTML.
Begin your page as you do any XHTML document. A PHP page can have
as much XHTML code as you wish. (You might have no PHP at all!) The
only thing the PHP designation does is inform the server that PHP code
may be embedded into the document.

 ✦ PHP code is embedded into the page. You can switch from XHTML to
PHP with the <?php tag. Signify the end of the PHP code with the ?>
symbol.

 ✦ The PHP code creates XHTML. PHP is usually used to create XHTML
code. In effect, PHP takes over and prints out the part of the page that
can’t be created in static XHTML. The result of a PHP fragment is usually
XHTML code.

 ✦ The date() function returns the current date with a specific format.
The format string indicates how the date should be displayed. (See the
sidebar “Exploring the date() format function,” in this chapter, for more
information about date formatting.)

 ✦ The result of the PHP code will be an XHTML document. When the
PHP code is finished, it will be replaced by XHTML code.

Viewing the results
If you view showDate.php in your browser, you won’t see the PHP code.
Instead, you’ll see an XHTML page. It’s even more interesting when you use
your browser to view the page source. Here’s what you’ll see:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>showDate.php</title>
 </head>

 <body>
 <h1>Getting the Time, PHP Style</h1>
 <h2>Date: 02-13</h2>
 <h2>Time: 10:02</h2>
 </body>
</html>

The remarkable thing is what you don’t see. When you look at the source
of showDate.php in your browser, the PHP is completely gone! This is one
of the most important points about PHP: The browser never sees any of the
PHP. The PHP code is converted completely to XHTML before anything is
sent to the browser. This means that you don’t need to worry about
whether a user’s browser understands PHP. Because the user never sees
your PHP code (even if he views the XHTML source), PHP code will work on
any browser.

34_9780470537558-bk05ch02.indd 52134_9780470537558-bk05ch02.indd 521 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

522 Sending Data to a PHP Program

Sending Data to a PHP Program
You can send data to a PHP program from an HTML form. For an example of
this technique, see askName.html in Figure 2-2.

Figure 2-2:
This XHTML
page has a
simple form.

XHTML forms (described fully in Book I, Chapter 7) allow the user to enter
data onto a Web page. However, XHTML cannot respond to a form on
its own. You need some sort of program to respond to the form. Book IV
describes how to use JavaScript to respond to forms, but you can also write
PHP code to handle form-based input. When the user submits the form, the
askName.html disappears completely from the browser and is replaced
with greetUser.php, as shown in Figure 2-3.

The showDate.php program takes advan-
tage of one of PHP’s many interesting and
powerful functions to display the date. The
PHP date() function returns the current
date. Generally, you’ll pass the date() func-
tion a special format string that indicates how
you want the date to be formatted. Characters
in the date string indicate a special code. Here
are a few of the characters and their meanings:

 ✓ d: day of the month (numeric)

 ✓ D: three character abbreviation of week-
day (Wed)

 ✓ m: month (numeric)

 ✓ M: three-character abbreviation of month
(Feb)

 ✓ F : text representation of month
(February)

 ✓ y: two-digit representation of the year (08)

 ✓ Y: four-digit representation of the year
(2008)

 ✓ h: hour (12 hours)

 ✓ H: hour (24 hours)

 ✓ i: minutes

 ✓ s: seconds

You can embed standard punctuation in the
format as well, so d/m/y will include the
slashes between each part of the date. There
are many more symbols available. Check the
PHP documentation at http://us3.php.
net/manual/en/function.date.
php for more information about date and time
formatting.

Exploring the date() format function

34_9780470537558-bk05ch02.indd 52234_9780470537558-bk05ch02.indd 522 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 2

P
H

P
 a

n
d

 X
H

T
M

L
Fo

rm
s

523Sending Data to a PHP Program

Figure 2-3:
This
program
uses the
entry from
the previous
form.

The greetUser.php program retrieves the data from the previous page
(askName.html, in this case) and returns an appropriate greeting.

Creating a form for PHP processing
The askName.html program is a standard XHTML form, but it has a couple
of special features which make it suitable for PHP processing. (See Book I,
Chapter 7 for more information about how to build XHTML forms.) Here is
the XHTML code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>askName.html</title>
 </head>

 <body>
 <form action = “greetUser.php”
 method = “get”>
 <fieldset>
 <label>Please enter your name</label>
 <input type = “text”
 name = “userName” />
 <button type = “submit”>
 submit
 </button>
 </fieldset>

 </form>
 </body>
</html>

To build a form designed to work with PHP, there are a few special steps
to take:

 1. Write an XHTML page as the framework.

 This page is a regular XHTML page. Begin with the same XHTML frame-
work you use for building your standard XHTML pages. You can use CSS
styles, if you wish (but I’m leaving them out of this simple example).

34_9780470537558-bk05ch02.indd 52334_9780470537558-bk05ch02.indd 523 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

524 Sending Data to a PHP Program

 Normally, you can create an XHTML document anywhere you want, but
this is not so when your page will be working with PHP. This page is
meant to be paired with a PHP document. PHP documents will run only
if they are in a server’s file space, so you should save your XHTML docu-
ment under htdocs to be sure it will call the PHP form correctly.

 2. Set the form’s action property to point to a PHP program.

 The form element has an attribute called action. The action attribute
is used to determine which program should receive the data transmitted
by the form. I want this data to be processed by a program called greet
User.php, so I set greetUser.php as the action:

 <form action = “greetUser.php”
 method = “get”>

 3. Set the form’s method attribute to get.

 The method attribute indicates how the form data will be sent to the
server. For now, use the get method. See the section “Choosing the
Method of Your Madness,” later in this chapter, for information on the
various methods available:

 <form action = “greetUser.php”
 method = “get”>

 4. Add any input elements your form needs.

 The point of a form is to get information from the user and send it to
a program on the server. Devise a form to ask whatever questions you
want from the server. My form is as simple as possible, with one text
field, but you can use any XHTML form elements you want:

 <form action = “greetUser.php”
 method = “get”>
 <fieldset>
 <label>Please enter your name</label>
 <input type = “text”
 name = “userName” />
 <button type = “submit”>
 submit
 </button>
 </fieldset>

 5. Give each element a name attribute.

 If you want a form element to be passed to the server, you must give it a
name attribute. Note: This is a different attribute than id, which is used
in client-side processing.

 <input type = “text”
 name = “userName” />

 The name attribute will be used by the PHP program to extract the infor-
mation from the form.

34_9780470537558-bk05ch02.indd 52434_9780470537558-bk05ch02.indd 524 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 2

P
H

P
 a

n
d

 X
H

T
M

L
Fo

rm
s

525Sending Data to a PHP Program

 A form element can have both a name and an ID, if you wish. The name
attribute will be used primarily by server-side programs, and the id
attribute is mainly used for CSS and JavaScript. The name and ID can
(and probably should) have the same value.

 6. Add a submit button to the page.

 The most important difference between a client-side form and a form des-
tined for processing on the server is the button. A special submit button
packages all the data in the form and passes it to the program indicated in
the action property. Submit buttons can be created in two forms:

<input type = “submit” value = “click me”/>

 or
<button type = “submit“>click me</button>

 Specify submit as the button’s type attribute to ensure the button
sends the data to the server.

 If your form has a submit button and a blank action attribute, the
current page will be reloaded.

Receiving data in PHP
PHP code is usually a two-step process. First, you create an XHTML form,
and then you send that form to a PHP program for processing. Be sure to
read the previous section on “Creating a form for PHP processing” because
now I show you how to read that form with a PHP program.

The XHTML form in the last section pointed to a program named greet
User.php. This tells the server to go to the same directory that contained
the original XHTML document (askName.html) and look for a program
named greetUser.php in that directory. Because greetUser is a PHP pro-
gram, the server passes it through PHP, which will extract data from the
form. The program then creates a greeting using data that came from the
form. Look over all the code for greetUser.php before I explain it in more
detail:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>greetUser.php</title>
 </head>

 <body>
 <?php
 $userName = $_REQUEST[”userName”];
 print ”<h1>Hi, $userName!</h1>”
 ?>

 </body>
</html>

34_9780470537558-bk05ch02.indd 52534_9780470537558-bk05ch02.indd 525 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

526 Sending Data to a PHP Program

greetUser.php is not a complex program, but it shows the most common
use of PHP: retrieving data from a form. Here’s how you build it:

 1. Build a new PHP program.

 This program should be in the same directory as askName.html, which
should be somewhere the server can find (usually under the htdocs or
public_html directory).

 2. Start with ordinary XHTML.

 PHP programs are usually wrapped inside ordinary XHTML, so begin
the document as if it were plain XHTML. Use whatever CSS styling and
ordinary HTML tags you want. (I’m keeping this example as simple as
possible, although I’d normally add some CSS styles to make the output
less boring.)

 3. Add a PHP segment.

 Somewhere in the page, you’ll need to switch to PHP syntax so that you
can extract the data from the form. Use the <?php symbol to indicate
the beginning of your PHP code:

 <?php
 $userName = $_REQUEST[“userName”];
 print “<h1>Hi, $userName!</h1>”;
 ?>

 4. Extract the username variable.

 PHP stores all the data sent to the form inside a special variable called
$_REQUEST. This object contains a list of all the form elements in the
page that triggered this program. In this case, I want to extract the value
of the userName field and store it in a PHP variable called $userName:

 $userName = $_REQUEST[“userName”];

 See the upcoming section “Getting data from the form” for more informa-
tion on the $_REQUEST object and some of the other tools that are avail-
able for retrieving information.

 5. Print the greeting.

 Now, your PHP program has a variable containing the user’s name, so
you can print a greeting to the user. Remember that all output of a PHP
program is XHTML code, so be sure to embed your output in a suitable
XHTML tag. I’m putting the greeting inside a level-one heading:

 print “<h1>Hi, $userName!</h1>”;

 The greetUser.php script is not meant to be run directly. It relies on ask-
Name.html. If you provide a direct link to greetUser.php, the program
will run, but it will not be sent the username, so it will not work as expected.
Do not place links to your PHP scripts unless you designed them to work
without input.

34_9780470537558-bk05ch02.indd 52634_9780470537558-bk05ch02.indd 526 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 2

P
H

P
 a

n
d

 X
H

T
M

L
Fo

rm
s

527Choosing the Method of Your Madness

Choosing the Method of Your Madness
The key to server-side processing is adding method and action properties
to your XHTML form. You have two primary choices for the method
property:

 ✦ get: The get method gathers the information in your form and appends
it to the URL. The PHP program extracts form data from the address.
The contents of the form are visible for anyone to see.

 ✦ post: The post method passes the data to the server through a mecha-
nism called environment variables. This mechanism makes the form ele-
ments slightly more secure because they aren’t displayed in public as
they are with the get method.

Using get to send data
The get method is easy to understand. View getRequest.php after it has
been called from askName.html in Figure 2-4. Pay careful attention to the
URL in the address bar.

Figure 2-4:
The address
has been
modified!

The address sent to the PHP program has additional material appended:

http://localhost/xfd/ar/xfd5.3_AR_AH/greetUser.php?userName=Andy%20Harris

Most of this address is the (admittedly convoluted) address of the page on
my test server. The interesting part is the section after greetUser.php:

greetUser.php?userName=Andy%20Harris

This line shows exactly how the get method passes information to the pro-
gram on the server:

 ✦ The URL is extracted from the form action property. When the submit
button is activated, the browser automatically creates a special URL
beginning with the action property of the form. The default address is
the same directory as the original XHTML file.

 ✦ A question mark indicates form data is on the way. The browser
appends a question mark to the URL to indicate form data follows.

34_9780470537558-bk05ch02.indd 52734_9780470537558-bk05ch02.indd 527 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

528 Choosing the Method of Your Madness

 ✦ Each field/value pair is listed. The question mark is followed by each
field name and its associated value in the following format:

URL?field1=value1&field2=value2

 ✦ An equal sign (=) follows each field name. Each field name is separated
by the value of that field with an equal sign (and no spaces).

 ✦ The field value is listed immediately after the equal sign. The value of
each field follows the equal sign.

 ✦ Spaces are converted to hexadecimal symbols. get data is transmit-
ted through the URL, and URLS are not allowed to have spaces or other
special characters in them. The browser will automatically convert all
spaces in field names or values to the %20 symbol. Other special charac-
ters (like ampersands and equal signs) are also automatically converted
to special symbols.

 Sometimes, the spaces are converted to + signs, rather than %20. It isn’t
really that important because the conversion is done automatically. Just
know that URLs can’t contain spaces.

 ✦ An ampersand (&) is used to add a new field name/value pair. This
particular example (the URL created by askName.html) has only one
name/value pair. If the form had more elements, they would all be sepa-
rated by ampersands.

 You don’t have to do any of the URL formatting. It automatically happens
when the user clicks the submit button. You’ll also never have to decode all
this, as PHP will do it for you.

If you understand how the get method works, you can take advantage of it
to send data to programs without the original form. For example, take a look
at this address:

http://www.google.com/search?q=dramatic%20chipmunk

If you type this code into your browser’s location bar, you’ll get the Google
search results for a classic five-second video. (If you haven’t seen this
video, it’s worth viewing.) If you know a particular server-side program (like
Google’s search engine) uses the get protocol, and you know which fields
are needed (q stands for the query in Google’s program), you can send a
request to a program as if that request came from a form.

You can also write a link with a preloaded search query in it:

 Google search for the dramatic chipmunk

34_9780470537558-bk05ch02.indd 52834_9780470537558-bk05ch02.indd 528 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 2

P
H

P
 a

n
d

 X
H

T
M

L
Fo

rm
s

529Choosing the Method of Your Madness

If a user clicks the resulting link, he would get the current Google search for
the dramatic chipmunk video. (Really, it’s a prairie dog, but “dramatic chip-
munk” just sounds better.)

 Of course, if you can send requests to a program without using the intended
form, others can do the same to you. You can never be 100 percent sure that
people are sending requests from your forms. This can cause some prob-
lems. Look at the next section for a technique to minimize this problem by
reading only data sent via the post method.

Using the post method to transmit form data
The get method is easy to understand because it sends all data directly
in the URL. This makes it easy to see what’s going on, but there are some
downsides to using get:

 ✦ The resulting URL can be very messy. Addresses on the Web can
already be difficult without the added details of a get request. A form
with several fields can make the URL so long that it’s virtually impos-
sible to follow.

 ✦ All form information is user-readable. The get method displays form
data in the URL, where it can easily be read by the user. This may not be
desired, especially when the form sends potentially sensitive data.

 ✦ The amount of information that can be passed is limited. The Apache
server (in its default form) won’t accept URLs longer than 4,000 charac-
ters. If you have a form with many fields or with fields that contain a lot
of data, you will easily exceed this limit.

 The answer to the limitations of the get method is another form of data
transmission: the post methodHere’s how it works:

You might wonder how I knew what fields the
Google engine expects. If the program uses
get, just use the intended form to make a
search and look at the resulting URL. Some
testing and experience told me that only the q
field is absolutely necessary.

This trick (bypassing the form) could be con-
sidered rude by some because it circumvents
safety features that may be built into the form.
Still, it can be helpful for certain very public
features, like preloaded Google searches, or
looking up weather data for a particular loca-
tion through a hard-coded link.

How did I know how to write the Google query?

34_9780470537558-bk05ch02.indd 52934_9780470537558-bk05ch02.indd 529 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

530 Choosing the Method of Your Madness

 ✦ You specify that the form’s method will be post. You create the
XHTML form in exactly the same way. The only difference is the form
method attribute. Set it to post:

 <form action = “greetUser.php”
 method = “post”>

 ✦ Data is gathered and encoded, just like it is in the get method. When
the user clicks the submit button, the data is encoded in a format similar
to the get request, but it’s not attached to the URL.

 ✦ The form data is sent directly to the server. The PHP program can still
retrieve the data (usually through a mechanism called environment vari-
ables) even though the data is not encoded on the URL. Again, you won’t be
responsible for the details of extracting the data. PHP makes it pretty easy.

The post method is often preferable to get because

 ✦ The URL is not polluted with form data. The data is no longer passed
through the URL, so the resulting URL is a lot cleaner than one gener-
ated by the get method.

 ✦ The data is not visible to the user. Because the data isn’t presented in
the URL, it’s slightly more secure than get data.

 ✦ There is no practical size limit. The size of the URL isn’t a limiting
factor. If your page will be sending a large amount of data, the post
method is preferred.

 With all these advantages, you might wonder why anybody uses get at all.
Really, there are two good reasons. The get approach allows you to embed
requests in URLs (which can’t be done with post). Also, get is sometimes a
better choice for debugging because it’s easier to see what’s being passed to
the server.

Getting data from the form
PHP includes a number of special built-in variables that give you access to
loads of information. Each variable is stored as an associative array; see
Chapter 5 of this minibook for more on associative arrays. These special
variables are available anywhere in your PHP code, so they’re called super-
globals. Here’s a few of the most important ones:

 ✦ $_GET: A list of variables sent to this program through the get method

 ✦ $_POST: A list of variables sent to this program through the post
method

 ✦ $_REQUEST: A combination of $_GET and $_POST

34_9780470537558-bk05ch02.indd 53034_9780470537558-bk05ch02.indd 530 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 2

P
H

P
 a

n
d

 X
H

T
M

L
Fo

rm
s

531Choosing the Method of Your Madness

You can use these variables to look up information posted in the form. For
example, the askName.html page contains a field called userName. When
the user views this page, it sends a request to greetUser.php via the get
method. greetUser.php can then check its $_GET variable to see whether
a field named userName exists:

 $userName = $_GET[“userName”];

This line checks all the data sent via get, looks for a field named userName,
and copies the contents of that field to the variable $userName.

If you want to retrieve a value sent through the post method, use
this variation:

 $userName = $_POST[“userName”];

If you don’t care whether the data was sent via get or post, use $_
REQUEST:

 $userName = $_REQUES[“userName”];

The $_REQUEST superglobal grabs data from both get and post requests,
so it works, no matter how the form was encoded. Many programmers use
the $_REQUEST technique because then they don’t have to worry about the
encoding mechanism.

If you don’t like the idea of somebody accessing your data without a form,
use $_POST in your PHP program. If data is encoded in the URL, your pro-
gram ignores it because you’re only responding to post data, and data
encoded in the URL is (by definition) get data.

The earliest forms of PHP had a feature called
register_globals that automatically did
the $_REQUEST extraction for you. If your
program comes from a userName field, the
program will “magically” just have a $user-
Name variable preloaded with the value of
that field. Although this was a very convenient
option, evildoers soon learned how to take
advantage of this behavior to cause all kinds
of headaches. Convenient as it may be, the
register_globals feature is now turned

off on most servers and isn’t even available
on the next version of PHP. The $_REQUEST
approach is safer and not much harder. If you
want even more control of how information
is passed to your programs, investigate the
filter_input() functions that are in the
latest versions of PHP. They are not quite com-
plete (as of this writing), but by the time PHP6
rolls around, they’ll probably become an even
better way to extract data from forms.

Can’t I just have automatic access to form variables?

34_9780470537558-bk05ch02.indd 53134_9780470537558-bk05ch02.indd 531 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

532 Retrieving Data from Other Form Elements

 This solution is far from foolproof. There’s nothing to prevent a bad guy
from writing his own form using the post method and passing data to your
program that way. You can never be 100 percent safe.

Retrieving Data from Other Form Elements
It’s just as easy to get data from drop-down lists and radio buttons as it is
to get data from text fields. In PHP (unlike JavaScript), you use exactly the
same technique to extract data from any type of form element.

Building a form with complex elements
For an example of a more complex form, look over monty.html in Figure
2-5. This program is a tribute to my favorite movie of all time. (You might
just have to rent this movie if you’re really going to call yourself a program-
mer. It’s part of the culture.)

Figure 2-5:
The Monty
Python quiz
features a
drop-down
list, radio
buttons,
and check
boxes (and
a newt).

34_9780470537558-bk05ch02.indd 53234_9780470537558-bk05ch02.indd 532 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 2

P
H

P
 a

n
d

 X
H

T
M

L
Fo

rm
s

533Retrieving Data from Other Form Elements

The XHTML form poses the questions. (Check out Book I, Chapter 7 for a
refresher on XHTML forms, if you need it.) Here’s the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>monty.html</title>
 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”monty.css” />
 </head>

 <body>
 <h1>Monty Python Quiz</h1>
 <form action = ”monty.php”
 method = ”post”>
 <fieldset>
 <p>
 <label>What is your name?</label>
 <select name = ”name”>

 <option value = ”Roger”>
 Roger the Shrubber
 </option>
 <option value = ”Arthur”>
 Arthur, King of the Britons
 </option>
 <option value = ”Tim”>
 Tim the Enchanter
 </option>
 </select>
 </p>

 <p>
 <label>What is your quest?</label>

 <input type = ”radio”
 name = ”quest”
 value = ”herring” />

 To chop down the mightiest tree in the forest
 with a herring

 <input type = ”radio”
 name = ”quest”
 value = ”grail” />

 I seek the holy grail.

 <input type = ”radio”
 name = ”quest”
 value = ”shrubbery” />
 I’m looking for a shrubbery.

 </p>

 <p>

34_9780470537558-bk05ch02.indd 53334_9780470537558-bk05ch02.indd 533 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

534 Retrieving Data from Other Form Elements

 <label>How can you tell she’s a witch?</label>

 <input type = ”checkbox”
 name = ”nose”
 value = ”nose”/>
 She’s got a witch nose.

 <input type = ”checkbox”
 name = ”hat”
 value = ”hat”/>
 She has a witch hat.

 <input type = ”checkbox”
 name = ”newt”
 value = ”newt” />
 She turned me into a newt.

 </p>
 <button type = ”submit”>
 Submit
 </button>
 </fieldset>
 </form>
 </body>
</html>

There’s nothing too crazy about this code. Please note the following features:

 ✦ The action attribute is set to monty.php. This page (monty.html)
will send data to monty.php, which should be in the same directory on
the same server.

 ✦ The method attribute is set to post. All data on this page will be passed
to the server via the post method.

 ✦ Each form element has a name attribute. The name attributes will be
used to extract the data in the PHP program.

 ✦ All the radio buttons have the same name value. The way you get
radio buttons to work together is to give them all the same name. And
although they all have the same name, each has a different value. When
the PHP program receives the request, it will get only the value of the
selected radio button.

 ✦ Each check box has an individual name. Check boxes are a little bit
different. Each check box has its own name, but the value is sent to the
server only if the check box is checked.

I don’t cover text areas, passwords fields, or hidden fields here because to
PHP, they are just like text boxes. Retrieve data from these elements just like
you do for text fields.

34_9780470537558-bk05ch02.indd 53434_9780470537558-bk05ch02.indd 534 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 2

P
H

P
 a

n
d

 X
H

T
M

L
Fo

rm
s

535Retrieving Data from Other Form Elements

Responding to a complex form
The monty.php program is designed to respond to monty.html. You can see
it respond when I submit the form in monty.html, as shown in Figure 2-6.

 It’s no coincidence that monty.html uses monty.css and calls monty.
php. I deliberately gave these files similar names so it will be easy to see
how they fit together.

Figure 2-6:
The monty.
php
program
responds to
the Monty
Python quiz.

This program works like most PHP programs: It loads data from the form
into variables and assembles output based on those variables. Here’s the
PHP code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>monty.php</title>
 <!-- Meant to run from monty.html -->
 </head>

 <body>
 <h1>Monty Python quiz results</h1>
 <?php
 //gather the variables
 $name = $_REQUEST[“name”];
 $quest = $_REQUEST[“quest”];
 //don’t worry about check boxes yet; they may not exist

 //send some output
 $reply = <<< HERE
 <p>
 Your name is $name.
 </p>

 <p>
 Your quest is $quest.
 </p>

34_9780470537558-bk05ch02.indd 53534_9780470537558-bk05ch02.indd 535 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

536 Retrieving Data from Other Form Elements

HERE;
 print $reply;

 //determine if she’s a witch
 $witch = false;

 //See if check boxes exist
 if(isset($_REQUEST[“nose”])){
 $witch = true;
 }
 if(isset($_REQUEST[“hat”])){
 $witch = true;
 }
 if(isset($_REQUEST[“newt”])){
 $witch = true;
 }

 if ($witch == true){
 print “<p>She’s a witch!</p> \n”;
 } // end if
 ?>

 </body>
</html>

If you want to respond to a form with multiple types of data, here’s how it’s
done:

 1. Begin with the XHTML form.

 Be sure you know the names of all the fields in the form because your
PHP program will need this information.

 2. Embed your PHP inside an XHTML framework.

 Use your standard XHTML framework as the starting point for your PHP
documents, too. The results of your PHP code should still be standards-
compliant XHTML. Use the <?php and ?> symbols to indicate the pres-
ence of PHP code.

 3. Create a variable for each form element.

 Use the $_REQUEST technique described in the “Receiving data in PHP”
section of this chapter to extract form data and store it in local
variables:

 //gather the variables
 $name = $_REQUEST[“name”];
 $quest = $_REQUEST[“quest”];

 Don’t worry about the check boxes yet. Later on, you’ll determine
whether they exist. You don’t really care about their values.

 4. Build your output in a heredoc.

 PHP programming almost always involves constructing an XHTML docu-
ment influenced by the variables that were extracted from the previous
form. The heredoc method (described in Chapter 1 of this minibook) is
an ideal method for packaging output:

34_9780470537558-bk05ch02.indd 53634_9780470537558-bk05ch02.indd 536 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 2

P
H

P
 a

n
d

 X
H

T
M

L
Fo

rm
s

537Retrieving Data from Other Form Elements

 //send some output
 $reply = <<< HERE
 <p>
 Your name is $name.
 </p>

 <p>
 Your quest is $quest.
 </p>

HERE;
 print $reply;

 5. Check for the existence of each check box.

 Check boxes are the one exception to the “treat all form elements the
same way” rule of PHP. The important part of a check box isn’t really
its value. What you really need to know is whether the check box is
checked. Here’s how it works: If the check box is checked, a name and
value are passed to the PHP program. If the check box is not checked,
it’s like the variable never existed:

 a. Create a variable called $witch set to false. Assume innocent until
proven guilty in this witch hunt.

 Each check box, if checked, would be proof that she’s a witch. The
isset() function is used to determine whether a particular variable
exists. This function returns true if the variable exists and false if
it doesn’t.

 b. Check each check box variable.

 If it exists, the corresponding check box was checked, so she must
be a witch (and she must weigh the same as a duck — you’ve really
got to watch this movie).

 After testing for the existence of all the check boxes, the $witch
variable will still be false if none of the check boxes were checked.
If any combination of check boxes is checked, $witch will be true:
 //determine if she’s a witch
 $witch = false;

 //See if check boxes exist
 if(isset($_REQUEST[“nose”])){
 $witch = true;
 }
 if(isset($_REQUEST[“hat”])){
 $witch = true;
 }
 if(isset($_REQUEST[“newt”])){
 $witch = true;
 }

 if ($witch == true){
 print “<p>She’s a witch!</p> \n”;
 } // end if

34_9780470537558-bk05ch02.indd 53734_9780470537558-bk05ch02.indd 537 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

538 Book V: Server-Side Programming with PHP

34_9780470537558-bk05ch02.indd 53834_9780470537558-bk05ch02.indd 538 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Control Structures

In This Chapter
✓ Getting used to conditions

✓ Using if, else if, and else

✓ Using switch structures

✓ Working with while and for loops

✓ Using comparison operators

Computer programs are most interesting when they appear to make
decisions. PHP has many of the same decision-making structures as

JavaScript, so if you’ve already looked over Chapters 2 and 3 of Book IV, you
will find this chapter very familiar. In any case, take a look at conditions to
see the key to making the computer branch and loop.

Introducing Conditions (Again)
Computer programs make decisions. That’s part of what makes them inter-
esting. But all the decisions a computer seems to make were already deter-
mined by the programmer. The computer’s decision-making power is all
based on an idea called a condition. This little gem is an expression that can
be evaluated as true or false. (That sounds profound. I wonder if it will be
on the mid-term?)

Conditions can be comparisons of one variable to another, they can be
Boolean (true or false) variables, or they can be functions that return a true
or false value.

 If this talk of conditions is sounding like déjà vu, you’ve probably read about
conditions in Book IV, Chapters 2 and 3. You’ll find a lot of the same ideas
here; after all, conditions (and branches and loops, and lots of other stuff)
are bigger than one programming language. Even though this mini-book
covers a different language, you’ll see coverage of the same kinds of things.
If you haven’t read that minibook already, you might want to look it over
first so you can see how programming remains the same even when the lan-
guage changes.

35_9780470537558-bk05ch03.indd 53935_9780470537558-bk05ch03.indd 539 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

540 Building the Classic if Statement

Building the Classic if Statement
The if statement is the powerhouse of computer programming. Take a look
at Figure 3-1 to see it in action. This program might be familiar if you read
Book IV already. It rolls a standard six-sided die, and then displays that die
on the screen.

When it rolls a six, it displays an elaborate multimedia event, as shown in
Figure 3-2. (Okay, it just says Holy Guacamole! That’s a six!)

This program is much like the duece.html program in Book IV, Chapter 2.
I’m talking about exactly the same topic, and do all the same things here
as in that program. However, PHP and JavaScript are a little different, and
that’s part of the game of programming. Appreciate the concepts that flow
between languages while noting those details that are different.

Figure 3-1:
This
program
rolls a die.
Try it again.

35_9780470537558-bk05ch03.indd 54035_9780470537558-bk05ch03.indd 540 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 3

C
o

n
tro

l S
tru

c
tu

re
s

541Building the Classic if Statement

Figure 3-2:
It’s a six!
Joy!

Rolling dice the PHP way
PHP has a random number generator, which works a little differently than
the one in JavaScript. The PHP version is actually easier for dice.

$variable = rand(a, b);

This code creates a random integer between a and b (inclusive), so if you
want a random 1–6 die, you can use a statement like this:

$die = rand(1,6);

It doesn’t get a lot easier than that.

Checking your six
The code for the if.php program rolls a die, displays an image, and cel-
ebrates the joyous occasion of a six.

35_9780470537558-bk05ch03.indd 54135_9780470537558-bk05ch03.indd 541 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

542 Building the Classic if Statement

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN” “http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
 <title>if.php</title>
 <meta http-equiv=”Content-Type” content=”text/html;charset=UTF-8” />
</head>

<body>
 <h1>Try to roll a six</h1>
 <p>
 roll again
 </p>

 <?php

 $roll = rand(1,6);

 print <<<HERE
 <p>
 <img src = ”images/die$roll.jpg”
 alt = ”$roll” />
 </p>
HERE;

 if ($roll == 6){
 print(”<h1>Holy Guacamole! That’s a six!</h1>\n”);
 } // end if
 ?>
</body>
</html>

The process is eerily familiar:

 1. Begin with a standard XHTML template.

 As always, PHP is encased in XHTML. There’s no need to switch to PHP
until you get to the part that HTML can’t do: that is, rolling dice and
responding to the roll.

 2. Add a link to let the user roll again.

 Add a link that returns to the same page. When the user clicks the link,
the server refreshes the page and rolls a new number.

 3. Roll the rand() function to roll a die. Put the result in a variable
called $roll.

 4. Print out a graphic by creating the appropriate tag.

 I preloaded a bunch of die images into a directory called images. Each
image is carefully named die1.jpg through die6.jpg. To display an
image in PHP, just print out a standard img tag. The URL is created by

35_9780470537558-bk05ch03.indd 54235_9780470537558-bk05ch03.indd 542 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 3

C
o

n
tro

l S
tru

c
tu

re
s

543Building the Classic if Statement

interpolating the variable $roll into the image name. Don’t forget that
XHTML requires an alt attribute for the img tag. I just use the $roll
value as the alt. That way, the die roll will be known even if the image
doesn’t work.

 5. Check whether the die is a six.

 This is where the condition comes in. Use the if statement to see
whether the value of $roll is 6. If so, print out a message.

 The == (two equal sign) means “is equal to.” A single equal sign means
assignment. If you use the single equal sign in a condition, the code may not
crash, but it probably won’t do what you intended.

The else clause is used when you want to do one thing if a condition is true
and something else if the condition is false. The highLow.php program
shown in Figure 3-3 handles this kind of situation.

Figure 3-3:
This
program
tells
whether
the roll was
high or low.

The code is very similar to the if.php program.

35_9780470537558-bk05ch03.indd 54335_9780470537558-bk05ch03.indd 543 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

544 Building the Classic if Statement

The bold code shows the only part of the program that’s new.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN” “http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>

<head>

 <title>highLow.php</title>

 <meta http-equiv=”Content-Type” content=”text/html;charset=UTF-8” />

</head>

<body>
 <h1>High or low?</h1>
 <p>
 roll again
 </p>

 <?php
 $roll = rand(1,6);

 print <<<HERE
 <p>
 <img src = “images/die$roll.jpg”
 alt = “$roll“ />
 </p>
HERE;

 if ($roll > 3){
 print “<h2>You rolled a high one</h2>\n”;
 } else {
 print “<h2>That’s pretty low</h2> \n”;
 } // end if

 ?>

</body>
</html>

Most of the code for this program is the same as the previous code example,
but the condition is slightly different:

 ✦ Now the condition is an inequality. I now use the greater-than symbol
(>) to compare the roll to the value 3. You can use any of the compari-
son operators in Table 3-1. If $roll is higher than 3, the condition will
evaluate as true, and the first batch of code will run.

 ✦ Add an else clause.

 The else clause is special because it handles the situation when the
condition is false. All it does is set up another block of code.

35_9780470537558-bk05ch03.indd 54435_9780470537558-bk05ch03.indd 544 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 3

C
o

n
tro

l S
tru

c
tu

re
s

545Building the Classic if Statement

 ✦ Include code for the false condition.

 The code between else and the ending brace for if ending brace will
run only if the condition is evaluated false.

Understanding comparison operators
PHP uses the same comparison operators as JavaScript (and many other lan-
guages based on C). Table 3-1 summarizes these operators.

Table 3-1 Comparison Operators

Comparison Discussion

A == B True if A is equal to B

A != B True if A is not equal to B

A < B True if A is less than B (if they are numeric) or earlier in the
alphabet (for strings)

A > B True if A is larger than B (numeric) or later in the alphabet
(string)

A >= B A is larger than or equal to B

A<= B A is less than or equal to B

Note that PHP determines the variable type dynamically, so comparisons
between numeric and string values may cause problems. It’s best to explic-
itly force variables to the type you want if you’re not sure. For example, if
you want to ensure that the variable $a is an integer before you compare it
to the value 4, you could use this condition:

(integer)$a == 4

This will force the variable $a to be read as an integer. You can also use
this technique (called typecasting) to force a variable to other types: float,
string, or boolean.

Taking the middle road
Another variation of the if structure allows you to check multiple conditions.
As an example, look at the highMidLow.php page featured in Figure 3-4.

35_9780470537558-bk05ch03.indd 54535_9780470537558-bk05ch03.indd 545 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

546 Building the Classic if Statement

Figure 3-4:
Now there
are three
possible
comments,
thanks to
the else if
structure.

If the roll is 1 or 2, the program reports Low. If the roll is 3 or 4, it says
Middle; and if it’s 5 or 6, the result is High. This if has three branches. See
how it works; you can add as many branches as you wish.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN” “http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>

<head>
 <title>highMidLow.php</title>
 <meta http-equiv=”Content-Type” content=”text/html;charset=UTF-8” />
</head>

<body>
 <h1>High, middle, or low?</h1>
 <p>
 roll again
 </p>

 <?php
 $roll = rand(1,6);
 print <<<HERE
 <p>
 <img src = “images/die$roll.jpg”
 alt = “$roll“ />
 </p>

35_9780470537558-bk05ch03.indd 54635_9780470537558-bk05ch03.indd 546 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 3

C
o

n
tro

l S
tru

c
tu

re
s

547Building the Classic if Statement

HERE;

 if ($roll > 4){
 print “<h2>High!</h2>\n”;
 } else if ($roll <= 2){
 print “<h2>Low</h2>\n”;
 } else {
 print “<h2>Middle</h2> \n”;
 } // end if

 ?>

</body>
</html>

The if statement is the only part of this program that’s new. It’s not terribly
shocking.

 1. Begin with a standard condition.

 Check whether the roll is greater than 4. If so, say High. If the first con-
dition is true, the computer evaluates the code in the first section and
then skips the rest of the while loop.

 2. Add a second condition.

 The else if section allows me to add a second condition. This second
condition (roll <= 2) is evaluated only if the first condition is false. If
this condition is true, the code inside this block will be executed (print-
ing the value Low). You can add as many else if sections as you want.
As soon as one is found to be true, the code block associated with that
condition executes, and the program leaves the whole else system.

 3. Include an else clause to catch stragglers.

 If none of the previous conditions are true, the code associated with the
else clause operates. In this case, the roll is lower than 4 and higher
than 2, so report that it’s in the Middle.

Building a program that makes its own form
An especially important application of the if structure is unique to server-
side programming. Up to now, many of your PHP programs required two
separate files: an HTML page to get information from the user and a PHP pro-
gram to respond to that code. Wouldn’t it be great if the PHP program could
determine whether it had the data or not? If it has data, it will process it. If
not, it just produces a form to handle the data. That would be pretty awe-
some, and that’s exactly what you can do with the help of the if statement.
Figure 3-5 shows the first pass of ownForm.php.

35_9780470537558-bk05ch03.indd 54735_9780470537558-bk05ch03.indd 547 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

548 Building the Classic if Statement

Figure 3-5:
On the
first pass,
ownForm.
php
produces an
HTML form.

The interesting thing happens when the user submits the form. The program
calls itself! This time, though, ownForm recognizes that the user has sent some
data and processes that information, giving the result shown in Figure 3-6.

Figure 3-6:
Now the
same
program
processes
the data!

This program doesn’t really require anything new, just a repurposing of
some tools you already know. Take a look at the following code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN” “http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
 <title>ownForm.php</title>
 <meta http-equiv=”Content-Type” content=”text/html;charset=UTF-8” />
</head>
<body>
<?php
if (isset($_REQUEST[“userName”])){
 $userName = $_REQUEST[“userName”];
 print “<h1>Hi, $userName</h1>\n”;
} else {
 print <<<HERE
 <form action = “”
 method = “post”>
 <fieldset>
 <label>Name</label>

35_9780470537558-bk05ch03.indd 54835_9780470537558-bk05ch03.indd 548 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 3

C
o

n
tro

l S
tru

c
tu

re
s

549Making a switch

 <input type = “text”
 name = “userName”>
 <button type = “submit”>
 submit
 </button>
 </fieldset>
 </form>
HERE;
} // end if

?>
</body>
</html>

Making a program “do its own stunts” like this is pretty easy. The key is
using an if statement. However, begin by thinking about the behavior. In
this example, the program revolves around the $userName variable. If this
variable has a value, it can be processed. If the variable has not been set yet,
the user needs to see a form so she can enter the data.

 1. Check for the existence of a key variable.

 Use the isset() function to determine whether the variable in question
has been set. Check the $_REQUEST or one of the other superglobals
($_POST or $_GET) to determine whether the form has already been
submitted. You need to check the existence of only one variable, even if
the form has dozens.

 2. If the variable exists, process the form.

 If the variable exists, extract all the variables from the form and carry on
with your processing.

 3. If the variable does not exist, build the form.

 If the variable does not exist, you need to make the form that will ask the
user for that variable (and any others you need). Note that the action
attribute of the form element should be null (“”). This tells the server to
re-call the same program.

Making a switch
Often, you will run across a situation where you have one expression that
can have many possible values. You can always use the if – elseif
structure to manage this situation, but PHP supplies another interesting
option, shown in Figure 3-7.

35_9780470537558-bk05ch03.indd 54935_9780470537558-bk05ch03.indd 549 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

550 Making a switch

Figure 3-7:
The Magic
8 Ball uses
a switch.

The code for this program uses the switch structure. Take a look at how
it’s done:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN””http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
<head>
<title>switch.php</title>
</head>
<body>
<p>Ask the magic 8 ball a yes or no question!</p>

<?php

$yourNumber = rand(1,8);

switch($yourNumber){
 case 1:
 print ”<p></p>”;
 break;
 case 2:
 print ”<p></p> ”;
 break;
 case 3:
 print ”<p></p>”;
 break;

35_9780470537558-bk05ch03.indd 55035_9780470537558-bk05ch03.indd 550 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 3

C
o

n
tro

l S
tru

c
tu

re
s

551Making a switch

 case 4:
 print ”<p></

p>”;
 break;
 case 5:
 print ”<p></p>”;
 break;
 case 6:
 print ”<p></p>”;
 break;
 case 7:
 print ”<p></p>”;
 break;
 case 8:
 print ”<p><img src=\”images/8ball8.png\” alt = \”The answer is in the

question\” /></p>”;
 break;
 default:
 print ”<p>An error has occurred. Please try again, or contact support@

somesite.com for assistance. Error code: 8BIC:$yourNumber</p>”;
}

?>

<p>
 Ask another question!
</p>
</body>
</html>

The main (in fact nearly only) feature of this code is the switch statement.
Here’s how it works:

 1. Begin with the switch statement.

 This indicates that you will be building a switch structure.

 2. Put the expression in parentheses.

 Following the switch statement is a pair of parentheses. Put the expres-
sion (usually a variable) you wish to evaluate inside the parentheses. In
this case, I’m checking the value of the variable $yourNumber.

 3. Encase the entire switch in braces.

 Use squiggle braces to indicate the entire case. As in most blocking
structures, use indentation to help you remember how the structure is
organized.

 4. Establish the first case.

 Put the first value you want to check for. In this situation, I’m looking
for the value 1. Note that the type of data matters, so be sure you’re
comparing against the same type of data you think the variable will con-
tain. Use a colon (:) to indicate the end of the case. This is one of the

35_9780470537558-bk05ch03.indd 55135_9780470537558-bk05ch03.indd 551 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

552 Looping with for

rare situations where you do not use a semicolon or brace at the end of
a line.

 5. Write code that should happen if the expression matches the case.

 If the expression matches the case (for example, if $yourNumber is
equal to 1), the code you write here will execute.

 6. End the code with the break statement.

 When you use an if-else if structure to work with multiple condi-
tions, the interpreter jumps out of the system as soon as it encounters
the first true condition. Switches work differently. Unless you specify
(with the break statement), code will continue to evaluate even when
one of the expressions is matched. You almost always need the break
statement.

 7. Use the default clause to handle any unexpected behavior.

 The default section of the switch structure is used to handle any
situation that wasn’t covered by one of the previously defined cases. It’s
a good idea to always include a default clause.

 It may seem odd to have a default clause in this example. After all, I know
how the rand() function works, and I know that I’ll get values only between
1 and 8. It shouldn’t be possible to have a value that isn’t covered by one of
the cases, yet I have a default clause in place for exactly that eventuality.
Even though something shouldn’t ever happen, sometimes it does. At the
very least, I want a nice piece of code to explain what happened and send
some kind of error message. If it’s an important problem, I may have the
code quietly e-mail me a message letting me know what went wrong.

You might wonder whether the switch is necessary at all. I could have used
the interpolation tricks shown in the dice example to get the necessary
images. However, remember that XHTML requires all images to have alt
tags. With dice, the value of the roll is a perfectly acceptable alt value. The
Magic 8 Ball needs to return text if the image doesn’t work properly. I used a
switch to ensure that I have the appropriate alt text available. (Extra points
if you think an array would be an even better way to handle this situation.)

Looping with for
Sometimes you want to repeat something. PHP (like most languages) sup-
ports a number of looping constructs. Begin with the humble but lovable
for loop, as shown in Figure 3-8.

35_9780470537558-bk05ch03.indd 55235_9780470537558-bk05ch03.indd 552 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 3

C
o

n
tro

l S
tru

c
tu

re
s

553Looping with for

Figure 3-8:
This page
prints a lot
of dice with
a for loop.

As you can see, Figure 3-8 prints a lot of dice. In fact, it prints 100 dice. This
would be tedious to do by hand, but that’s exactly the kind of stuff comput-
ers are so good at.

The following code explains all:

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
<head>
<title>for.php</title>
<style type=”text/css”>
 img{
 height: 40px;
 width: 50px;
 }
</style>
</head>
<body>
<h1>Dice Rolling Game</h1>
<p>Welcome to the dice rolling game. Rolling 100 dice. How many will be sixes?</

p>
<p>

35_9780470537558-bk05ch03.indd 55335_9780470537558-bk05ch03.indd 553 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

554 Looping with for

<?php
$sixCount = 0;

for ($i = 0; $i < 100; $i++){
 $userNumber = rand(1,6);
 print <<< HERE
 <img src=”images/die$userNumber.jpg”
 alt = “$userNumber“ />
HERE;

 if($userNumber == 6){
 $sixCount++;
 } // end if
} // end for
print “</p><p>You rolled $sixCount six(es)!</p>“;
?>

<p>Try Again!</p>

</body>
</html>

Most of the code is plain-old HTML. Note the lone print statement respon-
sible for printing out dice. That print statement (and a few supporting
characters) are repeated 100 times. for loops are extremely powerful ways
to get a lot of work done.

 1. Begin with the for keyword.

 This keyword indicates the beginning of the for structure.
for ($i = 0; $i < 100; $i++){

 2. Add an initializer.

 for loops usually center around a specific integer variable, sometimes
called the sentry variable. The first part of the for loop sets up the initial
value of that variable. Often, the variable is initialized to 0 or 1.

for ($i = 0; $i < 100; $i++){

 3. Add a condition.

 The loop will continue as long as the condition is true and will exit as
soon as the condition is evaluated as false. Normally, the condition will
check whether if the variable is larger than some value.

for ($i = 0; $i < 100; $i++){

 4. Add a modifier.

 Every time through the loop, you need to do something to change the
value of the sentry. Normally, you add 1 to the sentry variable.

for ($i = 0; $i < 100; $i++){

35_9780470537558-bk05ch03.indd 55435_9780470537558-bk05ch03.indd 554 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 3

C
o

n
tro

l S
tru

c
tu

re
s

555Looping with while

 5. Encase the body of the loop in braces.

 The code that will be repeated is placed inside braces({}). As usual,
indent all code inside braces so you understand that you’re inside a
structure.

for loops are first described in Book IV, Chapter 3. Please look to that chap-
ter for more details on for loops, including how to build a loop that counts
backward and counts by fives. I don’t repeat that material here because for
loops work exactly the same in PHP and JavaScript.

This particular program has a few other features that make it suitable for
printing out 100 dice.

 ✦ It uses $i as a counting variable. When the sentry variable’s name isn’t
important, $i is often used. $i will vary from 0 to 99, giving 100 itera-
tions of the loop.

 ✦ Each time through the loop, roll a die. The familiar rand() function is
used to roll a random die value between 1 and 6. Because this code is
inside the loop, it is repeated.

$userNumber = rand(1,6);

 ✦ Print out an image related to the die roll. I use interpolation to deter-
mine which image to display. Note that I used CSS to resize my image
files to a smaller size.

print <<< HERE
 <img src=”images/die$userNumber.jpg”
 alt = “$userNumber” />
HERE;

 ✦ Check whether you rolled a 6. For some strange reason, my obsession
with sixes continues. If the roll is a 6, add 1 to the $sixCount variable.
By the end of the loop, this will contain the total number of sixes rolled.

if($userNumber == 6){
 $sixCount++;
} // end if

 ✦ Print the value of $sixCount. After the loop is completed, report how
many sixes were rolled.

print “</p><p>You rolled $sixCount six(es)!</p>”;

Looping with while
The while loop is the other primary way of repeating code. Figure 3-9 shows
a variation of the die rolling game.

35_9780470537558-bk05ch03.indd 55535_9780470537558-bk05ch03.indd 555 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

556 Looping with while

Figure 3-9:
This time,
the program
continues
until it
gets a 6.

while loops are much like for loops. They require the same thought:

 ✦ A sentry variable: This special variable controls access to the loop.
Unlike the int usually used in for loops, the sentry of a while loop can
be any type.

 ✦ Initialization: Set the initial value of the sentry variable before the loop
begins. Do not rely on default settings (because you don’t know what
they will be) but set this value yourself.

 ✦ A condition: The while statement requires a condition. This condition
controls access to the loop. As long as the condition is true, the loop con-
tinues. As soon as the condition is evaluated as false, the loop will exit.

 ✦ A modifier: You must somehow modify the value of the sentry variable.
It’s important that the modification statement happen somewhere inside
the loop. In a for loop, you almost always add or subtract to modify a
variable. In a while loop, any kind of assignment statement can be used
to modify the variable.

 for loops are a little safer than while loops because the structure of the
for loop requires you to think about initialization, condition, and modifica-
tion. All three features are built into the for statement. The while state-
ment requires only the condition. This might make you think that you don’t
need the other parts, but that would be dangerous. In any kind of loop, you

35_9780470537558-bk05ch03.indd 55635_9780470537558-bk05ch03.indd 556 10/7/10 8:45 PM10/7/10 8:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 3

C
o

n
tro

l S
tru

c
tu

re
s

557Looping with while

need to initialize the sentry variable and modify its value. With the while
loop, you’re responsible for adding these features yourself. Failure to do so
will cause endless loops, or loops that never happen. See much more about
this in Book IV, Chapter 3.

Take a look at the following code for the while.php program to see how it
works:

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
<head>
<title>while.php</title>
<style type=”text/css”>
img {
 height: 40px;
 width: 50px;
}
</style>
</head>
<body>
<h1>Dice Rolling Game 2</h1>
<p>Welcome to the dice rolling game. See how many rolls it takes to get a six!

</p>
<div id = ”output”>
<?php
$userNumber = 999;
$counter = 0;
while ($userNumber != 6){
 $userNumber = rand(1,6);
 print “”;
 $counter++;
}
print “<p>It took $counter tries to get a six.</p>“;
?>
</div>

<p>Try Again!</p>
</body>
</html>

In Book IV, you can see how to use the firebug
debugger to check your code. This is especially
handy for the logic errors that tend to occur
when you’re writing while loops. It would be
great if there was a similar facility for PHP code.
Unfortunately, PHP debuggers are relatively
rare and can be difficult to install and use. That’s
because PHP is not an interactive language, but
it processes code in batch mode on the server.

Firebug is a client-side application, and it
doesn’t ever see the PHP code. The best way to
debug PHP is with good-old print statements.
If something doesn’t work correctly, print out the
sentry variable before, inside, and after the loop
to see whether you can find the pattern. One
reason why people are switching to AJAX (see
Book VII) is that much of the logic is done on the
client side, where it’s easier to debug.

Can I use a debugger for PHP?

35_9780470537558-bk05ch03.indd 55735_9780470537558-bk05ch03.indd 557 10/7/10 8:46 PM10/7/10 8:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

558 Looping with while

This example illustrates how subtle while loops can be. All the key ele-
ments are there, but they don’t all look like part of the while loop.

 1. Initialize $userNumber.

 For this loop, $userNumber will be the sentry variable. The initializa-
tion needs to guarantee that the loop runs exactly once. Because the
condition will be ($userNumber != 6), I need to give $userNumber a
value that clearly isn’t 6. 999 will do the job, and it’s wild enough to be
clearly out of range. Although the initialization step appears in the code
before the while loop, it’s often best to start with your condition and
then back up a line to initialize because the initialization step depends
on the condition.

 2. Set up the condition.

 Think about what should cause the loop to continue or quit. Remember
that the condition explains when the loop continues. It’s often easier to
think about what causes the loop to exit. That’s fine; just reverse it. For
example, I want the loop to quit when $userNumber is equal to 6, so I’ll
have it continue as long as $userNumber != 6.

 3. Modify the sentry.

 This one is tricky. In this particular example, modify the sentry variable
by getting a new random number: $userNumber = rand(1,6). Often
in a while loop, the modification step is intrinsic to the problem you’re
solving. Sometimes you get the new value from the user, sometimes you
get it from a file or database, or sometimes you just add (just like a for
loop). The key here is to ensure you have a statement that modifies the
sentry variable and that the condition can trigger. For example, using
$userNumber = rand(1,5) would result in an endless loop because
$userNumber could never be 6.

 while loops can cause a lot of problems because they may cause logic
errors. That is, the syntax (structure and spelling of the code) may be fine,
but the program still doesn’t operate properly. Almost always, the problem
can be resolved by thinking about those three parts of a well-behaved loop:
Initialize the sentry, create a meaningful condition, and modify the sentry
appropriately. See Book IV, Chapter 3 for more on while loops.

35_9780470537558-bk05ch03.indd 55835_9780470537558-bk05ch03.indd 558 10/7/10 8:46 PM10/7/10 8:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Working with Arrays

In This Chapter
✓ Creating one-dimensional arrays

✓ Making the most of multidimensional arrays

✓ Using foreach loops to simplify array management

✓ Breaking a string into an array

In time, arrays will become one of the most important tools in your tool-
box. They can be a bit hard to grasp for beginners, but don’t let that stop

you. Arrays are awesome because they allow you to quickly apply the same
instructions to a large number of items.

In PHP, an array is a variable that holds multiple values that are mapped to
keys. Think of a golfing scorecard. You have several scores, one for each
hole on the golf course. The hole number is the key, and the score for that
hole is the value. Keys are usually numeric, but values can be any type. You
can have an array of strings, numbers, or even objects. Any time you’re think-
ing about a list of things, an array is the natural way to represent this list.

Using One-Dimensional Arrays
The most basic array is a one-dimensional array, which is basically just one
container with slots. Each slot has only one variable in it. In this section,
you find out how to create this type of array and fill it.

Creating an array
Array creation is pretty simple. First, you need to create a variable and then
tell PHP that you want that variable to be an array:

$theVar = array();

Now, $theVar is an array. However, it’s an empty array waiting for you to
come along and fill it.

 Technically, you can skip the variable creation step. It’s still a good idea
to explicitly define an array because it helps you remember the element is
an array, and there are a few special cases (such as passing an array into a
function) where the definition really matters.

36_9780470537558-bk05ch04.indd 55936_9780470537558-bk05ch04.indd 559 10/7/10 8:46 PM10/7/10 8:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

560 Using One-Dimensional Arrays

Filling an array
An array is a container, so it’s a lot more fun if you put something in it. You
can refer to an array element by adding an index (an integer) representing
which element of the array you’re talking about.

Say I have the following array:

$spanish = array();
$spanish[1] = “uno”;
$spanish[2] = “dos”;

What I did here is to add two elements to the array. Essentially, I said that
element 1 is uno, and element 2 is dos.

PHP has another interesting trick available. Take a look at the next line:

$spanish[] = “tres”;

This seems a little odd because I didn’t specify an index. PHP is pretty help-
ful. If you don’t specify an index, it looks at the largest index already used in
the array and places the new value at the next spot. So, the value tres will
be placed in element 3 of the array.

 PHP is somewhat notorious for its array mechanism. Depending on how
you look at it, PHP is far more forgiving or far sloppier than most languages
when it comes to arrays. For example, you don’t have to specify the length
of an array. PHP just makes the array whatever size seems to work. In fact,
you don’t even have to explicitly create the array. When you start using an
array, PHP automatically just makes it if it isn’t already there. Although this
is pretty easy, I’ve seen enough science fiction movies to know what can
happen when we let computers make all the decisions for us.

Viewing the elements of an array
You can access the elements of an array in exactly the same way you created
them. Array elements are just variables; the only difference is the numeric
index. Here’s one way to print out the elements of the array:

print <<< HERE
One: $spanish[1]

Two: $spanish[2]

Three: $spanish[3]

HERE;

I can simply print out the array elements like any ordinary variable. Just
remember to add the index.

36_9780470537558-bk05ch04.indd 56036_9780470537558-bk05ch04.indd 560 10/7/10 8:46 PM10/7/10 8:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 4

W
o

rk
in

g

w
ith

 A
rra

ys

561Using One-Dimensional Arrays

Another great way to print out arrays is particularly useful for debugging.
Take a look at this variation:

print “<pre> \n”;
print_r($spanish);
print “</pre> \n”;

The print_r() function is a special debugging function. It allows you to
pass an entire array, and it prints out the array in an easy-to-read format. It’s
best to put the output of the print_r() function inside a <pre> element so
that the output is preserved.

Of course, the results of the print_r() function mean something to you,
but your users don’t care about arrays. This is only a debugging tool.
Typically, you’ll use some other techniques for displaying arrays to your
users.

To see what all the code in basicArray.php looks like, take a look at
Figure 4-1.

Figure 4-1:
Arrays are
pretty easy
to use in
PHP.

36_9780470537558-bk05ch04.indd 56136_9780470537558-bk05ch04.indd 561 10/7/10 8:46 PM10/7/10 8:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

562 Using Loops with Arrays

Preloading an array
Sometimes you’ll know the elements that go into an array right away. In
those cases, you can use a special version of the array() function to make
this work. Take a look at this code.

$english = array(“zero”, “one”, “two”, “three”);

print “<pre> \n”;
print_r($english);
print “<pre> \n”;

This simple program allows you to load up the value of the array in one
swoop. Note that I started with zero. Computers tend to start counting at
zero, so if you don’t specify indices, the first element will be zero-indexed.

I use the print_r() function to quickly see the contents of the array. The
preloaded array is shown in Figure 4-2.

Figure 4-2:
This array
was
preloaded,
but the user
can’t tell the
difference.

Using Loops with Arrays
Arrays and loops are like peanut butter and jelly; they just go together.
When you start to use arrays, eventually, you’ll want to go through each ele-
ment in the array and do something with it. The for loop is the perfect way
to do this.

Look at the loopingArrays.php code to see how I step through an array
with a couple of variations of the for loop.

36_9780470537558-bk05ch04.indd 56236_9780470537558-bk05ch04.indd 562 10/7/10 8:46 PM10/7/10 8:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 4

W
o

rk
in

g

w
ith

 A
rra

ys

563Using Loops with Arrays

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN” “http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
 <title>loopingArrays.php</title>
 <meta http-equiv=”Content-Type” content=”text/html;charset=UTF-8” />
</head>
<body>
 <h1>Looping through arrays.</h1>
<div>
<?php
//first make an array of mini-book names
$books = array(”Creating the XHTML Foundation”,
 ”Styling with CSS”,
 ”Using Positional CSS for Layout”,
 ”Client-Side Programming with JavaScript”,
 ”Server-Side Programming with PHP”,
 ”Databases with MySQL”,
 ”Into the Future with AJAX”,
 ”Moving From Pages to Web Sites”);

//just print them out with a loop
print ”<p> \n”;
for ($i = 0; $i < sizeof($books);$i++){
 print $books[$i] . ”
\n”;
} // end for
print “</p> \n”;

//use the foreach mechanism to simplify printing out the elements
print ”<p> \n”;
foreach ($books as $book){
 print $book . ”
\n”;
} // end foreach
print ”</p> \n”;

?>
</div>

</body>
</html>

The relationship between arrays and loops isn’t hard to see:

 1. Create your array.

 This example uses an array of minibook titles in a charming and lovable
book on Web development. Note that I preloaded the array. There’s no
problem with the fact that the array statement (while a single line of
logic) actually takes up several lines in the editor.

 2. Build a for loop to step through the array.

 The loop needs to happen once for each element in the array; in this
case, that’s eight times. Set up a loop that repeats eight times. It will
start at 0 and end at 8.

36_9780470537558-bk05ch04.indd 56336_9780470537558-bk05ch04.indd 563 10/7/10 8:46 PM10/7/10 8:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

564 Using Loops with Arrays

 3. Use the sizeof() function to determine the ending point.

 Because you know that this array has eight elements, you could just set
the condition to $i < 8. The sizeof() function is preferred because
it will work even if the array size changes. Also, it’s easier to understand
what I meant. sizeof($books) means “the size of the $books array.”
The number 8 could mean anything.

 4. Print out each element.

 Inside the loop, I simply print out the current element of the array,
which will be $books[$i]. Don’t forget to add a
 tag if you want
a line break in the HTML output. Add the \n to keep the HTML source
code looking nice.

Simplifying loops with foreach
The relationship between loops and arrays is so close that many languages
provide a special version of the for loop just for arrays. Take a look at this
code fragment to see how cool it is:

//use the foreach mechanism to simplify printing out the elements
print “<p> \n”;
foreach ($books as $book){
 print $book . “
\n”;
} // end foreach
print “</p> \n”;

The foreach loop is a special version of the for loop that simplifies work-
ing with arrays. Here’s how it works.

 1. Use the foreach keyword to begin the loop.

 This tells PHP that you’re working with the foreach variation.

 2. The first parameter is the array name.

 The foreach loop is designed to work with an array, so the first param-
eter is the array you want to step through.

 3. Create a variable to hold each element of the array.

 On each pass through the loop, the $book variable will hold the current
element of the $books array. Most of the time, you use a loop for an
array because you want to deal with each element of the array. Using a
foreach loop makes this easier.

36_9780470537558-bk05ch04.indd 56436_9780470537558-bk05ch04.indd 564 10/7/10 8:46 PM10/7/10 8:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 4

W
o

rk
in

g

w
ith

 A
rra

ys

565Using Loops with Arrays

 4. Use the $book variable inside the loop.

 The $book variable is ready to go. The nice thing about using foreach
is you don’t have to worry about indices. The $book variable always
contains the current element of the array.

You can see the results of both of these loops in Figure 4-3. To the user,
there’s no difference. Both are simply text when it comes to output.

Figure 4-3:
Two kinds
of for loops
are used to
view these
arrays.

Arrays and HTML
Arrays are great because they’re used to hold lists of data in your program-
ming language. Of course, HTML already has other ways of working with
lists. The and tags are both used for visual representations of
lists, and the <select> object is used to let the user choose from a list. It’s
very common to build these HTML structures from arrays. Figure 4-4 illus-
trates exactly how this is done.

36_9780470537558-bk05ch04.indd 56536_9780470537558-bk05ch04.indd 565 10/7/10 8:46 PM10/7/10 8:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

566 Using Loops with Arrays

Figure 4-4:
This page
features
an ordered
list and
selection,
both based
on an array.

The code for the page is not too different than the previous examples. It just
adds some HTML formatting:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN” “http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
 <title>arrayHTML.php</title>
 <meta http-equiv=”Content-Type” content=”text/html;charset=UTF-8” />
</head>
<body>
 <h1>Arrays are useful in HTML</h1>
<div>

<?php
//first make an array of mini-book names
$books = array(”Creating the XHTML Foundation”,
 ”Styling with CSS”,
 ”Using Positional CSS for Layout”,
 ”Client-Side Programming with JavaScript”,
 ”Server-Side Programming with PHP”,
 ”Databases with MySQL”,
 ”Into the Future with AJAX”,
 ”Moving From Pages to Web Sites”);

//make the array into a numbered list
print ”\n”;

36_9780470537558-bk05ch04.indd 56636_9780470537558-bk05ch04.indd 566 10/7/10 8:46 PM10/7/10 8:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 4

W
o

rk
in

g

w
ith

 A
rra

ys

567Introducing Associative Arrays

foreach ($books as $book){
 print ” $book \n”;
} // end foreach
print ”\n”;

//make the array into a select object
print ”<select name = \”book\”> \n”;
foreach ($books as $book){
 print ” <option value = \”$book\”>$book</option> \n”;
} // end foreach
print ”</select> \n”;

?>
</div>

</body>
</html>

It’s a relatively simple matter to build HTML output based on arrays. To
create an ordered list or unordered list, just use a foreach loop but add
HTML formatting to convert the array to a list formatted in HTML:

//make the array into a numbered list
print “\n”;
foreach ($books as $book){
 print “ $book \n”;
} // end foreach
print “\n”;

Likewise, if you want to allow the user to choose an element from an array,
it’s pretty easy to set up a <select> structure that displays the elements of
an array:

//make the array into a select object
print “<select name = \”book\”> \n”;
foreach ($books as $book){
 print “ <option value = \”$book\”>$book</option> \n”;
} // end foreach
print “</select> \n”;

Introducing Associative Arrays
You can use string values as keys. For example, you might create an array
like this:

$myStuff = array();
$myStuff[“name”] = “andy”;
$myStuff[“email”] = “andy@aharrisbooks.net”;

Print $myStuff[“name”];

36_9780470537558-bk05ch04.indd 56736_9780470537558-bk05ch04.indd 567 10/7/10 8:46 PM10/7/10 8:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

568 Introducing Associative Arrays

Associative arrays are different than normal (numeric-indexed) arrays in
some subtle but important ways:

 ✦ The order is undefined. Regular arrays are always sorted based on the
numeric index. You don’t know what order an associative array will be
because the keys aren’t numeric.

 ✦ You must specify a key. If you’re building a numeric-indexed array, PHP
can always guess what key should be next. This isn’t possible with an
associative array.

 ✦ Associative arrays are best for name-value pairs. Associative arrays are
used when you want to work with data that comes in name/value pairs.
This comes up a lot in PHP and XHTML. XHTML attributes are often in
this format, as are CSS rules and form input elements.

 ✦ Some of PHP’s most important values are associative arrays. The $_
REQUEST variable (described in Chapter 3 of this minibook) is an impor-
tant associative array. So are $_GET, $_POST, and several others.

 Make sure to include quotation marks if you’re using a string as an array
index. It will probably work if you don’t, but it’s bad programming practice
and may not work in the future.

Using foreach with associative arrays
It’s very common to have a large associative array that you want to evaluate.
For example, PHP includes a very useful array called $_SERVER that gives
you information about your server configuration (things like your hostname,
PHP version, and lots of other useful stuff). The following code snippet (from
serverInput.php) runs through the entire $_SERVER array and prints
each key/value pair:

<?php
print “<dl> \n”;

foreach ($_SERVER as $key => $value){
 print <<<HERE
 <dt>$key</dt>
 <dd>$value</dd>

HERE;
} // end foreach
print “</dl> \n”;
?>

You can see this program running on my work server in Figure 4-5.

36_9780470537558-bk05ch04.indd 56836_9780470537558-bk05ch04.indd 568 10/7/10 8:46 PM10/7/10 8:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 4

W
o

rk
in

g

w
ith

 A
rra

ys

569Introducing Associative Arrays

Figure 4-5:
This variable
stores
data in an
associative
array.

Here’s how it works:

 1. Begin the foreach loop as normal.

 The associative form of the foreach loop begins just like the
regular one:

 foreach ($_SERVER as $key => $value){

 2. Identify the associative array.

 The first parameter is the array name:
 foreach ($_SERVER as $key => $value){

 3. Create a variable for the key.

 Each element of an associative array has a key and a value. I put the key
in a variable named $key:

 foreach ($_SERVER as $key => $value){

36_9780470537558-bk05ch04.indd 56936_9780470537558-bk05ch04.indd 569 10/7/10 8:46 PM10/7/10 8:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

570 Introducing Multidimensional Arrays

 4. Use the => symbol to indicate the associative relationship.

 This symbol helps PHP recognize you’re talking about an associative
array lookup:

 foreach ($_SERVER as $key => $value){

 5. Assign the value of the element to a variable.

 The $value variable holds the current value of the array item:
 foreach ($_SERVER as $key => $value){

 6. Use the variables inside your loop.

 Each time PHP goes through the loop, it pulls another element from the
array, puts that element’s key in the $key array, and puts the associ-
ated value in $value. You can then use these variables inside the loop
however you wish. I used a definition list because it’s a natural way to
display key-value pairs. A list of definitions is keys and values.

print <<<HERE
 <dt>$key</dt>
 <dd>$value</dd>

HERE;

 The $_SERVER variable is extremely useful for checking your environment,
but you shouldn’t make a program that displays this kind of information
available on a publicly accessible server. Doing so gives the bad guys infor-
mation they could use to cause you headaches. Use it for testing and debug-
ging, and then remove it. I have this example disabled on my site, but you
can still look at the source code if you wish.

Introducing Multidimensional Arrays
Arrays in PHP can hold anything, even other arrays. This turns out to be an
extremely useful function. A multidimensional array is an array that holds
arrays. Multidimensional arrays are used when your data is arranged in
some sort of tabular form.

We’re going on a trip
Some uses for these are to group things or to use as lookup tables. See Book
IV, Chapter 4 for one possible use of lookup tables — using multidimensional
arrays to hold the distances between cities. You can do exactly the same
thing with PHP. Even though the syntax is somewhat different, the concept is
exactly the same. Figure 4-6 is an HTML page that lets the user choose what
city she is traveling from and to.

36_9780470537558-bk05ch04.indd 57036_9780470537558-bk05ch04.indd 570 10/7/10 8:46 PM10/7/10 8:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 4

W
o

rk
in

g

w
ith

 A
rra

ys

571Introducing Multidimensional Arrays

Figure 4-6:
The user
picks the
source and
destination
with
selections.

The following code shows the basic HTML form:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN” “http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
 <title>Distance.html</title>
<style type=”text/css”>
form {
 width: 600px;
 margin: auto;
}

label {
 width: 250px;
 float: left;
 clear: left;
 text-align: right;
 margin-right: 1em;
}

select {
 float: left;
}

button {
 display: block;
 clear: both;
 margin: auto;
}

</style>
 <meta http-equiv=”Content-Type” content=”text/html;charset=UTF-8” />
</head>
<body>
 <h1>Distance Calculator, PHP Style</h1>
 <form action = ”distance.php”
 method = ”post”>
 <fieldset>
 <legend>Distance calculator</legend>
 <label>From</label>
 <select name = ”from”>
 <option value=”0”>Indianapolis</option>

36_9780470537558-bk05ch04.indd 57136_9780470537558-bk05ch04.indd 571 10/7/10 8:46 PM10/7/10 8:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

572 Introducing Multidimensional Arrays

 <option value=”1”>New York</option>
 <option value=”2”>Tokyo</option>
 <option value=”3”>London</option>
 </select>
 <label>To</label>
 <select name = ”to”>
 <option value=”0”>Indianapolis</option>
 <option value=”1”>New York</option>
 <option value=”2”>Tokyo</option>
 <option value=”3”>London</option>
 </select>

 <button type = ”submit”>
 calculate
 </button>
 </fieldset>
 </form>

</body>
</html>

There’s nothing unfamiliar about this form:

 1. Set the form’s action to distance.php.

 That’s the program that will actually calculate the distance. Use the
post method, as usual.

 2. Create a select object to determine where the user is leaving.

 This form element will be called from because it represents the city the
user is coming from. Note that the value is an integer that will relate to
the various city numbers (0 for Indianapolis, and so on).

 3. Create a second select object for the destination.

 The second selection is much like the first, but it has the name to.

 4. Use CSS for beautification.

 A little CSS can go a long way to make this page look nicer.

Looking up the distance
When the user submits the form, she is rewarded with the display shown in
Figure 4-7.

Figure 4-7:
This clever
program
calculates
the
distance.

36_9780470537558-bk05ch04.indd 57236_9780470537558-bk05ch04.indd 572 10/7/10 8:46 PM10/7/10 8:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 4

W
o

rk
in

g

w
ith

 A
rra

ys

573Introducing Multidimensional Arrays

Of course, you could calculate the distance between cities with if state-
ments, switches, and the like, but this kind of problem is really a lookup
table. That means that the best way to solve it without a computer is to build
a table. To use the table, you would use the row to indicate the source and
the column to designate the destination, and then see where they cross for
a result. It’s very easy to get the computer to do exactly the same thing by
using a two-dimension array, as shown in the following code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN” “http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
 <title>Distance Results</title>
 <meta http-equiv=”Content-Type” content=”text/html;charset=UTF-8” />
</head>
<body>
<?php

$cityName = array(”Indianapolis”, ”New York”, ”Tokyo”, ”London”);

//get variables from form
$from = $_REQUEST[”from”];
$to = $_REQUEST[”to”];

$distance = array(
 array(0, 648, 6476, 4000),
 array(648, 0, 6760, 3470),
 array(6476, 6760, 0, 5956),
 array(4000, 3470, 5956, 0));

$result = $distance[$from][$to];

print ”<h1>Distance from $cityName[$from] to $cityName[$to] is $result miles</
h1>\n”;

?>
</body>
</html>

The two-dimension array simplifies things greatly. Take a look at how the
program calculates the result:

 1. Create a standard array to handle city names.

 The cities all have numbers, so I use an array to help attach the names
to the numbers. It’s important that this array is in the correct order, so
city 0 is Indianapolis throughout.

 2. Retrieve to and from data from the form.

 These values were sent by the previous form, so get the data and place
them in variables.

 3. Build a 2D array to hold the distance data.

 The distance is stored in a table. A 2D array is a perfect way to hold this
data.

36_9780470537558-bk05ch04.indd 57336_9780470537558-bk05ch04.indd 573 10/7/10 8:46 PM10/7/10 8:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

574 Breaking a String into an Array

 4. Look up the distance in the distance array.

 A 2D array requires two indices. The first indicates the row, and the
second indicates the column.

 5. Print out the result.

 After you get the data, it’s pretty easy to print out.

Breaking a String into an Array
Many times, it can be useful to break a string into an array, especially when
reading input from a file.

Here are the two different ways of doing this:

 ✦ explode: explode takes one parameter as a delimiter and splits the
string into an array based upon that one parameter.

 ✦ preg_split: If you require regular expressions, using preg_split
is the way to go. split allows you to take complicated chunks of text,
look for multiple different delimiters stored in a regular expression, and
break it into an array based on the delimiters you specify.

explode works well with comma-separated value (CSV) files and the like, where
all the parameters you wish to break the text on are the same. preg_split
works better for when there are many different parameters that you wish to
break the text on or when the parameter you’re looking for is complex.

Creating arrays with explode
Array creation with explode is very straightforward:

explode(“ “, $theString);

The first value is the parameter on which you’re splitting up the string. The
second value is the string you would like to split into an array. In this exam-
ple, the string would be split up on each space. You can put anything you
want as the split parameter.

So, if you have the string that you want to store each word as a value in,
enter the following code (see Figure 4-8 for the output):

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>

36_9780470537558-bk05ch04.indd 57436_9780470537558-bk05ch04.indd 574 10/7/10 8:46 PM10/7/10 8:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 4

W
o

rk
in

g

w
ith

 A
rra

ys

575Breaking a String into an Array

<head>
<title>explode.php</title>
</head>
<body>
<h1>Using explode</h1>
<?php
$theString = “PARC (Palo Alto Research Center) was one of the single most

important hubs of invention for modern computing”;

$theArray = explode(“ “, $theString);
print “<pre> \n”;
print_r($theArray);
print “</pre> \n”;
?>
</body>
</html>

Figure 4-8:
A string
exploded
into an
array.

The delimiter can be anything you want. If you’re dealing with a CSV file,
where each value is separated by a comma, your explode method might
look like this:

$theArray = explode(“,”, $theString);

36_9780470537558-bk05ch04.indd 57536_9780470537558-bk05ch04.indd 575 10/7/10 8:46 PM10/7/10 8:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

576 Breaking a String into an Array

Creating arrays with preg_split
preg_split is a bit more complicated. split uses regular expressions to
split a string into an array, which can make it a bit slower than explode.

split looks exactly like explode, but instead of one character inside quo-
tations, you can cram all the characters you want to split on into brackets
inside the quotations, or you can use a complicated regular expression to
determine how the values will split.

If you need a refresher on regular expressions, check Book IV, Chapter 6.
Regular expressions work the same in JavaScript and in PHP because both
languages derived their regular expression tools from the older language
perl. (The preg part of preg_split stands for “perl regular expression.”)

An instance where you’d want to use preg_split instead of explode could
be when processing an e-mail address. A basic e-mail address has dots (.)
and an at sign (@). So, to split on both of these, you could do the following
(see Figure 4-9 for the output):

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
<head>
<title>split</title>
</head>
<body>
<h1>Using preg_split</h1>
<?php
$theString = ”joe@somebody.net”;
$theArray = preg_split(”/[@\.]/”, $theString);
print ”<pre>\n”;
print_r($theArray);
print ”</pre>\n”;

?>
</body>
</html>

Recall that regular expressions are encased in the slash character, and the
square braces indicate one of a number of options. I want to split on either
the at sign or the period. Remember to specify the period with \. because
an ordinary period means “any character.”

preg_split works well for timestamps, e-mail addresses, and other things
where there’s more than just one unique delimiter that you wish to split the
string on.

36_9780470537558-bk05ch04.indd 57636_9780470537558-bk05ch04.indd 576 10/7/10 8:46 PM10/7/10 8:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 4

W
o

rk
in

g

w
ith

 A
rra

ys

577Breaking a String into an Array

Figure 4-9:
The e-mail
address
split into an
array.

 Earlier versions of PHP had a function called split. It was much like the
preg_split function, but it used a different regular expression syntax.
Hardly anybody used it, and it will not be in PHP6 and later. Use explode
for simple patterns and preg_split when you need the power of regular
expressions.

36_9780470537558-bk05ch04.indd 57736_9780470537558-bk05ch04.indd 577 10/7/10 8:46 PM10/7/10 8:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

578 Book V: Server-Side Programming with PHP

36_9780470537558-bk05ch04.indd 57836_9780470537558-bk05ch04.indd 578 10/7/10 8:46 PM10/7/10 8:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Using Functions
and Session Variables

In This Chapter
✓ Creating functions to manage your code’s complexity

✓ Enhancing your code by using functions

✓ Working with variable scope

✓ Getting familiar with session variables

✓ Incorporating session variables into your code

PHP programs are used to solve interesting problems, which can get
quite complex. In this chapter, you explore ways to manage this com-

plexity. You discover how to build functions to encapsulate your code. You
also learn how to use session variables to make your programs keep track of
their values, even when the program is called many times.

Creating Your Own Functions
It won’t take long before your code starts to get complex. Functions are
used to manage this complexity. As an example, take a look at Figure 5-1.

Rolling dice the old-fashioned way
Before I show you how to improve your code with functions, look at a pro-
gram that doesn’t use functions so you have something to compare with.

The following rollDice.php program creates five random numbers and
displays a graphic for each die:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>rollDice1.php</title>
 </head>

 <body>
 <h1>RollDice 1</h1>
 <h2>Uses Sequential Programming</h2>
 <div>
 <?php

37_9780470537558-bk05ch05.indd 57937_9780470537558-bk05ch05.indd 579 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

580 Creating Your Own Functions

$roll = rand(1,6);
$image = ”die$roll.jpg”;
print <<< HERE
 <img src = ”$image”
 alt = ”roll: $roll” />

HERE;

$roll = rand(1,6);
$image = ”die$roll.jpg”;
print <<< HERE
 <img src = ”$image”
 alt = ”roll: $roll” />

HERE;

$roll = rand(1,6);
$image = ”die$roll.jpg”;
print <<< HERE
 <img src = ”$image”
 alt = ”roll: $roll” />

HERE;

$roll = rand(1,6);
$image = ”die$roll.jpg”;
print <<< HERE
 <img src = ”$image”
 alt = ”roll: $roll” />

HERE;

$roll = rand(1,6);
$image = ”die$roll.jpg”;
print <<< HERE
 <img src = ”$image”
 alt = ”roll: $roll” />

HERE;
 ?>
 </div>
 </body>
</html>

Here are some interesting features of this code:

 ✦ The built-in rand() function rolls a random number. Whenever possi-
ble, try to find functions that can help you. The rand() function produces
a random integer. If you use two parameters, the resulting number will be
in the given range. To roll a standard six-sided die, use rand(1,6):

$roll = rand(1,6);

 ✦ I created an image for each possible roll. To make this program more
visually appealing, I created an image for each possible die roll. The
images are called die1.jpg, die2.jpg, and so on. All these images are
stored in the same directory as the PHP program.

37_9780470537558-bk05ch05.indd 58037_9780470537558-bk05ch05.indd 580 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 5

U
sin

g
 Fu

n
c

tio
n

s a
n

d

S
e

ssio
n

 V
a

ria
b

le
s

581Creating Your Own Functions

 ✦ The img tag is created based on the die roll. After I have a die roll, it’s
easy to create an image based on that roll:

 $image = “die$roll.jpg”;
 print <<< HERE
 <img src = “$image”
 alt = “roll: $roll” />

HERE;

 ✦ The die-rolling code is repeated five times. If you can roll one die, you
can easily roll five. It’s as easy as copying and pasting the code. This
seems pretty easy, but it leads to problems. What if I want to change the
way I roll the dice? If so, I’ll have to change the code five times. What if I
want to roll 100 dice? The program will quickly become unwieldy. In gen-
eral, if you find yourself copying and pasting code, you can improve the
code by adding a function.

Figure 5-1:
This
program
rolls five
dice.

37_9780470537558-bk05ch05.indd 58137_9780470537558-bk05ch05.indd 581 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

582 Creating Your Own Functions

Improving code with functions
Functions are predefined code fragments. After you define a function, you
can use it as many times as you wish. As you can see in the following code,
the outward appearance of this program is identical to rollDice1.php, but
the internal organization is quite different:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>rollDice2.php</title>
 </head>

 <body>
 <h1>RollDice 2</h1>
 <h2>Uses Functions</h2>
 <?php

function rollDie(){
 $roll = rand(1,6);
 $image = ”die$roll.jpg”;
 print <<< HERE
 <img src = ”$image”
 alt = ”roll: $roll” />

HERE;
} // end rollDie

for ($i = 0; $i < 5; $i++){
 rollDie();
} // end for loop

 ?>

 </body>
</html>

Here’s how things have changed in this version:

 1. Use the function keyword to define a function.

 The function keyword indicates that a function definition will follow.
The code inside the definition won’t be run immediately, but instead,
PHP will “remember” the code inside the function definition and play it
back on demand:

function rollDie(){

 2. Give the function a name.

 The function name should indicate what the function does. I call my
function rollDie() because that’s what it does (rolls a die):

function rollDie(){

37_9780470537558-bk05ch05.indd 58237_9780470537558-bk05ch05.indd 582 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 5

U
sin

g
 Fu

n
c

tio
n

s a
n

d

S
e

ssio
n

 V
a

ria
b

le
s

583Creating Your Own Functions

 3. Specify arguments with parentheses.

 You can send arguments (special variables for your function to work
with) by indicating them in the parentheses. This function doesn’t need
arguments, so I leave the parentheses empty:

function rollDie(){

 For more information on functions, arguments, and the return state-
ment, turn to Book IV, Chapter 4. Functions in PHP act almost exactly
like their cousins in JavaScript.

 4. Begin the function definition with a left brace ({).

 The left brace is used to indicate the beginning of the function code.

 5. Indent the code that makes up your function.

 Use indentation to indicate which code is part of your function. In this
case, the function generates the random number and prints an image tag
based on that random number:

function rollDie(){
 $roll = rand(1,6);
 $image = “die$roll.jpg”;
 print <<< HERE
 <img src = “$image”
 alt = “roll: $roll” />

HERE;
} // end rollDie

 6. Denote the end of the function with a right brace (}).

 7. Call the function by referring to it.

 After the function is defined, you can use it in your code as if it were
built into PHP. In this example, I call the function inside a loop:

for ($i = 0; $i < 5; $i++){
 rollDie();
} // end for loop

Because the code is defined in a function, it’s a simple matter to run it as
many times as I want. Functions also make your code easier to read because
the details of rolling the dice are hidden in the function.

Managing variable scope
Two kinds of scope are in PHP: global and local.

If you define a variable outside a function, it has the potential to be used
inside any function. If you define a variable inside a function, you can access it
only from inside the function in which it was created. See Book IV, Chapter 4
for more on variable scope.

37_9780470537558-bk05ch05.indd 58337_9780470537558-bk05ch05.indd 583 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

584 Creating Your Own Functions

So, if you have a variable that you want to access and modify from within
the function, you either need to pass it through the parentheses or access it
with the global modifier.

The following code will print hello world! only once:

<?php
$output = “<p>hello world!</p>”;

function helloWorld(){
 global $output;

 print $output;
}

function helloWorld2(){
 print $output;
}

helloWorld();
helloWorld2();
?>

I left the global keyword off in the helloWorld2() function, so it didn’t
print at all because inside the function, the local variable $output is unde-
fined. By putting the global keyword on in the helloWorld() function, I
let it know I was referring to a global variable defined outside the function.

It can be hard to come up with a good naming
scheme for your variables and functions. Doing
so is very important because when you come
back to your program, if you haven’t named
your functions and variables consistently,
you’ll have a hard time understanding what you
wrote. Here are two common naming schemes
to make this simple: using underscores (_)
between words or camel-casing.

Using underscores is as straightforward as
separating_each_word_with_an_
underscore. It’s readable, but it’s ugly and
can cause the variable names to get awfully
lengthy.

The method I prefer and use throughout this
book is camel-casing, where each new word
after the first word gets capitalized just
LikeThis. It takes up less space than the
underscore method and makes reading the
code quicker — and after you get used to it,
you won’t even notice it anymore.

Tons of naming schemes are out there, and
even if you don’t use either of these, pick-
ing one and being consistent is important.
Searching for naming variables in Google
returns more than one million hits, so plenty of
resources are available.

Naming functions and variables

37_9780470537558-bk05ch05.indd 58437_9780470537558-bk05ch05.indd 584 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 5

U
sin

g
 Fu

n
c

tio
n

s a
n

d

S
e

ssio
n

 V
a

ria
b

le
s

585Creating Your Own Functions

PHP defaults to local inside functions because it doesn’t want you to acci-
dentally access or overwrite other variables throughout the program. For
more information about global and local scoping, check out http://us3.
php.net/global.

Returning data from functions
At the end of the function, you can tell the function to return one (and only
one) thing. The return statement should be the last statement of your func-
tion. The return statement isn’t required, but it can be handy.

The getName() function in the following code example will return world to
be used by the program. The program will print it once and store the text in
a variable to be printed multiple times later, as shown in the following code
and Figure 5-2:

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
<head>
<title>helloFunction</title>
</head>
<body>

<?php
function getName(){
 return ”World”;
}

print ”<h1>Hello, ” . getName() . ”!</h1>”;

$name = getName();

print <<<HERE
<p>$name, welcome to our site. We are so very happy to have you here.</p>
<p>If you would like to contact us, $name, just use the form on the contact

page.</p>
HERE;
?>

</body>
</html>

Figure 5-2:
An example
of a function
with a return
statement.

37_9780470537558-bk05ch05.indd 58537_9780470537558-bk05ch05.indd 585 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

586 Managing Persistence with Session Variables

The example in Figure 5-2 is admittedly contrived. This function could easily
be replaced by a variable, but the program that uses the function doesn’t
know that the function has only one line. Later on, I could make the function
much more complicated (maybe pulling the name from a database or ses-
sion variable). This points out a very important feature of functions that
return values: they can feel like variables when you use them.

Managing Persistence with Session Variables
Server-side programming is very handy, but it has one major flaw. Every con-
nection to the server is an entirely different transaction. Sometimes, you’ll
want to reuse a variable between several calls of the program. As an exam-
ple, take a look at rollDice3.php in Figure 5-3.

Figure 5-3:
This page
displays
a roll, the
number of
rolls, and
the total
rolls so far.

The interesting feature of rollDice3.php happens when you reload the
page. Take a look at Figure 5-4. This is still rollDice3.php, after I refreshed
the browser a few times. Take a look at the total. It increases with each roll.

The rollDice3.php program is interesting because it defies normal server-
side programming behavior. In a normal PHP program, every time you
refresh the browser, the program starts over from scratch. Every variable
starts out new.

37_9780470537558-bk05ch05.indd 58637_9780470537558-bk05ch05.indd 586 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 5

U
sin

g
 Fu

n
c

tio
n

s a
n

d

S
e

ssio
n

 V
a

ria
b

le
s

587Managing Persistence with Session Variables

Figure 5-4:
The count
and total
values keep
on growing.

Understanding session variables
The rollDice3.php program acts differently. It has a mechanism for keep-
ing track of the total rolls and number of visits to the page.

When a visitor accesses your Web site, she’s automatically assigned a
unique session id. The session id is either stored in a cookie or in the URL.
Sessions allow you to keep track of things for that specific user during her
time on your site and during future visits if she’s not cleared her cache or
deleted her cookies.

 Any mundane hacker can sniff out your session ids if you allow them to
be stored in the URL. To keep this from happening, use the session.
use_only_cookies directive in your PHP configuration file. This may be
inconvenient to users who don’t want you to have a cookie stored on their
machine, but it’s necessary if you’re storing anything sensitive in their
session.

Sessions are great because they are like a big box that the user carries
around with him that you can just throw stuff into. Even if the user comes
back to the site multiple times, the variables stored in the session retain
their values. If you have hundreds of users accessing your site at the
same time, each one will still have access to only their own versions of the
variable.

Here’s the code for rollDice3.php:

<?php
 session_start();
?>

37_9780470537558-bk05ch05.indd 58737_9780470537558-bk05ch05.indd 587 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

588 Managing Persistence with Session Variables

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>rollDice3.php</title>
 </head>

 <body>
 <h1>RollDice 3</h1>
 <h2>Uses a Session Variable</h2>

 <?php

function init(){
 global $count;
 global $total;

 //increment count if it exists
 if (isset($_SESSION[”count”])){
 $count = $_SESSION[”count”];
 $count++;
 $_SESSION[”count”] = $count;
 } else {
 //if count doesn’t exist, this is our first pass,
 //so initialize both session variables
 $_SESSION[”count”] = 1;
 $_SESSION[”total”] = 0;
 $count = 1;
 } // end if
} // end init

function rollDie(){
 global $total;

 $roll = rand(1,6);
 $image = ”die$roll.jpg”;
 print <<< HERE
 <img src = ”$image”
 alt = ”roll: $roll” />

HERE;
 $total = $_SESSION[”total”];
 $total += $roll;
 $_SESSION[”total”] = $total;

} // end rollDie

init();
rollDie();

print ” <p>Rolls: $count</p> \n”;
print ” <p>Total: $total</p> \n”;

 ?>
 </body>
</html>

37_9780470537558-bk05ch05.indd 58837_9780470537558-bk05ch05.indd 588 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 5

U
sin

g
 Fu

n
c

tio
n

s a
n

d

S
e

ssio
n

 V
a

ria
b

le
s

589Managing Persistence with Session Variables

This program rolls a die, but it uses session variables to keep track of the
number of rolls and total value rolled. The session variable is updated every
time the same user (using the same browser) visits the site.

Adding session variables to your code
Here’s how to incorporate sessions into your programs:

 1. Begin your code with a call to session_start().

 If you want to use session variables, your code must begin with a
session_start() call, even before the DOCTYPE definition. I put a tiny
<?php ?> block at the beginning of the program to enable sessions:

<?php
 session_start();
?>

 2. Check for the existence of the session variables.

 Like form variables, session variables may or may not exist when the
program is executed. If this is the first pass through the program, the
session variables may not have been created yet. The init() function
checks whether the count session variable exists. If so, it will increment
the counter; if not, it will initialize the sessions. $_SESSION is a super-
global array (much like $_REQUEST).

 if (isset($_SESSION[“count”])){

 3. Load session variables from the $_SESSION superglobal.

 Create a local variable and extract the current value from the $_
SESSION associative array:

$count = $_SESSION[“count”];

 Note that this line may trigger an error if you haven’t already initialized
the variable. Some PHP configurations are set up to automatically assign
0 to a nonexistent session variable, and some trigger an error.

 4. Increment the counter.

 The $count variable is now an ordinary variable, so you can add a value
to it in the ordinary way:

 $count++;

 5. Store the value back into the $_SESSION superglobal.

 You can manipulate the local variable, but if you want to use the value
the next time the program runs for this user, you need to store the value
back into the session after you change it.

 For example, the following code loads the variable $count from the ses-
sion, adds 1 to it, and stores it back into the session:

$count = $_SESSION[“count”];
$count++;
$_SESSION[“count”] = $count;

37_9780470537558-bk05ch05.indd 58937_9780470537558-bk05ch05.indd 589 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

590 Managing Persistence with Session Variables

 6. Initialize the session variables if they do not exist.

 Sometimes you need access to a session variable, but that session
doesn’t already exist. Usually, this will happen on the first pass of a pro-
gram meant to run multiple times. It will also happen if the user jumps
straight into a program without going through the appropriate prior
programs (say you have got a system with three PHP programs and the
user uses a bookmark to jump straight to program 3 without going to
program 1, which sets up the sessions). In these situations, you’ll either
want to pass an error message or quietly create new session variables.
In my example, I simply create a new session if it doesn’t already exist.
It’s an easy matter of assigning values to the $_SESSION superglobal:

 //if count doesn’t exist, this is our first pass,

 //so initialize both session variables

 $_SESSION[“count”] = 1;

 $_SESSION[“total”] = 0;

 $count = 1;

If you want to reset your sessions for testing purposes, you can write a quick
program to set the variables to 0, or you can use the Web Developer toolbar:
Cookies➪Clear Session Cookies. Note that the session data itself isn’t stored
in the cookie. The cookie just contains a reference number so the server can
look up the session data in a file stored on the server.

The session mechanism is powerful and easy
to use. It isn’t quite foolproof, though. Sessions
are automatically handled through a browser
mechanism called cookies. Cookies aren’t
inherently good or evil, but they’ve gotten a bad
reputation because some programs use them
maliciously. You’ll occasionally run across a
user who’s turned off cookies, but this is not
a major problem because PHP can automati-
cally use other options when cookies are not
available. There’s rarely a need to work with
cookies directly in PHP because sessions are a
higher-level abstraction of the cookie concept.

Like all data passed through the HTTP proto-
col, session and cookie information is passed

entirely in the clear. A person with evil intent
can capture your session information and use
it to do bad things.

Generally, you should stay away from sensitive
information (credit card data, Social Security
numbers, and so on) unless you’re extremely
comfortable with security measures. If you
must pass potentially sensitive data in your
PHP program, investigate a technology called
TLS (Transport Layer Security), which auto-
matically encrypts all data transferred through
your site. TLS replaces the older SSL technol-
ogy and is available as a free plugin to Apache
servers.

Sessions and security

37_9780470537558-bk05ch05.indd 59037_9780470537558-bk05ch05.indd 590 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Working with
Files and Directories

In This Chapter
✓ Saving to text files

✓ Reading from text files

✓ Reading a file as an array

✓ Parsing delimited text data

✓ Working with file and directory functions

An important part of any programming language is file manipulations.
Whether you need to create a comma-separated value (CSV) file or

generate a dynamic list of files in a directory, or just need a semi-permanent
place to log records on the server, file manipulation functions are an indis-
pensable part of your PHP toolbox.

Text File Manipulation
Work with text files is split into two basic categories: writing and reading.
Writing and reading come down to six basic functions. See the following
bullet list for a brief explanation of the six basic file functions. Each function
has an entire subsection in the following “Writing text to files” and “Reading
from the file” sections:

 ✦ fopen(): Stores a connection to a file you specify in a variable you
specify

 ✦ fwrite(): Writes text you specify to a file you specify

 ✦ fclose(): Closes the connection to a file you specify that you created
with fopen()

 ✦ fgets(): Reads a line from a file you specify

 ✦ feof(): Checks whether you have hit the end of a file you specify
during a file read

 ✦ file(): Puts the entire contents of a file you specify into an array

38_9780470537558-bk05ch06.indd 59138_9780470537558-bk05ch06.indd 591 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

592 Text File Manipulation

Writing text to files
This section details the functions needed to access and write to a file, such
as how to request access to a file from PHP with the fopen() function, write
to the file using the fwrite() function, and let PHP know you are done with
the file with the fclose() function.

fopen()
To do any file manipulations, you must tell PHP about the file you would like
to manipulate and tell PHP how you would like to manipulate that file.

The fopen() function has two required parameters that you must pass to
it: the path to the file and the type of file manipulation you would like to
perform (the mode).

The fopen() function returns a connection to the requested file if it’s suc-
cessful. (The connection is called a pointer — see the “Official file manipu-
lation terminology” sidebar for more information.) If there is an error, the
fopen() function returns False. Whatever the fopen() function returns
(the connection or False), it should be assigned to a variable (a stream).

Here is an example of the fopen() function; see the section “Storing data
in a CSV file” later in this chapter for an example of the fopen() function in
action:

$fileConnection = fopen($theFile, $theMode);

In the preceding example, the file connection returned by the fopen() func-
tion is assigned to the variable $fileConnection. The variable $theFile
would contain the path to a file; for example, both C:\\xampp\\htdocs\\
inc\\info.txt and /inc/log.txt are valid file paths. The file must be
in a place the server can access, meaning that you can put the file anywhere
you could put a PHP page for the server to serve.

Although possible, you probably shouldn’t try to connect to a file in the My
Documents folder or its equivalent on your operating system. You’ll need
the actual file path, which can be quite convoluted. It’s also not necessary
for the files you open to be in the htdocs directory. This could be useful if
you want to access a file that will not be available except through your pro-
gram. Use a relative reference if the file will be in the same directory as your
program, or use an absolute reference if it will be somewhere else on your
system. If you move your program to a remote server, you can only access
files that reside on that server.

38_9780470537558-bk05ch06.indd 59238_9780470537558-bk05ch06.indd 592 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 6

W
o

rk
in

g
 w

ith
 File

s
a

n
d

 D
ire

c
to

rie
s

593Text File Manipulation

The variable $theMode would contain one of the values from the following list:

 ✦ r: Grants read-only access to the file

 ✦ w: Grants write access to the file

 Be careful, though, because if you specify this mode (w) for the
fopen() function and use the fwrite() function, you will completely
overwrite anything that may have been in the file. Don’t use w if there’s
anything in the file you want to keep.

 ✦ a: Grants the right to append text to the file. When you specify this mode
for the fopen() function and use the fwrite() function, the fwrite()
function appends whatever text you specify to the end of the existing file.

 ✦ r+ or w+: Grants read and write access to the file. I don’t talk about r+
and w+ in this book, except to say that they’re a special way of accessing
the file. This special file access mode is called random access.This allows
you to simultaneously read and write to the file. If you require this type
of access, you probably should be using something more simple and
powerful, like relational databases.

If you look at the documentation for fopen(),
or any of the file manipulation functions, you
will see some funny terminology. To keep
things simple, I decided to use more recogniz-
able, easily understandable terms. I wanted
you to know that I switched things up a little bit
to give you a quick primer to help you out if you
did happen to look at the official documentation
or talk to a more seasoned programmer who
might use the official terms.

According to the official online PHP documen-
tation, the fopen() function returns a file
pointer, and binds a named resource to a stream.

What this means is that when you use the
fopen() function, it opens a file (much like
you would do if you opened the file in Notepad)
and returns a pointer to that file.

It’s as if you had put your mouse arrow at the
beginning of the file and clicked there to create
the little blinky-line cursor telling Notepad

where you are focusing (where you would like
to begin editing the text). The pointer is PHP’s
focus on the file.

With the fopen() function, PHP’s focus
is bound to a stream, which means that it is
attached to a variable. When you use the
fopen() function, you associate the file with
a variable of your choosing. This variable is how
PHP keeps track of the location of the file and
keeps track of where PHP’s cursor is in the file.
Normally, when you think of a stream, you might
think of a one-way flow. But, in this case, the
stream can either be read into the program char-
acter by character, line by line, or you can move
the cursor around to any point in the file that you
want. So, rather than being just a one-way flow,
the stream is really an open connection to a file.

See http://us.php.net/manual/en/
function.fopen.php for more detail on
the fopen() function.

Official file manipulation terminology

38_9780470537558-bk05ch06.indd 59338_9780470537558-bk05ch06.indd 593 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

594 Text File Manipulation

fwrite()
After you open a file with the fopen() function and assign the file connec-
tion to a variable (see the “fopen()” section, earlier in this chapter, for more
information), you can use the file in your PHP code. You can either read
from the file, or you can write to the file with the fwrite() function.

Depending on what mode you specify when you opened the file with the
fopen() function, the fwrite() function will either overwrite the entire
contents of the file (if you used the w mode) or it will append the text you
specify to the end of the file (if you used the a mode).

The fwrite() function has two required parameters you must pass to it:
the connection to the file that was established by the fopen() function
and the text you wish to write to the file. The fwrite() function returns the
number of bytes written to the file on success and False on failure.

Here is an example of the fwrite() function (see the section “Storing data
in a CSV file” later in this chapter for an example of the fwrite() function
in action):

$writeResults = fwrite($fileConnection, $text);

 The fwrite() function can also be written fputs(). fwrite() and
fputs() both do the exact same thing. fputs() is just a different way of
writing fwrite() fputs() is referred to as an alias of fwrite().

fclose()
After you finish working with the file, closing the file connection is important.

To close the connection to a file you’ve been working with, you must pass
the connection to the file you wish to close to the fclose() function. The
fclose() function will return True if it is successful in closing the connec-
tion to the file and False if it is not successful in closing the connection to
the file.

Here is an example of the fclose() function:

fclose($fileConnection);

Writing a basic text file
Often, you’ll want to do something as simple as record information from a
form into a text file. Figure 6-1 illustrates a simple program that responds to
a form and passes the input to a text form.

38_9780470537558-bk05ch06.indd 59438_9780470537558-bk05ch06.indd 594 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 6

W
o

rk
in

g
 w

ith
 File

s
a

n
d

 D
ire

c
to

rie
s

595Text File Manipulation

Figure 6-1:
Here’s a
standard
form that
asks for
some
contact
information.

 I didn’t reproduce the code for this form here because it’s basic XHTML. Of
course, it’s available on the book’s companion CD-ROM and Web site, and I
encourage you to look it over there.

The basic HTML form shown here is fine, but
you’ll find that when you start putting forms on
the Web, you’ll eventually get attacked by robot
spam programs using your form to post (often
inappropriate) content through your form.

The best solution to this is a technique called
CAPTCHA, which is a mechanism for determin-
ing whether a form is submitted by a human or
a computer. When you fill out forms online and
have to type random words or letters from a
weird image, you’re using a form of CAPTCHA.

You can implement a very simple form of
CAPTCHA by converting your form to a PHP
page. Create a simple math problem and store
the answer in a session variable. Ask the user
to solve the problem and submit the response
as part of the form. Have your program check
the user’s answer against the session.

Although this will not prevent a concerted
attack, it is good enough for basic protection.

I’m being attacked by robots!

38_9780470537558-bk05ch06.indd 59538_9780470537558-bk05ch06.indd 595 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

596 Text File Manipulation

When the user enters contact data into this form, it will be passed to a pro-
gram that reads the data, prints out a response, and stores the information
in a text file. The output of the program is shown in Figure 6-2.

Figure 6-2:
This pro-
gram has
responded
to the file
input.

The more interesting behavior of the program is not visible to the user. The
program opens a file for output and prints the contents of the form to the
end of that file. Here are the contents of the data file after a few entries:

first: Andy
last: Harris
email: andy@aharrisbooks.net
phone: 111-1111

first: Bill
last: Gates
email: bill@Microsoft.com
phone: 222-2222

first: Steve
last: Jobs
email: steve@apple.com
phone: 333-3333

first: Linus
last: Torvalds
email: linus@linux.org
phone: 444-4444

The program to handle this input is not complicated. It essentially grabs
data from the form, opens up a data file for output, and appends that data to
anything already in the file. Here’s the code for addContact.php:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN” “http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
 <title>addContact.html</title>
 <meta http-equiv=”Content-Type” content=”text/html;charset=UTF-8” />

38_9780470537558-bk05ch06.indd 59638_9780470537558-bk05ch06.indd 596 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 6

W
o

rk
in

g
 w

ith
 File

s
a

n
d

 D
ire

c
to

rie
s

597Text File Manipulation

 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”contact.css” />
</head>

<body>
<?php

//read data from form
$lName = $_REQUEST[”lName”];
$fName = $_REQUEST[”fName”];
$email = $_REQUEST[”email”];
$phone = $_REQUEST[”phone”];

//print form results to user

print <<< HERE
<h1>Thanks!</h1>

<p>
 Your spam will be arriving shortly.
</p>

<p>
first name: $fName

last name: $lName

email: $email

phone: $phone
</p>

HERE;

//generate output for text file

$output = <<< HERE
first: $fName
last: $lName
email: $email
phone: $phone

HERE;

//open file for output
$fp = fopen(”contacts.txt”, ”a”);

//write to the file
fwrite($fp, $output);
fclose($fp);

?>

</body>
</html>

The process is straightforward:

 1. Read data from the incoming form.

 Just use the $_REQUEST mechanism to read variables from the form.

38_9780470537558-bk05ch06.indd 59738_9780470537558-bk05ch06.indd 597 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

598 Text File Manipulation

 2. Report what you’re doing.

 Let users know that something happened. As a minimum, report the
contents of the data and tell them that their data has been saved. This is
important because the file manipulation will be invisible to the user.

 3. Create a variable for output.

 In this simple example, I print nearly the same values to the text file
that I reported to the user. The text file does not have HTML formatting
because it’s intended to be read with a plain text editor.

 4. Open the file in append mode.

 You might have hundreds of entries. Using append mode ensures that
each entry goes at the end of the file, rather than overwriting the previ-
ous contents.

 5. Write the data to the file.

 Using the fwrite() or fputs() function writes the data to the file.

 6. Close the file.

 Don’t forget to close the file with the fclose() function.

The file extension you use implies a lot about how the data is stored. If you
store data in a file with an .xt extension, the user will assume it can be read
by a plain text editor. The .dat extension implies some kind of formatted
data, and .csv implies comma-separated values (explained later in this
chapter). You can use any extension you want, but be aware you will con-
fuse the user if you give a text file an extension like .pdf or .doc.

Your programs will be loading and storing files,
so you need to know a little about how this
works. If you’re using a Windows-based server,
you will probably have no problems because
Windows has a very simplistic file permission
system. However, your program will probably
be housed on a Unix-like system eventually,
so you need to understand a bit about how
file permission works on these systems. In the
Unix/Linux world, each file has an owner, and
that owner can designate who can do what
with a file. Typically, if your program creates
a file, it can write to it and read from it, but this
isn’t always the case. If you get a file-access

error when testing these programs, it’s likely
that the operating system is confused about
who the file’s owner is and what can be done
to the file. You should be able to change the
ownership of a file and its permissions through
the file management system of your server or
your FTP client (see Book VIII for more about
these tools). Begin by trying to set the permis-
sion of your data file to 777 (all permissions for
all users). If you cannot do this, you may need
to change ownership to yourself. Try right-
clicking the filename in your tool and looking
for a Properties dialog box for these options.

A note about file permissions

38_9780470537558-bk05ch06.indd 59838_9780470537558-bk05ch06.indd 598 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 6

W
o

rk
in

g
 w

ith
 File

s
a

n
d

 D
ire

c
to

rie
s

599Text File Manipulation

Reading from the file
If you can write data to a file, it would make sense that you could read from
that file as well. The showContacts.php program displayed in Figure 6-3
pulls the data saved in the previous program and displays it to the screen.

Figure 6-3:
This
program
reads the
text file and
displays it
onscreen.

It is not difficult to write a program to read a text file. Here’s the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN” “http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
 <title>readContact.php</title>
</head>
<body>
<h1>Contacts</h1>
<div>
<?php

//open up the contact file
$fp = fopen(”contacts.txt”, ”r”) or die(”error”);

//print a line at a time
while (!feof($fp)){
 $line = fgets($fp);
 print ”$line
”;
}

38_9780470537558-bk05ch06.indd 59938_9780470537558-bk05ch06.indd 599 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

600 Text File Manipulation

//close the file
fclose($fp);

?>
</div>

</body>
</html>

The procedure is similar to writing the file, but it uses a for loop.

 1. Open the file in read mode.

 Open the file just as you do when you write to it, but use the r designa-
tor to open the file for read mode. Now you can use the fgets() func-
tion on the file.

 2. Create a while loop for reading the data.

 Typically, you’ll read a file one line at a time. You’ll create a while loop
to control the action.

 3. Check for the end of the file with feof().

 You want the loop to continue as long as there are more lines in the file.
The feof() function returns the value true if you are at the end of the
file, and false if there are more lines to read. You want to continue as
long as feof() returns false.

 4. Read the next line with the fgets() function.

 This function reads the next line from the file and passes that line into a
variable (in this case, $line).

 5. Print out the line.

 With the contents of the current line in a variable, you can do whatever
you want with it. In this case, I’ll simply print it out, but you could format
the contents, search for a particular value, or whatever else you want.

If this program just prints out the contents of a
text file, you might wonder why it’s necessary
at all. After all, you could just supply a link to
the text file. For this trivial example, that might
be true, but the process of reading the file
gives you many other options. For example, you
might want to add improved CSS formatting.

You might also want to filter the contents: for
example, only matching the lines that relate to
a particular entry. Finally, you may want to do
more than print the contents of a file — say,
e-mail them or transfer them to another format.
When you read the contents into memory, you
can do anything to them.

Why not just link to the file?

38_9780470537558-bk05ch06.indd 60038_9780470537558-bk05ch06.indd 600 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 6

W
o

rk
in

g
 w

ith
 File

s
a

n
d

 D
ire

c
to

rie
s

601Using Delimited Data

Using Delimited Data
This basic mechanism for storing data is great for small amounts of data, but
it will quickly become unwieldy if you’re working with a lot of information. If
you’re expecting hundreds or thousands of people to read your forms, you’ll
need a more organized way to store the data. You can see how to use relational
databases for this type of task in Book VI, but for now, another compromise is
fine for simpler data tasks. You can store data in a very basic text format that
can be easily read by spreadsheets and databases. This has the advantage of
imposing some structure on the data and is still very easy to manage.

The basic plan is to format the data in a way that it can be read back into
variables. Generally, you store all of the data for one form on a single line,
and you separate the values on that line with a delimiter, which is simply
some character intended to separate data points. Spreadsheets have used
this format for many years as a basic way to transport data. In the spread-
sheet world, this type of file is called a CSV (for comma-separated values)
file. However, the delimiter doesn’t need to be a comma. It can be nearly
any character. I typically use a tab character or the pipe (|) symbol because
they are unlikely to appear in the data I’m trying to save and load.

Storing data in a CSV file
Here’s how you store data in a CSV file:

 1. You can use the same HTML form.

 The data is gathered in the same way regardless of the storage mecha-
nism. I did make a new page called addContactCSV.html, but the
only difference between this file and the addContact.html page is the
action property. I have the two pages send the data to different PHP
programs, but everything else is the same.

 2. Read the data as normal.

 In your PHP program, you begin by pulling data from the previous form.
//read data from form
$lName = $_REQUEST[“lName”];
$fName = $_REQUEST[“fName”];
$email = $_REQUEST[“email”];
$phone = $_REQUEST[“phone”];

 3. Store all the data in a single tab-separated line.

 Concatenate a large string containing all the data from the form. Place
a delimiter (I used the tab symbol \t) between variables, and a newline
(\n) at the end.

//generate output for text file
$output = $fName . “\t”;
$output .= $lName . “\t”;
$output .= $email . “\t”;
$output .= $phone . “\n”;

38_9780470537558-bk05ch06.indd 60138_9780470537558-bk05ch06.indd 601 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

602 Using Delimited Data

 4. Open a file in append mode.

 This time, I name the file contacts.csv to help myself remember that
the contact form is now stored in a CSV format.

 5. Write the data to the file.

 The fwrite() function does this job with ease.

 6. Close the file.

 This part (like most of the program) is identical to the earlier version of
the code.

Here’s the code for addContactCSV.php in its entirety:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN” “http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
 <title>addContactCSV.php</title>
 <meta http-equiv=”Content-Type” content=”text/html;charset=UTF-8” />
 <link rel = “stylesheet”
 type = “text/css”
 href = “contact.css” />
</head>

<body>
<?php

//read data from form
$lName = $_REQUEST[“lName”];
$fName = $_REQUEST[“fName”];
$email = $_REQUEST[“email”];
$phone = $_REQUEST[“phone”];

//print form results to user

print <<< HERE
<h1>Thanks!</h1>

<p>
 Your spam will be arriving shortly.
</p>

<p>
first name: $fName

last name: $lName

email: $email

phone: $phone
</p>

HERE;

38_9780470537558-bk05ch06.indd 60238_9780470537558-bk05ch06.indd 602 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 6

W
o

rk
in

g
 w

ith
 File

s
a

n
d

 D
ire

c
to

rie
s

603Using Delimited Data

//generate output for text file
$output = $fName . “\t”;
$output .= $lName . “\t”;
$output .= $email . “\t”;
$output .= $phone . “\n”;

//open file for output
$fp = fopen(“contacts.csv”, “a”);

//write to the file
fwrite($fp, $output);
fclose($fp);

?>

</body>
</html>

As you can see, this is not a terribly difficult way to store data.

Viewing CSV data directly
If you look at the resulting file in a plain text editor, it looks like Figure 6-4.

Figure 6-4:
The data is
separated by
tab charac-
ters and
each entry
is on its
own line.

Of course, CSV data isn’t meant to be read as plain text. On most operat-
ing systems, the .csv file extension is automatically linked to the default
spreadsheet program. If you double-click the file, it will open in your spread-
sheet, which will look something like Figure 6-5.

This is an easy way to store large amounts of data because you can use
the spreadsheet to manipulate the data. Of course, relational databases
(described in Book VI) are even better, but this is a very easy approach for
relatively simple data sets. I’ve built many data entry systems by using this
general approach.

38_9780470537558-bk05ch06.indd 60338_9780470537558-bk05ch06.indd 603 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

604 Using Delimited Data

Figure 6-5:
Most
spread-
sheets
can read
CSV data
directly.

Reading the CSV data in PHP
Of course, you may also want to read in the CSV data yourself. It’s not too
difficult to do. The following code for readContactCSV.php:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN” “http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
 <title>readContactCSV.php</title>
</head>
<body>
<h1>Contacts</h1>
<div>
<?php

print <<< HERE

<table border = ”1”>
 <tr>
 <th>First</th>
 <th>Last</th>
 <th>email</th>
 <th>phone</th>
 </tr>

38_9780470537558-bk05ch06.indd 60438_9780470537558-bk05ch06.indd 604 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 6

W
o

rk
in

g
 w

ith
 File

s
a

n
d

 D
ire

c
to

rie
s

605Using Delimited Data

HERE;

$data = file(”contacts.csv”);
foreach ($data as $line){
 $lineArray = explode(”\t”, $line);

 list($fName, $lName, $email, $phone) = $lineArray;
 print <<< HERE
 <tr>
 <td>$fName</td>
 <td>$lName</td>
 <td>$email</td>
 <td>$phone</td>
 </tr>

HERE;
} // end foreach

//print the bottom of the table
print ”</table> \n”;

?>
</div>

</body>
</html>

Figure 6-6 shows this program in action.

Figure 6-6:
This
program
creates an
HTML table
from the
data in
the file.

In this program, I read the contents of a CSV file and display it in an HTML
table. It’s not terribly different than reading any other text file, but there are
some new twists.

38_9780470537558-bk05ch06.indd 60538_9780470537558-bk05ch06.indd 605 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

606 Using Delimited Data

 1. Print the table heading.

 It’s easiest to manually print out the table heading with the field names,
because I know what they’ll be. A simple heredoc will do the job.

print <<< HERE

<table border = “1”>
 <tr>
 <th>First</th>
 <th>Last</th>
 <th>email</th>
 <th>phone</th>
 </tr>

HERE;

 2. Load the data into an array.

 PHP has a marvelous tool called file. This function takes a filename
as its only input. It then opens that file and places all the contents in an
array, placing each line in its own element of the array. There’s no need
to make a file pointer, or to open or close the file. In this example, I load
all the contents of contacts.csv into an array called $data.

$data = file(“contacts.csv”);

 3. Use a foreach loop to step through the contents.

 Now I can walk through the contents of the file with a simple foreach
loop. I place the current line in a variable called (wait for it . . .) $line.

foreach ($data as $line){

 4. Explode each line into its own array.

 You have got to love a function with a violent name, especially when
it’s really useful. Use the explode command to separate the line into
its component parts. For this example, I break on the tab (\t) character
because that’s the delimiter I used when storing the file.

 $lineArray = explode(“\t”, $line);

 5. Use the list() function to store each element of the array into its
own variable.

 I could just use the array, but I think it’s easier to pass the data back to
the same variable names I used when creating the program. The list()
construct does exactly that. Feed it a bunch of variable names and
assign an array to it, and now each element of the array will be assigned
to the corresponding variable.

 list($fName, $lName, $email, $phone) = $lineArray;

 6. Print the variables in an HTML table row.

 All the variables fit well in an HTML table, so just print out the current
row of the table.

 print <<< HERE
 <tr>

38_9780470537558-bk05ch06.indd 60638_9780470537558-bk05ch06.indd 606 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 6

W
o

rk
in

g
 w

ith
 File

s
a

n
d

 D
ire

c
to

rie
s

607Using Delimited Data

 <td>$fName</td>
 <td>$lName</td>
 <td>$email</td>
 <td>$phone</td>
 </tr>

HERE;

 7. Clean up your playthings.

 There’s a little housekeeping to do. Finish the loop and close up the
HTML table. There’s no need to close the file because that was automati-
cally done by the file() function.

 } // end foreach

//print the bottom of the table
print “</table> \n”;

These shortcuts — the file() function and list() — make it very easy to
work with CSV data. That’s one reason this type of data is popular for basic
data problems.

 The list() construct works only on numerically indexed arrays and assumes
that the array index begins at 0. If you want to use the list() function with
associative arrays, surround the array variable with the array_values()
function. Technically, list() is not a function but a language construct. (See
http://us3.php.net/list for more information on the list() function.)

The file() function is appealing, but it isn’t perfect for every situation. It’s
great as long as the file size is relatively small, but if you try to load in a very
large file, you will run into memory limitations. The “line at a time” approach
used in readContact.php doesn’t have this problem because there’s only
a small amount of data in memory at any given time.

If you’re planning on displaying the user’s input
to the screen, escape all the special charac-
ters before saving the user’s input to a file or
sending it to the browser. Otherwise, some
malicious user could use some simple CSS and
HTML to really mess up your page. Remember:
Paranoia is your friend. The simplest way
to guard against this is to use the html
entities() function:

$userInput =
htmlentities($userInput);

This function converts any HTML characters the
user may have entered into the character’s HTML
entities equivalent. That is, if the user entered
<div>, it’d be converted to <div>.
When you display it back to the page, instead
of creating a new HTML div, the browser will
simply output the literal string <div> to the user.

If, for some reason, you want to decode these
entities, use the html_entity_decode()
function. This works exactly like its html
entities() counterpart, just in reverse.

Escaping with HTML entities

38_9780470537558-bk05ch06.indd 60738_9780470537558-bk05ch06.indd 607 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

608 Working with File and Directory Functions

Working with File and Directory Functions
Sometimes, you may need PHP to work with files in a directory. Say you have
a reporting tool for a client. Each week, you generate a new report for the
client and place it in a directory. You don’t want to have to alter the page
each time you do this, so instead, make a page that automatically generates
a list of all the report files for the client to select from. This is the kind of
thing you can do with functions like openddir() and readdir().

opendir()
Using the opendir() function, you can create a variable (technically speak-
ing, this type of variable is called a handle) that allows you to work with a
particular directory.

The opendir() function takes one parameter: the path to the directory
you want to work with. The opendir() function returns a directory handle
(kind of like a connection to the directory) on success and False on failure.

Here is an example of the opendir() function (see the “Generating the list
of file links” section to see the opendir() function in action). This function
stores a directory handle to the C:\xampp\htdocs\XFD\xfd5.7 directory
in the $directoryHandle variable:

$directoryHandle = opendir(“C:\xampp\htdocs\XFD\xfd5.7”);

readdir()
After you open the directory with the opendir() function, you have a
cursor pointed at the first file. At this point, you can read the filenames one
by one with a while loop. To do this, use the readdir() function.

The readdir() function takes one parameter; the variable containing the
directory handle created with the opendir() function. The readdir()
function returns the name of a file currently being focused on by the cursor
on success and False on failure.

Here is an example of the readdir() function. This function iterates
through each file in the directory specified by $dp and assigns the filename
of the current file to a new index in $fileArray array:

while($currentFile !== false){
 $currentFile = readDir($dp);
 $filesArray[] = $currentFile;
}

The actual readdir() function itself is readdir($dp). For more on the
readdir() function, see the official PHP online documentation at http://
us.php.net/function.readdir.

38_9780470537558-bk05ch06.indd 60838_9780470537558-bk05ch06.indd 608 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 6

W
o

rk
in

g
 w

ith
 File

s
a

n
d

 D
ire

c
to

rie
s

609Working with File and Directory Functions

 In some circumstances, the readdir() function might return non-Boolean
values which evaluate to False, such as 0 or “”. When testing the return
value of the readdir() function, use === or !==, instead of == or !=, to
accommodate these special cases.

chdir()
If you want to create a file in a directory other than the directory that the
PHP page creating the file is in, you need to change directories. You change
directories in PHP with the chdir() function.

If you want to be absolutely sure that you’re in the right directory before
writing the file, you can use an if statement with the getcwd() function.
This is usually a bit of overkill, but it can be helpful.

The chdir() function takes one parameter: the path to the directory you
wish to work with. The chdir() function returns True on success and
False on failure.

Here is an example of the chdir(). This function changes to the C:\
xampp\htdocs\XFD\xfd5.6 directory:

chdir(“C:\xampp\htdocs\XFD\xfd5.6”);

When you change to a directory; you’re then free to write to it with the
fwrite() function. See the “fwrite()” section, earlier in this chapter.

Generating the list of file links
Using the opendir() and readdir() functions, you can generate a list of
links to the files in a directory.

Take a look at the PHP code for the file links list example; see Figure 6-7 for
the HTML generated by this example:

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
<head>
<meta http-equiv=”Content-Type” content=”text/html;charset=utf-8” />
<title>fileList.php</title>
</head>
<body>

<?php
$dp = opendir(”.”);
$currentFile = ””;

while($currentFile !== false){
 $currentFile = readDir($dp);
 $filesArray[] = $currentFile;
} // end while

38_9780470537558-bk05ch06.indd 60938_9780470537558-bk05ch06.indd 609 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

610 Working with File and Directory Functions

//sort the array in alpha order
sort($filesArray);

$output = ””;
foreach($filesArray as $aFile){
 $output .= ” $aFile \n”;
} // end foreach

print ”$output”;
?>

</body>
</html>

Figure 6-7:
A list of
links to all
files in the
directory
specified
by the
opendir
() function.

Here’s how the fileList.php program performs its magic:

 1. Open a directory pointer to the current directory.

 In all major operating systems, the period (.) character indicates the
current directory.

$dp = opendir(“.”);

38_9780470537558-bk05ch06.indd 61038_9780470537558-bk05ch06.indd 610 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 6

W
o

rk
in

g
 w

ith
 File

s
a

n
d

 D
ire

c
to

rie
s

611Working with File and Directory Functions

 2. Build a loop that repeats until there are no files left.

 The special !== comparison is used to prevent rare problems, such as
files named false. (Yes, believe it or not, that sometimes happens.)

while($currentFile !== false){

 3. Read the next file from the directory pointer.

 The readDir() function reads the next file in and stores it to a variable
($currentFile).

 $currentFile = readDir($dp);

 4. Append the current file to an array.

 If you simply assign a file to an array without an index, PHP places the
element in the next available space.

 $filesArray[] = $currentFile;

 5. Sort the array.

 The files won’t be in any particular order in the array, so use the
sort() function.

sort($filesArray);

 6. Print each element of the array.

 I use an unordered list of links to display each file. Make it a link so that
the user can click the file to view it directly.

foreach($filesArray as $aFile){
 $output .= “ $aFile \n”;
} // end foreach

On a Windows server, you have to escape the backslashes in the file path.
You do this by adding a backslash before the backslashes in the file path.
(For example, you would write C:\\xampp\\htdocs\\XFD\\xfd5.7\\
instead of C:\xampp\htdocs\XFD\xfd5.7\.) On a Unix server, you don’t
have to do this because file paths use slashes (/) instead of backslashes (\).

If you want just one particular file type, you can use regular expressions to
filter the files. If I had wanted only the .txt and .dat files from the direc-
tory, I could have run the files array through this filter to weed out the
unwanted file types:

$filesArray = preg_grep(“/txt$|dat$/”, $filesArray);

For more on regular expressions, check Book IV, Chapter 6 as well as
Chapter 4 of this book.

38_9780470537558-bk05ch06.indd 61138_9780470537558-bk05ch06.indd 611 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

612 Book V: Server-Side Programming with PHP

38_9780470537558-bk05ch06.indd 61238_9780470537558-bk05ch06.indd 612 10/7/10 8:47 PM10/7/10 8:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Connecting
to a MySQL Database

In This Chapter
✓ Building the connection string

✓ Sending queries to a database

✓ Retrieving data results

✓ Formatting data output

✓ Allowing user queries

✓ Cleaning user-submitted data requests

Data has become the prominent feature of the Web. As you build more
sophisticated sites using XHTML and CSS, you will eventually feel the

need to incorporate data into your Web sites. You can do a certain amount
of data work with the basic data structures built into PHP. Increasingly, Web
sites turn to relational database management systems (RDBMSs) to handle
their data needs. A RDBMS is a special program which accepts requests,
processes data, and returns results.

This chapter assumes you have a database available and also that you
have some basic knowledge of how SQL (Structured Query Language; the
language of databases) works. If you’re unfamiliar with these topics, please
look over Book VI, which describes using data in detail.

Retrieving Data from a Database
PHP programmers frequently use MySQL as their preferred data back end
for a number of good reasons:

 ✦ MySQL is open source and free. Like PHP, MySQL is open source, so
PHP and MySQL can be used together (with Apache) to build a very
powerful low-cost data solution.

 ✦ MySQL is very powerful. MySQL’s capability as a data program has
improved steadily, and it is now nearly as capable as commercial tools
costing thousands of dollars. (And it is better than many that cost hun-
dreds of dollars.)

39_9780470537558-bk05ch07.indd 61339_9780470537558-bk05ch07.indd 613 10/7/10 8:48 PM10/7/10 8:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

614 Retrieving Data from a Database

 ✦ PHP has built-in support for MySQL. PHP includes a number of func-
tions specifically designed to help programmers maintain MySQL
databases.

 ✦ You probably already have MySQL. If you installed XAMPP, you prob-
ably already have an installation of MySQL ready to go. Check Book VIII,
Chapter 1 for installation details.

 ✦ MySQL was designed with remote control in mind. MySQL is meant to
be managed from some other program (like the code you write in PHP).
It’s not designed with a user interface (like Access has), but it’s designed
from the beginning to be controlled through a programming language
like PHP.

Before diving into details, here’s an overview of how you get information to
and from a MySQL database:

 1. Establish a connection.

 Before you can work with a database, you must establish a relationship
between your PHP program and the database. This process involves
identifying where the database is and passing it a username and
password.

 2. Formulate a query.

 Most of the time, you’ll have some sort of query or request you want to
pass to the database. For example, you may want to see all the data in a
particular table, or you may want to update a record. In either case, you
use SQL to prepare a request to pass to the database.

 3. Submit the query.

 After you build the query, you pass it (through the connection) to the
database. Assuming that the query is properly formatted, the database
processes the request and returns a result.

 4. Process the result.

 The database returns a special variable containing the results of your
query. You’ll generally need to pick through this complex variable to
find all the data it contains. For example, it can contain hundreds of
records. (For more on records, see the upcoming section “Processing
the results.”)

 5. Display output to the user.

 Most of the time, you’ll process the query results and convert them to
some sort of XHTML display that the user can view.

As an example, take a look at contact.php in Figure 7-1.

39_9780470537558-bk05ch07.indd 61439_9780470537558-bk05ch07.indd 614 10/7/10 8:48 PM10/7/10 8:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 7

C
o

n
n

e
c

tin
g

 to
 a

M

yS
Q

L D
a

ta
b

a
se

615Retrieving Data from a Database

Figure 7-1:
This
program
gets all the
contact
data from a
database.

The contact.php program contains none of the actual contact information.
All the data was extracted from a database. Here’s an overview of the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=“content-type“ content=“text/xml; charset=utf-8“ />
 <title>showContact.php</title>
 </head>

 <body>
 <p>
 <?php

$conn = mysql_connect(“localhost“,“user“,“password“) or die(mysql_error());
mysql_select_db(“xfd“);

$sql = “SELECT * FROM contact“;
$result = mysql_query($sql, $conn) or die(mysql_error());

while($row = mysql_fetch_assoc($result)){
 foreach ($row as $name => $value){
 print “$name: $value
\n“;
 } // end foreach
 print “
 \n“;
} // end while

 ?>
 </p>
 </body>
</html>

39_9780470537558-bk05ch07.indd 61539_9780470537558-bk05ch07.indd 615 10/7/10 8:48 PM10/7/10 8:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

616 Retrieving Data from a Database

If you want to try this program at home, begin by running the build
ContactAutoIncrement.sql script (available in Book VI, Chapter 2) in
your copy of MySQL. This will ensure you have the database created. See
Book VI, Chapter 2 if you need more information on creating databases.

Understanding data connections
The key to all database work is the connection. Database connections
remind me of the pneumatic tubes at some bank drive-through locations.
There’s a little container you can stick your request into. You press a button,
and the container shoots through a tube to the teller, who processes your
request and sends you the results back through the tube.

In data programming, the connection is like that tube: It’s the pipeline
between your program (your car) and the data (the bank). To establish a
data connection, you need to know four things:

 ✦ The hostname (where the server is): Often, the data server will be
housed on the same physical machine as the Web server and PHP pro-
gram. In these cases, you can use localhost as the server name. Test
servers using XAMPP almost always use localhost connections. If
you’re working in a production environment, you may need to ask your
service provider for the server address of your database.

 ✦ Your database username: Database programs should always have some
type of security enabled. (See Book VI, Chapter 1 for information on set-
ting up database users and passwords.) Your program needs to know
the username it should use for accessing the data. (I often create a spe-
cial username simply for my programs. Book VI, Chapter 1 outlines this
process.)

 When you first install MySQL through XAMPP, it allows root access with
no password. These settings allow anybody to do anything with your
data. Obviously, that’s not a good solution, security-wise. Be sure to set
up at least one username and password combination for your database.
If you’re using an online hosting service, you probably don’t have root
access. In this case, you typically have a new user created for each data-
base you build. Book VI explains all.

 ✦ A password for the database: The username isn’t secure without a
password. Your PHP program also needs a password. This is established
when you create the database.

 If you’re going to make your source code available (as I do on the com-
panion CD and Web site), be sure to change the username and password
so people can’t use this information to hack your live data.

 ✦ The database name: A single installation of MySQL can have many data-
bases available. You’ll typically have a separate database designed for
each project you build. MySQL needs to know which particular database
houses the information you’re seeking.

39_9780470537558-bk05ch07.indd 61639_9780470537558-bk05ch07.indd 616 10/7/10 8:48 PM10/7/10 8:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 7

C
o

n
n

e
c

tin
g

 to
 a

M

yS
Q

L D
a

ta
b

a
se

617Retrieving Data from a Database

Building a connection
The data connection is created with the mysql_connect() function. Here’s
how to do it:

 1. Create a variable to house the connection.

 When you build a connection, a special variable is created to house
information about that variable. I usually call my connection $conn:

$conn = mysql_connect(“localhost”,”user”,”password”) or die(mysql_error());

 2. Invoke the mysql_connect() function.

 This function (usually built into PHP) attempts to build a connection to
the database given all the connection information:

$conn = mysql_connect(“localhost”,”user”,”password”) or die(mysql_error());

 3. Pass the hostname, username, and password to mysql_connect().

 These three values are required parameters of the mysql_connect()
function:

$conn = mysql_connect(“localhost”,”user”,”password”) or die(mysql_error());

 You’ll need to supply your own username and password. My values here
are just samples.

 4. Prepare for a graceful crash.

 It’s very possible that something will go wrong when you attempt a data
connection. The or die() clause tells PHP what to do if something
goes wrong while making the connection:

$conn = mysql_connect(“localhost”,”user”,”password”) or die(mysql_error());

 How many times in your life have you heard that phrase? “Prepare for a
graceful crash.” You’ve got to love programming.

 5. Invoke mysql_error() if something goes wrong.

 If there’s a problem with the MySQL connection, the error message will
come from MySQL, not PHP. To ensure that you see the MySQL error,
use the mysql_error() function. If you made a mistake (like misspell-
ing the username), MySQL will report this error to PHP. Use mysql_
error() to print out the last error from MySQL:

$conn = mysql_connect(“localhost”,”user”,”password”) or die(mysql_error());

 6. Specify the particular database.

 After you’re connected to the server, you need to specify which
database on the server will be used for your transaction. I’m using a
database called xfd for all the examples in this book. The mysql_
select_db() function is used to handle this task:

mysql_select_db(“xfd”);

39_9780470537558-bk05ch07.indd 61739_9780470537558-bk05ch07.indd 617 10/7/10 8:48 PM10/7/10 8:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

618 Retrieving Data from a Database

Passing a query to the database
The reason for connecting to a database is to retrieve data from it (or to add
or modify data, but the basic approach is always the same). In any case, you
need to pass instructions to the database in SQL. (If you’re unfamiliar with
SQL, read Book VI, Chapter 1.)

Your PHP program usually constructs an SQL statement in a string variable
and then passes this value to the database. For this basic example, I specify
the entire query. See the section “Processing the input,” later in this chapter,
for some warnings about how to incorporate user information in data queries.

The showContact.php program simply asks for a list of all the values in
the contact table of the xfd database. The SQL query for displaying all the
data in a table looks like this:

SELECT * FROM contact;

To use an SQL statement, package it into a string variable, like this:

$sql = “SELECT * FROM contact”;

Note that you don’t need to include the semicolon inside the string variable.
You can call the variable anything you wish, but it’s commonly called $sql.
SQL queries can get complex, so if the SQL requires more than one line, you
may want to encase it in a heredoc. (See Chapter 2 of this minibook for infor-
mation on using heredocs.)

Pass the request to the database using the msql_query() function:

$result = mysql_query($sql, $conn) or die(mysql_error());

The mysql_query() function has a lot going on. Here’s how you put it
together:

 1. Create a variable to house the results.

 When the query is finished, it will send results back to the program. The
$result variable will hold that data:

$result = mysql_query($sql, $conn) or die(mysql_error());

 2. Invoke mysql_query().

 This function passes the query to the database:
$result = mysql_query($sql, $conn) or die(mysql_error());

 3. Send the query to the database.

 The first parameter is the query. Normally, this is stored in a variable
called $sql:

$result = mysql_query($sql, $conn) or die(mysql_error());

39_9780470537558-bk05ch07.indd 61839_9780470537558-bk05ch07.indd 618 10/7/10 8:48 PM10/7/10 8:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 7

C
o

n
n

e
c

tin
g

 to
 a

M

yS
Q

L D
a

ta
b

a
se

619Retrieving Data from a Database

 4. Specify the connection.

 The second parameter is the connection object created when you ran
mysql_connect(). If you leave out the connection object, PHP uses
the last MySQL connection that was created:

$result = mysql_query($sql, $conn) or die(mysql_error());

 5. Handle errors.

 If there’s an error in your SQL request, MySQL will send back an error
message. Prepare for this with the or die() clause (just like you used
for mysql_connect()):

$result = mysql_query($sql, $conn) or die(mysql_error());

 6. Return the MySQL error if there was a problem.

 If something went wrong in the SQL code, have your program reply with
the MySQL error so you’ll at least know what went wrong:

$result = mysql_query($sql, $conn) or die(mysql_error());

Processing the results
The results of an SQL query are usually data tables, which are a complex
data structure. The next step when you work with a database is to get all
the appropriate information from the $request object and display it in an
XHTML output for the user to understand.

This process is a little involved because SQL results are normally com-
posed of two-dimensional data. A query result typically consists of multiple
records (information about a specific entity — sometimes also called a row).
Each record consists of a number of fields (specific data about the current
record).

 I’m tossing a bunch of database terms at you here. Databases deserve (and
have) a minibook of their own. If nothing in this chapter makes sense to you,
build your own copy of the contact database following the instructions in
Book VI and then come back here to have your program present that data
through your Web site.

The $request variable has a lot of data packed into it. You get that data out
by using a pair of nested loops:

 1. The outer loop extracts a record at a time.

 The first job is to get each record out of the request, one at a time.

 2. Use another loop to extract each field from the record.

 After you have a record, you need to extract each field from the record.

39_9780470537558-bk05ch07.indd 61939_9780470537558-bk05ch07.indd 619 10/7/10 8:48 PM10/7/10 8:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

620 Retrieving Data from a Database

Here’s all the code for this segment; I explain it in detail in the following
sections:

while($row = mysql_fetch_assoc($result)){
 foreach ($row as $name => $value){
 print “$name: $value
\n”;
 } // end foreach
 print “
 \n”;
} // end while

Extracting the rows
The first task is to break the $result object into a series of variables that
each represent one record (or row). Here’s the line that does the job:

while($row = mysql_fetch_assoc($result)){

To break a result into its constituent rows, follow these steps:

 1. Begin a while loop.

 This code will continue as long as more rows are available in the
$result object:

while($row = mysql_fetch_assoc($result)){

 2. Extract the next row as an associative array.

 Every time through the loop, you’ll extract the next row from the result.
There are several functions available for this task, but I use mysql_
fetch_assoc() because I think it’s easiest to understand (see the side-
bar “MySQL fetch options” for some other options and when you might
choose them):

while($row = mysql_fetch_assoc($result)){

 3. Pass the resulting object to a variable called $row.

 The output of mysql_fetch_assoc is an array (specifically, an associa-
tive array). Copy that value to a variable called $row:

while($row = mysql_fetch_assoc($result)){

 4. Continue as long as there are more rows to retrieve.

 mysql_fetch_assoc() has an important side effect. In addition to
extracting an associative array from $result, the function returns the
value false if no more records are left. Because I’m using this state-
ment inside a condition, the loop will continue as long as another row is
available. When no rows are left, the assignment will evaluate to false,
and the loop will exit.

while($row = mysql_fetch_assoc($result)){

39_9780470537558-bk05ch07.indd 62039_9780470537558-bk05ch07.indd 620 10/7/10 8:48 PM10/7/10 8:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 7

C
o

n
n

e
c

tin
g

 to
 a

M

yS
Q

L D
a

ta
b

a
se

621Retrieving Data from a Database

Extracting fields from a row
Each time you go through the while loop described in the previous section,
you’ll have a variable called $row. This will be an associative array contain-
ing all the field names and values from the current form. If you know a field
name, you can access it directly. For example, I know the contact table has
a field named company, so you can use an associative array lookup to see
the current company name:

print $row[“company”];

This will print the company name of the current record.

More often, you will want to print out all the information in the row, so you
can use the special form of foreach() loop used with associative arrays:

foreach ($row as $name => $value){

Here’s how it works:

 1. Set up the foreach loop.

 This form of for loop automatically loads variables with members of
the array:

foreach ($row as $name => $value){

You can extract data from a MySQL result in
four different ways:

 ✓ mysql_fetch_row() creates an
ordinary (numeric index) array from the
current row.

 ✓ mysql_fetch_assoc() creates an
associative array from the current row,
with the field name as the key and field
value as the value in each key/value pair.

 ✓ mysql_fetch_array() can be used
to get numeric or associative arrays, based
on a parameter.

 ✓ mysql_fetch_object() returns a
PHP object corresponding to the current
row. Each field in the row is a property of
the object.

In general, the mysql_fetch_assoc()
provides the best combination of ease-of-
use and information. Use mysql_fetch_
array() when you don’t need the field
names: for example, you’re using an XHTML
table for output, and you’re getting the field
names from the mysql_fetch_field()
function. The mysql_fetch_object()
technique is useful if you’re going to build a
complete object based on a query row, but
that’s beyond the scope of this book.

MySQL fetch options

39_9780470537558-bk05ch07.indd 62139_9780470537558-bk05ch07.indd 621 10/7/10 8:48 PM10/7/10 8:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

622 Retrieving Data from a Database

 2. Analyze the $row array.

 The $row variable contains an associative array, so it’s a perfect candi-
date for this type of loop:

foreach ($row as $name => $value){

 3. Assign each key to $name.

 On each pass of the loop, assign the current key of the array (which will
contain the current field name) to the variable $name:

foreach ($row as $name => $value){

 4. Indicate the relationship between $name and $value with the =>
operator.

 This indicates that $name is the key and that $value is the value in this
relationship:

foreach ($row as $name => $value){

 5. Assign the value to $value.

 The value of the current element will be placed in the $value variable:
foreach ($row as $name => $value){

When you use a foreach loop with an associative array, you assign each
element to two variables because each element in an associative array has
a name and a value. Check Chapter 4 of this minibook for more information
about associative arrays and the foreach loop.

Inside this loop, you’ll have the name of the current field in a variable called
$name and its value in a variable called $value. This loop will continue for
each field in the current record.

Printing the data
For this simple example, I’m using the simplest way I can think of to print out
the contents:

print “$name: $value
\n”;

This line simply prints out the current field name, followed by a colon and
the current field value. Because this simple line is inside the complex nested
loops, it ends up printing the name and value of every field in the query
result. Here’s the whole chunk of code again:

while($row = mysql_fetch_assoc($result)){
 foreach ($row as $name => $value){
 print “$name: $value
\n”;
 } // end foreach
 print “
 \n”;
} // end while

39_9780470537558-bk05ch07.indd 62239_9780470537558-bk05ch07.indd 622 10/7/10 8:48 PM10/7/10 8:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 7

C
o

n
n

e
c

tin
g

 to
 a

M

yS
Q

L D
a

ta
b

a
se

623Improving the Output Format

The result isn’t the most elegant formatting on the Internet, but it gets the
job done, and it’s easy to understand. Note I added a
 tag at the end
of each line, so each field will appear on its own line of XHTML output. I
also added a final
 at the end of each for loop. This will cause a line
break between each record so that the records are separated.

Improving the Output Format
Using
 tags for output is a pretty crude expedient. It’s fine for a basic
test, but
 tags are usually a sign of sloppy XHTML coding. Take a
look at this variation called contactDL.php in Figure 7-2.

Figure 7-2:
Now, the
output of
the query
is in a nice
definition
list.

Building definition lists
Definition lists are designed for name/value pairs, so they’re often a good
choice for data in associative arrays. It’s not too difficult to convert the basic
data result program (shown in the following code) into a form that uses defi-
nition lists:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

39_9780470537558-bk05ch07.indd 62339_9780470537558-bk05ch07.indd 623 10/7/10 8:48 PM10/7/10 8:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

624 Improving the Output Format

 <head>
 <meta http-equiv=“content-type“ content=“text/xml; charset=utf-8“ />
 <title>contactDL.php</title>
 <style type = “text/css“>
 dt {
 float: left;
 width: 7em;
 font-weight: bold;
 clear: left;
 }

 dd {
 float: left;
 }

 dl {
 float: left;
 clear: left;
 }

 </style>
 </head>

 <body>
 <?php

$conn = mysql_connect(“localhost”,”user”,”password”) or die(mysql_error());
mysql_select_db(“xfd”);

$sql = “SELECT * FROM contact”;
$result = mysql_query($sql, $conn) or die(mysql_error());

while($row = mysql_fetch_assoc($result)){
 print “ <dl> \n”;
 foreach ($row as $name => $value){
 print “ <dt>$name</dt> \n”;
 print “ <dd>$value</dd> \n”;
 } // end foreach
 print “ </dl> \n”;
} // end while

 ?>
 </body>
</html>

The general design is copied from contact.html, with the following changes:

 1. Add CSS styling for the definition list.

 Definition lists are great for this kind of data, but the default style is
pretty boring. I added some float styles to make the data display better.
(See Book III, Chapter 1 for how to use floating styles.)

 2. Put each record in its own definition list.

 The while loop executes once per record, so begin the definition list at
the beginning of the while loop. The </dl> tag goes at the end of the
while loop. Each pass of the while loop creates a new definition list.

39_9780470537558-bk05ch07.indd 62439_9780470537558-bk05ch07.indd 624 10/7/10 8:48 PM10/7/10 8:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 7

C
o

n
n

e
c

tin
g

 to
 a

M

yS
Q

L D
a

ta
b

a
se

625Improving the Output Format

 3. Display the field names as <dt> elements.

 The field name maps pretty well to the concept of a definition term, so
put each $name value in a <dt></dt> pair.

 4. Place the values inside <dd> tags.

 The values will be displayed as definition data. Now, you have the con-
tents of the data set up in a form that can be easily modified with CSS.

Using XHTML tables for output
The basic unit of structure in SQL is called a table because it’s usually dis-
played in a tabular format. XHTML also has a table structure, which is ideal
for outputting SQL data. Figure 7-3 shows contactTable.php, which dis-
plays the contact information inside an XHTML table.

Figure 7-3:
The contact
information
displayed in
an XHTML
table.

Tables are a very common way to output SQL results. There’s one big differ-
ence between table output and the techniques that have been shown else-
where in this chapter. In a table, you have a separate row containing field
names. Here’s the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=“content-type“ content=“text/xml; charset=utf-8“ />
 <title>contactTable.php</title>
 <style type = “text/css“>
 table, th, td {
 border: 1px solid black;
 }
 </style>
 </head>

39_9780470537558-bk05ch07.indd 62539_9780470537558-bk05ch07.indd 625 10/7/10 8:48 PM10/7/10 8:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

626 Improving the Output Format

 <body>
 <h1>My Contacts</h1>
 <?php
$conn = mysql_connect(“localhost“, “user“, “password“);
mysql_select_db(“xfd“);
$sql = “SELECT * FROM contact“;
$result = mysql_query($sql, $conn);

print “ <table> \n“;

//get field names first
print “ <tr> \n“;
while ($field = mysql_fetch_field($result)){
 print “ <th>$field->name</th> \n“;
} // end while
print “ </tr> \n“;

while ($row = mysql_fetch_assoc($result)){
 print “ <tr> \n“;
 foreach ($row as $name => $value){
 print “ <td>$value</td> \n“;
 } // end foreach
 print “ </tr> \n“;

} // end while loop

print “ </table> \n“;

 ?>
 </body>
</html>

You might be confused that I’m using a table here, seeing as how I argue
pretty strongly against use of tables for page layout in the HTML and CSS
minibooks. Tables aren’t evil: they just aren’t designed to be a page layout
mechanism. Tables, however, are designed to display tabular data, and the
result of a data query is pretty much the definition of tabular data. You can
(and should) still use CSS for specific layout details of the table. Tables are
fine when used to present data, which is what I’m doing here.

This code is still very similar to the basic contact.php program. It extracts
data from the database exactly the same way. The main difference is how
field names are treated. The field names will go in table headings, and only
the values are printed from each row. To make this work, follow these steps:

 1. Build a normal MySQL connection.

 Begin with the standard connection. Don’t worry about formatting until
you’re reasonably certain that you can read data from the database.

 2. Print the table tag before extracting any results.

 All the query data will be displayed inside the table, so print the table
tag before you start printing anything that should go inside the table.

39_9780470537558-bk05ch07.indd 62639_9780470537558-bk05ch07.indd 626 10/7/10 8:48 PM10/7/10 8:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 7

C
o

n
n

e
c

tin
g

 to
 a

M

yS
Q

L D
a

ta
b

a
se

627Improving the Output Format

 3. Print the table header row first.

 The table headers must be printed before you can worry about the other
data:

//get field names first
print “ <tr> \n”;
while ($field = mysql_fetch_field($result)){
 print “ <th>$field->name</th> \n”;
} // end while
print “ </tr> \n”;

 4. Extract metadata from the result set with mysql_fetch_field().

 After you get a result from a data query, you can learn a lot about the
data by using the mysql_fetch_field() function:

while ($field = mysql_fetch_field($result)){

 This function (mysql_fetch_field()) extracts the next field object
from the result and passes it to a variable called $field. It returns
false if there are no more fields in the result, so it can be used in a
while loop, like mysql_fetch_assoc().

 5. Print the field’s name.

 The field is an object, so you can extract various elements from it easily.
In this case, I’m interested in the field name. $field->name yields the
name of the current field. (See the nearby sidebar, “More about meta-
data,” for more information about information you can extract from field
objects.)

 print “ <th>$field->name</th> \n”;

 6. Print each row’s data as a table row.

 Each row of the data result maps to a table row. Use the preceding varia-
tion of nested loops to build your table rows.

 7. Finish off the table.

 The table tag must be completed. Don’t forget to print </table> when
you’re done printing out all the table information.

 8. Clean up your XHTML.

 Check your code in a browser. Make sure it looks right, but don’t stop
there. Check with a validator to make sure that your program produces
valid XHTML code. View the source and ensure that the indentation and
white space are adequate. Even though a program produced this code, it
needs to be XHTML code you can be proud of.

39_9780470537558-bk05ch07.indd 62739_9780470537558-bk05ch07.indd 627 10/7/10 8:48 PM10/7/10 8:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

628 Allowing User Interaction

Allowing User Interaction
If you have a large database, you probably want to allow users to search the
database. For example, the form in Figure 7-4 allows the user to search the
My Contacts database.

Figure 7-4:
The user
can check
for any
value in any
field.

You can find out all sorts of information about
the table you’re querying with the mysql_
fetch_field() function.

This function returns an object that has the fol-
lowing properties:

 ✓ table: The name of the table the field
(column) belongs to.

 ✓ name: The field’s name.

 ✓ type: The field’s datatype.

 ✓ primary_key: If the field is a primary
key, will return a 1.

 ✓ unique_key: If the field is a unique key,
will return a 1.

 ✓ max_length : The field’s maximum
length.

 ✓ def: The field’s default value (if any) .

 ✓ not_null: If the field can’t be NULL, will
return a 1.

 ✓ multiple_key: If the field is a non-
unique key, will return a 1.

 ✓ numeric: If the field is numeric, will
return a 1.

 ✓ blob: If the field is a blob, will return a 1.

 ✓ unsigned: If the field is unsigned, will
return a 1.

 ✓ zerofill: If the field is zero-filled, will
return a 1.

You’ll probably end up using table, name,
type, primary_key, and max_length
the most. Refer to any of these values using
object-oriented syntax, so if you have a
field named $field, get its name by using
$field->name.

More about metadata

39_9780470537558-bk05ch07.indd 62839_9780470537558-bk05ch07.indd 628 10/7/10 8:48 PM10/7/10 8:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 7

C
o

n
n

e
c

tin
g

 to
 a

M

yS
Q

L D
a

ta
b

a
se

629Allowing User Interaction

Here are a couple of interesting things about the form in Figure 7-4:

 ✦ The search value can be anything. The first field is an ordinary text
field. The user can type absolutely anything here, so you should expect
some surprises.

 ✦ The user selects a field with a drop-down menu. You don’t expect the
user to know exactly what field names you are using in your database.
Whenever possible, supply this type of information in a format that’s
easier for the user and less prone to error.

 ✦ This form is built to fill in a query. The back-end program (search.
php) will be constructing a query from data gathered from this form.
The point of the form is to request two pieces of information from the
user: a field to search in and a value to look for in that field. search.
php will use the data gleaned from this form to construct and submit
that query to the database.

 ✦ The user doesn’t know SQL. Even if the user does know SQL, don’t let
him use it. The SQL query should always be built on the server side. Get
enough information to build an SQL query, but don’t send a query to the
PHP. Doing so exposes your database to significant abuse, such as the
SQL injection attack described later in this chapter.

 ✦ The form uses the post mechanism. From the XHTML perspective, it
isn’t important whether the form uses get or post, but when you’re
using forms to construct SQL queries, using post is a bit safer because
it makes the bad guys work a little bit harder to spoof your site and send
bogus requests to your database.

Building an XHTML search form
This is what the XHTML code for search.html looks like:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=“content-type“ content=“text/xml; charset=utf-8“ />
 <title>search.html</title>
 <link rel = “stylesheet“
 type = “text/css“
 href = “search.css“ />
 </head>

 <body>
 <h1>Search my contacts</h1>

 <form action = “search.php“
 method = “post“>
 <fieldset>

 <label>Search for</label>
 <input type = “text“
 name = “srchVal“ />

39_9780470537558-bk05ch07.indd 62939_9780470537558-bk05ch07.indd 629 10/7/10 8:48 PM10/7/10 8:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

630 Allowing User Interaction

 <label>in</label>
 <select name = “srchField“>
 <option value = “contactID“>ID</option>
 <option value = “name“>contact name</option>
 <option value = “company“>company name</option>
 <option value = “email“>email address</option>
 </select>

 <button type = “submit“>submit request</button>
 </fieldset>

 </form>
 </body>
</html>

This is really a pretty basic form. The interesting stuff happens in the
search.php program that’s triggered when the user submits this form.

Responding to the search request
When the user submits search.html, a page like Figure 7-5 appears, cre-
ated by search.php.

Figure 7-5:
The program
searches the
database
according
to the para-
meters in
search.html.

The search.php program isn’t really terribly different from contact-
Table.php. It takes an SQL query, sends it to a database, and returns the
result as an XHTML table. The only new idea is how the SQL query is built.
Rather than preloading the entire query into a string variable, as I did in
all other examples in this chapter, I used input from the form to inform the
query. As usual, I provide the code in its entirety here, and then I point out
specific features. Look at the big picture first:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=“content-type“ content=“text/xml; charset=utf-8“ />
 <title>search.php</title>
 <style type = “text/css“>
 table, th, td {
 border: 1px solid black;
 }

39_9780470537558-bk05ch07.indd 63039_9780470537558-bk05ch07.indd 630 10/7/10 8:48 PM10/7/10 8:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 7

C
o

n
n

e
c

tin
g

 to
 a

M

yS
Q

L D
a

ta
b

a
se

631Allowing User Interaction

 </style>
 </head>

 <body>
 <h1>My Contacts</h1>
 <?php

 $sql = processInput();
 printResults($sql);

 function processInput(){
 //extract information from previous form and build a safe query
 $srchVal = $_POST[“srchVal“];
 $srchField = $_POST[“srchField“];
 $srchVal = mysql_real_escape_string($srchVal);
 $srchField = mysql_real_escape_string($srchField);

 $sql = “SELECT * FROM contact WHERE $srchField LIKE ‘%$srchVal%’“;
 return $sql;

 } // end processInput

 function printResults($sql){
 $conn = mysql_connect(“localhost“, “user“, “password“);
 mysql_select_db(“xfd“);

 $result = mysql_query($sql, $conn);

 print “ <table> \n“;

 //get field names first
 print “ <tr> \n“;
 while ($field = mysql_fetch_field($result)){
 print “ <th>$field->name</th> \n“;
 } // end while
 print “ </tr> \n“;

 while ($row = mysql_fetch_assoc($result)){
 print “ <tr> \n“;
 foreach ($row as $name => $value){
 print “ <td>$value</td> \n“;
 } // end foreach
 $count++;
 print “ </tr> \n“;

 } // end while loop

 print “ </table> \n“;
 } // end printResults
 ?>
 </body>
</html>

Breaking the code into functions
This code is complex enough to deserve functions. The program has two
main jobs, so it’s not surprising that a function is designated to perform
each major task. Here’s the main section of the PHP code:

 $sql = processInput();
 printResults($sql);

39_9780470537558-bk05ch07.indd 63139_9780470537558-bk05ch07.indd 631 10/7/10 8:48 PM10/7/10 8:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

632 Allowing User Interaction

This code fragment nicely summarizes the entire program (as well-designed
main code ought to do). Here’s the overview:

 1. Designate a variable called $sql to hold a query.

 The central data for this program is the SQL query.

 2. Create the query with processInput().

 The job of processInput() is to get the data from the search.html
form and create a safe, properly formatted query, which will be passed
to the $sql variable.

 3. Process the query with the printResults() function.

 This function will process the query and format the output as an XHTML
table.

Processing the input
The processInput() function does just what it says — processes input:

 function processInput(){
 //extract information from previous form and build a safe query
 $srchVal = $_POST[“srchVal”];
 $srchField = $_POST[“srchField”];

 $conn = mysql_connect(“localhost”, “user”, “password”);
 $srchVal = mysql_real_escape_string($srchVal, $conn);
 $srchField = mysql_real_escape_string($srchField, $conn);

 $sql = “SELECT * FROM contact WHERE $srchField LIKE ‘%$srchVal%’”;
 return $sql;

 } // end processInput

It works by doing several small but important tasks:

 1. Retrieve values from the form.

 The key values for this program are $srchVal and $srchField. They
both come from the previous form. Note that I use $_POST rather than
$_REQUEST: post requests are mildly harder to hack than get, and I
really don’t want anybody spamming my database:

 $srchVal = $_POST[“srchVal”];
 $srchField = $_POST[“srchField”];

 2. Filter each field with mysql_real_escape_string().

 You never want to use input from a form without passing it through a
security check. It’s quite easy for a bad guy to post additional text in the
query that could cause you a lot of headaches. This bit of nastiness is com-
monly called a SQL injection attack. Fortunately, PHP provides a very useful
function for preventing this sort of malice. The mysql_real_escape_
string() function processes a string and strips out any potentially dan-
gerous characters, effectively minimizing the risks of SQL injection ickiness.

39_9780470537558-bk05ch07.indd 63239_9780470537558-bk05ch07.indd 632 10/7/10 8:48 PM10/7/10 8:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book V

Chapter 7

C
o

n
n

e
c

tin
g

 to
 a

M

yS
Q

L D
a

ta
b

a
se

633Allowing User Interaction

The second parameter of mysql_real_escape_string() is the name of
the data connection, so I make a connection and pass it as a parameter:

 $conn = mysql_connect(“localhost”, “xfd”, “xfdaio”);
 $srchVal = mysql_real_escape_string($srchVal, $conn);
 $srchField = mysql_real_escape_string($srchField, $conn);

 For more on database security and preventing SQL injection attacks, a
good place to start is this document in the PHP online manual:

http://us3.php.net/manual/en/security.database.sql-injection.php

 3. Embed the cleaned-up strings in the $sql variable.

 Now, you can build the query comfortably. Note that a LIKE clause is
more likely to provide the kinds of results your user is expecting. Also,
don’t forget that SQL often requires single quotes (see Book VI, Chapter 2
for more on building LIKE clauses):

 $sql = “SELECT * FROM contact WHERE $srchField LIKE ‘%$srchVal%’”;

 4. Return the final $sql variable.

 The query is now ready to be sent back to the main code segment,
which will pass it on to the next function:

 return $sql;

Generating the output
Now that query is complete, the job of printResults() is quite easy. The
following code is really just a copy of the contactTable.php code pack-
aged into a function:

 function printResults($sql){
 $conn = mysql_connect(“localhost”, “user”, “password”);
 mysql_select_db(“xfd”);

 $result = mysql_query($sql, $conn);

 print “ <table> \n”;

 //get field names first
 print “ <tr> \n”;
 while ($field = mysql_fetch_field($result)){
 print “ <th>$field->name</th> \n”;
 } // end while
 print “ </tr> \n”;

 while ($row = mysql_fetch_assoc($result)){
 print “ <tr> \n”;
 foreach ($row as $name => $value){
 print “ <td>$value</td> \n”;
 } // end foreach
 $count++;
 print “ </tr> \n”;

 } // end while loop

 print “ </table> \n”;
 } // end printResults

39_9780470537558-bk05ch07.indd 63339_9780470537558-bk05ch07.indd 633 10/7/10 8:48 PM10/7/10 8:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

634 Allowing User Interaction

There’s only one twist here: SQL is now a parameter. This function won’t
create the $sql variable itself. Instead, it accepts $sql as a parameter. I
took out the line that created $sql as a hard-coded query because now I
want to implement the query created by processInput(). Otherwise, the
code in this function is a direct copy of contactTable.php.

39_9780470537558-bk05ch07.indd 63439_9780470537558-bk05ch07.indd 634 10/7/10 8:48 PM10/7/10 8:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Managing Data
with MySQL

Well-defined data is the central element in most commercial Web sites.

40_9780470537558-pp06.indd 63540_9780470537558-pp06.indd 635 10/7/10 8:49 PM10/7/10 8:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

Chapter 1: Getting Started with Data .637

Examining the Basic Structure of Data ... 637
Introducing MySQL .. 643
Setting Up phpMyAdmin ... 646
Making a Database with phpMyAdmin ... 659

Chapter 2: Managing Data with SQL. .665

Writing SQL Code by Hand ... 665
Running a Script with phpMyAdmin ... 669
Using AUTO_INCREMENT for Primary Keys .. 672
Selecting Data from Your Tables ... 674
Editing Records .. 684
Exporting Your Data and Structure ... 685

Chapter 3: Normalizing Your Data. .691

Recognizing Problems with Single-Table Data ... 691
Introducing Entity-Relationship Diagrams ... 695
Introducing Normalization ... 700
Identifying Relationships in Your Data ... 703

Chapter 4: Putting Data Together with Joins .705

Calculating Virtual Fields .. 705
Calculating Date Values .. 707
Creating a View .. 713
Using an Inner Join to Combine Tables .. 715
Managing Many-to-Many Joins ... 721

40_9780470537558-pp06.indd 63640_9780470537558-pp06.indd 636 10/7/10 8:49 PM10/7/10 8:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Getting Started
with Data

In This Chapter
✓ Understanding databases, tables, records, and fields

✓ Introducing the relational data model

✓ Introducing a three-tier model

✓ Understanding MySQL data types

✓ Getting started with MySQL and phpMyAdmin

✓ Adding a password to your MySQL root account

✓ Creating new MySQL users

✓ Designing a simple table

✓ Adding data to the table

Most programs and Web sites are really about data. Data drives the
Internet, so you really need to understand how data works and how

to manage it well if you want to build high-powered, modern Web sites.

The trend in Web development is to have a bunch of specialized languages
that work together. XHTML describes page content, CSS manages visual
layout, JavaScript adds client-side interactivity, and PHP adds server-side
capabilities. You’re probably not surprised when I tell you that yet another
language, SQL (Structured Query Language), specializes in working with data.

In this minibook, you discover how to manage data. Specifically, you find
out how to create databases, add data, create queries to retrieve data, and
create complex data models to solve real-world problems. In this chapter, I
show you some tools that automate the process of creating a data structure
and adding data to it. In later chapters in this minibook, I show how to con-
trol the process directly through SQL.

Examining the Basic Structure of Data
Data has been an important part of programming since computing began. Many
languages have special features for working with data, but through the years,
a few key ideas have evolved. A system called relational data modeling has

41_9780470537558-bk06ch01.indd 63741_9780470537558-bk06ch01.indd 637 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

638

become the primary method for data management, and a standard language
for this model, called SQL (Structured Query Language), has been developed.

SQL has two major components:

 ✦ Data Definition Language (DDL) is a subset of SQL that helps you create
and maintain databases. You use DDL to build your databases and add
data to them.

 ✦ Data Query Language (DQL) is used to pull data out of a database after
it’s been placed there. Generally, your user input is converted to queries
to get information from an existing database.

The easiest way to understand data is to simply look at some. The following
table contains some basic contact information:

Name Company E-mail

Bill Gates Microsoft bill@msBob.com

Steve Jobs Apple steve@rememberNewton.com

Linus Torvalds Linux Foundation linus@gnuWho.org

Andy Harris Wiley Press andy@aharrisBooks.net

Note: All these e-mail addresses are completely made up (except mine). Bill
Gates hasn’t given me his actual e-mail address. He doesn’t answer my calls,
either. . . . (sniff).

It’s very common to think of data in the form of tables. In fact, the fancy
official database programmer name for this structure is table. A table (in
database terms) is just a two-dimensional representation of data. Of course,
some fancy computer-science words describe what’s in a table:

 ✦ Each row is a record. A record describes a discrete entity. In this table,
each record is a person in an e-mail directory.

 ✦ A record is made of fields. All the records in this table have three
fields: name, company, and e-mail. Fields are a lot like variables in pro-
gramming languages; they can have a type and a value. Sometimes, fields
are also called columns.

 ✦ A collection of records is a table. All records in a table have the same
field definitions but can have different values in the fields.

Examining the Basic Structure of Data

41_9780470537558-bk06ch01.indd 63841_9780470537558-bk06ch01.indd 638 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 1

G
e

ttin
g

 S
ta

rte
d

w

ith
 D

a
ta

639

 ✦ A bunch of tables makes a database. Real-world data doesn’t usually
fit well in one table. Often, you’ll make several different tables that work
together to describe complex information. The database is an aggregate
of a bunch of tables. Normally, you restrict access to a database through
a user and password system.

Determining the fields in a record
If you want to create a database, you need to think about what entity you’re
describing and what fields that entity contains. In the table in the preceding
section, I’m describing e-mail contacts. Each contact requires three pieces of
information:

 ✦ Name: Gives the name of the contact, in 50 characters or less

 ✦ Company: Describes which company the contact is associated with, in
30 characters or less

 ✦ E-mail: Lists the e-mail address of the contact, in 50 characters or less

Whenever you define a record, begin by thinking about what the table rep-
resents and then think of the details associated with that entity. The topic of
the table (the kind of thing the table represents) is the record. The fields are
the details of that record.

 Before you send me e-mails about my horrible data design, know that I’m
deliberately simplifying this first example. Sure, it should have separate
fields for first and last name, and it should also have a primary key. I talk
about these items later in this minibook, as well as in the section “Defining
a primary key,” later in this chapter. If you know about these items already,
you probably don’t need to read this section. For the rest of you, you should
start with a simple data model, and I promise to add all those goodies soon.

Introducing SQL data types
Each record contains a number of fields, which are much like variables in
ordinary languages. Unlike scripting languages, such as JavaScript and PHP
(which tend to be freewheeling about data types), databases are particular
about the type of data that goes in a record.

Table 1-1 illustrates several key data types in MySQL (the variant of SQL
used in this book).

Examining the Basic Structure of Data

41_9780470537558-bk06ch01.indd 63941_9780470537558-bk06ch01.indd 639 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

640

Table 1-1 MySQL Data Types

Data Type Description Notes

INT (INTEGER) Positive or negative
integer (no decimal
point)

Ranges from about –2 billion to
2 billion. Use BIGINT for larger
integers.

DOUBLE Double-precision float-
ing point

Holds decimal numbers in
scientific notation. Use for
extremely large or extremely
small values.

DATE Date stored in YYYY-
MM-DD format

Can be displayed in various
formats.

TIME Time stored in
HH:MM:SS format

Can be displayed in various
formats.

CHAR(length) Fixed-length text Always same length. Shorter
text is padded with spaces.
Longer text is truncated.

VARCHAR(length) variable-length text Still fixed length, but trailing
spaces are trimmed. Limit 256
characters.

TEXT Longer text Up to 64,000 (roughly) charac-
ters. Use LONGTEXT for more
space.

BLOB Binary data Up to 64K of binary data.
LONGBLOB for more space.

 I list only the most commonly used data types in Table 1-1. These data types
handle most situations, but check the documentation of your database pack-
age if you need some other type of data.

Specifying the length of a record
Data types are especially important when you’re defining a database.
Relational databases have an important structural rule: Each record in a
table must take up the same amount of memory. This rule seems arbitrary,
but it’s actually very useful.

Imagine that you’re looking up somebody’s name in a phone book, but
you’re required to go one entry at a time. If you’re looking for Aaron Adams,
things will be pretty good, but what if you’re looking for Zebulon Zoom?
This sequential search would be really slow because you’d have to go all the
way through the phone book to find Zebulon. Even knowing that Zeb was in
record number 5,379 wouldn’t help much because you don’t know exactly
when one record ends and another begins.

Examining the Basic Structure of Data

41_9780470537558-bk06ch01.indd 64041_9780470537558-bk06ch01.indd 640 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 1

G
e

ttin
g

 S
ta

rte
d

w

ith
 D

a
ta

641

If your name is really Zebulon Zoom, you have a very cool name — a good
sign in the open-source world, where names like Linus and Guido are really
popular. I figure the only reason I’m not famous is my name is too boring. I’m
thinking about switching to a dolphin name or something. (Hi, my name is
“Andy Squeeeeeeek! Click Click Harris.”)

Relational databases solve this problem by forcing each record to be the
same length. Just for the sake of argument, imagine that every record takes
exactly 100 bytes. You would then be able to figure out where each record is
on the disk by multiplying the length of each record by the desired record’s
index. (Record 0 would be at byte 0, record 1 is at 100, record 342 is at
34200, and so on.) This mechanism allows the computer to keep track of
where all the records are and jump immediately to a specific record, even if
hundreds or thousands of records are in the system.

 My description here is actually a major simplification of what’s going on, but
the foundation is correct. You should really investigate more sophisticated
database and data structures classes or books if you want more information.
It’s pretty cool stuff.

The length of the record is important because the data types of a record’s
fields determine its size. Numeric data (integers and floating-point values)
have a fixed size in the computer’s memory. Strings (as used in other pro-
gramming languages) typically have dynamic length. That is, the amount of
memory used depends on the length of the text. In a database application,
you rarely have dynamic length text. Instead, you generally determine the
number of characters for each text field.

Defining a primary key
When you turn the contact data into an actual database, you generally add
one more important field. Each table should have one field that acts as a pri-
mary key. A primary key is a special field that’s

 ✦ Unique: You can’t have two records in a table with the same primary key.

 ✦ Guaranteed: Every record in the table has a value in the primary key.

Primary key fields are often (though not always) integers because you can
easily build a system for generating a new unique value. (Find the largest key
in the current database and add one.)

In this book, each table has a primary key. They are usually numeric and are
usually the first field in a record definition. I also end each key field with the
letters ID to help me remember it’s a primary key.

Examining the Basic Structure of Data

41_9780470537558-bk06ch01.indd 64141_9780470537558-bk06ch01.indd 641 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

642

Primary keys are useful because they allow the database system to keep a
Table of Contents for quick access to the table. When you build multitable
data structures, you can see how you can use keys to link tables together.

Defining the table structure
When you want to build a table, you begin with a definition of the structure of
the table. What are the field names? What is each field’s type? If it’s text, how
many characters will you specify?

The definition for the e-mail contacts table may look like this:

Field Name Type Length (Bytes)

ContactID INTEGER 11

Name VARCHAR 50

Company VARCHAR 30

E-mail VARCHAR 50

Look over the table definition, and you’ll notice some important ideas:

 ✦ There’s now a contactID field. This field serves as the primary key. It’s
an INTEGER field.

 ✦ INTEGERs are automatically assigned a length. It isn’t necessary to
specify the size of an INTEGER field (as all INTEGERs are exactly 11
bytes long in MySQL).

 ✦ The text fields are all VARCHARs. This particular table consists of a lot
of text. The text fields are all stored as VARCHAR types.

 ✦ Each VARCHAR has a specified length. Figuring out the best length can
be something of an art form. If you make the field too short, you aren’t
able to squeeze in all the data you want. If you make it too long, you
waste space.

 VARCHAR isn’t quite variable length. The length is fixed, but extra spaces
are added. Imagine that I had a VARCHAR(10) field called userName. If I
enter the name ‘Andy’, the field contains ‘Andy ‘ (that is, ‘Andy’ fol-
lowed by six spaces). If I enter the value ‘Rumplestiltskin’, the field contains
the value “Rumplestil” (the first 10 characters of ‘Rumplestiltskin’).

The difference between CHAR and VARCHAR is what happens to shorter
words. When you return the value of a CHAR field, all the padding spaces are
included. A VARCHAR automatically lops off any trailing spaces.

Examining the Basic Structure of Data

41_9780470537558-bk06ch01.indd 64241_9780470537558-bk06ch01.indd 642 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 1

G
e

ttin
g

 S
ta

rte
d

w

ith
 D

a
ta

643

In practice, programmers rarely use CHAR because VARCHAR provides the
behavior you almost always want.

Introducing MySQL
Programs that work with SQL are usually called relational database manage-
ment systems (RDBMS). A number of popular RDBMSs are available:

 ✦ Oracle is the big player. Many high-end commercial applications use the
advanced features of Oracle. It’s powerful, but the price tag makes it pri-
marily useful for large organizations.

 ✦ MS SQL Server is Microsoft’s entry in the high-end database market.
It’s usually featured in Microsoft-based systems integrated with .NET
programming languages and the Microsoft IIS server. It can also be quite
expensive.

 ✦ MS Access is the entry-level database system installed with most ver-
sions of Microsoft Office. While Access is a good tool for playing with
data design, it has some well-documented problems handling the large
number of requests typical of a Web-based data tool.

 ✦ MySQL is an open-source database that has made a big splash in the
open-source world. While it’s not quite as robust as Oracle or SQL
Server, it’s getting closer all the time. The latest version has features and
capabilities that once belonged only to expensive proprietary systems.

 ✦ SQLite is another open-source database that’s really showing some prom-
ise. This program is very small and fast, so it works well in places you
wouldn’t expect to see a full-fledged database (think cellphones and PDAs).

The great news is that almost all of these databases work in the same gen-
eral way. They all read fairly similar dialects of the SQL language. No matter
which database you choose, the basic operation is roughly the same.

Why use MySQL?
This book focuses on MySQL because this program is

 ✦ Very accessible: If you’ve already installed XAMPP (see Book VIII), you
already have access to MySQL. Many hosting accounts also have MySQL
access built in.

 ✦ Easy to use: You can use MySQL from the command line or from a spe-
cial program. Most people manipulate SQL through a program called
phpMyAdmin (introduced in the section “Setting Up phpMyAdmin,” later
in this chapter). This program provides a graphical interface to do most
of the critical tasks.

Introducing MySQL

41_9780470537558-bk06ch01.indd 64341_9780470537558-bk06ch01.indd 643 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

644

 ✦ Reasonably typical: MySQL supports all the basic SQL features and a
few enhancements. If you understand MySQL, you’ll be able to switch to
another RDBMS pretty easily.

 ✦ Very powerful: MySQL is powerful enough to handle typical Web server
data processing for a small to mid-size company. Some extremely large
corporations even use it.

 ✦ Integrated with XAMPP and PHP: PHP has built-in support for MySQL,
so you can easily write PHP programs that work with MySQL databases.

 ✦ Free and open source: MySQL is available at no cost, which makes it
quite an attractive alternative. MySQL offers other advantages of open-
source software. Because the code is freely available, you can learn
exactly how it works. The open-source nature of the tool also means
there are likely to be add-ons or variations, because it’s easy for devel-
opers to modify open-source tools.

Understanding the three-tier architecture
Modern Web programming often uses what’s called the three-tiered architec-
ture, as shown in Table 1-2.

Table 1-2 The Three-Tiered Architecture

Tier Platform (software) Content Language

Client Web browser (Firefox) Web page XHTML/CSS/JS

Server Web server (Apache) Business rules
and logic

PHP (or other simi-
lar language)

Data Data server (MySQL) Data content SQL (through
MySQL or another
data server)

The user talks to the system through a Web browser, which manages
XHTML code. CSS and JavaScript may also be at the user tier, but every-
thing is handled through the browser. The user then makes a request of the
server, which is sometimes passed through a server-side language like PHP.
This program then receives a request and processes it, returning HTML
back to the client. Many requests involve data, which brings the third (data)
tier into play. The Web server can package up a request to the data server
through SQL. The data server manages the data and prepares a response to
the Web server, which then makes HTML output back for the user.

Figure 1-1 provides an overview of the three-tier system.

Introducing MySQL

41_9780470537558-bk06ch01.indd 64441_9780470537558-bk06ch01.indd 644 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 1

G
e

ttin
g

 S
ta

rte
d

w

ith
 D

a
ta

645

Figure 1-1:
An overview
of the three-
tier data
model.

Practicing with MySQL
MySQL is a server, so it must be installed on a computer in order to work. To
practice with MySQL, you have a few options:

 ✦ Run your own copy of MySQL from the command line. If you have
MySQL installed on your own machine, you can go to the command
line and execute the program directly. This task isn’t difficult, but it is
tedious.

 ✦ Use phpMyAdmin to interact with your own copy of MySQL. This solu-
tion is often the best. phpMyAdmin is a set of PHP programs that allows
you to access and manipulate your database through your Web browser.
If you’ve set up XAMPP, you’ve got everything you need. (See Book VIII
for more information about XAMPP.) You can also install MySQL and
phpMyAdmin without XAMPP, but you should really avoid the head-
aches of manual configuration, if you can. In this chapter, I do all MySQL
through phpMyAdmin, but I show other alternatives in Book V
(where you can connect to MySQL through PHP) and Chapter 2 of this
minibook.

 ✦ Run MySQL from your hosting site. If you’re using Freehostia or some
other hosting service, you generally access MySQL through phpMyAdmin.

Introducing MySQL

41_9780470537558-bk06ch01.indd 64541_9780470537558-bk06ch01.indd 645 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

646

Setting Up phpMyAdmin
By far the most common way to interact with MySQL is through phpMyAd-
min. If you’ve installed XAMPP, you already have phpMyAdmin. Here’s how
you use it to get to MySQL:

 1. Turn on MySQL with the XAMPP Control Panel, shown in Figure 1-2.

 You also need Apache running (because XAMPP runs through the
server). You don’t need to run MySQL or Apache as a service, but you
must have them both running.

Figure 1-2:
I’ve turned
on Apache
and MySQL
in the
XAMPP
control
panel using
the buttons.

 2. Go to the XAMPP main directory in your browser.

 If you used the default installation, you can just point your browser to
http://localhost/xampp. It should look like Figure 1-3.

 Don’t just go through the regular file system to find the XAMPP direc-
tory. You must use the localhost mechanism so that the PHP code in
phpMyAdmin is activated.

 3. Find phpMyAdmin in the Tools section of the menu.

 The phpMyAdmin page looks like Figure 1-4.

 4. Create a new database.

 Type the name for your database in the indicated text field. I call my
database xfd. (Xhtml For Dummies — get it?)

Setting Up phpMyAdmin

41_9780470537558-bk06ch01.indd 64641_9780470537558-bk06ch01.indd 646 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 1

G
e

ttin
g

 S
ta

rte
d

w

ith
 D

a
ta

647

Figure 1-3:
Locating
the XAMPP
subdirectory
through
localhost.

Figure 1-4:
The phpMy-
Admin main
page.

Setting Up phpMyAdmin

41_9780470537558-bk06ch01.indd 64741_9780470537558-bk06ch01.indd 647 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

648

Changing the root password
MySQL is a powerful system, which means it can cause a lot of damage in the
wrong hands. Unfortunately, the default installation of MySQL has a security
loophole you could drive an aircraft carrier through. The default user is called
root and has no password whatsoever. Although you don’t have to worry about
any pesky passwords, the KGB can also get to your data without passwords.

This section is a bit technical, and it’s pretty important if you’re running
your own data server with XAMPP. But if you’re using an online service
like Freehostia, you won’t have to worry about the data security problems
described in this section. You can skip on to the section called “Using php-
MyAdmin on a remote server.” Still, you’ll eventually need this stuff, so don’t
tear these pages out of the book or anything.

Believe me, the bad guys know that root is the most powerful account on
MySQL and that it has no password by default. They’re glad to use that
information to do you harm (or worse, to do harm in your name). Obviously,
giving the root account a password is a very good idea. Fortunately, it’s not
difficult to do:

 1. Log into phpMyAdmin as normal.

 The main screen looks like Figure 1-5. Note the scary warning of gloom
at the bottom. You’re about to fix that problem.

Figure 1-5:
Here’s
the main
phpMy-
Admin
screen with
a privileges
link.

Setting Up phpMyAdmin

41_9780470537558-bk06ch01.indd 64841_9780470537558-bk06ch01.indd 648 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 1

G
e

ttin
g

 S
ta

rte
d

w

ith
 D

a
ta

649

 2. Clic k the Privileges link to modify user privileges.

 The new screen looks something like Figure 1-6.

 3. Edit the root user.

 Chances are good that you have only one user, called root (and maybe
another called pma which is the phpMyAdmin user). The root account’s
Password field says No. You’ll be adding a password to the root user.
The icon at the right allows you to edit this record. (Hover your mouse
over the small icon to see ToolTips if you can’t find it.) The edit screen
looks like Figure 1-7.

 4. Examine the awesome power of the root administrator.

 Even if you don’t know what all these things are, root can clearly do lots
of things, and you shouldn’t let this power go unchecked. (Consult any
James Bond movie for more information on what happens with unfet-
tered power.) You’re still going to let root do all these things, but you’re
going to set a password so that only you can be root on this system.
Scroll down a bit on the page until you see the segment that looks like
Figure 1-8.

Figure 1-6:
The various
users are
stored in a
table.

Setting Up phpMyAdmin

41_9780470537558-bk06ch01.indd 64941_9780470537558-bk06ch01.indd 649 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

650

Figure 1-7:
You can use
this tool to
modify the
root user’s
permissions.

Figure 1-8:
This area
is where
you add the
password.

Setting Up phpMyAdmin

41_9780470537558-bk06ch01.indd 65041_9780470537558-bk06ch01.indd 650 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 1

G
e

ttin
g

 S
ta

rte
d

w

ith
 D

a
ta

651

 5. Assign a password.

 Simply enter the password in the Password box, and then reenter it in
the next box. Be sure that you type the same password twice. Follow
all your typical password rules (six or more characters long, no spaces,
case-sensitive).

 6. Hit the Go button.

 If all went well, the password changes.

 7. Recoil in horror.

 Try to go back to the phpMyAdmin home (with the little house icon),
and something awful happens, as shown in Figure 1-9.

Don’t panic about the error in Figure 1-9. Believe it or not, this error is good.
Up to now, phpMyAdmin was logging into your database as root without
a password (just like the baddies were going to do). Now, phpMyAdmin is
trying to do the same thing (log in as root without a password), but it can’t
because now root has a password.

What you have to do is tell phpMyAdmin that you just locked the door, and
give it the key. (Well, the password, but I was enjoying my metaphor.)

Figure 1-9:
That
message
can’t be
good.
Maybe
I should
have left it
vulnerable.

Setting Up phpMyAdmin

41_9780470537558-bk06ch01.indd 65141_9780470537558-bk06ch01.indd 651 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

652

 1. Find the phpMyAdmin configuration file.

 You have to let phpMyAdmin know that you’ve changed the password.
Look for a file in your phpMyAdmin directory called config.inc.php.
(If you used the default XAMPP installation under Windows, the file is in
C:\Program Files\xampp\phpMyAdmin\config.inc.php.)

 2. Find the root password setting.

 Using the text editor’s search function, I found it on line 70, but it may
be someplace else in your editor. In Notepad++, it looks like Figure 1-10.

 3. Change the root setting to reflect your password.

 Enter your root password. For example, if your new password is myPass-
word, change the line so that it looks like

$cfg[‘Servers’][$i][‘password’] = ‘myPassword’; // MySQL password

 Of course, myPassword is just an example. It’s really a bad password.
Put your actual password in its place.

 4. Save the config.inc.php file.

 Save the configuration file and return to phpMyAdmin. You may need to
set the file’s permissions to 644 if you’re on a Mac or Linux machine.

Figure 1-10:
Here’s the
username
and
configura tion
information.

Setting Up phpMyAdmin

41_9780470537558-bk06ch01.indd 65241_9780470537558-bk06ch01.indd 652 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 1

G
e

ttin
g

 S
ta

rte
d

w

ith
 D

a
ta

653

 5. Try getting into phpMyAdmin again.

 This time, you don’t get the error, and nobody is able to get into your
database without your password. You shouldn’t have to worry about
this issue again, but whenever you connect to this database, you do
need to supply the username and password.

Adding a user
Changing the root password is the absolute minimum security measure, but
it’s not the only one. You can add various virtual users to your system to
protect it further.

You’re able to log into your own copy of MySQL (and phpMyAdmin) as root
because you’re the root owner. (If not, then refer to the preceding section.)
It’s your database, so you should be allowed to do anything with it.

You probably don’t want your programs logging in as root because that can
allow malicious code to sneak into your system and do mischief. You’re
better off setting up a different user for each database and allowing that user
access only to the tables within that database.

 I’m really not kidding about the danger here. A user with root access can get
into your database and do anything, including creating more users or chang-
ing the root password so that you can no longer get into your own database!
You generally shouldn’t write any PHP programs that use root. Instead, have
a special user for that database. If the bad guys get in as anything but root,
they can’t blow up everything.

Fortunately, creating new users with phpMyAdmin isn’t a difficult procedure:

 1. Log into phpMyAdmin with root access.

 If you’re running XAMPP on your own server, you’ll automatically log in
as root.

 2. Activate the Privileges tab to view user privileges.

 3. Add a new user using the Add a New User link on the Privileges page.

 4. Fill in user information on the new user page (see Figure 1-11).

 Be sure to add a username and password. Typically, you use local
host as the host.

Setting Up phpMyAdmin

41_9780470537558-bk06ch01.indd 65341_9780470537558-bk06ch01.indd 653 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

654

 5. Create a database, if it doesn’t already exist.

 If you haven’t already made a database for this project, you can do so
automatically with the Create Table Automatically radio button.

 6. Do not assign global privileges.

 Only the root user should have global privileges. You want this user to
have the ability to work only within a specific database.

 7. Create the user by clicking the Go button.

 You see a new screen like Figure 1-12 (you need to scroll down a bit to
see this part of the page).

 8. Specify the user’s database.

 Select the database in the drop-down list. This user (xfd) will have
access only to tables in the xfd database. Note that you probably don’t
have many databases on your system when you start out.

 9. Apply most privileges.

 You generally want your programs to do nearly everything within their
own database so that you can apply almost all privileges (for now,
anyway). I typically select all privileges except Grant, which lets the user
allow access to other users. Figure 1-13 shows the Privileges page.

Figure 1-11:
Here’s the
new xfd
user being
created.

Setting Up phpMyAdmin

41_9780470537558-bk06ch01.indd 65441_9780470537558-bk06ch01.indd 654 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 1

G
e

ttin
g

 S
ta

rte
d

w

ith
 D

a
ta

655

Figure 1-12:
You can
specify a
specific
database for
this user.

Figure 1-13:
The xfd
user can do
everything
but grant
other
privileges
on this
database.

Setting Up phpMyAdmin

41_9780470537558-bk06ch01.indd 65541_9780470537558-bk06ch01.indd 655 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

656

As you’re starting out, your programs have access to one database and are
able to do plenty with it. As your data gets more critical, you’ll probably
want to create more restrictive user accounts so that those programs that
should only be reading your data don’t have the ability to modify or delete
records. This change makes it more difficult for the bad guys to mess up
your day.

 Your database users won’t usually be people. This idea is hard, particularly
if you haven’t used PHP or another server-side language yet. The database
users are usually programs you have written that access the database in
your name.

Using phpMyAdmin on a remote server
If you’re working on some remote system with your service provider, the
mechanism for managing and creating your databases may be a bit different.
Each host has its own quirks, but they’re all pretty similar. As an example,
here’s how I connect to the system on Freehostia at http://freehostia.
com (where I post the example pages for this book):

 1. Log onto your service provider using the server login.

 You usually see some sort of control panel with the various tools you
have as an administrator. These tools often look like Figure 1-14.

Figure 1-14:
The Free
Hostia site
shows a
number
of useful
adminis-
tration tools.

Setting Up phpMyAdmin

41_9780470537558-bk06ch01.indd 65641_9780470537558-bk06ch01.indd 656 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 1

G
e

ttin
g

 S
ta

rte
d

w

ith
 D

a
ta

657

 2. Locate your database settings.

 Not all free hosting services provide database access, but some (like
Free Hostia — at least, as of this writing) do have free MySQL access.
You usually can access some sort of tool for managing your databases.
(You’ll probably have a limited number of databases available on free
servers, but more with commercial accounts.) Figure 1-15 shows the
database administration tool in Free Hostia.

 3. Create a database according to the rules enforced by your system.

 Sometimes, you can create the database within phpMyAdmin (as I did in
the last section), but more often, you need to use a special tool like the
one shown in Figure 1-15 to create your databases. Free Hostia imposes
a couple of limits: The database name begins with the system username,
and it can’t be more than 16 characters long.

 Don’t freak out if your screen looks a little different than Figure 1-15.
Different hosting companies have slightly different rules and systems, so
things won’t be just like this, but they’ll probably be similar. If you get
stuck, be sure to look at the hosting service’s Help system. You can also
contact the support system. They’re usually glad to help, but they’re
(understandably) much more helpful if you’ve paid for the hosting ser-
vice. Even the free hosting systems offer some online support, but if
you’re going to be serious, paying for online support is a good deal.

Figure 1-15:
The
database
admini-
stration
tool lets
me create
or edit
databases.

Setting Up phpMyAdmin

41_9780470537558-bk06ch01.indd 65741_9780470537558-bk06ch01.indd 657 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

658

 4. Create a password for this database.

 You probably need a password (and sometimes another username) for
your databases to prevent unauthorized access to your data. Because
the database is a different server than the Web server, it has its own
security system. On Free Hostia, I must enter a password, and the
system automatically creates a MySQL username with the same name as
the database. Keep track of this information because you need it later
when you write a program to work with this data.

 5. Use phpMyAdmin to add tables to your database.

 Once you’ve defined the database, you can usually use phpMyAdmin to
manipulate the data. With Free Hostia, you can simply click a database
name to log into phpMyAdmin as the administrator of that database.
Figure 1-16 shows the new database in phpMyAdmin, ready for action.

Typically, a remote server doesn’t give you root access, so you don’t have to
mess around with the whole root password mess described in the “Changing
the root password” section of this chapter. Instead, you often either have
one password you always use in phpMyAdmin or you have a different user
and password for each database.

Figure 1-16:
Now I can
access the
database
in phpMy-
Admin.

Setting Up phpMyAdmin

41_9780470537558-bk06ch01.indd 65841_9780470537558-bk06ch01.indd 658 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 1

G
e

ttin
g

 S
ta

rte
d

w

ith
 D

a
ta

659

Making a Database with phpMyAdmin
When you’ve got a database, you can build a table. When you’ve defined a
table, you can add data. When you’ve got data, you can look at it. Begin by
building a table to handle the contact data described in the first section of
this chapter, “Examining the Basic Structure of Data”:

 1. Be sure you’re logged into phpMyAdmin.

 The phpMyAdmin page should look something like Figure 1-17, with
your database name available in the left column.

 2. Activate the database by clicking the database name in the left
column.

 If the database is empty, an Add Table page, shown in Figure 1-18,
appears.

 3. Create a new table using the phpMyAdmin tool.

 Now that you have a database, add the contacts table to it. The contacts
database has four fields, so type a 4 into the box and let ’er rip. A form
like Figure 1-19 appears.

 4. Enter the field information.

 Type the field names into the grid to create the table. It should look like
Figure 1-20.

Figure 1-17:
The main
screen of
the phpMy-
Admin
system.

Making a Database with phpMyAdmin

41_9780470537558-bk06ch01.indd 65941_9780470537558-bk06ch01.indd 659 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

660

Figure 1-18:
Type a
table name
to begin
adding a
table.

Figure 1-19:
Creating the
contacts
table.

Making a Database with phpMyAdmin

41_9780470537558-bk06ch01.indd 66041_9780470537558-bk06ch01.indd 660 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 1

G
e

ttin
g

 S
ta

rte
d

w

ith
 D

a
ta

661

 In Figure 1-20, you can’t see it, but you can select the index of contactID
as a primary key. Be sure to add this indicator. Also set the collation of
the entire table to ascii_general_ci.

 5. Click the Save button and watch the results.

 phpMyAdmin automatically writes some SQL code for you and executes
it. Figure 1-21 shows the code and the new table.

 Now, the left panel indicates that you’re in the xfd database, which has
a table called Contact.

After you define a table, you can add data. Click Contact in the left column, and
you see the screen for managing the contact table, as shown in Figure 1-22.

You can add data with the Insert tab, which gives a form like Figure 1-23,
based on your table design.

After you add the record, choose Insert Another Row and click the Go button.
Repeat until you’ve added all the contacts you want in your database.

After you add all the records you want to the database, you can use the
Browse tab to see all the data in the table. Figure 1-24 shows my table after I
added all my contacts to it and browsed.

Figure 1-20:
Enter field
data on this
form.

Making a Database with phpMyAdmin

41_9780470537558-bk06ch01.indd 66141_9780470537558-bk06ch01.indd 661 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

662

Figure 1-21:
phpMy-
Admin
created this
mysterious
code and
built a table.

Figure 1-22:
I’ve added
the fields.

Making a Database with phpMyAdmin

41_9780470537558-bk06ch01.indd 66241_9780470537558-bk06ch01.indd 662 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 1

G
e

ttin
g

 S
ta

rte
d

w

ith
 D

a
ta

663

Figure 1-23:
Adding a
record to
the table.

Figure 1-24:
Viewing the
table data
in phpMy-
Admin.

Making a Database with phpMyAdmin

41_9780470537558-bk06ch01.indd 66341_9780470537558-bk06ch01.indd 663 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

664 Book VI: Managing Data with MySQL

41_9780470537558-bk06ch01.indd 66441_9780470537558-bk06ch01.indd 664 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Managing
Data with SQL

In This Chapter
✓ Working with SQL script files

✓ Using AUTO_INCREMENT to build primary key values

✓ Selecting a subset of fields

✓ Displaying a subset of records

✓ Modifying your data

✓ Deleting records

✓ Exporting your data

Although we tend to think of the Internet as a series of interconnected
documents, the Web is increasingly about data. The HTML and XHTML

languages are still used to manage Web documents, but the SQL (Structured
Query Language) — the language of data — is becoming increasingly cen-
tral. In this chapter, you discover how SQL is used to define a data struc-
ture, add data to a database, and modify that data.

Writing SQL Code by Hand
Although you can use phpMyAdmin to build databases, all it really does
is write and execute SQL code for you. You should know how to write SQL
code yourself for many reasons:

 ✦ It’s pretty easy. SQL isn’t terribly difficult (at least, to begin with —
things do get involved later).Writing the code in SQL is probably easier
for you to write than to creating the code in phpMyAdmin.

 ✦ You need to write code in your programs. You probably run your
database from within PHP programs. You need to be able to write SQL
commands from within your PHP code, and phpMyAdmin doesn’t help
much with that job.

 ✦ You can’t trust computers. You should understand any code that has
your name on it, even if you use a tool like phpMyAdmin to write the
code. If your program breaks, you have to fix it eventually, so you really
should know how it works.

42_9780470537558-bk06ch02.indd 66542_9780470537558-bk06ch02.indd 665 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

666

 ✦ SQL scripts are portable. Moving an entire data structure to a new
server is difficult, but if you have a script that creates and populates the
database, that script is just an ASCII file. You can easily move a complete
database (including the data) to a new machine.

 ✦ SQL scripts allow you to quickly rebuild a corrupted database. As
you’re testing your system, you’ll commonly make mistakes that can
harm your data structure. It’s very nice to have a script that you can use
to quickly reset your data to some standard test state.

Understanding SQL syntax rules
SQL is a language (like XHTML, JavaScript, CSS, and PHP), so it has its own
syntax rules. The rules and traditions of SQL are a bit unique because this lan-
guage has a different purpose than more traditional programming languages:

 ✦ Keywords are in uppercase. Officially, SQL is not case-sensitive, but the
tradition is to make all reserved words in uppercase and the names of
all your custom elements camel-case (described in Book V, Chapter 6).
Some variations of SQL are case-sensitive, so you’re safest assuming that
they all are.

 ✦ One statement can take up more than one line in the editor. SQL state-
ments aren’t usually difficult, but they can get long. Having one state-
ment take up many lines in the editor is common.

 ✦ Logical lines end with semicolons. Like PHP and JavaScript, each state-
ment in SQL ends with a semicolon.

 ✦ White space is ignored. DBMS systems don’t pay attention to spaces
and carriage returns, so you can (and should) use these tools to help
you clarify your code meaning.

 ✦ Single quotes are used for text values. MySQL generally uses single
quotes to denote text values, rather than the double quotes used in
other languages. If you really want to enclose a single quote in your text,
backslash it.

Examining the buildContact.sql script
Take a look at the following code:

-- buildContact.sql

DROP TABLE IF EXISTS contact;

CREATE TABLE contact (
 contactID int PRIMARY KEY,
 name VARCHAR(50),
 company VARCHAR(30),
 email VARCHAR(50)
);

Writing SQL Code by Hand

42_9780470537558-bk06ch02.indd 66642_9780470537558-bk06ch02.indd 666 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 2

M
a

n
a

g
in

g
 D

a
ta

w

ith
 S

Q
L

667

INSERT INTO contact VALUES
 (0, ‘Bill Gates’, ‘Microsoft’, ‘bill@msBob.com’);
INSERT INTO contact VALUES
 (1, ‘Steve Jobs‘, ‘Apple‘, ‘steve@rememberNewton.com‘);
INSERT INTO contact VALUES
 (2, ‘Linus Torvalds‘, ‘Linux Foundation‘, ‘linus@gnuWho.org‘);
INSERT INTO contact VALUES
 (3, ‘Andy Harris‘, ‘Wiley Press‘, ‘andy@aharrisBooks.net‘);

SELECT * FROM contact;

This powerful code is written in SQL. I explain each segment in more detail
throughout the section, but here’s an overview:

 1. Delete the contact table, if it already exists.

 This script completely rebuilds the contact table, so if it already exists,
it is temporarily deleted to avoid duplication.

 2. Create a new table named contact.

 As you can see, the table creation syntax is spare but pretty straightfor-
ward. Each field name is followed by its type and length (at least, in the
case of VARCHARs).

 3. Add values to the table by using the INSERT command.

 Use a new INSERT statement for each record.

 4. View the table data using the SELECT command.

 This command displays the content of the table.

Dropping a table
It may seem odd to begin creating a table by deleting it, but there’s actually
a good reason. As you experiment with a data structure, you’ll often find
yourself building and rebuilding the tables.

The line

DROP TABLE IF EXISTS contact

means, “Look at the current database and see whether the table contact
appears in it. If so, delete it.” This syntax ensures that you start over fresh
as you are rebuilding the table in the succeeding lines. Typical SQL scripts
begin by deleting any tables that will be overwritten to avoid confusion.

Creating a table
You create a table with the (aptly named) CREATE TABLE command. The spe-
cific table creation statement for the contact table looks like the following:

CREATE TABLE contact (

Writing SQL Code by Hand

42_9780470537558-bk06ch02.indd 66742_9780470537558-bk06ch02.indd 667 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

668

 contactID int PRIMARY KEY,
 name VARCHAR(50),
 company VARCHAR(30),
 email VARCHAR(50)
);

Creating a table involves several smaller tasks:

 1. Specify the table name.

 The CREATE TABLE statement requires a table name. Specify the table
name. Table names (like variables and filenames) should generally not
contain spaces or punctuation without good reason.

 2. Begin the field definition with a parenthesis.

 The left parenthesis indicates the beginning of the field list. You tradi-
tionally list one field per line, indented as in regular code, although that
format isn’t required.

 3. Begin each field with its name.

 Every field has a name and a type. Begin with the field name, which
should also be one word.

 4. Indicate the field type.

 The field type immediately follows the field name (with no punctuation).

 5. Indicate field length, if necessary.

 If the field is a VARCHAR or CHAR field, specify its length within parenthe-
ses. You can specify the length of numeric types, but I don’t recommend
it because MySQL automatically determines the length of numeric fields.

 6. Add special modifiers.

 Some fields have special modifiers. For now, note that the primary key is
indicated on the contactID field.

 7. End the field definition with a comma.

 The comma character indicates the end of a field definition.

 8. End the table definition with a closing parenthesis and a semicolon.

 Close the parenthesis that started the table definition and end the entire
statement with a semicolon.

Adding records to the table
You add data to the table with the INSERT command. The way this com-
mand works isn’t too surprising:

INSERT INTO contact VALUES
 (0, ‘Bill Gates‘, ‘Microsoft‘, ‘bill@msBob.com‘);

Writing SQL Code by Hand

42_9780470537558-bk06ch02.indd 66842_9780470537558-bk06ch02.indd 668 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 2

M
a

n
a

g
in

g
 D

a
ta

w

ith
 S

Q
L

669

Follow these steps:

 1. Begin with the INSERT keyword.

 Use INSERT to clarify that this instruction is a data insertion command.

 2. Specify the table you want to add data to.

 In my example, I have only one table, so use INTO contact to specify
that’s where the table goes.

 3. (Optional) Specify field names.

 You can specify a list of field names, but this step is unnecessary if
you add data to all fields in their standard order. (Normally, you don’t
bother with field names.)

 4. Use the VALUES keyword to indicate that a list of field values is
coming.

 5. Enclose the values within parentheses.

 Use parentheses to enclose the list of data values.

 6. Put all values in the right order.

 Place values in exactly the same order the fields were designated.

 7. Place text values within single quotes.

 MySQL uses single quotes to specify text values.

 8. End the statement with a semicolon, as you do with all SQL commands.

 9. Repeat with other data.

 Add as many INSERT commands as you want to populate the data table.

Viewing the sample data
Once you’ve created and populated a table, you’ll want to look it over. SQL
provides the SELECT command for this purpose. SELECT is amazingly pow-
erful, but its basic form is simplicity itself:

SELECT * FROM contact;

This command simply returns all fields of all records from your database.

Running a Script with phpMyAdmin
phpMyAdmin provides terrific features for working with SQL scripts. You
can write your script directly in phpMyAdmin, or you can use any text
editor.

Running a Script with phpMyAdmin

42_9780470537558-bk06ch02.indd 66942_9780470537558-bk06ch02.indd 669 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

670

 Aptana Studio is fine for editing SQL files, but it doesn’t have built-in SQL
support, such as syntax checking and coloring. You can download a plugin
to add these features (search for eclipse SQL plugins); use another editor
like Notepad++ or Komodo Edit, which both support syntax coloring for SQL;
or just do without syntax coloring in Aptana.

If you’ve written a script in some other editor, you’ll need to save it as a text
file and import it into phpMyAdmin.

To run a script in phpMyAdmin, follow these steps:

 1. Connect to phpMyAdmin.

 Be sure that you’re logged in and connected to the system.

 2. Navigate to the correct database.

 Typically, you use a drop-down list to the left of the main screen to pick
the database. (If you haven’t created a database, see the instructions
in Chapter 1 of this minibook.) Figure 2-1 shows the main phpMyAdmin
screen with the xfd database enabled.

 3. Activate the SQL pop-up window.

 You can do so by clicking the small SQL icon in the left-hand navigation
menu. The resulting window looks like Figure 2-2.

Figure 2-1:
The xfd
database is
created and
ready to go.

Running a Script with phpMyAdmin

42_9780470537558-bk06ch02.indd 67042_9780470537558-bk06ch02.indd 670 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 2

M
a

n
a

g
in

g
 D

a
ta

w

ith
 S

Q
L

671

Figure 2-2:
The SQL
script
window.

 4. (Optional) Type your SQL code directly into this dialog box.

 This shortcut is good for making quick queries about your data, but gen-
erally you create and initialize data with prewritten scripts.

 5. Move to the Import Files tab.

 In this tab, you can upload the file directly into the MySQL server. Figure 2-3
shows the resulting page. Use the Browse button to locate your file and
the Go button to load it into MySQL.

 If you’ve already created the contact database by following the instructions
in Chapter 1 of this minibook, you may be nervous that you’ll overwrite
the data. You will, but for this stage in the process, that’s exactly what you
want. The point of a script is to help you build a database and rebuild it
quickly. After you have meaningful data in the table, you won’t be rebuild-
ing it so often, but during the test and creation stage, this skill is critical.

 6. Examine your handiwork.

 Look back at the phpMyAdmin page, and you see something like Figure
2-4. It shows your script and, if you ended with a SELECT statement, an
output of your table. (Later versions of phpMyAdmin display only the
last statement in the script, but all are executed.)

Figure 2-3:
Importing an
externally
defined SQL
script.

Running a Script with phpMyAdmin

42_9780470537558-bk06ch02.indd 67142_9780470537558-bk06ch02.indd 671 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

672

Figure 2-4:
Here’s the
script and
its results,
shown in
phpMy-
Admin.

Using AUTO_INCREMENT for Primary Keys
Primary keys are important because you use them as a standard index for
the table. The job of a primary key is to uniquely identify each record in the
table. Remember that a primary key has a few important characteristics:

 ✦ It must exist. Every record must have a primary key.

 ✦ It must be unique. Two records in the same table can’t have the same
key.

 ✦ It must not be null. There must be a value in each key.

When you initially create a table, you have all the values in front of you, but
what if you want to add a field later? Somehow, you have to ensure that the
primary key in every record is unique.

Over the years, database developers have discovered that integer values are
especially handy as primary keys. The great thing about integers is that you
can always find a unique one. Just look for the largest index in your table
and add one.

Fortunately, MySQL (like most database packages) has a wonderful feature
for automatically generating unique integer indices.

Using AUTO_INCREMENT for Primary Keys

42_9780470537558-bk06ch02.indd 67242_9780470537558-bk06ch02.indd 672 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 2

M
a

n
a

g
in

g
 D

a
ta

w

ith
 S

Q
L

673

Take a look at this variation of the buildContact.sql script:

-- buildContactAutoIncrement.sql

DROP TABLE IF EXISTS contact;

CREATE TABLE contact (
 contactID int PRIMARY KEY AUTO_INCREMENT,
 name VARCHAR(50),
 company VARCHAR(30),
 email VARCHAR(50)
);

INSERT INTO contact VALUES
 (null, ‘Bill Gates‘, ‘Microsoft‘, ‘bill@msBob.com‘);
INSERT INTO contact VALUES
 (null, ‘Steve Jobs‘, ‘Apple‘, ‘steve@rememberNewton.com‘);
INSERT INTO contact VALUES
 (null, ‘Linus Torvalds‘, ‘Linux Foundation‘, ‘linus@gnuWho.org‘);
INSERT INTO contact VALUES
 (null, ‘Andy Harris‘, ‘Wiley Press‘, ‘andy@aharrisBooks.net‘);

SELECT * FROM contact;

Here are the changes in this script:

 ✦ Add the AUTO_INCREMENT tag to the primary key definition. This tag
indicates that the MySQL system will automatically generate a unique
integer for this field. You can apply the AUTO_INCREMENT tag to any
field, but you most commonly apply it to primary keys.

 ✦ Replace index values with null. When you define a table with AUTO_
INCREMENT, you should no longer specify values in the affected field.

phpMyAdmin is a wonderful tool, but it does
have one strange quirk. When you look over
your table design, you may find that the
collation is set to latin1_swedish_
ci. This syntax refers to the native character
set used by the internal data structure. Nothing
is terribly harmful about this set (Swedish is a
wonderful language), but I don’t want to incor-
rectly imply that my database is written in
Swedish.

Fortunately, it’s an easy fix. In phpMyAdmin,
go to the Operations tab and look for Table
Options. You can then set your collation to

whatever you want. I typically use latin1_
general_ci as it works fine for American
English, which is the language used in most of
my data sets. (See the MySQL documentation
about internationalization if you’re working in a
language that needs the collation feature.)

I’ve only run into this problem with phpMyAd-
min. If you create your database directly from
the MySQL interpreter or from within PHP pro-
grams, the collation issue doesn’t seem to be
a problem.

Latin-Swedish?

Using AUTO_INCREMENT for Primary Keys

42_9780470537558-bk06ch02.indd 67342_9780470537558-bk06ch02.indd 673 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

674

Instead, just place the value null. When the SQL interpreter sees the
value null on an AUTO_INCREMENT field, it automatically finds the next
largest integer.

You may wonder why I’m entering the value null when I said primary keys
should never be null. Well, I’m not really making them null. The null value
is simply a signal to the interpreter: “Hey, this field is AUTO_INCREMENT,
and I want you to find a value for it.”

Selecting Data from Your Tables
Creating a database is great, but the real point of a database is to extract
information from it. SQL provides an incredibly powerful command for
retrieving data from the database. The basic form looks as follows:

SELECT * FROM contact;

The easiest way to practice SQL commands is to use phpMyAdmin. Figure
2-5 shows phpMyAdmin with the SQL tab open.

Figure 2-5:
You can
easily test
queries in
phpMy-
Admin.

Selecting Data from Your Tables

42_9780470537558-bk06ch02.indd 67442_9780470537558-bk06ch02.indd 674 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 2

M
a

n
a

g
in

g
 D

a
ta

w

ith
 S

Q
L

675

Note that you can enter SQL code in multiple places. If you’re working with a
particular table, you can invoke that table’s SQL tab (as I do in Figure 2-5). You
can also always enter SQL code into your system with the SQL button on the
main phpMyAdmin panel (on the left panel of all phpMyAdmin screens).

If you have a particular table currently active, the SQL dialog box shows you the
fields of the current table, which can be handy when you write SQL queries.

Try the SELECT * FROM contact; code in the SQL dialog box, and you
see the results shown in Figure 2-6.

Selecting only a few fields
As databases get more complex, you’ll often find that you don’t want
everything. Sometimes, you only want to see a few fields at a time. You can
replace the * characters with field names. For example, if you want to see
only the names and e-mail addresses, use this variation of the SELECT
statement:

SELECT name, email FROM contact;

Figure 2-6:
The
standard
SELECT
statement
returns the
entire table.

Selecting Data from Your Tables

42_9780470537558-bk06ch02.indd 67542_9780470537558-bk06ch02.indd 675 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

676

Only the columns you specify appear, as you can see in Figure 2-7.

Here’s another really nice trick you can do with fields. You can give each
column a new virtual field name:

SELECT
 name as ‘Person‘,
 email as ‘Address‘
FROM contact;

This code also selects only two columns, but this time, it attaches the spe-
cial labels Person and Address to the columns. You can see this result in
Figure 2-8.

The capability to add a virtual name for each column doesn’t seem like a
big deal now, but it becomes handy when your database contains multiple
tables. For example, you may have a table named pet and another table
named owner that both have a name field. The virtual title feature helps
keep you (and your users) from being confused.

Figure 2-7:
Now, the
result is
only two
columns
wide.

Selecting Data from Your Tables

42_9780470537558-bk06ch02.indd 67642_9780470537558-bk06ch02.indd 676 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 2

M
a

n
a

g
in

g
 D

a
ta

w

ith
 S

Q
L

677

Figure 2-8:
You can
create
virtual titles
for your
columns.

Selecting a subset of records
One of the most important jobs in data work is returning a smaller set of the
database that meets some kind of criterion. For example, what if you want to
dash off a quick e-mail to Steve Jobs? Use this query:

SELECT *
FROM contact
WHERE
 name = ‘Steve Jobs‘;

This query has a few key features:

 ✦ It selects all fields. This query selects all the fields (for now).

 ✦ A WHERE clause appears. The WHERE clause allows you to specify
a condition.

 ✦ It has a condition. SQL supports conditions, much like ordinary pro-
gramming languages. MySQL returns only the records that match this
condition.

 ✦ The condition begins with a field name. SQL conditions usually com-
pare a field to a value (or to another field).

Selecting Data from Your Tables

42_9780470537558-bk06ch02.indd 67742_9780470537558-bk06ch02.indd 677 10/7/10 8:50 PM10/7/10 8:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

678

 ✦ Conditions use single equal signs. You can easily get confused on this
detail because SQL uses the single equal sign (=) in conditions, whereas
most programming languages use double equals (==) for the same
purpose.

 ✦ All text values must be within single quotes. I’m looking for an exact
match on the text string ‘Steve Jobs’.

 ✦ It assumes that searches are case-sensitive. Different databases have
different behavior when it comes to case-sensitivity in SELECT state-
ments, but you’re safest assuming that case matters.

Figure 2-9 shows the result of this query.

SQL is pretty picky about the entire text string. The following query doesn’t
return any results in the contact database:

SELECT *
FROM contact
WHERE
 name = ‘Steve‘;

Figure 2-9:
Here’s a
query that
returns the
result of a
search.

Selecting Data from Your Tables

42_9780470537558-bk06ch02.indd 67842_9780470537558-bk06ch02.indd 678 10/7/10 8:51 PM10/7/10 8:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 2

M
a

n
a

g
in

g
 D

a
ta

w

ith
 S

Q
L

679

The contact table doesn’t have any records with a name field containing
Steve (unless you added some records when I wasn’t looking). Steve Jobs is
not the same as Steve, so this query returns no results.

Searching with partial information
Of course, sometimes all you have is partial information. Take a look at the
following variation to see how it works:

SELECT *
FROM contact
WHERE
 company LIKE ‘W%‘;

This query looks at the company field and returns any records with a
company field beginning with W. Figure 2-10 shows how it works.

The LIKE clause is pretty straightforward:

 ✦ The keyword LIKE indicates a partial match is coming. It’s still the
SELECT statement, but now it has the LIKE keyword to indicate an
exact match isn’t necessary.

Figure 2-10:
This query
returns
companies
that begin
with W.

Selecting Data from Your Tables

42_9780470537558-bk06ch02.indd 67942_9780470537558-bk06ch02.indd 679 10/7/10 8:51 PM10/7/10 8:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

680

 ✦ The search text is still within single quotes, just like the ordinary
SELECT statement.

 ✦ The percent sign (%) indicates a wildcard value. A search string of
‘W%’ looks for W followed by any number of characters.

 ✦ Any text followed by % indicates that you’re searching the beginning
of the field. So, if you’re looking for people named Steve, you can write
SELECT * FROM contact WHERE name LIKE ‘Steve%’;.

Searching for the ending value of a field
Likewise, you can find fields that end with a particular value. Say that
you want to send an e-mail to everyone in your contact book with a .com
address. This query does the trick:

SELECT *
FROM contact
WHERE
 email LIKE ‘%.com‘;

Figure 2-11 shows the results of this query.

Figure 2-11:
You can
build a
query to
check the
end of a
field.

Selecting Data from Your Tables

42_9780470537558-bk06ch02.indd 68042_9780470537558-bk06ch02.indd 680 10/7/10 8:51 PM10/7/10 8:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 2

M
a

n
a

g
in

g
 D

a
ta

w

ith
 S

Q
L

681

Searching for any text in a field
One more variant of the LIKE clause allows you to find a phrase anywhere in
the field. Say that you remember somebody in your database writes books,
and you decide to search for e-mail addresses containing the phrase book:

SELECT *
FROM contact
WHERE
 email LIKE ‘%book%‘;

The search phrase has percent signs at the beginning and the end, so if the
phrase “book” occurs anywhere in the specified field, you get a match. And
what do you know? Figure 2-12 shows this query matches on the record of a
humble, yet lovable author!

Searching with regular expressions
If you know how to use regular expressions, you know how great they can
be when you need a more involved search. MySQL has a special form of the
SELECT keyword that supports regular expressions:

Figure 2-12:
This query
searched
for the
phrase
“book”
anywhere
in the e-mail
string.

Selecting Data from Your Tables

42_9780470537558-bk06ch02.indd 68142_9780470537558-bk06ch02.indd 681 10/7/10 8:51 PM10/7/10 8:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

682

SELECT *
FROM contact
WHERE
 company REGEXP ‘^.{3}$‘;

The REGEXP keyword lets you search using powerful regular expressions.
(Refer to Book IV, Chapter 6 for more information on regular expressions.)
This particular expression checks for a company field with exactly three let-
ters. In this table, it returns only one value, shown in Figure 2-13.

Unfortunately, not all database programs support the REGEXP f eature, but
MySQL does, and it’s really powerful if you understand the (admittedly
arcane) syntax of regular expressions.

Sorting your responses
You can specify the order of your query results with the ORDER BY clause. It
works like this:

SELECT *
FROM contact
ORDER BY email;

Figure 2-13:
Regular
expressions
are even
more
powerful
than the
standard
LIKE clause.

Selecting Data from Your Tables

42_9780470537558-bk06ch02.indd 68242_9780470537558-bk06ch02.indd 682 10/7/10 8:51 PM10/7/10 8:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 2

M
a

n
a

g
in

g
 D

a
ta

w

ith
 S

Q
L

683

The ORDER BY directive allows you to specify a field to sort by. In this case,
I want the records displayed in alphabetical order by e-mail address. Figure
2-14 shows how it looks.

By default, records are sorted in ascending order. Numeric fields are sorted
from smallest to largest, and text fields are sorted in standard alphabetic
order.

Well, not quite standard alphabetic order . . . SQL isn’t as smart as a librar-
ian, who has special rules about skipping “the” and so on. SQL simply looks
at the ASCII values of the characters for sorting purposes.

You can also invert the order:

SELECT *
FROM contact
ORDER BY email DESC;

Inverting the order causes the records to be produced in reverse alphabetic
order by e-mail address. DESC stands for descending order. ASC stands for
ascending order, but because it’s the default, it isn’t usually specified.

Figure 2-14:
Now, the
result is
sorted
by e-mail
address.

Selecting Data from Your Tables

42_9780470537558-bk06ch02.indd 68342_9780470537558-bk06ch02.indd 683 10/7/10 8:51 PM10/7/10 8:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

684

Editing Records
Of course, the purpose of a database is to manage data. Sometimes, you
want to edit data after it’s already in the table. SQL includes handy com-
mands for this task: UPDATE and DELETE. The UPDATE command modifies
the value of an existing record, and the DELETE command removes a record
altogether.

Updating a record
Say that you decide to modify Bill Gates’s address to reinforce a recent mar-
keting triumph. The following SQL code does the trick:

UPDATE contact
SET email = ‘bill@vistaRocks.com‘
WHERE name = ‘Bill Gates‘;

The UPDATE command has a few parts:

 ✦ The UPDATE command. This indicates which table you will modify.

 ✦ The SET command. This indicates a new assignment.

 ✦ Assign a new value to a field. This uses a standard programming-style
assignment statement to attach a new value to the indicated field. You
can modify more than one field at a time. Just separate the field =
value pairs with commas.

 ✦ Specify a WHERE clause. You don’t want this change to happen to all the
records in your database. You want to change only the e-mail address
in records where the name is Bill Gates. Use the WHERE clause to specify
which records you intend to update.

 More than one person in your database may be named Bill Gates. Names
aren’t guaranteed to be unique, so they aren’t really the best search criteria.
This situation is actually a very good reason to use primary keys. A better
version of this update looks as follows:

UPDATE contact
SET email = ‘bill@vistaRocks.com‘
WHERE contactID = 1;

The contactID is guaranteed to be unique and present, so it makes an ideal
search criterion. Whenever possible, UPDATE (and DROP) commands should
use primary key searches so that you don’t accidentally change or delete the
wrong record.

Deleting a record
Sometimes, you need to delete records. SQL has a command for this eventu-
ality, and it’s pretty easy to use:

Editing Records

42_9780470537558-bk06ch02.indd 68442_9780470537558-bk06ch02.indd 684 10/7/10 8:51 PM10/7/10 8:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 2

M
a

n
a

g
in

g
 D

a
ta

w

ith
 S

Q
L

685

DELETE FROM contact
WHERE contactID = 1;

The preceding line deletes the entire record with a contactID of 1.

 Be very careful with the DELETE command, as it is destructive. Be abso-
lutely sure that you have a WHERE clause, or you may delete all the records
in your table with one quick command! Likewise, be sure that you under-
stand the WHERE clause so that you aren’t surprised by what gets deleted.
You’re better off running an ordinary SELECT using the WHERE clause before
you DELETE, just to be sure that you know exactly what you’re deleting.
Generally, you should DELETE based on only a primary key so that you don’t
produce any collateral damage.

Exporting Your Data and Structure
After you’ve built a wonderful data structure, you probably will want to
export it for a number of reasons:

 ✦ You want a backup. Just in case something goes wrong!

 ✦ You want to move to a production server. It’s smart to work on a local
(offline) server while you figure things out, but eventually you’ll need to
move to a live server. Moving the actual database files is tricky, but you
can easily move a script.

 ✦ You want to perform data analysis. You may want to put your data in a
spreadsheet for further analysis or in a comma-separated text file to be
read by programs without SQL access.

 ✦ You want to document the table structure. The structure of a data
set is extremely important when you start writing programs using that
structure. Having the table structure available in a word-processing or
PDF format can be very useful.

MySQL (and thus phpMyAdmin) has some really nice tools for exporting
your data in a number of formats.

Figure 2-15 shows an overview of the Export tab, showing some of
the features.

The different styles of output are used for different purposes:

 ✦ CSV (comma-separated value) format: A plain ASCII comma-separated
format. Each record is stored on its own line, and each field is separated
by a comma. CSV is nice because it’s universal. Most spreadsheet pro-
grams can read CSV data natively, and it’s very easy to write a program
to read CSV data, even if your server doesn’t support MySQL. If you
want to back up your data to move to another server, CSV is a good
choice. Figure 2-16 shows some of the options for creating a CSV file.

Exporting Your Data and Structure

42_9780470537558-bk06ch02.indd 68542_9780470537558-bk06ch02.indd 685 10/7/10 8:51 PM10/7/10 8:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

686

Figure 2-15:
These are
some of
the various
output
techniques.

Figure 2-16:
You have
several
options for
creating
CSV files.

Exporting Your Data and Structure

42_9780470537558-bk06ch02.indd 68642_9780470537558-bk06ch02.indd 686 10/7/10 8:51 PM10/7/10 8:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 2

M
a

n
a

g
in

g
 D

a
ta

w

ith
 S

Q
L

687

 The data file created using the specified options looks like the following:
‘contactID‘,‘name‘,‘company‘,‘email‘
‘1‘,‘Bill Gates‘,‘Microsoft‘,‘bill@msBob.com‘
‘2‘,‘Steve Jobs‘,‘Apple‘,‘steve@rememberNewton.com‘
‘3‘,‘Linus Torvalds‘,‘Linux Foundation‘,‘linus@gnuWho.org‘
‘4‘,‘Andy Harris‘,‘Wiley Press‘,‘andy@aharrisBooks.net‘

 The CSV format often uses commas and single quotes, so if these char-
acters appear in your data, you may encounter problems. Be sure to test
your data and use some of the other delimiters if you have problems.

 ✦ MS Excel and Open Document Spreadsheet: These are the two cur-
rently supported spreadsheet formats. Exporting your data using one of
these formats gives you a spreadsheet file that you can easily manipulate,
which is handy when you want to do charts or data analysis based on your
data. Figure 2-17 shows an Excel document featuring the contact table.

 ✦ Word-processing formats: Several formats are available to create docu-
mentation for your project. Figure 2-18 shows a document created with
this feature. Typically, you use these formats to describe your format of
the data and the current contents. LaTeX and PDF are special formats
used for printing.

Figure 2-17:
This Excel
spreadsheet
was
automati-
cally
created.

Exporting Your Data and Structure

42_9780470537558-bk06ch02.indd 68742_9780470537558-bk06ch02.indd 687 10/7/10 8:51 PM10/7/10 8:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

688

Figure 2-18:
Word-
processing,
PDF, and
LaTeX
formats are
great for
documen-
tation.

Exporting SQL code
One of the neatest tricks is to have phpMyAdmin build an entire SQL script
for re-creating your database. Figure 2-19 shows the available options.

The resulting code is as follows:

-- phpMyAdmin SQL Dump
-- version 2.9.2
-- http://www.phpmyadmin.net
--
-- Host: localhost
-- Generation Time: Dec 08, 2007 at 12:15 PM
-- Server version: 5.0.33
-- PHP Version: 5.2.1
--
-- Database: ‘xfd‘
--

-- --

--
-- Table structure for table ‘contact‘
--

CREATE TABLE ‘contact‘ (
 ‘contactID‘ int(11) NOT NULL auto_increment,
 ‘name‘ varchar(50) collate latin1_general_ci default NULL,
 ‘company‘ varchar(30) collate latin1_general_ci default NULL,

Exporting Your Data and Structure

42_9780470537558-bk06ch02.indd 68842_9780470537558-bk06ch02.indd 688 10/7/10 8:51 PM10/7/10 8:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 2

M
a

n
a

g
in

g
 D

a
ta

w

ith
 S

Q
L

689

 ‘email‘ varchar(50) collate latin1_general_ci default NULL,
 PRIMARY KEY (‘contactID‘)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci AUTO_

INCREMENT=5 ;

--
-- Dumping data for table ‘contact‘
--

INSERT INTO ‘contact‘ VALUES (1, ‘Bill Gates‘, ‘Microsoft‘, ‘bill@msBob.com‘);
INSERT INTO ‘contact‘ VALUES (2, ‘Steve Jobs‘, ‘Apple‘, ‘steve@rememberNewton.

com‘);
INSERT INTO ‘contact‘ VALUES (3, ‘Linus Torvalds‘, ‘W3C‘, ‘linus@gnuWho.org‘);
INSERT INTO ‘contact‘ VALUES (4, ‘Andy Harris‘, ‘Wiley Press‘, ‘andy@

aharrisBooks.net‘);

You can see that phpMyAdmin made a pretty decent script that you can use
to re-create this database. You can easily use this script to rebuild the data-
base if it gets corrupted or to copy the data structure to a different imple-
mentation of MySQL.

Generally, you use this feature for both purposes. Copy your data structure
and data every once in a while (just in case Godzilla attacks your server or
something).

Figure 2-19:
You can
specify
several
options for
outputting
your SQL
code.

Exporting Your Data and Structure

42_9780470537558-bk06ch02.indd 68942_9780470537558-bk06ch02.indd 689 10/7/10 8:51 PM10/7/10 8:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

690 Exporting Your Data and Structure

Typically, you build your data on one server and want to migrate it to
another server. The easiest way to do so is by building the database on one
server. You can then export the script for building the SQL file and load it
into the second server.

Creating XML data
One more approach to saving data is through XML. phpMyAdmin creates
a standard form of XML encapsulating the data. The XML output looks like
this:

<?xml version=”1.0” encoding=”utf-8” ?>
<!--
-
- phpMyAdmin XML Dump
- version 2.9.2
- http://www.phpmyadmin.net
-
- Host: localhost
- Generation Time: Dec 08, 2007 at 08:16 PM
- Server version: 5.0.33
- PHP Version: 5.2.1
-->

<!--
- Database: ‘xfd‘
-->
<xfd>
 <!-- Table contact -->
 <contact>
 <contactID>1</contactID>
 <name>Bill Gates</name>
 <company>Microsoft</company>
 <email>bill@msBob.com</email>
 </contact>
 <contact>
 <contactID>2</contactID>
 <name>Steve Jobs</name>
 <company>Apple</company>
 <email>steve@rememberNewton.com</email>
 </contact>
 <contact>
 <contactID>3</contactID>
 <name>Linus Torvalds</name>
 <company>W3C</company>
 <email>linus@gnuWho.org</email>
 </contact>
 <contact>
 <contactID>4</contactID>
 <name>Andy Harris</name>
 <company>Wiley Press</company>
 <email>andy@aharrisBooks.net</email>
 </contact>
</xfd>

XML is commonly used as a common data language, especially in AJAX
applications.

42_9780470537558-bk06ch02.indd 69042_9780470537558-bk06ch02.indd 690 10/7/10 8:51 PM10/7/10 8:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Normalizing Your Data

In This Chapter
✓ Understanding why single-table databases are inadequate

✓ Recognizing common data anomalies

✓ Creating entity-relationship diagrams

✓ Using MySQL Workbench to create data diagrams

✓ Understanding the first three normal forms

✓ Defining data relationships

Databases can be deceptive. Even though databases are pretty easy
to create, beginners usually run into problems as soon as they start

working with actual data.

Computer scientists (particularly a gentleman named E. F. Codd in the 1970s)
have studied potential data problems and defined techniques for organiz-
ing data. This scheme is called data normalization. In this chapter, you dis-
cover why single-table databases rarely work for real-world data and how to
create a well-defined data structure according to basic normalization rules.

On the CD-ROM, I include a script called buildHero.sql that builds all the
tables in this chapter. Feel free to load that script into your MySQL environ-
ment to see all these tables for yourself.

Recognizing Problems with Single-Table Data
Packing everything you’ve got into a single table is tempting. Although you
can do it pretty easily (especially with SQL), and it seems like a good solu-
tion, things can go wrong pretty quickly.

Table 3-1 shows a seemingly simple database describing some superheroes.

43_9780470537558-bk06ch03.indd 69143_9780470537558-bk06ch03.indd 691 10/7/10 8:51 PM10/7/10 8:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

692 Recognizing Problems with Single-Table Data

Table 3-1 A Sample Database

Name Powers Villain Plot Mission Age

The
Plumber

Sewer
snake of
doom,
unclogging,
ability to
withstand
smells

Septic
Slime
Master

Overcome
Chicago
with slime

Stop the
Septic
Slime

37

Binary
Boy

Hexideci-
mation
beam,
obfuscation

Octal Eliminate
the numer-
als 8 and 9

Make
the world
safe for
binary
repre-
sentation

19

The
Janitor

Mighty Mop Septic
Slim
Master

Overcome
New York
with slime

Stop the
Septic
Slime

41

It seems that not much can go wrong here because the database is only
three records and six fields. The data is simple, and there isn’t that much of
it. Still, a lot of trouble is lurking just under the surface. The following sec-
tions outline potential problems.

The identity crisis
What’s Table 3-1 about? At first, it seems to be about superheroes, but some
of the information isn’t about the superhero as much as things related to the
superhero, such as villains and missions. This issue may not seem like a big
deal, but it causes all kinds of practical problems later on. A table should be
about only one thing. When it tries to be about more than that, it can’t do its
job as well.

Every time a beginner (and, often, an advanced data developer) creates a
table, the table usually contains fields that don’t belong there. You have
to break things up into multiple tables so that each table is really about
only one thing. The process for doing so solves a bunch of other problems,
as well.

The listed powers
Take a look at the powers field. Each superhero can have more than one
power. Some heroes have tons of powers. The problem is, how do you

43_9780470537558-bk06ch03.indd 69243_9780470537558-bk06ch03.indd 692 10/7/10 8:51 PM10/7/10 8:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 3

N
o

rm
a

lizin
g

Y

o
u

r D
a

ta

693Recognizing Problems with Single-Table Data

handle a situation where one field can have a lot of values? You frequently
see the following solutions:

 ✦ One large text field: That’s what I did in this case. I built a massive (255
character) VARCHAR field and hoped it would be enough. The user just
has to type all the possible skills.

 ✦ Multiple fields: Sometimes, a data designer just makes a bunch of fields,
such as power1, power2, and so on.

Both these solutions have the same general flaw. You never know how much
room to designate because you never know exactly how many items will be
in the list. Say that you choose the large text field approach. You may have
a really clever hero with a lot of powers, so you fill up the entire field with
a list of powers. What happens if your hero learns one more power? Should
you delete something just to make things fit? Should you abbreviate?

If you choose to have multiple power fields, the problem doesn’t go away.
You still have to determine how many skills the hero can have. If you desig-
nate ten skill fields and one of your heroes learns an eleventh power, you’ve
got a problem.

The obvious solution is to provide far more room than anybody needs. If it’s
a text field, make it huge; and if it’s multiple fields, make hundreds of them.
Both solutions are wasteful. Remember, a database can often have hundreds
or thousands of records, and each one has to be the same size. If you make
your record definition bigger than it needs to be, this waste is multiplied
hundreds or thousands of times.

 You may argue that this is not the 1970s. Processor power and storage space
are really cheap today, so why am I worrying about saving a few bytes here
and there? Well, cheap is still not free. Programmers tend to be working with
much larger data sets than they did in the early days, so efficiency still mat-
ters. And here’s another important change. Today, data is much more likely
to be transmitted over the Internet. The big deal today isn’t really proces-
sor or storage efficiency. Today’s problem is transmission efficiency, which
comes down to the same principle: Don’t store unnecessary data.

When databases have listed fields, you tend to see other problems. If the
field doesn’t have enough room for all the data, people will start abbreviat-
ing. If you’re looking for a hero with invisibility, you can’t simply search for
“invisibility” in the powers field because it may be “inv,” “in,” or “invis” (or
even “can’t see”). If you desperately need an invisible hero, the search can
be frustrating, and you may miss a result because you didn’t guess all the
possible abbreviations.

If the database uses the listed fields model, you have another problem.
Now, your search has to look through all ten (or hundreds of) power fields

43_9780470537558-bk06ch03.indd 69343_9780470537558-bk06ch03.indd 693 10/7/10 8:51 PM10/7/10 8:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

694 Recognizing Problems with Single-Table Data

because you don’t know which one holds the “invisible” power. This prob-
lem makes your search queries far more complicated than they would have
been otherwise.

 Another so-called solution you sometimes see is to have a whole bunch of
Boolean fields: Invisibility, Super-speed, X-ray vision, and so on. This fix
solves part of the problem because Boolean data is small. It’s still trouble-
some, though, because now the data developer has to anticipate every
possible power. You may have an other field, but it then reintroduces the
problem of listed fields.

Listed fields are a nightmare.

Repetition and reliability
Another common problem with data comes with repetition. If you allow data
to be repeated in your database, you can have some really challenging side
effects. Refer to Table 3-1, earlier in this chapter, and get ready to answer
some questions about it. . . .

What is the Slime Master’s evil plot?

This question seems simple enough, but Table 3-1 provides an ambiguous
response. If you look at the first row (The Plumber), the plot is Overcome
Chicago with slime. If you look at The Janitor, you see that the plot is to
Overcome New York with slime. Which is it? Presumably, it’s the same plot,
but in one part of the database, New York is the target, and elsewhere, it’s
Chicago. From the database, you can’t really tell which is correct or if it
could be both. I was required to type in the plot in two different records. It’s
supposed to be the same plot, but I typed it differently. Now, the data has a
conflict, and you don’t know which record to trust.

 Is it possible the plots were supposed to be different? Sure, but you don’t
want to leave that assumption to chance. The point of data design is to ask
exactly these questions and to design your data scheme to reinforce the
rules of your organization.

Here’s a related question. What if you needed to get urgent information to
any hero fighting the Septic Slime Master? You’d probably write a query like

SELECT * FROM hero WHERE villain = ‘Septic Slime Master’

That query is a pretty reasonable request, but it wouldn’t work. The villain
in The Janitor record is the Septic Slim Master. Somebody mistyped some-
thing in the database, and now The Janitor doesn’t know how to defeat the
Slime Master.

 If your database allows duplication, this type of mistake will happen all the
time.

43_9780470537558-bk06ch03.indd 69443_9780470537558-bk06ch03.indd 694 10/7/10 8:51 PM10/7/10 8:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 3

N
o

rm
a

lizin
g

Y

o
u

r D
a

ta

695Introducing Entity-Relationship Diagrams

In general, you don’t want to enter anything into a database more than once.
If you have a way to enter the Septic Slime Master one time, that should
eliminate this type of problem.

Fields that change
Another kind of problem is evident in the Age field. (See, even superheroes
have a mandatory retirement age.) Age is a good example of a field that
shouldn’t really be in a database because it changes all the time. If you have
age in your database, how are you going to account for people getting older?
Do you update the age on each hero’s birthday? (If so, you need to store that
birthday, and you need to run a script every day to see whether it’s some-
body’s birthday.) You could just age everybody once a year, but this solu-
tion doesn’t seem like a good option, either.

 Whenever possible, you want to avoid fields that change regularly and
instead use a formula to generate the appropriate results when you need
them.

Deletion problems
Another kind of problem is lurking right under the surface. Say that you
have to fire the Binary Boy. (With him, everything is black and white. You
just can’t compromise with him.) You delete his record, and then you want
to assign another hero to fight Octal. When you delete Binary Boy, you also
delete all the information about Octal and his nefarious scheme.

In a related problem, what if you encounter a new villain and you haven’t yet
assigned a hero to this villain? The current data design doesn’t allow you to
add villains without heroes. You have to make up a fake hero, and that just
doesn’t seem right.

Introducing Entity-Relationship Diagrams
You can solve all the problems with the database shown in Table 3-1 by
breaking the single table into a series of smaller, more specialized tables.

The typical way of working with data design is to use a concept called an
Entity-Relationship (ER) diagram. This form of diagram usually includes the
following:

 ✦ Entities: Typically, a table is an entity, but you see other kinds of enti-
ties, too. An entity is usually drawn as a box with each field listed inside.

 ✦ Relationships: Relationships are drawn as lines between the boxes. As
you find out about various forms of relationships, I show you the par-
ticular symbols used to describe these relationship types.

43_9780470537558-bk06ch03.indd 69543_9780470537558-bk06ch03.indd 695 10/7/10 8:51 PM10/7/10 8:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

696 Introducing Entity-Relationship Diagrams

Using MySQL Workbench to draw ER diagrams
You can create ER diagrams with anything (I typically use a whiteboard), but
some very nice free software can help. One particularly nice program is called
MySQL Workbench. This software has a number of really handy features:

 ✦ Visual representation of database design: MySQL Workbench allows
you to define a table easily and then see how it looks in ER form. You
can create several tables and manipulate them visually to see how they
relate.

 ✦ An understanding of ER rules: MySQL Workbench is not simply a draw-
ing program. It’s specialized for drawing ER diagrams, so it creates a
standard design for each table and relationship. Other data administra-
tors can understand the ER diagrams you create with this tool.

 ✦ Integration with MySQL: Once you’ve created a data design you like,
you can have MySQL Workbench create a MySQL script to create the
databases you’ve defined. In fact, you can even have Workbench look at
an existing MySQL database and create an ER diagram from it.

Creating a table definition in Workbench
Creating your tables in MySQL Workbench is a fairly easy task:

 1. Create a new model.

 Choose File➪New to create a new model. Figure 3-1 shows the MySQL
Workbench main screen.

Figure 3-1:
MySQL
Workbench
main
screen.

43_9780470537558-bk06ch03.indd 69643_9780470537558-bk06ch03.indd 696 10/7/10 8:51 PM10/7/10 8:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 3

N
o

rm
a

lizin
g

Y

o
u

r D
a

ta

697Introducing Entity-Relationship Diagrams

 2. Create a new table.

 Use the Add Table icon to create a new table. A new dialog box opens
at the bottom of the screen, allowing you to change the table name. You
see a new table form like the one in Figure 3-2. Change the table name to
‘hero’ but leave the other values blank for now.

Figure 3-2:
Now your
model has a
table in it.

 3. Edit the columns.

 Select the Columns tab at the bottom of the screen to edit the table’s
fields. You can add field names and types here. Create a table that looks
like the hero table shown in Figure 3-3. You can use the tab key to add a
new field.

 4. Make a diagram of the table.

 So far, MySQL Workbench seems a lot like phpMyAdmin. The most useful
feature of Workbench is the way it lets you view your tables in diagram
form. You can view tables in a couple of ways, but the easiest way is to
select Create Diagram from Catalog Objects from the Model
menu. When you do so, you’ll see a screen, as shown in Figure 3-4.

43_9780470537558-bk06ch03.indd 69743_9780470537558-bk06ch03.indd 697 10/7/10 8:51 PM10/7/10 8:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

698 Introducing Entity-Relationship Diagrams

Figure 3-3:
Editing
the table
definition.

Figure 3-4:
Now you
have a
diagram of
your table.

43_9780470537558-bk06ch03.indd 69843_9780470537558-bk06ch03.indd 698 10/7/10 8:51 PM10/7/10 8:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 3

N
o

rm
a

lizin
g

Y

o
u

r D
a

ta

699Introducing Entity-Relationship Diagrams

 The diagram doesn’t show the contents of the table, just the design.
In fact, MySQL workbench doesn’t really care that much about what
is in the database. The key idea here is how the data is organized. This
matters because you will be creating several tables to manage your
superheroes.

 5. Extract the code.

 If you want, you can see the SQL code used to create the table you
just designed. Simply right-click the table and choose Copy SQL
to Clipboard. The CREATE statement for this table is copied to the
Clipboard, and you can paste it to your script. Here’s the code created
by Workbench:

CREATE TABLE IF NOT EXISTS ‘mydb‘‘.‘hero‘ (
 ‘heroID‘ INT NOT NULL ,
 ‘name‘ VARCHAR(50) NULL ,
 ‘birthdate‘ DATE NULL ,
 ‘missionID‘ INT NULL ,
 PRIMARY KEY (‘heroID‘))
 ENGINE = InnoDB

But how do I work with an actual database?
MySQL Workbench is used to help you design
and understand complex databases. So far,
you’ve been working in a local system that
isn’t attached to a particular database. This is
actually a pretty good way to work. Eventually,
though, you’ll be settled on a design, and you’ll
want to build a real database from the model.
MySQL Workbench has a number of tools to
help you with this. First, use the Database –
Manage Connections dialog box to create a
connection to your database. Then you can
use the Forward Engineering option to commit
your design to the database or the Reverse
Engineering option to extract a database
you’ve already created and build a diagram
from it.

While these options can be handy, they aren’t
really critical. To be honest, I don’t generally
use the code engineering features in MySQL

Workbench. In fact, I (like a lot of data develop-
ers) do most of my initial data design on a white
board and then make cleaner versions of the
design with tools like MySQL Workbench. I’m
showing you the tool here because it may be
helpful to you, and it produces prettier artwork
than my white board scribblings.

The hard work is organizing the data. It’s pretty
easy to convert a diagram to SQL code. Use
a tool like MySQL to see how your data fits
together. Then if you want, you can either let
it build the code for you or simply use it as a
starting place to build the code by hand.

As you’ve seen with other languages, visual
tools can help you build code, but they don’t
absolve you of responsibility. If the code has
your name on it, you need to understand how it
works. That’s most easily done when you write
it by hand.

This is great and all...

43_9780470537558-bk06ch03.indd 69943_9780470537558-bk06ch03.indd 699 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

700 Introducing Normalization

Introducing Normalization
Trying to cram all your data into a single table usually causes problems.
The process for solving these problems is called data normalization.
Normalization is really a set of rules. When your database follows the first
rule, it’s said to be in first normal form. For this introductory book, you get to
the third normal form, which is suitable for most applications.

First normal form
The official definitions of the normal forms sound like the offspring of a
lawyer and a mathematician. Here’s an official definition of the first
normal form:

A table is in first normal form if and only if it represents a relation. It does
not allow nulls or duplicate rows.

Yeah, whatever.

Here’s what it means in practical terms:

Eliminate listed fields.

A database is in first normal form if

 ✦ It has no repeating fields. Take any data that would be in a repeating
field and make it into a new table.

 ✦ It has a primary key. Add a primary key to each table. (Some would
argue that this requirement isn’t necessarily part of first normal form,
but it’ll be necessary in the next step, anyway.)

In a practical sense, the first normal form means getting rid of listed fields
and making a new table to contain powers. You’ll need to go back to the
model view to create a new table and then create the diagram again. Figure
3-5 shows an ER diagram of the data in first normal form.

A couple of things happen here:

 1. Make a new table called power.

 This table contains nothing but a key and the power name.

 2. Take the power field away from the hero table.

 The hero table no longer has a power field.

 3. Add a primary key to both tables.

 Both tables now have an integer primary key. Looking over my tables,
there are no longer any listed fields, so I’m in first normal form.

43_9780470537558-bk06ch03.indd 70043_9780470537558-bk06ch03.indd 700 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 3

N
o

rm
a

lizin
g

Y

o
u

r D
a

ta

701Introducing Normalization

Figure 3-5:
Now I have
two tables.

All this is well and good, but the user really wants this data connected, so how
do you join it back together? For that answer, see Chapter 4 of this minibook.

Second normal form
The official terminology for the second normal form is just as baffling as the
first normal form:

A table is in second normal form (2NF) only if it is in 1NF and all nonkey fields
are dependant entirely on the entire candidate key, not just part of it.

Huh? You’ve gotta love these computer scientists.

In practical terms, second normal form is pretty easy, too. It really means

Eliminate repetition.

Look at all those places where you’ve got duplicated data and create new
tables to take care of them.

In the hero data (shown in Table 3-1, earlier in this chapter), you can elimi-
nate a lot of problems by breaking the hero data into three tables. Figure 3-6
illustrates one way to break up the data.

43_9780470537558-bk06ch03.indd 70143_9780470537558-bk06ch03.indd 701 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

702 Introducing Normalization

Figure 3-6:
Now I have
three tables:
hero, power,
and mission.

Many of the problems in the badHero design happen because apparently
more than one hero can be on a particular mission, and thus the mission
data gets repeated. By separating mission data into another table, I’ve guar-
anteed that the data for a mission is entered only once.

Note that each table has a primary key, and none of them has listed fields. The
same data won’t ever be entered twice. The solution is looking pretty good!

Notice that everything related to the mission has been moved to the
mission table. I added one field to the hero table, which contains an inte-
ger. This field is called a foreign key reference. You can find out much more
about how foreign key references work in Chapter 4 of this minibook.

Third normal form
The third normal form adds one more requirement. Here is the official definition:

A table is in 3NF if it is in 2NF and has no transitive dependencies on the
candidate key.

Wow! These definitions get better and better. Once again, it’s really a lot
easier than it sounds:

Ensure functional dependency.

43_9780470537558-bk06ch03.indd 70243_9780470537558-bk06ch03.indd 702 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 3

N
o

rm
a

lizin
g

Y

o
u

r D
a

ta

703Identifying Relationships in Your Data

In other words, check each field of each table and ensure that it really
describes what the table is about. For example, is the plot related to the mis-
sion or the hero? What about the villain?

The tricky thing about functional dependency is that you often don’t really
know how the data is supposed to be connected. Only the person who uses
the data really knows how it’s supposed to work. (Often, they don’t know,
either, when you ask them.) You have to work with the client to figure out
exactly what the business rules (the rules that describe how the data really
works) are. You can’t really tell from the data itself.

The good news is that, for simple structures like the hero data, you’re often
already in third normal form by the time you get to second normal form.
Still, you should check.

Once a database is in third normal form, you’ve reduced the possibility of
several kinds of anomalies, so your data is far more reliable than it was in
the past. Several other forms of normalization exist, but third normal form is
enough for most applications.

Identifying Relationships in Your Data
After you normalize the data (see the preceding section), you’ve created the
entities (tables). Now, you need to investigate the relationships among these
entities.

Three main types of data relationships exist (and of these, only two are common):

 ✦ One-to-one relationship: Each element of table A is related to exactly
one element of table B. This type of relationship isn’t common because if
a one-to-one relationship exists between two tables, the information can
be combined safely into one table.

 ✦ One-to-many relationship: For each element of table A, there could be
many possible elements in table B. The relationship between mission
and hero is a one-to-many relationship, as each mission can have many
heroes, but each hero has only one mission. (My heroes have attention
issues and can’t multitask very well.) Note that hero and mission are not
a one-to-many relationship, but a many-to-one. The order matters.

 ✦ Many-to-many relationship: This type of relationship happens when an
element of A may have many values from B, and B may also have many
values of A. Usually, listed fields turn out to be many-to-many relation-
ships. In the hero data, the relationship between hero and power is a
many-to-many relationship because each hero can have many powers,
and each power can belong to multiple heroes.

You can use an ER tool to diagram the various relationship types. Figure 3-7
shows this addition to the hero design.

43_9780470537558-bk06ch03.indd 70343_9780470537558-bk06ch03.indd 703 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

704 Identifying Relationships in Your Data

Figure 3-7:
Now I’ve
added
relationships.

 Note that MySQL Workbench doesn’t actually allow you to draw many-to-
many joins. I drew that into Figure 3-7 to illustrate the point. In the next
chapter, I show how to emulate many-to-many relationships with a special
trick called a link table.ER diagrams use special symbols to represent dif-
ferent kinds of relationships. The line between tables indicates a join, or
relationship, but the type of join is indicated by the markings on the ends of
the lines. In general, the crow’s feet or filled-in circle indicate many, and the
double lines indicate one.

 ER diagrams get much more complex than the simple ones I show here,
but for this introduction, the one and many symbols are enough to get you
started.

43_9780470537558-bk06ch03.indd 70443_9780470537558-bk06ch03.indd 704 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Putting Data
Together with Joins

In This Chapter
✓ Using SQL functions

✓ Creating calculated fields

✓ Working with date values

✓ Building views

✓ Creating inner joins and link tables

Single tables aren’t sufficient for most data. If you understand the rules
of data normalization (see Chapter 3 of this minibook), you know how

to break your data into a series of smaller tables. The question remains,
though: How do you recombine all these broken-up tables to make some-
thing the user can actually use?

In this chapter, you discover several techniques for combining the data in
your tables to create useful results.

 I wrote a quick PHP script to help me with most of the figures in this chap-
ter. Each SQL query I intend to look at is stored in a separate SQL file, and I
can load up the file and look at it with the PHP code. Feel free to look over
the code for showQuery on the CD-ROM. If you want to run this code your-
self, be sure to change the username and password to reflect your data set-
tings. Use queryDemo.html to see all the queries in action. I also include
a script called buildHero.sql that creates a database with all the tables
and views I mention in this chapter. Feel free to load that script into your
database so that you can play along at home.

Calculating Virtual Fields
Part of data normalization means that you eliminate fields that can be cal-
culated. In the hero database described in Chapter 3 of this minibook, data
normalization meant that you don’t store the hero’s age, but his or her
birthday instead (see Chapter 3 of this minibook). Of course, if you really
want the age, you should be able to find some way to calculate it. SQL
includes support for calculating results right in the query.

Begin by looking over the improved hero table in Figure 4-1.

44_9780470537558-bk06ch04.indd 70544_9780470537558-bk06ch04.indd 705 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

706 Calculating Virtual Fields

Figure 4-1:
The hero
table after
normali-
zation.

The original idea for the database, introduced in Table 3-1 in Chapter 3
of this minibook, was to keep track of each hero’s age. This idea was bad
because the age changes every year. Instead, I stored the hero’s birthday.
But what if you really do want the age?

Introducing SQL Functions
It turns out SQL supports a number of useful functions that you can use to
manipulate data. Table 4-1 shows especially useful MySQL functions. Many
more functions are available, but these functions are the most frequently used.

Table 4-1 Useful MySQL Functions

Function Description

CONCAT(A, B) Concatenates two string results. Can be used to
create a single entry from two or more fields. For
example, combine firstName and lastName
fields.

FORMAT(X, D) Formats the number X to the number of digits D.

CURRDATE(),
CURRTIME()

Returns the current date or time.

44_9780470537558-bk06ch04.indd 70644_9780470537558-bk06ch04.indd 706 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 4

P
u

ttin
g

 D
a

ta

T
o

g
e

th
e

r w
ith

 J
o

in
s

707Calculating Date Values

Function Description

NOW() Returns the current date and time.

MONTH(), DAY(),
YEAR(), WEEK(),
WEEKDAY()

Extracts the particular value from a date value.

HOUR(), MINUTE(),
SECOND()

Extracts the particular value from a time value.

DATEDIFF(A, B) Frequently used to find the time difference between
two events (age).

SUBTIMES(A, B) Determines the difference between two times.

FROMDAYS(INT) Converts an integer number of days into a date
value.

Typically, you use a programming language, such as PHP, to manage what
the user sees, and programming languages tend to have a much richer set of
functions than the database. Still, it’s often useful to do certain kinds of func-
tionality at the database level.

Knowing when to calculate virtual fields
You calculate data in these situations:

 ✦ You need to create a single field from multiple text fields. You might
need to combine first, middle, and last name fields to create a single
name value. You can also combine all the elements of an address to
create a single output.

 ✦ You want to do a mathematical operation on your data. Imagine that
you’re writing a database for a vegetable market, and you want to calcu-
late the value from the costPerPound field plus the poundsPurchased
field. You can include the mathematical operation in your query.

 ✦ You need to convert data. Perhaps you stored weight information in
pounds, and you want a query to return data in kilograms.

 ✦ You want to do date calculations. Often, you need to calculate ages from
specific days. Date calculations are especially useful on the data side
because databases and other languages often have different date formats.

Calculating Date Values
The birthday value is stored in the hero table, but what you really want to
know is the hero’s age. It’s very common to have a date stored in a database.
You often need to calculate the time from that date to the current date in years,
or perhaps in years and months. Functions can help you do these calculations.

44_9780470537558-bk06ch04.indd 70744_9780470537558-bk06ch04.indd 707 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

708 Calculating Date Values

Begin by looking at a simple function that tells you the current date and
time, as I do in Figure 4-2.

Figure 4-2:
The NOW()
function
returns the
current date
and time.

The current date and time by themselves aren’t that important, but you can
combine this information with other functions, described in the following
sections, to do some very interesting things.

Using DATEDIFF to determine age
The NOW() function is very handy when you combine it with the
DATEDIFF() function, as shown in Figure 4-3.

This query calculates the difference between the current date, NOW(), and
each hero’s birthday. The DATEDIFF() function works by converting both
dates into integers. It can then subtract the two integers, giving you the
result in number of days.

44_9780470537558-bk06ch04.indd 70844_9780470537558-bk06ch04.indd 708 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 4

P
u

ttin
g

 D
a

ta

T
o

g
e

th
e

r w
ith

 J
o

in
s

709Calculating Date Values

Figure 4-3:
The
DATEDIFF()
function
determines
the
difference
between
dates.

 You normally name the fields you calculate because, otherwise, the formula
used to calculate the results becomes the virtual field’s name. The user
doesn’t care about the formula, so use the AS feature to give the virtual field
a more useful name.

Adding a calculation to get years
Of course, most people don’t think about age in terms of days. Age (unless
you’re talking about fruit flies or something) is typically measured in years.
One simple solution is to divide the age in days by 365 (the number of days
in a year). Figure 4-4 shows this type of query.

This code is almost like the query shown in Figure 4-3, except it uses a math-
ematical operator. You can use most of the math operators in queries to do
quick conversions. Now, the age is specified in years, but the decimal part
is a bit odd. Normally, you either go with entire year measurements or work
with months, weeks, and days.

44_9780470537558-bk06ch04.indd 70944_9780470537558-bk06ch04.indd 709 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

710 Calculating Date Values

Figure 4-4:
You can
divide
by 365 to
determine
the number
of years.

Converting the days integer into a date
The YEAR() function extracts only the years from a date, and the MONTH()
function pulls out the months, but both these functions require a date
value. The DATEDIFF() function creates an integer. Somehow, you need to
convert the integer value produced by DATEDIFF() back into a date value.
(For more on this function, see the section “Using DATEDIFF to determine
age,” earlier in this chapter.)

Figure 4-5 is another version of a query that expresses age in terms of years
and months.

44_9780470537558-bk06ch04.indd 71044_9780470537558-bk06ch04.indd 710 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 4

P
u

ttin
g

 D
a

ta

T
o

g
e

th
e

r w
ith

 J
o

in
s

711Calculating Date Values

Figure 4-5:
The age
is now
converted
back to a
date.

This query takes the DATEDIFF() value and converts it back to a date. The
actual date is useful, but it has some strange formatting. If you look carefully
at the dates, you’ll see that they have the age of each hero, but it’s coded as
if it were a particular date in the ancient world.

Using YEAR() and MONTH()
to get readable values
After you’ve determined the age in days, you can use the YEAR() and
MONTH() functions to pull out the hero’s age in a more readable way, as
illustrated by Figure 4-6.

44_9780470537558-bk06ch04.indd 71144_9780470537558-bk06ch04.indd 711 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

712 Calculating Date Values

Figure 4-6:
The YEAR(),
MONTH(),
and DAY()
functions
return parts
of a date.

The query is beginning to look complex, but it’s producing some really nice
output. Still, it’s kind of awkward to have separate fields for year, month,
and day.

Concatenating to make one field
If you have year, month, and day values, it would be nice to combine some of
this information to get a custom field, as you can see in Figure 4-7.

I know what you’re thinking. All this fancy
function stuff is well and good, but there’s no
stinkin’ way you’re going to do all those func-
tion gymnastics every time you want to extract
an age out of the database. Here’s the good
news: You don’t have to. It’s okay that the que-
ries are getting a little tricky because you’ll
write code to do all the work for you. You write

it only once, and then your code does all the
heavy lifting. Generally, you write PHP code
to manage each query inside a function. Once
you’ve tested it, you run that function and off
you go. . . . You can also use a little gem called
the view, described in the “Creating a View”
section. Views allow you to store complex que-
ries right in your database.

There’s no way I’m writing that every time. . . .

44_9780470537558-bk06ch04.indd 71244_9780470537558-bk06ch04.indd 712 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 4

P
u

ttin
g

 D
a

ta

T
o

g
e

th
e

r w
ith

 J
o

in
s

713Creating a View

Figure 4-7:
Now, the
age is back
in one field,
as originally
intended.

This query uses the CONCAT() function to combine calculations and literal
values to make exactly the output the user is expecting. Even though the
birthday is the stored value, the output can be the age.

Creating a View
The query that converts a birthday into a formatted age is admittedly complex.
Normally, you’ll have this query predefined in your PHP code so that you don’t
have to think about it anymore. If you have MySQL 5.0 or later, though, you have
access to a wonderful tool called the VIEW. A view is something like a virtual table.

The best way to understand a view is to see a sample of it in action. Take a
look at this SQL code:

CREATE VIEW heroAgeView AS
 SELECT
 name as ‘hero’,
 CONCAT(
 YEAR(FROM_DAYS(DATEDIFF(NOW(), birthday))),
 ‘ years, ‘,
 MONTH(FROM_DAYS(DATEDIFF(NOW(), birthday))),
 ‘ months’
) AS ‘age’
 FROM
 hero;

44_9780470537558-bk06ch04.indd 71344_9780470537558-bk06ch04.indd 713 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

714 Creating a View

If you look closely, it’s exactly the same query used to generate the age from
the birth date, just with a CREATE VIEW statement added. When you run
this code, nothing overt happens, but the database stores the query as a
view called heroView. Figure 4-8 shows the cool part.

Figure 4-8:
This simple
query hides
a lot of
complexity.

Views are so great that it’s hard to imagine
working with data without them. However,
your hosting service may not have MySQL 5.0
or later installed, which means you aren’t able
to use views. All is not lost. You can handle this
issue in two ways.

The most common approach is to store all the
queries you’re likely to need (the ones that would
be views) as strings in your PHP code. Execute
the query from PHP, and you’ve essentially

executed the view. This method is how most
programmers did it before views were avail-
able in MySQL.

Another approach is to create a new table
called something like storeQuery in your
database. Put the text of all your views inside
this table, and then you can extract the view
code from the database and execute it using a
second pass at the data server.

So what if I’m stuck with MySQL 4.0?

44_9780470537558-bk06ch04.indd 71444_9780470537558-bk06ch04.indd 714 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 4

P
u

ttin
g

 D
a

ta

T
o

g
e

th
e

r w
ith

 J
o

in
s

715Using an Inner Join to Combine Tables

This code doesn’t look really fancy, but look at the output. It’s just like you
had a table with all the information you wanted, but now the data is guaran-
teed to be in a decent format.

After you create a view, you can use it in subsequent SELECT statements as
if it were a table! Here are a couple of important things to know about views:

 ✦ They aren’t stored in the database. The view isn’t really data; it’s just
a predefined query. It looks and feels like a table, but it’s created in real
time from the tables.

 ✦ You can’t write to a view. Because views don’t contain data (they
reflect data from other tables), you can’t write directly to them. You
don’t use the INSERT or UPDATE commands on views, as you do ordi-
nary tables.

 ✦ They’re a relatively new feature of MySQL. Useful as they are, views
weren’t added to MySQL until Version 5.0. If your server uses an earlier
version, you’ll have to do some workarounds, described in the sidebar
“So what if I’m stuck with MySQL 4.0?”

 ✦ You can treat views as tables in SELECT statements. You can build
SELECT statements using views as if they were regular tables.

 Some database packages make it appear as though you can update a view,
but that’s really an illusion. Such programs reverse-engineer views to update
each table. This approach is far from foolproof, and you should probably
avoid it.

Using an Inner Join to Combine Tables
When I normalized the hero database in Chapter 3 of this minibook, I broke
it up into several tables. Take a quick look at the hero table in Figure 4-9.

You probably noticed that most of the mission information is now gone from
this table, except one important field. The missionID field is an integer
field that contains the primary key of the mission table. A foreign key is a
field that contains the primary key of another table. Foreign keys are used to
reconnect tables that have been broken apart by normalization.

Look at the mission table in Figure 4-10, and the relationship between the
mission and hero tables begins to make sense.

44_9780470537558-bk06ch04.indd 71544_9780470537558-bk06ch04.indd 715 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

716 Using an Inner Join to Combine Tables

Figure 4-9:
The hero
table has a
link to the
mission
table.

Figure 4-10:
The mission
table
handles
mission data
but has no
link to the
hero.

44_9780470537558-bk06ch04.indd 71644_9780470537558-bk06ch04.indd 716 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 4

P
u

ttin
g

 D
a

ta

T
o

g
e

th
e

r w
ith

 J
o

in
s

717Using an Inner Join to Combine Tables

The mission table doesn’t have a link back to the hero. It can’t. because any
mission can be connected to any number of heroes, and you can’t have a
listed field.

Building a Cartesian join and an inner join
Compare the hero and mission tables, and you see how they fit together.
The missionID field in the hero table identifies which mission the hero is
on. None of the actual mission data is in the hero field, just a link to which
mission the player is on.

Creating a query with both tables, as in Figure 4-11, is tempting. This query
appears to join the tables, but it obviously isn’t doing the right thing. You
have only three heroes and two missions, yet this query returns six rows!
What’s happened here is called a Cartesian join. It’s a combination of all the
possible values of hero and mission, which is obviously not what you want.

You don’t really want all these values to appear; you want to see only the ones
where the hero table’s missionID matches up to the missionID field in the
mission table. In other words, you want a query that says only return rows
where the two values of missionID are the same. That query may look like
Figure 4-12. It’s almost identical to the last query, except this time, a WHERE
clause indicates that the foreign key and primary key should match up.

Figure 4-11:
This query
joins both
tables, but
it doesn’t
seem right.

44_9780470537558-bk06ch04.indd 71744_9780470537558-bk06ch04.indd 717 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

718 Using an Inner Join to Combine Tables

Figure 4-12:
Now, you
have an
inner join.

This particular setup (using a foreign key reference to join up two tables) is
called an inner join. Sometimes, you see the syntax like

SELECT
 hero.name AS ‘hero’,
 hero.missionID AS ‘heroMID’,
 mission.missionID AS ‘missMID’,
 mission.description as ‘mission’
FROM
 hero INNER JOIN mission
ON
 hero.missionID = mission.missionID;

Some of Microsoft’s database offerings prefer this syntax, but it really does
the same thing: join up two tables.

44_9780470537558-bk06ch04.indd 71844_9780470537558-bk06ch04.indd 718 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 4

P
u

ttin
g

 D
a

ta

T
o

g
e

th
e

r w
ith

 J
o

in
s

719Using an Inner Join to Combine Tables

Enforcing one-to-many relationships
Whenever your ER diagram indicates a many-to-one (or one-to-many) rela-
tionship, you generally use an inner join (see the preceding section). Here’s
how you do it:

 1. Start with the ER diagram.

 No way are you going to get this right in your head! Make a diagram. Use
a tool like MySQL Workbench, some other software, pencil and paper,
lipstick on a mirror, whatever. You need a sketch.

 2. Identify one-to-many relationships.

 You may have to talk with people who use the data to determine which
relationships are one-to-many. In the hero data, a hero can have only
one mission, but each mission can have many heroes. Thus, the hero is
the many side, and the mission is the one side.

 3. Find the primary key of the one table and the many table.

 Every table should have a primary key. (You’ll sometimes see advanced
alternatives like multifield keys, but wait until you’re a bit more advanced
for that stuff.)

 4. Make a foreign key reference to the one table in the many table.

 Add a field to the table on the many side of the relationship that con-
tains only the key to the table on the one side.

 You don’t need a foreign key in the table on the one side of the relation-
ship. This concept confuses most beginners. You don’t need (or want)
a link back to the many table because you don’t know how many links
you’ll need. Multiple links would be a listed field, which is exactly what
you’re trying to avoid.

If the preceding steps are hard for you to understand, think back to the hero
example. Each hero (according to the business rules) can be on only one
mission. Thus, it makes sense to put a link to the mission in the hero table
because you have only one mission. Each mission can be related to many
heroes, so if you try to link missions to heroes, you have listed fields in the
mission table, violating the first normal form. (For information on the types
of normal forms, see Chapter 3 of this minibook.) Figure 4-13 shows how it
works in action. The result of this join looks a lot like the original intention of
the database, but now it’s normalized.

44_9780470537558-bk06ch04.indd 71944_9780470537558-bk06ch04.indd 719 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

720 Using an Inner Join to Combine Tables

Figure 4-13:
Here’s a
nice join
of the hero
and mission
tables.

Counting the advantages of inner joins
Even though the table in Figure 4-13 contains everything in the original non-
normalized data set (except for the repeated field — that’s coming up soon),
the new version is considerably better for several reasons:

 ✦ No data is repeated. The plot is stored only one time in the database.
Even though it may appear several times in this output, each value is
stored only once.

 ✦ Searching is much more efficient. Because the data is stored only one
time, you no longer have to worry about spelling and typing errors. If
the entry is wrong, it is universally wrong, and you can repair it in only
one place.

 ✦ The data is organized correctly. Although the user can’t see it from
this output, the tables are now separated so that each type of data goes
where it belongs.

 ✦ The output still looks like what the user wants. Users don’t care about
the third normal form. (For more on normalization, see Chapter 3 of this

44_9780470537558-bk06ch04.indd 72044_9780470537558-bk06ch04.indd 720 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 4

P
u

ttin
g

 D
a

ta

T
o

g
e

th
e

r w
ith

 J
o

in
s

721Managing Many-to-Many Joins

minibook.) They just want to get to their data. This table gives them a
query that returns the data they’re looking for, even though the underly-
ing data structure has changed dramatically.

Building a view to encapsulate the join
The inner join query is so useful, it’s a dandy place for a view. I created a
view from it:

CREATE VIEW heroMissionView AS
 SELECT
 hero.name AS ‘hero’,
 mission.description AS ‘mission’,
 mission.villain AS ‘villian’,
 mission.plot AS ‘plot’
 FROM hero, mission
 WHERE
 hero.missionID = mission.missionID;

Having a view means that you don’t have to re-create the query each time.
You can treat the view as a virtual table for new queries:

SELECT * FROM heroMissionView;

Managing Many-to-Many Joins
Inner joins are a perfect way to implement one-to-many relationships. If
you look at ER diagrams, you often see many-to-many relationships, too. Of
course, you also need to model them. Here’s the secret: You can’t really do
it. It’s true. The relational data model doesn’t really have a good way to do
many-to-many joins. Instead, you fake it out. It isn’t hard, but it’s a little bit
sneaky.

 You use many-to-many joins to handle listed data, such as the relationship
between hero and power. Each hero can have any number of powers,
and each power can belong to any number of heroes (see the table in
Figure 4-14).

The inner join was easy because you just put a foreign key reference to the
one side of the relationship in the many table. (See the section “Using an
Inner Join to Combine Tables,” earlier in this chapter.) In a many-to-many
join, there is no “one” side, so where do you put the reference? Leave it to
computer scientists to come up with a sneaky solution.

First, review the hero table in Figure 4-14.

44_9780470537558-bk06ch04.indd 72144_9780470537558-bk06ch04.indd 721 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

722 Managing Many-to-Many Joins

Figure 4-14:
The hero
table has no
reference to
powers.

Note that this table contains no reference to powers. Now, look at the power
table in Figure 4-15. You see a lot of powers, but no reference to heroes.

Figure 4-15:
The power
table has no
reference to
heroes.

44_9780470537558-bk06ch04.indd 72244_9780470537558-bk06ch04.indd 722 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 4

P
u

ttin
g

 D
a

ta

T
o

g
e

th
e

r w
ith

 J
o

in
s

723Managing Many-to-Many Joins

Here’s the tricky part. Take a look at a new table in Figure 4-16.

Figure 4-16:
This new
table
contains
only foreign
keys!

The results of this query may surprise you. The new table contains nothing
but foreign keys. It doesn’t make a lot of sense on its own, yet it represents
one of the most important ideas in data.

Understanding link tables
The hero_power table shown in Figure 4-16 is a brand new table, and it’s
admittedly an odd little duck:

 ✦ It contains no data of its own. Very little appears inside the table.

 ✦ It isn’t about an entity. All the tables shown earlier in this chapter are
about entities in your data. This one isn’t.

 ✦ It’s about a relationship. This table is actually about relationships
between hero and power. Each entry of this table is a link between hero
and power.

 ✦ It contains two foreign key references. Each record in this table links
an entry in the hero table with one in the power table.

 ✦ It has a many-to-one join with each of the other two tables. This table
has a many-to-one relationship with the hero table. Each record of

44_9780470537558-bk06ch04.indd 72344_9780470537558-bk06ch04.indd 723 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

724 Managing Many-to-Many Joins

hero_power connects to one record of hero. Likewise, each record of
hero_power connects to one record of power.

 ✦ The two many-to-one joins create a many-to-many join. Here’s the magi-
cal part: By creating a table with two many-to-one joins, you create a
many-to-many join between the original tables!

 ✦ This type of structure is called a link table. Link tables are used to
create many-to-many relationships between entities.

Using link tables to make many-to-many joins
Figure 4-17 displays a full-blown ER diagram of the hero data.

Figure 4-17:
Here’s the
ER diagram
of the hero
data.

Link tables aren’t really useful on their own because they contain no actual
data. Generally, you use a link table inside a query or view:

SELECT
 hero.name AS ‘hero’,
 power.name AS ‘power’
FROM
 hero, power, hero_power

44_9780470537558-bk06ch04.indd 72444_9780470537558-bk06ch04.indd 724 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 4

P
u

ttin
g

 D
a

ta

T
o

g
e

th
e

r w
ith

 J
o

in
s

725Managing Many-to-Many Joins

WHERE
 hero.heroID = hero_power.heroID
AND
 power.powerID = hero_power.powerID;

Here are some thoughts about this type of query:

 ✦ It combines three tables. That complexity seems scary at first, but
it’s really fine. The point of this query is to use the hero_power table
to identify relationships between hero and power. Note that the FROM
clause lists all three tables.

 ✦ The WHERE clause has two links. The first part of the WHERE clause links
up the hero_power table with the hero table with an inner join. The
second part links up the power table with another inner join.

 ✦ You can use another AND clause to further limit the results. Of course,
you can still add other parts to the AND clause to make the results solve
a particular problem, but I leave that alone for now.

Figure 4-18 shows the result of this query. Now, you have results you can use.

Figure 4-18:
The Link
Query joins
up heroes
and powers.

44_9780470537558-bk06ch04.indd 72544_9780470537558-bk06ch04.indd 725 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

726 Managing Many-to-Many Joins

Once again, this query is an obvious place for a view:

CREATE VIEW heroPowerView AS
 SELECT
 hero.name AS ‘hero’,
 power.name AS ‘power’
 FROM
 hero, power, hero_power
 WHERE
 hero.heroID = hero_power.heroID
 AND
 power.powerID = hero_power.powerID;

 Typically, you won’t do your results exactly like this view. Instead, you display
information for, say, Binary Boy, and you want a list of his powers. It isn’t neces-
sary to say Binary Boy three times, so you tend to use two queries (both from
views, if possible) to simplify the task. For example, look at these two queries:

SELECT * FROM heroMissionView WHERE hero = ‘binary boy’;
SELECT power FROM heroPowerView WHERE hero = ‘binary boy’;

The combination of these queries gives you enough data to describe every-
thing in the original table. Typically, you attach all this data together in your
PHP code. Figure 4-19 shows a PHP page using both queries to build a com-
plete picture of Binary Boy.

Figure 4-19:
Use two
different
queries
to get the
formatting
you want.

The code is standard PHP data access, except it makes two passes to the
database:

<!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang = “EN” xml:lang = “EN” dir = “ltr”>

44_9780470537558-bk06ch04.indd 72644_9780470537558-bk06ch04.indd 726 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VI

Chapter 4

P
u

ttin
g

 D
a

ta

T
o

g
e

th
e

r w
ith

 J
o

in
s

727Managing Many-to-Many Joins

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=iso-8859-1” />
<title>showDetails.php</title>
<style type = ”text/css”>
 dt {
 float: left;
 width: 4em;
 clear: left;
 }

 dd {
 float: left;
 width: 20em;
 }
</style>

</head>

<body>
<?php
//connect
$conn = mysql_connect(”localhost”, ”xfd”, ”password”);
//change this password and username to work on your system
mysql_select_db(”xfd”);

//get most information for requested hero
$hero = ”binary boy”;
$query = <<<HERE
SELECT
 *
FROM
 heroMissionView
WHERE
 hero = ’$hero’
HERE;

print ”<dl> \n”;
$result = mysql_query($query, $conn);
$row = mysql_fetch_assoc($result);
foreach ($row as $field => $value){
 print <<<HERE
 <dt>$field</dt>
 <dd>$value</dd>

HERE;
} // end foreach
print ” <dt>powers</dt> \n”;
print ” <dd> \n”;
print ” \n”;

//create another query to grab the powers
$query = <<<HERE
SELECT
 power
FROM
 heroPowerView
WHERE hero = ’$hero’
HERE;

44_9780470537558-bk06ch04.indd 72744_9780470537558-bk06ch04.indd 727 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

728 Managing Many-to-Many Joins

//put powers in an unordered list
$result = mysql_query($query, $conn);
while ($row = mysql_fetch_assoc($result)){
 foreach ($row as $field => $value){
 print ” $value \n”;
 } // end foreach
} // end while loop
print ” \n”;
print ”</dd> \n”;
print ”</dl> \n”;
?>
</body>
</html>

Refer to Book V to read more on PHP and how it’s used to access databases.

44_9780470537558-bk06ch04.indd 72844_9780470537558-bk06ch04.indd 728 10/7/10 8:52 PM10/7/10 8:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Into the Future with AJAX

45_9780470537558-pp07.indd 72945_9780470537558-pp07.indd 729 10/7/10 8:53 PM10/7/10 8:53 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

Chapter 1: AJAX Essentials .731

AJAX Spelled Out ... 733
Making a Basic AJAX Connection .. 734
All Together Now — Making the Connection Asynchronous 741

Chapter 2: Improving JavaScript and AJAX with jQuery 747

Introducing jQuery .. 749
Your First jQuery App ... 751
Creating an Initialization Function .. 754
Investigating the jQuery Object ... 757
Adding Events to Objects ... 760
Making an AJAX Request with jQuery ... 764

Chapter 3: Animating jQuery .771

Playing Hide and Seek ... 771
Changing Position with jQuery .. 779
Modifying Elements on the Fly ... 786

Chapter 4: Using the jQuery User Interface Toolkit797

What the jQuery User Interface Brings to the Table 797
Resizing on a Theme ... 805
Dragging, Dropping, and Calling Back ... 814

Chapter 5: Improving Usability with jQuery .823

Multi-element Designs ... 823
Improving Usability ... 833

Chapter 6: Working with AJAX Data .843

Sending Requests AJAX Style ... 843
Building a Multipass Application ... 847
Working with XML Data .. 854
Working with JSON Data ... 860

45_9780470537558-pp07.indd 73045_9780470537558-pp07.indd 730 10/7/10 8:53 PM10/7/10 8:53 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: AJAX Essentials

In This Chapter
✓ Understanding AJAX

✓ Using JavaScript to manage HTTP requests

✓ Creating an XMLHttpRequest object

✓ Building a synchronous AJAX request

✓ Retrieving data from an AJAX request

✓ Managing asynchronous AJAX requests

If you’ve been following the Web trends, you’ve no doubt heard of AJAX.
This technology has generated a lot of interest. Depending on who you

listen to, it’s either going to change the Internet or it’s a lot of overblown
hype. In this chapter, I show you what AJAX really is, how to use it, and how
to use a particular AJAX library to supercharge your Web pages.

The first thing is to figure out exactly what AJAX is and what it isn’t. It isn’t:

 ✦ A programming language: It isn’t one more language to learn along with
the many others you encounter.

 ✦ New: Most of the technology used in AJAX isn’t really all that new; it’s
the way the technology is being used that’s different.

 ✦ Remarkably different: For the most part, AJAX is about the same things
you’ll see in the rest of this book: building compliant Web pages that
interact with the user.

So you have to be wondering why people are so excited about AJAX. It’s a
relatively simple thing, but it has the potential to change the way people
think about Internet development. Here’s what it really is:

 ✦ Direct control of client-server communication: Rather than the auto-
matic communication between client and server that happens with Web
forms and server-side programs, AJAX is about managing this relation-
ship more directly.

 ✦ Use of the XMLHttpRequest object: This is a special object that’s been
built into the DOM of all major browsers for some time, but it wasn’t
used heavily. The real innovation of AJAX was finding creative (and per-
haps unintentional) uses for this heretofore virtually unknown utility.

46_9780470537558-bk07ch01.indd 73146_9780470537558-bk07ch01.indd 731 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

732 AJAX Spelled Out

 ✦ A closer relationship between client-side and server-side program-
ming: Up to now, client-side programs (usually JavaScript) did their
own thing, and server-side programs (PHP) operated without too much
knowledge of each other. AJAX helps these two types of programming
work together better.

 ✦ A series of libraries that facilitate this communication: AJAX isn’t that
hard, but it does have a lot of details. Several great libraries have sprung
up to simplify using AJAX technologies. You can find AJAX libraries for
both client-side languages, like JavaScript, and server-side languages,
like PHP.

Perhaps you’re making an online purchase with a shopping-cart mechanism.

In a typical (pre-AJAX) system, an entire Web page is downloaded to the
user’s computer. There may be a limited amount of JavaScript-based interac-
tivity, but anything that requires a data request needs to be sent back to the
server. For example, if you’re on a shopping site and you want more informa-
tion about that fur-lined fishbowl you’ve had your eye on, you might click
the More Information button. This causes a request to be sent to the server,
which builds an entirely new Web page for you containing your new request.

Every time you make a request, the system builds a whole new page on the
fly. The client and server have a long-distance relationship.

In the old days when you wanted to manage your Web site’s content, you
had to refresh each Web page — time-consuming to say the least. But with
AJAX, you can update the content on a page without refreshing the page.
Instead of the server sending an entire page response just to update a few
words on the page, the server just sends the words you want to update and
nothing else.

If you’re using an AJAX-enabled shopping cart, you might still click the fish-
bowl image. An AJAX request goes to the server and gets information about
the fishbowl, which is immediately placed on the current page, without
requiring a complete page refresh.

AJAX technology allows you to send a request to the server, which can then
change just a small part of the page. With AJAX, you can have a whole bunch
of smaller requests happening all the time, rather than a few big ones that
rebuild the page in large, distracting flurries of activity.

 To the user, this makes the Web page look more like traditional applications.
This is the big appeal of AJAX: It allows Web applications to act more like
desktop applications, even if these Web applications have complicated fea-
tures like remote database access.

46_9780470537558-bk07ch01.indd 73246_9780470537558-bk07ch01.indd 732 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 1

A
J

A
X

 E
sse

n
tia

ls

733AJAX Spelled Out

Google’s Gmail was the first major application to use AJAX, and it blew
people away because it felt so much like a regular application inside a Web
browser.

AJAX Spelled Out
Technical people love snappy acronyms. Nothing is more intoxicating than
inventing a term. AJAX is one term that has taken on a life of its own. Like
many computing acronyms, it may be fun to say, but it doesn’t really mean
much. AJAX stands for Asynchronous JavaScript And XML. Truthfully, these
terms were probably chosen to make a pronounceable acronym rather than
for their accuracy or relevance to how AJAX works.

A is for asynchronous
An asynchronous transaction (at least in AJAX terms) is one in which more
than one thing can happen at once. For example, you can make an AJAX
call process a request while the rest of your form is being processed. AJAX
requests do not absolutely have to be asynchronous, but they usually are.

When it comes to Web design, asynchronous means that you can indepen-
dently send and receive as many different requests as you want. Data may
start transmitting at any time without having any effect on other data trans-
missions. You could have a form that saves each field to the database as
soon as it’s filled out, or perhaps a series of drop-down lists that generate
the next drop-down list based on the value you just selected. (It’s okay if this
doesn’t make sense right now. It’s not an important part of understanding
AJAX, but vowels are always nice in an acronym.)

In this chapter, I show you how to do both synchronous and asynchronous
versions of AJAX.

J is for JavaScript
If you want to make an AJAX call, you simply write some JavaScript code
that simulates a form. You can then access a special object hidden in the
DOM (the XMLHttpRequest object) and use its methods to send that
request to the user. Your program acts like a form, even if there was no
form there. In that sense, when you’re writing AJAX code, you’re really using
JavaScript. Of course, you can also use any other client-side programming
language that can speak with the DOM, including Flash and (to a lesser
extent) Java. JavaScript is the dominant technology, so it’s in the acronym.

A lot of times, you also use JavaScript to decode the response from the AJAX
request.

46_9780470537558-bk07ch01.indd 73346_9780470537558-bk07ch01.indd 733 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

734 Making a Basic AJAX Connection

A is for . . . and?
I think it’s a stretch to use And in an acronym, but AJX just isn’t as cool as
AJAX. They didn’t ask me.

And X is for . . . data
The X is for XML, which is one way to send the data back and forth from the
server. Because the object you’re using is the XMLHttpRequest object, it
makes sense that it requests XML. It can do that, but it can also get any kind
of text data. You can use AJAX to retrieve all kinds of things:

 ✦ Plain old text: Sometimes you just want to grab some text from the
server. Maybe you have a text file with a daily quote in it or something.

 ✦ Formatted HTML: You can have text stored on the server as a snippet
of HTML/XHTML code and use AJAX to load this page snippet into your
browser. This gives you a powerful way to build a page from a series
of smaller segments. You can use this to reuse parts of your page (say,
headings or menus) without duplicating them on the server.

 ✦ XML data: XML is a great way to pass data around. (That’s what it was
invented for.) You might send a request to a program that goes to a
database, makes a request, and returns the result as XML.

 ✦ JSON data: A new standard called JSON (JavaScript Object Notation)
is emerging as an alternative to XML for formatted data transfer. It has
some interesting advantages. You might have already built JSON objects
in Book IV, Chapter 4. You can read in a text file already formatted as a
JavaScript object.

Making a Basic AJAX Connection

AJAX uses some pretty technical parts of the Web in ways that may be unfa-
miliar to you. Read through the rest of this chapter so that you know what
AJAX is doing, but don’t get bogged down in the details. Nobody does it by
hand! (Except people who write AJAX libraries or books about using AJAX.)
In Chapter 2 of this minibook, I show a library that does all the work for you. If
all these details are making you misty-eyed, just skip ahead to the next chap-
ter and come back here when you’re ready to see how all the magic works.

The basicAJax.html program shown in Figure 1-1 illustrates AJAX at work.

46_9780470537558-bk07ch01.indd 73446_9780470537558-bk07ch01.indd 734 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 1

A
J

A
X

 E
sse

n
tia

ls

735Making a Basic AJAX Connection

Figure 1-1:
Click the
button and
you’ll see
some AJAX
magic.

When the user clicks the link, the small pop-up shown in Figure 1-2 appears.

Figure 1-2:
This text
came from
the server.

If you don’t get the joke, you need to go rent Monty Python and the Holy Grail.
It’s part of the geek culture. Trust me. In fact, you should really own a copy.

It’s very easy to make JavaScript pop up a dialog box, but the interesting
thing here is where that text comes from. The data is stored on a text file on
the server. Without AJAX, you don’t have an easy way to get data from the
server without reloading the entire page.

46_9780470537558-bk07ch01.indd 73546_9780470537558-bk07ch01.indd 735 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

736 Making a Basic AJAX Connection

 You might claim that HTML frames allow you to pull data from the server,
but frames have been deprecated in XHTML because they cause a lot of
other problems. You can use a frame to load data from the server, but you
can’t do all the other cool things with frame-based data that you can with
AJAX. Even if frames were allowed, AJAX is a much better solution most of
the time.

 You won’t be able to run this example straight from the CD-ROM. Like PHP,
AJAX requires a server to work properly. If you want to run this program,
put it in a subdirectory of your server and run it through localhost as you
do for PHP programs.

This particular example uses a couple of shortcuts to make it easier to
understand:

 ✦ The program isn’t fully asynchronous. The program pauses while
it retrieves data. As a user, you probably won’t even notice this, but
as you’ll see, this can have a serious drawback. But the synchronous
approach is a bit simpler, so I start with this example and then extend it
to make the asynchronous version.

 ✦ This example isn’t completely cross-browser-compatible. The AJAX
technique I use in this program works fine for IE 7 and all versions of
Firefox (and most other standards-compliant browsers). It does not
work correctly in IE 6 and earlier. I recommend that you use jQuery
or another library (described in Chapter 2 of this minibook) for cross-
browser compatibility.

Look over the following code, and you’ll find it reasonable enough:

<!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang = “EN” xml:lang = “EN” dir = “ltr”>
<head>
<meta http-equiv=“content-type“ content=“text/xml; charset=utf-8“ />

<title>Basic AJAX</title>
<script type = “text/javascript“>
//<![CDATA[

function getAJAX(){
 var request = new XMLHttpRequest();
 request.open(“GET“, “beast.txt“, false);
 request.send(null);

 if (request.status == 200){
 //we got a response
 alert(request.responseText);
 } else {
 //something went wrong
 alert(“Error- “ + request.status + “: “ + request.statusText);
 } // end if
} // end function
//]]>

46_9780470537558-bk07ch01.indd 73646_9780470537558-bk07ch01.indd 736 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 1

A
J

A
X

 E
sse

n
tia

ls

737Making a Basic AJAX Connection

</script>

</head>

<body>
<h1>Basic AJAX</h1>

<form action = ““>
 <p>
 <button type = “button“
 onclick = “getAJAX()“>
 Summon the vicious beast of Caerbannog
 </button>
 </p>
</form>

</body>
</html>

 Throughout this chapter, I explain exactly how to build an AJAX-enabled Web
page by hand. It’s good to know how this works, but almost nobody does it this
way in the real world. Read this chapter to get the basic understanding, but
don’t worry if the details are a little foggy. The other chapters in this minibook
describe a powerful library that greatly simplifies AJAX programming. Feel free
to skip ahead if this chapter is too technical. Just come back when you’re ready.

Building the HTML form
You don’t absolutely need an HTML form for AJAX, but I have a simple one
here. Note that the form is not attached to the server in any way.

<form action = “”>
 <p>
 <button type = “button”
 onclick = “getAJAX()”>
 Summon the vicious beast of Caerbannog
 </button>
 </p>
</form>

This page is set up like a client-side (JavaScript) interaction. The form has an
empty action element. The code uses a button (not a submit element), and
the button is attached to a JavaScript function called getAJAX().

All you really need is some kind of structure that can trigger a JavaScript
function.

AJAX isn’t a complex technology, but it does draw on several other technolo-
gies. You may need to look over the JavaScript chapters in Book IV if this
material is unfamiliar to you. Although these examples don’t require PHP,
they do involve server-side responses like PHP does, so AJAX is usually stud-
ied by people who are already familiar with both JavaScript and PHP as well
as the foundational XHTML and CSS environments.

46_9780470537558-bk07ch01.indd 73746_9780470537558-bk07ch01.indd 737 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

738 Making a Basic AJAX Connection

Creating an XMLHttpRequest object
The key to AJAX is a special object called XMLHttpRequest. All the major
browsers have it, and knowing how to use it in code is what makes AJAX
work. It’s pretty easy to create:

 var request = new XMLHttpRequest();

 Internet Explorer 5 and 6 had an entirely different way of invoking the
XMLHttpRequest object that involved a technology called ActiveX. If you
want to support these older browsers, use one of the libraries that I mention
in Chapter 2 of this minibook. I’ve decided not to worry about them in this
introductory chapter.

This line makes an instance of the XMLHttpRequest object. You use meth-
ods and properties of this object to control a request to the server.

AJAX is really nothing more than HTTP, the protocol that your browser and
server quietly use all the time to communicate with each other. You can
think of an AJAX request like this: Imagine that you have a basket with a bal-
loon tied to the handle and a long string. As you walk around the city, you
can release the basket under a particular window and let it rise. The window
(server) puts something in the basket, and you can then wind the string to
bring the basket back down and retrieve the contents. The various charac-
teristics of the XMLHttpRequest object are described in Table 1-1.

Table 1-1 Useful Members of the XMLHttpRequest Object

Member Description Basket Analogy

open(protocol, URL,
synchronization)

Opens a connection
to the indicated file
on the server.

Stand under a par-
ticular window.

send(parameters) Initiates the trans-
action with given
parameters (or null).

Release the basket
but hang on to the
string.

status Returns the HTTP
status code returned
by the server (200 is
success).

Check for error codes
(“window closed,”
“balloon popped,”
“string broken,” or
“everything’s great”).

statusText Text form of HTTP
status.

Text form of status
code.

responseText Text of the transac-
tion’s response.

Get the contents of
the basket.

46_9780470537558-bk07ch01.indd 73846_9780470537558-bk07ch01.indd 738 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 1

A
J

A
X

 E
sse

n
tia

ls

739Making a Basic AJAX Connection

Member Description Basket Analogy

readyState Describes the current
status of the transac-
tion (4 is complete).

Is the basket empty,
going up, coming
down, or here
and ready to get
contents?

onReadyStateChange Event handler. Attach
a function to this
para-meter, and
when the ready
State changes, the
function will be called
automatically.

What should I do
when the state of the
basket changes? For
example, should I do
something when I’ve
gotten the basket
back?

Don’t worry about all the details in Table 1-1. I describe these things as you
need them in the text. Also, some of these elements only pertain to asyn-
chronous connections, so you won’t always need them all.

Opening a connection to the server
The XMLHttpRequest object has several useful methods. One of the most
important is the open() method:

 request.open(“GET”, “beast.txt”, false);

The open() method opens a connection to the server. As far as the server
is concerned, this connection is identical to the connection made when the
user clicks a link or submits a form. The open() method takes the following
three parameters:

 ✦ Request method: The request method describes how the server should
process the request. The values are identical to the form method values
described in Book V, Chapter 3. Typical values are GET and POST.

 ✦ A file or program name: The second parameter is the name of a file
or program on the server. This is usually a program or file in the same
directory as the current page.

 ✦ A synchronization trigger: AJAX can be done in synchronous or asyn-
chronous mode. (Yeah, I know, then it would just be JAX, but stay with
me here.) The synchronous form is easier to understand, so I use it first.
The next example (and all the others in this book) uses the asynchro-
nous approach.

For this example, I use the GET mechanism to load a file called beast.txt
from the server in synchronized mode.

46_9780470537558-bk07ch01.indd 73946_9780470537558-bk07ch01.indd 739 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

740 Making a Basic AJAX Connection

Sending the request and parameters
After you’ve opened a request, you need to pass that request to the server.
The send() method performs this task. It also provides you with a mecha-
nism for sending data to the server. This only makes sense if the request is
going to a PHP program (or some other program on the server). Because I’m
just requesting a regular text document, I send the value null to the server:
Chapter 6 of this minibook describes how to work with other kinds of data.

 request.send(null);

This is a synchronous connection, so the program pauses here until the
server sends the requested file. If the server never responds, the page will
hang. (This is exactly why you usually use asynchronous connections.)
Because this is just a test program, assume that everything will work okay
and motor on.

Returning to the basket analogy, the send() method releases the basket,
which floats up to the window. In a synchronous connection, you assume
that the basket is filled and comes down automatically. The next step
doesn’t happen until the basket is back on earth. (But if something went
wrong, the next step may never happen, because the basket will never
come back.)

Checking the status
 The next line of code doesn’t happen until the server passes some sort

of response. Any HTTP request is followed by a numeric code. Normally,
your browser checks these codes automatically, and you don’t see them.
Occasionally, you run across an HTTP error code, like 404 (file not found) or
500 (internal server error). If the server was able to respond to the request,
it passes a status code of 200.

The XMLHttpRequest object has a property called status that returns the
HTTP status code. If the status is 200, everything went fine and you can pro-
ceed. If the status is some other value, some type of error occurred.

 Make sure that the status of the request is successful before you run the
code that depends on the request. (Don’t get anything out of the basket
unless the entire process worked.)

You can check for all the various status codes if you want, but for this
simple example, I’m just ensuring that the status is 200:

 if (request.status == 200){
 //we got a response
 alert(request.responseText);
 } else {
 //something went wrong
 alert(“Error- “ + request.status + “: “ + request.statusText);
 } // end if

46_9780470537558-bk07ch01.indd 74046_9780470537558-bk07ch01.indd 740 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 1

A
J

A
X

 E
sse

n
tia

ls

741All Together Now — Making the Connection Asynchronous

The request.status property contains the server response. If this value is
200, I want to do something with the results. In this case, I simply display the
text in an alert box. If the request is anything but 200, I use the statusText
property to determine what went wrong and pass that information to the
user in an alert.

The status property is like looking at the basket after it returns. It might
have the requested data in it, or it might have some sort of note. (“Sorry, the
window was closed. I couldn’t fulfill your request.”) There’s not much point
in processing the data if it didn’t return successfully.

Of course, I could do a lot more with the data. If it’s already formatted as
HTML code, I can use the innerHTML DOM tricks described in Book IV to
display the code on any part of my page. It might also be some other type of
formatted data (XML or JSON) that I can manipulate with JavaScript and do
whatever I want with.

All Together Now — Making the
Connection Asynchronous

The synchronous AJAX connection described in the previous section is
easy to understand, but it has one major drawback: The client’s page stops
processing while waiting for a response from the server. This doesn’t seem
like a big problem, but it is. If aliens attack the Web server, it won’t make
the connection, and the rest of the page will never be activated. The user’s

Just like the post office stamping success/
error messages on your envelope, the server
sends back status messages with your request.
You can see all the possible status codes on
the World Wide Web Consortium’s Web site at
www.w3.org/Protocols/rfc2616/
rfc2616-sec10.html, but the important
ones to get you started are as follows:

 ✓ 200 = OK: This is a success code.
Everything went okay, and your response
has been returned.

 ✓ 400 = Bad Request: This is a client
error code. It means that something went

wrong on the user side. The request was
poorly formed and couldn’t be understood.

 ✓ 404 = Not Found: This is a client error
code. The page the user requested doesn’t
exist or couldn’t be found.

 ✓ 408 = Request Timeout: This is
a client error code. The server gave up on
waiting for the user’s computer to finish
making its request.

 ✓ 500 = Internal Server Error:
This is a server error code. It means that
the server had an error and couldn’t fill the
request.

Fun with HTTP response codes

46_9780470537558-bk07ch01.indd 74146_9780470537558-bk07ch01.indd 741 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

742 All Together Now — Making the Connection Asynchronous

browser will hang indefinitely. In most cases, the user will have to shut down
the browser process by pressing Ctrl+Alt+Delete (or the similar procedure
on other OSs). Obviously, it would be best to prevent this kind of error.

 That’s why most AJAX calls use the asynchronous technique. Here’s the big
difference: When you send an asynchronous request, the client keeps on
processing the rest of the page. When the request is complete, an event han-
dler processes the event. If the server goes down, the browser will not hang
(although the page probably won’t do what you want).

In other words, the readyState property is like looking at the basket’s
progress. The basket could be sitting there empty because you haven’t
begun the process. It could be going up to the window, being filled, coming
back down, or it could be down and ready to use. You’re only concerned
with the last state, because that means the data is ready.

I didn’t include a figure of the asynchronous version, because to the user, it
looks exactly the same as the synchronous connection. Be sure to put this
code on your own server and check it out for yourself.

The asynchronous version looks exactly the same on the front end, but the
code is structured a little differently:

<!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang = “EN” xml:lang = “EN” dir = “ltr”>
<head>
<meta http-equiv=“content-type“ content=“text/xml; charset=utf-8“ />

<title>asynch.html</title>
<script type = “text/javascript“>
//<![CDATA[

var request; //make request a global variable

function getAJAX(){
 request = new XMLHttpRequest();
 request.open(“GET“, “beast.txt“);
 request.onreadystatechange = checkData;
 request.send(null);
} // end function

function checkData(){
 if (request.readyState == 4) {
 // if state is finished
 if (request.status == 200) {
 // and if attempt was successful
 alert(request.responseText);
 } // end if
 } // end if
} // end checkData

46_9780470537558-bk07ch01.indd 74246_9780470537558-bk07ch01.indd 742 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 1

A
J

A
X

 E
sse

n
tia

ls

743All Together Now — Making the Connection Asynchronous

//]]>

</script>

</head>

<body>
<h1>Asynchronous AJAX transmission</h1>
<form action = “”>
 <p>
 <button type = “button”
 onclick = “getAJAX()”>
 Summon the beast of Caerbannogh
 </button>
 </p>
</form>
</body>
</html>

Setting up the program
The general setup of this program is just like the earlier AJAX example. The
HTML is a simple button that calls the getAJAX() function.

 The JavaScript code now has two functions. The getAJAX() function sets
up the request, but a separate function (checkData()) responds to the
request. In an asynchronous AJAX model, you typically separate the request
and the response in different functions.

Note that in the JavaScript code, I made the XMLHttpRequest object
(request) a global variable by declaring it outside any functions. I generally
avoid making global variables, but it makes sense in this case because I have
two different functions that require the request object.

Building the getAJAX() function
The getAJAX() function sets up and executes the communication with the
server:

function getAJAX(){
 request = new XMLHttpRequest();
 request.open(“GET”, “beast.txt”);
 request.onreadystatechange = checkData;
 request.send(null);
} // end function

The code in this function is pretty straightforward:

 1. Create the request object.

 The request object is created exactly as it was in the first example in
the section “Creating an XMLHttpRequest object,” earlier in this chapter.

46_9780470537558-bk07ch01.indd 74346_9780470537558-bk07ch01.indd 743 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

744 All Together Now — Making the Connection Asynchronous

 2. Call request’s open() method to open a connection.

 Note that this time I left the synchronous parameter out, which creates
the (default) asynchronous connection.

 3. Assign an event handler to catch responses.

 You can use event handlers much like the ones in the DOM. In this
particular case, I’m telling the request object to call a function called
checkData whenever the state of the request changes.

 You can’t easily send a parameter to a function when you call it using
this particular mechanism. That’s why I made request a global
variable.

 4. Send the request.

 As before, the send() method begins the process. Because this is now
an asynchronous connection, the rest of the page continues to process.
As soon as the request’s state changes (hopefully because a successful
transfer has occurred), the checkData function is activated.

The readyState property of the request
object indicates the ready state of the request.
It has five possible values:

 ✓ 0 = Uninitialized: The request object has
been created, but the open() method
hasn’t been called on.

 ✓ 1 = Loading: The request object has
been created, the open() method has
been called, but the send() method
hasn’t been called.

 ✓ 2 = Loaded: The request object has
been created, the open() method has
been called, the send() method has been
called, but the response isn’t yet available
from the server.

 ✓ 3 = Interactive: The request object has
been created, the open() method has

been called, the send() method has been
called, the response has started trickling
back from the server, but not everything
has been received yet.

 ✓ 4 = Completed: The request object has
been created, the open() method
has been called, the send() method has
been called, the response has been fully
received, and the request object is fin-
ished with all its request/response tasks.

Each time the readyState property of the
request changes, the function you map to
readyStateChanged is called. In a typi-
cal AJAX program, this happens four times
per transaction. There’s no point in reading the
data until the transaction is completed, which
will happen when readyState is equal to 4.

Ready, set, ready state!

46_9780470537558-bk07ch01.indd 74446_9780470537558-bk07ch01.indd 744 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 1

A
J

A
X

 E
sse

n
tia

ls

745All Together Now — Making the Connection Asynchronous

Reading the response
Of course, you now need a function to handle the response when it
comes back from the server. This works by checking the ready state of the
response. Any HTTP request has a ready state, which is a simple integer
value that describes what state the request is currently in. You find many
ready states, but the only one you’re concerned with is 4, meaning that the
request is finished and ready to process.

The basic strategy for checking a response is to check the ready state in the
aptly named request.readyState property. If the ready state is 4, check
the status code to ensure that no error exists. If the ready state is 4 and the
status is 200, you’re in business, so you can process the form. Here’s the code:

function checkData(){
 if (request.readyState == 4) {
 // if state is finished
 if (request.status == 200) {
 // and if attempt was successful
 alert(request.responseText);
 } // end if
 } // end if
} // end checkData

Once again, you can do anything you want with the text you receive. I’m just
printing it, but the data can be incorporated into the page or processed in
any way you want.

46_9780470537558-bk07ch01.indd 74546_9780470537558-bk07ch01.indd 745 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

746 Book VII: Into the Future with AJAX

46_9780470537558-bk07ch01.indd 74646_9780470537558-bk07ch01.indd 746 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Improving JavaScript
and AJAX with jQuery

In This Chapter
✓ Downloading and including the jQuery library

✓ Making an AJAX request with jQuery

✓ Using component selectors

✓ Adding events to components

✓ Creating a simple content management system with jQuery

JavaScript has amazing capabilities. It’s useful on its own, and when you
add AJAX, it becomes incredibly powerful. However, JavaScript can be

tedious. You have a lot to remember, and it can be a real pain to handle
multiplatform issues. Some tasks (like AJAX) are a bit complex and require
a lot of steps. Regardless of the task, you always have browser-compatibility
issues to deal with.

For these reasons, Web programmers began to compile commonly used
functions into reusable libraries. These libraries became more powerful
over time, and some of them have now become fundamental to Web
development.

As these libraries became more powerful, they not only added AJAX capa-
bilities, but many of them also added features to JavaScript/DOM program-
ming that were once available only in traditional programming languages.
Many of these libraries allow a new visual aesthetic as well as enhanced
technical capabilities. In fact, most applications considered part of the Web
2.0 revolution are based in part on one of these libraries.

A number of very powerful JavaScript/AJAX libraries are available. All make
basic JavaScript easier, and each has its own learning curve. No library
writes code for you, but a good library can handle some of the drudgery and
let you work instead on the creative aspects of your program. JavaScript
libraries can let you work at a higher level than plain JavaScript, writing
more elaborate pages in less time.

47_9780470537558-bk07ch02.indd 74747_9780470537558-bk07ch02.indd 747 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

748

Several important JavaScript/AJAX libraries are available. Here are a few of
the most prominent:

 ✦ DOJO: A very powerful library that includes a series of user interface
widgets (like those in Visual Basic and Java) as well as AJAX features.

 ✦ MochiKit: A nice lower-level set of JavaScript functions to improve
JavaScript programming. It makes JavaScript act much more like the
Python language, with an interactive interpreter.

 ✦ Prototype: One of the first AJAX libraries to become popular. It includes
great support for AJAX and extensions for user interface objects
(through the scriptaculous extension).

 ✦ Yahoo User Interface (YUI): This is used by Yahoo! for all its AJAX appli-
cations. Yahoo! has released this impressive library as open source.

 ✦ jQuery: This has emerged as one of the more popular JavaScript and
AJAX libraries. It is the library emphasized in this book.

What is Web 2.0?
I’m almost reluctant to mention the term Web
2.0 here, because it isn’t really a very useful
description. People describe Web 2.0 — if such
a thing really exists — in three main ways:

 ✓ Some talk about Web 2.0 as a design para-
digm (lots of white space, simple color
schemes, rounded corners). I believe the
visual trends will evolve to something else
and that other aspects of the Web 2.0 sen-
sibility will have a longer-lasting impact.

 ✓ The technical aspects of Web 2.0 (heavy
use of AJAX and libraries to make Web
programming more like traditional pro-
gramming) are more important than the
visual aspects. These technologies make it
possible to build Web applications in much
the same way that desktop applications
are now created.

 ✓ I personally think the most important
emerging model of the Web is the change
in the communication paradigm. Web 2.0
is no longer about a top-down broadcast
model of communication, but more of a
conversation among users of a site or
system. While the visual and technical
aspects are important, the changing rela-
tionship between producers and users of
information is perhaps more profound.

The design and communication aspects are
fascinating, but this book focuses on the
technical aspects. When you work in Web 2.0
technologies, decide for yourself how you will
express the technology visually and socially. I
can’t wait to see what you produce.

Introducing jQuery

47_9780470537558-bk07ch02.indd 74847_9780470537558-bk07ch02.indd 748 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 2

Im
p

ro
vin

g

J
a

va
S

c
rip

t a
n

d

A
J

A
X

 w
ith

 jQ
u

e
ry

749

Introducing jQuery
This book focuses on the jQuery library. While many outstanding AJAX/
JavaScript libraries are available, jQuery has quickly become one of the most
prominent. The following are some reasons for the popularity of jQuery:

 ✦ It’s a powerful library. The jQuery system is incredibly powerful. It can
do all kinds of impressive things to make your JavaScript easier to write.

 ✦ It’s lightweight. You need to include a reference to your library in every
file that needs it. The entire jQuery library fits in 55K, which is smaller
than many image files. It won’t have a significant impact on download
speed.

 ✦ It supports a flexible selection mechanism. jQuery greatly simplifies
and expands the document.getElementById mechanism that’s cen-
tral to DOM manipulation.

 ✦ It has great animation support. You can use jQuery to make elements
appear and fade, move and slide.

 ✦ It makes AJAX queries trivial. You’ll be shocked at how easy AJAX is
with jQuery.

 ✦ It has an enhanced event mechanism. JavaScript has very limited sup-
port for events. jQuery adds a very powerful tool for adding event han-
dlers to nearly any element.

 ✦ It provides cross-platform support. The jQuery library tries to manage
browser-compatibility issues for you, so you don’t have to stress so
much about exactly which browser is being used.

 ✦ It supports user interface widgets. jQuery comes with a powerful user
interface library, including tools HTML doesn’t have, like drag-and-drop
controls, sliders, and date pickers.

 ✦ It’s highly extensible. jQuery has a plug-in library that supports all
kinds of optional features, including new widgets and tools like audio
integration, image galleries, menus, and much more.

 ✦ It introduces powerful new programming ideas. jQuery is a great tool
for learning about some really interesting ideas like functional program-
ming and chainable objects. I explain these as you encounter them,
mainly in Chapter 4 of this minibook.

 ✦ It’s free and open source. It’s available under an open-source license,
which means it costs nothing to use, and you can look it over and
change it if you wish.

 ✦ It’s reasonably typical. If you choose to use a different AJAX library, you
can still transfer the ideas you learned in jQuery.

Introducing jQuery

47_9780470537558-bk07ch02.indd 74947_9780470537558-bk07ch02.indd 749 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

750

Installing jQuery
The jQuery library is easy to install and use. Follow these steps:

 1. Go to http://jquery.com.

 2. Download the current version.

 As of this writing, the most current version is 1.4.2.

 You may be able to choose from a number of versions of the file. I rec-
ommend the minimized version for actual use. To make this file as small
as possible, every unnecessary character (including spaces and carriage
returns) was removed. This file is very compact but difficult to read.
Download the nonminimized version if you want to actually read the
code, but it’s generally better to include the minimized version in your
programs.

 3. Store the resulting .js file to your working directory.

 jQuery-1.4.2.min.js is the current file.

To incorporate the library in your pages, simply link to it as an external
JavaScript file:

 <script type = “text/javascript”
 src = “jquery-1.4.2.min.js”></script>

 Be sure to include the preceding code before you write or include other
code that refers to jQuery.

Importing jQuery from Google

Easy as it is to add jQuery support, you have another great way to add
jQuery (and other AJAX library) support to your pages without downloading
anything. Google has a publicly available version of several important librar-
ies (including jQuery) that you can download from its servers.

This has a couple of interesting advantages:

 ✦ You don’t have to install any libraries. All the library files stay on the
Google server.

 ✦ The library is automatically updated. You always have access to the
latest version of the library without making any changes to your code.

 ✦ The library may load faster. The first time one of your pages reads the
library from Google’s servers, you have to wait for the full download, but
then the library is stored in a cache (a form of browser memory) so that
subsequent requests are essentially immediate.

Introducing jQuery

47_9780470537558-bk07ch02.indd 75047_9780470537558-bk07ch02.indd 750 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 2

Im
p

ro
vin

g

J
a

va
S

c
rip

t a
n

d

A
J

A
X

 w
ith

 jQ
u

e
ry

751

Here’s how you do it:

<script type = “text/javacript”
 src=”http://www.google.com/jsapi”></script>
<script type = “text/javacript”>
 //<[CDATA[
 // Load jQuery
 google.load(“jquery”, “1”);

 //your code here

 //]]>
</script>

Essentially, loading jQuery from Google is a two-step process:

 1. Load the Google API from Google.

 Use the first <script> tag to refer to the Google AJAX API server. This
gives you access to the google.load() function.

 2. Invoke google.load() to load jQuery.

 • The first parameter is the name of the library you want to load.

 • The second parameter is the version number. If you leave this
parameter blank, you get the latest version. If you specify a number,
Google gives you the latest variation of that version. In my example,
I want the latest variation of version 1, but not version 2. While ver-
sion 2 doesn’t exist yet, I expect it to have major changes, and I don’t
want any surprises.

Note that you don’t need to install any files locally to use the Google
approach.

 All these options for managing jQuery can be dizzying. Use whichever
technique works best for you. I prefer using the local code rather than the
Google solution because I find it easier, and this method works even if I’m
offline. For smaller projects (like the demonstrations in this chapter), I don’t
like the overhead of the Aptana solution or the online requirement of Google.
In this chapter, I simply refer to a local copy of the jQuery file.

Your First jQuery App
As an introduction to jQuery, build an application that you can already
create in JavaScript/DOM. This introduces you to some powerful features of
jQuery. Figure 2-1 illustrates the change.html page at work, but the inter-
esting stuff (as usual) is under the hood.

Your First jQuery App

47_9780470537558-bk07ch02.indd 75147_9780470537558-bk07ch02.indd 751 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

752

Figure 2-1:
The content
of this page
is modified
with jQuery.

Setting up the page
At first, the jQuery app doesn’t look much different than any other HTML/
JavaScript code you’ve already written, but the JavaScript code is a bit
different:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=“content-type“ content=“text/xml;

charset=utf-8“ />

 <title>change.html</title>
 <script type = “text/javascript“
 src = “jquery-1.4.2.min.js“></script>

 <script type = “text/javascript“>
 //<![CDATA[
 function changeMe(){
 $(“#output“).html(“I changed“);
 }

 //]]>
 </script>
</head>
<body onload = “changeMe()“>
 <h1>Basic jQuery demo</h1>
 <div id = “output“>
 Did this change?
 </div>
</body>
</html>

 If you’re already knowledgeable about jQuery, you may be horrified at my
use of body onload in this example. jQuery provides a wonderful alterna-
tive to the onload mechanism, but I want to introduce only one big, new
idea at a time. The next example illustrates the jQuery alternative to body
onload and explains why it is such an improvement.

Your First jQuery App

47_9780470537558-bk07ch02.indd 75247_9780470537558-bk07ch02.indd 752 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 2

Im
p

ro
vin

g

J
a

va
S

c
rip

t a
n

d

A
J

A
X

 w
ith

 jQ
u

e
ry

753

The basic features of changeme.html are utterly unsurprising:

 ✦ The HTML has a div named output. This div initially says, “Did this
change?” The code should change the content to something else.

 ✦ The HTML calls a function called changeMe() when the body finishes
loading. This is a mechanism used frequently in DOM programming,
although you see a new way to call an initial function in the next section.

 ✦ There is a reference to the jQuery library. Any page that uses jQuery
must load it using one of the mechanisms described earlier in this
chapter.

 ✦ The changeMe() function looks really crazy. When you run the pro-
gram, you can tell what it does. The code gets a reference to the output
div and changes its innerHTML property to reflect a new value (“I’ve
changed.”). However, the syntax is really new. All that functionality got
packed into one line of (funky-looking) code.

Meet the jQuery node object
The secret behind jQuery’s power is the underlying data model. jQuery has
a unique way of looking at the DOM that’s more powerful than the standard
object model. Understanding the way this works is the key to powerful pro-
gramming with jQuery.

 The jQuery node is a special object that adds a lot of functionality to the
ordinary DOM element. Any element on the Web page (any link, div, head-
ing, or whatever) can be defined as a jQuery node. You can also make a list
of jQuery nodes based on tag types, so you can have a jQuery object that
stores a list of all the paragraphs on the page or all the objects with a par-
ticular class name. The jQuery object has very useful methods like html(),
which is used to change the innerHTML property of an element.

 The jQuery node is based on the basic DOM node, so it can be created from
any DOM element. However, it also adds significant new features. This is a
good example of the object-oriented philosophy.

Creating a jQuery object
You have many ways to create a jQuery object, but the simplest is through
the special $() function. You can place an identifier (very similar to CSS
identifiers) inside the function to build a jQuery object based on an element.
For example,

var jQoutput = $(“#output”);

Your First jQuery App

47_9780470537558-bk07ch02.indd 75347_9780470537558-bk07ch02.indd 753 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

754

creates a variable called jQoutput, which contains a jQuery object based
on the output element. It’s similar to the following:

var DOMoutput = document.getElementById(“output”);

The jQuery approach is a little cleaner, and it doesn’t get a reference to a
DOM object (as the getElementById technique does), but it makes a new
jQuery object that is based on the DOM element. Don’t worry if this is a little
hard to understand. It gets easier as you get used to it.

Enjoying your new jQuery node object
Because jQoutput is a jQuery object, it has some powerful methods. For
example, you can change the content of the object with the html() method.
The following two lines are equivalent:

jQoutput.html(“I’ve changed”); //jQuery version
DOMoutput.innerHTML = “I’ve changed”; //ordinary JS / DOM

jQuery doesn’t require you to create variables for each object, so the code in
the changeMe() function can look like this:

//build a variable and then modify it
var jQoutput = $(“#output”);
jQoutput.html(“I’ve changed”);

Or you can shorten it like this:

 $(“#output”).html(“I’ve changed”);

This last version is how the program is actually written. It’s very common
to refer to an object with the $() mechanism and immediately perform a
method on that object as I’ve done here.

Creating an Initialization Function
Many pages require an initialization function. This is a function that’s run
early to set up the rest of the page. The body onload mechanism is fre-
quently used in DOM/JavaScript to make pages load as soon as the docu-
ment has begun loading. This technique is described in Book IV, Chapter 7.
While body onload does this job well, a couple of problems exist with the
traditional technique:

 ✦ It requires making a change to the HTML. The JavaScript code should
be completely separated from HTML. You shouldn’t have to change your
HTML to make it work with JavaScript.

Creating an Initialization Function

47_9780470537558-bk07ch02.indd 75447_9780470537558-bk07ch02.indd 754 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 2

Im
p

ro
vin

g

J
a

va
S

c
rip

t a
n

d

A
J

A
X

 w
ith

 jQ
u

e
ry

755

 ✦ The timing still isn’t quite right. The code specified in body unload
doesn’t execute until after the entire page is displayed. It would be
better if the code was registered after the DOM is loaded but before the
page displays.

Using $(document).ready()
JQuery has a great alternative to body onload that overcomes these short-
comings. Take a look at the code for ready.html to see how it works:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=“content-type“ content=“text/xml;

charset=utf-8“ />

 <title>ready.html</title>
 <script type = “text/javascript“
 src = “jquery-1.4.2.min.js“></script>

 <script type = “text/javascript“>
 //<![CDATA[
 $(document).ready(changeMe);

 function changeMe(){
 $(“#output“).html(“I’ve changed“);
 }

 //]]>
 </script>
</head>
<body>
 <h1>Using the document.ready mechanism</h1>
 <div id = “output“>
 Did this change?
 </div>
</body>
</html>

This code is much like change.html, but it uses the jQuery technique for
running initialization code:

 ✦ The body tag no longer has an onload attribute. This is a common fea-
ture of jQuery programming. The HTML no longer has direct links to the
JavaScript because jQuery lets the JavaScript code attach itself to the
Web page.

Creating an Initialization Function

47_9780470537558-bk07ch02.indd 75547_9780470537558-bk07ch02.indd 755 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

756

 ✦ The initialization function is created with the $(document).ready()
function. This technique tells the browser to execute a function when
the DOM has finished loading (so that it has access to all elements of the
form) but before the page is displayed (so that any effects of the form
appear instantaneous to the user).

 ✦ $(document) makes a jQuery object from the whole document.
The entire document can be turned into a jQuery object by specifying
document inside the $() function. Note that you don’t use quotation
marks in this case.

 ✦ The function specified is automatically run. In this particular case, I
want to run the changeMe() function, so I place it in the parameter of
the ready() method. Note that I’m referring to changeMe as a variable,
so it has no quotation marks or parentheses. (Look at Book IV, Chapter 7
for more discussion of referring to functions as variables.)

 You see several other places (particularly in event handling) where jQuery
expects a function as a parameter. Such a function is frequently referred
to as a callback function, because it’s called after some sort of event has
occurred. You also see callback functions that respond to keyboard events,
mouse motion, and the completion of an AJAX request.

Alternatives to document.ready
You sometimes see a couple of shortcuts, because it’s so common to run ini-
tialization code. You can shorten

 $(document).ready(changeMe);

 to the following code:

 $(changeMe);

If this code is not defined inside a function and changeMe is a function
defined on the page, jQuery automatically runs the function directly just like
the document.ready approach.

You can also create an anonymous function directly:

 $(document).ready(function(){
 $(“#output”).html(“I changed”);
 });

I think this method is cumbersome, but you frequently see jQuery code
using this technique. Personally, I tend to create a function called init()
and call it with a line like this:

Creating an Initialization Function

47_9780470537558-bk07ch02.indd 75647_9780470537558-bk07ch02.indd 756 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 2

Im
p

ro
vin

g

J
a

va
S

c
rip

t a
n

d

A
J

A
X

 w
ith

 jQ
u

e
ry

757

$(init);

I think this technique is simple and easy to understand but you may encoun-
ter the other variations as you examine code on the Web.

Investigating the jQuery Object
The jQuery object is interesting because it is easy to create from a variety of
DOM elements, and because it adds wonderful, new features to these
elements.

Changing the style of an element
If you can dynamically change the CSS of an element, you can do quite a lot
to it. jQuery makes this process quite easy. After you have a jQuery object,
you can use the css method to add or change any CSS attributes of the
object. Take a look at styleElements.html, shown in Figure 2-2, as an
example.

Figure 2-2:
All the
styles here
are applied
dynamically
by jQuery
functions.

The code displays a terseness common to jQuery code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=“content-type“ content=“text/xml;

charset=utf-8“ />
 <script type = “text/javascript“
 src = “jquery-1.4.2.min.js“></script>

Investigating the jQuery Object

47_9780470537558-bk07ch02.indd 75747_9780470537558-bk07ch02.indd 757 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

758

 <script type = “text/javascript“>
 //<![CDATA[
 $(init);

 function init(){
 $(“h1“).css(“backgroundColor“, “yellow“);

 $(“#myParagraph“).css({“backgroundColor“:“black“,
 “color“:“white“});

 $(“.bordered”).css(“border”, “1px solid black”);
 }
 //]]>
 </script>
 <title>styleElements.html</title>
</head>
<body>
 <h1>I’m a level one heading</h1>
 <p id = “myParagraph”>
 I’m a paragraph with the id “myParagraph.”
 </p>

 <h2 class = “bordered”>
 I have a border.
 </h2>

 <p class = “bordered”>
 I have a border too.
 </p>
</body>
</html>

You find a few interesting things in this program. First, take a look at the
HTML:

 ✦ It contains an h1 tag. I’m aware that’s not too exciting, but I use it to
show how to target elements by DOM type.

 ✦ There’s a paragraph with the ID myParagraph. This will be used to
illustrate how to target an element by ID.

 ✦ There are two elements with the class bordered. You have no easy
way in ordinary DOM work to apply code to all elements of a particular
class, but jQuery makes it easy.

 ✦ Several elements have custom CSS, but no CSS is defined. The jQuery
code changes all the CSS dynamically.

The init() function is identified as the function to be run when the docu-
ment is ready. In this function, I use the powerful CSS method to change
each element’s CSS dynamically. I come back to the CSS in a moment, but
first notice how the various elements are targeted.

Investigating the jQuery Object

47_9780470537558-bk07ch02.indd 75847_9780470537558-bk07ch02.indd 758 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 2

Im
p

ro
vin

g

J
a

va
S

c
rip

t a
n

d

A
J

A
X

 w
ith

 jQ
u

e
ry

759

Selecting jQuery objects
jQuery gives you several alternatives for creating jQuery objects from the
DOM elements. In general, you use the same rules to select objects in jQuery
as you do in CSS:

 ✦ DOM elements are targeted as is. You can include any DOM element
inside the $(“”) mechanism to target all similar elements. For
example, use $(“h1”) to refer to all h1 objects or $(“p”) to refer
to all paragraphs.

 ✦ Use the # identifier to target a particular ID. This works exactly the
same as in CSS. If you have an element with the ID myThing, use the
code $(“#myThing”).

 ✦ Use the . identifier to target members of a class. Again, this is the same
mechanism that you use in CSS, so all elements with the class bordered
attached to them can be modified with the code $(“.bordered”).

 ✦ You can even use complex identifiers. You can even use complex CSS
identifiers like $(“li img”);. This identifier only targets images inside
a list item.

These selection methods (all borrowed from familiar CSS notation) add
incredible flexibility to your code. You can now easily select elements in
your JavaScript code according to the same rules you use to identify ele-
ments in CSS.

Modifying the style

After you’ve identified an object or a set of objects, you can apply jQuery
methods. One very powerful and easy method is the style() method. The
basic form of this method takes two parameters: a style rule and value.

For example, to make the background color of all h1 objects yellow, I use the
following code:

 $(“h1”).css(“backgroundColor”, “yellow”);

If you apply a style rule to a collection of objects (like all h1 objects or all
objects with the bordered class), the same rule is instantly applied to all
the objects.

A more powerful variation of the style rule exists that allows you to apply
several CSS styles at once. It takes a single object in JSON notation as its
argument:

 $(“#myParagraph”).css({“backgroundColor”:”black”,
 “color”:”white”});

Investigating the jQuery Object

47_9780470537558-bk07ch02.indd 75947_9780470537558-bk07ch02.indd 759 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

760

This example uses a JSON object defined as a series of rule/value pairs. If
you need a refresher on how JSON objects work, look at Book IV, Chapter 4.

Adding Events to Objects
The jQuery library adds another extremely powerful capability to JavaScript.
It allows you to easily attach events to any jQuery object. As an example,
take a look at hover.html, as shown in Figure 2-3.

Figure 2-3:
A border
appears
around each
list item
when your
cursor is
over it.

When you move your cursor over any list item, a border appears around the
item. This would be a difficult effect to achieve in ordinary DOM/JavaScript,
but it’s pretty easy to manage in jQuery.

Adding a hover event
Look at the code to see how it works:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=“content-type“ content=“text/xml;

charset=utf-8“ />

 <script type = “text/javascript“
 src = “jquery-1.4.2.min.js“></script>

 <script type = “text/javascript“>
 //<![CDATA[
 $(init);

Adding Events to Objects

47_9780470537558-bk07ch02.indd 76047_9780470537558-bk07ch02.indd 760 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 2

Im
p

ro
vin

g

J
a

va
S

c
rip

t a
n

d

A
J

A
X

 w
ith

 jQ
u

e
ry

761

 function init(){
 $(“li”).hover(border, noBorder);
 } // end init

 function border(){
 $(this).css(”border”, ”1px solid black”);
 }

 function noBorder(){
 $(this).css(”border”, ”0px none black”);
 }

 //]]>
 </script>

 <title>hover.html</title>
</head>
<body>
 <h1>Hover Demo</h1>

 alpha
 beta
 gamma
 delta

</body>
</html>

The HTML couldn’t be simpler. It’s simply an unordered list. The JavaScript
isn’t much more complex. It consists of three one-line functions:

 ✦ init() is called when the document is ready. It makes jQuery objects
of all list items and attaches the hover event to them. The hover()
function accepts two parameters:

 • The first is a function to be called when the cursor hovers over the
object.

 • The second is a function to be called when the cursor leaves the
object.

 ✦ border() draws a border around the current element. The $(this)
identifier is used to specify the current object. In this example, I use the
css function to draw a border around the object.

 ✦ noBorder() is a function that is very similar to the border() func-
tion, but it removes a border from the current object.

In this example, I used three different functions. Many jQuery programmers
prefer to use anonymous functions (sometimes called lambda functions) to
enclose the entire functionality in one long line:

Adding Events to Objects

47_9780470537558-bk07ch02.indd 76147_9780470537558-bk07ch02.indd 761 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

762

 $(“li”).hover(
 function(){
 $(this).css(“border”, “1px solid black”);
 },
 function(){
 $(this).css(“border”, “0px none black”);
 }
);

Note that this is still technically a single line of code. Instead of referencing
two functions that have already been created, I build the functions immedi-
ately where they are needed. Each function definition is a parameter to the
hover() method.

 If you’re a computer scientist, you might argue that this is not a perfect
example of a lambda function, and you would be correct. The important
thing is to notice that some ideas of functional programming (such as
lambda functions) are creeping into mainstream AJAX programming, and
that’s an exciting development. If you just mutter “lambda” and then walk
away, people will assume that you’re some kind of geeky computer scientist.
What could be more fun than that?

Although I’m perfectly comfortable with anonymous functions, I often find
the named-function approach easier to read, so I tend to use complete
named functions more often.

Changing classes on the fly
jQuery supports another wonderful feature. You can define a CSS style and
then add or remove that style from an element dynamically. Figure 2-4 shows
a page that can dynamically modify the border of any list item.

Figure 2-4:
Click list
items,
and their
borders
toggle on
and off.

Adding Events to Objects

47_9780470537558-bk07ch02.indd 76247_9780470537558-bk07ch02.indd 762 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 2

Im
p

ro
vin

g

J
a

va
S

c
rip

t a
n

d

A
J

A
X

 w
ith

 jQ
u

e
ry

763

The code shows how easy this kind of feature is to add:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=“content-type“ content=“text/xml;

charset=utf-8“ />
 <style type = “text/css“>
 .bordered {
 border: 1px solid black;
 }
 </style>
 <script type = “text/javascript“
 src = “jquery-1.4.2.min.js“></script>

 <script type = “text/javascript“>
 //<![CDATA[
 $(init);

 function init(){
 $(“li“).click(toggleBorder);
 } // end init

 function toggleBorder(){
 $(this).toggleClass(“bordered“);
 }
 //]]>
 </script>

 <title>class.html</title>

jQuery supports a number of other events.
Any jQuery node can read any of the following
events:

 ✓ Change: The content of the element
changes.

 ✓ Click: The user clicks the element.

 ✓ DblClick: The user double-clicks the
element.

 ✓ Focus : The user has selected the
element.

 ✓ Keydown: The user presses a key while
the element has the focus.

 ✓ Hover: The cursor is over the element; a
second function is called when the cursor
leaves the element.

 ✓ MouseDown: A mouse button is clicked
over the element.

 ✓ Select: The user has selected text in a
text-style input.

JQuery events

Adding Events to Objects

47_9780470537558-bk07ch02.indd 76347_9780470537558-bk07ch02.indd 763 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

764

</head>
<body>
<h1>Class Demo</h1>

 alpha
 beta
 gamma
 delta

</body>
</html>

Here’s how to make this program:

 1. Begin with a basic HTML page.

 All the interesting stuff happens in CSS and JavaScript, so the actual con-
tents of the page aren’t that critical.

 2. Create a class you want to add and remove.

 I build a CSS class called bordered that simply draws a border around
the element. Of course, you can make a much more sophisticated CSS
class with all kinds of formatting if you prefer.

 3. Link an init() method.

 As you’re beginning to see, most jQuery applications require some sort
of initialization. I normally call the first function init().

 4. Call the toggleBorder() function whenever the user clicks a list
item.

 The init() method simply sets up an event handler. Whenever a list
item receives the click event (that is, it is clicked) the toggleBorder()
function should be activated. The toggleBorder() function, well,
toggles the border.

 jQuery has several methods for manipulating the class of an element:

 • addClass() assigns a class to the element.

 • removeClass() removes a class definition from an element.

 • toggleClass() switches the class (adds it if it isn’t currently
attached or removes it otherwise).

Making an AJAX Request with jQuery
The primary purpose of an AJAX library like jQuery is to simplify AJAX
requests. It’s hard to believe how easy this can be with jQuery. Figure 2-5
shows ajax.html, a page with a basic AJAX query.

Making an AJAX Request with jQuery

47_9780470537558-bk07ch02.indd 76447_9780470537558-bk07ch02.indd 764 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 2

Im
p

ro
vin

g

J
a

va
S

c
rip

t a
n

d

A
J

A
X

 w
ith

 jQ
u

e
ry

765

Figure 2-5:
The text file
is requested
with an
AJAX call.

Including a text file with AJAX
This program is very similar in function to the asynch.html program
described in Chapter 1 of this minibook, but the code is much cleaner:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
 <head>
 <meta http-equiv=“content-type“ content=“text/xml;

charset=utf-8“ />
 <title>ajax.html</title>
 <script type = “text/javascript“
 src = “jquery-1.4.2.min.js“></script>

 <script type = “text/javascript“>
 //<![CDATA[
 $(document).ready(getAJAX);

 function getAJAX(){
 $(“#output“).load(“hello.txt“);
 }
 //]]>
 </script>

 </head>

 <body>
 <div id = “output“></div>
 </body>
</html>

The HTML is very clean (as you should be expecting from jQuery examples).
It simply creates an empty div called output.

The JavaScript code isn’t much more complex. A standard $(document).
ready function calls the getAJAX() function as soon as the document is
ready. The getAJAX() function simply creates a jQuery node based on the
output div and loads the hello.txt file through a basic AJAX request.

Making an AJAX Request with jQuery

47_9780470537558-bk07ch02.indd 76547_9780470537558-bk07ch02.indd 765 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

766

 This example does use AJAX, so if it isn’t working, you might need to remem-
ber some details about how AJAX works. A program using AJAX should be
run through a Web server, not just from a local file. Also, the file being read
should be on the same server as the program making the AJAX request.

The load() mechanism described here is suitable for a basic situation
where you want to load a plain-text or HTML code snippet into your pages.
You read about much more sophisticated AJAX techniques in Chapter 6 of
this minibook.

Building a poor man’s CMS with AJAX
AJAX and jQuery can be a very useful way to build efficient Web sites, even
without server-side programming. Frequently a Web site is based on a series
of smaller elements that can be swapped and reused. You can use AJAX to
build a framework that allows easy reuse and modification of Web content.

As an example, take a look at cmsAJAX, shown in Figure 2-6.

Figure 2-6:
This page
is created
dynamically
with AJAX
and jQuery.

Making an AJAX Request with jQuery

47_9780470537558-bk07ch02.indd 76647_9780470537558-bk07ch02.indd 766 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 2

Im
p

ro
vin

g

J
a

va
S

c
rip

t a
n

d

A
J

A
X

 w
ith

 jQ
u

e
ry

767

While nothing is all that shocking about the page from the user’s perspec-
tive, a look at the code can show some surprises:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
 <head>
 <meta http-equiv=“content-type“ content=“text/xml;

charset=utf-8“ />
 <title>CMS Standard Template</title>
 <link rel = “stylesheet“
 type = “text/css“
 href = “cmsStd.css“ />
 <script type = “text/javascript“
 src = “jquery-1.4.2.min.js“></script>
 <script type = “text/javascript“>
 //<![CDATA[
 $(init);

 function init(){
 $(“#heading“).load(“head.html“);
 $(“#menu“).load(“menu.html“);
 $(“#content1“).load(“story1.html“);
 $(“#content2“).load(“story2.html“);
 $(“#footer“).load(“footer.html“);
 };
 //]]>
 </script>
 </head>

 <body>
 <div id = “all“>
 <!-- This div centers a fixed-width layout -->
 <div id = “heading“>
 </div><!-- end heading div -->

 <div id = “menu”>
 </div> <!-- end menu div -->

 <div class = ”content”
 id = ”content1”>
 </div> <!-- end content div -->

 <div class = ”content”
 id = ”content2”>
 </div> <!-- end content div -->

 <div id = ”footer”>
 </div> <!-- end footer div -->

Making an AJAX Request with jQuery

47_9780470537558-bk07ch02.indd 76747_9780470537558-bk07ch02.indd 767 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

768

 </div> <!-- end all div -->
 </body>
</html>

Look over the code, and you can see these interesting features:

 ✦ The page has no content! All the divs are empty. None of the text shown
in the screen shot is present in this document, but all is pulled from
smaller files dynamically.

 ✦ The page consists of empty named divs. Rather than any particular con-
tent, the page consists of placeholders with IDs.

 ✦ It uses jQuery. The jQuery library is used to vastly simplify loading data
through AJAX calls.

 ✦ All contents are in separate files. Look through the directory, and you
can see very simple HTML files that contain small parts of the page. For
example, story1.html looks like this:

<h2>Book I - Creating the XHTML Foundation</h3>

 Sound XHTML Foundations
 It’s All About Validation
 Choosing your Tools
 Managing Information with Lists and Tables
 Making Connections with Links
 Adding Images
 Creating forms

 ✦ The init() method runs on document.ready. When the document is
ready, the page runs the init() method.

 ✦ The init() method uses AJAX calls to dynamically load content. It’s
nothing more than a series of jQuery load() methods.

This approach may seem like a lot of work, but it has some very interesting
characteristics:

 ✦ If you’re building a large site with several pages, you usually want to
design the visual appearance once and reuse the same general template
repeatedly.

 ✦ Also, you’ll probably have some elements (such as the menu and head-
ing) which that will be consistent over several pages. You could simply
create a default document and copy and paste it for each page, but
this approach gets messy. What happens if you have created 100 pages
according to a template and then need to add something to the menu or
change the header? You need to make the change on 100 different pages.

Making an AJAX Request with jQuery

47_9780470537558-bk07ch02.indd 76847_9780470537558-bk07ch02.indd 768 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 2

Im
p

ro
vin

g

J
a

va
S

c
rip

t a
n

d

A
J

A
X

 w
ith

 jQ
u

e
ry

769

The advantage of the template-style approach is code reuse. Just like the use
of an external style allows you to multiply a style sheet across hundreds of
documents, designing a template without content allows you to store code
snippets in smaller files and reuse them. All 100 pages point to the same
menu file, so if you want to change the menu, you change one file and every-
thing changes with it.

Here’s how you use this sort of approach:

 1. Create a single template for your entire site.

 Build basic HTML and CSS to manage the overall look and feel for your
entire site. Don’t worry about content yet. Just build placeholders for
all the components of your page. Be sure to give each element an ID and
write the CSS to get things positioned as you want.

 2. Add jQuery support.

 Make a link to the jQuery library, and make a default init() method.
Put in code to handle populating those parts of the page that will always
be consistent. (I use the template shown here exactly as it is.)

 3. Duplicate the template.

 After you have a sense of how the template will work, make a copy for
each page of your site.

 4. Customize each page by changing the init() function.

 The only part of the template that changes is the init() function. All
your pages will be identical, except they have customized init() func-
tions that load different content.

 5. Load custom content into the divs with AJAX.

 Use the init() function to load content into each div. Build more con-
tent as small files to create new pages.

This is a great way to manage content, but it isn’t quite a full-blown content-
management system. Even AJAX can’t quite allow you to store content on
the Web. More complex content management systems also use databases
rather than files to handle content. You’ll need some sort of server-side
programming (like PHP, covered throughout Book V) and usually a data-
base (like mySQL, covered in Book VI) to handle this sort of work. Content-
management systems and complex site design are covered in Book VIII.

Making an AJAX Request with jQuery

47_9780470537558-bk07ch02.indd 76947_9780470537558-bk07ch02.indd 769 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

770 Book VII: Into the Future with AJAX

47_9780470537558-bk07ch02.indd 77047_9780470537558-bk07ch02.indd 770 10/7/10 8:54 PM10/7/10 8:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Animating jQuery

In This Chapter
✓ Hiding and showing elements with jQuery

✓ Fading elements in and out

✓ Adding a callback function to a transition

✓ Element animation

✓ Object chaining

✓ Using selection filters

✓ Adding and removing elements

The jQuery library simplifies a lot of JavaScript coding. One of its best
features is how it adds features that would be difficult to achieve in

ordinary JavaScript and DOM programming. This chapter teaches you to
shake and bake your programs by identifying specific objects, moving them
around, and making them appear, slide, and fade.

Playing Hide and Seek
To get it all started, take a look at hideShow.html shown in Figure 3-1.

The hideShow program looks simple at first, but it does some quite inter-
esting things. All of the level-two headings are actually buttons, so when you
click them, interesting things happen:

 ✦ The show button displays a previously hidden element. Figure 3-2
demonstrates the revealed content.

 ✦ The hide button hides the content. The behavior of the hide button is
pretty obvious. If the content is showing, it disappears instantly.

 ✦ The toggle button swaps the visibility of the content. If the content is
currently visible, it is hidden. If it is hidden, it appears.

 ✦ The slide down button makes the content transition in. The slide
down transition acts like a window shade being pulled down to make
the content visible through a basic animation.

48_9780470537558-bk07ch03.indd 77148_9780470537558-bk07ch03.indd 771 10/7/10 8:55 PM10/7/10 8:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

772

Figure 3-1:
This page
allows you
to hide
and show
elements.
At first, it
reveals
nothing
much.

Figure 3-2:
The content
element is
now visible.

Playing Hide and Seek

48_9780470537558-bk07ch03.indd 77248_9780470537558-bk07ch03.indd 772 10/7/10 8:55 PM10/7/10 8:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 3

A
n

im
a

tin
g

 jQ
u

e
ry

773

 ✦ The slide up button transitions the content out. This animation looks
like a window shade being pulled up to hide the content.

 ✦ The speed of the animation can be controlled It’s possible to adjust
how quickly the transition animation plays. This example plays the slide
down animation slowly, and the slide up animation more quickly. It’s
possible to specify exactly how long the transition takes in milliseconds
(1/1000ths of a second).

 ✦ The fade in button allows the element to dissolve into visibility. This
looks much like a fade effect used in video. As in the sliding animations,
the speed of the animation can be controlled.

 ✦ The fade out button fades the element to the background color. This
technique gradually modifies the opacity of the element so that it even-
tually disappears.

You can adjust how quickly the transition animation plays. You can specify
exactly how long the transition takes in milliseconds (1⁄1000 of a second). Also,
any transition can have a callback function attached.

Of course, this example relies on animation, which you can’t see in a static
book. Be sure to look at this and all other example pages on my Web site:
www.aharrisbooks.net. Better yet, install them on your own machine and
play around with my code until they make sense to you.

The animations shown in this example are useful when you want to selec-
tively hide and display parts of your page:

 ✦ Menus are one obvious use. You might choose to store your menu
structure as a series of nested lists and only display parts of the menu
when the parent is activated.

 ✦ Small teaser sentences expand to show more information when the
user clicks or hovers over them. This technique is commonly used on
blog and news sites to let users preview a large number of topics, kind of
like a text-based thumbnail image.

Getting transition support
The jQuery library has built-in support for transitions that make these
effects pretty easy to produce. Look over the entire program before digging
into the details:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=”content-type” content=”text/xml;

charset=utf-8” />
 <style type = ”text/css”>

Playing Hide and Seek

48_9780470537558-bk07ch03.indd 77348_9780470537558-bk07ch03.indd 773 10/7/10 8:55 PM10/7/10 8:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

774

 #content {
 width: 400px;
 height: 200px;
 font-size: 200%;
 padding-left:1em;
 background-color: yellow;
 position: absolute;
 left: 300px;
 top: 100px;
 }
 h2 {
 width: 10em;
 border: 3px outset black;
 background-color: lightgray;
 text-align: center;
 font-family: sans-serif;
 /* corners for compliant browsers */
 -moz-border-radius: 5px;
 -webkit-border-radius: 5px;
 }
 </style>

 <script type = ”text/javascript”
 src = ”jquery-1.4.2.min.js”></script>
 <script type = ”text/javascript”>
 //<![CDATA[
 $(init);
 function init(){
 //styleContent();
 $(”#content”).hide();
 $(”#show”).click(showContent);
 $(”#hide”).click(hideContent);
 $(”#toggle”).click(toggleContent);
 $(”#slideDown”).click(slideDown);
 $(”#slideUp”).click(slideUp);
 $(”#fadeIn”).click(fadeIn);
 $(”#fadeOut”).click(fadeOut);
 } // end init

 function showContent(){
 $(”#content”).show();
 } // end showContent
 function hideContent(){
 $(”#content”).hide();
 } // end hideContent

 function toggleContent(){
 $(“#content”).toggle();
 } // end toggleContent

 function slideDown(){
 $(“#content”).slideDown(“medium”);
 } // end slideDown

Playing Hide and Seek

48_9780470537558-bk07ch03.indd 77448_9780470537558-bk07ch03.indd 774 10/7/10 8:55 PM10/7/10 8:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 3

A
n

im
a

tin
g

 jQ
u

e
ry

775

 function slideUp(){
 $(“#content”).slideUp(500);
 } // end slideUp

 function fadeIn(){
 $(“#content”).fadeIn(“slow”, present);
 } // end fadeIn

 function fadeOut(){
 $(“#content”).fadeOut(“fast”);
 } // end fadeOut.

 function present(){
 alert(“I’m here”);
 } // end present
 //]]>
 </script>
 <title>hideShow.html</title>
</head>

<body>
 <h1>Hide and show</h1>
 <h2 id = “show”>Show</h2>
 <h2 id = “hide”>Hide</h2>
 <h2 id = “toggle”>Toggle</h2>
 <h2 id = “slideDown”>Slide Down</h2>
 <h2 id = “slideUp”>Slide Up</h2>
 <h2 id = “fadeIn”>Fade In</h2>
 <h2 id = “fadeOut”>Fade Out</h2>

 <p id = “content”>
 This is the content. It is hidden at first, but it is

hidden and shown with jQuery techniques.
 </p>

</body>
</html>

This example may look long and complicated when you view it all at once,
but it really isn’t hard to understand when you break it into pieces.

Writing the HTML and CSS foundation
The HTML used in this example is minimal, as is common in jQuery
development:

 ✦ A single level-one heading

 ✦ A series of level-two headings

 ✦ A paragraph

Playing Hide and Seek

48_9780470537558-bk07ch03.indd 77548_9780470537558-bk07ch03.indd 775 10/7/10 8:55 PM10/7/10 8:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

776

The level-two headings will be used as buttons in this example. I use a
CSS style to make the h2 tags look more like buttons (adding a border and
background color). I added an ID attribute to every button so that I can add
jQuery events later.

 If I wanted the h2 elements to look and act like buttons, why didn’t I just
make them with button tags in the first place? In this example, I wanted to
focus on the jQuery and keep the HTML as simple as possible. jQuery helps
make any element act like a button easily, so that’s what I did. Users don’t
expect h2 elements to be clickable, so you need to do some styling (as I did)
to help them understand that the element can be clicked. For comparison
purposes, the other two examples in this chapter use actual HTML buttons.

The other interesting part of the HTML is the content div. In this example,
the actual content isn’t really important, but I did add some CSS to make the
content easy to see when it pops up.

 The most critical part of the HTML from a programming perspective is the
inclusion of the ID attribute. This makes it easy for a jQuery script to manip-
ulate the component, making it hide and reappear in various ways. Note
that the HTML and CSS do nothing to hide the content. It will be hidden (and
revealed) entirely through jQuery code.

Initializing the page
The initialization sequence simply sets the stage and assigns a series of
event handlers:

 $(init);

 function init(){
 //styleContent();
 $(“#content”).hide();
 $(“#show”).click(showContent);
 $(“#hide”).click(hideContent);
 $(“#toggle”).click(toggleContent);

Well rounded
I used some sneaky CSS tricks to make the h2
elements look like buttons. First, I made them
gray (like most buttons are). I also gave them an
outset border to make them appear in 3D. Finally,
I added the experimental border-radius

element to get rounded corners. Unfortunately,
border-radius is not an official CSS ele-
ment yet. I added the experimental versions
supported by Firefox, Safari, and Chrome, but
the corners will not be rounded in any form of IE.

Playing Hide and Seek

48_9780470537558-bk07ch03.indd 77648_9780470537558-bk07ch03.indd 776 10/7/10 8:55 PM10/7/10 8:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 3

A
n

im
a

tin
g

 jQ
u

e
ry

777

 $(“#slideDown”).click(slideDown);
 $(“#slideUp”).click(slideUp);
 $(“#fadeIn”).click(fadeIn);
 $(“#fadeOut”).click(fadeOut);
 } // end init

 The pattern for working with jQuery should be familiar:

 1. Set up an initialization function.

 Use the $(document).ready() mechanism (described in Chapter 2
of this minibook) or this cleaner shortcut to specify an initialization
function.

 2. Hide the content div.

 When the user first encounters the page, the content div should be
hidden.

 3. Attach event handlers to each h2 button.

 This program is a series of small functions. The init() function
attaches each function to the corresponding button. Note how I care-
fully named the functions and buttons to make all the connections easy
to understand.

Hiding and showing the content
All the effects on this page are based on hiding and showing the content
div. The hide() and show() methods illustrate how jQuery animation
works:

 function showContent(){
 $(“#content”).show();
 } // end showContent

 function hideContent(){
 $(“#content”).hide();
 } // end hideContent

Each of these functions works in the same basic manner:

 ✦ Identifies the content div: Creates a jQuery node based on the
content div.

 ✦ Hides or shows the node: The jQuery object has built-in methods for
hiding and showing.

The hide and show methods act instantly. If the element is currently visible,
the show() method has no effect. Likewise, hide() has no effect on an ele-
ment that’s already hidden.

Playing Hide and Seek

48_9780470537558-bk07ch03.indd 77748_9780470537558-bk07ch03.indd 777 10/7/10 8:55 PM10/7/10 8:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

778

Toggling visibility
In addition to hide() and show(), the jQuery object supports a toggle()
method. This method takes a look at the current status of the element and
changes it. If the element is currently hidden, it becomes visible. If it’s cur-
rently visible, it is hidden. The toggleContent() function illustrates how
to use this method:

 function toggleContent(){
 $(“#content”).toggle();
 } // end toggleContent

Sliding an element
jQuery supports effects that allow you to animate the appearance and disap-
pearance of your element. The general approach is very similar to hide()
and show(), but you find one additional twist:

 function slideDown(){
 $(“#content”).slideDown(“medium”);
 } // end slideDown

 function slideUp(){
 $(“#content”).slideUp(500);
 } // end slideUp

The slideDown() method makes an element appear like a window shade
being pulled down. The slideUp() method makes an element disappear in
a similar manner.

These functions take a speed parameter that indicates how quickly the ani-
mation occurs. If you omit the speed parameter, the default value is medium.
The speed can be these string values:

 ✦ Fast

 ✦ Medium

 ✦ Slow

 ✦ A numeric value in milliseconds (1⁄1000 of a second; the value 500 means
500 milliseconds, or half a second)

The show(), hide(), and toggle() methods also accept a speed param-
eter. In these functions, the object shrinks and grows at the indicated speed.

A slideToggle() function is also available that toggles the visibility of the
element, but using the sliding animation technique.

Playing Hide and Seek

48_9780470537558-bk07ch03.indd 77848_9780470537558-bk07ch03.indd 778 10/7/10 8:55 PM10/7/10 8:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 3

A
n

im
a

tin
g

 jQ
u

e
ry

779

Fading an element in and out
A third type of “now you see it” animation is provided by the fade methods.
These techniques adjust the opacity of the element. The code should look
quite familiar by now:

 function fadeIn(){
 $(“#content”).fadeIn(“slow”, present);
 } // end fadeIn

 function fadeOut(){
 $(“#content”).fadeOut(“fast”);
 } // end fadeOut.

 function present(){
 alert(“I’m here”);
 } // end present

fadeIn() and fadeout() work just like the hide() and slide() tech-
niques. The fading techniques adjust the opacity of the element and then
remove it, rather than dynamically changing the size of the element as the
slide and show techniques do.

I’ve added one more element to the fadeIn() function. If you supply the
fadeIn() method (or indeed any of the animation methods described in
this section) with a function name as a second parameter, that function is
called upon completion of the animation. When you click the fade-in button,
the content div slowly fades in, and then when it is completely visible,
the present() function gets called. This function doesn’t do a lot in this
example but simply pops up an alert, but it could be used to handle some
sort of instructions after the element is visible. A function used in this way is
a callback function.

If the element is already visible, the callback method is triggered
immediately.

Changing Position with jQuery
The jQuery library also has interesting features for changing any of an ele-
ment’s characteristics, including its position. The animate.html page fea-
tured in Figure 3-3 illustrates a number of interesting animation techniques.

You know what I’m going to say, right? This program moves things around.
You can’t see that in a book. Be sure to look at the actual page. Trust me, it’s
a lot more fun than it looks in this screen shot.

Changing Position with jQuery

48_9780470537558-bk07ch03.indd 77948_9780470537558-bk07ch03.indd 779 10/7/10 8:55 PM10/7/10 8:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

780

Figure 3-3:
Click the
buttons, and
the element
moves.

This page illustrates how to move a jQuery element by modifying its CSS.
It also illustrates an important jQuery technique called object chaining and
a very useful animation method that allows you to create smooth motion
over time. As usual, look over the entire code first; I break it into sections for
more careful review.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=”content-type” content=”text/xml;

charset=utf-8” />

 <style type = “text/css”>
 #content {
 width: 300px;
 height: 200px;
 font-size: 200%;
 background-color: yellow;
 position: absolute;
 left: 300px;
 top: 100px;
 padding-left: .5em;
 }
 </style>

 <script type = “text/javascript”
 src = “jquery-1.4.2.min.js”></script>

 <script type = “text/javascript”>
 //<![CDATA[
 $(init);

Changing Position with jQuery

48_9780470537558-bk07ch03.indd 78048_9780470537558-bk07ch03.indd 780 10/7/10 8:55 PM10/7/10 8:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 3

A
n

im
a

tin
g

 jQ
u

e
ry

781

 function init(){
 $(“#move”).click(move);
 $(“#glide”).click(glide);
 $(“#left”).click(left);
 $(“#right”).click(right);
 } // end init

 function move(){
 $(“#content”).css(“left”, “50px”)
 .css(“top”, “100px”);
 } // end move

 function glide(){
 //move to initial spot
 $(“#content”).css(“left”, “50px”)
 .css(“top”, “100px”);

 //slide to new spot
 $(“#content”).animate({
 “left”: “400px”,
 “top”: “200px”
 }, 2000);
 } // end glide

 function left(){
 $(“#content”).animate({“left”: “-=10px”}, 100);
 } // end left

 function right(){
 $(“#content”).animate({“left”: “+=10px”}, 100);
 } // end left
 //]]>
 </script>

 <title>Animate.html</title>
</head>
<body>
<h1>Animation Demo</h1>
<form action = “”>
 <fieldset>
 <button type = “button”
 id = “move”>
 move
 </button>
 <button type = “button”
 id = “glide”>
 glide
 </button>

 <button type = “button”
 id = “left”>
 <--
 </button>

Changing Position with jQuery

48_9780470537558-bk07ch03.indd 78148_9780470537558-bk07ch03.indd 781 10/7/10 8:55 PM10/7/10 8:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

782

 <button type = “button”
 id = “right”>
 -->
 </button>

 </fieldset>
</form>

<p id = “content”>
 This content will move in response to the controls.
</p>
</body>
</html>

Creating the framework
The HTML always forms the foundation. This page is similar to the hide
Show page, but I decided to use a real form with buttons as the control
panel. Buttons are not difficult to use, but they are a little more tedious to
code because they must be inside a form element as well as a block-level ele-
ment, and they require more coding to produce than h2 elements.

Note that I used < in one of the button captions. This HTML attribute
displays the less-than symbol. Had I used the actual symbol (<), the browser
would have thought I was beginning a new HTML tag and would have been
confused.

The buttons all have id attributes, but I didn’t attach functions to them with
the onclick attribute. After you’re using jQuery, it makes sense to commit
to a jQuery approach and use the jQuery event techniques.

 The only other important HTML element is the content div. Once again,
this element is simply a placeholder, but I added CSS styling to make it obvi-
ous when it moves around. This element must be set to be absolutely posi-
tioned, because the position will be changed dynamically in the code.

Setting up the events
The initialization is all about setting up the event handlers for the various
buttons. An init() function is called when the document is ready. That
function contains function pointers for the various events, directing traffic to
the right functions when a button is pressed:

 function init(){

Changing Position with jQuery

48_9780470537558-bk07ch03.indd 78248_9780470537558-bk07ch03.indd 782 10/7/10 8:55 PM10/7/10 8:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 3

A
n

im
a

tin
g

 jQ
u

e
ry

783

 $(“#move”).click(move);
 $(“#glide”).click(glide);
 $(“#left”).click(left);
 $(“#right”).click(right);
 } // end init

As usual, naming conventions makes it easy to see what’s going on.

Don’t go chaining . . . okay, do it all you want
The move function isn’t really that radical. All it does is use the css()
method described in Book VII, Chapter 2 to alter the position of the element.
After all, position is just a CSS attribute, right? Well, it’s a little more complex
than that.

 The position of an element is actually stored in two attributes, top and
left.

Your first attempt at a move function would probably look like this:

 function move(){
 $(“#content”).css(“left”, “50px”);
 $(“#content”).css(“top”, “100px”);
 } // end move

While this approach certainly works, it has a subtle problem. It moves the
element in two separate steps. While most browsers are fast enough to avoid
making this an issue, jQuery supports a really neat feature called node chain-
ing that allows you to combine many jQuery steps into a single line.

Almost all jQuery methods return a jQuery object as a side effect. So, the line

 $(“#content”).text(“changed”);

not only changes the text of the content node but also makes a new node.
You can attach that node to a variable like this if you want:

 var newNode = $(“#content”).text(“changed”);

However, what most jQuery programmers do is simply attach new function-
ality onto the end of the previously defined node, like this:

 $(“#content”).text(“changed”).click(hiThere);

Changing Position with jQuery

48_9780470537558-bk07ch03.indd 78348_9780470537558-bk07ch03.indd 783 10/7/10 8:55 PM10/7/10 8:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

784

This new line takes the node created by $(“#content”) and changes its
text value. It then takes this new node (the one with changed text) and adds
a click event to it, calling the hiThere() function when the content ele-
ment is clicked. In this way, you build an ever-more complex node by chain-
ing nodes on top of each other.

These node chains can be hard to read, because they can result in a lot of
code on one physical line. JavaScript doesn’t care about carriage returns,
though, because it uses the semicolon to determine the end of a logical line.
You can change the complex chained line so that it fits on several lines of
the text editor like this:

 $(“#content”)
 .text(“changed”)
 .click(hiThere);

Note that only the last line has a semicolon, because it’s all one line of logic
even though it occurs on three lines in the editor.

Building the move() function with chaining
Object chaining makes it easy to build the move() function so that it shifts
the content’s left and top properties simultaneously:

 function move(){
 $(“#content”).css(“left”, “50px”)
 .css(“top”, “100px”);
 } // end move

This function uses the css() method to change the left property to 50px.
The resulting object is given a second css() method call to change the top
property to 100px. The top and left elements are changed at the same time
as far as the user is concerned.

Easing on down
The jQuery animation() method supports
one more option: easing. The term refers to
the relative speed of the animation through-
out its lifespan. If you watch the animations
on the animate.html page carefully, you
can see that the motion begins slowly, builds
speed, and slows again at the end. This pro-
vides a natural-feeling animation. By default,

jQuery animations use what’s called a swing
easing style (slow on the ends and fast in the
middle, like a child on a swing). If you want to
have a more consistent speed, you can specify
“linear” as the fourth parameter, and the ani-
mation works at a constant speed. You can
also install plugins for more advanced easing
techniques.

Changing Position with jQuery

48_9780470537558-bk07ch03.indd 78448_9780470537558-bk07ch03.indd 784 10/7/10 8:55 PM10/7/10 8:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 3

A
n

im
a

tin
g

 jQ
u

e
ry

785

Building time-based animation with animate()
Using the css method is a great way to move an element around on the
screen, but the motion is instantaneous. jQuery supports a powerful method
called animate() that allows you to change any DOM characteristics over
a specified span of time. The glide button on animate.html smoothly
moves the content div from (50, 100) to (400, 200) over 2 seconds:

 function glide(){
 //move to initial spot
 $(“#content”).css(“left”, “50px”)
 .css(“top”, “100px”);

 //slide to new spot
 $(“#content”).animate({
 “left”: “400px”,
 “top”: “200px”
 }, 2000);
 } // end glide

The function begins by moving the element immediately to its initial spot
with chained css() methods. It then uses the animate() method to con-
trol the animation. This method can have up to three parameters:

 ✦ A JSON object describing attributes to animate: The first parameter is
an object in JSON notation describing name/value attribute pairs. In this
example, I’m telling jQuery to change the left attribute from its cur-
rent value to 400px, and the top value to 200px. Any numeric value that
you can change through the DOM can be included in this JSON object.
Instead of a numerical value, you can use “hide,” “show,” or “toggle” to
specify an action. Review Book IV, Chapter 4 for more details on JSON
objects.

 ✦ A speed attribute: The speed parameter is defined in the same way
as the speed for fade and slide animations. You find three predefined
speeds: slow, medium, and fast. You can also indicate speed in millisec-
onds; for example, 2000 means two seconds.

 ✦ A callback function: This optional parameter describes a function to be
called when the animation is complete. The use of callback functions is
described earlier in this chapter in the section “Fading an element in
and out.”

Move a little bit: Relative motion
You can also use the animation mechanism to move an object relative to its
current position. The arrow buttons and their associated functions perform
this task:

Changing Position with jQuery

48_9780470537558-bk07ch03.indd 78548_9780470537558-bk07ch03.indd 785 10/7/10 8:55 PM10/7/10 8:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

786

 function left(){
 $(“#content”).animate({“left”: “-=10px”}, 100);
 } // end left

 function right(){
 $(“#content”).animate({“left”: “+=10px”}, 100);
 } // end left

These functions also use the animate() method, but you see a small dif-
ference in the position parameters. The += and –= modifiers indicate that I
want to add to or subtract from (respectively) the value rather than indicat-
ing an absolute position. Of course, you can add as many parameters to the
JSON object as you want, but these are a good start.

Note that because I’m moving a small amount (10 pixels), I want the motion
to be relatively quick. Each motion lasts 100 milliseconds, or 1⁄10 of a second.

Modifying Elements on the Fly
The jQuery library supports a third major way of modifying the page: the
ability to add and remove contents dynamically. This is a powerful way to
work with a page. The key to this feature is another of jQuery’s most capable
tools — its flexible selection engine. You can also use numerous attributes
to modify nodes. The changeContent.html page, shown in Figure 3-4,
demonstrates some of the power of these tools.

Figure 3-4:
The default
state of
change-
Content is a
little dull.

Of course, the buttons allow the user to make changes to the page dynami-
cally. Clicking the Add Text button adds more text to the content area, as
you can see in Figure 3-5.

 ✦ The clone button is interesting, because it allows you to make a copy
of an element and place it somewhere else in the document hierarchy.
Clicking the clone button a few times can give you a page like that
shown in Figure 3-6.

Modifying Elements on the Fly

48_9780470537558-bk07ch03.indd 78648_9780470537558-bk07ch03.indd 786 10/7/10 8:55 PM10/7/10 8:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 3

A
n

im
a

tin
g

 jQ
u

e
ry

787

 ✦ The wrap in div button lets you wrap an HTML element around
any existing element. The wrap in div button puts a div (with a red
border) around every cloned element. You can click this button multiple
times to add multiple wrappings to any element. Figure 3-7 shows what
happens after I wrap a few times.

Figure 3-5:
More text
can be
appended
inside any
content
area.

Figure 3-6:
I’ve made
several
clones of
the original
content.

Modifying Elements on the Fly

48_9780470537558-bk07ch03.indd 78748_9780470537558-bk07ch03.indd 787 10/7/10 8:55 PM10/7/10 8:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

788

Figure 3-7:
Now you
see a red-
bordered div
around all
the cloned
elements.

 ✦ The change alternate paragraphs button increases readability;
sometimes you want to be able to alternate styles of lists and tables.
jQuery has an easy way to select every other element in a group and
give it a style. The change alternate paragraphs button activates
some code that turns all odd-numbered paragraphs into white text with
a green background. Look at Figure 3-8 for a demonstration.

 ✦ The reset button resets all the changes you made with the other buttons.

The code for changeDocument.html seems complex, but it follows the
same general patterns you’ve seen in jQuery programming. As always, look
over the entire code first and then read how it breaks down:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=“content-type“ content=“text/xml;

charset=utf-8“ />

 <style type = “text/css“>
 #content {
 width: 300px;

Modifying Elements on the Fly

48_9780470537558-bk07ch03.indd 78848_9780470537558-bk07ch03.indd 788 10/7/10 8:55 PM10/7/10 8:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 3

A
n

im
a

tin
g

 jQ
u

e
ry

789

 background-color: yellow;
 left: 300px;
 top: 100px;
 padding-left: .5em;
 border: 0px none black;
 }

 div {
 border: 2px solid red;
 padding: 3px;
 }
 </style>

 <script type = “text/javascript“
 src = “jquery-1.4.2.min.js“></script>

 <script type = “text/javascript“>
 //<![CDATA[
 $(init);

 function init(){
 $(“#reset“).click(reset);
 $(“#addText“).click(addText);
 $(“#wrap“).click(wrap);
 $(“#clone“).click(clone);
 $(“#oddGreen“).click(oddGreen);
 } // end init

 function reset(){
 //remove all but the original content
 $(“p:gt(0)“).remove();
 $(“div:not(#content)“).remove();
 //reset the text of the original content
 $(“#content“).html(“<p>This is the original content</

p>“);
 } // end reset

 function addText(){
 $(“p:first“).append(“ ...and this was added later.“);
 } // end addContent

 function wrap(){
 $(“p:gt(0)“).wrap(“<div></div>“);
 } // end wrap

 function clone(){
 $(“p:first“).clone()
 .insertAfter(“p:last“)
 .css(“backgroundColor“, “lightblue“);
 } // end clone

 function oddGreen(){

Modifying Elements on the Fly

48_9780470537558-bk07ch03.indd 78948_9780470537558-bk07ch03.indd 789 10/7/10 8:55 PM10/7/10 8:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

790

 //turn alternate (odd numbered) paragraph elements
green

 $(“p:odd“).css(“backgroundColor“, “green“)
 .css(“color“, “white“);
 } // end oddGreen
 //]]>
 </script>
 <title>changeContent.html</title>
</head>
<body>
 <h1>Adding Content Demo</h1>
 <form action = ““>
 <fieldset>
 <button type = “button“
 id = “reset“>
 reset
 </button>

 <button type = “button“
 id = “addText“>
 add text
 </button>

 <button type = “button“
 id = “clone“>
 clone
 </button>

 <button type = “button“
 id = “wrap“>
 wrap in div
 </button>

 <button type = “button“
 id = “oddGreen“>
 change alternate paragraphs
 </button>
 </fieldset>
 </form>

 <div id = “content“>
 <p>
 This is the original content
 </p>
 </div>
</body>
</html>

Admittedly you see a lot of code here, but when you consider how much
functionality this page has, it really isn’t too bad. Look at it in smaller pieces,
and it all makes sense.

Modifying Elements on the Fly

48_9780470537558-bk07ch03.indd 79048_9780470537558-bk07ch03.indd 790 10/7/10 8:55 PM10/7/10 8:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 3

A
n

im
a

tin
g

 jQ
u

e
ry

791

Figure 3-8:
All odd-
numbered
paragraphs
have a new
style.

Building the basic page
As usual, begin by inspecting the HTML. The basic code for this page sets up
the playground:

 1. Create a form with buttons.

 This form will become the control panel. Add a button for each function
you want to add. Make sure that each button has an ID, but you don’t
need to specify an onclick function, because the init() function
takes care of that.

 2. Build a prototype content div.

 Build a div called content, and add a paragraph to the div.

 Be careful with your initial HTML structure. The manipulation and selection
tricks you experiment with in this chapter rely on a thorough understand-
ing of the beginning page structure. Be sure that you understand exactly
how the page is set up so that you understand how to manipulate it. If your
standard XHTML page (before any JavaScript/jQuery code is added) doesn’t
validate, it’s unlikely your code will work as expected.

Modifying Elements on the Fly

48_9780470537558-bk07ch03.indd 79148_9780470537558-bk07ch03.indd 791 10/7/10 8:55 PM10/7/10 8:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

792

Initializing the code
The initialization section is pretty straightforward. Set up an init() func-
tion, and use it to assign event handlers to all the buttons:

 $(init);

 function init(){
 $(“#reset”).click(reset);
 $(“#addText”).click(addText);
 $(“#wrap”).click(wrap);
 $(“#clone”).click(clone);
 $(“#oddGreen”).click(oddGreen);
 } // end init

Adding text
It’s pretty easy to add text to a component. The append() method attaches
text to the end of a jQuery node. Table 3-1 shows a number of other methods
for adding text to a node.

Table 3-1 Methods That Add Text to a Node

Method Description

append(text) Adds the text (or HTML) to the end of the selected
element(s)

prepend(text) Adds the content at the beginning of the selected
element(s)

insertAfter(text) Adds the text after the selected element (outside
the element)

insertBefore(text) Adds the text before the selected element
(outside the element)

More methods are available, but these are the ones I find most useful. Be
sure to check out the official documentation at http://docs.jquery.com
to see the other options.

 function addText(){
 $(“p:first”).append(“ ...and this was added later.”);
 } // end addContent

The append() method adds text to the end of the element, but inside the
element (rather than after the end of the element). In this example, the text

Modifying Elements on the Fly

48_9780470537558-bk07ch03.indd 79248_9780470537558-bk07ch03.indd 792 10/7/10 8:55 PM10/7/10 8:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 3

A
n

im
a

tin
g

 jQ
u

e
ry

793

will become part of the paragraph contained inside the content div. The
more interesting part of this code is the selector. It could read like this:

$(“p”).append(“ ...and this was added later.”);

That would add the text to the end of the paragraph. The default text has
only one paragraph, so that makes lots of sense. If there are more para-
graphs (and there will be), the p selector can select them all, adding the text
to all the paragraphs simultaneously. By specifying p:first, I’m using a
special filter to determine exactly which paragraph should be affected.

Many of the examples on this page use jQuery filters, so I describe them else-
where in the following sections. For now, note that p:first means the first
paragraph. Of course, you also see p:last and many more. Read on. . . .

Attack of the clones
You can clone (copy) anything you can identify as a jQuery node. This makes
a copy of the node without changing the original. The cloned node isn’t
immediately visible on the screen. You need to place it somewhere, usually
with an append(), prepend(), insertBefore(), or insertAfter()
method.

Take a look at the clone() function to see how it works:

 function clone(){
 $(“p:first”).clone()
 .insertAfter(“p:last”)
 .css(“backgroundColor”, “lightblue”);
 } // end clone

 1. Select the first paragraph.

 The first paragraph is the one I want to copy. (In the beginning, only one
exists, but that will change soon.)

 2. Use the clone() method to make a copy.

 Now you’ve made a copy, but it still isn’t visible. Use chaining to do
some interesting things to this copy.

 3. Add the new element to the page after the last paragraph.

 The p:last identifier is the last paragraph, so insertAfter
(“p:last”) means put the new paragraph after the last paragraph
available in the document.

Modifying Elements on the Fly

48_9780470537558-bk07ch03.indd 79348_9780470537558-bk07ch03.indd 793 10/7/10 8:55 PM10/7/10 8:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

794

 4. Change the CSS.

 Just for grins, chain the css() method onto the new element and
change the background color to light blue. This just reinforces the fact
that you can continue adding commands to a node through chaining.

 Note that the paragraphs are inside content. Of course, I could have
put them elsewhere with careful use of selectors, but I put them where I
want them.

It’s hard to keep track of changes to the page because a standard view
source command shows you the original source code, not the code that’s
been changed by your jQuery magic. jQuery changes the HTML of your page
in memory but doesn’t change the text file that contains your page. If your
page is not doing what you expect, you need to look at the script-generated
source code to see what’s really going on.

Firefox plugins are the key to headache-free debugging. The Web developer
toolbar has a wonderful feature called View Generated Source (available on
the View Source menu) that shows the page source as it currently exists in
memory. If you prefer the firebug extension, its Inspect mode also inspects the
page as it currently is displayed. Both tools are described in Book I, Chapter 3.

Note that the content of the first paragraph is cloned with its current
content and style information copied to the new element. If you clone the
paragraph and then add content to it and clone it again, the first clone will
have the default text and the second clone will contain the additional text. If
you modify the CSS style of an element and then clone it, the clone will also
inherit any of the style characteristics of the original node.

It’s a wrap
Sometimes you want to embed an object inside another element (or two). For
example, the wrap button on the changeContent page surrounds each cloned
paragraph with a <div></div> pair. I’ve defined the div tag in my CSS to
include a red border. Repeatedly clicking the wrap button surrounds all cloned
paragraphs with red borders. This would be a very tedious effect to achieve in
ordinary DOM and JavaScript, but jQuery makes it pretty easy to do:

 function wrap(){
 $(“p:gt(0)”).wrap(“<div></div>”);
 } // end wrap

The wrap method is pretty easy to understand. If you feed it any container
tag, it wraps that container around the selected node. You can also use mul-
tiple elements, so if you wanted to enclose a paragraph in a single item list,
you could do something like this:

 $(“p”).wrap(“”);

Modifying Elements on the Fly

48_9780470537558-bk07ch03.indd 79448_9780470537558-bk07ch03.indd 794 10/7/10 8:55 PM10/7/10 8:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 3

A
n

im
a

tin
g

 jQ
u

e
ry

795

The resulting code would surround each paragraph with an unordered list
and list item.

Returning to the wrap function, I’ve decided not to wrap every paragraph
with a div, just the ones that have been cloned. (Mainly I’m doing this so
that I can show you some other cool selection filters.) The p:gt(0) selector
means to select all paragraphs with an index greater than 0. In other words,
ignore the first paragraph, but apply the following methods to all other para-
graphs. You also find these filters:

 ✦ Less-than (:lt) isolates elements before a certain index.

 ✦ Equals (:eq) isolates an element with a certain index.

Alternating styles
It’s a common effect to alternate background colors on long lists or tables
of data, but this can be a tedious effect to achieve in ordinary CSS and
JavaScript. Not surprisingly, jQuery selectors make this a pretty easy job:

 function oddGreen(){
 //turn alternate (odd numbered) paragraph elements

green
 $(“p:odd”).css(“backgroundColor”, “green”)
 .css(“color”, “white”);
 } // end oddGreen

The :odd selector only chooses elements with an odd index and returns a
jQuery node that can be further manipulated with chaining. Of course, you
also see an :even selector for handling the even-numbered nodes. The rest
of this code is simply CSS styling.

Resetting the page
You need to be able to restore the page to its pristine state. A quick jQuery
function can easily do the trick:

 function reset(){
 //remove all but the original content
 $(“p:gt(0)”).remove();
 $(“div:not(#content)”).remove();
 //reset the text of the original content
 $(“#content”).html(“<p>This is the original content</

p>”);
 } // end reset

This function reviews many of the jQuery and selection tricks shown in this
chapter:

Modifying Elements on the Fly

48_9780470537558-bk07ch03.indd 79548_9780470537558-bk07ch03.indd 795 10/7/10 8:55 PM10/7/10 8:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

796 Modifying Elements on the Fly

 1. Remove all but the first paragraph.

 Any paragraph with an index greater than 0 is a clone, so it needs to go
away. The remove() method removes all jQuery nodes associated with
the current selector.

 2. Remove all divs but the original content.

 I could have used the :gt selector again, but instead I use another inter-
esting selector — :not. This removes every div that isn’t the primary
content div. This removes all divs added through the wrap function.

 3. Reset the original content div to its default text.

 Set the default text back to its original status so that the page is reset.

 All I really need here is the last line of code. Changing the HTML of the
content div replaces the current contents with whatever is included, so the
first two lines aren’t entirely necessary in this particular context. Still, it’s
useful to know how to remove elements when you need to do so.

More fun with selectors and filters
The jQuery selectors and filters are really fun and powerful. Table 3-2
describes a few more filters and indicates how they might be used.

Note that this is a representative list. Be sure to check out the official docu-
mentation at http://docs.jquery.com for a more complete list of filters.

Table 3-2 Selected jQuery filters

Filter Description

:header Any header tag (h1, h2, h3).

:animated Any element that is currently being animated.

:contains(text) Any element that contains the indicated text.

:empty The element is empty.

:parent This element contains some other element.

:attribute=value The element has an attribute with the specified value.

48_9780470537558-bk07ch03.indd 79648_9780470537558-bk07ch03.indd 796 10/7/10 8:55 PM10/7/10 8:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Using the jQuery
User Interface Toolkit

In This Chapter
✓ Exploring the jQuery UI

✓ Installing the UI and templates

✓ Adding datepickers, dialog boxes, and icons

✓ Dragging and dropping

✓ Working with scroll bars

✓ Building a sorting mechanism

✓ Creating an accordion page

✓ Building a tab-based interface

The jQuery library is an incredible tool for simplifying JavaScript pro-
gramming. It’s so popular and powerful that developers began adding

new features to make it even more useful. Among the most important of
these is a framework called jQuery UI (User Interface), sometimes also
called the UI toolkit. That’s what this chapter’s all about.

What the jQuery User Interface Brings to the Table
This tool adds some very welcome features to Web development, includ-
ing new visual elements (widgets), a uniform icon set, and a mechanism for
easily generating attractive CSS styles:

 ✦ New user interface elements: As a modern user interface tool, HTML is
missing some important tools. Most modern visual languages include
built-in support for such devices as scroll bars, dedicated datepickers,
and multiple tab tools. jQuery UI adds these features and more.

 ✦ Advanced user interaction: The jQuery widgets allow new and exciting
ways for the user to interact with your page. With the UI toolkit, you can
easily let users make selections by dragging and dropping elements, and
expand and contract parts of the page.

 ✦ Flexible theme templates: jQuery UI includes a template mechanism
that controls the visual look and feel of your elements. You can choose
from dozens of prebuilt themes or use a tool to build your own particular

49_9780470537558-bk07ch04.indd 79749_9780470537558-bk07ch04.indd 797 10/7/10 8:56 PM10/7/10 8:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

798

look. You can reuse this template library to manage the look of your
other page elements, too (not just the ones defined by the library).

 ✦ A complete icon library: The jQuery UI has a library of icons for use in
your Web development. It has arrows, buttons, and plenty of other doo-
dads that can be easily changed to fit your template.

 ✦ A very clean, modern look: It’s very easy to build forward-looking
visual designs with jQuery UI. It supports rounded corners and plenty of
special visual effects.

 ✦ The power of jQuery: Because jQuery UI is an extension of jQuery, it
adds on to the incredible features of the jQuery language.

 ✦ Open-source values: The jQuery UI (like jQuery itself) is an open-source
project with a very active community. This means the library is free to
use and can be modified to suit your needs.

The jQuery toolkit is pretty exciting. The best way to get an overview of it is
to see an example online. The jQuery Web site (http://jqueryui.com) is
a great place to get the latest information about jQuery.

It’s a theme park
One of the coolest tools in jQuery UI is a concept called a theme, which is
simply a visual rule-set. The theme is essentially a complex CSS document
designed to be used with the UI library.

Using the themeRoller to get an overview of jQuery
The jQuery Web site also features a marvelous tool called the themeRoller.
The themeRoller allows you to select and modify themes, so it’s a great
place to preview how themes work, as well as see the key features of the UI
extension. Figure 4-1 shows this Web page, which demonstrates many of the
great features of jQuery UI.

Before you use themeRoller to change themes, use it to get acquainted with
the UI elements. Several useful tools are visible in Figure 4-1:

 ✦ Accordion: The upper-middle segment of the page has three segments
(section 1, section 2, and section 3). By clicking a section heading, the
user can expand that section and collapse the others.

 ✦ Slider: Sliders (or scroll bars) are an essential user interface element.
They allow the user to choose a numeric value with an easy visual tool.
jQuery sliders can be adjusted in many ways to allow easy and error-free
input.

What the jQuery User Interface Brings to the Table

49_9780470537558-bk07ch04.indd 79849_9780470537558-bk07ch04.indd 798 10/7/10 8:56 PM10/7/10 8:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 4

U
sin

g
 th

e
 jQ

u
e

ry
U

se
r In

te
rfa

c
e

T

o
o

lk
it

799

Figure 4-1:
The
themeRoller
lets you
review
many jQuery
UI elements
and modify
their look.

 ✦ Datepicker: It’s very difficult to ensure that users enter dates properly.
The datepicker control automatically pops up a calendar into the page
and lets the user manipulate the calendar to pick a date. It’s a phenom-
enally useful tool.

 ✦ Tabs: It’s common to have a mechanism for hiding and showing parts
of your page. The accordion technique is one way to do so, but tabs are
another very popular technique. This mechanism allows you to build a
very powerful multitab document without much work.

Scrolling down the page, you see even more interesting tools. Figure 4-2
shows some of these widgets in action.

These widgets demonstrate even more of the power of the jQuery UI library:

 ✦ Progress bar: It’s always best to design your code so that little delay
exists, but if part of your program is taking some time, a progress bar is
a great reminder that something is happening.

 ✦ Dialog: The open dialog button pops up what appears to be a dialog
box. It acts much like the JavaScript alert, but it’s much nicer looking,
and it has features that make it much more advanced. In Figure 4-2, the
dialog has a clever title: Dialog Title.

What the jQuery User Interface Brings to the Table

49_9780470537558-bk07ch04.indd 79949_9780470537558-bk07ch04.indd 799 10/7/10 8:56 PM10/7/10 8:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

800

 ✦ Formatting tools: The jQuery UI includes special tools for setting apart
certain parts of your page as warnings, as highlighted text, or with
added shadows and transparency. If you look carefully at Figure 4-2,
you’ll see several examples of special formatting, including the red alert
box, drop shadows, and the UI-highlight style.

 ✦ Icons: jQuery UI ships with a large collection of icons that you can use on
your page. Hover over each of the icons on the themeRoller to see a descrip-
tion of the icon. These can be easily used to allow various user interactions.

This is just a quick preview of the visual elements. Read more about how to
implement the various elements in Chapter 5 of this minibook after you under-
stand the basics of how to install and work with jQuery UI in this chapter.

Look at the left column on the themeRoller page. If you click the gallery
tab (yep, it’s using a jQuery UI tab interface), you can see a list of prebuilt
themes. Figure 4-3 shows the themeRoller page with an entirely different
theme in place.

Figure 4-2:
Even more
exciting
widgets.

What the jQuery User Interface Brings to the Table

49_9780470537558-bk07ch04.indd 80049_9780470537558-bk07ch04.indd 800 10/7/10 8:56 PM10/7/10 8:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 4

U
sin

g
 th

e
 jQ

u
e

ry
U

se
r In

te
rfa

c
e

T

o
o

lk
it

801

Figure 4-3:
Now
themeRoller
is using
the Le Frog
theme.

The built-in themes are pretty impressive, but of course, you can make your
own. While you’re always free to edit the CSS manually, the whole point of
the themeRoller application is to make this process easier.

If you go back to the Roll Your Own tab, you can see an accordion selec-
tion that you can use to pick various theme options. You can change fonts,
add rounded corners, pick various color schemes, and much more. You can
mess around with these options all you want and create your own visual
style. You can then save that theme and use it in your own projects.

The themes and widgets are obvious features of the jQuery user interface
library, but they aren’t the only features. In addition to these more visible
tools, jQuery UI adds a number of new behaviors to jQuery nodes. These
new behaviors (drag and drop, resize, and more) are used to add functional-
ity to a Web page, which is quite difficult to achieve in more traditional
programming.

What the jQuery User Interface Brings to the Table

49_9780470537558-bk07ch04.indd 80149_9780470537558-bk07ch04.indd 801 10/7/10 8:56 PM10/7/10 8:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

802

Wanna drag? Making components draggable
The basic idea of this program is completely consistent with the jQuery
concepts described in Chapters 2 and 3 of this minibook. The page has very
simple HTML code. An initialization function creates a special jQuery node
and gives it functionality. That’s all there is to it.

Your first building example is a simple application that allows the user to
pick up a page element and move it with the mouse. While you do this with
JavaScript and DOM in Book IV, Chapter 7, you’ll find it’s quite easy to get
the same effect with jQuery UI. Figure 4-4 shows this page in action.

Figure 4-4:
The user
can simply
drag the box
anywhere
on the page.

This example is a good starting place, because it’s pretty easy. Often, the
hardest part of jQuery UI applications is attaching to the library. After that’s
done (and it’s not that hard) the rest of the programming is ridiculously
easy. Take a look at the code, and you can see what I’m talking about:

themeRoller is a great example for a number of
reasons. It offers a pretty good overview of the
jQuery UI library, but it’s also a great example
of where the Web is going. It’s not really a Web
page as much as an application that happens
to be written in Web technologies. Notice that
the functionality of the page (the ability to
change styles dynamically) uses many jQuery
and jQuery UI tricks: tabs, accordions, dialog

boxes, and so on. This kind of programming is
almost certainly the direction Web develop-
ment is heading, and may indeed be the pri-
mary form of application in the future. Certainly
it appears that applications using this style of
user interface and AJAX for data communica-
tion and storage are going to be important for
some time to come.

The themeRoller example

What the jQuery User Interface Brings to the Table

49_9780470537558-bk07ch04.indd 80249_9780470537558-bk07ch04.indd 802 10/7/10 8:56 PM10/7/10 8:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 4

U
sin

g
 th

e
 jQ

u
e

ry
U

se
r In

te
rfa

c
e

T

o
o

lk
it

803

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=”content-type” content=”text/xml;

charset=utf-8” />
 <style type = ”text/css”>
 #dragMe {
 width: 100px;
 height: 100px;
 border: 1px solid blue;
 text-align: center;
 }

 </style>
 <script type = “text/javascript”
 src = “js/jquery-1.4.2.min.js”></script>
 <script type = “text/javascript”
 src = “js/jquery-ui-1.8.1.custom.min.js”></script>
 <script type = “text/javascript”>
 $(init);
 function init(){
 $(“#dragMe”).draggable();
 }
 </script>
 <title>drag.html</title>
</head>

<body>
 <h1>Drag Demo</h1>
 <div id = “dragMe”>
 Drag me
 </div>

</body>
</html>

Downloading the library

Writing jQuery UI code isn’t difficult, but getting the right parts of the library
can be a bit confusing. The jQuery UI library is much larger than the stan-
dard jQuery package, so you may not want to include the entire thing if you
don’t need it.

 Previous versions of jQuery UI allowed you to download the entire package
but stored each of the various elements in a separate JavaScript file. It was
common to have a half-dozen different script tags active just to get the
various elements in place. Worse, some dependency issues existed, so you
needed to make sure that you had certain packages installed before you used
other packages. This made a simple library quite complex to actually use.

What the jQuery User Interface Brings to the Table

49_9780470537558-bk07ch04.indd 80349_9780470537558-bk07ch04.indd 803 10/7/10 8:56 PM10/7/10 8:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

804

Fortunately, the latest versions of the jQuery UI make this process quite a bit
simpler:

 1. Pick (or create) your theme.

 Use the themeRoller site to pick a starting place from the template
library. You can then customize your theme exactly to make whatever
you want (changing colors, fonts, and other elements).

 2. Download the theme.

 The themeRoller has a download button. Click this when you’re ready to
download your theme.

 3. Pick the elements you want.

 When you’re first starting on a project, you’ll probably pick all the ele-
ments. If you find that the page is loading too slowly, you might build a
smaller version that contains only those elements you need. For now,
pick everything.

 4. Download the file.

 After you’ve chosen the elements you want, you can download them in a
zip file.

 5. Install the contents of the zip file to your working directory.

 The zip file contains a number of files and directories. Place the entire
contents of the css and js directories in the directory where your Web
pages will be (often the public_html or htdocs directory). You do
not need to copy the development-bundle directory or the index.html
page.

 6. If you install multiple themes, copy only the theme information from
additional themes.

 All themes use the same JavaScript. Only the CSS (and related image
files) changes. If you want to have multiple themes in your project,
simply copy the CSS contents. Each theme will be a different subdirec-
tory of the main CSS directory.

 7. Link to the CSS files.

 Use the standard link technique to link to the CSS files created by
jQuery UI. You can also link to your own CSS files or use internal CSS
in addition to the custom CSS. Be sure that you get the path right.
Normally, the path looks something like css/themeName/jquery-ui-
1.8.1.custom.css.

 8. Link to the JavaScript files.

 The jQuery UI toolkit also installs two JavaScript files: the standard
jQuery library and the jQuery UI library. By default, both of these files
are installed in the js directory.

What the jQuery User Interface Brings to the Table

49_9780470537558-bk07ch04.indd 80449_9780470537558-bk07ch04.indd 804 10/7/10 8:56 PM10/7/10 8:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 4

U
sin

g
 th

e
 jQ

u
e

ry
U

se
r In

te
rfa

c
e

T

o
o

lk
it

805

If something isn’t working right, check your file paths again. Almost always,
when the jQuery UI stuff isn’t working right, it’s because you haven’t linked
to all the right files. Also, note that the CSS files created by jQuery UI also
include images. Make sure that your theme has an associated images direc-
tory, or your project may not work correctly.

Writing the program
Here’s how you go about putting the program together:

 1. Create a basic HTML document.

 The standard document doesn’t have to be anything special. I created
one div with the ID dragMe. That’s the div I want to make draggable
(but of course you can apply dragging functionality to anything you can
select with jQuery).

 2. Add the standard jQuery library.

 The first script tag imports the standard jQuery library. The UI library
requires jQuery to be loaded first.

 3. Add a link to the jQuery UI library.

 A second script tag imports the jQuery UI library. (See the follow-
ing section on downloading and installing jQuery for details on how to
obtain this library.)

 4. Create an initialization function.

 Use the standard jQuery techniques to build an initialization function for
your page (as usual, I call mine init()).

 5. Build a draggable node.

 Use standard jQuery selection techniques to isolate the element(s) you
want to make draggable. Use the draggable() method to make the ele-
ment draggable.

 6. Test your application.

 Believe it or not, that’s all there is to it. As long as everything’s set up
properly, your element will be draggable! The user can drag it with the
mouse and place it anywhere on the screen.

Resizing on a Theme
The next example demonstrates two important ideas in the jQuery UI package:

 ✦ It shows an element that is resizable. The user can drag on the bottom
or right border to change the size of the element. Making an element
resizable is very similar to making it draggable.

Resizing on a Theme

49_9780470537558-bk07ch04.indd 80549_9780470537558-bk07ch04.indd 805 10/7/10 8:56 PM10/7/10 8:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

806

 ✦ It shows the use of a theme. Take a look at Figure 4-5 to see what’s
going on.

You can see from Figure 4-5 that the page has a definite visual style. The ele-
ments have distinctive fonts and backgrounds, and the headers are in a par-
ticular visual style. While there’s nothing earth-shattering about this (after
all, it’s just CSS), the exciting thing is that these styles are defined by the
theme. The theme can easily be changed to another theme (created by hand
or via themeRoller), and the visual look of all these elements will reflect the
new theme.

 Themes provide a further level of abstraction to your Web sites that make
changing the overall visual style much easier.

Figure 4-6 shows the page after the resize me element has changed sizes,
and you can see that the rest of the page reformats itself to fit the newly
resized element.

Figure 4-5:
The size of
this lovely
element can
be changed
by the user.

Resizing on a Theme

49_9780470537558-bk07ch04.indd 80649_9780470537558-bk07ch04.indd 806 10/7/10 8:56 PM10/7/10 8:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 4

U
sin

g
 th

e
 jQ

u
e

ry
U

se
r In

te
rfa

c
e

T

o
o

lk
it

807

Figure 4-6:
When the
element
is resized,
the rest of
the page
adjusts.

The following code reveals that most of the interesting stuff is really CSS
coding, and the resizing is really just more jQuery UI magic:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=”content-type” content=”text/xml;

charset=utf-8” />
 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”css/ui-lightness/jquery-ui-1.8.1.custom.css”

/>

 <style type = ”text/css”>
 h1 {
 text-align: center;
 }

Resizing on a Theme

49_9780470537558-bk07ch04.indd 80749_9780470537558-bk07ch04.indd 807 10/7/10 8:56 PM10/7/10 8:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

808

 #resizeMe {
 width: 300px;
 height: 300px;
 text-align: center;
 }

 #sample {
 width: 200px;
 height: 200px;
 margin: 1em;
 }

 </style>
 <script type = ”text/javascript”
 src = ”js/jquery-1.4.2.min.js”></script>
 <script type = ”text/javascript”
 src = ”js/jquery-ui-1.8.1.custom.min.js”></script>
 <script type = ”text/javascript”>
 //<![CDATA[
 $(init);
 function init(){
 $(“#resizeMe”).resizable();
 themify();
 } // end init

 function themify(){
 //add theme-based CSS to the elements
 $(“div”).addClass(“ui-widget”)
 .addClass(“ui-widget-content”)
 .addClass(“ui-corner-all”);
 $(“:header”).addClass(“ui-widget-header”)
 .addClass(“ui-corner-all”);
 $(“#resizeMe”).append(‘<span class = “ui-icon ui-icon-

star”>’);

 }
 //]]>
 </script>
 <title>resize.html</title>
</head>

<body>
 <h1>Resize Demo</h1>
 <div id = “resizeMe”>
 <h2>Resize me</h2>
 <p>
 Drag the right or bottom to resize.
 </p>

 </div>

 <div id = “sample”>
 <h2>Sample Widget</h2>

Resizing on a Theme

49_9780470537558-bk07ch04.indd 80849_9780470537558-bk07ch04.indd 808 10/7/10 8:56 PM10/7/10 8:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 4

U
sin

g
 th

e
 jQ

u
e

ry
U

se
r In

te
rfa

c
e

T

o
o

lk
it

809

 <p>
 This is made to look like a widget
 with the theme css code.
 </p>

 </div>

</body>
</html>

Examining the HTML and standard CSS
As usual, the HTML is the foundation of the entire page. It’s very clean as
usual, and it shows the general structure of the page. The HTML consists of
only three primary elements: a heading and two divs. Each div contains its
own level-two heading and a paragraph. The divs are given IDs to make them
easier to style.

I also included a basic CSS section to handle the general layout of the page. I
wanted the widgets to have specified beginning sizes, so I used ordinary CSS
to get this effect.

Importing the files
jQuery applications require importation of JavaScript code libraries. In this
application (and most jQuery UI applications), I import three files:

 ✦ The main jQuery library: This file is the essential jQuery base library.
It is imported as described in Chapter 2 of this minibook, as an ordinary
JavaScript file.

 ✦ The jQuery UI library: This file is also a standard JavaScript library. Earlier
in this chapter, I describe how to obtain a custom version of this file.

 ✦ The theme CSS file: When you create a theme with themeRoller, you are
provided with a CSS file. This file is your theme. Because this is a CSS file
rather than JavaScript code, use the link tag to attach it to your page.

Not all jQuery UI examples require a theme, but most do. As you see in the
following example, themes provide some other really great effects too, so it’s
worth it to include a theme CSS file whenever you want to use jQuery UI.

Making a resizable element
Surprisingly, the easiest part of the project is making the resizable ele-
ment have the resizable behavior. It’s a pretty standard jQuery UI trick:

Resizing on a Theme

49_9780470537558-bk07ch04.indd 80949_9780470537558-bk07ch04.indd 809 10/7/10 8:56 PM10/7/10 8:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

810

 $(init);
 function init(){
 $(“#resizeMe”).resizable();
 themify();
 } // end init

 1. Begin with an initialization function.

 Like all good jQuery code, this example begins with standard initialization.

 2. Make an element resizable.

 Identify the resizeMe div as a jQuery node, and use the resizable()
method to make it resizable. That’s all there is to it.

 3. Call a second function to add theming to the elements.

 While the resizable method doesn’t require use of jQuery themes, the
themes do improve the look of the element.

Adding themes to your elements
The jQuery theme tool makes it quite easy to decorate your elements
through CSS. The great thing about jQuery themes is that they are seman-
tic, that is, you specify the general purpose of the element and then let the
theme apply the appropriate specific CSS. You can use the themeRoller
application to easily create new themes or modify existing ones. In this way,
you can create a very sophisticated look and feel for your site and write very
little CSS on your own. It’s a very powerful mechanism.

Many of the jQuery interface elements (such as the accordion and tab tools
described elsewhere in this chapter) automatically use the current CSS
theme. Of course you can also apply them to any of your own elements to
get a consistent look.

 Themes are simply CSS classes. To apply a CSS theme to an element, you can
just add a special class to the object.

For example, you can make a paragraph look like the current definition of
the ui-widget by adding this code to it:

<div class = “ui-widget”>
My div now looks like a widget
</div>

Of course, adding classes into the HTML violates one of the principles of
semantic design (that is, separating the content from the layout), so it’s
better (and more efficient) to do the work in JavaScript with jQuery:

 function themify(){

Resizing on a Theme

49_9780470537558-bk07ch04.indd 81049_9780470537558-bk07ch04.indd 810 10/7/10 8:56 PM10/7/10 8:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 4

U
sin

g
 th

e
 jQ

u
e

ry
U

se
r In

te
rfa

c
e

T

o
o

lk
it

811

 //add theme-based CSS to the elements
 $(“div”).addClass(“ui-widget”)
 .addClass(“ui-widget-content”)
 .addClass(“ui-corner-all”);
 $(“:header”).addClass(“ui-widget-header”)
 .addClass(“ui-corner-all”);
 $(“#resizeMe”)
 .append(‘</

span>’);
 }

The themify function adds all the themes to the elements on my page,
applying the pretty jQuery theme to it. I use jQuery tricks to simplify the
process:

 1. Identify all divs with jQuery.

 I want all the divs on my page to be styled like widgets, so I use jQuery
to identify all div elements.

 2. Add the ui-widget class to all divs.

 This class is defined in the theme. All jQuery themes have this class
defined, but the specifics (colors, font sizes, and so on) vary by theme.
In this way, you can swap out a theme to change the appearance, and
the code still works. The ui-widget class defines an element as a
widget.

 3. Add ui-widget-content as well.

 The divs need to have two classes attached, so I use chaining to specify
that divs should also be members of the ui-widget-content class.
This class indicates that the contents of the widget (and not just the
class itself) should be styled.

 4. Specify rounded corners.

 Rounded corners have become a standard of the Web 2.0 visual design.
This effect is extremely easy to achieve with jQuery — just add the ui-
corner-all class to any element you want to have rounded corners.

 Rounded corners use CSS3, which is not yet supported by all browsers.
Your page will not show rounded corners in most versions of IE, but the
page will still work fine otherwise.

 5. Make all headlines conform to the widget-header style.

 The jQuery themes include a nice headline style. You can easily make
all heading tags (h1 to h6) follow this theme. Use the :header filter to
identify all headings, and apply the ui-widget-header and ui-
corner-all classes to these headers.

The jQuery UI package supports a number of interesting classes, which are
described in Table 4-1.

Resizing on a Theme

49_9780470537558-bk07ch04.indd 81149_9780470537558-bk07ch04.indd 811 10/7/10 8:56 PM10/7/10 8:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

812

Table 4-1 CSS Classes Defined by jQuery UI

Class Used On Description

ui-widget Outer container of
widget

Makes element look like a
widget.

ui-widget-
header

Heading element Applies distinctive heading
appearance.

ui-widget-
content

Widget Applies widget content style to
element and children.

ui-state-
default

Clickable elements Displays standard (unclicked)
state.

ui-state-
hover

Clickable elements Displays hover state.

ui-state-
focus

Clickable elements Displays focus state when ele-
ment has keyboard focus.

ui-state-
active

Clickable elements Displays active state when
mouse is clicked on element.

ui-state-
highlight

Any widget or element Specifies that an element is
currently highlighted.

ui-state-
error

Any widget or element Specifies that an element
contains an error or warning
message.

ui-state-
error text

Text element Allows error highlighting with-
out changing other elements
(mainly used in form validation).

ui-state-
disabled

Any widget or element Demonstrates that a widget is
currently disabled.

ui-corner-
all,
ui-corner-
tl (etc)

Any widget or element Adds current corner size to
an element. Specify specific
corners with tl, tr, bl, br, top,
bottom, left, right.

ui-widget-
shadow

Any widget Applies shadow effect to a
widget.

A few other classes are defined in UI themes, but these are the most com-
monly used. Refer to the current jQuery UI documentation for more details.

Adding an icon
Note the small start that appears inside the resizeMe element in Figure
4-6. This element is an example of a jQuery UI icon. All jQuery themes sup-
port a standard set of icons, which are small (16px square) images. The icon

Resizing on a Theme

49_9780470537558-bk07ch04.indd 81249_9780470537558-bk07ch04.indd 812 10/7/10 8:56 PM10/7/10 8:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 4

U
sin

g
 th

e
 jQ

u
e

ry
U

se
r In

te
rfa

c
e

T

o
o

lk
it

813

set includes standard icons for arrows as well as images commonly used in
menus and toolbars (save and load, new file, and so on). Some jQuery UI ele-
ments use icons automatically, but you can also add them directly. To use
an icon in your programs, follow these steps:

 1. Include a jQuery UI theme.

 The icons are part of the theme package. Include the CSS style sheet that
corresponds with the theme (as you’ve already done in this example).

 2. Be sure that the images are accessible.

 When you download a theme package, it includes a directory of images.
The images included in this directory are used to create custom back-
grounds as well as icons. The CSS file expects a directory called images
to be in the same directory as the CSS. This directory should contain
several images that begin with ui-icons. These images contain all the
necessary icons. If the icon image files are not available, the icons will
not display. (Of course, you can edit these images in your graphics tool
to customize them if you want.)

 3. Create a span where you want the icon to appear.

 Place an empty span element wherever you want the icon to appear
in the HTML. You can place the span directly in the HTML if you want,
or you can add it through jQuery. I prefer to add UI elements through
jQuery to keep the HTML as pristine as possible.

 4. Attach the ui-icon class to the span.

 This tells jQuery to treat the span as an icon. The contents of the span
will be hidden, and the span will be resized to hold a 16-pixel square
icon image.

 5. Attach a second class to identify the specific icon.

 Look at the themeRoller page to see the available icons. When you hover
over an icon on this page, you can see the class name associated with
the icon.

You can add the code directly in your HTML like this:

<p id = “myPara”>
 This is my text

</p>

Or, you can use jQuery to add the appropriate code to your element:

$(“#myPara”).append(‘
’);

Resizing on a Theme

49_9780470537558-bk07ch04.indd 81349_9780470537558-bk07ch04.indd 813 10/7/10 8:56 PM10/7/10 8:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

814

Dragging, Dropping, and Calling Back
JQuery elements look good, but they also have interesting functionality.
Most jQuery UI objects have the ability to respond to specialized events. As
an example, look over the dragDrop.html page shown in Figure 4-7.

When you drop an element onto the target, the color and content of the
target change, as shown in Figure 4-8.

Figure 4-7:
The page
has a group
of draggable
elements
and a target.

Figure 4-8:
The target
knows when
something
has been
dropped
onto it.

Dragging, Dropping, and Calling Back

49_9780470537558-bk07ch04.indd 81449_9780470537558-bk07ch04.indd 814 10/7/10 8:56 PM10/7/10 8:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 4

U
sin

g
 th

e
 jQ

u
e

ry
U

se
r In

te
rfa

c
e

T

o
o

lk
it

815

Another interesting aspect of this program is the inclusion of several drag-
gable elements. This program demonstrates how jQuery simplifies working
with a number of elements.

Take a look at the entire program before you see the smaller segments:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=”content-type” content=”text/xml;

charset=utf-8” />
 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”css/ui-lightness/jquery-ui-1.8.1.custom.css” />
 <style type = ”text/css”>
 .dragMe {
 width: 100px;
 height: 100px;
 border: 1px solid blue;
 text-align: center;
 background-color: white;
 position: absolute;
 z-index: 100;
 }
 #target {
 width: 200px;
 height: 200px;
 border: 1px solid red;
 text-align: center;
 position: absolute;
 left: 300px;
 top: 100px;
 z-index: 0;
 }
 </style>
 <script type = ”text/javascript”
 src = ”js/jquery-1.4.2.min.js”></script>
 <script type = ”text/javascript”
 src = ”js/jquery-ui-1.8.1.custom.min.js”></script>
 <script type = ”text/javascript”>
 $(init);

 function init(){
 // make some clones of dragMe
 cloneDragMe();

 //make all drag me elements draggable
 $(”.dragMe”).draggable();

Dragging, Dropping, and Calling Back

49_9780470537558-bk07ch04.indd 81549_9780470537558-bk07ch04.indd 815 10/7/10 8:56 PM10/7/10 8:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

816

 //set target as droppable
 $(”#target”).droppable();

 //bind events to target
 $(”#target”).bind(”drop”, changeTarget);
 $(”#target”).bind(”dropout”, resetTarget);

 } // end init

 function cloneDragMe(){
 for (i = 1; i <=4; i++){
 zValue = (101 + i) + ””;
 yPos = 100 + (i * 20) + ”px”;

 $(”div:first”).clone()
 .insertAfter(”div:first”)
 .css(”top”, yPos)
 .css(”zIndex”, zValue)
 .append(” #” + i);
 } // end for loop
 } // end cloneDragMe

 function changeTarget(event, ui){
 $(”#target”).addClass(”ui-state-highlight”)
 .html(”Dropped ”)
 .append(ui.draggable.text());
 } // end changeTarget

 function resetTarget(event, ui){
 $(”#target”).removeClass(”ui-state-highlight”)
 .html(”Drop on me”);
 } // end reset

 </script>
 <title>dragDrop.html</title>
</head>

<body>
 <h1>Drag and Drop Demo</h1>
 <div class = ”dragMe”>
 Drag me
 </div>
 <div id = ”target”>
 Drop on me
 </div>
</body>
</html>

Building the basic page
As typical with jQuery, the HTML code is simple. It’s very striking that you
only see a single dragMe element. It turns out to be simpler to build a single
element in HTML and use jQuery and JavaScript to make as many copies as

Dragging, Dropping, and Calling Back

49_9780470537558-bk07ch04.indd 81649_9780470537558-bk07ch04.indd 816 10/7/10 8:56 PM10/7/10 8:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 4

U
sin

g
 th

e
 jQ

u
e

ry
U

se
r In

te
rfa

c
e

T

o
o

lk
it

817

you need. You also see a single target element. I added basic CSS to make
the element easy to see (borders) and set them as absolute positioned so
that I could control the initial position.

Note that I attached an ID to target (because there will be a single target
on the page) and made dragMe a class (because I want to be able to have
several draggable elements on the page).

Initializing the page
The initialization is a bit more elaborate than some of the earlier examples in
this chapter, but it still isn’t too difficult to follow. The main addition is the
ability to respond to some specialty events:

 $(init);

 function init(){
 // make some clones of dragMe
 cloneDragMe();

 //make all drag me elements draggable
 $(“.dragMe”).draggable();

 //set target as droppable
 $(“#target”).droppable();

 //bind events to target
 $(“#target”).bind(“drop”, changeTarget);
 $(“#target”).bind(“dropout”, resetTarget);

 } // end init

The steps here aren’t hard to follow:

 1. Make copies of the dragme element.

 This part isn’t critical (in fact, I added it after testing with a single ele-
ment). However, if you want to have multiple copies of the draggable
element, use a method to encapsulate the process.

 2. Make all dragme elements draggable.

 Use the jQuery draggable() method on all elements with the dragMe
class.

 3. Establish the target as a droppable element.

 The droppable() method sets up an element so that it can receive
events when a draggable element is dropped on it. Note that making
something droppable doesn’t have any particular effect on its own. The
interesting thing comes when you bind events to the element.

Dragging, Dropping, and Calling Back

49_9780470537558-bk07ch04.indd 81749_9780470537558-bk07ch04.indd 817 10/7/10 8:56 PM10/7/10 8:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

818

 4. Bind a drop event to the target.

 Droppable elements can have events attached to them just like any
jQuery object. However, the mechanism for attaching an event to a user
interface object is a little bit different than the standard jQuery event
mechanism (which involves a custom function for each event). Use the
bind method to specify a function to be called when a particular event
occurs. When the user drops a node that has been made draggable onto
the target element, this triggers the drop event, so call the change
Target() function.

 5. Bind a dropout event to the target as well.

 You can bind another event to occur when the user removes all drag-
gable elements from the target. This event is called dropout, and I’ve
told the program to call the resetTarget() function when this event is
triggered.

You often see programmers using shortcuts for this process. Sometimes,
the functions are defined anonymously in the bind call, or sometimes the
event functions are attached as a JSON object directly in the droppable()
method assignment. Feel free to use these techniques if you are comfort-
able with them. I’ve chosen the technique used here because I think it is the
clearest model to understand.

Handling the drop
When the user drags a dragMe element and drops it on the target, the tar-
get’s background color changes and the program reports the text of the ele-
ment that was dragged. The code is easy:

 function changeTarget(event, ui){
 $(“#target”).addClass(“ui-state-highlight”)
 .html(“Dropped “)
 .append(ui.draggable.text());
 } // end changeTarget

Here’s how to put this together:

 1. Create a function to correspond to the drop event.

 The drop event is bound to a function called changeTarget, so I need
to create such a function.

 2. Include two parameters.

 Bound event functions require two parameters. The first is an object
that encapsulates the event (much like the one in regular DOM program-
ming) and a second element called ui, which encapsulates information
about the user interface. You can use the ui object to determine which
draggable element was dropped onto the target.

Dragging, Dropping, and Calling Back

49_9780470537558-bk07ch04.indd 81849_9780470537558-bk07ch04.indd 818 10/7/10 8:56 PM10/7/10 8:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 4

U
sin

g
 th

e
 jQ

u
e

ry
U

se
r In

te
rfa

c
e

T

o
o

lk
it

819

 3. Highlight the target.

 It’s a good idea to signal that the target’s state has changed. You can
change the CSS directly (with jQuery) or use jQuery theming to apply a
predefined highlight class. I chose to use the jQuery theme technique to
simply add the ui-state-highlight class to the target object.

 4. Change the text to indicate the new status.

 Normally you should do something to indicate what was dropped. (If it’s
a shopping application, you should add the element to an array so that
you can remember what the user wants to purchase, for example.) In
this example, I simply change the text of the target to indicate that the
element has been dropped.

 5. Use ui.draggable to get access to the element that was dropped.

 The ui object contains information about the user interface.
ui.draggable is a link to the draggable element that triggered the
current function. It’s a jQuery element, so you can use whatever jQuery
methods you want on it. In this case, I extract the text from the drag-
gable element and append it to the end of the target’s text.

Beauty school dropout events
Another function is used to handle the dropout condition, which occurs
when draggable elements are no longer dropped on the target. I bind the
resetTarget function to this event:

 function resetTarget(event, ui){
 $(“#target”).removeClass(“ui-state-highlight”)
 .html(“Drop on me”);
 } // end reset

All you have to do is this:

 1. Remove the highlight class from the target.

 One great thing about using the theme classes is how easy they are to
remove. Remove the highlight class, and the target reverts to its original
appearance.

 2. Reset the HTML text.

 Now that the target is empty, reset its HTML so that it prompts the user
to drop a new element.

Cloning the elements
You can simply run the program as it is (with a single copy of the dragMe
class), but more often, drag and drop is used with a number of elements. For

Dragging, Dropping, and Calling Back

49_9780470537558-bk07ch04.indd 81949_9780470537558-bk07ch04.indd 819 10/7/10 8:56 PM10/7/10 8:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

820

example, you might allow users to drag various icons from your catalog to a
shopping cart.

The basic jQuery library provides all the functionality necessary to make
as many copies of an element as you want. Copying an element is a simple
matter of using the jQuery clone() method.

The more elaborate code is used to ensure that the various elements display
properly:

 function cloneDragMe(){
 for (i = 1; i <=4; i++){
 zValue = (101 + i) + “”;
 yPos = 100 + (i * 20) + “px”;

 $(“div:first”).clone()
 .insertAfter(“div:first”)
 .css(“top”, yPos)
 .css(“zIndex”, zValue)
 .append(“ #” + i);
 } // end for loop
 } // end cloneDragMe

Here are the steps:

 1. Create a for loop.

 Anytime you’re doing something repetitive, a for loop is a likely tool. In
this case, I want to make four clones numbered 1 through 4, so I have a
variable named i that can vary from 1 to 4.

 2. Create a zValue for the element.

 The CSS zIndex property is used to indicate the overlapping of ele-
ments. Higher values appear to be closer to the user. I give each element
a zOrder of over 100 to ensure that it appears over the target. (If you
don’t specify the zIndex, dragged elements might go under the target
and become invisible.) The zValue variable is mapped to the zIndex.

 3. Determine the y position of the element.

 I want each successive copy of the dragMe element to be a bit lower
than the previous one. Multiplying i by 20 ensures that each element is
separated from the previous one by 20 pixels. Add 100 pixels to move
the new stack of elements near the original.

 4. Make a clone of the first element.

 Use the clone() method to make a clone of the first div. (Use the
:first filter to specify which div you want to copy.)

Dragging, Dropping, and Calling Back

49_9780470537558-bk07ch04.indd 82049_9780470537558-bk07ch04.indd 820 10/7/10 8:56 PM10/7/10 8:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 4

U
sin

g
 th

e
 jQ

u
e

ry
U

se
r In

te
rfa

c
e

T

o
o

lk
it

821

 5. Remember to insert the newly cloned element.

 The cloned element exists only in memory until it is somehow added to
the page. I chose to add the element right after the first element.

 6. Set the top of the element with the yPos variable.

 Use the yPos variable you calculated earlier to set the vertical position
of the newly minted element. Use the css() method to apply the yPos
variable to the element’s left CSS rule.

 7. Set the zIndex.

 Like the y position, the zValue variable you created is mapped to a CSS
value. In this case, zValue is mapped to the zIndex property.

 8. Add the index to the element’s text.

 Use the append() method to add the value of i to the element’s HTML.
This way you can tell which element is which.

Dragging, Dropping, and Calling Back

49_9780470537558-bk07ch04.indd 82149_9780470537558-bk07ch04.indd 821 10/7/10 8:56 PM10/7/10 8:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

822 Book VII: Into the Future with AJAX

49_9780470537558-bk07ch04.indd 82249_9780470537558-bk07ch04.indd 822 10/7/10 8:56 PM10/7/10 8:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Improving Usability
with jQuery

In This Chapter
✓ Working with scroll bars

✓ Building a sorting mechanism

✓ Managing selectable items

✓ Using the dialog tool

✓ Creating an accordion page

✓ Building a tab-based interface

The jQuery UI adds some really great capabilities to your Web pages.
Some of the most interesting tools are widgets, which are user interface

elements not supplied in standard HTML. Some of these elements supple-
ment HTML by providing easier input options. For example, it can be quite
difficult to get the user to enter a date in a predictable manner. The dat-
epicker widget provides an easy-to-use calendar for picking dates. The inter-
face is easy for the programmer to add and makes it hard for the user to
enter the date incorrectly. Another important class of tools provided by the
jQuery UI helps manage complex pages by hiding content until it is needed.

Multi-element Designs
Handling page complexity has been a constant issue in Web development.
As a page gets longer and more complex, navigating the page becomes more
difficult. The early versions of HTML had few solutions to this problem. The
use of frames was popular for a time, because it allows the programmer to
place navigation information in one frame and content in another. However,
frames added additional usability problems and have fallen from favor.
Dynamic HTML and AJAX seem like perfect replacement technologies, but
they can be difficult to implement, especially in a reliable cross-browser
manner.

50_9780470537558-bk07ch05.indd 82350_9780470537558-bk07ch05.indd 823 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

824

The jQuery UI provides two incredible tools for managing larger pages:

 ✦ The accordion tool allows you to create a large page but display only
smaller parts of it at a time.

 ✦ The tabs tool allows you to easily turn a large page into a page with a
tab menu.

These tools are incredibly easy to use, and they add tremendously to your
page development options. Both of these tools automate and simplify the
DOM and AJAX work it takes to build a large page with dynamic content.

Playing the accordion widget
Some of the most powerful jQuery tools are actually the easiest to use. The
accordion widget has become an extremely popular part of the jQuery UI
toolset. Take a look at accordion.html in Figure 5-1 to see how it works.

When you look at Figure 5-1, you see headings for the first three minibooks
of this book. The details for the first minibook are available, but the other
books’ details are hidden. If you click the heading for Book II, Book I is mini-
mized and Book II is now expanded, as you can see Figure 5-2.

This marvelous effect allows the user to focus on a particular part of a larger
context while seeing the overall outline. It’s called an accordion because the
various pieces expand and contract to allow the user to focus on a part with-
out losing place of its position in the whole. Collapsible content has become
an important usability tool made popular by the system bar in Mac OS and
other popular usability tools.

Figure 5-1:
This page
shows
the first
minibook
outline of
a familiar-
sounding
book.

Multi-element Designs

50_9780470537558-bk07ch05.indd 82450_9780470537558-bk07ch05.indd 824 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 5

Im
p

ro
vin

g
 U

sa
b

ility
w

ith
 jQ

u
e

ry

825

Figure 5-2:
Book I is
minimized,
and Book
II is now
expanded.

The accordion effect is strikingly easy to achieve with
jQuery:<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0
Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=”content-type” content=”text/xml;

charset=utf-8” />
 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”css/ui-lightness/jquery-ui-1.8.1.custom.css”

/>

 <script type = ”text/javascript”
 src = ”js/jquery-1.4.2.min.js”></script>
 <script type = ”text/javascript”
 src = ”js/jquery-ui-1.8.1.custom.min.js”></script>
 <script type = ”text/javascript”>
 //<![CDATA[

 $(init);

 function init(){
 $(”#accordion”).accordion();
 }
 //]]>
 </script>

 <title>accordion.html</title>
</head>
<body>
<h1>Accordion Demo</h1>

Multi-element Designs

50_9780470537558-bk07ch05.indd 82550_9780470537558-bk07ch05.indd 825 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

826

<div id = ”accordion”>
 <h2>Book I - Creating the XHTML Foundation</

a></h2>

 Sound XHTML Foundations
 It’s All About Validation
 Choosing your Tools
 Managing Information with Lists and Tables
 Making Connections with Links
 Adding Images
 Creating forms

 <h2>Book II - Styling with CSS</h2>

 Coloring Your World
 Styling Text
 Selectors, Class, and Style
 Borders and Backgrounds
 Levels of CSS

 <h2>Book III - Using Positional CSS for
Layout</h2>

 Fun with the Fabulous Float
 Building Floating Page Layouts
 Styling Lists and Menus
 Using alternative Positioning

</div>
</body>
</html>

As you can see by looking over the code, it’s mainly just HTML. The effect is
really easy to accomplish:

 1. Import all the usual suspects.

 You need to import the jQuery and jQuery UI JavaScript files, and a
theme CSS file. (See Book VII, Chapter 4 if you need a refresher on this
process.) You also need to make sure that the CSS has access to the
images directory with icons and backgrounds, because it will use some
of these images automatically.

 2. Build your HTML page as normal.

 Build an HTML page as you would normally do. Pay attention to the sec-
tions that you want to collapse. There should normally be a heading tag
for each element, all at the same level (Level 2 headings in my case).

Multi-element Designs

50_9780470537558-bk07ch05.indd 82650_9780470537558-bk07ch05.indd 826 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 5

Im
p

ro
vin

g
 U

sa
b

ility
w

ith
 jQ

u
e

ry

827

 3. Create a div that contains the entire collapsible content.

 Put all the collapsible content in a single div with an ID. You’ll be turning
this div into an accordion jQuery element.

 4. Add an anchor around each heading you want to specify as
collapsible.

 Place an empty anchor tag () around each head-
ing that you want to use as a collapsible heading. The # sign indicates
that the anchor will call the same page and is used as a placeholder by
the jQuery UI engine. You can add the anchor directly in the HTML or
through jQuery code.

 5. Create a jQuery init() function.

 Use the normal techniques to build a jQuery initializer as shown in
Chapter 3 of this minibook.

 6. Apply the accordion() method to the div.

 Use jQuery to identify the div that contains collapsible content and
apply accordion() to it:

 function init(){
 $(“#accordion”).accordion();
 }

Building a tabbed interface
Another important technique in Web development is the use of a tabbed
interface. This allows the user to change the contents of a segment by select-
ing one of a series of tabs. Figure 5-3 shows an example.

Figure 5-3:
This is
another
way to
look at that
hauntingly
familiar
table of
contents.

Multi-element Designs

50_9780470537558-bk07ch05.indd 82750_9780470537558-bk07ch05.indd 827 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

828

In a tabbed interface, only one element is visible at a time, but the tabs are
all visible. The tabbed interface is a little more predictable than the accor-
dion, because the tabs (unlike the accordion’s headings) stay in the same
place. The tabs change colors to indicate which tab is currently highlighted,
and they also change state (normally by changing color) to indicate that
they are being hovered over. When you click another tab, the main content
area of the widget is replaced with the corresponding content. Figure 5-4
shows what happens when the user clicks the book 3 tab.

Figure 5-4:
Clicking a
tab changes
the main
content
and the
appearance
of the tabs.

Like the accordion, the tab effect is incredibly easy to achieve. Look over the
code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=”content-type” content=”text/xml;

charset=utf-8” />
 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”css/ui-lightness/jquery-ui-1.8.1.custom.css”

/>

 <script type = ”text/javascript”
 src = ”js/jquery-1.4.2.min.js”></script>
 <script type = ”text/javascript”
 src = ”js/jquery-ui-1.8.1.custom.min.js”></script>

Multi-element Designs

50_9780470537558-bk07ch05.indd 82850_9780470537558-bk07ch05.indd 828 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 5

Im
p

ro
vin

g
 U

sa
b

ility
w

ith
 jQ

u
e

ry

829

 <script type = ”text/javascript”>
 //<![CDATA[

 $(init);

 function init(){
 $(”#tabs”).tabs();
 }
 //]]>
 </script>

 <title>tabs.html</title>
</head>
<body>
<h1 class = ”ui-state-default”>Tab Demo</h1>

<div id = ”tabs”>

 Book 1
 Book 2
 Book 3

 <div id = ”book1”>
 <h2>Book I - Creating the XHTML Foundation</h2>

 Sound XHTML Foundations
 It’s All About Validation
 Choosing your Tools
 Managing Information with Lists and Tables
 Making Connections with Links
 Adding Images
 Creating Forms

 </div>

 <div id = ”book2”>
 <h2>Book II - Styling with CSS</h2>

 Coloring Your World
 Styling Text
 Selectors, Class, and Style
 Borders and Backgrounds
 Levels of CSS

 </div>

 <div id = ”book3”>
 <h2>Book III - Using Positional CSS for Layout</h2>

 Fun with the Fabulous Float
 Building Floating Page Layouts
 Styling Lists and Menus

Multi-element Designs

50_9780470537558-bk07ch05.indd 82950_9780470537558-bk07ch05.indd 829 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

830

 Using alternative Positioning

 </div>
</div>
</body>
</html>

The mechanism for building a tab-based interface is very similar to the one
for accordions:

 1. Add all the appropriate files.

 Like most jQuery UI effects, you need jQuery, jQuery UI, and a theme CSS
file. You also need access to the images directory for the theme’s back-
ground graphics.

 2. Build HTML as normal.

 If you’re building a well-organized Web page anyway, you’re already
pretty close.

 3. Build a div that contains all the tabbed data.

 This is the element that you’ll be doing the jQuery magic on.

 4. Place main content areas in named divs.

 Each piece of content that will be displayed as a page should be placed
in a div with a descriptive ID. Each of these divs should be placed in the
tab div. (See my code for organization if you’re confused.)

 5. Add a list of local links to the content.

 Build a menu of links. Place this at the top of the tabbed div. Each link
should be a local link to one of the divs. For example, my index looks
like this:

 Book 1
 Book 2
 Book 3

 6. Build an init() function as usual.

 Use the normal jQuery techniques.

 7. Call the tabs() method on the main div.

 Incredibly, one line of jQuery code does all the work.

Using tabs with AJAX
You have an even easier way to work with the jQuery tab interface. Rather
than placing all your code in a single file, place the HTML code for each

Multi-element Designs

50_9780470537558-bk07ch05.indd 83050_9780470537558-bk07ch05.indd 830 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 5

Im
p

ro
vin

g
 U

sa
b

ility
w

ith
 jQ

u
e

ry

831

panel in a separate HTML file. You can then use a simplified form of the tab
mechanism to automatically import the various code snippets through AJAX
calls. Look at the AJAXtabs.html code for an example:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=”content-type” content=”text/xml;

charset=utf-8” />
 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”css/ui-lightness/jquery-ui-1.8.1.custom.css”

/>

 <script type = ”text/javascript”
 src = ”js/jquery-1.4.2.min.js”></script>
 <script type = ”text/javascript”
 src = ”js/jquery-ui-1.8.1.custom.min.js”></script>
 <script type = ”text/javascript”>
 //<![CDATA[

 $(init);

 function init(){
 $(”#tabs”).tabs();
 }
 //]]>
 </script>

 <title>AJAXtabs.html</title>
</head>
<body>
 <h1>AJAX tabs</h1>
 <div id = ”tabs”>

 Book 1
 Book 2
 Book 3

 </div>
</body>
</html>

Note: I didn’t provide a screen shot for the AJAXtabs.html page, because it
looks exactly like tabs.html, shown in Figure 5-4.

This version of the code doesn’t contain any of the actual content! Instead,
jQuery builds the tab structure and then uses the links to make AJAX
requests to load the content. As a default, it finds the content specified by

Multi-element Designs

50_9780470537558-bk07ch05.indd 83150_9780470537558-bk07ch05.indd 831 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

832

the first tab (chap1.html) and loads it into the display area. Here’s what
book1.html contains:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=”content-type” content=”text/xml;

charset=utf-8” />
 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”css/ui-lightness/jquery-ui-1.8.1.custom.css”

/>

 <script type = ”text/javascript”
 src = ”js/jquery-1.4.2.min.js”></script>
 <script type = ”text/javascript”
 src = ”js/jquery-ui-1.8.1.custom.min.js”></script>
 <script type = ”text/javascript”>
 //<![CDATA[

 $(init);

 function init(){
 $(”#tabs”).tabs();
 }
 //]]>
 </script>

 <title>AJAXtabs.html</title>
</head>
<body>
 <h1>AJAX tabs</h1>
 <div id = ”tabs”>

 Book 1
 Book 2
 Book 3

 </div>
</body>
</html>

As you can see, book1.html is simply a code snippet. It doesn’t need all the
complete trappings of a Web page (like the doctype or header) because it’s
meant to be pulled in as part of a larger page. The AJAX trick is a marvelous
technique because it allows you to build a modular system quite easily. You
can build these code pages separately and include them easily into a larger
page. This is a good foundation for a content-management system.

Multi-element Designs

50_9780470537558-bk07ch05.indd 83250_9780470537558-bk07ch05.indd 832 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 5

Im
p

ro
vin

g
 U

sa
b

ility
w

ith
 jQ

u
e

ry

833

Improving Usability
While the UI widgets are good looking and fun, another important aspect is
how they can improve usability. Web pages are often used to get information
from users. Certain kinds of information can be very difficult for the user to
enter correctly. The jQuery UI elements include a number of tools to help
you with this specific problem. The UItools.html page, shown in Figure
5-5, illustrates some of these techniques.

Figure 5-5:
The UItools
page uses
a tabbed
interface to
demonstrate
many input
tools.

A lot is going on in this page, but the tabbed interface really cleans it up and
lets the user concentrate on one idea at a time. Using the tabbed interface
can really simplify your user’s life.

This page is a bit long because it has a number of sections. I demonstrate
the code in chunks to make it easier to manage. Be sure to look on the Web
site for the complete code.

Here’s the main HTML code so that you can see the general structure of the
page:

 <h1>UI tools</h1>
 <div id = “tabs”>

 datePicker
 slider
 selectable
 sortable
 dialog

You see a main div named tabs. This contains a list of links to the various
divs that will contain the demonstrations. I describe each of these divs in the

Improving Usability

50_9780470537558-bk07ch05.indd 83350_9780470537558-bk07ch05.indd 833 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

834

section that demonstrates it. The page also imports jQuery, jQuery UI, and
the theme CSS. The init() method contains most of the jQuery code:

 $(init);

 function init(){
 $(“h1”).addClass(“ui-widget-header”);

 $(“#tabs”).tabs();
 $(“#datePicker”).datepicker();

 $(“#slider”).slider()
 .bind(“slide”, reportSlider);

 $(“#selectable”).selectable();

 $(“#sortable”).sortable();

 $(“#dialog”).dialog();

 //initially close dialog
 $(“#dialog”).dialog(“close”);

 } // end init

The init section initializes the various components. The details of the
init() function are described in each section as they are used.

Most of these special widgets require the standard jquery link, jqueryui,
and one of the templates to be installed. Many of the widgets use features
from the template library. Of course, you can start with a default template
and tune it up later. You just have to have a template available to see all the
effects.

Playing the dating game
Imagine that you’re writing a program that requires a birth date. Getting
date information from the user can be an especially messy problem, because
so many variations exist. Users might use numbers for the month, month
names, or abbreviations. Some people use month/day/year, and others use
day/month/year. They may enter the year as two or four characters. (That
silly Y2K thing hasn’t really died yet. I still have the bunker in the backyard.)
Worse, it’s really hard to pick a date without a calendar in front of you.

The datepicker dialog box is one of the coolest elements in the entire jQuery
UI library. When you add datepicker() functionality to a textbox, that
textbox becomes a datepicker. When the user selects the date box, a calen-
dar automatically pops up, as shown in Figure 5-6.

Improving Usability

50_9780470537558-bk07ch05.indd 83450_9780470537558-bk07ch05.indd 834 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 5

Im
p

ro
vin

g
 U

sa
b

ility
w

ith
 jQ

u
e

ry

835

Figure 5-6:
The
datePicker
element
turns any
text field
into a
calendar!

The user can select a date on the calendar, and it will be placed in the text-
box in a standard format. You have no better way to get date input from the
user. Building a datepicker can’t be much easier:

 1. Begin with a jQuery UI page.

 You need jQuery, jQuery UI, and a theme to use the datepicker.

 2. Build a form with a text field.

 Any standard text input element will do. Be sure to give the element an
ID so that you can refer to it in JavaScript:

 <div id = “datePickerTab”>
 <h2>date picker</h2>
 <input type = “text”
 id = “datePicker” />
 </div>

 3. Isolate the text input element with jQuery.

 Build a standard jQuery node from the input element.

Improving Usability

50_9780470537558-bk07ch05.indd 83550_9780470537558-bk07ch05.indd 835 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

836

 4. Add the datepicker() functionality.

 Use the datePicker() method to convert the text node into a dat-
epicker. This is usually done in some type of init() function. The rest
is automatic!

 $(“#datePicker”).datepicker();

 5. Retrieve data from the form element in the normal way.

 When the user has selected the date, it is placed in the text field auto-
matically. As far as your program is concerned, the text field is still an
ordinary text field. Retrieve the data in the ordinary way.

The datepicker is a powerful tool with a large number of additional options.
Look at the jQuery UI documentation to see how to use it to select date
ranges, produce specific date formats, and much more.

Picking numbers with the slider
Numeric input is another significant usability problem. When you want users
to enter numeric information, it can be quite difficult to ensure that the data
really is a number and that it’s in the range you want. Traditional program-
mers often use sliders (sometimes called scroll bars) to simplify accepting
numeric input. Figure 5-7 shows a slider.

Figure 5-7:
The user
can choose
a number
with the
mouse using
a slider.

The slider is (like many jQuery UI objects) very easy to set up. Here’s the rel-
evant chunk of HTML code:

 <div id = “sliderTab”>
 <h2>slider</h2>
 <div id = “slider”></div>
 <div id = ”slideOutput”>0</div>
 </div>

Improving Usability

50_9780470537558-bk07ch05.indd 83650_9780470537558-bk07ch05.indd 836 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 5

Im
p

ro
vin

g
 U

sa
b

ility
w

ith
 jQ

u
e

ry

837

The Slider tab is a basic div. It contains two other divs:

 ✦ The slider div is actually empty. It will be replaced by the slider ele-
ment when the jQuery is activated.

 ✦ The other div (slideOutput) in this section will be used to output the
current value of the slider.

Create the slider element in the init() function with some predictable
jQuery code:

 $(“#slider”).slider();

The slider() method turns any jQuery element into a slider, replacing the
contents with a visual slider.

Note that you can add a JSON object as a parameter to set up the slider
with various options. See rgbSlider.html on this book’s Web site (www.
aharrisbooks.net/xfd_2ed/ or www.dummies.com/go/htmlxhtml
andcssaiofd) for an example of sliders with customization.

You can set up a callback method to be called whenever the slider is moved.
In my example, I chained this to the code that created the slider in the first
place:

 $(“#slider”).slider()
 .bind(”slide”, reportSlider);

Use the bind method to bind the reportSlider function (described next)
to the slide event.

The reportSlider() function reads the slider’s value and reports it in an
output div:

 function reportSlider(){
 var sliderVal = $(“#slider”).slider(“value”);
 $(”#slideOutput”).html(sliderVal);
 } // end reportSlider

To read the value of a slider, identify the jQuery node and invoke its
slider() method again. This time, pass the single word value, and you get
the value of the slider. You can pass the resulting value to a variable as I did
and then do anything you want with that variable.

Improving Usability

50_9780470537558-bk07ch05.indd 83750_9780470537558-bk07ch05.indd 837 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

838

Selectable elements
You may have a situation where you want the user to choose from a list of
elements. The selectable widget is a great way to create this functionality
from an ordinary list. The user can drag or Ctrl+click items to select them.
Special CSS classes are automatically applied to indicate that the item is
being considered for selecting or selected. Figure 5-8 illustrates the selection
in process.

Figure 5-8:
Selectable
items are
easily
chosen with
the mouse.

Follow these steps to make a selectable element:

 1. Begin with an unordered list.

 Build a standard unordered list in your HTML. Give the ul an ID so that
it can be identified as a jQuery node:

 <div id = “selectableTab”>
 <h2>selectable</h2>
 <ul id = “selectable”>
 alpha
 beta
 gamma
 delta

 </div>

 2. Add CSS classes for selecting and selected states.

 If you want the selectable items to change appearance when the items
are being selected or have been selected, add CSS classes as shown.
Some special classes (ui-selecting and ui-selected) are pre-
defined and will be added to the elements at the appropriate times:

Improving Usability

50_9780470537558-bk07ch05.indd 83850_9780470537558-bk07ch05.indd 838 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 5

Im
p

ro
vin

g
 U

sa
b

ility
w

ith
 jQ

u
e

ry

839

 <style type = “text/css”>
 h1 {
 text-align: center;
 }

 #selectable .ui-selecting {
 background-color: gray;
 }
 #selectable .ui-selected {
 background-color: black;
 color: white;
 }
 </style>

 3. In the init() function, specify the list as a selectable node.

 Use the standard jQuery syntax: selectable().

 $(“#selectable”).selectable();

The ui-selected class is attached to all elements when they have been
selected. Be sure to add some kind of CSS to this class, or you won’t be able
to tell that items have been selected.

If you want to do something with all the items that have been selected, just
create a jQuery group of elements with the ui-selected class:

var selectedItems = $(“.ui-selected”);

Building a sortable list
Sometimes you want the user to be able to change the order of a list. This is
easily done with the sortable widget. Figure 5-9 shows the sortable list in
its default configuration.

Figure 5-9:
This looks
like an
ordinary list.

Improving Usability

50_9780470537558-bk07ch05.indd 83950_9780470537558-bk07ch05.indd 839 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

840

The user can grab members of the list and change their order, as shown in
Figure 5-10.

Making a sortable list is really easy. Follow these steps:

 1. Build a regular list.

 Sortable elements are usually lists. The list is a regular list, but with
an ID:

 <div id = “sortableTab”>
 <h2>sortable</h2>
 <ul id = “sortable”>
 alpha
 beta
 gamma
 delta

 </div>

 2. Turn it into a sortable node.

 Add the following code to the init() method:

 $(“#sortable”).sortable();

Creating a custom dialog box
JavaScript supplies a few dialog boxes (the alert and prompt dialog boxes),
but these are quite ugly and relatively inflexible. The jQuery UI includes a
technique for turning any div into a virtual dialog box. The dialog box fol-
lows the theme and is resizable and movable. Figure 5-11 shows a dialog box.

Figure 5-10:
The user
can drag the
elements
into a
different
order.

Improving Usability

50_9780470537558-bk07ch05.indd 84050_9780470537558-bk07ch05.indd 840 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 5

Im
p

ro
vin

g
 U

sa
b

ility
w

ith
 jQ

u
e

ry

841

Figure 5-11:
This dialog
box is
actually a
jQuery UI
node.

 Building the dialog box is not difficult, but you need to be able to turn it
on and off with code, or it will not act like a proper dialog (which mimics a
window in the operating system):

 1. Create the div you intend to use as a dialog box.

 Create a div and give it an ID so that you can turn it into a dialog box node.
Add the title attribute, and the title shows up in the dialog box’s title bar.

 <div id = “dialog”
 title = “my dialog”>
 <p>
 The dialog class allows you to have a

movable, sizable
 customized dialog box consistent with the

installed
 page theme.
 </p>
 </div>

 2. Turn the div into a dialog box.

 Use the dialog() method to turn the div into a jQuery dialog box node
in the init() function:

 $(“#dialog”).dialog();

 3. Hide the dialog box by default.

 Usually you don’t want the dialog box visible until some sort of event
happens. In this particular example, I don’t want the dialog box to
appear until the user clicks a button. I put some code to close the dialog
box in the init() function so that the dialog box will not appear until it
is summoned.

Improving Usability

50_9780470537558-bk07ch05.indd 84150_9780470537558-bk07ch05.indd 841 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

842 Improving Usability

 4. Close the dialog box.

 To close a dialog box, refer to the dialog box node and call the
dialog() method on it again. This time, send the single value “close”
as a parameter, and the dialog box will immediately close:

 //initially close dialog
 $(“#dialog”).dialog(“close”);

 5. The x automatically closes the dialog box.

 The dialog box has a small x that looks like the Close Window icon on
most windowing systems. The user can close the dialog box by clicking
this icon.

 6. You can open and close the dialog box with code.

 My Open Dialog and Close Dialog buttons call functions that control the
behavior of the dialog box. For example, here is the function attached to
the Open Dialog button:

 function openDialog(){
 $(“#dialog”).dialog(“open”);
 } // end openDialog

50_9780470537558-bk07ch05.indd 84250_9780470537558-bk07ch05.indd 842 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Working with
AJAX Data

In This Chapter
✓ Understanding the advantages of server-side programming

✓ Getting to know PHP

✓ Writing a form for standard PHP processing

✓ Building virtual forms with AJAX

✓ Submitting interactive AJAX requests

✓ Working with XML data

✓ Responding to JSON data

AJAX and jQuery are incredibly useful, but perhaps the most important
use of AJAX is to serve as a conduit between the Web page and pro-

grams written on the server. In this chapter, you get an overview of how
programming works on the Web server and how AJAX changes the relation-
ship between client-side and server-side programming. You read about the
main forms of data sent from the server, and you see how to interpret this
data with jQuery and JavaScript.

Sending Requests AJAX Style
AJAX work in other parts of this book involves importing a preformatted
HTML file. That’s a great use of AJAX, but the really exciting aspect of AJAX
is how it tightens the relationship between the client and server. Figure 6-1
shows a page called AJAXtest.html, which uses a JavaScript function to
call a PHP program and incorporates the results into the same page.

51_9780470537558-bk07ch06.indd 84351_9780470537558-bk07ch06.indd 843 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

844

Figure 6-1:
This page
gets data
from PHP
with no
form!

Sending the data
The AJAX version of this program is interesting because it has no form.
Normally an HTML page that makes a request of a PHP document has a form,
and the form requests the PHP page. This page has no form, but a JavaScript
function creates a “virtual form” and passes this form data to a PHP page.
Normally the result of a PHP program is a completely new page, but in this
example the results of the PHP program are integrated directly onto the
original HTML page. Begin by looking over the HTML/JavaScript code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=”content-type” content=”text/xml;

charset=utf-8” />

 <script type = ”text/javascript”
 src = ”jquery-1.3.2.min.js”></script>

 <script type = ”text/javascript”>
 //<![CDATA[

 $(init);

 function init(){
 $.get(”simpleGreet.php”, { ”userName”: ”Andy” },

processResult);
 }

 function processResult(data, textStatus){
 $(”#output”).html(data);
 }
 //]]>
 </script>

 <title>AJAXTest.html</title>
</head>
<body>

Sending Requests AJAX Style

51_9780470537558-bk07ch06.indd 84451_9780470537558-bk07ch06.indd 844 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 6

W
o

rk
in

g
 w

ith
 A

J
A

X

D
a

ta

845

<h1>AJAX Test</h1>

<div id = ”output”>
 This is the default output
</div>

</body>
</html>

This program uses a jQuery function to simulate a form. It generates its own
virtual form and passes it directly to the PHP program. The PHP program
then processes the form data and produces text results, which are avail-
able for JavaScript to handle directly. In essence, JavaScript and jQuery are
directly managing the server request (rather than allowing the browser
to do it automatically) so that the programmer has more control over the
process.

Here’s how it works:

 1. Begin with an XHTML framework.

 As always, XHTML forms the spine of any Web program. The XHTML
here is quite simple — a heading and a div for output. Note that this
example does not include a form.

 2. Include the jQuery library.

 You can do AJAX without jQuery, but you don’t have much reason to
do that. The jQuery library makes life much easier and manages cross-
browser issues to boot. You can also incorporate the jQuery UI and a
theme if you choose, but they aren’t absolutely necessary.

 3. Initialize as usual.

 As soon as this program runs, it’s going to get data from the server. (In
the next example, I show you how to make this process more interac-
tive.) Set up an init() function in the normal way to handle immediate
execution after the page has loaded.

 4. Use the .get() function to set up an AJAX call.

 jQuery has a number of interesting AJAX functions. The .ajax func-
tion is a very powerful tool for managing all kinds of AJAX requests, but
jQuery also includes a number of utility functions that simplify particu-
lar kinds of requests. The get() function used here sets up a request
that looks to the server just like a form submitted with the get method.
(Yep, there’s also a post() function that acts like a post form.)

 5. Indicate the program to receive the request.

 Typically your AJAX requests will specify a program that should
respond to the request. I’m using greetUser.php.

Sending Requests AJAX Style

51_9780470537558-bk07ch06.indd 84551_9780470537558-bk07ch06.indd 845 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

846

 6. Pass form data as a JSON object.

 Encapsulate all the data you want to send to the program as a JSON
object. (Check out Book IV, Chapter 4 for a refresher on JSON.) Typically
this will be a series of name/value pairs. In this example, I’m simply indi-
cating a field named userName with the value “Andy”.

 7. Specify a callback function.

 Normally you want to do something with the results of an AJAX call. Use
a callback function to indicate which function should execute when the
AJAX call is completed. In this example, I call the processResult func-
tion as soon as the server has finished returning the form data.

Simplifying PHP for AJAX
One of the nice things about AJAX is how it simplifies your server-side pro-
gramming. Most PHP programs create an entire page every time. (Check out
nameForm.html and greetUser.php on the Web site to compare a more
typical HTML/PHP solution.) That’s a lot of overhead, building an entire
XHTML page every pass. A lot of material is repeated. However, because
you’re using AJAX, the PHP result doesn’t have to create an entire Web page.
The PHP can simply create a small snippet of HTML.

Take a look at simpleGreet.php and you can see that it’s very stripped
down:

 <?php
 $userName = $_REQUEST[“userName”];
 print “<p>Hi, $userName!</p> “;
 ?>

 This is a lot simpler than most PHP programs. All it needs to do is grab the
username and print it back out. The JavaScript function takes care of making
the code go in the right place. When you’re using AJAX, the HTML page stays
on the client, and JavaScript makes smaller calls to the server. The PHP is
simpler, and the code transmission is generally smaller, because there’s less
repeated structural information.

Back in the HTML, I need a function to process the results of the AJAX
request after it has returned from the server. The processResult() func-
tion has been designated as the callback function, so take another look at
that function:

 function processResult(data, textStatus){
 $(“#output”).html(data);
 }

Sending Requests AJAX Style

51_9780470537558-bk07ch06.indd 84651_9780470537558-bk07ch06.indd 846 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 6

W
o

rk
in

g
 w

ith
 A

J
A

X

D
a

ta

847

This function is pretty simple with jQuery:

 1. Accept two parameters.

 AJAX callback functions always accept two parameters. The first is a
string that contains whatever output was sent by the server (in this
case, the greeting from processResult.php). The second parameter
contains the text version of the HTTP status result. The status is useful
for testing in case the AJAX request was unsuccessful.

 2. Identify an output area.

 Just make a jQuery node from the output div.

 3. Pass the data to the output.

 You sometimes do more elaborate work with AJAX results, but for now,
the results are plain HTML that you can just copy straight to the div.

Building a Multipass Application
 The most common use of AJAX is to build an application that hides the rela-

tionship between the client and the server. For example, look at the multi
Pass.html page shown in Figure 6-2. This seems to be an ordinary HTML
page. It features a drop-down list that contains hero names. However, that
list of names comes directly from a database, which can’t be read directly
in HTML/JavaScript. When the user selects a hero from the list, the page is
automatically updated to display details about that hero. Again, this data
comes directly from the database. Figure 6-3 shows the page after a hero has
been selected.

Figure 6-2:
The user
can choose
from a list of
heroes.

Building a Multipass Application

51_9780470537558-bk07ch06.indd 84751_9780470537558-bk07ch06.indd 847 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

848

Figure 6-3:
Hero data
is automa-
tically
updated
from the
database.

It’s certainly possible to get this behavior from PHP alone, but it’s interest-
ing to see an HTML/JavaScript page that can access data from a database. Of
course, some PHP is happening, but AJAX manages the process. Take a look
at the code for multiPass.html to see what’s happening:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
 <title>multiPass.html</title>
 <meta http-equiv=”Content-Type” content=”text/

html;charset=UTF-8” />
 <script type = ”text/javascript”
 src = ”jquery-1.4.2.min.js”></script>
 <script type = ”text/javascript”>
 //<![CDATA[
 $(init);

 function init(){
 //load up list from database
 $(”#heroList”).load(”loadList.php”);
 } // end init

 function showHero(){

 //pass a hero id, retrieve all data about that hero
 heroID = $(”#heroList”).val();
 $(”#output”).load(”showHero.php”, {”heroID”: heroID});
 } // end showHero

 //]]>
 </script>

</head>
<body>
 <h1>Multi - Pass Demo</h1>

Building a Multipass Application

51_9780470537558-bk07ch06.indd 84851_9780470537558-bk07ch06.indd 848 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 6

W
o

rk
in

g
 w

ith
 A

J
A

X

D
a

ta

849

 <form action = ””>
 <fieldset>
 <label>hero</label>
 <select id = ”heroList”
 onchange = ”showHero()”>
 </select>

 <div id = ”output”>
 Please select a hero for more information...
 </div>
 </fieldset>
 </form>
</body>
</html>

Setting up the HTML framework
As always, the HTML page provides the central skeleton of the page. This
site is reasonably simple, because it sets up some empty areas that will be
filled in with AJAX requests later:

 1. Import jQuery.

 The jQuery library makes AJAX really simple, so begin by importing
the library. Check out Chapter 2 of this minibook if you need a refresher
on importing jQuery. You can also include the jQuery UI modules if you
want, but it isn’t necessary for this simple example.

 2. Build a simple form.

 The page has a form, but this form is designed more for client-side inter-
action than server-side. Note that the form has a null action. That’s
because the form won’t be directly contacting the PHP program. Let
AJAX functions do that.

 3. Don’t add a button.

 Traditional forms almost always have buttons (either standard buttons
in client-side coding or submit buttons for server-side). While you can
still include buttons, one of the goals of AJAX is to simplify user interac-
tion. The page will update as soon as the user selects a new hero, so you
don’t need a button.

 4. Create an empty <select> object.

 Build an HTML select element that will contain all the hero names, but
don’t fill it yet. The hero names should come from the database. Give
the select object an id property so that it can be manipulated through
the code.

 5. Apply an onchange event to the select object.

 When the user chooses a new hero, call a JavaScript function to retrieve
data about that hero.

Building a Multipass Application

51_9780470537558-bk07ch06.indd 84951_9780470537558-bk07ch06.indd 849 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

850

 6. Build a div for output.

 Create a placeholder for the output. Give it an id so that you can refer
to it later in code.

 Note that multiPass.html will not validate as valid XHTML strict. That’s
because the select tag is empty. That error is really not a problem,
because you’re going to fill the select element with data through AJAX
calls. Validators are really meant to read standard HTML/XHTML code.
They check the code directly as it comes off the server, without running
any JavaScript or PHP. The original code is invalid because it has an empty
select tag, but as soon as the AJAX runs, the select tag will have data in it,
and will be valid. The validator isn’t smart enough to check the second pass,
but it is correct.

At this point, you’re doing some work that’s a little more sophisticated than
the validator was expecting, so it’s okay that you got an error. As with spell-
ing and grammar checkers, advanced users take the validator as a guideline
and know that it’s occasionally acceptable to ignore warnings.

Loading the select element
The first task is to load the select element from the database. This should be
done as soon as the page is loaded, so the code will go in a standard init()
function:

 1. Write an initialization function.

 Use the standard jQuery technique for this. I just use the $(init) para-
digm because I think it’s easiest.

 2. Build a jQuery node based on the select object.

 Use jQuery selection techniques to build a jQuery node.

 3. Invoke the jQuery load() method.

 This method allows you to specify a server-side file to activate. Many
AJAX examples in this book use plain HTML files, but in this case you
call a PHP program.

 The load() method works just like get() (used earlier in this chapter),
but it’s a bit easier to use load() when the purpose of the AJAX call is
to populate some element on your Web page (as is the case here).

 4. Call loadList.php.

 When you call a PHP program, you won’t be loading in the text of the
program. Instead, you’re asking that program to do whatever it does (in
this case, get a list of hero names and heroIDs) and place the results of
the program in the current element’s contents. In this situation, the PHP
program does a database lookup and returns the <option> elements
needed to flesh out the select object.

Building a Multipass Application

51_9780470537558-bk07ch06.indd 85051_9780470537558-bk07ch06.indd 850 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 6

W
o

rk
in

g
 w

ith
 A

J
A

X

D
a

ta

851

Writing the loadList.php program
Of course, you need to have a PHP program on the server to do the work.
AJAX makes PHP programming a lot simpler than the older techniques,
because each PHP program typically solves only one small problem, rather
than having to build entire pages. The loadList.php program is a great
example:

<?php

//connect to database
$db = mysql_connect(“localhost”, “username”, “password”) or

die(mysql_error);
mysql_select_db(“xfd”);

//build an option element for each hero
$query = “SELECT * FROM hero”;
$result = mysql_query($query);
while ($row = mysql_fetch_assoc($result)){
 print <<< HERE
 <option value = “$row[heroID]”>$row[name]</option>

HERE;
} // end while

?>

The code for loadList.php is typical of PHP programs using AJAX. It’s
small and focused and does a simple job cleanly. (I tend to think of PHP
programs in AJAX more like external functions than complete programs.)
The key to this particular program is understanding the output I’m trying to
create. Recall that this example has an empty select element on the form. I
want the program to add the following (bold) source code to the page:

 <select id=”heroList” onchange=”showHero()”>
 <option value=”1”>The Plumber</option>
 <option value=”2”>Binary Boy</option>
 <option value=”3”>The Janitor</option>
</select>

It should go to the database and find all the records in the hero table. It
should then assign heroID to the value attribute of each option, and
should display each hero’s name. After you know what you want to create, it
isn’t difficult to pull off:

 1. Make a database connection.

 In this example, PHP is used mainly for connecting to the database. It’s
not surprising that the first task is to make a data connection. Build a
connection to your database using the techniques outlined in Book V,
Chapter 7.

Building a Multipass Application

51_9780470537558-bk07ch06.indd 85151_9780470537558-bk07ch06.indd 851 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

852

 2. Create a query to get data from the database.

 The option elements I want to build need the heroID and name fields
from the hero database. It’s easiest to just use a SELECT * FROM
hero; query to get all the data I need.

 3. Apply the query to the database.

 Pass the query to the database and store the results in the $result
variable.

 4. Cycle through each record.

 Use the mysql_fetch_assoc() technique described in Book V,
Chapter 7.

 5. Build an <option> element based on the current record.

 Because each record is stored as an associative array, it’s easy to build
an option element using fields from the current record.

 6. Print the results.

 Whatever you print from the PHP program becomes the contents of
the jQuery element that called the load() method. In this case, the
<option> elements are placed in the <select> object (where all good
option elements live).

Responding to selections
After the page has initialized, the select object contains a list of the heroes.
When the user selects a hero, the showHero() function is called by the
select element’s onchange event.

The showHero() function is another AJAX function. It gathers the details
needed to trigger another PHP program. This time, the PHP program needs a
parameter. The showHero() function simulates a form with a data element in
it, and then passes that data to the PHP through the AJAX load() method:

function showHero(){
 //pass a hero id, retrieve all data about that hero
 heroID = $(“#heroList”).val();
 $(“#output”).load(“showHero.php”, {“heroID”: heroID});
 } // end showHero

If the user has selected a hero, you have the hero’s heroID as the value of
the select object. You can use this data to bundle a request to a PHP pro-
gram. That program uses the heroID to build a query and return data about
the requested hero:

 1. Extract the heroID from the select element.

 You’re building a JSON object which will act as a virtual form, so you
need access to all the data you want to send to the server. The only

Building a Multipass Application

51_9780470537558-bk07ch06.indd 85251_9780470537558-bk07ch06.indd 852 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 6

W
o

rk
in

g
 w

ith
 A

J
A

X

D
a

ta

853

information the PHP program needs is a heroID, so use the jQuery
val() method to extract the value from the select element.

 2. Use the load() method to update the output element.

 Once again, use the exceptionally handy load() method to invoke an
AJAX request. This time, load the results of showHero.php.

 3. Pass form data to the server.

 The showHero.php program thinks it’s getting information from a form.
In AJAX, the easiest way to simulate a form is to put all the data that would
have been in the form in a JSON object. In this case, only one data element
needs to be passed: {“heroID”: heroID}. This sends a field called
heroID that contains the contents of the JavaScript variable heroID. See
Book IV, Chapter 4 if you need a refresher on the JSON format.

 The virtual form technique is a common AJAX idiom. It’s important because
it overcomes a serious usability limitation of ordinary HTML. In old-school
programming, the primary way to invoke a server-side program was through
an HTML form submission. With AJAX, you can respond to any JavaScript
event (like the onchange event used in this example) and use JavaScript
code to create any kind of fake form you want. You can use variables that
come from one or more forms, or you can send data from JavaScript vari-
ables. AJAX lets you use JavaScript to control precisely what data gets sent
to the server and when that data gets sent. This improves the user experi-
ence (as in this example). It’s also commonly used to allow form validation
in JavaScript before passing the data to the server.

Writing the showHero.php script
The showHero.php script is a simple PHP program that has a single task:
After being given a heroID, pass a query to the database based on that key,
and return an HTML snippet based on the query. The code is a standard
database access script:

<?php

//get heroID
$heroID = $_REQUEST[‘heroID’];

//connect to db
$heroID = mysql_real_escape_string($heroID);

$db = mysql_connect(“localhost”, “userName”, “password”) or
die(mysql_error);

mysql_select_db(“xfd”);
//extract query
$query = “SELECT * FROM hero WHERE heroID = $heroID”;
$result = mysql_query($query);
while ($row = mysql_fetch_assoc($result)){

Building a Multipass Application

51_9780470537558-bk07ch06.indd 85351_9780470537558-bk07ch06.indd 853 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

854

 foreach ($row as $name => $value){
 print “$name: $value
”;
 }
} // end while

?>

As far as the showQuery.php program is concerned, it got a request from
an ordinary form. Its job is to produce HTML output based on that input:

 1. Get the $heroID value from the form.

 Use the standard $_REQUEST mechanism to extract data from the form.
(It doesn’t matter to the PHP program that this isn’t a normal form.)

 2. Sanitize the $heroID variable.

 Any form variable that can be used in an SQL query should be sanitized
to prevent SQL injection attacks. See Book V, Chapter 7 for more infor-
mation on the use of mysql_real_escape_string().

 3. Build an SQL query.

 You only want data from the hero identified by $heroID, so build a
query that selects a single record.

 4. Print each field name and value.

 Of course, you can make more sophisticated output, but it’s best to start
with something simple and clean.

Working with XML Data
Server-side work normally involves storage of data, because that’s one thing
that’s easy to do on the server and difficult to do on the client. Data can be
stored in many ways:

 ✦ In plain-text files

 ✦ In HTML

 ✦ In XHTML

 ✦ In XML

 ✦ In a relational database

The database approach is most common because it’s incredibly powerful
and flexible. Normally programmers use a PHP program to request informa-
tion from a Web page, and then use this information to prepare a request for
the database in a special language called SQL (Structured Query Language).
The data request is passed to the database management system, which
returns some kind of result set to the PHP program. The PHP program then
typically builds an HTML page and passes the page back to the browser.

Working with XML Data

51_9780470537558-bk07ch06.indd 85451_9780470537558-bk07ch06.indd 854 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 6

W
o

rk
in

g
 w

ith
 A

J
A

X

D
a

ta

855

The process can be easier when you use AJAX, because the PHP program
doesn’t have to create an entire Web page. All that really needs to be
passed back to the JavaScript program is the results of the data query. The
examples in this chapter have created XHTML snippets as their output, but
you often want to make your server-side programs a little more generic so
that the data can be used in a number of different ways. Normally, the data
is returned using a special data format so that the JavaScript program can
easily manage the data.

Review of XML
The XML format has become an important tool for encapsulating data for
transfer between the client and the server. You’re already familiar with XML,
because XHTML is simply HTML following the stricter XML standard.

XML is much more than XHTML. XML can actually be used to store any kind
of data. For example, take a look at the following file (pets.xml):

<?xml version=”1.0” encoding=”utf-8”?>
<pets>
 <pet>
 <animal>cat</animal>
 <name>Lucy</name>
 <breed>American Shorthair</breed>
 <note>She raised me</note>
 </pet>
 <pet>
 <animal>cat</animal>
 <name>Homer</name>
 <breed>unknown</breed>
 <note>Named after a world-famous bassoonist</note>
 </pet>
 <pet>
 <animal>dog</animal>
 <name>Muchacha</name>
 <breed>mutt</breed>
 <note>One of the ugliest dogs I’ve ever met</note>
 </pet>
</pets>

If you look over pets.xml, you can see that it looks a lot like HTML. HTML/
XHTML tags are very specific (only a few are legal), but XML tags can be any-
thing, as long as they follow a few simple (but familiar) rules:

 1. Begin with a doctype.

 Formal XML declarations often have doctypes as complex as the XHTML
doctype definition, but basic XML data typically uses a much simpler
definition:

 <?xml version=”1.0” encoding=”utf-8”?>

Working with XML Data

51_9780470537558-bk07ch06.indd 85551_9780470537558-bk07ch06.indd 855 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

856

 Anytime you make your own XML format (as I’m doing in this example),
you can use this generic doctype.

 2. Create a container for all elements.

 The entire structure must have one container tag. I’m using pets as my
container. If you don’t have a single container, your programs will often
have trouble reading the XML data.

 3. Build your basic data nodes.

 In my simple example, each pet is contained inside a pet node. Each pet
has the same data elements (but that is not a requirement).

 Tags are case sensitive. Be consistent in your tag names. Use camel-case
and single words for each element.

 4. Add attributes as needed.

 You can add attributes to your XML elements just like the ones in
XHTML. As in XHTML, attributes are name/value pairs separated by an
equals sign (=), and the value must always be encased in quotes.

 5. Nest elements as you do in XHTML.

 Be careful to carefully nest elements inside each other like you do with
XHTML.

You can get an XML file in a number of ways:

 ✦ Most databases can export data in XML format.

 ✦ More often, a PHP program reads data from a database and creates a
long string of XML for output.

For this simple introduction, I just wrote the XML file in a text editor and
saved it as a file.

You manipulate XML in the same way with JavaScript, whether it comes
directly from a file or is passed from a PHP program.

Manipulating XML with jQuery
XML data is actually familiar, because you can use the tools you used to
work with XHTML. Better, the jQuery functions normally used to extract
elements from an XHTML page work on XML data with few changes. All the
standard jQuery selectors and tools can be used to manage an XML file in
the same way that they manage parts of an HTML page.

The readXML.html page featured in Figure 6-4 shows a JavaScript/jQuery
program that reads the pets.xml file and does something interesting with
the data.

Working with XML Data

51_9780470537558-bk07ch06.indd 85651_9780470537558-bk07ch06.indd 856 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 6

W
o

rk
in

g
 w

ith
 A

J
A

X

D
a

ta

857

Figure 6-4:
The pet
names
came from
the XML file.

In this case, it extracts all the pet names and puts them in an unordered list.
Here’s the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=”content-type” content=”text/xml;

charset=utf-8” />

 <script type = ”text/javascript”
 src = ”jquery-1.4.2.min.js”></script>

 <script type = ”text/javascript”>
 //<![CDATA[

 $(init);

 function init(){
 $.get(”pets.xml”, processResult);
 } // end init

 function processResult(data, textStatus){
 //clear the output
 $(”#output”).html(””);
 //find the pet nodes...
 $(data).find(”pet”).each(printPetName);
 } // end processResult

 function printPetName(){
 //isolate the name text of the current node
 thePet = $(this).find(”name”).text();

 //add list item elements around it
 thePet = ”” + thePet + ”<\/li>”;

 //add item to the list

Working with XML Data

51_9780470537558-bk07ch06.indd 85751_9780470537558-bk07ch06.indd 857 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

858

 $(”#output”).append(thePet);
 } // end printPetName
 //]]>
 </script>

 <title>readXML.html</title>
</head>
<body>
<h1>Reading XML</h1>

<ul id = ”output”>
 This is the default output

</body>
</html>

Creating the HTML
Like most jQuery programs, this page begins with a basic HTML framework.
This one is especially simple: a heading and a list. The list has an ID (so that
it can be recognized through jQuery easily) and a single element (that will be
replaced by data from the XML file).

Retrieving the data
The init() function sets up an AJAX request:

 $(init);

 function init(){
 $.get(“pets.xml”, processResult);
 } // end init

This function uses the get() function to request data:

 1. Use the jQuery get() mechanism to set up the request.

 Because I’m just requesting a static file (as opposed to a PHP program),
the get() function is the best AJAX tool to use for setting up the
request.

 2. Specify the file or program.

 Normally you call a PHP program to retrieve data, but for this example,
I pull data straight from the pets.xml file because it’s simpler and it
doesn’t really matter how the XML was generated. The get() mecha-
nism can be used to retrieve plain text, HTML, or XML data. My program
will be expecting XML data, so I should be calling an XML file or a pro-
gram that produces XML output.

Working with XML Data

51_9780470537558-bk07ch06.indd 85851_9780470537558-bk07ch06.indd 858 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 6

W
o

rk
in

g
 w

ith
 A

J
A

X

D
a

ta

859

 3. Set up a callback function.

 When the AJAX is complete, specify a function to call. My example calls
the processResult function after the AJAX transmission is complete.

Processing the results
The processResult() function accepts two parameters: data and
textStatus:

 function processResult(data, textStatus){
 //clear the output
 $(“#output”).html(“”);
 //find the pet nodes...
 $(data).find(“pet”).each(printPetName);
 } // end processResult

The processResult() function does a few simple tasks:

 1. Clear the output ul.

 The output element is an unordered list. Use its html() method to
clear the default list item.

 2. Make a jQuery node from the data.

 The data (passed as a parameter) can be turned into a jQuery node.
Use $(data) for this process.

 3. Find each pet node.

 Use the find() method to identify the pet nodes within the data.

 4. Specify a command to operate on each element.

 Use the each() method to specify that you want to apply a function
separately to each of the pet elements. Essentially, this creates a loop
that calls the function once per element.

 The each mechanism is an example of a concept called an iterator,
which is a fundamental component of functional programming. (Drop
those little gems to sound like a hero at your next computer science
function. You’re welcome.)

 5. Run the printPetName function once for each element.

 The printPetName is a callback function.

Printing the pet name
The printPetName function is called once for each pet element in the XML
data. Within the function, the $(this) element refers to the current ele-
ment as a jQuery node:

Working with XML Data

51_9780470537558-bk07ch06.indd 85951_9780470537558-bk07ch06.indd 859 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

860

 function printPetName(){
 //isolate the name text of the current node
 thePet = $(this).find(“name”).text();

 //add list item elements around it
 thePet = “” + thePet + “”;

 //add item to the list
 $(“#output”).append(thePet);
 } // end printPetName

 1. Retrieve the pet’s name.

 Use the find() method to find the name element of the current pet
node.

 2. Pull the text from the node.

 The name is still a jQuery object. To find the actual text, use the text()
method.

 3. Turn the text into a list item.

 I just used string concatenation to convert the plain text of the pet name
into a list item.

 4. Append the pet name list item to the list.

 The append() method is perfect for this task.

Of course, you can do more complex things with the data, but it’s just a
matter of using jQuery to extract the data you want and then turning it into
HTML output.

Working with JSON Data
XML has been considered the standard way of working with data in AJAX
(in fact, the X in AJAX stands for XML). The truth is, another format is actu-
ally becoming more popular. While XML is easy for humans (and computer
programs) to read, it’s a little bit verbose. All those ending tags can get a bit
tedious and can add unnecessarily to the file size of the data block. While
XML is not difficult to work with on the client, it does take some getting
used to. AJAX programmers are beginning to turn to JSON as a data trans-
fer mechanism. JSON is nothing more than the JavaScript object notation
described in Book IV, Chapter 4 and used throughout this minibook.

Knowing JSON’s pros
JSON has a number of very interesting advantages:

 ✦ Data is sent in plain text. Like XML, JSON data can be sent in a plain-text
format that’s easy to transmit, read, and interpret.

Working with JSON Data

51_9780470537558-bk07ch06.indd 86051_9780470537558-bk07ch06.indd 860 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 6

W
o

rk
in

g
 w

ith
 A

J
A

X

D
a

ta

861

 ✦ The data is already usable. Client programs are usually written in
JavaScript. Because the data is already in a JavaScript format, it is ready
to use immediately, without the manipulation required by XML.

 ✦ The data is a bit more compact than XML. JavaScript notation doesn’t
have ending tags, so it’s a bit smaller. It can also be written to save even
more space (at the cost of some readability) if needed.

 ✦ Lots of languages can use it. Any language can send JSON data as a long
string of text. You can then apply the JavaScript eval() function on the
JSON data to turn it into a variable.

 ✦ PHP now has native support for JSON. PHP version 5.2 and later sup-
ports the json_encode() and json_decode() functions, which con-
vert PHP arrays (even very complex ones) into JSON objects and back.

 ✦ jQuery has a getJSON() method. This method works like the get() or
post() methods, but it’s optimized to receive a JSON value.

 If a program uses the eval() function to turn a result string into a JSON
object, there’s a potential security hazard: Any code in the string is treated
as JavaScript code, so bad guys could sneak some ugly code in there. Be
sure that you trust whoever you’re getting JSON data from.

The pet data described in pets.xml looks like this when it’s organized as a
JSON variable:

{
 “Lucy”: { “animal”: “Cat”,
 “breed”: “American Shorthair”,
 “note”: “She raised me”},
 “Homer”: { “animal”: “Cat”,
 “breed”: “unknown”,
 “note”: “Named after a world-famous bassoonist”},
 “Muchacha”: { “animal”: “Dog”,
 “breed”: “mutt”,
 “note”: “One of the ugliest dogs I’ve ever met”}
}

Note a couple of things:

 ✦ The data is a bit more compact in JSON format than it is in XML.

 ✦ You don’t need an overarching variable type (like pets in the XML data)
because the entire entity is one variable (most likely called pets).

JSON takes advantages of JavaScript’s flexibility when it comes to objects:

 ✦ An object is encased in braces: { }. The main object is denoted by a
pair of braces.

 ✦ The object consists of key/value pairs. In my data, I used the animal
name as the node key. Note that the key is a string value.

Working with JSON Data

51_9780470537558-bk07ch06.indd 86151_9780470537558-bk07ch06.indd 861 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

862

 ✦ The contents of a node can be another node. Each animal contains
another JSON object, holding the data about that animal. JSON nodes
can be nested (like XML nodes), giving the potential for complex data
structures.

 ✦ The entire element is one big variable. JavaScript can see the entire
element as one big JavaScript object that can be stored in a single vari-
able. This makes it quite easy to work with JSON objects on the client.

Reading JSON data with jQuery
As you might expect, jQuery has some features for simplifying the (already
easy) process of managing JSON data.

Figure 6-5 shows readJSON.html, a program that reads JSON data and
returns the results in a nice format.

Figure 6-5:
This
program
got the
data from
a JSON
request.

Here’s the complete code of readJSON.html:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>

Working with JSON Data

51_9780470537558-bk07ch06.indd 86251_9780470537558-bk07ch06.indd 862 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 6

W
o

rk
in

g
 w

ith
 A

J
A

X

D
a

ta

863

 <meta http-equiv=”content-type” content=”text/xml;
charset=utf-8” />

 <style type = ”text/css”>
 dt {
 font-weight: bold;
 float: left;
 width: 5em;
 margin-left: 1em;
 clear: left;
 }
 </style>
 <script type = ”text/javascript”
 src = ”jquery-1.4.2.min.js”></script>

 <script type = ”text/javascript”>
 //<![CDATA[

 $(init);

 function init(){
 $.getJSON(”pets.json”, processResult);
 } // end init

 function processResult(data){
 $(”#output”).text(””);
 for(petName in data){
 var pet = data[petName];
 $(”#output”).append(”<h2>” + petName + ”<h2>”);
 $(”#output”).append(”<dl>”);
 for (detail in pet){
 $(”#output”).append(” <dt>” + detail + ”<\/dt>”);
 $(”#output”).append(” <dd>” + pet[detail] + ”<\/

dd>”);
 } // end for
 $(”#output”).append(”<\/dl>”);

 } // end for
 } // end processResults

 //]]>
 </script>

 <title>readJSON.html</title>
</head>
<body>
<h1>Reading JSON</h1>

<div id = ”output”>
 This is the default output
</div>

</body>
</html>

Working with JSON Data

51_9780470537558-bk07ch06.indd 86351_9780470537558-bk07ch06.indd 863 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

864

Managing the framework
The foundation of this program is the standard XTML and CSS. Here are the
details:

 1. Build a basic XHTML page.

 Much of the work will happen in JavaScript, so an h1 and an output div
are all you really need.

 2. Put default text in the output div.

 Put some kind of text in the output div. If the AJAX doesn’t work, you’ll
see this text. If the AJAX does work, the contents of the output div will
be replaced by a definition list.

 3. Add CSS for a definition list.

 I print out each pet’s information as a definition list, but I don’t like the
default formatting for <dl>. I add my own CSS to tighten up the appear-
ance of the definitions. (I like the <dt> and <dd> on the same line of
output.)

Retrieving the JSON data
The jQuery library has a special AJAX function for retrieving JSON data. The
getJSON() function makes an AJAX call and expects JSON data in return:

 $(init);

 function init(){
 $.getJSON(“pets.json”, processResult);
 } // end init

It isn’t difficult to get JSON data with jQuery:

 1. Set up the standard init() function.

 In this example, I’m pulling the JSON data in as soon as the page has fin-
ished loading.

 2. Use the getJSON() function.

 This tool gets JSON data from the server.

 3. Pull data from pets.json.

 Normally you make a request to a PHP program, which does some kind
of database request and returns the results as a JSON object. For this
simple example, I’m just grabbing data from a JSON file I wrote with a text
editor, so I don’t have to write a PHP program. The client-side processing
is identical whether the data came from a straight file or a program.

Working with JSON Data

51_9780470537558-bk07ch06.indd 86451_9780470537558-bk07ch06.indd 864 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VII

Chapter 6

W
o

rk
in

g
 w

ith
 A

J
A

X

D
a

ta

865

 4. Specify a callback function.

 Like most AJAX methods, getJSON() allows you to specify a callback
function that is triggered when the data has finished transferring to the
client.

Processing the results
The data returned by a JSON request is already in a valid JavaScript format,
so all you need is some for loops to extract the data. Here’s the process:

 function processResult(data){
 $(“#output”).text(“”);
 for(petName in data){
 var pet = data[petName];
 $(“#output”).append(“<h2>” + petName + “<h2>”);
 $(“#output”).append(“<dl>”);
 for (detail in pet){
 $(“#output”).append(“ <dt>” + detail + “<\/dt>”);
 $(“#output”).append(“ <dd>” + pet[detail] +

 “<\/dd>”);
 } // end for
 $(“#output”).append(“<\/dl>”);

 } // end for
 } // end processResults

 1. Create the callback function.

 This function expects a data parameter (like most AJAX requests). In
this case, the data object contains a complete JSON object encapsulat-
ing all the data from the request.

 2. Clear the output.

 I replace the output with a series of definition lists. Of course, you can
format the output however you wish.

 $(“#output”).text(“”);

 3. Step through each petName in the list.

 This special form of the for loop finds each element in a list. In this
case, it gets each pet name found in the data element:

 for(petName in data){

 4. Extract the pet as a variable.

 The special form of for loop doesn’t retrieve the actual pets but rather
the key associated with each pet. Use that pet name to find a pet and
make it into a variable using an array lookup:

 var pet = data[petName];

Working with JSON Data

51_9780470537558-bk07ch06.indd 86551_9780470537558-bk07ch06.indd 865 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

866 Working with JSON Data

 5. Build a heading with the pet’s name.

 Surround the pet name with <h2> tags to make a heading and append
this to the output:

 $(“#output”).append(“<h2>” + petName + “<h2>”);

 6. Create a definition list for each pet.

 Begin the list with a <dl> tag. Of course, you can use whichever formatting
you prefer, but I like the definition list for this kind of name/value data:

 $(“#output”).append(“<dl>”);

 7. Get the detail names from the pet.

 The pet is itself a JSON object, so use another for loop to extract each
of its detail names (animal, breed, note):

 for (detail in pet){

 8. Set the detail name as the definition term.

 Surround each detail name with a <dt></dt> pair. (Don’t forget to
escape the slash character to avoid an XHTML validation warning.)

 $(“#output”).append(“ <dt>” + detail + “<\/dt>”);

 9. Surround the definition value with <dd></dd>.

 This provides appropriate formatting to the definition value:
 $(“#output”).append(“ <dd>” + pet[detail] + “<\/dd>”);

 10. Close the definition list.

 After the inner for loop is complete, you’re done describing one pet, so
close the definition list:

 $(“#output”).append(“ <dd>” + pet[detail] + “</dd>”);

51_9780470537558-bk07ch06.indd 86651_9780470537558-bk07ch06.indd 866 10/7/10 8:57 PM10/7/10 8:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Moving from Pages to Sites

52_9780470537558-pp08.indd 86752_9780470537558-pp08.indd 867 10/7/10 8:58 PM10/7/10 8:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

Chapter 1: Managing Your Servers .869

Understanding Clients and Servers ... 869
Creating Your Own Server with XAMPP ... 872
Choosing a Web Host .. 878
Managing a Remote Site .. 881
Naming Your Site ... 887
Managing Data Remotely .. 891

Chapter 2: Planning Your Sites .895

Creating a Multipage Web Site ... 895
Planning a Larger Site ... 896
Understanding the Client .. 896
Understanding the Audience ... 899
Building a Site Plan .. 901
Creating Page Templates .. 905
Fleshing Out the Project ... 913

Chapter 3: Introducing Content Management Systems.915

Overview of Content Management Systems ... 916
Previewing Common CMSs ... 917
Building Custom Themes .. 935

Chapter 4: Editing Graphics .941

Using a Graphic Editor .. 941
Introducing Gimp ... 942
Understanding Layers ... 952
Introducing Filters ... 954
Solving Common Web Graphics Problems ... 954

Chapter 5: Taking Control of Content .961

Building a “Poor Man’s CMS” with Your Own Code 961
Creating Your Own Data-Based CMS ... 967

52_9780470537558-pp08.indd 86852_9780470537558-pp08.indd 868 10/7/10 8:58 PM10/7/10 8:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Managing Your Servers

In This Chapter
✓ Understanding the client-server relationship

✓ Reviewing tools for client-side development

✓ Gathering server-side development tools

✓ Installing a local server with XAMPP

✓ Setting essential security settings

✓ Choosing a remote server

✓ Managing the remote servers

✓ Choosing and registering a domain name

Web pages are a complex undertaking. The basic Web page itself isn’t
too overwhelming, but Web pages are unique because they have

meaning only in the context of the Internet — a vastly new undertaking with
unique rules.

Depending where you are on your Web development journey, you may need
to understand the entire architecture, or you may be satisfied with a smaller
part. Still, you should have a basic idea of how the Internet works and how
the various technologies described in this book fit in.

Understanding Clients and Servers
A person using the Web is a client. You can also think of the user’s computer
or browser as the client. Clients on the Internet have certain characteristics:

 ✦ Clients are controlled by individual users. You have no control over
what kind of connection or computer the user has. It may not even be a
computer but may be instead a cellphone or (I’m not kidding) refrigerator.

 ✦ Clients have temporary connections. Clients typically don’t have per-
manent connections to the Internet. Even if a machine is on a perma-
nent network, most machines used as clients have temporarily assigned
addresses that can change.

 ✦ Clients might have wonderful resources. Client machines may have mul-
timedia capabilities, a mouse, and real-time interactivity with the user.

53_9780470537558-bk08ch01.indd 86953_9780470537558-bk08ch01.indd 869 10/7/10 8:58 PM10/7/10 8:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

870 Understanding Clients and Servers

 ✦ Clients are limited. Web browsers and other client-side software are
often limited so that programs accessed over the Internet can’t make
major changes to the local file system. For this reason, most client pro-
grams operate in a sort of “sandbox” to prevent malicious coding.

 ✦ Clients can be turned off without penalty. It doesn’t really cause any-
body else a problem if you turn off your computer. Generally, client
machines can be turned off or moved without any problems.

Servers are the machines that typically host Web pages. They have a much
different set of characteristics:

 ✦ Servers are controlled by server administrators. A server administrator
is responsible for ensuring that all data on the server is secure.

 ✦ Servers have permanent connections. The purpose of a server is to
accept requests from clients. For this reason, a server needs to have an
IP number permanently assigned to it.

 ✦ Servers usually have names, too. To make things easier for users,
server administrators usually register domain names to make their serv-
ers easier to find.

 ✦ Servers can access other programs. Web servers often talk to other pro-
grams or computers (especially data servers).

 ✦ Servers must be reliable. If a Web server stops working, anybody trying
to reach the pages on that server is out of luck. This is why Web servers
frequently run Unix or Linux because these operating systems tend to be
especially stable.

 ✦ Servers must have specialized software. The element that truly makes
a computer a server is the presence of Web server software. Although
several options are available, only two dominate the market: Apache and
Microsoft IIS.

Parts of a client-side development system
A development system is made up of several components. If you’re program-
ming on the client (using XHTML, CSS, and JavaScript), you need the follow-
ing tools:

 ✦ Web browsers: You need at least a couple of browsers so that you can
see how your programs behave in different ones. Firefox is especially
useful for Web developers because of its numerous available extensions.

 ✦ Browser extensions: Consider adding extensions to Firefox to improve
your editing experience. Web Developer, Firebug, and HTML Validator
are extremely helpful.

 ✦ Text editor: Almost all Web development happens with plain-text files.
A standard text editor should be part of your standard toolkit. I prefer

53_9780470537558-bk08ch01.indd 87053_9780470537558-bk08ch01.indd 870 10/7/10 8:58 PM10/7/10 8:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 1

M
a

n
a

g
in

g
 Y

o
u

r
S

e
rve

rs

871Understanding Clients and Servers

Notepad++ for Windows and prefer VI or Emacs for other operating
systems.

 ✦ Integrated Development Environment: Komodo Edit and Aptana Studio
are specialized text editors with added features for Web programming.
They understand all the main Web languages and have syntax help,
code coloring, and preview features. Using one of these tools can be
extremely helpful (both are free.)

For client-side development, you don’t necessarily need access to a server.
You can test all your programs directly on your own machine with no other
preparation. Of course, you’ll eventually want a server so that you can show
your pages to everyone.

The client-side development tools listed here are described in more detail in
Book I, Chapter 3.

Parts of a server-side system
When you start working on the server side (with PHP, MySQL, and AJAX),
you need a somewhat more complex setup. In addition to everything you
need for client-side development, you also need these items:

 ✦ A Web server: This piece of software allows users to request Web pages
from your machine. You must either sign on to a hosting service and
use its server or install your own. (I show you both techniques in this
chapter.) By far the most common server in use is Apache. Web server
software usually runs all the time in the background because you never
know when a request will come in.

 ✦ A server-side language: Various languages can be connected to Web
servers to allow server-side functionality. PHP is the language I chose
in this book because it has an excellent combination of power, speed,
price (free), and functionality. PHP needs to be installed on the server
machine, and the Web server has to be configured to recognize it. See
Book VI, Chapter 1 for a review of other server-side languages.

 ✦ A data server: Many of your programs work with data, and they need
some sort of application to deal with that data. The most common data
server in the open-source world is MySQL. This data package is free,
powerful, and flexible. The data server is also running in the background
all the time. You have to configure PHP to know that it has access to
MySQL.

 ✦ A mail server: If your programs send and receive e-mail, you need some
sort of e-mail server. The most popular e-mail server in the Windows
world is Mercury Mail, and Sendmail is popular in the world of Unix and
Linux. You probably won’t bother with this item on a home server, but
you should know about it when you’re using a remote host.

53_9780470537558-bk08ch01.indd 87153_9780470537558-bk08ch01.indd 871 10/7/10 8:58 PM10/7/10 8:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

872 Creating Your Own Server with XAMPP

 ✦ An FTP server: Sometimes, you want the ability to send files to your
server remotely. The FTP server allows this capability. Again, you proba-
bly don’t need this item for your own machine, but you definitely should
know about it when you use a remote host.

 ✦ phpMyAdmin: There’s a command-line interface to MySQL, but it’s lim-
ited and awkward. The easiest way to access your MySQL databases is
to use the phpMyAdmin program. Because it’s a series of PHP programs,
it requires a complete installation of PHP, MySQL, and Apache (but, nor-
mally, you install all these things together anyway).

Creating Your Own Server with XAMPP
If the requirements for a Web hosting solution seem intimidating, that’s
because they are. It’s much more difficult to set up a working server system
by hand than it is to start programming with it.

I don’t recommend setting up your own system by hand. It’s simply not
worth the frustration, because very good options are available.

XAMPP is an absolutely wonderful open-source tool. It has the following
packages built in:

 ✦ Apache: The standard Web server and the cornerstone of the package

 ✦ PHP: Configured and ready to start with Apache and MySQL

 ✦ MySQL: Also configured to work with Apache and PHP

 ✦ phpMyAdmin: A data management tool that’s ready to run

 ✦ Mercury Mail: A mail server

 ✦ FileZilla FTP server: An FTP server

 ✦ PHP libraries: A number of useful PHP add-ons, including GD (graphics
support), Ming (Flash support), and more

 ✦ Additional languages: Perl, another extremely popular scripting and
server language, and SQLite, another useful database package

 ✦ Control and configuration tools: A Control Panel that allows you to
easily turn various components on and off

This list is a description of the Windows version. The Mac and Linux ver-
sions have all the same types of software, but the specific packages vary.

Considering the incredible amount of power in this system, the download
is remarkably small. The installer is only 34MB. A copy is included on the
CD-ROM that accompanies this book.

53_9780470537558-bk08ch01.indd 87253_9780470537558-bk08ch01.indd 872 10/7/10 8:58 PM10/7/10 8:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 1

M
a

n
a

g
in

g
 Y

o
u

r
S

e
rve

rs

873Creating Your Own Server with XAMPP

XAMPP installation is pretty painless: Simply download the installer and
respond to all the default values.

 If you use Vista or Windows 7, you may want to change where the package
is installed because the program files directory causes problems for some
users.

Running XAMPP
After you install XAMPP, you can manage your new tools with the XAMPP
Control Panel. Figure 1-1 shows this program in action.

Figure 1-1:
XAMPP
Control
Panel
allows
you to turn
features on
and off.

Some components of XAMPP (PHP, for example) run only when they’re
needed. Some other components (Apache and MySQL) are meant to run con-
stantly in the background. Before you start working with your server, you
need to ensure that it’s turned on.

You can choose to run Apache and MySQL as a service, which means that
the program is always running in the background. This arrangement is con-
venient, but it slightly reduces the performance of your machine. I generally
turn Apache on and off as I need it and leave MySQL running as a service
because I have a number of other programs that work with MySQL.

 Leaving server programs open on your machine constitutes a security
hazard. Be sure to take adequate security precautions. See the section
“Setting the security level,” later in this chapter, for information on setting
up your security features.

53_9780470537558-bk08ch01.indd 87353_9780470537558-bk08ch01.indd 873 10/7/10 8:58 PM10/7/10 8:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

874 Creating Your Own Server with XAMPP

Testing your XAMPP configuration
Ensure that Apache and MySQL are running, and then open your Web
browser. Set the address to http://localhost, and you see a screen like
the one shown in Figure 1-2.

Figure 1-2:
The XAMPP
main page.

This page indicates that XAMPP is installed and working. Feel free to experi-
ment with the various items in the Demos section. Even though you may not
know yet what they do, you should know what some of their capabilities are.

Adding your own files
Of course, the point of having a Web server is to put your own files in it. Use
your file management tool to find the XAMPP directory in your file system.
Right under the XAMPP directory is the htdocs folder, the primary Web
directory. Apache serves only files that are in this directory or under it.
(That way, you don’t have to worry about your love letters being distributed
over the Internet.)

 All the files you want Apache to serve must be in htdocs or in a subdirec-
tory of it.

When you specified http://localhost as the address in your browser,
you were telling the browser to look on your local machine in the main

53_9780470537558-bk08ch01.indd 87453_9780470537558-bk08ch01.indd 874 10/7/10 8:58 PM10/7/10 8:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 1

M
a

n
a

g
in

g
 Y

o
u

r
S

e
rve

rs

875Creating Your Own Server with XAMPP

htdocs directory. You didn’t specify a particular file to load. If Apache isn’t
given a filename and it sees the file named index.html or index.php, it
displays that file, instead. So, in the default htdocs directory, the index.
php program is immediately being called. Although this program displays
the XAMPP welcome page, you don’t usually want that to happen.

Rename index.php to index.php.old or something similar. It’s still there
if you want it, but now there’s no index page, and Apache simply gives you a
list of files and folders in the current directory. Figure 1-3 shows my local
host directory as I see it through the browser.

Figure 1-3:
After
disabling
index.php,
I can see
a list of
files and
directories.

You typically don’t want users to see this ugly index in a production server,
but I prefer it in a development environment so that I can see exactly what’s
on my server. After everything is ready to go, I put together index.html or
index.php pages to generate more professional directories.

Generally, you want to have subdirectories to all your main projects. I added
a few others for my own use, including xfd, which contains all the code for
this book.

If you want to display the XAMPP welcome screen after you remove the
index.php program, simply point your browser to http://localhost/
xampp.

53_9780470537558-bk08ch01.indd 87553_9780470537558-bk08ch01.indd 875 10/7/10 8:58 PM10/7/10 8:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

876 Creating Your Own Server with XAMPP

Setting the security level
When you have a Web server and a data server running, you create some
major security holes. You should take a few precautions to ensure that
you’re reasonably safe:

 ✦ Treat your server only as a local asset. Don’t run a home installation of
Apache as a production server. Use it only for testing purposes. Use a
remote host for the actual deployment of your files. It’s prepared for all
the security headaches.

 ✦ Run a firewall. You should run, at an absolute minimum, the Windows
firewall that comes with all recent versions of Windows (or the equiva-
lent for your OS). You might also consider an open-source or commer-
cial firewall. Block incoming access to all ports by default and open
them only when needed. There’s no real need to allow incoming access
to your Web server. You only need to run it in localhost mode.

 The ports XAMPP uses for various tools are listed on the security screen
shown in Figure 1-4.

 ✦ Run basic security checks. The XAMPP package has a handy security
screen. Figure 1-4 shows the essential security measures. I’ve already
adjusted my security level, so you’ll probably have a few more “red
lights” than I do. Click the security link at the bottom of the page for
some easy-to-use security utilities.

Figure 1-4:
The XAMPP
Security
panel
shows a few
weaknesses.

53_9780470537558-bk08ch01.indd 87653_9780470537558-bk08ch01.indd 876 10/7/10 8:58 PM10/7/10 8:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 1

M
a

n
a

g
in

g
 Y

o
u

r
S

e
rve

rs

877Creating Your Own Server with XAMPP

 ✦ Change the MySQL root password. If you haven’t already done so,
use the security link to change the MySQL root password, as shown in
Figure 1-5. (I show an alternative way to change the password in Book
VI, Chapter 1.)

Figure 1-5:
Changing
the MySQL
root
password.

 ✦ Add an XAMPP Directory password. Type a password into the lower
half of the security form to protect your xampp directory from unau-
thorized access. When you try to go to the xampp directory, you’re
prompted for this password.

Security is always a compromise. When you add security, you often intro-
duce limits in functionality. For example, if you changed the root password
for MySQL, some of the examples (and phpMyAdmin) may not work any
more because they’re assuming that the password is blank. You often have
to tweak. See Chapter 1 in Book VI for a complete discussion of password
issues in MySQL and phpMyAdmin.

Compromising between functionality and security
You may be shocked that my example still has a couple of security holes. It’s
true, but it’s not quite as bad as it looks:

53_9780470537558-bk08ch01.indd 87753_9780470537558-bk08ch01.indd 877 10/7/10 8:58 PM10/7/10 8:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

878 Choosing a Web Host

 ✦ The firewall is the first line of defense. If your firewall blocks external
access to your servers, the only real danger your system faces is from
yourself. Begin with a solid firewall and ensure that you don’t allow
access to port 80 (Apache) or port 3306 (MySQL) unless you’re abso-
lutely sure that you have the appropriate security measures in place.

 ✦ I left phpMyAdmin open. phpMyAdmin needs root access to the
MySQL database, so if anybody can get to phpMyAdmin through the
Web server, they can get to my data and do anything to it. Because my
firewall is blocking port 80 access, you can’t get to phpMyAdmin from
anything other than localhost access, and it’s not really a problem.

 ✦ I’m not running a mail or FTP server on this machine. The security
system isn’t sure whether my FTP or mail system is secure, but because
I’m not running them, it isn’t really a problem.

Choosing a Web Host
Creating a local server is useful for development purposes because you can
test your programs on a server you control, and you don’t need a live con-
nection to the Internet.

However, you should avoid running a production server on your own computer,
if you can. A typical home connection doesn’t have the guaranteed IP number
you need. Besides, you probably signed an agreement with your broadband pro-
vider that you won’t run a public Web server from your account.

This situation isn’t really a problem, because thousands of Web hosting ser-
vices are available that let you easily host your files. You should consider an
external Web host for these reasons:

 ✦ The host, not you, handles the security headaches. This reason alone
is sufficient. Security isn’t difficult, but it’s a never-ending problem
(because the bad guys keep finding new loopholes).

 ✦ The remote server is always up. Or, at least, it should be. The dedicated
Web server isn’t doing anything other than serving Web pages. Your
Web pages are available, even if your computer is turned off or doing
something else.

 ✦ A dedicated server has a permanent IP address. Unlike most home con-
nections, a dedicated server has an IP address permanently assigned to
it. You can easily connect a domain name to a permanent server so that
users can easily connect.

 ✦ Ancillary services usually exist. Many remote hosting services offer
other services, like databases, FTP, and e-mail hosting.

 ✦ The price can be quite reasonable. Hosting is a competitive market,
which means that some good deals are available. Decent hosting is avail-
able for free, and improved services are extremely reasonable.

53_9780470537558-bk08ch01.indd 87853_9780470537558-bk08ch01.indd 878 10/7/10 8:58 PM10/7/10 8:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 1

M
a

n
a

g
in

g
 Y

o
u

r
S

e
rve

rs

879Choosing a Web Host

You can find a number of free hosting services at sites like http://free-
webhosts.com.

Finding a hosting service
When looking for a hosting service, ask yourself these questions:

 ✦ Does the service have limitations on the types of pages you can host?
Some servers are strictly for personal use, and some allow commercial
sites. Some have bandwidth restrictions and close your site if you draw
too many requests.

 ✦ How much space are you given? Ordinary Web pages and databases
don’t require a huge amount of space, but if you do a lot of work
with images, audio, and video files, your space needs will increase
dramatically.

 ✦ Is advertising forced on you? Many free hosting services make money
by forcing advertisements on your pages. This practice can create a
problem because you might not always want to associate your page with
the company being advertised. (A page for a day care center probably
should not have advertisements for dating services, for example.)

 ✦ Which scripting languages (if any) are supported? Look for PHP support.

 ✦ Does the host offer prebuilt scripts? Many hosts offer a series of pre-
built and preinstalled scripts. These can often include content manage-
ment systems, message boards, and other extremely useful tools. If you
know that you’re going to need Moodle, for example (a course manage-
ment tool for teachers), you can look for hosting services that have it
built in. (If a tool you want isn’t there, make sure you have FTP access so
you can install it yourself.)

 ✦ Does the host provide access to a database? Is phpMyAdmin support
provided? How many databases do you get? What is the size limit?

 ✦ What sort of Control Panel does the service provide? Does it allow
easy access to all the features you need?

 ✦ What type of file management is used? For example, determine how
you upload files to the system. Most services use browser-based upload-
ing. This system is fine for small projects, but it’s quite inconvenient if
you have a large number of files you want to transfer. Look for FTP sup-
port to handle this.

 ✦ Does the host have an inactivity policy? Many free hosting services
automatically shut down your site if you don’t do anything with it (usu-
ally after 30 to 90 days of inactivity). Be sure you know about this policy.

 ✦ Do you have assurances that the server will remain online? Are back-
ups available? What sort of support is available? Note that these ser-
vices are much more likely on a paid server.

53_9780470537558-bk08ch01.indd 87953_9780470537558-bk08ch01.indd 879 10/7/10 8:58 PM10/7/10 8:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

880 Choosing a Web Host

 ✦ How easily can you upgrade if you want? Does a particular hosting
plan meet your needs without being too expensive?

 ✦ Does the service offer you a subdomain, and can you register your
own? You may also want to redirect a domain that you didn’t get
through the service. (See the section “Naming Your Site,” later in this
chapter, for information on domain names.)

 ✦ What kind of support is available? Most hosting services have some
kind of support mechanism with e-mail or ticket systems. Some hosts
offer live chat, and some have telephone support. Talking to a real
human in real time can be extremely helpful, and this is often worth
paying for.

Connecting to a hosting service
The sample pages for this book are hosted on Freehostia.com, an excellent,
free hosting service. You can find many great hosting services, but the rest
of the examples in this chapter use Freehostia. I chose this service for the
examples because

 ✦ Its free account is terrific. At the time of this writing, the features of
the free account at Freehostia are as good as they are at many paid
accounts.

 ✦ The pages have no forced advertising. Freehostia doesn’t place any ads
on your pages (a major selling point for me).

 ✦ PHP, phpMyAdmin, and MySQL are supported — all on the free
account. Often, you have to upgrade to a paid service to get these
features.

 ✦ You get enough space to start with. The free account comes with
250MB of space. This amount is fine for ordinary Web pages, PHP, and
database needs. You need more, though, if you do a lot of image or
video hosting.

 ✦ You can have a subdomain for free. Even if your site doesn’t have a
domain name, you can choose a subdomain so that your site has a rec-
ognizable address, like http://myStuff.freehostia.com.

 ✦ It has a good list of script installers. It comes with a nice batch of
scripts that you can install effortlessly.

 ✦ The upgrade policy is reasonable. Freehostia makes money on commer-
cial Web hosting. It offers an excellent free service that, ideally, gets you
hooked so that you then upgrade to a commercial plan. It has a number
of good upgrade packages for various sizes of businesses.

53_9780470537558-bk08ch01.indd 88053_9780470537558-bk08ch01.indd 880 10/7/10 8:58 PM10/7/10 8:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 1

M
a

n
a

g
in

g
 Y

o
u

r
S

e
rve

rs

881Managing a Remote Site

 ✦ You get a nice batch of extras. The free service comes with FTP and
e-mail support and also a MySQL database.

 ✦ Customer support is excellent. Most free hosting services offer no
customer support. Freehostia provides good support, even to the free
services. (I asked a couple of questions before anyone there knew that I
was writing this book, and I was impressed with the speed and reliability
of the responses.)

Choose whichever hosting service works for you. If you find a free hosting
service that you really like, upgrade to a paid service. Hosting is a reasonably
cheap commodity, and a quality hosting service is well worth the investment.

Managing a Remote Site
Obviously, having a hosting service isn’t much fun if you don’t have pages
there. Fortunately, there are a lot of ways to work with your new site.

Using Web-based file tools
Most of the time, your host has some sort of Control Panel that looks like the
one shown in Figure 1-6.

Figure 1-6:
This Control
Panel
allows you
to manage
your site
remotely.

53_9780470537558-bk08ch01.indd 88153_9780470537558-bk08ch01.indd 881 10/7/10 8:58 PM10/7/10 8:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

882 Managing a Remote Site

There’s usually some sort of file management tool that might look like the
one shown in Figure 1-7.

Figure 1-7:
This file
management
tool allows
you to
manipulate
the files on
your system.

In this particular case, all my Web files are in the www/aharrisbooks.net
directory, so I click to see them. Figure 1-8 shows what you might see in an
actual directory.

This page allows you to rename, upload, and edit existing files and change
file permissions.

You can create or edit files with a simple integrated editor: build a new file
with the Create File button. Type a filename into the text area and click the
button. You can also click the edit button next to a file, and the file will open
in the editor. In either case, the text editor shown in Figure 1-9 appears.

You can write an entire Web site using this type of editor, but the Web-based
text editing isn’t helpful, and it’s kind of awkward. More often, you create
your files on your own XAMPP system and upload them to the server
when they’re basically complete. Use server-side editing features for quick
fixes only.

53_9780470537558-bk08ch01.indd 88253_9780470537558-bk08ch01.indd 882 10/7/10 8:58 PM10/7/10 8:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 1

M
a

n
a

g
in

g
 Y

o
u

r
S

e
rve

rs

883Managing a Remote Site

Figure 1-8:
Now, you
can see
some files
here.

Figure 1-9:
The hosting
service has
a limited
text editor.

53_9780470537558-bk08ch01.indd 88353_9780470537558-bk08ch01.indd 883 10/7/10 8:58 PM10/7/10 8:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

884 Managing a Remote Site

Understanding file permissions
Most hosting services use Linux or Unix. These operating systems have a
more sophisticated file permission mechanism than the Windows file system
does. At some point, you may need to manipulate file permissions.

Essentially, the universe is divided into three populations: Yourself, your
group, and everybody else. You can allow each group to have different kinds
of permission for each file. Each of the permissions is a Boolean (true or
false) value:

 ✦ Read permission: The file can be read. Typically, you want everybody
to be able to read your files, or else you wouldn’t put them on the Web
server.

 ✦ Write permission: The file can be written, changed, and deleted.
Obviously, only you should have the ability to write to your files.

 ✦ Execute permission: Indicates that the file is an executable program or
a directory that can be passed through. Normally, none of your files is
considered executable, although all your directories are.

Using FTP to manage your site
Most of the work is done on a local machine and then sent to the server in
a big batch. (That’s how I did everything in this book.) The standard Web-
based file management tools are pretty frustrating when you want to effi-
ciently upload a large number of files.

Permissions are typically treated as binary
numbers: 111 means “read, write, execute.”
This (111 value) is also a 7 permission because
111 binary translates to 7 in base ten (or base
eight, but let’s skip that detail for now).

A permission is read as three digits, each one a
number indicating the permissions, so 644 per-
mission means rw- r-- r--. This example

can be translated as “The owner should be
able to read and write this file. Everyone else
can read it. Nobody can execute it.”

If you don’t understand this concept, don’t
worry about it. The guidelines are very simple:
Make sure that each of your files has 644 per-
mission and that each directory has 755 per-
mission. That’s all you really need to know.

What’s with all the permissions?

53_9780470537558-bk08ch01.indd 88453_9780470537558-bk08ch01.indd 884 10/7/10 8:58 PM10/7/10 8:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 1

M
a

n
a

g
in

g
 Y

o
u

r
S

e
rve

rs

885Managing a Remote Site

Fortunately, most hosts have the FTP (File Transfer Protocol) system avail-
able. FTP is a client/server mechanism for transferring files efficiently. To
use it, you may have to configure some sort of FTP server on the host to find
out which settings, username, and password you should use. Figure 1-10
shows the Freehostia Control Panel with this information displayed.

Figure 1-10:
Configuring
the FTP
server.

You also need an FTP client. Fortunately, many free clients are available. I
like FireFTP, for a number of reasons:

 ✦ It’s free and open source. That’s always a bonus.

 ✦ It works as a Firefox plugin. I always know where it is.

 ✦ It’s easy to use. It feels just like a file manager.

Figure 1-11 shows FireFTP running in my browser.

53_9780470537558-bk08ch01.indd 88553_9780470537558-bk08ch01.indd 885 10/7/10 8:58 PM10/7/10 8:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

886 Managing a Remote Site

Figure 1-11:
FireFTP is
a complete
FTP
program
that runs
inside
Firefox.

If you want to connect to your server with FTP, follow these steps:

 1. Look up the configuration settings.

 You may have to dig around in the server documentation, but you
should find the server name, username, and password to access your
server. Sometimes, you have to configure these elements yourself.

 2. Create a profile for your server.

 Use the Manage Accounts feature to create a profile using the FTP set-
tings. Figure 1-12 shows a profile for my aharrisbooks account.

 3. Connect to the remote server.

 FTP programs look a lot like the file explorer you might have on your
machine, except that they usually have two file panels. The left panel
represents the files on your local system, and the right panel shows files
on the remote system.

 4. Navigate to the directories you’re interested in.

 If you want to move a file from the local system to the remote one, use
the two file explorers to find the appropriate directory on each system.

53_9780470537558-bk08ch01.indd 88653_9780470537558-bk08ch01.indd 886 10/7/10 8:58 PM10/7/10 8:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 1

M
a

n
a

g
in

g
 Y

o
u

r
S

e
rve

rs

887Naming Your Site

Figure 1-12:
The profile
editor for
FireFTP.

 5. Drag the file to transfer it.

 FireFTP automatically determines the type of transfer you need to make.

 6. Wait for the transfer to complete.

 It usually takes some time to transfer a large number of files. Be sure the
transfer is complete before you close the FTP window.

 7. Manipulate remote files.

 You can right-click on the remote file system to display a context menu.
This menu has commands for changing permissions, creating directo-
ries, and performing other handy tasks.

 FTP is a completely unsecure protocol. Anything you transfer with FTP is
completely visible to any bad guys sniffing the Internet. For this reason,
some servers use a different protocol: Secure FTP (SFTP). FireFTP supports
this and other protocols your server might use.

Naming Your Site
After you have a site up and running, you need to give it an address that
people can remember. The Domain Name System (DNS) is sort of an address
book of the entire Internet. DNS is the mechanism by which you assign a
name to your site.

Understanding domain names
Before creating a domain name, you should understand the basics of how
this system works:

53_9780470537558-bk08ch01.indd 88753_9780470537558-bk08ch01.indd 887 10/7/10 8:58 PM10/7/10 8:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

888 Naming Your Site

 ✦ Every computer on the Internet has an IP (Internet Protocol) address.
When you connect to the Internet, a special number is assigned to your
computer. This IP address uniquely identifies your computer. Client
machines don’t need to keep the same address. For example, my note-
book has one address at home and another at work. The addresses are
dynamically allocated. A server needs a permanent address that doesn’t
change.

 ✦ IP addresses are used to find computers. Any time you request a Web
page, you’re looking for a computer with a particular IP address. For
example, the Google IP address is 66.102.9.104. Type it into your
browser address bar, press Enter, and you see the Google main page.

 ✦ DNS names simplify addressing. IP numbers are too confusing for
human users. The Domain Name System (DNS) is a series of databases
connecting Web site names with their associated IP numbers. When you
type http://www.google.com, for example, the DNS system looks
up the text www.google.com and finds the computer with the associ-
ated IP.

 ✦ You have to register a DNS name. Of course, to ensure that a particular
name is associated with a page, you need to register that relationship.

Registering a domain name
In this section, I show you how to register a domain using Freehostia.com.
Check the documentation on your hosting service. Chances are that the
main technique is similar, even if the details are different.

To add a domain name to your site, follow these steps:

 1. Log in to the service.

 Log in to your hosting service administration panel. You usually see a
Control Panel something like the one shown in Figure 1-13.

 2. Find the domain manager.

 In Freehostia, the domain manager is part of the regular administration
panel.

 3. Pick a subdomain.

 In a free hosting service, the main domain (freehostia.com, for
example) is often chosen for you. Sometimes, you can set a subdomain
(like mystuff.freehostia.com) for free. The page for managing this
process might look like Figure 1-14.

53_9780470537558-bk08ch01.indd 88853_9780470537558-bk08ch01.indd 888 10/7/10 8:58 PM10/7/10 8:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 1

M
a

n
a

g
in

g
 Y

o
u

r
S

e
rve

rs

889Naming Your Site

Figure 1-13:
This Control
Panel
shows all
the options,
including
domain and
subdomain
tools.

Figure 1-14:
Use this
page to
create a
subdomain
for your
account.

53_9780470537558-bk08ch01.indd 88953_9780470537558-bk08ch01.indd 889 10/7/10 8:58 PM10/7/10 8:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

890 Naming Your Site

 4. Look for a domain search tool.

 Often, you have a tool, like the one shown in Figure 1-15, that allows you
to search for a domain.

 5. Search for the domain name you want.

 You can type a domain name to see whether it’s available.

Figure 1-15:
I’m
searching
for aharris
books.net —
it seems
like a good
domain
name!

 6. If the domain name is available to register and you want to own it,
purchase it immediately.

 If a domain is available to transfer, it means that somebody else prob-
ably owns it.

 Don’t search for domains until you’re ready to buy them. Unscrupulous
people on the Web look for domains that have been searched and then
buy them immediately, hoping to sell them back to you at a higher price.
If you search for a domain name and then go back the next day to buy it,
you often find that it’s no longer available and must be transferred. I’ve
also seen people offer to sell you a domain they do not own, buy it up,
and sell it at a huge markup.

53_9780470537558-bk08ch01.indd 89053_9780470537558-bk08ch01.indd 890 10/7/10 8:58 PM10/7/10 8:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 1

M
a

n
a

g
in

g
 Y

o
u

r
S

e
rve

rs

891Managing Data Remotely

 7. Register the domain.

 The domain-purchase process involves registering yourself as the
domain owner. Figure 1-16 shows a typical form for this transaction.
WHOIS information provides your information to people inquiring about
the domain name.

Figure 1-16:
Registering
the domain
name.

 8. Wait a day or two.

 Your new domain name won’t be available immediately. It takes a couple
of days for the name to be registered everywhere.

 9. Remember to renew your domain registration.

 Domain-name registration isn’t expensive (typically about $10 per year),
but you must renew it or risk losing it.

Managing Data Remotely
Web sites often work with databases. Your hosting service may have fea-
tures for working with MySQL databases remotely. You should understand

53_9780470537558-bk08ch01.indd 89153_9780470537558-bk08ch01.indd 891 10/7/10 8:58 PM10/7/10 8:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

892 Managing Data Remotely

how this process works because it’s often slightly different from working
with the database on your local machine.

Creating your database
Often, a tool like the one shown in Figure 1-17 allows you to pick a defined
database or create a new one.

Figure 1-17:
You often
have to
create a
database
outside of
phpMy
Admin.

This database creation step happens because you don’t have root access
to MySQL. (If everybody had root access, chaos would ensue.) Instead,
you usually have an assigned username and database name enforced by the
server. On Freehostia, all database names begin with the username and an
underscore. To create a new database, you need to provide a database name
and a password. Usually, a MySQL user is created with the same name as the
database name.

After you create the database, you can select it to work with the data in
MySQL. Figure 1-18 shows the MySQL screen for my database on Freehostia.

53_9780470537558-bk08ch01.indd 89253_9780470537558-bk08ch01.indd 892 10/7/10 8:58 PM10/7/10 8:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 1

M
a

n
a

g
in

g
 Y

o
u

r
S

e
rve

rs

893Managing Data Remotely

Figure 1-18:
phpMy
Admin is
just like
the one on
your home
machine!

If you look carefully, you see that Freehostia is still using MySQL 4.
Therefore, not all SQL scripts in this book work correctly. The only signifi-
cant problem is views because this feature wasn’t included in MySQL 4. I
include a version of the buildHero4.sql script on the CD-ROM that elimi-
nates all references to views. Otherwise, the script is the same.

You can see from Figure 1-18 that phpMyAdmin is somewhat familiar if you
read Book VI. Often, public servers remove the Privileges section because
you aren’t logged in as root. Everything else is basically the same. See Book
VI for details on how to use phpMyAdmin to work with your databases.

Finding the MySQL server name
Throughout Book VI, I assume that the MySQL server is on the same physi-
cal machine as the Web server. This situation is common in XAMPP installa-
tions, but commercial servers often have separate servers for data. You may
have to dig through the documentation or find a Server Statistics section to
discover how your PHP programs should refer to your server.

53_9780470537558-bk08ch01.indd 89353_9780470537558-bk08ch01.indd 893 10/7/10 8:58 PM10/7/10 8:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

894 Managing Data Remotely

By far the biggest problem when moving your programs to a remote server
is figuring out the new connection. Make sure that you know the right combi-
nation of server name, username, and password. Test on a simple PHP appli-
cation before working on a complex one.

53_9780470537558-bk08ch01.indd 89453_9780470537558-bk08ch01.indd 894 10/7/10 8:58 PM10/7/10 8:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Planning Your Sites

In This Chapter
✓ Planning multipage Web sites

✓ Working with the client

✓ Analyzing the audience

✓ Building a site plan

✓ Creating XHTML and CSS templates

✓ Fleshing out the project

At some point, your Web efforts begin to grow. Rather than think about
single Web documents, you begin to build more complex systems.

Most real-life Web problems require a lot more than a single page to do
the work. How do you make the transition to a site with many different but
interconnected pages? How do you think through the process of creating a
site that serves a specific purpose?

You might even be thinking about doing commercial Web development work. If
so, it’s definitely time to think about how to put together a plan for a customer.

Creating a Multipage Web Site
A complete Web site has these characteristics:

 ✦ A consistent theme: All the pages in a Web site should be about
something — a product, a shop, a hobby. It doesn’t matter much what
the theme is, but the pages should be unified around it.

 ✦ Consistent design: The site should have a unified color scheme. All
pages should have the same (or similar) layout, and the font choices
and images should all use a similar style.

 ✦ A navigation scheme: Users must have a clear method to move around
from page to page. The organization of the pages and their relationships
should be clear.

 ✦ A common address: Normally, all pages in a site are on the same server
and have a common DNS name so that they’re easy to distinguish.

Obviously, the skills of Web design are critical to building a Web site, but a
broader skill set is required when creating something larger than individual
pages.

54_9780470537558-bk08ch02.indd 89554_9780470537558-bk08ch02.indd 895 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

896 Planning a Larger Site

If you’re starting to build a more complicated Web site, you need to have a
plan, or else you won’t succeed. This plan is even more important if you’re
building a site for somebody else.

Planning a Larger Site
Here are some questions you need to ask yourself when designing a larger
Web site:

 ✦ What’s the point of the site? The site doesn’t have to be serious, but it
does have to have a theme. If you don’t know what your site is about,
neither do your users (and they’ll leave in a hurry).

 ✦ Who am I talking to? Web sites are a form of communication, and you
can’t communicate well if you don’t understand your audience. Who is
the primary target audience for this site?

 ✦ Which resources do I have available? Resources involve a lot more
than money (but it helps). How much time do you have? Do you have
access to a solid technical framework? Can you get help if you need it?
Do you have all the copy and raw materials?

 ✦ What am I trying to say? Believe it or not, this question often poses a
huge problem. Somebody says, “I need a Web site.” When you ask what
she wants on the site, she says, “Oh, lots of things.” When you try to
pin down the answers, though, people often don’t know what they want
their Web site to say.

 ✦ What are the visual design constraints? If you’re building a page for a
small business, it probably has some kind of visual identity (through
brochures or signage, for example). The business owner often wants you
to stick with the company’s current branding, which may involve negoti-
ating with graphic artists or advertisers the business has worked with.

 ✦ Where will I put this thing? Does the client already have a domain
name? Will moving the domain name cause a problem? Does content
that’s already on the Web need to be moved? Do you already have host-
ing space and a DNS name in mind?

Understanding the Client
Often, a larger site is created at the behest of somebody else. Even if you’re
making a site for your own purposes, you should consider yourself a client.
If the project is going to be successful, you need to know a few things about
the client, as described in the following sections.

54_9780470537558-bk08ch02.indd 89654_9780470537558-bk08ch02.indd 896 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 2

P
la

n
n

in
g

 Y
o

u
r S

ite
s

897Understanding the Client

Ensuring that the client’s expectations are clear
The short answer to the question of whether a client’s expectations are clear
is, “Not usually.”

A client who truly understands the Internet and knows what it takes to real-
ize her vision for the site probably doesn’t need you. Most of the time, a
client’s own concepts of what should happen on the site are vague, at best.
Here are some introductory questions you can ask to get a sense of your cli-
ent’s expectations:

 ✦ What are you trying to say with this site? If the Web site has a single
message that can be boiled down to one phrase or sentence, find out
what that message is.

 ✦ Who are you trying to reach with this site? Determine who the client
expects to be the typical users of the site. Find out whether she expects
others and whether the site has more than one potential type of user.
(For example, customers and employees may need different things.)

 ✦ What problem is this site trying to solve? Sometimes, a Web site is envi-
sioned as a solution to a particular problem (getting the schedule online
or keeping an online newsletter updated, for example).

 ✦ What kind of design framework is already in place? Determine
whether the organization already has some sort of branding and design
strategy or whether you have freedom in this arena.

 ✦ What is the time constraint? Find out how quickly the client needs the
site completed. Does the client want the entire project at one time, or
can it be phased in?

 ✦ Do you already have a technical framework in place? Determine
whether the project needs to work with an existing database, Web
server, Web site, or domain name and whether you have complete
access to those resources.

 ✦ Are there security concerns? First ask whether you will be asked to
post data (personal information, credit card numbers, or Social Security
numbers, for example) on the Internet that shouldn’t be there. Run from
any project that requires you to work with this potentially dangerous
data, unless you’re extremely comfortable with security measures.

 ✦ How will you get the copy? Any professional Web developer can tell
you that the client usually promises to make the copy available imme-
diately but rarely delivers it without a lot of pleading. If the content is
available, it’s often incomplete or incorrect. You need to have some plan
for getting the material from the client, or else you cannot proceed past
a certain point.

54_9780470537558-bk08ch02.indd 89754_9780470537558-bk08ch02.indd 897 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

898 Understanding the Client

 ✦ Does the client have a remuneration strategy? If you will be paid for
your work, find out how you will be paid and whether it’s hourly or by
the project. If you have a business arrangement, treat it as such and
write out a contract. Even if the page is written for free for a friend, a
written contract is a good idea because you don’t want to ruin a friend-
ship over something as silly as a Web site.

Delineating the tasks
Building a Web site can involve a lot of different tasks. Your contract should
indicate which of these tasks is expected. This list describes the potential
scope of the project:

 ✦ Site layout: Determine which pages the site has and how they’re con-
nected to each other.

 ✦ XHTML coding: Some projects simply require XHTML coding and CSS.
Presumably, the copy has already been provided, and you simply need to
convert it to XHTML format. This work isn’t difficult, but it’s tedious. Use a
text editor with macro capability — after you create an XHTML template.

 ✦ XHTML template design: Devise an overall page design. The content
isn’t important here, but the general page design is the issue. This task
requires sample data and an editor. It’s normally done in conjunction
with CSS templating.

 ✦ CSS design: After you have an XHTML template or two (so that you
know the logical structure of the pages), you can work on the visual
design. Start with sketches on paper and maybe images from a paint pro-
gram. After you have a layout approved, write the CSS to implement it.

 ✦ Data design: If the project will have a database component, take some time
to analyze (and, often, rebuild) the data structure to follow the normalization
rules. Data work is difficult because it doesn’t have a visual result, yet it’s
critical to the overall site. This step is usually put off until the end, and that
decision often dooms Web projects. If you need data design, start it early.

 ✦ Data implementation: If the project has a data component, write and
test the SQL code to build the database, including tables, views, and
sample queries. You need time to write PHP code to connect the data-
base to the XHTML front end.

 ✦ Site integration and implementation: It takes some effort to fit all the
pieces back together and make them work. Usually, this process is ongo-
ing. The site needs to be set up on a production server and then tested
and launched.

 ✦ Testing: Testing your work with live users is critical. You can use formal
usability studies, but failing that, you still learn a lot by asking people to
use your system and watching them do it (with your mouth shut). This
method is the best way to see whether your assumptions are correct
and the site is doing what it needs to do.

54_9780470537558-bk08ch02.indd 89854_9780470537558-bk08ch02.indd 898 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 2

P
la

n
n

in
g

 Y
o

u
r S

ite
s

899Understanding the Audience

 For this discussion, I’m assuming you’re building the entire site manually. In
Chapter 3 of this minibook, I explain how to use content management sys-
tems to simplify the process of building large Web sites.

Understanding the Audience
Understanding your audience is one of the trickiest parts of Web planning.
You need to anticipate the audience in a number of ways, as described in the
following sections.

Determining whom you want to reach
Before you make a lot of design decisions, you need to think carefully about
the type of person you’re trying to reach in the Web site.

Try to anticipate the mindset that people have when they use a particular
site. For example, one of my students simultaneously worked on two sites:
one for a graduate program at a university and another for a spa and salon.
She had to think quite differently about the users of the two sites, which had
implications for how she approached each step of the process.

The graduate program page was part of a Web site for a university. The
university already had its own style and branding guidelines, official colors,
and a number of (evolving) standards. The potential users of this site were
graduate students seeking online degrees. The focus of this site was all busi-
ness. People were there to learn about the graduate program and set up
their schedules. They wanted information about classes, instructors, and
schedules, but they didn’t want anything that interfered with the problem at
hand. The writing was efficient and official, the color scheme was standard,
and the layout was also official.

The spa and salon page had an entirely different feel. The owner loves
design and spent long hours picking exactly the right paint color for the
walls in the physical space. She’s really happy with her brochure, and
although she’s not sure exactly what she wants, she knows when something
isn’t right. She wants to give her customers information about the salon, but
more importantly, she wants them to get a sense of how invigorating, relax-
ing, and feminine the experience of visiting her salon can be.

These two sites, although they require the same general technical skills,
demand vastly different visual and technical designs because the clients and
their users are vastly different.

Ironically, someone could simultaneously be a graduate student and a
patron of the salon, but the person would still have a different identity in
these different sites. If you’re going to a university site, in a student mindset,
you want quick, reliable information. If, after you sign up for classes, you’re
looking for a salon, you likely want to be pampered.

54_9780470537558-bk08ch02.indd 89954_9780470537558-bk08ch02.indd 899 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

900 Understanding the Audience

Web sites are experiences. The design of the site should reflect the experi-
ence you’re trying to give the user when he visits your site.

Finding out the user’s technical expertise
Understanding the user isn’t just an exercise in psychology. You also need to
estimate the users’ technical proficiency because it can have a major impact
on your site. Consider these issues for the typical user:

 ✦ Whether the user has broadband access: University students, hard-core
gamers, and Web developers often have high-speed Internet access, so
they don’t mind a page with lots of video, multimedia assets, and large
file sizes. (In fact, they may expect a page like this.) Lots of people still
use dialup connections. If your audience has slower connections, every
image creates a delay. Audio and video assets are completely unavail-
able to this group — and even make your site unattractive to them.

 ✦ Whether the user has a recent browser: You have no way to predict
which browser a user has, but think about whether your target audience
has a reason to install any of the current browsers. By and large, grand-
mothers use whichever browsers were on their machines when they
purchased them. (I do know some L337 H@XX0R grandmas, however.) If
most people in your audience are still using the AOL browser — believe
it or not, it’s still used a lot — using advanced CSS and JavaScript tricks
on your page may not be the best choice.

 ✦ Whether the user has a recent computer: As technical people, we tend
to assume that everyone else keeps up-to-date on technology. That’s not
necessarily an accurate assumption.

 ✦ Whether the user has certain proficiencies: If you include a Flash ani-
mation, for example, the user might not have the right version of Flash
installed. You have to decide whether it’s reasonable to expect the user
to install a plugin.

 ✦ Whether this will be a largely mobile application: These days, every
Web site should be considered a potential mobile site, but if a large per-
centage of your visitors will be using mobile devices to view your page,
this will have implications on your design.

This process isn’t about stereotyping, but you must consider the user while
you’re building a site. You want to match users’ expectations and capabili-
ties, if possible.

 Of course, you’re making assumptions here, and you may well be wrong. I
once did some work for a club for retired faculty members, and I based my
expectations on their being retired. I should have based my assumptions
on their being professors. And they let me have it! Be willing to adjust your

54_9780470537558-bk08ch02.indd 90054_9780470537558-bk08ch02.indd 900 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 2

P
la

n
n

in
g

 Y
o

u
r S

ite
s

901Building a Site Plan

expectations after you meet real users. (For professional work, you must
meet and watch real users use your site.)

Building a Site Plan
Often, the initial work on a major site involves creating a plan for the site design.
I like to do this step early because it helps me see the true scope of the project. A
site plan is an overview of a Web site. Normally, it’s drawn as a hierarchy chart.

I was asked to help design a Web site for an academic department at a major
university. The first question I asked was, “What do you want on the Web
site?” I wrote down everything on a whiteboard, with no thought of organiza-
tion. Figure 2-1 shows a (cleaned-up) version of that sketch.

Figure 2-1:
We need a
lot of stuff
on this site.
Good grief!

Department Page Needs

Course Info

other classes

sections

sections

sections
CS Club

System FAQ

Labs

Faculty

Staff

Visiting Us
Research

Networks

BioInformatics

Intelligent Systems

Projects

Internships

Work Requests

DE Support

Facilities

Advising

Events Calendar

Key Cards

MS

Requirements

Advising

ACS

Requirements

Advising

BS

Requirements

Advising

PhD

Requirements

Advising Seminars

Alumni/partners

SPAN/AF

699

N100

For all the sketches in this chapter, I used Dia, the open-source drawing tool.
An excellent tool for this kind of work, it’s included on the CD-ROM so that
you can play with it.

After all participants suggested everything they thought their site needed, I
shooed them out of the room. Using only paper and pencil, I created a more
organized sketch based on how I thought the information should be orga-
nized. My diagram looked like the one shown in Figure 2-2.

54_9780470537558-bk08ch02.indd 90154_9780470537558-bk08ch02.indd 901 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

902 Building a Site Plan

Figure 2-2:
This chart
shows an
organized
represen-
tation of the
data.

Course Info Degree Info

ACS

Requirements
Advising

BS

Requirements
Advising

MS

Requirements
Advising

PhD

Requirements
Advising

People Facilities Research

N100 Faculty

Staff

Advising

CS Club

Alumni/partners

Labs

System FAQ

Key Cards

Networks

Intelligent Systems

BioInformatics

Work Requests

DE Support

Projects/Internships

Events/Opportunities

Projects

Internships

Visiting Us

Events Calendar

Seminars

SPAN/AF

sections

sections

sections

other classes

699

Creating a site overview
Keep these suggestions in mind while creating a site overview diagram:

 ✦ Use the Law of Seven. This law suggests that people generally can’t
handle more than seven choices at a time. Try not to have more than
seven major segments of information at any level. Each of these can be
separated into as many as seven chunks, and each of these can have
seven chunks.

 Note: Even this book uses the Law of Seven! (Well, sorta — this book has
eight minibooks.) The monster you’re holding is too intimidating to look
at as just one book, but if you break it into smaller segments, it becomes
easier to manage. Clever, huh?

 ✦ Identify commonalities. While you look over the data, general group-
ings emerge. In the university example, I could easily see that we had a
lot of course data, degree information, information about faculty, and
research. I wanted to consider a few other topics that didn’t fit as well,
until I realized that they could be grouped as events and opportunities.

 ✦ Try to assign each topic to a group. If you read Book VI, you probably
recognize that I’m doing a form of data normalization here. This data
structure isn’t necessarily a formal one, but I’m using the same sort of
thinking, so it could be. Clearly, I’m using the principle of functional
dependency.

 ✦ Arrange a hierarchy. Group the topics from most general to most spe-
cific. For example, the term course info is very broad. N100 is a specific
course, and it may have many sections (specific date, time, and instruc-
tor combinations). Thus, it makes sense to group sections under N100
and to group N100 under courses.

54_9780470537558-bk08ch02.indd 90254_9780470537558-bk08ch02.indd 902 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 2

P
la

n
n

in
g

 Y
o

u
r S

ite
s

903Building a Site Plan

 ✦ Provide representative data. Not every single scrap of information is
necessary here. The point is to have enough data so you can see the
relationships among data.

 ✦ Keep in mind that this diagram does not represent the site design.
When I showed this diagram to people, many assumed that I was setting
up a menu structure, and they wanted a different kind of organization or
menu. That’s not the point yet. The purpose of this type of diagram is
to see how the data itself fits together. Of course, this diagram tends to
inform the page setup and the menu structure, but it doesn’t have to.

 ✦ Not each box is a page. It might be, but it doesn’t have to be. Later in
the process, you can decide how to organize the parts of the site. For
example, we decided to put all sections of N100 on one page with the
N100 information using AJAX.

Building this sort of site diagram is absolutely critical for larger sites, or else
you never really grasp the scope of the project. Have the major stakehold-
ers look it over to see whether it accurately reflects the information you’re
trying to convey.

Building the site diagram
The site diagram is a more specific version of the site overview. At this
point, you make a commitment about the particular pages you want in the
system and their organizational relationship. Figure 2-3 shows a site diagram
for the department site.

Figure 2-3:
Now, you
have a site
diagram
for the
department
site.

All pages not otherwise indicated use std tplt

Course Info
(course tplt)

N100

Main page
News

Greeting
(main tplt)

sections

other classes
sections

699
sections

Facilities

Labs
System FAQ

Key Cards

Work Requests

DE Support

Research

Networks

Intelligent Systems

BioInformatics

People

Faculty
Staff

Advising

CS Club

Alumni/partners

Projects/Internships

Events/Opportunities

Projects
Internships

Visiting Us

Events Calendar

Seminars

SPAN/AF

Degree Info

ACS
Requirements

Advising

BS
Requirements

Advising

MS
Requirements

Advising

PhD
Requirements

Advising

Department Site Plan

54_9780470537558-bk08ch02.indd 90354_9780470537558-bk08ch02.indd 903 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

904 Building a Site Plan

One idea that has been popular in Web design cir-
cles is the notion of semantic navigation, where
you set up your menu structure so that it reflects
the jobs people are trying to do, rather than
reflect the hierarchy of your sites. For example, a
university department site might have a menu for
common student activities, alumni, and faculty.

This idea can be quite helpful if done properly,
but don’t try to set up your entire site this way

because it involves too much duplication of
data. (Students and faculty both need course
information, but you don’t want to post that
in two different places.) Instead, set up your
site in a normalized way, and then put another
menu system on your site that allows users to
choose the section of the site they want based
on problems they’re trying to solve. Then, you
create the best of both worlds.

Semantic navigation

The site diagram is a bit different from the overview, for these reasons:

 ✦ Each box represents a page. Now, you have to make some decisions
about how the pages are organized. Determine at which level of the
overview you have separate pages. For example, are all the course sec-
tions on one page, or all the sections of N100? Does each section of each
course have a different page? These decisions will help you determine
which technologies to use in constructing the page.

 ✦ The site diagram still doesn’t need every page. If you have 30 classes,
you don’t need to account for each one if you know where they go and
they all have the same general purpose and design.

 ✦ The navigation structure should be clear. The hierarchy should give you
a clear navigation structure. (Of course, you can, and often should, add a
secondary navigation structure. See the sidebar “Semantic navigation.”)

 ✦ Name each box. Each page should have a name. These box names trans-
late to page titles and help you form a unified title system. This arrange-
ment is useful for your navigation scheme.

 ✦ Identify overall layout for each box. Generally, a site uses only a few lay-
outs. You have a standard layout for most pages. Often, the front page has
a different layout (for news and navigation information). You may have
specialty layouts, as well. For example, the faculty pages all have a specific
layout with a prominent image. Don’t plan the layout here — just identify it.

 ✦ Sort out the order. If the order of the pages matters, the site diagram
is the place to work it out. For example, I organized the degrees from
undergraduate to PhD programs.

The goal for this part of the site-planning process is to have a clear under-
standing of what each page requires. This information should make it easy

54_9780470537558-bk08ch02.indd 90454_9780470537558-bk08ch02.indd 904 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 2

P
la

n
n

in
g

 Y
o

u
r S

ite
s

905Creating Page Templates

for you to complete the data and visual design steps. The site diagram is an
absolutely critical document. After you have it approved, print it and tape it
to your monitor.

Creating Page Templates
If you’ve developed a site diagram, you should have a good feel for the over-
all requirements of the Web development project. You should know how
many layouts you need and the general requirements for each one. Your
next task is to think about the visual design. Here are some guidelines:

 ✦ Get help if you need it. Visual design is a skill that requires insight
and experience. If you “design like a programmer” (I sure do!), don’t be
afraid to get help from a person who has design sensibility. You still
need to translate the design into code, however.

 ✦ Identify unifying design goals. All pages on the site have certain char-
acteristics in common. Find out the overall color scheme, whether you
will have a logo, and whether all pages will have the same header and
retain the same fonts throughout.

 ✦ Identify a primary layout. Generally, a Web site requires one major
layout that’s repeated throughout the site. Often, the main page does
not use this primary layout, but most internal pages do. Determine, for
example, which broad design elements can be shared by most of the
pages, whether every page has a headline, whether you need columns,
and how important images are.

 ✦ Identify specialty designs. The main page is often a bit different from
the other pages because it serves as an overview to the site. Likewise, if
you will be repeating certain kinds of pages (the course pages and faculty
pages in my university example), you have to know how these designs
differ from the primary layout. Keep design elements as consistent as you
can because unity makes your job easier and ties the site pages together.

Sketching the page design
Do not write even a single line of code before sketching out some design
ideas. Figure 2-4 shows a page sketch for my sample site.

Your page sketch gives you enough information to create XHTML and CSS
code. It needs to start showing some detail, such as the following details:

 ✦ Draw out each element on the page. Any major page element (head-
lines, menus, columns) must be delineated.

 ✦ Include the class or ID identifier for each element. If you have a seg-
ment that will be used as a menu, name it “menu,” for example. If you

54_9780470537558-bk08ch02.indd 90554_9780470537558-bk08ch02.indd 905 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

906 Creating Page Templates

have a content area, identify that name now. Write all names directly on
the diagram so that you’re clear about what belongs where.

 ✦ Include all relevant style information. Describe every font, the width of
every element (including measurement units), the foreground and back-
ground colors (with hex codes), the background images (including sizes),
and anything else you might need in order to code CSS styles for the page.

 ✦ Build a page sketch following these guidelines for each page template
in your site. If you have three page designs, for example, you need three
separate diagrams.

Figure 2-4:
Here’s a
sample
sketch for
the standard
template on
this site.

Standard template for CS site

All Div
Fixed width 800 px
Centered in browser

Heading div
Width: 100%
Background-color: #A11204
Color: #FFFFFF
Background image: header.jpg

Font-size: 2em
Text-align: left
padding-left: 1em
Red circuit board background

Content h2 - right-justified white text on red circuit bg

Content class
Can be more than one
margin-left: 110px
double red border
white background
black text

Menu div
Float left
100px wide
Red circuit bg

Menu I
white text
on outset
red buttons
inset on
a:hover
a block
no underline

Content h2 - right-justified white text on red circuit bg

Content class
Can be more than one
margin-left: 110px
double red border
white background
black text

Footer - white centered text on black bg

Font: double size
Color: white
Background color: white

54_9780470537558-bk08ch02.indd 90654_9780470537558-bk08ch02.indd 906 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 2

P
la

n
n

in
g

 Y
o

u
r S

ite
s

907Creating Page Templates

These diagrams are finished only if they give you everything you need to
build the XHTML and CSS templates. The idea is to do all your design work
on paper and then implement and tweak your project with code. If you plan
well, the coding is easy.

The design sketch isn’t a page mock-up. It’s not meant to look exactly like
the page. Instead, it’s a sketch that explains with text all the various details
you need to code in XHTML and CSS. Often, designers produce beautiful
mock-ups that aren’t helpful in development because you need to know sizes
and colors, for example. If you want to produce a mock-up, by all means do
so, but also make a design sketch that includes things like actual font names
and hex color codes so that you can re-create the mock-up with live code.

Building the XHTML template framework
With a page layout in place, you can finally start writing some code. Begin
with your standard page layout diagram and create an XHTML template to
implement the diagram in working code. The XML template is quite simple
because most of the design should happen in the CSS. Keep these guidelines
in mind:

 ✦ Remember that the template is simply a framework. The XHTML is
mainly blank. It’s meant to be duplicated and filled in with live data.

 ✦ It has a reference to the style sheet. External CSS is critical for large
Web projects because many pages refer to the same style sheet. Make a
reference to the style sheet, even though it may not actually exist yet.

 ✦ Include all necessary elements. The elements themselves can be blank,
but if your page needs a list for a menu, add an empty list. If you need a
content div, put it in place.

 ✦ Create a prototype from the template. You use the template quite a bit,
but you need sample data in order to test the CSS. Build a prototype
page that contains typical data. The amount of data should be typical of
the actual site so that you can anticipate formatting problems.

 It’s very possible that you’ll never manually put content in your template.
There are several options for automating this process, which can be found in
Chapter 4 of this minibook.

The XHTML template should be easy to construct because everything you
need is in the page template diagram. Figure 2-5 shows an XHTML prototype.

54_9780470537558-bk08ch02.indd 90754_9780470537558-bk08ch02.indd 907 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

908 Creating Page Templates

Figure 2-5:
An XHTML
prototype
for my
site (with
no CSS
attached
yet).

Here’s the XHTML code for my prototype:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>CS Standard Template</title>
 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”csStd.css” />
 </head>

 <body>
 <div id = ”all”>
 <!-- This div centers a fixed-width layout -->
 <div id = ”heading”>
 <h1>Heading</h1>
 </div><!-- end heading div -->

 <div id = ”menu”>
 menu

 one
 two
 three

 </div> <!-- end menu div -->

54_9780470537558-bk08ch02.indd 90854_9780470537558-bk08ch02.indd 908 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 2

P
la

n
n

in
g

 Y
o

u
r S

ite
s

909Creating Page Templates

 <div class = ”content”>
 <h2>Content 1</h2>
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 </div> <!-- end content div -->

 <div class = ”content”>
 <h2>Content 2</h2>
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 </div> <!-- end content div -->

 <div id = ”footer”>
 contact and footer info
 </div> <!-- end footer div -->
 </div> <!-- end all div -->
 </body>
</html>

 People commonly start writing pages at this point, but that’s a dangerous
idea. Don’t use any real data until you’re certain of the general XHTML struc-
ture. You can always change the style later, but if you create 100 pages and
then decide that each of them needs another <div> tag, you have to go back
and add 100 divs.

Creating page styles
With an XHTML framework in place, you can start working on the CSS. The
best way to incorporate CSS is by following these steps:

 1. Begin with the page template diagram.

 It should have all the information you need.

 2. Load your XHTML prototype into Firefox.

 Nothing beats Firefox with the Web Developer CSS editor for CSS design
because it lets you see your changes in real time. Honestly, you can use
any browser you wish, but if you use another browser, you’ll need to
create the CSS file in a text editor and check it frequently in the browser.
(Check Books II and III to see how Firefox and Web Developer simplify
this task.)

54_9780470537558-bk08ch02.indd 90954_9780470537558-bk08ch02.indd 909 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

910 Creating Page Templates

 3. Implement the CSS from your diagram.

 You should be implementing the design you already created, not design-
ing the page. (That already happened in the diagramming process.)

 4. Save the design.

 If you’re using the Web Developer CSS editor, you can save your CSS
directly into a file. If your XHTML template had an external style defini-
tion, this is the default save file. If you’re editing CSS in a text editor,
save it in the normal way so the browser will be able to read it. (See
Book II for information on implementing external style sheets.)

 5. Test and tweak.

 Things are never quite what they seem with CSS because browsers don’t
conform to standards equally. You need to test and tweak on other brows-
ers, and you probably have to write a secondary style for IE exceptions.

 6. Repeat for other templates.

 Repeat this process for each of the other templates you identified in
your site diagram.

The result of this process should be a number of CSS files that you can read-
ily reuse across your site.

Here’s the CSS code for my primary page:

body {
 background-color: #000000;
}

#all {
 background-color: white;
 border: 1px solid black;
 width: 800px;
 margin-top:2em;
 margin-left: auto;
 margin-right: auto;
 min-height: 600px;
}

#heading {
 background-color: #A11204;
 color: #FFFFFF;
 height: 100px;
 font-size: 2em;
 padding-left: 1em;
 border-bottom: 3px solid black;
 margin-top: -1.5em;
}

54_9780470537558-bk08ch02.indd 91054_9780470537558-bk08ch02.indd 910 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 2

P
la

n
n

in
g

 Y
o

u
r S

ite
s

911Creating Page Templates

#menu {
 background-color: #A11204;
 color: #FFFFFF;
 float: left;
 width: 100px;
 min-height: 500px;
}

#menu li {
 list-style-type: none;
 margin-left: -2em;
 margin-right: .5em;
 text-align: center;
}

#menu a {
 color: #FFFFFF;
 display: block;
 border: #A11204 3px outset;
 text-decoration: none;
}
#menu a:hover {
 border: #A11204 3px inset;
}

.content {
 border: 3px double #A11204;
 margin: 1em;
 margin-left: 110px;
 padding-left: 1em;
 padding-bottom: 1em;
 padding-right: 1em;
}

.content h2 {
 background-color: #A11204;
 color: #FFFFFF;
 text-align: right;
}

#footer {
 color: #FFFFFF;
 background-color: #000000;
 border: 1px solid #A11204;
 float: left;
 clear: both;
 width: 100%;
 text-align: center;
}

Figure 2-6 shows the standard template with the CSS attached.

54_9780470537558-bk08ch02.indd 91154_9780470537558-bk08ch02.indd 911 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

912 Creating Page Templates

Figure 2-6:
The XHTML
template
looks
good with
the CSS
attached.

Building a data framework
The examples throughout this chapter assumed that a large Web project can
be done in straight XHTML and CSS. That’s always a good starting point, but if
your program needs data or interactivity, you probably have a data back end.

 Most data-enabled site plans fail.

The reason is almost always that the data normalization wasn’t incorporated
into the plan early enough, and the other parts of the project inevitably
depend on a well-planned data back end.

If you suspect your project will involve a database, you should follow these
steps early in the process (during the early site-planning phase):

 1. Identify the true data problem to be solved.

 Data gets complicated in a hurry. Determine why exactly you need
the data on the site. Keep the data as simple as you can, or else you’ll
become overwhelmed.

 2. Identify data requirements in your site diagram.

 Find out where on the site diagram you’re getting data. Determine which
data you’re retrieving and record this information on the site diagram.

54_9780470537558-bk08ch02.indd 91254_9780470537558-bk08ch02.indd 912 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 2

P
la

n
n

in
g

 Y
o

u
r S

ite
s

913Fleshing Out the Project

 3. Create a third normal form ER diagram.

 Don’t bother building a database until you’re sure that you can create an
ER diagram in third normal form. Check Book VI, Chapter 3 for details on
this process.

 4. Implement the data structure.

 Create an SQL script that creates all the necessary data structures
(including tables and views) and includes sample data.

 5. Create PHP middleware.

 After the database is in place, you usually need PHP code to take requests,
pass them to the database, and return the results. Most of the PHP code
for the main site consists of simple queries from the database. If you can
use AJAX or SSI, it simplifies the process because your PHP code doesn’t
have to create entire pages — it simply creates snippets of code.

See Chapter 4 of this minibook for help on implementing these
technologies.

 6. Consider update capabilities.

 Usually, when you have a database, you need another part of the site to
allow the client to update information. It’s often an administrative site with
password access. An administrative site is much more complex than the
main site because it requires the ability to add, edit, and update records.

Fleshing Out the Project
If you completed all the steps in the preceding section, it becomes relatively
easy to create the page: It’s simply a matter of forming the copy into the tem-
plates you created, tying it all together, and launching on the site.

Making the site live
Typically, you do the primary development on a server that isn’t in public
view. Follow these steps to take the site to production:

 1. Test your design.

 Do some usability testing with real users. Watch people solve typical
problems on the site and see what problems they encounter.

 2. Proofread everything.

 Almost nothing demolishes credibility as quickly as sloppy writing. Get a
quality proofreader or copy editor to look over everything on the site to
check for typos and spelling errors. If your page contains a specific type of
content (technical information or company policy, for example), have an
expert familiar with the subject check the site for factual or content errors.

54_9780470537558-bk08ch02.indd 91354_9780470537558-bk08ch02.indd 913 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

914 Fleshing Out the Project

 3. Prepare the online hosting environment.

 Be sure that you have the server space to handle your requirements.
Make a copy of your database and test it. Check the domain name to be
sure that you have no legal encumbrances.

 4. Move your site online.

 Move the files from your development server to the main server.

 5. Test everything again.

 Try a beta test, where your page is available to only a few people. Get
input and feedback from these testers and incorporate the best
suggestions.

 6. Take a vacation. You earned it!

Contemplating efficiency
When you start working with the site, you’ll probably encounter repeated
code. For example, each page may have exactly the same title bar. You
obviously don’t want to write exactly the same code for 100 different pages
because it might change, and you don’t want to make the change in 100 dif-
ferent places. You have three options in this case:

 ✦ Use AJAX to import the repeated code. Follow the AJAX instructions
in Chapter 4 of this minibook to import your header (or other repeated
code).

 ✦ Use Server-Side Includes (SSI) to import code on the server. If your
server allows it, you can use the SSI technology to import pages on the
server without using a language like PHP. SSI is explained in Chapter 4 of
this minibook.

 ✦ Build the pages with PHP. Put all segments in separate files and use a
PHP script to tie them together. When you do this, you’re creating a con-
tent management system, which is the topic of Chapters 3 and 4 of this
minibook.

54_9780470537558-bk08ch02.indd 91454_9780470537558-bk08ch02.indd 914 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Introducing Content
Management Systems

In This Chapter
✓ Understanding the need for content management systems

✓ Previewing typical content management systems

✓ Installing a content management system

✓ Adding content to a content management system

✓ Setting up the navigation structure

✓ Adding new types of content

✓ Changing the appearance with themes

✓ Building a custom theme

If you’ve ever built a large Web site, you’ll probably agree that the pro-
cess can be improved. Experienced Web developers have discovered the

following maxims about larger projects:

 ✦ Duplication should be eliminated whenever possible. If you find your-
self repeatedly copying the same XHTML code, you have a potential
problem. When (not if) that code needs to be changed, you have a lot of
copying and pasting to do.

 ✦ Content should be separated from layout. You’ve already heard this
statement, but it’s taken to a new level when you’re building a large
site. Separating all content from the layout would be helpful so that you
could create the layout only one time and change it in one location.

 ✦ Content is really data. At some point, the content of the Web site is
really just data. It’s important data, to be sure, but the data can — and
should — be separated from the layout code, and should be, if possible.

 ✦ Content belongs to the user. Developing a Web site for somebody can
become a long-term commitment. If the client becomes dependent on
the site, he frequently pesters you for changes. It would be helpful if the
client could change his own content and ask you only for changes in
structure or behavior.

 ✦ A Web site isn’t a collection of pages — it’s a framework. If you can
help the client own the data, you’re more concerned with the frame-
work for manipulating and displaying that data. It’s a good deal for you
and the client.

55_9780470537558-bk08ch03.indd 91555_9780470537558-bk08ch03.indd 915 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

916 Overview of Content Management Systems

A content management system (CMS) is designed to address exactly these
issues, as this chapter will show you.

Overview of Content Management Systems
CMSs are used in many of the sites you use every day. As you examine these
CMSs, you start to recognize them all over the Web. If you have your own
server space, a little patience, and a little bit of knowledge, you can create
your own professional-looking site using a CMS.

This list describes the general characteristics of a CMS:

 ✦ It’s written in a server-side language. The language is usually PHP, but
CMSs are sometimes written in other languages. Stick with PHP for now
because it’s described in this book, it’s easy to use, and it’s the most fre-
quently used CMS language.

 ✦ All content is treated as data. Almost all the content of the CMS is
stored in text files or (more commonly) a MySQL database. A CMS usu-
ally has few HTML files.

 ✦ The layout consists of data, too. The CSS and XHTML templates, and
everything else the CMS needs, are also stored as data, in either text
files or the database.

 ✦ All pages are created dynamically. When a user logs in to a CMS, she is
normally talking to a PHP program. This program analyzes the current
situation and generates an HTML document on the fly.

 ✦ There are different levels of access. Most CMSs allow anonymous
access (like regular Web pages) but also allow users to log in for
increased access.

 ✦ The content can be modified from within the system. Users with the
appropriate access can modify the content of the CMS without knowing
anything about PHP or databases. Often, you don’t even need HTML
or CSS.

 ✦ The layout can be modified from within the system, too. Most CMSs
allow you to change the layout and design from within the system,
although the process is usually more involved.

 ✦ CMSs can be expanded. Most CMSs are easily modified with hundreds
of visual themes, add-in modules, and new capabilities available for free.
In most cases, if you need something that isn’t there, you can make it
yourself.

 ✦ Many of the best CMSs are open source. CMSs are a shocking value.
When you consider how much they can contribute to your online pres-
ence, it’s amazing that most CMS programs are absolutely free.

55_9780470537558-bk08ch03.indd 91655_9780470537558-bk08ch03.indd 916 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 3

In
tro

d
u

c
in

g
 C

o
n

te
n

t
M

a
n

a
g

e
m

e
n

t
S

yste
m

s
917Previewing Common CMSs

Previewing Common CMSs
To get a true feel for the power of CMSs, you should test-drive a few. The
wonderful resource www.opensourcecms.com allows you to log in to hun-
dreds of different CMSs as a user and as an administrator to see how they work.
I show you a few typical CMSs so that you can get a feel for how they work.

Moodle
Often, you have a special purpose in mind. For example, I wanted to teach
an online course without purchasing an expensive and complicated course
management system. I installed the special-purpose CMS Moodle. Figure 3-1
shows the Moodle screen for one of my courses.

Figure 3-1:
Moodle is
useful for
managing
online
courses.

Moodle has a lot of features that lends it to the educational setting:

 ✦ Student and instructor management: The system already understands
the roles of student and instructor and makes appropriate parts of the
system available.

 ✦ Online assignment creation and submission: One of the biggest prob-
lems with online courseware is getting assignments to and from stu-
dents. Moodle has a complete system for handling this problem.

 ✦ Online grade book: When a teacher grades an assignment (online
through Moodle), the student’s grades are automatically updated.

55_9780470537558-bk08ch03.indd 91755_9780470537558-bk08ch03.indd 917 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

918 Previewing Common CMSs

 ✦ Online testing support: Moodle has built-in modules for creating, man-
aging, and scoring online quizzes and exams.

 ✦ Communication tools: Moodle includes a wiki (a collaborative documen-
tation tool), online chat, and forum tools you can set up for improved
communication with your students.

 ✦ Specialized educational content: Moodle was put together by hundreds
of passionate (and geeky) teachers, so it has all kinds of support for vari-
ous teaching methodologies.

Community-created software can be very good (as Moodle is) because it’s
built by people who know exactly what they want, and anybody with an idea
(and the skills to carry them out) can add or modify the features. The result
is an organic system that can often be better than the commercial offerings.

I find Moodle easier to use and more reliable than the commercial course
management system that my university uses. I keep a Moodle backup for my
classes because when the “official” system goes down, I can always make
something available for my students.

WordPress
WordPress is another specialty CMS, meant primarily for blogging (short for Web
logging, or keeping an online public diary). WordPress has become the dominant
blogging tool on the Internet. Figure 3-2 shows a typical WordPress page.

Figure 3-2:
Woot! I’m
blogging!

55_9780470537558-bk08ch03.indd 91855_9780470537558-bk08ch03.indd 918 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 3

In
tro

d
u

c
in

g
 C

o
n

te
n

t
M

a
n

a
g

e
m

e
n

t
S

yste
m

s
919Previewing Common CMSs

WordPress takes one simple idea (blogging) and pushes it to the limit.
Unregistered users see the blog output, but if you log in, you gain access to a
complete set of tools for managing your online musings.

Figure 3-3 illustrates the administrator view of WordPress.

Figure 3-3:
You can
easily get
started with
WordPress
— just start
writing.

Additionally, you can change the layout and colors, add new templates, and
do much more, as you can in a more traditional CMS.

Of course, hundreds of other specialized CMSs are out there. Before you try
to build your own CMS from the ground up, take a look at the other available
offerings and see whether you can start by using the work of somebody else.

Drupal
Drupal is one of the most popular multipurpose CMSs out there. Intended for
larger sites, it’s more involved than the specialty CMSs — although it can do
almost anything.

Figure 3-4 shows a basic site running Drupal.

55_9780470537558-bk08ch03.indd 91955_9780470537558-bk08ch03.indd 919 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

920 Previewing Common CMSs

Figure 3-4:
Drupal is
intended
to support
online
communities.

Drupal was designed primarily for managing community Web sites. It is com-
monly used in the following types of sites:

 ✦ Gaming sites: Many game communities are based around a CMS like
Drupal because it allows opportunities for users to share information,
opinions, news, and files.

 ✦ Software sites: A CMS like Drupal is an ideal place to post information
about your software, including downloads, documentation, and user
support.

 ✦ Forums: Although you can find many dedicated forum packages, Drupal
supports several good forum tools.

 ✦ Blogging: You can also use Drupal as a news site and a location to post
your blog. You can add community features when you want or need them.

Drupal is powerful and extremely popular. However, this power has led to
increased complexity. Learning everything you can do with Drupal will take
some time and effort.

Building a CMS site with Website Baker
For the rest of this chapter, I take you through the installation and custom-
ization of a complete Web site using the Website Baker CMS. This is one of
my favorite CMSs for a number of reasons:

55_9780470537558-bk08ch03.indd 92055_9780470537558-bk08ch03.indd 920 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 3

In
tro

d
u

c
in

g
 C

o
n

te
n

t
M

a
n

a
g

e
m

e
n

t
S

yste
m

s
921Previewing Common CMSs

 ✦ It’s easy to understand: Systems like Drupal have gotten so complicated
that you often require entire books on how to use them. Website Baker
(as you’ll see) is not complicated at all, even for somewhat advanced
features.

 ✦ It’s easy to modify: Website Baker uses a reasonably simple template
system that’s primarily XHTML and CSS (with a few PHP functions
thrown in). This makes it very easy to adapt pages that were not
designed in Website Baker to a CMS format.

 ✦ It’s easy to teach to clients: When you’re building a commercial site, it’s
critical that your customer learns how to manage the site. The easier
you can make managing the site for the customer, the easier your job is
down the road.

 ✦ It’s reasonably complete: The basic install of Website Baker is not large,
but you can customize your installation with hundreds of modules and
templates to get exactly the look and behavior you want.

 ✦ It’s free and open source: Like almost all the software I recommend,
Website Baker is entirely free and open source, even for commercial
use.

I focus on Website Baker in the upcoming section, but it’s just an example
CMS. Look over this section, but if you want to use a different CMS than
Website Baker, by all means do so. You’ll see the overall steps are pretty
much the same regardless of the particular package you use.

Installing your CMS
A CMS package typically contains many different kinds of files. Most are
primarily PHP programs with HTML/XHTML pages and CSS. Most CMSs also
include databases written in MySQL. To install a CMS, you need to download
these components and install them on your server.

 1. Download the latest version of Website Baker at http://www.
websitebaker2.org/en/home.php.

 Download the Zip file. (The CMS is all Web code, so it doesn’t matter
which operating system you use.)

 2. Create a subdirectory on your Web root.

 If you use a local server, create a new subdirectory under htdocs (or
wherever you save your Web files). If you’re on a remote server, use FTP
or the file management tool to create the subdirectory you want the files
to go in.

 3. Copy all Website Baker files to the new directory.

 The Zip file you download from Website Baker contains a wb directory.
Copy all files and folders in this directory to your new directory.

55_9780470537558-bk08ch03.indd 92155_9780470537558-bk08ch03.indd 921 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

922 Previewing Common CMSs

 4. Navigate to the new directory in your browser.

 Be sure you have Apache and MySQL turned on. If you’re on a local
machine, be sure to use the localhost mechanism to find the directory.

 If all is well, you see the Website Baker Installation Wizard, as shown in
Figure 3-5.

Figure 3-5:
The Website
Baker
Installation
Wizard
helps you
get started.

Most CMSs work in a similar way: You install a set of base files to the server,
and then the system helps you get the other systems configured. Here’s how
to install Website Baker:

 1. Check system configuration.

 The Step 1 section of the installation wizard ensures all the needed com-
ponents are available on your server.

 2. Ensure folders are writable.

 The CMS will need to write files to the server. If you’re in a Unix-based
system, you may have to check the file permissions to ensure all files

55_9780470537558-bk08ch03.indd 92255_9780470537558-bk08ch03.indd 922 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 3

In
tro

d
u

c
in

g
 C

o
n

te
n

t
M

a
n

a
g

e
m

e
n

t
S

yste
m

s
923Previewing Common CMSs

and folders specified in this section can be written to. Each specified file
or folder can be set to 777 permission.

 See Chapter 1 of this minibook for more on changing Unix permissions.
(Even if you use a Windows or Mac at home, your Web server might use
Linux or Unix.)

 3. Set default settings.

 Specify the path to the CMS, the default time zone, and the default language.

 4. Specify your operating system.

 Windows has its own way of doing things, so let Website Baker know
whether you’re using Windows or a Unix-based system. (Mac OSX and
Linux are both Unix-based.)

 5. Include database information.

 Supply the information needed so Website Baker can get to your data-
base. Supply a database name as well as the username and password
you want to use to access the database. Check the Install Tables option
to have Website Baker automatically build the database you need.

 6. Enter the Web site name.

 This name will appear on all the site’s pages (but you can change it later).

 7. Create an administrator account.

 The admin account will have the ability to change the site. Create a user
named admin with a password you can remember.

 8. Install the CMS.

 Press the Install Website Baker button to install the CMS. Figure 3-6
shows the installation wizard after I filled in the contents.

 If all goes well, you’re greeted by the administration page shown in
Figure 3-7.

The final step of installing your CMS is to remove the install directory. This
directory contains the scripts and tools you used to install the CMS. If you
leave it in place, bad guys can reinstall your CMS from the Web and destroy
your settings. Use your file management or FTP tool to delete the install
directory from your Website Baker directory as soon as you’re satisfied the
installation went well. When you do this, the warning about the installation
directory will disappear.

Instead of installing the CMS manually, many hosting services have automated
installation scripts for popular CMSs that you can use. Freehostia has built-in
support for Website Baker, but I find the automated systems tend to have older
versions of the software. You should still know how to set up the CMS by hand.

55_9780470537558-bk08ch03.indd 92355_9780470537558-bk08ch03.indd 923 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

924 Previewing Common CMSs

Figure 3-6:
The CMS
is ready to
install.

Figure 3-7:
Congratu-
lations! You
now own a
bouncing
baby CMS!

55_9780470537558-bk08ch03.indd 92455_9780470537558-bk08ch03.indd 924 10/7/10 8:59 PM10/7/10 8:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 3

In
tro

d
u

c
in

g
 C

o
n

te
n

t
M

a
n

a
g

e
m

e
n

t
S

yste
m

s
925Previewing Common CMSs

Getting an overview of Website Baker
The administration page (refer to Figure 3-7) is the control panel you and
other administrators use to build the site. The administration page’s tools
are the foundation of the entire site:

 ✦ Pages: Where you add the primary content for the site. Each page is
built here. Website Baker features a few standard page types, and you
can install hundreds more through the module feature.

 ✦ Add-ons: The core installation of Website Baker is reasonably basic,
but you can customize it in many ways. The most important techniques
are to add new types of pages (modules) and new visual themes (tem-
plates). I describe both techniques later in this chapter.

 ✦ Settings: Allows you to change global settings for the site. You can
modify the site name, description, theme, and other settings from this
panel.

 ✦ Access: Allows you to add new users and groups and grant various users
access to different parts of the system. For example, if you’re setting up
a site for a church, you might want the children’s pastor to have access
to only the site’s children’s ministry parts.

 ✦ Media: You can add images and video to your site. This section allows
you to manage and upload the various media to your server.

 ✦ Preferences: Allows you to change a few more settings, including the
e-mail address and password of the admin account.

 ✦ Admin-Tools: Contains advanced options for improving the administra-
tion experience.

Adding your content
The point of a content management system is to manage some content, so
it’s time to add pages to the system.

 1. From the administration page, choose Pages.

 A screen similar to Figure 3-8 appears.

 2. Type main as the first page name.

 Each page you create needs to have a name.

 3. Keep the page type WYSIWYG.

 You can make many different kinds of pages, but most of your pages will
be the standard WYSIWYG format.

 4. Leave all other settings at their default.

 The other settings available here don’t mean much until you have mul-
tiple pages.

55_9780470537558-bk08ch03.indd 92555_9780470537558-bk08ch03.indd 925 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

926 Previewing Common CMSs

Figure 3-8:
This page
allows you
to add,
modify,
and delete
pages.

 5. Click the Add button to add the page.

 A screen similar to Figure 3-9 appears.

Figure 3-9:
Now you’re
at a nice
page editor.

55_9780470537558-bk08ch03.indd 92655_9780470537558-bk08ch03.indd 926 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 3

In
tro

d
u

c
in

g
 C

o
n

te
n

t
M

a
n

a
g

e
m

e
n

t
S

yste
m

s
927Previewing Common CMSs

Using the WYSIWYG editor
The purpose of the CMS is to make editing a Web site without any technical
skills easy. You can give admin access to an HTML novice, and he can use
the system to build Web pages with no knowledge of XHTML or CSS. The
editor has a number of useful tools that make creating and editing much like
working with a word processor.

 ✦ Predefined fonts and styles: The user can choose fonts and styles from
drop-down menus, unaware that these options are taking advantage of
predefined CSS styles.

 ✦ The ability to add lists, links, and images: The editor includes the abil-
ity to add lists, links, and images (and other types of content) without
any knowledge of XHTML. If you add an image, the editor includes a
wizard that helps you upload the image to the server. If you add a link, a
wizard helps you specify the URL of the link.

 ✦ Multiple paste options: Many users create content in Microsoft Word.
A Paste from Word button attempts to delete all the excess junk Word
adds to a file and paste the content cleanly, which is a major lifesaver.

 ✦ A plain source editor: My favorite button on the WYSIWYG editor is the
one that turns off the WYSIWYG features. The Source button displays
the page as plain HTML/XHTML text. The automated features are nice,
but I can usually build a page a lot faster and more accurately by hand.
This feature is especially useful when the visual tools aren’t doing what
you want.

When you finish building your page, click the Save button to save the con-
tents of the page.

Along the top of the editor is a series of icons: a house, a blue screen, a life
ring, and a lock. Click the blue screen (which is the View icon) to open your
new page and see it the way the user will see it. Figure 3-10 shows the results
of my simple page.

The WYSIWYG page is the most commonly used page type (especially by
nontechnical users) but it’s not the only option. The standard edition of
Website Baker also comes with a number of other default page types:

 ✦ Code: Interprets the page as PHP code. This is any easy way to enter any
PHP code you wish, including database lookups. The code is interpreted
as PHP, so if you want it to be HTML, you can just use a giant heredoc.
Figure 3-11 shows a PHP snippet being written, and Figure 3-12 shows
the results.

55_9780470537558-bk08ch03.indd 92755_9780470537558-bk08ch03.indd 927 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

928 Previewing Common CMSs

Figure 3-10:
This is how
the page
looks to the
user.

Figure 3-11:
The code
page allows
you to write
any PHP
code you
wish.

55_9780470537558-bk08ch03.indd 92855_9780470537558-bk08ch03.indd 928 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 3

In
tro

d
u

c
in

g
 C

o
n

te
n

t
M

a
n

a
g

e
m

e
n

t
S

yste
m

s
929Previewing Common CMSs

Figure 3-12:
How the
code page
looks to the
user.

 ✦ Form: Allows you to build a basic XHTML form without knowing any
XHTML. The administrator can add all the normal form elements. Figure
3-13 shows the form editor in action. When the user enters form data,
the content is automatically e-mailed to the administrator and stored in
a database that can be retrieved via the CMS. This feature is one of the
most important factors of a CMS because it’s something that plain HTML
Web sites simply can’t do.

 ✦ Menu Link: This placeholder (it isn’t really a page type) allows you
to create a menu item that helps organize other pages. Use the parent
attribute of a page to make it a child of a menu or an ordinary page. The
menu structure adapts automatically.

 ✦ News V3.5: A blog feature that allows the user to write blog articles. I
often use it for other things, such as sermon archives for church sites,
specials of the week for commercial sites, and so on. A blog feature is
good any time you’re working with repetitive, dated material. You can
add multiple blogs to the same site easily. Figure 3-14 shows the news
page in action.

 ✦ Wrapper: This incredibly versatile page type allows you to do all kinds
of interesting things. Essentially, it allows you to embed any page into
the CMS. Figure 3-15 shows the wrapper used to embed a Google search
into my site. The wrapper is handy when you want to access an external
ordering or newsgroup system but keep within the visual structure of
the CMS.

55_9780470537558-bk08ch03.indd 92955_9780470537558-bk08ch03.indd 929 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

930 Previewing Common CMSs

Figure 3-13:
The form
editor
simplifies
creating
forms and
collecting
form data.

Figure 3-14:
The news
page type
allows you
to build a
blog-like
document.

55_9780470537558-bk08ch03.indd 93055_9780470537558-bk08ch03.indd 930 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 3

In
tro

d
u

c
in

g
 C

o
n

te
n

t
M

a
n

a
g

e
m

e
n

t
S

yste
m

s
931Previewing Common CMSs

Figure 3-15:
Use the
wrapper
page type to
embed other
pages into
your system.

You are not limited to these page types. See the section “Adding new func-
tionality” later in this chapter for information on how to add additional page
types to your system.

Changing the template
One of the primary goals of a CMS is to separate the visual layout from the
contents. So far, you’ve seen how to modify the contents, but you’ll also
want to change the appearance of the page. The visual settings of a site are
all based on a template concept. You can easily overlay a new template onto
the existing site without changing the contents at all.

 1. Log in as the administrator.

 Obviously, the administrator has the ability to change the template
(although you can allow individual users to change their own templates).

 2. Go to the system menu.

 Templates are set in the system menu.

 3. Change template under Default Settings.

 Don’t worry about the Backend Theme and Search Settings templates.
It’s best to leave these alone until you’re a bit more experienced
because they don’t have a major impact on the user experience.

55_9780470537558-bk08ch03.indd 93155_9780470537558-bk08ch03.indd 931 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

932 Previewing Common CMSs

 4. Choose a template from the drop-down list.

 All the templates installed in the system are available in a drop-down
list. For this example, I chose the All CSS template (the default). See the
section “Adding additional templates” for how to download and install
templates that aren’t already installed in the system.

 5. Preview the site with your new template in place.

 Figure 3-16 shows the contents of the site with the All CSS template in
place. The template essentially encapsulates core XHTML code and the
CSS used to display each file.

Figure 3-16:
The same
site has a
new look!

Adding additional templates
The standard installation of Website Baker includes only a few templates.
Typically, you’ll want to work with additional templates. Fortunately, there
are hundreds of great templates available, and you can easily build your
own. Here’s how to add additional templates.

 1. Locate the template you want online.

 A number of Web places offer great, free templates for Website Baker.
My favorite is the Templates repository available at http://www.web
sitebaker2.org/template/pages/templates.php. The templates
in this archive are approved by the Website Baker community and meet
minimum quality standards.

 2. Download a template or two that you like.

 When browsing templates, remember that you will be able to modify
them. If you don’t like the particular colors or images, you can change
them later. Save the downloaded Zip file somewhere on your local
machine.

55_9780470537558-bk08ch03.indd 93255_9780470537558-bk08ch03.indd 932 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 3

In
tro

d
u

c
in

g
 C

o
n

te
n

t
M

a
n

a
g

e
m

e
n

t
S

yste
m

s
933Previewing Common CMSs

 3. Log in to Website Baker as admin.

 Only the administrator can add new templates to the system.

 4. Navigate to the Templates page of the Add-ons section.

 This is where you install and uninstall downloaded templates.

 5. Click the Browse button to locate the Zip file on your local system.

 Load the entire Zip file containing the template onto the server.

 6. Click the Install button to begin the process.

 You receive a notification when the installation is complete.

 7. Navigate to the Settings section.

 Installing a template does not apply the template automatically.

 8. In Settings, apply the new template.

 Specify the template to display from the drop-down list of templates.

 9. Preview your new look.

 Use the Preview button (or reload the currently showing version of the
CMS) to see the new look. Figure 3-17 shows my site with the Multiflex-3
template installed.

Figure 3-17:
You can
install any
template
onto your
existing
system.

55_9780470537558-bk08ch03.indd 93355_9780470537558-bk08ch03.indd 933 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

934 Previewing Common CMSs

 The Multiflex-3 template is one of the most commonly used templates on the
Internet. The original design (www.oswd.org/design/preview/id/3626)
was built with plain XHTML/CSS implementation in mind but has been
ported to nearly every CMS including Website Baker. The design is a solid
and very flexible starting place. I’ve used it as the foundation of dozens of
sites. Once you get to know it, you’ll recognize it all over the place.

Adding new functionality
In addition to custom templates, you can add modules to your system. A
module is a new page type that adds additional functionality. Dozens of add-
ons are available at the Website Baker AMASP (All Modules and Snippets
Project) at www.websitebakers.com.

The add-on modules include many new types of functionality, including
online shopping modules, image galleries, event calendars, and many more.
In addition to full-fledged modules, the AMASP also includes PHP snippets
you can copy into your code for advanced functionality and droplets, which
are small, self-contained PHP modules to add features to your site. It’s prob-
ably best you start with full modules because they require the least effort to
get working. As you become more proficient with Website Baker, you’ll want
to investigate how to add more features.

Many of my clients like to have image galleries. I use them for a number of
things, including a simple form of an online catalog and for viewing sample
work for craft or artist sites. Here’s how to add a basic but full-featured
image gallery:

 1. Find a module you wish to test.

 Go to the AMASP site and browse the various modules until you find
one you like; there’s about a dozen. For this example, I’m looking at
the (unimaginatively named) Image Gallery module. This one works
very well, looks pretty good, and is very easy for my clients to use, so I
almost always install it on commercial sites.

 2. Download the module.

 Modules are installed much like templates. Download the module, which
is usually PHP and HTML code in a Zip file, and then save the Zip file
somewhere on your local file system.

 3. Log in as admin.

 As usual, anything that involves changing the site requires administrator
access.

 4. Navigate to the Add-ons section.

 You add modules in the same section you add templates; that is, the
Modules page of the Add-ons section.

55_9780470537558-bk08ch03.indd 93455_9780470537558-bk08ch03.indd 934 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 3

In
tro

d
u

c
in

g
 C

o
n

te
n

t
M

a
n

a
g

e
m

e
n

t
S

yste
m

s
935Building Custom Themes

 5. Browse to find the Zip file you downloaded.

 Click the Browse button to look on your local system for the Zip file
containing the module. Click the Install button when you locate the file.
Website Baker uploads the module to the server and places the files in
the correct location.

 6. A new page type will appear.

 When you go to the Pages section, you see a new type of page. In this
case, you can now add image galleries.

Building Custom Themes
Website Baker is an outstanding way to build a complex and fully featured
Web site easily and quickly. With over a hundred templates, you’re bound to
find something you like. However, you almost never find something exactly
the way you want it. This is especially important if you’re developing for
somebody else. Usually, you find a template that is close, but you still need to
modify the colors and images. For that reason, it’s important to understand
the general structure of a Website Baker template and how to make your own.

Starting with a prebuilt template
Although it’s possible to build a Website Baker template from scratch, it’s gener-
ally not a good idea. It’s much smarter to begin with a template that’s close and
add those features you need to make it your own. That way the general struc-
ture is already proven, and you only need to customize it to your specifications.

 1. Find a starting template you like.

 Often I have clients look over the Templates repository (www.website
baker2.org/template/pages/templates.php) and tell me their
favorite three templates. I also like to have them explain what they like or
dislike about each template. I tell them we can change colors or banner
graphics in a template, so to focus more on the general look and feel.

 If you don’t have another place to start, I like the templates built into
the Website Baker core (especially All CSS and Round). Blank Template
is especially designed for customizing. I often build commercial sites
based on Multiflex-3 because it’s well known throughout the Web com-
munity and has some great features.

 2. Install the template on your local system.

 It’s much easier to work with a template on your local system than on a
remote server.

 3. Locate the local copy of the template.

 Normally, templates are stored in the wb/templates directory of your
server. Each template will have its own folder.

55_9780470537558-bk08ch03.indd 93555_9780470537558-bk08ch03.indd 935 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

936 Building Custom Themes

 4. Copy the folder of the template you want to modify.

 It’s generally smarter to work with a copy rather than the original. Paste
the copied folder in the templates directory.

 5. Rename the new folder to reflect your new template name.

 Your new template needs a different name than the original template.

At this point, you have a copy of the original template, but this copy will not
be reflected in the CMS yet. You need to make a few changes before the new
template is available. Before you do that, take a look at the file structure of a
typical Website Baker template. Figure 3-18 shows my copy of the Multiflex-3
template.

Figure 3-18:
Typical file
structure
for Website
Baker
templates.

One of the reasons I like Website Baker so much is how relatively simple
the template structure is compared to other CMSs. The directory contains a
relatively small number of files:

 ✦ index.php: This PHP file is the basic file that’s used as the foundation
of every page in the system. It’s essentially an XHTML page with a few
special PHP functions built in. You can edit any of the XHTML you wish,
and the resulting changes will be reflected in every page of the site.

55_9780470537558-bk08ch03.indd 93655_9780470537558-bk08ch03.indd 936 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 3

In
tro

d
u

c
in

g
 C

o
n

te
n

t
M

a
n

a
g

e
m

e
n

t
S

yste
m

s
937Building Custom Themes

 ✦ info.php: This simple PHP file contains a number of variables used to
control the overall behavior of the template. You’ll make a few changes
in this file to give your template an official name.

 ✦ layout_setup.css: This CSS file describes the CSS used for the overall
page design. You can change the contents of this CSS file to change font
colors or other big-picture CSS.

 ✦ layout_text.css: This CSS file is used to define the styles of the vari-
ous text elements in the site. If you’re looking for a class that isn’t defined
in layout_setup.css, you may find it here. Note: The names of the CSS
files may change in other templates, but there will be at least one CSS file.

 ✦ editor.css: This file is used to modify the internal WYSIWYG editor. It
describes how various elements are displayed in the editor.

 ✦ images directory: Often a template will include a number of images.
These are stored in a subdirectory for convenience. You may need to
change some of these images to create the look you’re going for.

Some templates are more complex, some less so. Really, you can have as many
or as few files as you want. You’ll always need to have index.php and info.
php. You’ll almost always have at least one CSS page. You can have anything
else you wish in the template, but nothing else is absolutely necessary.

Changing the info.php file
The info.php file contains a few PHP variables. You can modify these vari-
ables to identify this template as your own. You must change the template
name to a unique value, and you can also change such variables as the devel-
oper name and version number. I typically claim any substantial changes I
make to a template, but I always give credit to the original developer. It’s great
to stand on the shoulders of giants, and you should give them their due in the
documentation. Here’s the info.php file after I made a few changes:

<?php

/*

 Website Baker Project <http://www.websitebaker.org/>
 Copyright (C) 2004-2006, Ryan Djurovich

 Website Baker is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 Website Baker is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of

55_9780470537558-bk08ch03.indd 93755_9780470537558-bk08ch03.indd 937 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

938 Building Custom Themes

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with Website Baker; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

*/

$template_directory = ‘aio’;
$template_name = ‘aio’;
$template_version = ‘1.1’;
$template_platform = ‘2.x’;
$template_author = ‘Andy Harris, from Erik Coenjaerts (WB port)’;
$template_license = ‘Open Source</

a>’;
$template_description = ‘Original design from <a href=”http://www.1234.info/

webtemplates/”>1234.info. Ported to Website Baker by <a href=”http://
www.coenjaerts.com”>Erik Coenjaerts.’;

$menu[1]=’Main Menu’;
$menu[2]=’Top Menu’;
$menu[3]=’Extra Menu’;
$block[2]=’Sidebar’;
$block[3]=’News’;

?>

Note that the template has the potential for three different types of menus
and three blocks of information. ($block[1] is the main content block and
is available by default.)

Modifying index.php
For the most part, you can leave index.php alone. However, there are a few
modifications you might make. If you look over the file, it’s basically plain
HTML/XHTML with a few PHP functions thrown in. Generally, you can change
the HTML code without any worries, but be more careful about the PHP code.
The PHP code tends to call special functions defined in the Website Baker
code base. Here are the functions and variables you’re likely to run across:

 ✦ TEMPLATE_DIR: This constant contains the template directory. Use it to
make links to the template directory.

 ✦ WEBSITE_TITLE: Use this constant to display the Web site name any-
where in your template.

 ✦ PAGE_TITLE: The title of the current page as defined in the menu.

 ✦ WEBSITE_HEADER: This constant displays the header defined in the
admin panel.

 ✦ show_menu(menuID): This is a powerhouse of a function. It analyzes
your site structure and uses it to build a navigation structure. It takes a

55_9780470537558-bk08ch03.indd 93855_9780470537558-bk08ch03.indd 938 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 3

In
tro

d
u

c
in

g
 C

o
n

te
n

t
M

a
n

a
g

e
m

e
n

t
S

yste
m

s
939Building Custom Themes

parameter, which is the level of menu. (Typically the left menu is level 1
and the top menu is level 2, but this can be changed.) Note: Some tem-
plates use the more advanced show_menu_2() function, which has
additional parameters, like the ability to define template code for how
the menu displays.

 ✦ page_content(blockID): This function is used to display content
for the current page. The parameter describes which block of content
should display. Use 1 for the main page content, 2 for block 2, and
so on.

 ✦ page_footer(): Display the page footer identified in the admin panel.

Website Baker features many more constants and functions, but these are
the basic ones used in nearly all templates. See the online documentation
at www.websitebaker2.org for complete documentation. Other CMS sys-
tems use the same idea (XHTML templates with PHP functions embedded),
but of course the function names are a bit different in a different CMS.

You may want to make other modifications of the default template. For
example, the Multiflex-3 template includes multilanguage support and a large
number of different “post it note” features. I generally remove the multilan-
guage content (because I only speak one language) and change all the “post
it notes” to use the same CSS style (or remove them all).

Modifying the CSS files
Of course, the most powerful way to change the appearance of your pages is
to modify the CSS files. Here’s how:

 1. Identify the class you want to modify.

 This can be surprisingly difficult in a system you didn’t create. Use the
Inspect feature of the Firebug extension to quickly identify which styles
act on a particular element and what its class hierarchy is.

 2. Find the class definition in the CSS sheets.

 Note that a system may have more than one CSS file, so find the one con-
taining the class information you’re interested in.

 3. Make incremental changes.

 Make small changes and test frequently.

 4. Test on a local server.

 You can make changes directly on the files in your local server. Just reload
the page after every change to make sure the changes are being reflected.
Of course, you need to have the template installed in your system.

55_9780470537558-bk08ch03.indd 93955_9780470537558-bk08ch03.indd 939 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

940 Building Custom Themes

Packaging your template
A template is nothing more than a set of PHP and CSS files (and perhaps
some images and other files). It’s pretty easy to port a template for installa-
tion. Just follow these steps:

 1. Create a stable version of the template.

 It doesn’t have to be perfect before you package it, but at a minimum you
need to change the info.php page to reflect the new template’s name.

 2. Package the entire directory into a Zip file.

 Use a utility like IZArc for Windows or the Zip utility that comes installed
with Linux or Mac. Save the Zip file with the same name as your tem-
plate. Note: Don’t include the template directory itself in the template;
just include any contents of that directory (including subdirectories, if
you have them).

 3. Install the template into your copy of Website Baker.

 Install your template the way you do any other template.

55_9780470537558-bk08ch03.indd 94055_9780470537558-bk08ch03.indd 940 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Editing Graphics

In This Chapter
✓ Introducing Gimp

✓ Managing the main tools

✓ Selecting image elements

✓ Working with layers

✓ Understanding filters

✓ Creating a tiling background

✓ Building banner images

XHTML and CSS are powerful tools, but sometimes you still need to use
a graphical editor to get the look you want. In this chapter you learn to

use Gimp, a free and powerful graphic editor.

Using a Graphic Editor
You’ll find using a graphical editor handy for a number of tasks:

 ✦ Modifying an image: The obvious use of a graphical tool is to modify or
create an image that will be used on your Web page. This could involve
changing the image size, correcting the color balance, or cropping the
image.

 ✦ Preparing a background image: As I discuss in Book II, Chapter 4, back-
ground images can be distracting if you aren’t careful. Making a lower
contrast image (either lighter or darker than normal) might make sense
so the text is easier to read. You might also want to prepare a tiled
background.

 ✦ Building banners: Many Web sites include a special banner image that’s
prominent on every page. The banner image usually has a very specific
size requirement.

 ✦ Modifying existing graphics: You might be modifying a template from
the jQuery UI project (see Book VII, Chapter 4) or from a CMS (see
Chapter 3 in this minibook). In both cases, you often have images that
are close to, but not exactly, what you need.

 ✦ Changing colors: Frequently, you have the right pattern, but not the
right colors. Modifying colors with a modern graphical tool is surpris-
ingly easy.

56_9780470537558-bk08ch04.indd 94156_9780470537558-bk08ch04.indd 941 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

942 Introducing Gimp

Choosing an editor
Fortunately, great programs that make all these tasks quite easy to perform
are available. Raster-based graphics editors are designed to solve exactly
this type of problem and many more. A number of important graphics tools
are used in Web development:

 ✦ Adobe Photoshop: The industry standard for Web graphics, and indeed
for all digital imagery, Photoshop is powerful and capable but quite
expensive. A slightly cheaper and less powerful version called Adobe
Photoshop Elements is available.

 ✦ Adobe Fireworks: Designed specifically for Web developers, Fireworks
features the ability to slice an image to make a graphical Web page from
an image — and it’s relatively inexpensive.

 ✦ Windows Paint: This simple image editor is available in all versions
of Microsoft Windows. Although easy to use and already available to
Windows users, Paint is relatively limited. It only supports a few image
formats and doesn’t have full support for transparent images or layers.

 ✦ Paint.net: A group of computer science students decided to create an
improvement to Microsoft Paint that evolved into a very robust image-
editing program. It is free (although, technically, not open source) and
has all the features you might need for editing Web images. However,
the primary version is available only for Windows.

 ✦ Gimp: A popular alternative to Photoshop, Gimp has all the features you
might need for Web image editing. It is completely free, open source,
and available for all major operating systems. For these reasons, I use
Gimp throughout this chapter (and indeed throughout the book —
nearly every graphic was created using Gimp).

People are passionate about their graphics programs. If you love Photoshop,
you might find the Gimp interface strange and unfamiliar. I think learning
how Gimp works is worth the time, but if you prefer, you can download
GimpShop, a version of Gimp modified to use the same menus and keyboard
shortcuts as Photoshop.

Note that in this list I’m only considering full-blown graphical editors. I
describe image manipulation programs, such as IrfanView and XnView
(which are simpler and have fewer features), in Book II, Chapter 4.

Introducing Gimp
If you haven’t already installed Gimp, get a recent copy from this book’s
CD-ROM or www.gimp.org. Install the program and take a look at it. The
Gimp interface’s multiple windows are shown Figure 4-1.

56_9780470537558-bk08ch04.indd 94256_9780470537558-bk08ch04.indd 942 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 4

E
d

itin
g

 G
ra

p
h

ic
s

943Introducing Gimp

Figure 4-1:
Gimp uses
a multiple
window
model.

I have the Change Foreground Color dialog open in Figure 4-1, and I simply
double-clicked on the foreground color in the main toolbox to open this
dialog. Gimp tends to open a lot of dialogs, which might bother some people.
Also, I want to illustrate how powerful the color chooser is. Like most fea-
tures in Gimp, it has a lot of options.

The Toolbox is Gimp’s main control panel. It manages all the tools you use
to create images. Gimp also creates an image window, which contains the
menu elements, but no image (by default). You can load an image into the
image window or create a new image.

Gimp doesn’t reside in a single window like
most programs. Instead, it uses a number of
windows. Some find this jarring, but once you
get used to it, this can be a useful feature. You
can make any window as large or as small as
you wish and combine windows to get less
screen clutter. I configure Gimp in a way that
combines the most common windows into the
Toolbox, so I have one window showing the
Toolbox and most of the dialogs and a separate
window showing each picture I’m working on.

If you click the Configure Tab button (a small
arrow at the top right of the tabs section), you
can add new tabs to the main Toolbox window.
I normally add my favorite tools (Navigation,
Layers, Tool Options, and Brushes) to the
Toolbox so the features are readily avail-
able and appear here instead of in separate
windows.

Gimp sure seems cluttered . . .

56_9780470537558-bk08ch04.indd 94356_9780470537558-bk08ch04.indd 943 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

944 Introducing Gimp

Creating an image
You choose the File➪New menu command to create a new image. After you spec-
ify the size of your image, a new, blank image appears, as shown in Figure 4-2.

Figure 4-2:
It’s easy to
create a
new, blank
image.

It’s very common in Web development to work
with images that already exist. For example, I’ve
built a couple of sites for office supply compa-
nies. It’s nice to sprinkle the site with colorful
images of staplers, Post-it notes, and the like.
The question is, how do you get these graphics?
If you’re a skilled photographer or artist, you
can create them yourself, but this takes more
time and talent than I typically have. You could
reuse images you find on the Web, but this is not
respectful of these elements’ owners.

The best solution is to use an image-supply
site like www.freedigitalphotos.
net or www.istockphoto.com. Be sure
to search for royalty-free artwork, and check
the license to ensure you can use and modify
the work. I’m a big fan of stock art. Typically,

I can find a dozen images to spruce up a site
for less than $20, and I have the satisfaction
of knowing I’m completely legal. Often, stock
art is designed for both print and digital use.
Generally, you can purchase the smallest size
for digital work, which is economical and per-
fectly fine for use on the Web. (Note: Monitors
have much less resolution than printed paper,
so you can get away with a smaller image.)

To reuse an image in a legitimate way, con-
sider the following:

 ✓ Acknowledge the source: Generally,
this acknowledgment isn’t necessary for
images you purchase, but it is polite if you
receive an image free. You can place the
acknowledgment in the source code.

Working with existing images

56_9780470537558-bk08ch04.indd 94456_9780470537558-bk08ch04.indd 944 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 4

E
d

itin
g

 G
ra

p
h

ic
s

945Introducing Gimp

Of course, you can also load an existing image into Gimp. Gimp accepts
all major image formats (and dozens more with optional plugins). Use the
File➪Open menu command to open an image, or simply drag an image file
onto the Gimp Toolbox.

Painting tools
Gimp includes a number of useful tools to create or modify an image. Figure
4-3 shows a few of these tools.

 ✦ Pencil: The Pencil tool is the standard drawing tool. It draws hard edges
in the exact shape of the pen. You can choose from many pen shapes in
the tool options panel (described in the next section).

 ✦ Paintbrush: The Paintbrush tool is similar to the Pencil tool, but it uses
a technique called anti-aliasing to make smoother edges. Like the Pencil
tool, the Brush tool can use many different pen shapes.

 ✦ Eraser: The Eraser tool is used to remove color from a drawing. If the
current layer has transparency enabled, the eraser tool makes things
transparent. If transparency is not turned on, the Eraser tool “draws” in
the background color.

 ✦ Airbrush: The Airbrush tool allows you to paint with a virtual airbrush.
You can modify the flow and size of the paint. This tool is especially
effective with a pressure-sensitive drawing tablet.

 ✦ Ink: The Ink tool simulates a calligraphy brush. The speed of drawing
indicates the width of the stroke. It seems quite realistic, because every-
thing I draw with it looks just as bad as what I create when I try real
calligraphy.

 ✦ Clone: The powerful Clone tool allows you to grab content from one part
of an image and copy it to another part of the image. This tool is often
used in photo retouching to remove scars and blemishes.

 ✦ Fill: The Fill tool is used to fill an area with a color or pattern. It has
multiple options that allow you to pick the pattern, the color, and the

 ✓ Get permission if needed: It’s always best
to get permission from the original devel-
oper. Sometimes this isn’t possible or nec-
essary, but you should always try.

 ✓ Make the image your own: Do something
to modify the image. If it’s a stock photo,

this isn’t necessary, but you might want to
change the colors, move things around,
and make the image fit the theme of your
project a little better.

56_9780470537558-bk08ch04.indd 94556_9780470537558-bk08ch04.indd 945 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

946 Introducing Gimp

method of filling. (You can fill the current selection or all areas with the
same color, for example.)

 ✦ Blend: This Blend tool allows you to fill an area with color patterns, sim-
ilar to the Fill tool. There are numerous options that allow you to deter-
mine what pattern is used and how it is distributed. (Many programs
call this the Gradient tool.)

Figure 4-3:
These tools
are used
to draw or
modify an
image.

Paintbrush Airbrush FillBlend

Pencil Eraser Ink Clone

56_9780470537558-bk08ch04.indd 94656_9780470537558-bk08ch04.indd 946 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 4

E
d

itin
g

 G
ra

p
h

ic
s

947Introducing Gimp

A complex program like Gimp deserves (and has) entire books written
about it. There’s no way I can describe everything in this brief introductory
chapter. Still, this should give you an indication of what you can do. Check
the many excellent user tutorials at www.gimp.org/tutorials and the
manual at www.gimp.org/docs.

Selection tools
Often, you’ll be working on specific parts of an image. It’s critical to have
tools to help you grab a particular part of an image and work with it in isola-
tion. Gimp (like any high-quality graphics tool) has a number of useful selec-
tion tools. Figure 4-4 shows where they are in the Toolbox.

 ✦ Rectangle Select: The Rectangle Select tool is used to (wait for it . . .)
select rectangles. Rectangle selections are easy, and they’re pretty
common, so this is a good, basic selection tool.

 ✦ Ellipse Select: The Ellipse Select tool is like the Rectangle Select tool,
but (you’re catching on here) it selects ellipses. You can set the aspect
ratio to 1:1 to select perfect circles.

 ✦ Free Select: Also called the Lasso tool, the Free Select tool allows you to
draw a selection by hand. It takes an incredibly steady hand to use well,
so it’s usually only used for rough selections which are fine-tuned using
other techniques.

 ✦ Magic Select: Also called the Fuzzy Select, the Magic Wand tool allows
you to grab contiguous sections of similar colors. It’s handy when you
have a large section of a single color that you want to select. (You might
want to select a white background and replace it with a pattern, for
example.) Hold down the Shift key and make further selections if you
want to select more than one color.

 ✦ Select by Color: Similar to the Fuzzy Select tool, the Select by Color
tool grabs all the pixels of a chosen color, whether they’re touching the
selected pixel or not, and removes them. (It’s ideal for use with a green
screen, for example.)

 ✦ Scissors Select: The Scissors Select tool uses image-processing tech-
niques to automatically select part of an image. Click along the edge of
an element you want to select, and (if you’re lucky) the selection will
follow the edge. This works fine for high-contrast elements, but condi-
tions have to be perfect.

 ✦ Foreground Select: The Foreground Select tool is a multipass tool that
simplifies pulling part of an image from the rest. On the first pass, use
the Lasso tool to choose the general part of the image you want to
select. The image will show a selection mask with selected parts in white
and nonselected parts blue. Click the colors you want to keep and then
press Enter to commit the selection.

56_9780470537558-bk08ch04.indd 94756_9780470537558-bk08ch04.indd 947 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

948 Introducing Gimp

 ✦ Bezier Select: The Bezier Select tool is my favorite. Click an image to
create a general outline of the selection. (You’re actually making a Bezier
path, which uses math formulas to draw a curved shape.) Modify the path
until it’s exactly how you want it and then you can convert it to a selection.

Figure 4-4:
These tools
are used for
selecting
parts of an
image.

Free (Lasso) Select by color

ForegroundRectangle

EllipseBezier

Magic Wand (Fuzzy)

Scissors

56_9780470537558-bk08ch04.indd 94856_9780470537558-bk08ch04.indd 948 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 4

E
d

itin
g

 G
ra

p
h

ic
s

949Introducing Gimp

Modification tools
A number of tools are used to modify parts of an image. Figure 4-5 illustrates
the main modification tools:

Figure 4-5:
These tools
modify the
existing
picture.

Blur/Sharpen Smudge

Heal

Rotate

Dodge/Burn

Flip

Perspective Move

Scale Shear

56_9780470537558-bk08ch04.indd 94956_9780470537558-bk08ch04.indd 949 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

950 Introducing Gimp

 ✦ Move: This tool allows you to move a selection, a layer, or some other
element.

 ✦ Rotate, Scale, Shear, Perspective, and Flip: These tools all apply trans-
formations to a selection. Use them to rotate or resize a part of your
image, or to change the perspective of a section so it appears to be on
an angled surface, for example.

 ✦ Heal: This tool takes a sample area and applies it to other parts of an
image (much like the Clone tool). It is often used in photo retouching to
give skin a clean, unblemished look. It’s great for fixing the rectangular
artifacts that often appear in JPG images.

 ✦ Blur/Sharpen: This tool is used to blur (reduce contrast) or sharpen
(increase contrast) a small part of the image selectively with the current
pen. This tool is often used for quick touch-ups to remove scratches or
other blemishes.

 ✦ Smudge: This allows you to push a color into adjacent pixels to clean
up an image. I frequently use this tool when trying to build a tiled back-
ground to help line pixels up in a seamless way.

 ✦ Dodge/Burn: This tool is named after a photography darkroom tool. It’s
used to darken or lighten parts of an image and to remove unwanted
shadows.

Managing tool options
Most tools have options available. For example, when you choose the Pencil
or Brush tool, you can select which brush tip to use. When you use the Fill
tool, you can determine whether the tool fills with the current color or the
current selection. You can also determine whether the tool fills with a color
or a pattern.

You can see the Tool Options dialog for any tool by double-clicking the
tool in the Toolbox. Generally, I dock the Tool Options dialog to the main
Toolbox tabs because it’s so frequently used.

Utilities
Gimp also comes with a number of handy utilities. The tools highlighted in
Figure 4-6 have a variety of uses:

 ✦ Color Selector: The two overlapping rectangles show the current fore-
ground and background color. Click one of the rectangles to pick a new
color to work with. You can choose colors in a number of ways, using
RGB and HSV schemes, as well as prefilled color palettes and a very cool
watercolor tool.

 ✦ Color Picker: Allows you to determine the RGB value of any pixel on the
image and pick that color as the current drawing color. It’s very handy
when you want to match colors precisely.

56_9780470537558-bk08ch04.indd 95056_9780470537558-bk08ch04.indd 950 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 4

E
d

itin
g

 G
ra

p
h

ic
s

951Introducing Gimp

Figure 4-6:
These tools
often come
in handy.

Color SelectorPerspective Clone

Zoom Move Crop

Color Picker AlignMeasure

 ✦ Zoom: Allows you to quickly zoom in and out of your image. Drag
around an area, and the selected area will fill the entire window. Hold
down the Ctrl key while dragging to zoom out. Hold the center mouse
button (often also the scroll wheel) to pan your zoomed-in view in
any direction. It’s very helpful to zoom in close when you’re doing
detail work.

56_9780470537558-bk08ch04.indd 95156_9780470537558-bk08ch04.indd 951 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

952 Understanding Layers

 ✦ Measure: Drag the mouse on an image, and you can find the distance
and angle between any two points. The Move tool is useful for precise
placement.

 ✦ Move: Allows you to move a selection or layer.

 ✦ Align: The Align tool simplifies lining up various elements with each other.

 ✦ Crop: Used to crop unwanted border areas from an image.

 ✦ Text: Adds editable text to the image. The Text tool works with layers,
so check the upcoming “Understanding Layers” section for more detail.

 ✦ Perspective Clone: This tool combines the Perspective tool and the
Clone tool. Although it’s cool, the applications are a bit rare, so I don’t
use it often in Web development.

Understanding Layers
Gimp has an astonishing variety of tools, but most of the interesting things
you can do with a raster graphics tool involve a concept called layers. Layers
are really pretty simple: Imagine the old animated movies (before digital
animation was possible). Painters would create a large background, but the
characters were drawn on transparent sheets (called cels in animation). A
single frame of an animation might contain a single opaque background with
a large number of mainly transparent layers on top. Each layer could be
manipulated individually, providing a great deal of flexibility.

Any high-end graphics editor will support some form of layer mechanism.
(In fact, support for layers is a primary differentiator between basic and
advanced graphics tools.) Figure 4-7 shows the Layers panel in Gimp.

The primary area of the Layers panel is the window, showing a stack of
layers. The background is on the bottom of the stack, and any other layers
are on top. Anything on an upper layer obscures a lower layer. Imagine
a camera at the top of the stack pointing down at the stack of layers. If a
higher layer has transparency (as it usually does) the lower layer will show
through any transparent pixels.

The Opacity slider in the Layers panel allows you to adjust the overall trans-
parency of the layer. This can be useful for quickly lightening or darkening a
layer, and for other effects, such as shadows.

Only one layer is active at a time. The current layer is highlighted in the
window at the bottom of the Layers panel. Most operations will occur on
the active layer only. Click a layer in the layers window to make that layer
active.

56_9780470537558-bk08ch04.indd 95256_9780470537558-bk08ch04.indd 952 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 4

E
d

itin
g

 G
ra

p
h

ic
s

953Understanding Layers

Figure 4-7:
The Layers
panel allows
you to
manipulate
layers.

 Be sure you know what layer is active. Many times I try to draw on a layer
and nothing happens. I then typically scribble harder, thinking that will help.
Almost always when this happens, I’ve selected the wrong layer and made a
big mess somewhere. It’s possible (and common) to have a layer active which
is not visible. Fortunately, the Undo command (Ctrl+Z) is quite powerful. If in
doubt, keep the Layers panel visible so you can tell what layer is active.

Each layer has two icons next to it that you can activate. The eye icon tog-
gles the layer’s visibility. The link icon allows you to link two or more layers
together. Each layer also has a name. You can double-click the layer name
to change it. This is especially useful when you have a complex image with
many layers.

The bottom of the layers panel has the following buttons to help you manage
various layers:

 ✦ New Layer: This button creates a new layer. The default type is trans-
parent, but you can also choose to have the layer appear in the fore-
ground or background color.

56_9780470537558-bk08ch04.indd 95356_9780470537558-bk08ch04.indd 953 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

954 Introducing Filters

 ✦ Up and down buttons: Allow you to move a layer up or down in the
stack. The position of a layer in the stack is important because higher
layers have precedence.

 ✦ Duplicate Layer: Makes a copy of the currently active layer. If you’re
modifying a layer, working on a duplicate is a great idea because if you
mess up, you still have a backup.

 ✦ Anchor: When you copy and paste a part of an image, the pasted seg-
ment is placed into a temporary layer. Use the anchor button to nail
down the selection to the current layer.

 ✦ Delete: Allows you to delete the currently active layer. Be careful you
delete the correct layer.

Introducing Filters
Digital editors include a number of other very useful tools. Generally, these
tools apply mathematical filters to an image to change the image in some
way. The standard installation of Gimp comes with dozens of filters, but here
are a few most common to Web developers:

 ✦ Blur filters: Blur filters reduce the contrast between adjacent pixels to
make the image less defined, and can often be used to hide imperfec-
tions or scratches. The most common blur is Gaussian blur, but there
are many others, including Motion blur, which simulates the blur seen in
a slow camera taking a picture of something moving quickly.

 ✦ Unsharp mask: A class of filters called sharpen filters are the opposite
of blur filters. They increase contrast between adjacent pixels. I don’t
know why the sharpen filter is called the “Unsharp mask,” but it is. Note:
There is no “enhance” filter like the ones so common on crime dramas.
Sadly, you can’t just “zoom and enhance” endlessly to see the killer’s
eye color on the reflection of a spoon.

 ✦ Colorize: This marvelous tool allows you to keep the contrast of a layer
and change the color, which can be perfect for changing the color of
hair, eyes, or clothing.

 ✦ Brightness/Contrast: Lets you adjust the brightness (overall value) and
contrast of a particular layer.

 ✦ Color balance: Allows you to adjust the relative amounts of red, green, and
blue in a layer, which can be used to improve pictures with poor lighting.

Solving Common Web Graphics Problems
Gimp, and tools like it, can be used in many ways. The rest of this chapter is
a cookbook of sorts, showing how to build a number of graphics commonly
used in Web development.

56_9780470537558-bk08ch04.indd 95456_9780470537558-bk08ch04.indd 954 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 4

E
d

itin
g

 G
ra

p
h

ic
s

955Solving Common Web Graphics Problems

Changing a color
Frequently, you’ll have an image that’s good, but not the right color. For
example, you may want to change the color of a person’s clothing, or make
part of a logo fit the color scheme of the rest of your site. Gimp makes per-
forming this effect quite easy:

 1. Load your starting image into Gimp and make any other adaptations
you wish to the original image.

 2. Use the Fuzzy Select tool to select the part you want to modify.

 You might need to use the Shift key to add several variants of the color
to the selection.

 3. Use the Copy command (Ctrl+C) to copy the section of the image you
just selected.

 4. Use the Paste command (Ctrl+V) to paste the selected area into a new
layer.

 The pasted area goes into a new “pseudo-layer” by default. In the Layers
panel you’ll see a layer called Floating Selection – Pasted Layer. Click the
New Layer button and you’ll create a new layer containing only the sec-
tion you need.

 5. Colorize the new layer by applying the Colorize filter
(Colors➪Colorize).

 Play with the color sliders until you get the color you want. Because you
made the changes on a new layer, you can always remove or hide the
layer to return to the original. (Or have several different color layers so
you can play with various options.)

Figure 4-8 shows an example of this technique using an image of a glass of
orange juice by Graur Razvan Ionut I found at FreeDigitalPhotos.net. The
original image contained only the picture of orange juice, but I duplicated
the juice glass and changed the color of the second glass to look like coffee.
Of course you’ll need to see this effect online or on the CD-ROM, because the
color change will not be apparent in this black-and-white book.

Figure 4-8:
You can use
the Colorize
filter to
change
orange juice
into coffee.

56_9780470537558-bk08ch04.indd 95556_9780470537558-bk08ch04.indd 955 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

956 Solving Common Web Graphics Problems

Building a banner graphic
Nearly every commercial Web site has a banner graphic — a special graphic,
usually with a set size (900 x 100 is common), that appears on every page.
Normally, if you’re modifying a CSS template, you have a default banner
graphic. You’ll want to copy this graphic in order to start with the right size
and shape.

You can build a banner many ways, but here’s a simple technique you can
modify (Figure 4-9 shows the banner’s progression):

Figure 4-9:
The steps
for building
a banner.

 1. Load or create the basic shape.

 If you have a starting graphic to use, load it into Gimp. If not, create a
new image of the size you need. Mine is 100 pixels tall by 900 pixels wide.

 2. Create a plasma background.

 Use the Plasma filter (Filters➪Render➪Clouds➪Plasma) to create a
semi-random pattern. Use the New Seed and Turbulence buttons to
change the overall feel. Don’t worry about the colors; you remove them
in the next step.

 3. After the plasma background is in place, use the Colorize filter to
apply a color to the background.

 Pick a color consistent with your theme. For this example, go for a
lighter color because you’re using shadows, which require a light back-
ground. Use the Lightness slider to make a relatively light color. (I’m
going for a cloudy sky look, so I set Hue to 215, Saturation to 100, and
Lightness to 75.)

56_9780470537558-bk08ch04.indd 95656_9780470537558-bk08ch04.indd 956 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 4

E
d

itin
g

 G
ra

p
h

ic
s

957Solving Common Web Graphics Problems

 4. Create a text layer using the Text tool.

 Text in a graphic should be large and bold. The Text tool automatically
creates a new layer. After you type your text, specify the font and size.

 5. Duplicate the text layer.

 In the Layers panel, make a copy of the text layer. Select the lower of the
two text layers (which will become a shadow).

 6. Blur the shadow.

 With the shadow layer selected, apply the Gaussian blur (Filters➪Blur➪
Gaussian Blur).

 7. Move the shadow.

 Use the Move tool to move the relative positions of the text and the
shadow. Typically, users expect a shadow to be slightly lower and right
of the text (simulating light coming from the top left). The farther the
shadow is from the text, the higher the text appears to be floating.

 8. Make the shadow semitransparent.

 With the shadow layer still selected, adjust the Opacity slider to about
50%. This will make the shadows less pronounced allow part of the back-
ground to appear through the shadow layer.

 9. Season to taste; make additions based on your needs.

 For example, one client wanted a picture of his sign to appear on the
banner. I took a photo of the sign, brought it in as a layer, cleaned it up,
and rotated and scaled the image until it fit in place.

 10. Save in a reusable format.

 The native format for images in Gimp is XCF. (I have no clue what XCF
stands for, but every time I try to make up an acronym, it comes out dirty.
There must be something wrong with me.) XCF stores everything —
layers, settings, and all. If you need to modify the banner later (and you
will), you’ll have a good version to work from.

 Choose File➪Save As to save the file. If you specify the .xcf extension,
Gimp automatically saves in the full format.

 11. Export to a Web-friendly format.

 Generally, I save banner graphics as PNG or GIF files. (Gimp supports both
formats.) I prefer PNG unless the bottom layer has transparency (because
some browsers still don’t support the advanced transparency features
of the PNG format). Do not save images containing text in JPG format.
The JPG compression scheme is notorious for adding artifacts to text.

 Normally, when you save to another format, a dialog box of options
appears. If in doubt, go with the default values.

56_9780470537558-bk08ch04.indd 95756_9780470537558-bk08ch04.indd 957 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

958 Solving Common Web Graphics Problems

Figure 4-10 shows the final banner image. I included the XCF and PNG files on the
CD-ROM and the Web site. Feel free to open my files in Gimp and experiment.

Figure 4-10:
This is a
simple but
reasonably
cool banner.

Building a tiled background
Often, you want a background image to cover the entire page. This can be
harder than it seems because you don’t know how large the page will be in
the user’s browser. Worse, large images can take a huge amount of space
and slow down the user’s experience. The common solution is to use a tiled
image that’s designed to repeat in the background. Gimp has some very
useful tools for building tiled images.

Recall that the background-repeat CSS property allows you to specify
how a background repeats. The default setting repeats the background infi-
nitely in both the X and Y axes. You can also set the background to repeat
horizontally (repeat-x), vertically (repeat-y), or not at all (no-repeat).

The goal of a tiled background is to make a relatively small graphic fill the
entire page and look like a larger image. The secret is to create the image so
it’s difficult to see where the image repeats. Here’s one way to make a tiled
background in Gimp (Figure 4-11 shows the background’s progression). Of
course, you can adapt this technique for your own purposes.

Figure 4-11:
Building
a tiled
background
image.

56_9780470537558-bk08ch04.indd 95856_9780470537558-bk08ch04.indd 958 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 4

E
d

itin
g

 G
ra

p
h

ic
s

959Solving Common Web Graphics Problems

 1. Create a new image.

 The size of your image is important. Smaller images are much more effi-
cient to download, but the pattern is much more obvious. Start with 256
by 256 pixels.

 2. Build a random pattern.

 You can use the Plasma filter technique described in the previous sec-
tion or try a similar technique by choosing Filters➪Render➪Clouds➪
Difference Clouds. The Difference Clouds filter creates a grayscale image
but with a number of interesting options. The Tileable option creates a
pattern that’s ready to tile. Play with these options until you get some-
thing interesting.

 3. Adjust the contrast.

 For the best effect, you want a relatively even distribution of values from
light to dark. The easiest way to do this is through the automatic nor-
malization tool (Colors➪Auto➪Normalize).

 4. Pick a gradient.

 You’ll add colors to your pattern using a technique called gradient map-
ping. Use the Gradient dialog (Windows➪Dockable Dialogs➪Gradients)
to pick a gradient. Darker colors on your image map to colors on the left
of the gradient, and lighter colors map to the left. You can adjust colors,
so don’t worry if the colors aren’t exactly what you want. (If you want,
you can make your own gradient with the gradient editor by clicking the
Gradient dialog’s New Gradient button.)

 5. Use the Gradient Map tool (Colors➪Map➪Gradient Map) to map the
colors of the gradient to your cloud pattern.

 6. Offset the image to check for tiling.

 The easiest way to see whether the image tiles well is to offset the
image. This puts the edges in the center so you can see how the image
will look when multiple copies are next to each other. Open the Offset
dialog by choosing Layer➪Transform➪Offset. The Offset dialog has a
handy x/2, y/2 button. Click the button to see how your image looks.

 7. Clean the image if necessary.

 If you chose the Tileable option when you built the cloud image, the new
image will look fine. If not, you may have some visible seams. Use the
Smudge and Clone tools to clean up these seams if necessary. Apply the
Offset tool a second time to check whether your seams look good.

 8. Apply filters to get the effect you want.

 You may want to colorize your image or blur it a bit to cover any arti-
facts of your cleanup. Remember that background images should be
extremely dark or extremely light with very low contrast if you want
readable text.

56_9780470537558-bk08ch04.indd 95956_9780470537558-bk08ch04.indd 959 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

960 Solving Common Web Graphics Problems

 9. Test the image by saving the image in XCF format and a Web-friendly
format (like PNG), build a simple page using the image as a back-
ground, and load the page into your browser to ensure it tiles the way
you expect.

 Figure 4-12 shows a sample page containing my tiled image as the
background.

Figure 4-12:
This page
features my
new tiled
background.

56_9780470537558-bk08ch04.indd 96056_9780470537558-bk08ch04.indd 960 10/7/10 9:00 PM10/7/10 9:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Taking Control
of Content

In This Chapter
✓ Approximating CMS with server-side includes (SSI)

✓ Reviewing client-side includes using AJAX

✓ Using PHP includes to build a basic CMS-style system

✓ Building a data-based CMS

✓ Creating a form for modifying content

Commercial sites today combine many skills and tools: XHTML, CSS,
JavaScript, AJAX, databases, and PHP. This book covers many of these

techniques. In this chapter you combine all these techniques to build your
own content management systems. Some are very simple to build, and some
are quite sophisticated.

Building a “Poor Man’s CMS” with Your Own Code
The benefits of using a CMS are very real, but you may not want to make
the commitment to a full-blown CMS. For one thing, you have to learn each
CMS’s particular way of doing things, and most CMSs force you into a partic-
ular mindset. For example, you think differently about pages in Drupal than
you do in Website Baker (both described in Chapter 3 of this minibook).
You can still get some of the benefits of a CMS with some simpler develop-
ment tricks, as described in the following sections.

The examples in this chapter build on information from throughout the
entire book. All of the CMSs (and pseudo-CMSs) built in this chapter use the
design developed in Chapter 2 of this minibook.

Using Server-Side Includes (SSIs)
Web developers have long used the simple SSI (Server-Side Include) trick as
a quick and easy way to manage content. It involves breaking the code into
smaller code segments and a framework that can be copied. For example,
Figure 5-1 shows a variation of the Web site developed in Chapter 2 of this
minibook.

57_9780470537558-bk08ch05.indd 96157_9780470537558-bk08ch05.indd 961 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

962 Building a “Poor Man’s CMS” with Your Own Code

Figure 5-1:
This Web
page
appears
to be a
standard
page.

Even if you view the source code in the browser, you don’t find anything
unusual about the page.

However, if you look at the code in a text editor, you find some interesting
discoveries:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>CS Standard Template</title>
 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”csStd.css” />
 </head>

 <body>
 <div id = ”all”>
 <!-- This div centers a fixed-width layout -->
 <div id = ”heading”>
 <!--#include virtual = ”head.html” -->
 </div><!-- end heading div -->

 <div id = ”menu”>
 <!--#include virtual = ”menu.html” -->
 </div> <!-- end menu div -->

 <div class = ”content”>

57_9780470537558-bk08ch05.indd 96257_9780470537558-bk08ch05.indd 962 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 5

T
a

k
in

g
 C

o
n

tro
l

o
f C

o
n

te
n

t

963Building a “Poor Man’s CMS” with Your Own Code

 <!--#include virtual = ”story1.html” -->
 </div> <!-- end content div -->

 <div class = ”content”>
 <!--#include virtual = ”story2.html” -->
 </div> <!-- end content div -->

 <div id = ”footer”>
 <!--#include virtual = ”footer.html” -->
 </div> <!-- end footer div -->
 </div> <!-- end all div -->
 </body>
</html>

Some interesting things are happening in this code snippet:

 ✦ The page has no content! All the actual content (the menus and the
phony news stories) are gone. This page, which contains only structural
information, is the heart of any kind of CSS — the structure is divorced
from the content.

 ✦ A funky new tag is in place of the content. In each place that you
expect to see text, you see an <!--#include --> directive, instead.
This special instruction tells the server to go find the specified file and
put it here.

 ✦ The filename is unusual. The server doesn’t normally look for include
tags (because most pages don’t have them). Typically, you have to save
the file with the special extension .shtml to request that the server
look for include directives and perform them. (It’s possible to use spe-
cial server configurations to allow SSI with normal .html extensions.)

 ✦ Servers don’t always allow SSI technologies. Not every server is config-
ured for Server-Side Includes. You may have to check with your server
administrator to make this work.

The nice thing about Server-Side Includes is the way that it separates the
content from the structure. For example, look at the code for the first con-
tent block:

 <!--#include virtual = “story1.html” -->

This code notifies the server to look for the file story1.html in the current
directory and place the contents of the file there. The file is a vastly simpli-
fied HTML fragment:

<h2>Book I - Creating the XHTML Foundation</h2>

 Sound XHTML Foundations
 It’s All About Validation
 Choosing your Tools
 Managing Information with Lists and Tables
 Making Connections with Links
 Adding Images
 Creating Forms

57_9780470537558-bk08ch05.indd 96357_9780470537558-bk08ch05.indd 963 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

964 Building a “Poor Man’s CMS” with Your Own Code

This approach makes it very easy to modify the page. If I want a new story, I
simply make a new file, story1.html, and put it in the directory. Writing a
program to do this automatically is easy.

 Like PHP code, SSI code doesn’t work if you simply open the file in the
browser or drag the file to the window. SSI requires active participation from
the server; to run an SSI page on your machine, therefore, you need to use
localhost, as you do for PHP code.

Using AJAX and jQuery for client-side inclusion
If you don’t have access to Server-Side Includes, you can use AJAX to get the
same effect.

Figure 5-2 shows what appears to be the same page, but all is not what it
appears to be.

Figure 5-2:
This time,
I grabbed
content
from the
client side
using AJAX.

Figures 5-1 and 5-2 look identical, but they’re not. I used totally different
means to achieve exactly the same output, from the user’s point of view.

57_9780470537558-bk08ch05.indd 96457_9780470537558-bk08ch05.indd 964 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 5

T
a

k
in

g
 C

o
n

tro
l

o
f C

o
n

te
n

t

965Building a “Poor Man’s CMS” with Your Own Code

The code reveals what’s going on:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” =”text/xml; charset=utf-8” />
 <title>CMS using AJAX</title>
 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”csStd.css” />
 <script type = ”text/javascript”
 src = ”jquery-1.4.2.js”></script>
 <script type = ”text/javascript”>
 //<![CDATA[
 $(document).ready(function() {
 $(”#heading”).load(”head.html”);
 $(”#menu”).load(”menu.html”);
 $(”#content1”).load(”story1.html”);
 $(”#content2”).load(”story2.html”);
 $(”#footer”).load(”footer.html”);
 });
 //]]>
 </script>
 </head>

 <body>
 <div id = ”all”>
 <!-- This div centers a fixed-width layout -->
 <div id = ”heading”>
 </div><!-- end heading div -->

 <div id = “menu”>
 </div> <!-- end menu div -->

 <div class = ”content”
 id = ”content1”>
 </div> <!-- end content div -->

 <div class = ”content”
 id = ”content2”>
 </div> <!-- end content div -->

 <div id = ”footer”>
 </div> <!-- end footer div -->

 </div> <!-- end all div -->
 </body>
</html>

Once again, the page content is empty. All the contents are available in the same
text files as they were for the Server-Side Includes example. This time, though, I
used a jQuery AJAX call to load each text file into the appropriate element.

The same document structure can be used with very different content by
changing the JavaScript. If you can’t create a full-blown CMS (because the

57_9780470537558-bk08ch05.indd 96557_9780470537558-bk08ch05.indd 965 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

966 Building a “Poor Man’s CMS” with Your Own Code

server doesn’t allow SSI, for example) but you can do AJAX, this is an easy
way to separate content from layout. See Book VII, Chapter 2 for more infor-
mation on using jQuery and AJAX for page includes.

Building a page with PHP includes
Of course, if you have access to PHP, it’s quite easy to build pages dynamically.

The csInclude.php program shows how this is done:

!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>CS PHP Includes</title>
 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”csStd.css” />
 </head>

 <body>
 <div id = ”all”>
 <!-- This div centers a fixed-width layout -->
 <div id = ”heading”>
 <?php include(”head.html”); ?>
 </div><!-- end heading div -->

 <div id = ”menu”>
 <?php include(”menu.html”); ?>
 </div> <!-- end menu div -->

 <div class = ”content”>
 <?php include(”story1.html”); ?>
 </div> <!-- end content div -->

 <div class = ”content”>
 <?php include(”story2.html”); ?>
 </div> <!-- end content div -->

 <div id = ”footer”>
 <?php include(”footer.html”); ?>
 </div> <!-- end footer div -->
 </div> <!-- end all div -->
 </body>
</html>

As you can see, using PHP is almost the same as using the SSI and AJAX
approaches from the last two sections of this chapter:

 1. Start by building a template.

 The general template for all three styles of page inclusion is the same.
There’s no need to change the general design or the CSS.

57_9780470537558-bk08ch05.indd 96657_9780470537558-bk08ch05.indd 966 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 5

T
a

k
in

g
 C

o
n

tro
l

o
f C

o
n

te
n

t

967Creating Your Own Data-Based CMS

 2. Create a small PHP segment for each inclusion.

 In this particular situation, it’s easiest to write XHTML code for the main
site and write a small PHP section for each segment that needs to be
included.

 3. Include the HTML file.

 Each PHP snippet does nothing more than include the appropriate HTML.

Creating Your Own Data-Based CMS
If you’ve come this far in the chapter, you ought to go all the way and see
how a relational database can add flexibility to a page-serving system. If
you really want to turn the corner and make a real CMS, you need a system
that stores all the data in a data structure and compiles the pages from that
structure dynamically. That sounds like a project. Actually, creating your own
CMS neatly ties together most of the skills used throughout this book: XHTML,
CSS, PHP, and SQL. It’s not nearly as intimidating as it sounds, though.

Using a database to manage content
The first step is to move from storing data in files to storing in a relational
database. Each page in a content management system is often the same
structure, and only the data is different. What happens if you move away
from text files altogether and store all the content in a database?

The data structure might be defined like this in SQL:

DROP TABLE IF EXISTS cmsPage;
CREATE TABLE cmsPage (
 cmsPageID INTEGER PRIMARY KEY AUTO_INCREMENT,
 title VARCHAR(30)
);

DROP TABLE IF EXISTS cmsBlock;
CREATE TABLE cmsBlock (
 cmsBlockID INTEGER PRIMARY KEY AUTO_INCREMENT,
 blockTypeID INTEGER,
 title VARCHAR(50),
 content TEXT,
 pageID INTEGER

);

DROP TABLE IF EXISTS blockType;
CREATE TABLE blockType (
 blockTypeID INTEGER PRIMARY KEY AUTO_INCREMENT,
 name VARCHAR(30)
);

57_9780470537558-bk08ch05.indd 96757_9780470537558-bk08ch05.indd 967 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

968 Creating Your Own Data-Based CMS

DROP VIEW IF EXISTS pageView;
CREATE VIEW pageView AS
 SELECT
 blockType.name as ‘block’,
 cmsBlock.title as ‘title’,
 cmsBlock.content as ‘content’,
 cmsBlock.pageID as ‘pageID’,
 cmsPage.title as ‘page’
 FROM
 cmsBlock, blockType, cmsPage
 WHERE
 cmsBlock.blockTypeID = blockType.blockTypeID;

INSERT INTO cmsPage VALUES (
 null,
 ‘main page’
);

INSERT into blockType VALUES (null, ‘head’);
INSERT into blockType VALUES (null, ‘menu’);
INSERT into blockType VALUES (null, ‘content1’);
INSERT into blockType VALUES (null, ‘content2’);
INSERT into blockType VALUES (null, ‘footer’);

INSERT INTO cmsBlock VALUES (
 null,
 1,
 ‘it\’s a binary thing’,
 null,
 1
);

INSERT INTO cmsBlock VALUES (
 null,
 2,
 ‘menu’,
 ‘

 one
 two
 three

 ‘,
 1
);

INSERT INTO cmsBlock VALUES (
 null,
 3,
 ‘Book I - Creating the XHTML Foundation’,
 ‘

 Sound XHTML Foundations

57_9780470537558-bk08ch05.indd 96857_9780470537558-bk08ch05.indd 968 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 5

T
a

k
in

g
 C

o
n

tro
l

o
f C

o
n

te
n

t

969Creating Your Own Data-Based CMS

 It\’s All About Validation
 Choosing your Tools
 Managing Information with Lists and Tables
 Making Connections with Links
 Adding Images
 Creating forms

 ‘,
 1
);

INSERT INTO cmsBlock VALUES (
 null,
 4,
 ‘Book II - Styling with CSS’,
 ‘

 Coloring Your World
 Styling Text
 Selectors, Class, and Style
 Borders and Backgrounds
 Levels of CSS

 ‘,
 1
);

INSERT INTO cmsBlock VALUES (
 null,
 5,
 null,
 ‘see aharrisbooks.

net for more information’,
 1
);

This structure has three tables and a view:

 ✦ The cmsPage table: Represents the data about a page, which currently
isn’t much. A fuller version might put menu information in the page data
so that the page would “know” where it lives in a menu structure.

 ✦ The cmsBlock table: Represents a block of information. Each block is
the element that would be in a miniature HTML page in the other sys-
tems described in this chapter. This table is the key table in this struc-
ture because most of the content in the CMS is stored in this table.

 ✦ The blockType table: Lists the block types. This simple table describes
the various block types.

 ✦ The pageView view: Ties together all the other information. After all
the data is loaded, the pageView view ties it all together, as shown in
Figure 5-3.

57_9780470537558-bk08ch05.indd 96957_9780470537558-bk08ch05.indd 969 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

970 Creating Your Own Data-Based CMS

Figure 5-3:
This view
describes
all the data
needed
to build a
page.

 Most of the data is being read as HTML, but it’s still text data. I included
the entire SQL file, including the INSERT statements, on the CD-ROM as
buildCMS.sql.

Writing a PHP page to read from the table
The advantage of using a data-based approach is scalability. In using all the
other models in this chapter, I had to keep copying the template page. If you
decide to make a change in the template, you have to change hundreds of
pages. If you use data, you can write one PHP program that can produce any
page in the system. All this page needs is a page-number parameter. Using
that information, it can query the system, extract all the information needed
for the current page, and then display the page. Here’s the (simplified) PHP
code for such a system:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <title>dbCMS.php.</title>
 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”csStd.css” />
 </head>

57_9780470537558-bk08ch05.indd 97057_9780470537558-bk08ch05.indd 970 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 5

T
a

k
in

g
 C

o
n

tro
l

o
f C

o
n

te
n

t

971Creating Your Own Data-Based CMS

<?php

//get pageID from request if possible
$pageID = $_REQUEST[”pageID”];
$pageID = mysql_real_escape_string($pageID, $conn);
if ($pageID == ””){
 $pageID = 1;
} // end if

//read current page information from the db
$conn = mysql_connect(”localhost”, ”xfd”, ”xfdaio”);
mysql_select_db(”xfd”);
$sql = ”SELECT * FROM pageView WHERE pageID = 1”;
$result = mysql_query($sql, $conn);

//populate local variables from db result
while ($row = mysql_fetch_assoc($result)){
 if ($row[”block”] == ”head”){
 $head = $row[”title”];
 } else if ($row[”block”] == ”menu”){
 $menu = $row[”content”];
 } else if ($row[”block”] == ”content1”){
 $c1Title = $row[”title”];
 $c1Text = $row[”content”];
 } else if ($row[”block”] == ”content2”){
 $c2Title = $row[”title”];
 $c2Text = $row[”content”];
 } else if ($row[”block”] == ”footer”){
 $footer = $row[”content”];
 } // end if
} // end while

?>

 <body>
 <div id = ”all”>
 <!-- This div centers a fixed-width layout -->
 <div id = ”heading”>
 <h1>
 <?php print $head; ?>
 </h1>
 </div><!-- end heading div -->

 <div id = “menu”>
 <?php print $menu; ?>
 </div> <!-- end menu div -->

 <div class = ”content”>
 <h2>
 <?php print $c1Title; ?>
 </h2>
 <p>
 <?php print $c1Text; ?>
 </p>
 </div> <!-- end content div -->

 <div class = ”content”>
 <h2>
 <?php print $c2Title; ?>
 </h2>
 <p>
 <?php print $c2Text; ?>
 </p>
 </div> <!-- end content div -->

57_9780470537558-bk08ch05.indd 97157_9780470537558-bk08ch05.indd 971 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

972 Creating Your Own Data-Based CMS

 <div id = ”footer”>
 <?php print $footer; ?>
 </div> <!-- end footer div -->
 </div> <!-- end all div -->
 </body>
</html>

Here’s the cool thing about dbCMS. This page is all you need! You won’t
have to copy it ever. The same PHP script is used to generate every page in
the system. If you want to change the style or layout, you do it in this one
script, and it works automatically in all the pages. This is exactly how CMS
systems work their magic!

Looking at all the code at one time may seem intimidating, but it’s quite easy
when you break it down, as explained in these steps:

 1. Pull the pageID number from the request.

 If possible, extract the pageID number from the GET request. If the user
has sent a particular page request, it has a value. If there’s no value, get
page number 1:

//get pageID from request if possible
$pageID = $_REQUEST[“pageID”];
$pageID = mysql_real_escape_string($pageID, $conn);
if ($pageID == “”){
 $pageID = 1;
} // end if

 Don’t forget to escape the pageID data! Whenever you extract data from
a page to use in a query, remember to escape the data to prevent injec-
tion attacks.

 2. Query pageView to get all the data for this page.

 The pageView view was designed to give you everything you need to
build a page with one query.

 If you’re using MySQL 4 (without views), just copy the query from the
view definition and insert it into your PHP code. The view is just a
shortcut — it’s never absolutely necessary.

 3. Pull values from the query to populate the page.

 Look at each response of the query. Then, look at the block value to
see which type of query it is and populate local variables:

//read current page information from the db
$conn = mysql_connect(“localhost”, “xfd”, “password”);
mysql_select_db(“xfd”);
$sql = “SELECT * FROM pageView WHERE pageID = $pageID”;
$result = mysql_query($sql, $conn);

 4. Write out the page.

 Go back to HTML and generate the page, skipping into PHP to print the
necessary variables.

57_9780470537558-bk08ch05.indd 97257_9780470537558-bk08ch05.indd 972 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 5

T
a

k
in

g
 C

o
n

tro
l

o
f C

o
n

te
n

t

973Creating Your Own Data-Based CMS

Allowing user-generated content
The hallmark of a CMS is the ability of users with limited technical knowl-
edge to add content to the system. My very simple CMS illustrates a limited
way to add data to the CMS. Figure 5-4 shows the buildBlock.html page.
This page allows authorized users to add new blocks to the system and pro-
duces the output shown in Figure 5-5.

Figure 5-4:
A user can
add content,
which
updates the
database.

Figure 5-5:
The result of
a successful
page
update.

After a few entries, a user can build a complete second page, which might
look similar to Figure 5-6.

57_9780470537558-bk08ch05.indd 97357_9780470537558-bk08ch05.indd 973 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

974 Creating Your Own Data-Based CMS

Figure 5-6:
This page
is simply
another
set of page
blocks
added by
the user.

The system is simple but effective. The user builds blocks, and these blocks
are constructed into pages. First, look over the buildBlock.html page.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN” “http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
 <title>Build new block</title>
 <meta http-equiv=”Content-Type” content=”text/html;charset=UTF-8” />

 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”csStd.css” />

 <style type = ”text/css”>
 label {
 float: left;
 width: 10em;
 clear: left;
 text-align: right;
 padding-right: 1em;
 }

 input, select, textarea {
 float: left;
 width: 20em;
 }

57_9780470537558-bk08ch05.indd 97457_9780470537558-bk08ch05.indd 974 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 5

T
a

k
in

g
 C

o
n

tro
l

o
f C

o
n

te
n

t

975Creating Your Own Data-Based CMS

 button {
 display: block;
 clear: both;
 margin: auto;
 }

 </style>
</head>
<body>
 <div id = ”all”>
 <div id = ”heading”>
 <h1>Build a new block</h1>
 </div>

 <div class = ”content”>
 <form action = ”buildBlock.php”
 method = ”post”>
 <fieldset>

 <label>
 password
 </label>
 <input type = “password”
 name = “password” />

 <label>block type</label>
 <select name = “blockType”>
 <option value = “1”>head</option>
 <option value = “2”>menu</option>
 <option value = “3”>content1</option>
 <option value = “4”>content2</option>
 <option value = “5”>footer</option>
 </select>

 <label>title</label>
 <input type = “text”
 name = “title” />

 <label>content</label>
 <textarea name = “content”
 rows = “10”
 cols = “40”></textarea>

 <label>page</label>
 <select name = “pageID”>
 <option value = “1”>main page</option>
 <option value = “2”>page 2</option>
 </select>

 <button type = “submit”>
 submit
 </button>
 </fieldset>
 </form>
 </div>
 </div>
</body>
</html>

57_9780470537558-bk08ch05.indd 97557_9780470537558-bk08ch05.indd 975 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

976 Creating Your Own Data-Based CMS

This code is a reasonably standard HTML form. Here are the highlights:

 ✦ Add CSS for consistency: It’s important that the user understands she is
still in a part of the system, so I include the same CSS used to display the
output. I also add local CSS to improve the form display.

 ✦ Build a form that calls buildBlock.php: The purpose of this form is
to generate the information needed to build an SQL INSERT statement.
The buildBlock.php program provides this vital service.

 ✦ Ask for a password: You don’t want just anybody modifying your forms.
Include a password to make sure only those who are authorized add data.

 ✦ Get other data needed to build a block: Think about the INSERT query
you’ll be building. You’ll need to get all the data necessary to add a new
record to the cmsBlock table.

 Honestly, this page is a bit sloppy. I hard-coded the block types and page
IDs. In a real system, this data would be pulled from the database (ideally
through AJAX). However, I decided to go with this expedient to save space.

Adding a new block
When the page owner submits the buildBlock.html form, control is
passed to buildBlock.php. This program reads the data from the form,
checks the password, creates an INSERT statement, and passes the query to
the database.

Here’s the code and then the details:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN” “http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
 <title>BuildBlock.php</title>
 <meta http-equiv=”Content-Type” content=”text/html;charset=UTF-8” />
</head>
<body>
 <?php
 //retrieve data from form
 $password = filter_input(INPUT_POST, ”password”);
 $blockType = filter_input(INPUT_POST, ”blockType”);
 $title = filter_input(INPUT_POST, ”title”);
 $content = filter_input(INPUT_POST, ”content”);
 $pageID = filter_input(INPUT_POST, ”pageID”);

 //clean input for sql use
 $blockType = mysql_real_escape_string($blockType);
 $title = mysql_real_escape_string($title);
 $content = mysql_real_escape_string($content);
 $pageID = mysql_real_escape_string($pageID);

 //check password
 if ($password == ”allInOne”){
 manageResults();

57_9780470537558-bk08ch05.indd 97657_9780470537558-bk08ch05.indd 976 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book VIII

Chapter 5

T
a

k
in

g
 C

o
n

tro
l

o
f C

o
n

te
n

t

977Creating Your Own Data-Based CMS

 } else {
 print ”<h2>Unauthorized access...</h2>”;
 } // end if

 function manageResults(){
 global $blockType, $title, $content, $pageID;

 //return output
 print <<<HERE
 <h2>Page input:</h2>
 <p>
 blockType: $blockType

 title: $title

 content: $content

 pageID: $pageID
 </p>
HERE;

 //connect to db
 $con = mysql_connect(”localhost”, ”xfd”, ”xfdaio”);
 mysql_select_db(”xfd”);

 //build and submit query
 $query = <<<HERE
 INSERT INTO cmsBlock VALUES(
 null, $blockType, ’$title’, ’$content’, $pageID);
HERE;

 print ”<pre>$query</pre>”;

 $result = mysql_query($query);
 if ($result == -1){
 print mysql_error();
 } else {
 print ”system updated”;
 } // end if
 } // end function
 ?>
 <p>
 return to the CMS
 </p>
</body>
</html>

Here’s how you use the PHP code with the HTML form to update the
database:

 1. Retrieve data from the form.

 Use the filter_input or $_REQUEST mechanism to extract all data
from the previous form.

 2. Filter all input that’s used in the query.

 All form variables except the password are used in an SQL query, so
pass each variable through the mysql_filter_input() function to
prevent SQL injection attacks. (See Book V, Chapter 7 for information
about SQL injection attacks and how to prevent them.)

57_9780470537558-bk08ch05.indd 97757_9780470537558-bk08ch05.indd 977 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

978 Creating Your Own Data-Based CMS

 3. Check the password.

 You obviously don’t want just anybody to change your system. Check
the password and continue only if the user is authorized.

 4. Print the form contents.

 Ensure the form contents are what you expect before passing data to a
database.

 5. Connect to the database.

 Build a standard database connection so you can pass the query to the
database.

 6. Build the query.

 Send the query to the database. Check that the query contains the data
you expect. (You might not print the actual query in a final pass, but it’s
great for debugging.) Also, send back the results of the mysql_error()
function if something went wrong.

Improving the dbCMS design
Although the simple PHP/MySQL combination described in the last section
is a suitable starting point, you probably want to do a bit more to make a
complete CMS, because a better CMS might have the following features:

 ✦ Automatic menu generation: The menu system in dbCMS is too static
as it is. Your database should keep track of where each page is located
in the system, and your menu code should be dynamically generated
based on this information.

 ✦ Better flexibility: To keep the code simple, I made only one page type,
and the page always has exactly two content blocks. You’ll want a much
more flexible design.

 ✦ Error-checking: This program isn’t nearly robust enough for real use
(yet). It crashes if the data isn’t complete. Before you can use this
system in a real application, you need a way to improve its “crash-
worthiness.”

 ✦ Improved data input: The very basic input form described in this chap-
ter is fine, but it could certainly be improved. Loading the block type
and page data directly from the database would be better. It would also
be nice if the user could create new block types. Still, this basic CMS
shows how you can start building your own content systems.

57_9780470537558-bk08ch05.indd 97857_9780470537558-bk08ch05.indd 978 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A: What’s on the CD

In This Appendix
 ✓ System requirements

 ✓ Using the CD

 ✓ What you’ll find on the CD

 ✓ Troubleshooting

System Requirements

Make sure that your computer meets the minimum system require-
ments shown in the following list. If your computer doesn’t match up

to most of these requirements, you may have problems using the software
and files on the CD. For the latest and greatest information, please refer to
the ReadMe file located at the root of the CD-ROM.

 ✦ A PC running Microsoft Windows 98, Windows 2000, Windows NT4 (with
SP4 or later), Windows Me, Windows XP, Windows Vista, or Windows 7.

 ✦ A Macintosh running Apple OS X or later.

 ✦ A PC running a version of Linux with kernel 2.4 or greater.

 ✦ An Internet connection

 ✦ A CD-ROM drive

If you need more information on the basics, check out these books pub-
lished by Wiley Publishing, Inc.: PCs For Dummies, by Dan Gookin; Macs For
Dummies, 9th Edition, by Edward C. Baig; iMac For Dummies, 5th Edition,
by Mark Chambers; Windows 95 For Dummies, Windows 98 For Dummies,
Windows 2000 Professional For Dummies, Microsoft Windows ME Millennium
Edition For Dummies, Windows Vista For Dummies, Windows 7 For Dummies,
all by Andy Rathbone.

58_9780470537558-bapp01.indd 97958_9780470537558-bapp01.indd 979 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

980

Using the CD
To install the items from the CD to your hard drive, follow these steps.

 1. Insert the CD into your computer’s CD-ROM drive. The license agree-
ment appears.

 Note to Windows users: The interface won’t launch if you have autorun
disabled. In that case, click Start➪Run (For Windows Vista, Start➪All
Programs➪Accessories➪Run). In the dialog box that appears, type D:\
Start.exe. (Replace D with the proper letter if your CD drive uses a dif-
ferent letter. If you don’t know the letter, see how your CD drive is listed
under My Computer.) Click OK.

 Note for Mac Users: The CD icon will appear on your desktop, double-
click the icon to open the CD and double-click the “Start” icon.

 Note for Linux Users: The specifics of mounting and using CDs vary
greatly between different versions of Linux, and unfortunately we can’t
provide instructions for every version of Linux. Please see the manual or
help information for your specific system if you experience trouble using
this CD.

 2. Read through the license agreement and then click the Accept button
if you want to use the CD.

 The CD interface appears. The interface allows you to install the pro-
grams and run the demos with just a click of a button (or two).

What You’ll Find on the CD
The following sections are arranged by category and provide a summary of
the software and other goodies you’ll find on the CD. If you need help with
installing the items provided on the CD, refer back to the installation instruc-
tions in the preceding section.

 Shareware programs are fully functional, free, trial versions of copyrighted
programs. If you like particular programs, register with their authors for a
nominal fee and receive licenses, enhanced versions, and technical support.

Freeware programs are free, copyrighted games, applications, and utilities.
You can copy them to as many PCs as you like — for free — but they offer no
technical support.

GNU software is governed by its own license, which is included inside the
folder of the GNU software. There are no restrictions on distribution of GNU
software. See the GNU license at the root of the CD for more details.

Trial, demo, or evaluation versions of software are usually limited either by time
or functionality (such as not letting you save a project after you create it).

Using the CD

58_9780470537558-bapp01.indd 98058_9780470537558-bapp01.indd 980 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

981

Most of the software mentioned in this book is available for all three operating
systems. For space reasons, we have focused primarily on Windows and Mac
versions. Please check the Web site (www.aharrisbooks.net/xfd_2ed/
resources.html) for links to all software for other operating systems.

Author-created material
For Windows and Mac.

All the examples provided in this book are located in the Author directory
on the CD and work with Macintosh, Linux, Unix and Windows 95/98/NT and
later computers. These files contain much of the sample code from the book.
The structure of the examples directory is

Author/Book 1/Chapter 01

Aptana Studio 2.0
Open source.

For Windows and Mac OS. A full-featured programmer’s editor that greatly
simplifies creating Web pages, CSS documents, and code in multiple
languages.

Dia 0.97.1
Open source.

For Windows. A drawing tool suitable for site diagrams, flow diagrams, and
other vector-drawing applications.

FileZilla 3.3.1
Open source.

For Windows and Mac OS. Having both client and server capabilities avail-
able, FileZilla is a free FTP alternative.

Firefox 3.6 and Extensions
Open source.

For Windows and Mac OS. I’ve included this powerful browser on the CD, but
that’s only part of the story. I recommend enhancing Firefox with numer-
ous extensions. It’s actually easier to install these extensions online than it
is to include them on the CD. Once you’ve installed Firefox, please visit the
resources Web page (www.aharrisbooks.net/xfd_2ed/resources.
html) for links to the various extensions.

What You’ll Find on the CD

58_9780470537558-bapp01.indd 98158_9780470537558-bapp01.indd 981 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

982

Web Developer Toolbar 1.1.8 adds all kinds of features for creating and test-
ing pages; HTML Validator 0.7 checks your pages for standards-compliance;
the FireBug 1.5 extension adds incredible features for JavaScript and AJAX
debugging; and FireFTP is Mozilla’s FTP client program.

GIMP 2.6
Open source.

For Windows. A professional-level graphics editor in a free package. It does
everything the expensive graphics editors do.

HTML Tidy
Open source.

For Windows and Mac OS. HTML Tidy is an open source program and library
for checking and generating clean XHTML/HTML. Binaries and source for a
variety of platforms are available.

IrfanView 4.25
Freeware.

For Windows. A useful graphics viewer program.

IZArc 4.1
Freeware.

For Windows and Mac OS. A good freeware archive utility that supports a
wide variety of archive formats.

jEdit
Open source.

For Windows and Mac OS. Written in Java, jEdit is a text editor built for
programmers.

jQuery 1.4
Open source.

For Windows and Mac OS. A JavaScript Library that helps you transfer HTML
documents, handle events, and includes AJAX features in your Web pages.

What You’ll Find on the CD

58_9780470537558-bapp01.indd 98258_9780470537558-bapp01.indd 982 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

983

Komodo Edit
Open source.

For Windows and Mac OS. A handy text editor that supports PHP, Python,
Ruby, Perl and Tcl, JavaScript, CSS, and HTML among other languages.

KompoZer 0.7.10
Open source.

For Windows and Mac OS. Useful for beginning and intermediate program-
mers, KompoZer is a Web authoring system that offers file management and
WYSIWYG Web page editing.

Notepad++
Open source.

For Windows and Mac OS. The successor to Notepad, Notepad++ is a free
source code editor that supports several languages.

SQLite 3.6.22
Open source.

For Windows and Mac OS. A powerful software library as well as SQL data-
base engine.

WebsiteBaker 2.8.1
Open source.

For Windows and Mac OS. A free content management system for the begin-
ning to intermediate programmer.

XAMPP 1.7.3
GNU version.

For Windows and Mac OS. XAMPP is a complete server package that’s easy to
install and incredibly powerful. This package includes the amazing Apache
Web server, the PHP programming language, the MySQL database manager,
and tons of useful utilities.

What You’ll Find on the CD

58_9780470537558-bapp01.indd 98358_9780470537558-bapp01.indd 983 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

984

XnView 1.97
Open source.

For Windows and Mac OS. With XnView, you can view and convert a wide
assortment of graphics and image files.

Troubleshooting
I tried my best to compile programs that work on most computers with the
minimum system requirements. Alas, your computer may differ, and some
programs may not work properly for some reason.

The two likeliest problems are that you don’t have enough memory (RAM)
for the programs you want to use, or you have other programs running that
are affecting installation or running of a program. If you get an error message
such as Not enough memory or Setup cannot continue, try one or
more of the following suggestions and then try using the software again:

 ✦ Turn off any antivirus software running on your computer. Installation
programs sometimes mimic virus activity and may make your computer
incorrectly believe that it’s being infected by a virus.

 ✦ Close all running programs. The more programs you have running, the
less memory is available to other programs. Installation programs typi-
cally update files and programs; so if you keep other programs running,
installation may not work properly.

 ✦ Have your local computer store add more RAM to your computer. This
is, admittedly, a drastic and somewhat expensive step. However, adding
more memory can really help the speed of your computer and allow
more programs to run at the same time.

Customer Care
If you have trouble with the CD-ROM, please call the Wiley Product
Technical Support phone number at (800) 762-2974. Outside the United
States, call 1(317) 572-3994. You can also contact Wiley Product Technical
Support at http://support.wiley.com. John Wiley & Sons will provide
technical support only for installation and other general quality control
items. For technical support on the applications themselves, consult the pro-
gram’s vendor or author.

To place additional orders or to request information about other Wiley prod-
ucts, please call (877) 762-2974.

Troubleshooting

58_9780470537558-bapp01.indd 98458_9780470537558-bapp01.indd 984 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Special Characters
and Numerics

<!-- --> (comment) tag, 13
!= (not equal) operator, 363, 545
$ (dollar sign), 460
% (percent sign), 680
& (ampersand), 528
* (asterisk), 461, 464
. (period), 460, 463
/ (slash), 12, 342, 462
: (colon), 162, 368, 419, 551
; (semicolon), 162, 342, 510, 666
{ (left brace), 362, 369
{ } (curly braces), 162, 363, 368–369, 464
} (right brace), 362, 368
+ (plus sign), 355, 461, 464
< (less than) operator, 363, 545
<= (less than or equal to) operator, 545
<> (angle braces), 12
= (equal sign), 364, 528, 678
== (equality) operator, 363, 545, 678
> (greater than) operator, 363, 375, 544–545
>= (greater than or equal to) operator,

375, 545
, (comma), 419
“ “ (double quotes)

coding with, 510
double quote interpolation, 515
embedding quotes within, 431
local styles, 242
‘ ‘ (single quotes), 666
3D Button fi lter (IrfanView), 113

A
a value, 593
<a> (anchor) tag, 84–86

absolute but fl exible layout.
See also layout

creating, 328–329
description, 326
heights, 329
margins, 329
overview, 326
percentages, 326–328
widths, 329

absolute layout
CSS, 324–325
overview, 322–324
XHTML, 324

absolute measurements, 189–190
absolute positioning

absolute but fl exible layout
creating, 328–329
description, 326
heights, 329
margins, 329
overview, 326
percentages, 326–328
widths, 329

absolute layout
CSS, 324–325
overview, 322–324
XHTML, 324

description, 317
HTML, 318
position guidelines, 318–319
settings, 319–320
z-index property, 320–322

absolute references, 89
Accordion tool (jQuery UI), 798, 824–827
action attribute, 524, 534
addClass() event, 763
addContactCSV.php program, 602–603
addContact.php program, 596–597
addInput.html program, 357–358

Index

59_9780470537558-bindex.indd 98559_9780470537558-bindex.indd 985 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML & CSS All-in-One For Dummies, 2nd Edition986

Adobe Fireworks, 942
Adobe Flash

binary encoding, 262
disadvantages of, 261–262
search engine problems, 262
technical issues, 262
updating issues, 262
in Web-based fonts, 184

Adobe Photoshop, 942
Airbrush tool (Gimp), 945
AJAX (Asynchronous JavaScript and XML)

asynchronous transactions, 733
client-side inclusion, 964–966
CMS, building with, 766–769
connections

asynchronous, 741–742
checking status, 740–741
getAJAX() function, 743–744
HTML forms, building with, 737
opening to server, 739
overview, 734–737
reading responses, 745
sending requests and parameters, 740
setting up program, 743
XMLHttpRequest object, 738–739

description, 731
features of, 731–732
JavaScript in, 733
libraries, 747–748
multipass application

HTML framework, setting up, 849–850
loadlist.php program, 851–852
overview, 847–849
responding to selections, 852–853
select element, loading, 850
showHero.php script, 853–854

sending requests
overview, 843–844
PHP, simplifying, 846–847
sending data, 844–846

tabs, using with, in jQuery, 830–833
text fi les, including with, 765–766
XML in, 734

AJAXtabs.html program, 831–832
AJAXtest.html program, 844–845
alert() method, 342
alert statement, 345
Align tool (Gimp), 952
alt attribute, 98
alternate text, 98
ampersand (&), 528
anchor (<a>) tag, 84–86
AND clause, 725
angle braces (<>), 12
animate() method, 489, 492, 785
:animated fi lter (jQuery), 796
animated GIFs, 105
animate.html program, 779–782
animation

automatic motion
code, 484–485
overview, 483–485
setInterval() call, 485–486

boundaries, checking, 474–475
<canvas> tag, 155
global variables, 471–472
HTML code, 468–470
image-swapping

animating sprites, 489–490
fi le format, 487
fi le size, 487
global variables, 488–489
interval, setting up, 489
names, 487
overview, 486–487
page, building, 487–488
preparing images, 487
subdirectory, 487
transparency, 487
init() function, 472
JavaScript, 470–471
jQuery

alternating styles, 795
callback function, 785
changing position with, 779–782
cloning, 793–794

59_9780470537558-bindex.indd 98659_9780470537558-bindex.indd 986 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index 987

CSS in, 775–776
events, setting up, 782–783
fading elements in and out, 779
fi lters, 796
framework, creating, 782
hiding and showing content,

771–773, 777
HTML in, 775–776
initializing code, 792
initializing page, 776–777
JSON object, 785
modifying elements, 786–791
move() function, 784
node chaining, 783–784
page, building, 791
relative motion, 785–786
resetting page, 795–796
sliding elements, 778
speed attribute, 785
text, adding, 792–793
time-based animation, 785
toggling visibility, 778
transition support, 773–775
wrap method, 794–795

keyboard, reading input from
event handlers, 478
init() function, 477–478
key codes, 480
overview, 475–476
page, building, 476–477
responding to keystrokes, 479–480

mouse-following effect
followMouse.html, 481–482
initializing code, 482
listener, 483

moving sprites, 472–474
overview, 467–468
preloading images

building code, 494–495
global variables, 495–496
initializing data, 496
loadImages() method, 496–497
movement, 492

moving sprites, 497
overview, 490–492
swapping, 492
updating images, 497

reading input from keyboard, 475–476
sprite div, 467–468
timer-based movement, 484–485

anti-aliasing, 945
antsFunction.html program
chorus() function, 400
code, 397–399
distraction, 401
passing data to and from functions,

398–401
text, creating, 401–402
verse function, 400–401
antsParam.html program, 398–399
Apache, 644, 872–873
append() method, 792, 821
append mode, 598
Apple Safari, 52
Apple Webkit framework, 52
Aptana Studio. See also Integrated

Development Environments (IDE)
automatic end tag generation, 58
on CD-ROM, 981
changing extension, 61
changing initial contents, 61
changing view, 61
code completion, 338
customizing, 60–61
debugging, 380–381
error detection, 58, 339
features of, 58–60
fi le management tools, 58
help fi les, 338–339
HTML editor preferences, 60
issues with, 61
Outline view, 58–59
Page preview, 58
syntax completion, 58, 338
writing JavaScript editor with, 338–339
XHTML template, 58

59_9780470537558-bindex.indd 98759_9780470537558-bindex.indd 987 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

988 HTML, XHTML & CSS All-in-One For Dummies, 2nd Edition

arguments, defi ned, 583
arrays

accessing, 405–406
associative

creating, 567
extracting rows as, 620
foreach, using with, 568–570
normal arrays versus, 568

breaking strings into, 574–577
code, 405
creating

with explode, 574–575
overview, 559
with preg_split, 576–577

defi ned, 395
description, 355
fi lling, 559–560
in HTML, 565–567
loops
for loop, 406–407
foreach loop, 564–565, 568–570
overview, 562–567

multidimensional, 570–574
objects, 395
one-dimensional

creating, 559
fi lling, 559–560
preloading, 562
viewing elements of, 560–561

preloading, 562
two-dimensional

calculating distance with, 573–574
code, 411
description, 409
main() function, 411–412
setting up, 410–411

<article> tag, 143
ASCII fi les, 666
ascii_general_ci collation setting, 661
askName.html program, 523
ASP.NET, 503

associative arrays. See also arrays
creating, 567
extracting rows as, 620
foreach, using with, 568–570
normal arrays versus, 568

asterisk (*), 461, 464
asynch.html program, 742–743
Asynchronous JavaScript and XML (AJAX)

asynchronous transactions, 733
client-side inclusion, 964–966
CMS, building with, 766–769
connections

asynchronous, 741–742
checking status, 740–741
getAJAX() function, 743–744
HTML forms, building with, 737
opening to server, 739
overview, 734–737
reading responses, 745
sending requests and parameters, 740
setting up program, 743
XMLHttpRequest object, 738–739

description, 731
features of, 731–732
JavaScript in, 733
libraries, 747–748
multipass application

HTML framework, setting up, 849–850
loadlist.php program, 851–852
overview, 847–849
responding to selections, 852–853
select element, loading, 850
showHero.php script, 853–854

sending requests
overview, 843–844
PHP, simplifying, 846–847
sending data, 844–846

tabs, using with, in jQuery, 830–833
text fi les, including with, 765–766
XML in, 734
:attribute=value fi lter (jQuery), 796

59_9780470537558-bindex.indd 98859_9780470537558-bindex.indd 988 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index 989

attributes, defi ned, 75
audience

broadband access, 900
browsers used by, 900
computers used by, 900
determining, 899–900
mobile devices used by, 900
profi ciencies, 900
<audio> tag, 149–152
AUTO_INCREMENT tag, 672–674
automatic motion. See also page

animation
code, 484–485
creating, 483–486
setInterval() call, 485–486

B
 tag, 183
background images. See also images

changing, 228–230
colors, 232
contrast, 232–233
description, 93
gradients, 235–237
in jello layout, 298
preparing, 941
problems with, 230
seamless texture, 232
tiled, 230–232, 958–960
turning off repeat, 234–235
using in lists, 237–238
background-color attribute, 162, 428
backgroundColor property, 431
backgroundColors.html program,

428–431
backgroundImage.html program, 229
background-repeat attribute, 234–235
backing up data, 685
Bad Request error code, 741
banners, 941, 956–958

basicColors.html program, 159–161
basicDL.html program, 73
basicForm.html program, 123
basicLinks.html program, 85
basicOL.html program, 67–68
basicTable.html program, 74–75
batch processing, 101, 115–117
Bezier path, 948
Bezier Select tool (Gimp), 948
binary notation, 12, 366
Blend tool (Gimp), 945–946
blink attribute, 196
<blink> tag, 196
BLOB data type, 640
blob property, 628
block-level tags, 85
blockType table, 979
blogging, 918–920
Blur fi lter (IrfanView), 111–112
blur fi lters, 111–112, 954
Blur/Sharpen tool (Gimp), 950
BMP images, 102, 106
<body> tag, 13, 161
bold text, 193–194
Boolean functions, 363
Boolean values, 355
Boolean variables, 363
border() function, 761
border-color attribute, 220
bordered class, 758
borderProps.html program, 220
borders

attributes, 219–221
box model

block-level elements, 224–225
border, 225–228
centering in, 226–228
description, 224
inline elements, 224–225
margins, 225–228
overview, 224–225
paddings, 225–228

59_9780470537558-bindex.indd 98959_9780470537558-bindex.indd 989 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Edition990

borders (continued)

codes, 220
colors, 220
dashed, 221
dotted, 221
double, 221
groove, 221
inset, 221
outset, 221
overview, 219
partial, 222–224
ridge, 221
shaded, 220
shortcut, 222
solid, 221
styles, 221
temporary, 283–284
two-column design, 285–287
width, 220

boundaries
animation, 474–475
word, 464

box model. See also borders
block-level elements, 224–225
border, 225–228
centering in, 226–228
description, 224
inline elements, 224–225
margins, 225–228
overview, 224–225
paddings, 225–228

 tags, 623
break statement, 370
breakpoint, 387, 389
brightness, 109
broadband access, 900
browsers

Chrome, 52
in client-side development system, 870
description, 10
extensions, 870

Firefox, 51–52
advantages of, 51–52
on CD-ROM, 981
code view, 52
debugging, 383
displaying XHTML pages on, 26–27
error-handling, 52
extensions, 52, 57
history, 50
HTML Validator, 54–55
Web Developer toolbar, 55–56, 170–172

incompatibility, 19
Internet Explorer

debugging JavaScript, 381–383
displaying XHTML pages on, 26–27
history of, 50
older versions of, 51
overview, 50–51
support for HTML 5, 156

loading page into, 11
Mosaic, 49
Mozilla, 52
multiple, 43
Netscape, 49
Opera, 52
portable, 53
Safari, 52
text-only, 53
use in Web development, 44
Webkit framework, 52
buildBlock.html program, 973–976
buildBlock.php program, 976–977
buildContact.sql script, 666–667, 673
bullets, 66
business rules, 703
button events, 428
<button> tag, 139
buttons. See also multiple selections

code, 136
description, 123
events, managing, 428–431
input-style, 137–138
multiple selections, 450

59_9780470537558-bindex.indd 99059_9780470537558-bindex.indd 990 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index 991

radio, 134–136
check boxes versus, 135
code, 135–136, 456
creating, 134–136
description, 122
name attribute, 455

Reset, 138
Submit, 138
turning links into, 301–302

C
.ca domain, 87
caches, defi ned, 750
camel-casing, 584
<canvas> tag, 152–155
CAPTCHA, 595
carriage returns, 14
Cartesian join, 717
Cascading Style Sheets (CSS)

body style, 250
changing, 170–172
class, 250
codes, 247–248
conditional comments, 251–256
container elements, 250
design, 898
element id, 250
element styles, 250
external style sheets, 242–246
hierarchy of styles, 248–249
incompatibility, 251–252
inheriting styles, 247–248
Internet Explorer-specifi c code, 252–253
local styles

awkwardness of, 242
code, 240–241
description, 239
disadvantages of, 242
highest precedence in, 250
ineffi ciency of, 242
lack of separation in, 242

quote problems in, 242
readability of, 242
using, 241

overriding styles, 249–250
overview, 170
precedence of style defi nitions, 250–251
user preference, 250
CDATA element, 438
CD-ROM

Aptana Studio 2.0, 981
author-created material, 981
customer care, 984
Dia, 981
FileZilla, 981
Firefox, 981
GIMP, 981
HTML Tidy, 982
installing items from, 980
IrfanView, 982
IZArc, 982
jEdit, 982
jQuery, 982
Komodo Edit, 982
KompoZer, 983
Notepad ++, 983
SQLite, 982
system requirements, 979
troubleshooting, 984
WebsiteBaker, 983
XAMPP, 983
XnView, 984

cellphones, browsing with, 53
cels, 952
<center> tag, 183, 196
centered fi xed-width layout, 295–298
change alternative paragraphs

button (jQuery), 788
Change event (jQuery), 763
changeColor() function

description, 430–431
writing, 431

59_9780470537558-bindex.indd 99159_9780470537558-bindex.indd 991 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Edition992

changeDocument.html program,
788–790

CHAR data type, 640, 642–643
character class, 463
chdir() function, 609
check boxes. See also multiple selections

code, 133
creating, 132–134
description, 122, 452
ID, 134
pages, creating, 452–453
radio buttons versus, 135
responding to, 453–454
checkBounds() function, 474
checked property, 453
Chrome, 52
classes. See also objects

adding to pages, 207–208
combining, 208–210
CSS classes, 208–210
defi ning, 206–207
pseudo-classes, 213–215
classes.html program, 208
clear attribute, 276–278
Click event (jQuery), 763
clients

defi ned, 869
error codes, 741
expectations, 897–898
individual users, 869
limited, 870
resources, 869
temporary connections, 869
in three-tiered architecture, 644
turning off, 870

client-side development system
browser extensions, 870
Integrated Development Environment, 871
text editor, 870–871
Web browsers, 870

client-side programming, 501–502
clone() function, 793–794
clone() method, 820–821
clone button (jQuery), 786
Clone tool (Gimp), 945
CMS (content management system)

characteristics, 916
content, adding, 925–926
CSS fi les, modifying, 939
data-based

blocks, adding, 976–978
blockType table, 979
CMS versus, 978
cmsPage table, 979
code, 967–969
creating, 967–978
pageView view, 979–980
PHP page to read from table, 970–972
user-generated content, 973–976

Drupal, 919–920
functionality, adding new, 934–935
index.php, modifying, 938–939
info.php fi le, changing, 937–938
installing, 922–924
Moodle, 917–918

communication tools, 918
online assignment creation/

submission, 917
online grade book, 917
online testing, 918
specialized educational content, 918
student and instructor management, 917

overview, 42, 916
templates

adding additional, 932–933
changing, 931–932
packaging, 939–940
prebuilt, 935–937

themes, creating custom, 935–940
Website Baker, 920–935

59_9780470537558-bindex.indd 99259_9780470537558-bindex.indd 992 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index 993

WordPress, 918–919
WYSIWYG editor, 927–931

adding lists, links and images, 927
multiple paste options, 927
overview, 17, 41, 927–931
predefi ned fonts and styles, 927

cmsAJAX page, 766–769
cmsPage table, 979
code maintenance, 42
colon (:), 162, 368, 419, 551
color attribute, 162
color balance, 109, 954
color palette

GIF images, 103
Web-safe, 167–168
color parameter, 431
Color Picker tool (Gimp), 950
Color Scheme Designer, 173–175
Color Selector tool (Gimp), 950
Colorize fi lter (Gimp), 954–955
colors

adding, 170
background-color attribute, 162
changing, 162–164, 941, 955–956
choosing, 168–169
color attribute, 162
hex codes, 163–165
hexadecimal notation, 165
hue, 172, 174
modifying, 169–170
names, 163–164
overview, 159
saturation, 172
scheme designer, 173–175
schemes

accented analogic, 176
analogic, 176
complementary, 175
monochromatic, 175
overview, 175–176

split complementary, 175
tetrad, 176
triad, 175

specifying in CSS, 163–168
style sheets

overview, 160–161
setting up, 161–162

value, 172–173
Web-safe palette, 167–169
colorTester.html program, 168
colspan attribute, 79–80
columns. See also rows; tables

defi ned, 638
spanning

multiple, 79
overview, 77–79

.com domain, 87
Comic Sans font, 179
comma (,), 419
command line, 645
comment (<!-- -->) tag, 13
comparison condition, 363
comparison operators, 363–364, 545
compiled language, 504
CONCAT function (SQL), 706
concatenation

including spaces in, 347
literals, 347
overview, 345–346
in PHP, 512–513
text editor, 346
variables, 347

conditional comments
description, 252
Internet Explorer

checking version, 256
code specifi c to, 252–253

using with CSS, 253–255

59_9780470537558-bindex.indd 99359_9780470537558-bindex.indd 993 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Edition994

conditions
Boolean functions, 363
Boolean variables, 363
comparison, 363
comparison operators, 363
defi ned, 363
description, 539
else clause, 364–365, 367
expressions, creating, 368–369
if statements

nesting, 370–372
overview, 362–363
if-else structure, 365–367
nested, 371–372
switch structure, 367–370

connections
AJAX

asynchronous, 741–742
checking status, 740–741
getAJAX() function, 743–744
HTML forms, building with, 737
opening to server, 739
overview, 734–737
reading responses, 745
sending requests and parameters, 740
setting up program, 743
XMLHttpRequest object, 738–739

creating, 617
database name, 616
database password, 616
database username, 616
hostname, 616
console object, 386–387
console.log function, 387
constructors, defi ned, 416
contactTable.php program,

625–626, 633–634
:contains(text) fi lter (jQuery), 796
content management system (CMS)

characteristics, 916
content, adding, 925–926

CSS fi les, modifying, 939
data-based

blocks, adding, 976–978
blockType table, 979
CMS versus, 978
cmsPage table, 979
code, 967–969
creating, 967–978
pageView view, 979–980
PHP page to read from table, 970–972
user-generated content, 973–976

Drupal, 919–920
functionality, adding new, 934–935
index.php, modifying, 938–939
info.php fi le, changing, 937–938
installing, 922–924
Moodle, 917–918

communication tools, 918
online assignment creation/

submission, 917
online grade book, 917
online testing, 918
specialized educational content, 918
student and instructor management, 917

overview, 42, 916
templates

adding additional, 932–933
changing, 931–932
packaging, 939–940
prebuilt, 935–937

themes, creating custom, 935–940
Website Baker, 920–935
WordPress, 918–919
WYSIWYG editor, 927–931

adding lists, links, and images, 927
multiple paste options, 927
overview, 17, 41, 927–931
predefi ned fonts and styles, 927

context, selecting in, 216–217
contrast, 109
control and confi guration tools, 872

59_9780470537558-bindex.indd 99459_9780470537558-bindex.indd 994 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index 995

control structures
conditions, 539
else clause, 543–545
if statement, 540–543
if-else if structure, 552
for loop, 552–555
switch, 549–552
while loop, 555–558

cookies, 590
corrupted database, rebuilding, 666
costs, 42
$count variable, 589
counting loops, 373–374
CREATE TABLE command (SQL), 667–668
Crop tool (Gimp), 952
cropping, 101
CSS (Cascading Style Sheets)

body style, 250
changing, 170–172
class, 250
codes, 247–248
conditional comments, 251–256
container elements, 250
design, 898
element id, 250
element styles, 250
external style sheets, 242–246
hierarchy of styles, 248–249
incompatibility, 251–252
inheriting styles, 247–248
Internet Explorer-specifi c code, 252–253
local styles

awkwardness of, 242
code, 240–241
description, 239
disadvantages of, 242
highest precedence in, 250
ineffi ciency of, 242
lack of separation in, 242
quote problems in, 242
readability of, 242
using, 241

overriding styles, 249–250
overview, 170
precedence of style defi nitions, 250–251
user preference, 250

CSS 3 embedded fonts, 184
css method, 821
CSV fi les

creating, 685–687
description, 685–687
storing data in, 601–603
viewing data directly, 603–604

curly braces ({ }), 162, 363, 368–369, 464
CURRDATE() function (SQL), 706
CURRTIME() function (SQL), 706
cursive fonts, 180
custom bullets, 93
customer care, 984

D
dashed border, 221
data connections

AJAX
asynchronous, 741–742
checking status, 740–741
getAJAX() function, 743–744
HTML forms, building with, 737
opening to server, 739
overview, 734–737
reading responses, 745
sending requests and parameters, 740
setting up program, 743
XMLHttpRequest object, 738–739

creating, 617
database name, 616
database password, 616
database username, 616
hostname, 616

Data Defi nition Language (DDL), 638

59_9780470537558-bindex.indd 99559_9780470537558-bindex.indd 995 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Edition996

data normalization
defi ned, 691, 700
entity-relationship diagrams

components, 695
defi ned, 695
drawing, 696
one-to-many relationship, 719
table defi nition, 696–699

fi rst normal form, 700–701
second normal form, 701–702
third normal form, 702–703

Data Query Language (DQL), 638
data server, 644, 871
data storage, variables for, 344
data types, 639–640
data-based content management system

(dbCMS)
blocks, adding, 976–978
blockType table, 979
CMS versus, 978
cmsPage table, 979
code, 967–969
creating, 967–978
pageView view, 979–980
PHP page to read from table, 970–972
user-generated content, 973–976

databases
connections to, creating, 617
corrupted, rebuilding, 666
creating

overview, 892–893
with phpMyAdmin, 659–663

defi ned, 639
defi nition lists, 623–625
deleting records in, 684–685
editing records in, 682–683
extracting rows, 620–622
generating output, 633–634
host name, 616
name, 616
output format, 623–634
passing queries to, 618–619

passwords, 616, 658
printing data, 622–623
processing input, 632–633
processing results, 619–620
responding to search requests, 630–632
searching

for any text in fi eld, 681
for ending value of fi eld, 679–680
with partial information, 679–680
with regular expressions, 681–682

selecting
few fi elds, 675–677
subset of records, 677–679

sorting responses, 682–683
tables, adding to, 658
updating records in, 684
user interaction, 628–634
username, 616
XHTML search form, 629–630
XHTML tables for output, 625–627
date() function, 522
DATE data type, 640
date values

adding calculation to get years, 709
calculating, 707–713
CONCAT function, 712–713
DATEDIFF() function, 708–709
MONTH() function, 711–712
YEAR() function, 711–712
DATEDIFF() function (SQL), 707–709
datePicker() method, 834–836
Datepicker tool (jQuery UI), 799, 834–836
DAY() function (SQL), 707
dbCMS (data-based content management

system)
blocks, adding, 976–978
blockType table, 979
CMS versus, 978
cmsPage table, 979
code, 967–969
creating, 967–978
pageView view, 979–980

59_9780470537558-bindex.indd 99659_9780470537558-bindex.indd 996 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index 997

PHP page to read from table, 970–972
user-generated content, 973–976
DblClick event (jQuery), 763
<dd> tags, 72, 625
DDL (Data Defi nition Language), 638
debugging

Aptana, 380–381
changing DOM properties with, 425
console output, 386–387
debug mode, 390–391
debugger directive, 389–390
Firebug, 383–384
Firefox, 383
interactive, 387–388
JavaScript on Internet Explorer, 381–383
logging to console, 386–387
logic errors, 384–387
PHP, 557
setting breakpoint, 389
setting up debugger, 388–389
steps in, 392

dedicated server, 878
def property, 628
defi nition description, 72
defi nition lists, 65, 72–73, 623–625
defi nition terms, 72
DELETE command, 684–685
delimited data

reading CSV data in PHP, 604–607
storing data in CSV fi le, 601–603
viewing CSV data directly, 603–604

delimiter, 601
Dia (drawing tool), 901, 981
dialog() method, 840–842
Dialog tool (jQuery UI), 799
digital cameras, 98
digits, specifying, 464
directories

changing, 608–609
generating list of fi le links, 609–611
opening, 608
reading, 608–609

distance.php program, 571–572
div element, 211, 213–217
<div> tag, 224, 225–228, 794–795
<dl> tag, 72
DNS (Domain Name System), 888
doctype, 29
<!DOCTYPE> tag, 22–23
Document Object Model (DOM)

button events, 428–431
changeColor() function, 431
description, 423
document object, examining, 425–426
embedding quotes within quotes, 431
event-driven programming, 432–433
getElementById() method, 434–435
HTML framework, 436–437
JavaScript code, 427–428
navigating, 423–424
objects, 426
page colors, controlling, 427–428
properties, changing with Firebug, 425
text fi elds, manipulating, 435
text input and output, 431–436
writing to document, 436–438
XHTML form, creating, 433–434
document type does not allow

error, 33
document variable, 424
$(document).ready() function,

755–756, 765
Dodge/Burn tool (Gimp), 950
DOJO, 748
dollar sign ($), 460
DOM (Document Object Model)

button events, 428–431
changeColor() function, 431
description, 423
document object, examining, 425–426
embedding quotes within quotes, 431
event-driven programming, 432–433
getElementById() method, 434–435
HTML framework, 436–437

59_9780470537558-bindex.indd 99759_9780470537558-bindex.indd 997 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Edition998

DOM (Document Object Model) (continued)

JavaScript code, 427–428
navigating, 423–424
objects, 426
page colors, controlling, 427–428
properties, changing with Firebug, 425
text fi elds, manipulating, 435
text input and output, 431–436
writing to document, 436–438
XHTML form, creating, 433–434

Domain Name System (DNS), 888
domain names

description, 87, 887–888
IP addresses, 888
registering, 888–891
subdomain, 87

Don Ho Notepad ++, 45–46, 339, 983
dotted border, 221
double border, 221
DOUBLE data type, 640
double quotes (“ “)

coding with, 510
double quote interpolation, 515
embedding quotes within, 431
local styles, 242

DQL (Data Query Language), 638
drag-and-drop, 155
drag.html program, 803
DROP command, 684
drop-down lists

advantages of, 130
building form for, 446–447
code, 131, 446–447
getting input from, 445–446
reading list box, 447–448

droplets, 934
Drupal, 919–920
<dt> tags, 72, 625
dx parameter, 473
dy parameter, 473

dynamic data, 354–355
dynamic graphs, 154
dynamic length, 641
dynamic lists. See also lists

creating, 304–310
hiding inner lists, 306–307
nested lists, 304–306
showing inner lists on cue, 307–310

E
each() method, 859
easing, 784
echo statement, 511
editor.css fi le, 937
editors

graphic
Adobe Fireworks, 942
Adobe Photoshop, 942
building banner graphics with, 956–958
building tiled background, 958–960
changing colors with, 955–956
choosing, 942
creating image, 944–945
description, 942
fi le format, 957
Gimp, 942–960, 982
GimpShop, 102
IrfanView, 101–102, 106–116, 982
modifi cation tools, 949–950
multiple windows, 942–943
painting tools, 945–946
Paint.net, 102, 942
Pixia, 102
selection tools, 947–948
toolbox, 943
uses for, 941
utilities, 950–952
Windows Paint, 942
XnView, 102

59_9780470537558-bindex.indd 99859_9780470537558-bindex.indd 998 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index 999

text
building tables in, 77
in client-side development system,

870–871
Emacs, 48–49, 339
enhanced, 43–44
features lacking in, 43
jEdit, 49, 339, 982
Microsoft Word, 44
Notepad, 16, 44
Notepad ++, 45–46, 339, 983
opening, 9–10
Scintilla, 49, 339
SynEdit, 49
TextEdit, 44
tools to avoid, 44–45
VI, 339
VIM, 339

WYSIWYG
adding lists, links, and images, 927
multiple paste options, 927
overview, 17, 41
predefi ned fonts and styles, 927

.edu domain, 87
element-level style. See local CSS styles
Ellipse Select tool (Gimp), 947
else clause, 364–365, 367, 543–545
 tag, 96, 204, 438
Emacs (text editor), 48–49, 339
email input element, 145
embedded fonts, 147–149, 184
embedded images, 93, 96–97
embeddedFont.html program, 148
embeddedImage.html program, 96–97
Emboss fi lter (IrfanView), 113
emphasis

adding, 204
strong, 204–206
:empty fi lter (jQuery), 796
ems, 191

endless loops, 379–380
enhanced text editors, 43–44
entities, 695
entity-relationship diagrams. See also

data normalization
components, 695
defi ned, 695
drawing, 696
one-to-many relationship, 719
table defi nition, 696–699

environment variables, 527, 530
EOT font format, 148
:eq (equals) fi lter, 795
equal sign (=), 364, 528, 678
equality (==) operator, 363, 545, 678
equals (:eq) fi lter, 795
Eraser tool (Gimp), 945
error codes, 741
error messages, 30–31
eval() function, 356–357
event handlers, setting up, 478
event-driven programming, 432–433
Excel, 687
execute permission, 884
explode method, 574–575
explode.php program, 574–575
expressions, creating, 368–369
Extensible Hypertext Markup Language

(XHTML)
askName.html, 523
building with PHP, 508–509
coding, 898
documents

code, 22
creating, 22–24
<!DOCTYPE> tag, 22–23
meta tag, 23
validator, 23–24
xmlns attribute, 23
fixedWidth.html, 293–294

59_9780470537558-bindex.indd 99959_9780470537558-bindex.indd 999 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Edition1000

Extensible Hypertext Markup Language
(XHTML) (continued)

forms
buttons, 123
check boxes, 122, 132–134
code, 123
with complex elements, 532–534
creating, 433–434, 523–525, 629–630
drop-down list, 130–132
elements, 122–123
fi eldsets, 123–126
fl oating layout, 270–275
get method, 527–529
getting data from, 530–531
input-style buttons, 137–138
labels, 123–126
legends, 123
multi-line text input, 128–130
password boxes, 122
password fi eld, 127–128
radio buttons, 122, 134–136
reading with PHP program, 525–526
receiving data, 525–526
Reset button, 138
responding to, 535–537
search form, 629–630
select lists, 122
sending to PHP program, 527–529
Submit button, 138
text areas, 122
text boxes, 122
text fi eld, 126–127
transmitting data, 529–530
nestedList.html, 305–306
for site prototype, 908–909
standards, 20–21
switching from PHP to, 517–518
tags
<!DOCTYPE>, 22–23
meta, 23

template, 898, 907–909

for two-column design, 281–282
twoColumn.html, 281
validation, 21

Extensible Markup Language (XML). See

also AJAX (Asynchronous JavaScript
and XML)

attributes, 856
container for elements, 856
data

in AJAX, 734
creating, 690
creating HTML, 858
manipulating with jQuery, 857–858
processing results, 859
retrieving, 858–859
storing, 854–855

data nodes, 856
description, 20
doctype, 855–856
namespace, 23
nesting elements, 856

extensions, 15–16
external style sheets

code, 243
defi ning styles, 243–244
description, 242–246
link tags, 245–246
reusing, 244–245
specifying external link, 246
externalImage.html program, 94
externalStyle.html program, 243

F
fade in button, 773
fadeIn() method, 779
fadeout() method, 779
Fantasy fonts, 181
fclose() function, 591, 594
feof() function, 600
fgets() function, 591, 600

59_9780470537558-bindex.indd 100059_9780470537558-bindex.indd 1000 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index 1001

fi elds
defi ned, 619, 638
hidden, 438
primary key, 641–642
in records, 639
searching for any text in, 681
searching for ending value of, 680
selecting, 675–676
<fieldset> pair, 125
fieldsetDemo.html program, 124
fi eldsets

containing form elements with, 430, 434
description, 123
organizing form with, 123–126
width, 275–276
file() function, 591
fi le extensions, displaying, 15–16
fi le management tools, 58
fi le name, 739
File Transfer Protocol (FTP), 884–887
fileList.php program, 609–611
fi les

generating list of links, 609–611
hidden, 15
linking to, 600
permissions, 598, 884
reading from, 599–600
writing text to, 592–594

FileZilla FTP Server, 872, 981
Fill tool (Gimp), 945–946
filter_input() function, 531
fi lters, 101, 954
find() method, 859
Fire Vox, 53
Firebug

adding debugger directive, 389–390
changing DOM properties with, 425
console output, 386–387
debug mode, 390–391
debugging with, 383–384
description, 57

interactive debugging, 388
logging to console with, 386–387
setting breakpoint, 389
setting up, 388–389
viewing generated source with, 444

Firefox
advantages of, 51–52
on CD-ROM, 981
code view, 52
debugging, 383
displaying XHTML pages on, 26–27
error-handling, 52
extensions, 52, 57
history, 50
HTML Validator, 54–55
Web Developer toolbar

checking accessibility with, 56
editing pages with, 56
features, 170–172
getting download speed report with, 56
interface, 55
manipulating CSS codes with, 56
validating pages with, 56
viewing generated source with, 794

FireFTP, 885–886
fi rewalls, 876, 878
Fireworks, 942
fi rst normal form, 700–701
fi xed menu

code, 331–332
content position, 334
creating, 330
CSS values, 332–334
width, 333–334

fi xed positioning, 329
fi xed-width layout. See also layout

centered, 295–298
description, 293
jello layout, 298
using image to simulate true columns,

294–295
XHTML code for, 293–294

59_9780470537558-bindex.indd 100159_9780470537558-bindex.indd 1001 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Edition1002

fixedWidthCentered.css fi le, 296–297
fixedWidth.html program, 293–294
Flash

binary encoding, 262
disadvantages of, 261–262
search engine problems, 262
technical issues, 262
updating issues, 262
in Web-based fonts, 184

Flex, 262
fl exible layout. See absolute but fl exible

layout
Flip tool (Gimp), 950
floatForm.html program, 270–271
fl oating columns, 285
fl oating layout. See also layout

description, 262
fi xed-width, 293–298
problems with, 290–291
three-column design, 287–292
two-column design, 279–287
using, 264–265

fl oating point number, 355
fl oats

adding float property, 264–265
clear attribute, 276–278
codes, 264
fi eldset width, 275–276
margins, 268–269
paragraphs, 265–266
styling forms with, 270–275
using images with, 262–263
width, 267–268

fl uid layout, 287
Focus event (jQuery), 763
fof() function, 591
Folder Options dialog box (Windows), 15
folders, hidden, 15
font attribute, 197–199
font size

absolute measurements, 189–190
ems, 191

in hover state, 215
named sizes, 190–191
percentages, 191
pixels, 190
points, 189–190
relative measurements, 190–191
setting, 188
traditional measurements, 190
 tag, 183
font-family attribute, 179
fonts. See also text

aligning text, 196
blink attribute, 196
bold text, 193–194
commonly installed, 182
CSS 3 embedded, 184
defi ned, 177
embedded, 147–149, 184
face, 148
families of, 149
Flash, 184
formats, 148
generic, 180–181
images, 184–185
images as, 184–185
images as headlines, 185–187
italic text, 192–193
open font library, 149
overline attribute, 196
problems in, 183–184
setting, 177–178
shortcut, 197–199
strikethrough effect, 195
text modifi cations, 191–192
underlining, 194–195
font-size attribute, 188–189
font-style attribute, 192–193, 198
font-variant attribute, 197–198
font-weight attribute, 193–194, 198
fopen() function, 591–593

59_9780470537558-bindex.indd 100259_9780470537558-bindex.indd 1002 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index 1003

for loop. See also loops
array length, 407
building standard for, 374
counting, 373–374
counting backward, 375
counting by 5, 375–376
creating, 374
in PHP code, 552–555
using arrays with, 406–407
while loop versus, 378
for statement, 374
foreach loop, 564–565, 568–570
Foreground Select tool (Gimp), 947
foreign key reference, 702
<form> tag, 123, 125
FORMAT function (SQL), 706
formatted printing, 386
formDemo.html program, 122
forms

buttons, 123
check boxes, 122, 132–134
code, 123
with complex elements, 532–534
creating, 433–434, 523–525
creating, for PHP processing, 523–525
drop-down list, 130–132
elements, 122–123
fi eldsets, 123–126
fl oating layout, 270–275
get method, 527–529
getting data from, 530–531
HTML 5 form elements, 144–147
input elements, 124
input-style buttons, 137–138
labels, 123–126
legends, 123
multi-line text input, 128–130
password boxes, 122
password fi eld, 127–128
radio buttons, 122, 134–136
reading with PHP program, 525–526
receiving data, 525–526

Reset button, 138
responding to, 535–537
select lists, 122
sending to PHP program, 527–529
Submit button, 138
text areas, 122
text boxes, 122
text fi eld, 126–127
transmitting data, 529–530

forums, 920
fputs() function, 598
frame global variable, 495
frames. See also layout

aesthetic issues, 260
backup issues, 260
complexity, 260
description, 259
disadvantages of, 259–260
linking issues, 260
master pages, 260
search engine problems, 260

Free Select tool (Gimp), 947
Freedigitalphotos.net, 944
Freehostia, 656, 880
freeware programs, 980
FROMDAYS(INT) function (SQL), 707
FTP (File Transfer Protocol), 884–887
FTP server, 871, 878
Fuzzy Select tool (Gimp), 947
fwrite() function, 591, 594, 598

G
gaming, 155
gaming sites, 920
gamma correction, 110
Gaussian blur, 954, 957
generated source, 442–444
generic fonts, 180–181
geolocation, 155
get() function, 844, 858–859
get method, 527–529

59_9780470537558-bindex.indd 100359_9780470537558-bindex.indd 1003 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Edition1004

$_GET variable, 530
getAJAX() function, 743–744, 765
getElementById() method, 434–435,

442, 448, 473
getElementsByName method, 456
getName() function, 585
getRequest.php program, 527
getTime.php program, 519
GIF images, 103–106, 957
Gimp. See also graphic editors

Airbrush tool, 945
Align tool, 952
Bezier Select tool, 948
Blend tool, 945–946
Blur/Sharpen tool, 950
building banner graphics with, 956–958
building tiled background, 958–960
on CD-ROM, 982
changing colors with, 955–956
Clone tool, 945
Color Picker tool, 950
Color Selector tool, 950
Colorize fi lter, 954–955
creating image, 944–945
Crop tool, 952
description, 942
Dodge/Burn tool, 950
Ellipse Select tool, 947
Eraser tool, 945
fi le format, 957
Fill tool, 945–946
fi lters, 954
Flip tool, 950
Foreground Select tool, 947
Free Select tool, 947
Fuzzy Select tool, 947
Heal tool, 950
Ink tool, 945
Lasso tool, 947
Layers panel, 952–954
Magic Select tool, 947
Measure tool, 952

modifi cation tools, 949–950
Move tool, 950, 952
multiple windows, 942–943
Opacity slider, 952
Paintbrush tool, 945
painting tools, 945–946
Pencil tool, 945
Perspective Clone tool, 952
Perspective tool, 950
Plasma fi lter, 956–958
Rectangle Select tool, 947
Rotate tool, 950
Scale tool, 950
Scissors Select tool, 947
Select by Color tool, 947
selection tools, 947–948
Sharpen fi lter, 954
Shear tool, 950
Smudge tool, 950
Text tool, 952
toolbox, 943
Toolbox window, 943
utilities, 950–952
Zoom tool, 951

GimpShop, 102
global privileges, 654
global variables, 402, 471–472, 488–489,

495–496
globalVar, 403–404
Gmail, 733
GNU software, 980
Google

loading jQuery from, 750–751
searches, 529

Google Chrome, 52
google.load() function, 751
.gov domain, 87
Gradient Map tool (Gimp), 959
gradients, 235
graphic editors

Adobe Fireworks, 942
Adobe Photoshop, 942

59_9780470537558-bindex.indd 100459_9780470537558-bindex.indd 1004 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index 1005

building banner graphics with, 956–958
building tiled background, 958–960
changing colors with, 955–956
choosing, 942
creating image, 944–945
description, 942
fi le format, 957
Gimp

Airbrush tool, 945
Align tool, 952
Bezier Select tool, 948
Blend tool, 945–946
Blur/Sharpen tool, 950
building banner graphics with,

956–958
building tiled background, 958–960
on CD-ROM, 982
changing colors with, 955–956
Clone tool, 945
Color Picker tool, 950
Color Selector tool, 950
Colorize fi lter, 954–955
creating image, 944–945
Crop tool, 952
description, 942
Dodge/Burn tool, 950
Ellipse Select tool, 947
Eraser tool, 945
fi le format, 957
Fill tool, 945–946
fi lters, 954
Flip tool, 950
Foreground Select tool, 947
Free Select tool, 947
Fuzzy Select tool, 947
Heal tool, 950
Ink tool, 945
Lasso tool, 947
Layers panel, 952–954
Magic Select tool, 947
Measure tool, 952
modifi cation tools, 949–950

Move tool, 950, 952
multiple windows, 942–943
Opacity slider, 952
Paintbrush tool, 945
painting tools, 945–946
Pencil tool, 945
Perspective Clone tool, 952
Perspective tool, 950
Plasma fi lter, 956–958
Rectangle Select tool, 947
Rotate tool, 950
Scale tool, 950
Scissors Select tool, 947
Select by Color tool, 947
selection tools, 947–948
Sharpen fi lter, 954
Shear tool, 950
Smudge tool, 950
Text tool, 952
toolbox, 943
Toolbox window, 943
utilities, 950–952
Zoom tool, 951

GimpShop, 102
IrfanView, 101–102

batch processing tool, 115–116
Blur fi lter, 111–112
built-in effects, 110–115
on CD-ROM, 982
changing image formats in, 106–107
Emboss fi lter, 113
enhancing colors in, 109–110
fi lters, 110–115
Oil Paint fi lter, 113–114
overview, 101–102
Red Eye Reduction fi lter, 115
resizing images in, 108–109
Sharpen fi lter, 111–112
3D Button fi lter, 113

modifi cation tools, 949–950
multiple windows, 942–943
painting tools, 945–946

59_9780470537558-bindex.indd 100559_9780470537558-bindex.indd 1005 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Edition1006

graphic editors (continued)

Paint.net, 102, 942
Pixia, 102
selection tools, 947–948
toolbox, 943
uses for, 941
utilities, 950–952
Windows Paint, 942
XnView, 102

graphs, dynamic, 154
greater than (>) operator, 363, 375,

544–545
greater than or equal to (>=) operator,

363, 375, 545
greetUser.php program, 524–526
groove border, 221
Gueury, Marc, 54

H
<h1> tag, 13, 161
<h2> tag, 33
handle, 608
<head> tag, 13
:header fi lter (jQuery), 796
Heal tool (Gimp), 950
height attribute, 97–98
help features, 43
heredoc, 515–517
hex codes, 132, 163–165
hexadecimal notation, 165–167
hidden fi elds, 438
hidden fi les, 15
hidden folders, 15
hide() method, 777
hide button, 771
hideShow program, 771–772
highLow.php program, 543–545
highMidLow.php program, 545–547
history variable, 424
horizontal links, 302–303
horizontal menu, 314–316

hostname, 616
hosts

advantages of, 878
choosing, 878–881
connecting to, 880–881
fi le permissions, 884
fi nding, 879–880
managing remote site, 881–887
names, 86, 616
HOUR() function (SQL), 707
hover() function, 761–762
Hover event (jQuery), 763
hover state, 213
href attribute, 86, 95
HTML (HyperText Markup Language)

absolute positioning, 318
addNumbers.html, 352
advantages of, 11–12
AJAXtabs.html, 831–832
AJAXtest.html, 844–845
animate.html, 779–782
arrays

with loops, 406
overview, 405, 565–567
askName.html, 523
asynch.html, 742–743
asynchronous AJAX transmission,

742–743
audio, 149–150
basic AJAX, 736–737
basicDL.html, 73
basicForm.html, 123
basicOL.html, 68
basicTable.html, 74–75
borderProps.html, 220
borders

overview, 220, 222
partial, 222–224

browser support for, 142, 156
buildBlock.html, 974–975
canvasDemo.html, 153–154
changeDocument.html, 788–790

59_9780470537558-bindex.indd 100659_9780470537558-bindex.indd 1006 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index 1007

check boxes, 133
classes.html, 208
clear attribute, 277–278
client-side inclusion, 965
cmsAJAX, 767–768
colors

background, 430
controlling, 428

conditional comments, 254
data-based content management

system, 967–969
defi nition, 623–624
divspan.html, 211–212
doctype, 142
drag-and-drop, 155
drag.html, 803
embedded fonts, 147–149
externalImage.html, 94
fi eldsets, 124
fi xed menu, 331–332
float property, 264
fl oating paragraph, 266–267
font rule, 198
form elements, 144–147
forms

AJAX, 737
with complex elements, 533–534
overview, 123, 440
PHP processing, 523
for predefi ned lists, 446–447
search, 629–630
XHTML, 433–434

framework, 436–437
function, 397
geolocation, 155
horizontal menu, 314–315
hover event, 761–762
images

background, 229
external, 94
image-based headers, 186–187
inline, 96–97

in lists, 237–238
list-style, 237–238
preloading, 490–491

input elements, 144–147
Internet Explorer version, 256
JavaScript

code to access DOM, 427
program, 340–341

jQuery
accordion effect in, 824–827
drag demo, 803
resizing theme, 807–809
tab effect in, 828–830

keyboard page, 476–477
layout

absolute, 324
centered fi xed-width, 295–298
fi xed-width, 293–294

limitations, 156
links

adding to images, 94
hyperlinks, 85
list of, 88–89
navigation as list of, 301–302
styling, 214

lists
defi nition, 73
drop-down, 131
nested, 70, 305–306
ordered, 68
sortable, 840
unordered, 67

local storage, 155
loops

endless, 379
if-else structure, 366
marginPadding.html, 226
movement.html, 468–469
multiPass.html, 848–849
multiple selections, 449
multiSelect.html, 449
overview, 141

59_9780470537558-bindex.indd 100759_9780470537558-bindex.indd 1007 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Edition1008

HTML (HyperText Markup Language)
(continued)

pages
basic, 9–11
CSS code for primary, 910–911

paragraphs, 201–202
password fi eld, 128
position guidelines, 318–319
problems with, 19–20
radio buttons, 135–136, 456
readJSON.html, 862–863
readXML.html, 857–858
ready.html, 755
relative references, 90
rollDie.html, 360
semantic elements, 142–144
Server-Side Includes, 961–963
string method, 350
styleElements.html, 757–758
styles

cascading, 247–248
defi ning multiple, 217–218
external style sheets, 243–245
local CSS, 240–241
switch, 367–368
tables, 74–75
text

aligning, 196
bold, 193–194
font family, setting, 178
italics, 193
multi-line text input, 128–130
strikethrough, 195
subscripts, 199–200
superscripts, 199–200

text fi eld, 126
thumbnail-based image directory, 120
timer-based movement, 484–485
Timer.html, 484–485
turning of background repetition,

234–235
two-dimensional array, 573

UItools.html, 833–834
underlined paragraph, 194
user numbers, 353–354
validating, 142
variables, 343–344
version 5, 143
vertical menu, 312
video, 151
view, 713
XHTML documents, 22
XHTML prototype, 908–909
XHTML tables for SQL output, 625–626
z-index effect, 321

HTML Editor Preferences dialog box
(Aptana), 60

HTML Tidy, 37–39, 982
HTML Validator (Firefox extension),

54–55
html_entity_decode() function, 607
<html> tag, 12
htmlentities() function, 604–605
HTTP (HyperText Transfer Protocol), 86
HTTP response codes, 741
hue, 172, 174
hyperlinks

address, 84
anchor tag, 84–86
appearance, 83–84
code, 85
integrating into text, 84
lists of, 88–89
overview, 83
requirements, 83–84
trigger for, 83

HyperText Markup Language (HTML)
absolute positioning, 318
addNumbers.html, 352
advantages of, 11–12
AJAXtabs.html, 831–832
AJAXtest.html, 844–845
animate.html, 779–782

59_9780470537558-bindex.indd 100859_9780470537558-bindex.indd 1008 10/7/10 9:01 PM10/7/10 9:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index 1009

arrays
with loops, 406
overview, 405, 565–567

arrays in, 565–567
askName.html, 523
asynch.html, 742–743
asynchronous AJAX transmission,

742–743
audio, 149–150
basic AJAX, 736–737
basicDL.html, 73
basicForm.html, 123
basicOL.html, 68
basicTable.html, 74–75
borderProps.html, 220
borders

overview, 220, 222
partial, 222–224

browser support for, 142, 156
buildBlock.html, 974–975
canvasDemo.html, 153–154
changeDocument.html, 788–790
check boxes, 133
classes.html, 208
clear attribute, 277–278
client-side inclusion, 965
cmsAJAX, 767–768
colors

background, 430
controlling, 428

conditional comments, 254
creating basic page, 9–11
data-based content management

system, 967–969
defi nition, 623–624
divspan.html, 211–212
doctype, 142
drag-and-drop, 155
drag.html, 803
embedded fonts, 147–149
externalImage.html, 94
fi eldsets, 124

fi xed menu, 331–332
float property, 264
fl oating paragraph, 266–267
font rule, 198
form elements, 144–147
forms

AJAX, 737
with complex elements, 533–534
overview, 123, 440
PHP processing, 523
for predefi ned lists, 446–447
search, 629–630
XHTML, 433–434

framework, 436–437
function, 397
geolocation, 155
horizontal menu, 314–315
hover event, 761–762
images

background, 229
external, 94
image-based headers, 186–187
inline, 96–97
in lists, 237–238
list-style, 237–238
preloading, 490–491

input elements, 144–147
Internet Explorer version, 256
JavaScript

code to access DOM, 427
program, 340–341

jQuery
accordion effect in, 824–827
drag demo, 803
resizing theme, 807–809
tab effect in, 828–830

keyboard page, 476–477
layout

absolute, 324
centered fi xed-width, 295–298
fi xed-width, 293–294

limitations, 156

59_9780470537558-bindex.indd 100959_9780470537558-bindex.indd 1009 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Edition1010

HyperText Markup Language (HTML)
(continued)

links
adding to images, 94
hyperlinks, 85
list of, 88–89
navigation as list of, 301–302
styling, 214

lists
defi nition, 73
drop-down, 131
nested, 70, 305–306
ordered, 68
sortable, 840
unordered, 67

local storage, 155
loops

endless, 379
if-else structure, 366
marginPadding.html, 226
movement.html, 468–469
multiPass.html, 848–849
multiple selections, 449
multiSelect.html, 449
overview, 141
pages

basic, 9–11
CSS code for primary, 910–911

paragraphs, 201–202
password fi eld, 128
position guidelines, 318–319
problems with, 19–20
radio buttons, 135–136, 456
readJSON.html, 862–863
readXML.html, 857–858
ready.html, 755
relative references, 90
rollDie.html, 360
semantic elements, 142–144
Server-Side Includes, 961–963

string method, 350
styleElements.html, 757–758
styles

cascading, 247–248
defi ning multiple, 217–218
external style sheets, 243–245
local CSS, 240–241
switch, 367–368
tables, 74–75
text

aligning, 196
bold, 193–194
font family, setting, 178
italics, 193
multi-line text input, 128–130
strikethrough, 195
subscripts, 199–200
superscripts, 199–200

text fi eld, 126
thumbnail-based image directory, 120
timer-based movement, 484–485
Timer.html, 484–485
turning of background repetition,

234–235
two-dimensional array, 573
UItools.html, 833–834
underlined paragraph, 194
user numbers, 353–354
validating, 142
variables, 343–344
version 5, 143
vertical menu, 312
video, 151
view, 713
XHTML documents, 22
XHTML prototype, 908–909
XHTML tables for SQL output, 625–626
z-index effect, 321

hypertext reference attribute, 86
HyperText Transfer Protocol (HTTP), 86

59_9780470537558-bindex.indd 101059_9780470537558-bindex.indd 1010 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index 1011

I
<i> tag, 183
icons (jQuery UI), 800
id attribute, 127
IDE (Integrated Development

Environments)
Aptana Studio

automatic end tag generation, 58
on CD-ROM, 981
changing extension, 61
changing initial contents, 61
changing view, 61
code completion, 338
customizing, 60–61
debugging, 380–381
error detection, 58, 339
features of, 58–60
fi le management tools, 58
help fi les, 338–339
HTML editor preferences, 60
issues with, 61
Outline view, 58–59
Page preview, 58
syntax completion, 58, 338
writing JavaScript editor with, 338–339
XHTML template, 58

in client-side development system, 871
Komodo Edit

abbreviations, 62
on CD-ROM, 982
commands, 62
description, 62
features, 507
keyboard macros, 63
macros, 62
snippets, 62

overview, 44

if statement. See also conditions
creating, 540–543
functions, 362–363
nesting, 370–371
if-else if structure, 552
if-else structure, 365–367
if.php program, 541–543
image directory, 936
image manipulation tools.

See graphic editors
images

acknowledging source of, 944
alternate text, 98
background

changing, 228–230
colors, 232
contrasts, 232–233
description, 93
gradient, 235–237
in jello layout, 298
preparing, 941
problems, 230
seamless texture, 232
tiled, 230–232, 958–960
turning off repeat, 234–235
using images in lists, 237–238

batch processing, 101, 115–117
brightness, 109
bullets, 93
colors

balance, 109
changing, 955
enhancing, 109–110

contrast, 109
creating, 944–945
cropping, 101
disadvantages of using as Web pages, 261
effects, 110–115
embedded, 93, 96–98

59_9780470537558-bindex.indd 101159_9780470537558-bindex.indd 1011 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Edition1012

images (continued)

fi lters, 101, 110–115
as fonts, 184–185
formats, 102–106
formats, changing, 106–107
gamma correction, 110
gradients, 235
as headlines, 185–187
height attribute, 97–98
 tag, 96
inline, 96–97
links

adding to, 94–96
external, 93–96
overview, 117–120

in lists, 237–238
manipulating, 106–117
modifying, 941
permissions, 945
raw, 103
resampling, 109
resizing, 98–101, 108–109
reusing, 944–945
royalty-free, 944
saturation, 110
simulating true columns with, 294–295
src attribute, 97
text-based, 185–187
thumbnail, 117–120
using fl oat with, 262–263
width attribute, 97–98

image-swapping animation
animating sprite, 489–490
building page, 487–488
fi le format, 487
fi le size, 487
global variables, 488–489
names, 487
overview, 486
preparing images, 487
setting up interval, 489

subdirectory, 487
transparency, 487
 tag, 96
imgList array, 489, 495
Import Files tab, 671
incompatibility solutions

“best viewed with” disclaimers, 251
CSS hacks, 252
JavaScript-based browser detection, 251
parallel pages, 251
indexOf() method, 350–351
index.php program, 875, 936, 938–939
info.php program, 936–937
inheritance, 416
init() function, 472, 477–478, 489,

589, 758, 761, 782–783
Ink tool (Gimp), 945
inline images, adding, 96–97
inline tag, 85
inner joins. See also joins

advantages of, 720–721
combining tables with, 715–721
creating view from, 721
defi ned, 718

inner lists
hiding, 306–307
reappearing on cue, 307–310
innerHTML property, 438
innerHTML.html program, 436–437
input

check boxes, 452–454
drop-down list, 445–448
multiple selections, 448–451
radio buttons, 454–457
reading from keyboard, 475–480
regular expressions, 457–465

input elements
in button events, 430
date, 146
description, 124
email, 146

59_9780470537558-bindex.indd 101259_9780470537558-bindex.indd 1012 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index 1013

id attribute, 127
multi-line text input, 128–130
number, 146
password fi eld, 127–128
range, 146
text fi eld, 126–127
time, 146
type attribute, 127
url, 146
value attribute, 127
<input> tag, 126, 133, 138
input-style buttons, 137–138
INSERT command (SQL), 667, 715
insertAfter() method, 792
insertBefore() method, 792
inset, 221
INT data type, 640, 642
integers, 355, 640, 642
Integrated Development Environments

(IDE)
Aptana Studio, 58–61

automatic end tag generation, 58
on CD-ROM, 981
changing extension, 61
changing initial contents, 61
changing view, 61
code completion, 338
customizing, 60–61
debugging, 380–381
error detection, 58, 339
features of, 58–60
fi le management tools, 58
help fi les, 338–339
HTML editor preferences, 60
issues with, 61
Outline view, 58–59
Page preview, 58
syntax completion, 58, 338
writing JavaScript editor with, 338–339
XHTML template, 58

in client-side development system, 871

Komodo Edit, 62–63
abbreviations, 62
on CD-ROM, 982
commands, 62
description, 62
features, 507
keyboard macros, 63
macros, 62
snippets, 62

overview, 44
interactive debugging, 387–388
Internet Explorer

debugging JavaScript, 381–383
displaying XHTML pages on, 26–27
history of, 50
older versions of, 51
overview, 50–51
support for HTML 5, 156

interpolation, 514–518
interpreted language, 504
Interval Server Error error

code, 741
IP addresses, 888
iPhones, browsing with, 53
IrfanView. See also image

manipulation tools
batch processing tool, 115–116
Blur fi lter (IrfanView), 111–112
built-in effects, 110–115
on CD-ROM, 982
changing image formats in, 106–107
Emboss fi lter (IrfanView), 113
enhancing colors in, 109–110
fi lters, 110–115
Oil Paint fi lter (IrfanView), 113–114
overview, 101–102
Red Eye Reduction fi lter (IrfanView), 115
resizing images in, 108–109
Sharpen fi lter (IrfanView), 111–112
3D Button fi lter (IrfanView), 113

59_9780470537558-bindex.indd 101359_9780470537558-bindex.indd 1013 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Edition1014

istockphoto.com, 944
italic text, 192–193
IZArc, 982

J
Java, 338, 503
JavaScript

accessing DOM, 427–428
addInput.html, 357
addNumbers.html, 352
alert() method, 342
colors, changing, 428, 430
comments, 342
concatenation, 345–347
concat.html, 346
debugging on Internet Explorer, 381–383
drop-down lists, reading, 447
dynamic data, 354–355
editor, 338–339
embedding, 341–342
event object, 480
Hello World, 340–341
innerHTML.html, 438
length of strings, 348–349
libraries, 747–748
multiple selections, 450
numbers, adding, 352–353
object-based programming, 348
overview, 337–338, 470–471
preloading images, 494–495
regular expression operators, 460–461
semicolon, adding, 342
string methods, 349–351
stringMethods.html, 350
test browser, 339
user numbers, adding, 353
variable conversion tools, 356–357
variable types, 352–356
variables, 342–345
writing fi rst program, 340–341

javascript console, 339
JavaScript Object Notation (JSON)

advantages of, 420–421, 860–862
in AJAX, 734
complex structure, 419–420
description, 417
framework, 864
processing results, 865–866
reading data with jQuery, 862–863
retrieving data, 864–865
storing data in format, 418–419

jEdit (text editor), 49, 339, 982
jello layout

background image, 298
center, 298
complexity, 298
fi xed height, 298
fi xed width, 298
interior width, 298
limitations, 298
minimum width, 298
screen space, 298

joins
advantages of, 720–721
Cartesian, 717
combining tables with, 715–721
creating, 724–728
creating view from, 721
defi ned, 718
description, 721
encapsulating, 721
inner

advantages of, 720–721
combining tables with, 715–721
creating view from, 721
defi ned, 718

many-to-many
creating, 724–728
description, 721

many-to-one, 724
JPG images, 102–103, 106

59_9780470537558-bindex.indd 101459_9780470537558-bindex.indd 1014 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index 1015

jQoutput variable, 753–754
jQuery

AJAX
building CMS with, 766–769
including text fi le with, 765–766
making requests with, 764–769
using tabs with, 830–833
animate() method, 785
animate.html, 779–782
application

creating, 751–754
creating node object, 753–754
setting up page, 752–753

callback function, 785
on CD-ROM, 982
changeDocument.html, 788–790
classes, changing, 762–764
client-side inclusion, 964–966
clone() function, 793–794
CSS in, 775–776
$(document).ready() function

alternatives to, 756–757
overview, 755–756

easing, 784
element style, changing, 757–758
elements

fading in and out, 779
hiding and showing, 771–773
modifying, 786–791
selectable, 838–839
sliding, 778

events
adding to objects, 760–764
hover, 760–762
overview, 763
setting up, 782–783

features of, 749
fi lters, 796
framework, creating, 782
hideShow program, 771–772
hiding and showing content, 777

HTML in, 775–776
identifi ers, 759
importing from Google, 750–751
improving usability, 833–842
initialization function, 754–757
initializing code, 792
installing, 750
JSON object, 785
move() function, 784
multi-element designs in, 823–832
node chaining, 783–784
node object, 753–754
pages

building, 791
initializing, 776–777
resetting, 795–796

position, changing, 779–782
relative motion, 785–786
resizing on theme, 805–809
selecting objects, 759
sortable list, 839–840
speed attribute, 785
style, modifying, 759–760
tabbed interface, 827–830
text, adding, 792–793
time-based animation, 785
toggling visibility, 778
transition support, 773–775
user interface

accordion widget, 798, 824–827
calling back with, 814–816
cloning elements in, 819–821
CSS classes defi ned by, 812
custom dialog box, 840–842
datepicker, 799, 834–836
dialog box, 799, 840–842
dragging and dropping with, 802–803,

814–816
features, 797–798
formatting tools, 800
handling drop events, 818–819

59_9780470537558-bindex.indd 101559_9780470537558-bindex.indd 1015 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Edition1016

jQuery (user interface) (continued)

icons, 800, 812–813
importing fi les, 809
improving usability, 833–834
initializing page with, 817–818
library, 804–805, 809
page, building, 816–817
progress bar, 799
resizable element, 809–810
resizing on theme, 805–809
selectable widget, 838–839
sliders, 798, 836–837
sortable list, 839–840
tabs, 799
themeRoller, 798–802
themes, 798, 810–812
widgets, 799–800
writing program, 805
wrap method, 794–795
XML, manipulating with, 857–858

JSON (JavaScript Object Notation)
advantages of, 420–421, 860–862
in AJAX, 734
complex structure, 419–420
description, 417
framework, 864
processing results, 865–866
reading data with jQuery, 862–863
retrieving data, 864–865

K
keyboard

event handlers, 478
init() function, 477–478
keycodes, 480
page, building, 476–477
reading input from, 475–480
responding to keystrokes, 479–480

keycodes, 480
Keydown event (jQuery), 763

keyListener() function, 479
keystrokes, 479–480
Komodo Edit

abbreviations, 62
on CD-ROM, 982
commands, 62
description, 62
features, 507
keyboard macros, 63
macros, 62
snippets, 62

KompoZer, 983

L
L337 (Leet), 371
<label> tag, 125
labels, 123–126
lambda function, 761
lap++ operator, 374
Lasso tool (Gimp), 947
LaTeX, 687–688
Law of Seven, 902
layers

anchor, 954
creating, 953
defi ned, 952
deleting, 954
duplicating, 954
moving up or down, 954
transparency, 952

layout
absolute

CSS, 324–325
overview, 322–324
XHTML, 324

absolute but fl exible
creating, 328–329
description, 326
heights, 329
margins, 329
overview, 326

59_9780470537558-bindex.indd 101659_9780470537558-bindex.indd 1016 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index 1017

percentages, 326–328
widths, 329

designing, 334
fi xed-width

centered, 295–298
description, 293
jello layout, 298
using image to simulate true columns,

294–295
XHTML code for, 293–294

fl oating
description, 262
fi xed-width, 293–298
problems with, 290–291
three-column design, 287–292
two-column design, 279–287
using, 264–265

frames, 259–260
huge images in, 261
jello

background image, 298
center, 298
complexity, 298
fi xed height, 298
fi xed width, 298
interior width, 298
limitations, 298
minimum width, 298
screen space, 298

scheme, 334
table-based, 80–81, 260–261
three-column

code, 288
fl oating layout, 290–291
minimum height, 291–292
styling three-column page, 289–290

two-column
adding preliminary CSS, 282–283
borders, 285–287
building XHTML, 281–282
color scheme, 280
designing page, 279–280

fi xed width, 279
fl oating columns, 285
fl uid layout, 287
fonts, 280
overall page fl ow, 279
percentage width, 279
section names, 279
temporary borders, 283–284
width indicators, 279

layout_setup.css fi le, 937
layout_text.css fi le, 936
Leet (L337), 371
left brace ({), 362, 369
<legend> tag, 125
legends, 123
less than (<) operator, 363, 545
less than or equal to (<=) operator,

363, 545
less-than (:lt) fi lter, 795
letter-spacing attribute, 197
 tag, 67, 69
LIKE clause, 679–680
line numbers, 43
line-height attribute, 197
link table. See also tables

creating many-to-many joins with,
724–728

defi ned, 704
description, 723–724
<link> tag, 245–246
links

adding to images, 94–96
address, 84
anchor tag, 84–86
appearance, 83–84
best practices, 215
code, 85
external, 246
generating list of, 609–611
hover state

font size in, 215
overview, 213

59_9780470537558-bindex.indd 101759_9780470537558-bindex.indd 1017 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Edition1018

links (continued)

images as, 117–120
integrating into text, 84
lists of, 88–89
navigation as list of, 300
normal state, 213
overview, 83
requirements, 83–84
styling, 213–215
turning into buttons, 301–302
visited state, 213, 215
listLinks.html program, 88–89
lists

defi nition, 65, 72–73, 623–625
drop-down

advantages of, 130
building form for, 446–447
code, 131, 446–447
getting input from, 445–446
reading list box, 447–448

dynamic
creating, 304–310
hiding inner lists, 306–307
nested lists, 304–306
showing inner lists on cue, 307–310

hiding, 306–307
horizontal, 302–303
images in, 237–238
inner, 306–310
of links, 88–89, 300
nested

code, 69–70, 305–306
complexity, 305
creating, 71–72, 304–306
description, 69
indenting codes, 70–71

ordered
code, 68
creating, 68–69
defi ned, 65
tags, 69
viewing, 67–68

sortable, 839–840

styles, 299–303
unordered, 65–67, 838
list-style-image attribute, 237–238
literals, 347
load() method, 850
loadImages() method, 492, 496–497
loadlist.php program, 851–852
local CSS styles

awkwardness of, 242
codes, 240–241
description, 239
disadvantages of, 242
ineffi ciency of, 242
lack of separation in, 242
quote problems in, 242
readability of, 242
using, 241

local storage, 155
local variable, 402
localhost server name, 616, 874
localVar variable, 403
location variable, 424
logic errors, 380, 385
lookup table, 573
loopingArrays.php program, 562–564
loops

basic requirements, 378
counting, 373–374
counting backward, 375
counting by 5, 375–376
defi ned, 373
endless, 379–380
for

array length, 407
building standard for, 374
counting, 373–374
counting backward, 375
counting by 5, 375–376
creating, 374
in PHP code, 552–555
using arrays with, 406–407
while loop versus, 378
foreach, 564–565, 568–570

59_9780470537558-bindex.indd 101859_9780470537558-bindex.indd 1018 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index 1019

logic errors, 380
reluctant, 379
using arrays with, 406–407, 562–567
while

basic requirements, 378
conditions, 556
creating, 377–378
initialization, 556
for loop versus, 378
modifi er, 556
in PHP code, 555–558
sentry variable, 556

Lorem Ipsum text, 281
:lt (less-than) fi lter, 795

M
macros, 43
Magic Select tool (Gimp), 947
mail server, 871, 878
many-to-many joins. See also joins

creating, 724–728
description, 721

many-to-many relationship, 703
many-to-one joins, 724
marginPadding.html program,

226
margins, 225–228
match method, 458, 460, 462
Math.ceil() function, 356–357
Math.floor() function, 356–357
Math.random() function, 359
Math.round() function, 356–357
max_length property, 628
MAX_X variable, 496
maxlength attribute, 127
Measure tool (Gimp), 952
MediaWiki, 504
megapixels (MP), 98
menus

advantages of, 310–311
creating with CSS, 310–316

fi xed
code, 331–332
content position, 334
creating, 330
CSS values, 332–334
width, 333–334

horizontal, 314–316
vertical, 312–314

Mercury Mail, 871–872
meta tag, 23
metadata, 628
method attribute, 524, 534
Microsoft Access, 643
Microsoft Excel, 687
Microsoft Internet Explorer

debugging JavaScript, 381–383
displaying XHTML pages on, 26–27
history of, 50
older versions of, 51
overview, 50–51
support for HTML 5, 156

Microsoft SQL Server, 643
Microsoft Windows Notepad, 16, 44
Microsoft Windows Paint, 942
Microsoft Word, 44
min-height property, 291–292
MINUTE() function (SQL), 707
MochiKit, 748
modal dialogs, 342
modal editor, 47
Monospace fonts, 181
MONTH() function (SQL), 707, 711–712
monty.php program, 532–537
Moodle. See also content management

system (CMS)
communication tools, 918
online assignment creation/

submission, 917
online grade book, 917
online testing, 918
specialized educational content, 918
student and instructor management, 917

59_9780470537558-bindex.indd 101959_9780470537558-bindex.indd 1019 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Edition1020

Mosaic, 49
MouseDown event (jQuery), 763
mouse-following effect
followMouse.html, 481–482
initializing code, 482
listener, 483
move() function, 784
Move tool (Gimp), 950, 952
moveSprite() function, 470, 472, 480
Mozilla, 52
Mozilla Firefox

advantages of, 51–52
on CD-ROM, 981
code view, 52
debugging, 383
displaying XHTML pages on, 26–27
error-handling, 52
extensions, 52, 57
history, 50
HTML Validator, 54–55
Web Developer toolbar

checking accessibility with, 56
editing pages with, 56
features, 170–172
getting download speed report with, 56
interface, 55
manipulating CSS codes with, 56
validating pages with, 56
viewing generated source with, 794

multidimensional arrays, 570–574
Multifl ex-3 template, 934
multi-line text input, 128–130
multimedia tools, 44
multipass application. See also AJAX

(Asynchronous JavaScript and XML)
loading select element, 850
loadlist.php program, 851–852
responding to selections, 852–853
setting up HTML framework, 849–850
multiPass.html program, 848–849
multiple browsers, 43

multiple classes, 209–210
multiple columns, 79
multiple rows, 79–80
multiple selections

coding, 449–450
elements

buttons, 450
check boxes, 132–134
drop-down list, 130–132
radio buttons, 134–136
select boxes, 132

JavaScript code, 450–451
managing, 448–452

multiple styles, defi ning, 217–218
multiple_key property, 628
multiSelect.html program, 449
myParagraph ID, 758
MySQL

advantages of, 613–614, 643–644
AUTO_INCREMENT for primary keys,

672–674
connections

creating, 617
establishing, 614
overview, 616

creating XML data, 690
defi nition lists, 623–625
deleting records, 684–685
description, 643
displaying output to user, 614
exporting SQL code, 688–690
extracting rows, 620–622
fetch options, 621
formulating queries, 614
getting information to and from, 614
output format, 623
phpMyAdmin

setting up, 646–647
using on remote server, 656–658

practicing with, 645
printing data, 622–623

59_9780470537558-bindex.indd 102059_9780470537558-bindex.indd 1020 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index 1021

processing results, 614, 619–620
root password, changing, 648–653, 877
running

from command line, 645
from hosting site, 645

searching
for any text in fi eld, 681
for ending value of fi eld, 679–680
with partial information, 679–680
with regular expressions, 681–682

selecting
data from tables, 674–683
few fi elds, 675–677
subset of records, 677–679

server name, 893–894
sorting responses, 682–683
submitting query, 614
updating records, 684
users

adding, 653–656
interaction, 628–629

version 5.0, 714
in XAMPP, 872
XHTML tables for output, 625–627

MySQL Workbench
creating table defi nition in, 696–699
features, 696
main screen, 696
mysql_connect() function, 617, 619
mysql_fetch_array() function, 621
mysql_fetch_assoc() function,

620–621
mysql_fetch_field() function,

627–628
mysql_fetch_object() function, 621
mysql_fetch_row() function, 621
mysql_query() function, 618–619
mysql_real_escape_string()

function, 632–633
myStyle.css fi le, 243

N
name attribute, 524–525, 534, 628
named sizes, 190–191
<nav> tag, 143
nested conditions, 371–372
nested lists. See also lists

code, 69–70, 305–306
creating, 71–72, 304–306
description, 69
indenting codes, 70–71
nestedList.html program, 69–70
Netscape, 49
new Object() syntax, 413
newline characters, 442
noBorder() function, 761
node chaining, 783–784
normalization, data

defi ned, 691, 700
entity-relationship diagrams

components, 695
defi ned, 695
drawing, 696
one-to-many relationship, 719
table defi nition, 696–699

fi rst normal form, 700–701
second normal form, 701–702
third normal form, 702–703

not equal operator (!=), 363, 545
Not Found error code, 741
not_null property, 628
Notepad, 16, 44
Notepad ++, 45–46, 339, 983
NOW() function (SQL), 707–708
null value, 673–674
number input element, 146
numeric data, 641
numeric property, 628

59_9780470537558-bindex.indd 102159_9780470537558-bindex.indd 1021 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Edition1022

O
object-based programming, 348
objects. See also classes

adding methods to, 414–415
chaining, 780
constructor, 416
creating, 413–417
defi ned, 348
DOM

button events, 428–431
changeColor() function, 431
description, 423
document object, examining, 425–426
embedding quotes within quotes, 431
event-driven programming, 432–433
getElementById() method, 434–435
HTML framework, 436–437
JavaScript code, 427–428
navigating, 423–424
objects, 426
page colors, controlling, 427–428
properties, changing with Firebug, 425
text fi elds, manipulating, 435
text input and output, 431–436
writing to document, 436–438
XHTML form, creating, 433–434

events, 348
JSON

advantages of, 420–421, 860–862
in AJAX, 734
complex structure, 419–420
description, 417
framework, 864
processing results, 865–866
reading data with jQuery, 862–863
retrieving data, 864–865
storing data in format, 418–419

methods, 348
properties, 348
reusable, 415–416
using, 417

Oil Paint fi lter (IrfanView), 113–114
 tag, 69, 565
onclick() event, 434, 470
onclick attribute, 431, 782
one-dimensional arrays. See also

multidimensional arrays
associative, 567–570
creating, 559
fi lling, 559–560
foreach loop, 564–565
in HTML, 565–567
preloading, 562
using loops with, 562–565
viewing elements of, 560–561

one-to-many relationship, 703, 719–720
one-to-one relationship, 703
online communities, 920
onload event, 470
onReadyStateChange() method, 739
Opacity slider (Gimp), 952
open() method, 738–739, 744
Open Document spreadsheet, 687
opendir() function, 608
open-source tools, 644
Opera, 52
operating systems, 155
<option> pair, 132
Oracle, 643
order (function), 453–454
ORDER BY clause, 682–683
ordered lists

code, 68
creating, 68–69
defi ned, 65
tags, 69
viewing, 67–68
.org domain, 87
OTF font format, 148
Outline view (Aptana), 58
outset border, 221
overline attribute, 196
overloaded operator, 356
ownForm.php program, 547–549

59_9780470537558-bindex.indd 102259_9780470537558-bindex.indd 1022 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index 1023

oxWheels1.html program, 25
oxWheels2.html program, 31

P
<p> tag, 14, 34–35
paddings, 225–228
page animation

automatic motion
overview, 483–485
setInterval() call, 485–486

boundaries, checking, 474–475
<canvas> tag, 155
global variables, 471–472
HTML code, 468–470
image-swapping

animating sprites, 489–490
fi le format, 487
fi le size, 487
global variables, 488–489
interval, setting up, 489
names, 487
overview, 486–487
page, building, 487–488
preparing images, 487
subdirectory, 487
transparency, 487
init() function, 472
JavaScript, 470–471
keyboard, reading input from

event handlers, 478
init() function, 477–478
key codes, 480
overview, 475–476
page, building, 476–477
responding to keystrokes, 479–480

mouse-following effect
followMouse.html, 481–482
initializing code, 482
listener, 483

moving sprites, 472–474
overview, 467–468

preloading images
building code, 494–495
global variables, 495–496
initializing data, 496
loadImages() method, 496–497
movement, 492
moving sprites, 497
overview, 490–492
swapping, 492
updating images, 497

reading input from keyboard, 475–476
sprite div, 467–468
timer-based movement, 484–485

page name, 87
Page preview (Aptana), 58
page styles, creating, 909–911
page_content(blockID)

function, 939
page_footer() function, 939
PAGE_TITLE variable, 938
pageView view, 979–980
Paintbrush tool (Gimp), 945
Paint.net, 102, 942
paragraphs

code, 201–202
defi ning multiple, 201–202
fl oating, 265–266
in forms, 125
styling, 203
:parent fi lter (jQuery), 796
parseFloat() function, 356–357, 436
parseInt() function, 356–357, 436
partial border, 222–224
partial information, searching with,

679–680
passwords

boxes, 122
changing, 648–653
creating, 658
database, 616, 658
fi eld, 127–128, 438
root, 648–653, 877

59_9780470537558-bindex.indd 102359_9780470537558-bindex.indd 1023 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Edition1024

pattern memory, 465
PDAs, browsing with, 53
PDF format, 687–688
Pederick, Chris, 55–56
Pencil tool (Gimp), 945
percent sign (%), 680
percentages, 191, 227, 326–328
period (.), 460–461, 463
perl regular expression, 576
permissions

execute, 884
read, 884
in Unix/Linux, 598
in Windows, 598
write, 884

Perspective Clone tool (Gimp), 952
Perspective tool (Gimp), 950
pets.xml fi le, 855
photos

acknowledging source of, 944
alternate text, 98
background

changing, 228–230
colors, 232
contrasts, 232–233
description, 93
gradient, 235–237
in jello layout, 298
preparing, 941
problems, 230
seamless texture, 232
tiled, 230–232, 958–960
turning off repeat, 234–235
using images in lists, 237–238

batch processing, 101, 115–117
brightness, 109
bullets, 93
colors

balance, 109
changing, 955
enhancing, 109–110

contrast, 109

creating, 944–945
cropping, 101
disadvantages of using as Web pages, 261
effects, 110–115
embedded, 93, 96–98
fi lters, 101, 110–115
as fonts, 184–185
formats, 102–106
formats, changing, 106–107
gamma correction, 110
gradients, 235
as headlines, 185–187
height attribute, 97–98
 tag, 96
inline, 96–97
links

adding to, 94–96
external, 93–96
overview, 117–120

in lists, 237–238
manipulating, 106–117
modifying, 941
permissions, 945
raw, 103
resampling, 109
resizing, 98–101, 108–109
reusing, 944–945
royalty-free, 944
saturation, 110
simulating true columns with, 294–295
src attribute, 97
text-based, 185–187
thumbnail, 117–120
using fl oat with, 262–263
width attribute, 97–98

Photoshop, 942
PHP
addContactCSV.php, 602–603
addContact.php, 596–597
code characteristics, 521
concatenation, 512–513
contact.php, 615

59_9780470537558-bindex.indd 102459_9780470537558-bindex.indd 1024 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index 1025

contactTable.php, 625–626
date() function, 522
debugger, 557
editor, 507
escape directives, 512
fileList.php, 609–610
generating output with heredoc,

515–517
getTime.php, 519–520
greetUser.php, 525–526
highLow.php, 544
highMidLow.php, 546–547
if.php, 542
includes, 966–967
interpolating variables into text, 513–514
libraries, 872
loopingArrays.php, 563
overview, 503–504
ownForm.php, 548–549
PHP processing, 523–525
phpinfo(), 505–507
printing shortcut, 518
programming fl ow, 508
quotation marks, 510, 515
random number generator, 541
readContactCSV.php, 604–605
readContact.php, 599–600
reading CSV data in, 604–607
receiving data in, 525–526
rollDice1.php, 580–581
rollDice2.php, 582
rollDice3.php, 588
search.php, 630–631
sending data to, 522–526
showDate.php, 521
showHero.php, 853–854
simpleGreet.php, 846
simplifying for AJAX, 846–847
switch.php, 550–551
variables, 511–514
viewing results, 521
in XAMPP, 872

XHTML
building with, 508–509
embedding inside, 520–521
switching to, 517–518

XHTML forms
buttons, 123
check boxes, 122, 132–134
code, 123
with complex elements, 532–534
creating, 433–434, 523–525, 629–630
drop-down list, 130–132
elements, 122–123
fi eldsets, 123–126
fl oating layout, 270–275
get method, 527–529
getting data from, 530–531
input-style buttons, 137–138
labels, 123–126
legends, 123
multi-line text input, 128–130
password boxes, 122
password fi eld, 127–128
radio buttons, 122, 134–136
reading with PHP program, 525–526
receiving data, 525–526
Reset button, 138
responding to, 535–537
search form, 629–630
select lists, 122
sending to PHP program, 527–529
Submit button, 138
text areas, 122
text boxes, 122
text fi eld, 126–127
transmitting data, 529–530

XHTML output, 514–518
phpinfo() method, 505–507
phpMyAdmin program

databases, creating, 659–663
description, 872
main screen, 653–656
root access to MySQL database, 878

59_9780470537558-bindex.indd 102559_9780470537558-bindex.indd 1025 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Edition1026

phpMyAdmin program (continued)

root password, changing, 648–653
running scripts with, 669–672
searching

for any text in fi eld, 681
for ending value of fi eld, 679–680
with partial information, 679–680
with regular expressions, 681–682

selecting
few fi elds, 675–677
subset of records, 677–679

setting up, 646–647
sorting responses, 682–683
SQL code, exporting, 688–690
tables, adding to databases, 658
users

adding, 653–656
creating, 653–656

using on remote server, 656–658
in XAMPP, 872
XML data, creating, 690

pixels, 98, 190
Pixia, 102
Plasma fi lter (Gimp), 956–958
plug-ins, 44
plus sign (+), 355, 461, 464
PNG (Portable Network Graphics) format

dynamic color palette, 105
lossless compression in, 105
open source, 105
saving banners as, 957
true alpha transparency in, 105

pointer, 592
points, 189–190
portable browsers, 53
Portable Network Graphics (PNG) format

dynamic color palette, 105
lossless compression in, 105
open source, 105
saving banners as, 957
true alpha transparency in, 105

positioning
absolute positioning

absolute but fl exible layout, 326–329
absolute layout, 323–325
description, 317
HTML, 318
position guidelines, 318–319
settings, 319–320
z-index property, 320–322

fi xed, 329
relative, 329
post() function, 844
post method, 529–530
$_POST variable, 530
preg_split function, 576–577
preloading images

animating images, 497
building code for, 494–495
code, 490–491
global variables, 495–496
loadImages() method, 496–497
movement, 492
moving sprites, 497
swapping, 492
updating images, 497
prepend() method, 792
present() method, 779
primary key, 641–642, 672–674
primary_key property, 628
print statement, 511, 518, 557
printResults() function, 633–634
privileges, 653–654
processInput() function, 632–633
processResult() function, 859
production server, 685
program name, 739
programming

client-side, 501–502
event-driven, 432–433
object-based, 348

59_9780470537558-bindex.indd 102659_9780470537558-bindex.indd 1026 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index 1027

server-side
advantages of, 502
ASP.NET, 503
building XHTML with PHP, 508–509
client-side programming versus,

501–502
coding with quotation marks, 510
description, 501
double quote interpolation, 515
generating output with heredoc,

515–517
installing Web server, 504–505
interpolating variables into text,

513–514
Java, 503
languages, 503–504
PHP, 503–504
phpinfo(), 505–507
printing shortcut, 518
switching from PHP to XHTML,

517–518
variables, 511–514
XHTML output, 514–518

technologies, 44
Progress bar (JQuery UI), 799
prompt statement, 344
protocol, 86
Prototype (AJAX library), 748
prototyping, 416
pseudo-classes, 213–215
punctuation characters, 464

Q
quotes

double
coding with, 510
double quote interpolation, 515
embedding quotes within, 431
local styles, 242

single, 666

R
r value, 593
r+ value, 593
radio buttons. See also multiple

selections
check boxes versus, 135
code, 135–136, 456
creating, 134–136
description, 122
name attribute, 455
rand() function, 552, 581
random access, 593
random access memory (RAM), 984
random numbers

code, 360–361
description, 359
inner lists, 359
integer within range, 359–360
range input element, 146
raster-based images, 105
raw images, 103
read permission, 884
readContactCSV.php program, 604–605
readContact.php program, 599–600
readdir() function, 608–609
readJSON.html program, 862–863
readkeys.html program, 480
readXML.html program, 857–858
ready.html program, 755
readyState() property, 739, 742, 744
readyStateChanged() property, 744
real-time graphics, 141
records

adding to tables, 668–669
creating tables for, 667–668
defi ned, 638
deleting, 684–685
editing, 682–683
fi elds in, 639
length, 640–641

59_9780470537558-bindex.indd 102759_9780470537558-bindex.indd 1027 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Edition1028

records (continued)

selecting subset of, 677–679
updating, 684

Rectangle Select tool (Gimp), 947
Red Eye Reduction fi lter (IrfanView), 115
references

absolute, 89
defi ned, 435
relative, 89–91
register_globals feature, 531
regular expressions

character class, 463
defi ned, 460
fi nding one or more elements, 464
marking beginning and end of line, 463
matching character with period, 463
matching zero or more elements, 464
operators, 460–461
parsing, 460
pattern memory, 465
punctation characters, 464
repetition operations, 464–465
searching with, 681–682
special characters, 463–464
specifying digits, 464
specifying number of matches, 464–465
using characters in, 462
word boundaries, 464

relational data modeling, 637–638
relational database management system

(RDBMS), 613, 643
relationships

defi ned, 695
entity-relationship diagrams

components, 695
defi ned, 695
drawing, 696
one-to-many relationship, 719
table defi nition, 696–699

many-to-many, 703
one-to-many, 703, 719–720
one-to-one, 703

relative measurements, 190–191
relative positioning, 329
relative references, 89–91
reluctant loops, 379
remote data management

creating databases, 892–893
description, 891–892
MySQL server name, 893–894

remote server, 656–658, 878
remote site management

using FTP in, 884–887
Web-based fi le tools for, 881–883
remove method, 796
removeClass() event (jQuery), 763
repeat-x value, 235–237
repeat-y value, 235–237
repetition operations

fi nding one or more elements, 464
matching zero or more elements, 464
specifying number of matches, 464–465
replace method, 460
reportSlider() function, 837
request method, 739
Request Timeout error code, 741
$_REQUEST variable, 530–531, 597
$request variable, 619–620
Reset button, 138
resetTarget function, 819
responses, sorting, 682–683
responseText() method, 738
reusable objects, 415–416
revalidation, 30
ridge border, 221
right brace (}), 362, 368
rollDice3.php program, 586–588
rollDice.php program, 580–582
rollDie.html program, 360–361
root administrator, 649
root namespace, 29
root password, changing, 648–653, 877
root user, 649
Rotate tool (Gimp), 950

59_9780470537558-bindex.indd 102859_9780470537558-bindex.indd 1028 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index 1029

rows. See also columns; tables
code, 78–79
extracting, 620–622
spanning

multiple, 79–80
overview, 77–79

rowspan property, 79–80
royalty-free images, 944
run-length encoding, 103

S
Safari, 52
Sans serif fonts, 180
saturation, 110, 172
Scale tool (Gimp), 950
scanners, 98
Scintilla (text editor), 49, 339
Scissors Select tool (Gimp), 947
scope, 402–405, 584–585
<script> tag, 341, 469, 751
seamless texture, 232
search.html program, 629–630
searching

for any text in fi eld, 681
for ending value of fi eld, 680
with partial information, 679–680
with regular expressions, 681–682
search engines, 53
search.php program, 630–632
SECOND() function (SQL), 707
second normal form, 701–702
<section> tag, 143
security level, 876–877
select boxes, 132
Select by Color tool (Gimp), 947
SELECT command (SQL), 667, 715
Select event (jQuery), 763
select lists, 122
select object, 132, 447
<select> pair, 132
selectable element, 838–839

selection fi lters, 795
selection tools (Gimp), 947–948
selections, multiple

buttons, 450
coding, 449–450
JavaScript code, 450–451
managing, 448–452

selectors, 161, 201
semantic navigation, 904
semicolon (;), 162, 342, 510, 666
send() method, 738, 740
Sendmail, 871
sentry variable, 373–376, 556
Serif fonts, 180
$_SERVER variable, 568
servers

accessing other programs, 870
administrators, 870
creating, with XAMPP, 872–878
data server, 871
dedicated, 878
defi ned, 870
error code, 741
FTP, 871, 878
mail, 871, 878
names, 870
overview, 502
permanent connections, 870
phpinfo(), 505–506
reliability, 870
remote, 656–658
specialized software, 870
in three-tiered architecture, 644
Web

adding fi les to, 874–875
connecting with FTP, 886–887
fi rewalls, 876, 878
functionality versus security, 877–878
installing, 504–505
as local asset, 876
root password, changing, 877
security checks, 876

59_9780470537558-bindex.indd 102959_9780470537558-bindex.indd 1029 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Edition1030

servers (Web) (continued)

security level, 876–877
in server-side system, 871
in three-tiered architecture, 644
XAMPP directory password, 877

Server-Side Includes (SSI)
code, 962–963
importing code on server with, 914
using, 961–964

server-side language, 871
server-side programming

advantages of, 502
ASP.NET, 503
building XHTML with PHP, 508–509
client-side programming versus,

501–502
coding with quotation marks, 510
description, 501
double quote interpolation, 515
generating output with heredoc,

515–517
installing Web server, 504–505
interpolating variables into text,

513–514
Java, 503
languages, 503–504
overview, 501–502
PHP, 503–504
phpinfo(), 505–507
printing shortcut, 518
switching from PHP to XHTML, 517–518
variables, 511–514
XHTML output, 514–518

server-side system
data server, 871
FTP server, 872
mail server, 871
phpMyAdmin, 872
server-side language, 871
Web server, 871

session variables, 584–585, 587–590

session_start() method, 589
sessions, 587
SET command, 684
setColor() function, 428–431
setInterval() function, 485–488, 490
shareware programs, 980
Sharpen fi lter (Gimp), 954
Sharpen fi lter (IrfanView), 111–112
Shear tool (Gimp), 950
show() method, 777
show button, 771
show_menu(menuID) function, 938–939
showDate.php program, 521–522
showHero.php program, 853–854
simpleGreet.php program, 846
single quotes (‘ ‘), 666
single-table data

changing fi elds, 695
deletion problems in, 695
multiple fi elds, 693
problems with, 691–695
reliability, 694
repetition, 694
text fi eld, 693

site diagram. See also Web sites
box names, 904
building, 903–905
navigation structure, 904
overall layout, 904
pages, 904
sorting order, 904

site integration and implementation, 898
site management, 41
site overview, 902–903
site plan. See also Web sites

creating, 901–905
defi ned, 901
for large Web sites, 896
tasks, 898
size attribute, 127
sizeof() function, 564

59_9780470537558-bindex.indd 103059_9780470537558-bindex.indd 1030 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index 1031

Skiljan, Irfan, 101
slash (/), 12, 342, 462
slide button, 771
slide up button, 773
slideDown() method, 778
Slider tool (jQuery UI), 798, 836–837
slideToggle() method, 778
slideUp() method, 778
Smudge tool (Gimp), 950
software sites, 920
solid border, 221
sortable list, 839–840
sorting, 682–683
span element, 210–213
special, 216–217
special characters, 463–464
sprite div, 467–468, 495
spriteImage, 496
SQL (Structured Query Language)
buildContact.sql, 666–667, 673
components, 638
data types, 639–640
deleting records, 684–685
editing records, 684–685
exporting

code, 688–690
data and structure, 685–690

functions, 706–707
overview, 613
running with phpMyAdmin, 669–672
searching

for any text in fi eld, 681
for ending value of fi eld, 680
with partial information, 679–680
with regular expressions, 681–682

selecting
data from tables, 674–683
few fi elds, 675–677
subset of records, 677–679

sorting responses, 682–683
syntax rules, 666

tables, 623–624
adding records to, 668–669
creating, 667–668
deleting, 667

updating records, 684
viewing data, 669
views, creating, 713
writing code by hand, 665–666
XML data, creating, 690

SQL Server, 643
SQLite, 643, 983
src attribute, 97
SSI (Server-Side Includes)

code, 962–963
importing code on server with, 914
using, 961–964

standards compliance, 42
status() method, 738, 740–741
status variable, 424
statusText() method, 738
strikethrough, 195
stringMethods.html program, 350
strings

breaking into arrays, 574–577
code, 350
dynamic length, 641
length, 348–349
manipulating text with, 349–351
methods, 349–351

strong emphasis, 96, 204–206
 tag, 96, 204
Structured Query Language (SQL)
buildContact.sql, 666–667, 673
components, 638
data types, 639–640
deleting records, 684–685
editing records, 684–685
exporting

code, 688–690
data and structure, 685–690

59_9780470537558-bindex.indd 103159_9780470537558-bindex.indd 1031 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Edition1032

Structured Query Language (SQL)
(continued)

functions, 706–707
overview, 613
running with phpMyAdmin, 669–672
searching

for any text in fi eld, 681
for ending value of fi eld, 680
with partial information, 679–680
with regular expressions, 681–682

selecting
data from tables, 674–683
few fi elds, 675–677
subset of records, 677–679

sorting responses, 682–683
syntax rules, 666
tables, 623–624

adding records to, 668–669
creating, 667–668
deleting, 667

updating records, 684
viewing data, 669
views, creating, 713
writing code by hand, 665–666
XML data, creating, 690
style() method, 759
style sheets

CSS
body style, 250
changing, 170–172
class, 250
codes, 247–248
conditional comments, 251–256
container elements, 250
design, 898
element id, 250
element styles, 250
external style sheets, 242–246
hierarchy of styles, 248–249
incompatibility, 251–252
inheriting styles, 247–248

Internet Explorer-specifi c code, 252–253
local styles, 239–242, 250
overriding styles, 249–250
overview, 170
precedence of style defi nitions, 250–251
user preference, 250

defi ned, 159
element defi nition, 162
external

code, 243
defi ning external style, 243–244
description, 242–246
link tags, 245–246
reusing, 244–245
specifying external link, 246

rule name, 162
setting up, 161–162
style rules, 162
style tag, 162
style type, 162
<style> tag, 161–162, 170, 240
styleElements.html program, 757–758
styles

context, 216–217
external, 239
hierarchy of, 248–249
inheriting, 247–248
local, 239–242
multiple, 217–218
overriding, 249–250
page-level, 239
precedence of defi nitions, 250
subBorders.html program, 223–224
subdomain, 87
Submit button, 138
subscripts, 199–200
substring() method, 350–351
SUBTIMES() function (SQL), 707
success code, 741
superglobals, 530
superscripts, 199–200

59_9780470537558-bindex.indd 103259_9780470537558-bindex.indd 1032 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index 1033

switch statement
code, 367–368
creating switch statement, 368–369
overview, 549–552
styles, 369–370
switch.php program, 550–551
synchronization trigger, 739
SynEdit (text editor), 49
syntax errors, 384

T
table property, 628
<table> tag, 74
tables. See also rows

adding to databases, 658
borders, 75–76
code, 74–75
combining, 715–721
creating

overview, 212–213
in SQL, 667–668
in text editor, 77

defi ned, 638
defi ning, 75
disadvantages of, 260–261
displaying SQL output in, 625–627
fi elds, 638
headers, 76
lookup, 573
metadata, 628
primary key, 641–642
problems with, 80–81
records, 638
records, adding, 668–669
rows, 638

adding, 76
overview, 76–77

searching
for any text in fi eld, 681
for ending value of fi eld, 680

with partial information, 679–680
with regular expressions, 681–682

selecting
data from, 674–683
few fi elds, 675–677
subset of records, 677–679

sorting responses, 682–683
spanning rows and columns, 77–80
structure, 642
tags, 74

Tabs tool (jQuery UI), 799
<td> tag, 74, 76–77
TEMPLATE_DIR variable, 938
templates

CMS
adding additional, 932–933
changing, 931–932
packaging, 939–940
prebuilt, 935–937

overview, 41
page

data framework, 912–913
page styles, 909–911
sketching page design, 905–907
XHTML template framework, 907–909

XHTML, 898, 907–909
testing, 898
text. See also fonts

aligning, 196
bold, 193–194
font family, 177–179
font shortcut, 197–199
font size, 188–191
font-variant attribute, 197
generic fonts, 180–181
interpolating variables into, 513–514
italics, 192–193
letter-spacing attribute, 197
line-height attribute, 197
linked, 86
manipulating with string method, 349–351

59_9780470537558-bindex.indd 103359_9780470537558-bindex.indd 1033 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Edition1034

text (continued)

overline attribute, 196
strikethrough, 195
subscripts, 199–200
superscripts, 199–200
text-decoration attribute, 194–196
text-indent attribute, 197
text-transform attribute, 197
underlining, 194–195
vertical-align attribute, 197
Web-based fonts, 183–188
word-spacing attribute, 197

text areas, 122, 438
text boxes, 122
TEXT data type, 640
text editors

building tables in, 77
in client-side development system,

870–871
Emacs, 48–49, 339
enhanced, 43–44
features lacking in, 43
jEdit, 49, 339, 982
Microsoft Word, 44
Notepad, 16, 44
Notepad ++, 45–46, 339, 983
opening, 9–10
Scintilla, 49, 339
SynEdit, 49
TextEdit, 44
tools to avoid, 44–45
VI, 46–47, 339
VIM, 46–47, 339
XEmacs, 49

text fi eld
code, 126
creating, 126–127
manipulating, 435
maxlength attribute, 127
size attribute, 127

text fi les
fclose() function, 594
fopen() function, 592–593
fwrite() function, 594
reading, 591, 599–600
writing, 591, 594–598

text input and output
creating XHTML form, 433–434
event-driven programming, 432–433
GetElementById() method, 434–435
text fi eld manipulation, 435–436

Text tool (Gimp), 952
text-align attribute, 196
<textarea> tag, 129–130
text-based images, 185–187
text-decoration attribute, 194–196
TextEdit, 44
TextFX (Notepad ++), 46
text-indent attribute, 197
text-only browsers, 53
text-style inputs, 126–127
text-transform attribute, 197
themeRoller (jQuery UI), 798–802
$theMode variable, 593
third normal form, 702–703
this operator, 416
three-column design. See also layout

code, 288
fl oating layout, 290–291
minimum height, 291–292
styling three-column page, 289–290
three-Column.css, 288
3D Button fi lter (IrfanView), 113
three-tier architecture, 644–645
thumbnail images, 117–120
Tidy, 37–39
tiled images, 230–232, 958–960
TIME data type, 640
time input element, 146
timer-based movement, 484–485

59_9780470537558-bindex.indd 103459_9780470537558-bindex.indd 1034 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index 1035

Timer.html program, 484–485
<title> tag, 13, 31
TLS (Transport Layer Security), 590
toggle() method, 778
toggle button, 771
toggleBorder() function, 763
toggleClass() event (jQuery), 763
toggleContent() function, 778
toLowerCase() method, 349–351
Toolbox window (Gimp), 943
toString() method, 356–357
toUpperCase() method, 349–351
<tr> tag, 74, 76
Transport Layer Security (TLS), 590
troubleshooting, 984
TTF font format, 148
.tv domain, 87
two-column design. See also layout

adding preliminary CSS, 282–283
borders, 285–287
building XHTML, 281–282
color scheme, 280
designing page, 279–280
fi xed width, 279
fl oating columns, 285
fl uid layout, 287
fonts, 280
overall page fl ow, 279
percentage width, 279
section names, 279
temporary borders, 283–284
width indicators, 279
twoColumn.html program, 281
two-dimensional arrays. See also arrays

calculating distance with, 573–574
code, 411
description, 409
main() function, 411–412
setting up, 410–411

txtOutput fi eld, 434
type attribute, 127
type property, 628
typecasting, 545
typeface, 177

U
ui-corner-all CSS class, 812
ui-selected CSS class, 838–839
ui-state-active CSS class, 812
ui-state-default CSS class, 812
ui-state-disabled CSS class, 812
ui-state-error CSS class, 812
ui-state-error text CSS class, 812
ui-state-focus CSS class, 812
ui-state-highlight CSS class, 812
ui-state-hover CSS class, 812
UItools.html program, 833–834
ui-widget CSS class, 812
ui-widget-content CSS class, 812
ui-widget-header CSS class, 812
ui-widget-shadow CSS class, 812
.uk domain, 87
 tag, 67, 565
Uniform Resource Locators (URLs)

defi ned, 86
domain names, 87
host name, 86
page name, 87
protocol, 86
subdomain, 87
unique_key property, 628
unordered lists, 65–67, 838
unsharp mask, 954
unsigned property, 628
UPDATE command (SQL), 684, 715
url input element, 146

59_9780470537558-bindex.indd 103559_9780470537558-bindex.indd 1035 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Edition1036

URLs (Uniform Resource Locators)
defi ned, 86
domain names, 87
host name, 86
page name, 87
protocol, 86
subdomain, 87

username, 87
users

adding, 653–656
broadband access, 900
browsers used by, 900
computers used by, 900
determining, 899–900
mobile devices used by, 900
profi ciencies, 900
root, 649

V
validate.html program, 458–459
validation

description, 21
by direct input, 24
by fi le upload, 24
in HTML 5, 142
by URL, 24
of Web page, 24

validators
description, 21, 23
by direct input, 24
by fi le upload, 24
HTML Tidy, 37–39
HTML Validator, 54–55
by URL, 23–24
W3C

Check button, 27
doctype, 29
encoding, 29
error messages, 29
fi le, 29
fi xing errors, 30–34

green banner, 30, 35–36
overview, 29
page validation, 29–30
red banner, 29
result, 29
root namespace, 29
validation badge, 35–36
Web site, 27

value, 172–173
value attribute, 127
value property, 453
VALUES keyword, 668–669
VARCHAR data type, 640, 642–643
variable scope, 402–405, 584–585
variables
alert statement, 345
changing, 356–358
codes, 343–344
conversion tools, 356–357
for data storage, 344
data type, 344
environment, 527, 530
global, 402
handle, 608
initial value, 344
interpolating into text, 513–514
literals versus, 347
local, 402
name, 344
naming, 584
numbers, adding, 352–354
overview, 342–343
PHP, 511–514
prompt statement, 344
scope, 584–585
sentry, 556
server-side programming, 511–514
session, 587–590
var command, 344

vector graphics, 141
vector-based images, 105
vendor lock-in, 42

59_9780470537558-bindex.indd 103659_9780470537558-bindex.indd 1036 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index 1037

vertical menu, 312–314
vertical-align attribute, 197
VI (text editor), 46–47, 339
<video> tag, 149–152
view generated source tool, 444
View Generated Source (Web Developer

toolbar), 794
view source command, 443
View Source tool, 54–55
views

creating, 713–715
description, 713

VIM (text editor), 46–47, 339
virtual fi elds, calculating, 705–707
visited state, 213, 215

W
w value, 593
w+ value, 593
W3C validator

Check button, 27
doctype, 29
encoding, 29
error messages, 29
fi le, 29
fi xing errors, 30–34
green banner, 30, 35–36
overview, 29
page validation, 29–30
red banner, 29
result, 29
root namespace, 29
validation badge, 35–36
Web site, 27

Web 2.0, 748
Web browsers

Chrome, 52
in client-side development system, 870
description, 10
development features lacking in, 43
displaying XHTML pages on, 26–27

extensions, 870
Firefox, 51–52

advantages of, 51–52
on CD-ROM, 981
code view, 52
debugging, 383
displaying XHTML pages on, 26–27
error-handling, 52
extensions, 52, 57
history, 50
HTML Validator, 54–55
Web Developer toolbar, 55–56, 170–172

getting another, 16
history, 49–50
incompatibility with other browsers, 19
Internet Explorer

debugging JavaScript, 381–383
displaying XHTML pages on, 26–27
history of, 50
older versions of, 51
overview, 50–51
support for HTML 5, 156

loading page into, 11
Mozilla, 52
multiple, 43
opening, 10–11
Opera, 52
portable, 53
Safari, 52
text-only, 53
in three-tiered architecture, 644
use in Web development, 44
Webkit, 52

Web Developer toolbar (Firefox)
checking accessibility with, 56
editing pages with, 56
features, 170–172
getting download speed report with, 56
interface, 55
manipulating CSS codes with, 56
validating pages with, 56
viewing generated source with, 794

59_9780470537558-bindex.indd 103759_9780470537558-bindex.indd 1037 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Edition1038

Web development toolbar, 444
Web development tools

browsers, 41, 44
code, 41
code maintenance, 41
complexity, 41
costs, 41
display variations, 41
enhanced text editors, 43–44
features of, 41–42
help features, 41
IDEs, 44
incompatibility with other tools, 41
line numbers, 41
macros, 41
multimedia tools, 44
multiple browsers, 41
plug-ins, 44
programming technologies, 44
proprietary, 41–42
site management, 41
standards compliance, 41
templates, 41
testing and validation, 41
vendor lock-in, 41
WYSIWYG editing, 41

Web hosts
advantages of, 878
choosing, 878–881
connecting to, 880–881
fi le permissions, 884
fi nding, 879–880
managing remote site, 881–887
names, 86, 616

Web logging, 918–920
Web page animation

automatic motion
code, 484–485
overview, 483–485
setInterval() call, 485–486

boundaries, checking, 474–475
<canvas> tag, 155

global variables, 471–472
HTML code, 468–470
image-swapping

animating sprites, 489–490
fi le format, 487
fi le size, 487
global variables, 488–489
interval, setting up, 489
names, 487
overview, 486–487
page, building, 487–488
preparing images, 487
subdirectory, 487
transparency, 487
init() function, 472
JavaScript, 470–471
keyboard, reading input from

event handlers, 478
init() function, 477–478
key codes, 480
overview, 475–476
page, building, 476–477
responding to keystrokes, 479–480

mouse-following effect
followMouse.html, 481–482
initializing code, 482
listener, 483

moving sprites, 472–474
overview, 467–468
preloading images

building code, 494–495
global variables, 495–496
initializing data, 496
loadImages() method, 496–497
movement, 492
moving sprites, 497
overview, 490–492
swapping, 492
updating images, 497

reading input from keyboard, 475–476
sprite div, 467–468
timer-based movement, 484–485

59_9780470537558-bindex.indd 103859_9780470537558-bindex.indd 1038 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index 1039

Web pages
basic, creating, 9–11
classes, adding, 207–208
organizing by meaning, 211–212

Web server
connecting with FTP, 886–887
fi les, adding, 874–875
fi rewalls, 876, 878
functionality versus security, 877–878
installing, 504–505
as local asset, 876
root password, changing, 877
security checks, 876
security level, 876–877
in server-side system, 872
in three-tiered architecture, 644
XAMPP directory password, 877

Web sites
audience, 899–900
client’s expectations, 897–898
common address, 895
CSS design, 898
data design, 898
data implementation, 898
design, 895
developing larger projects, 915
domain names, 887–891
effi ciency of, 914
making site live, 913–914
multipage, 895–896
naming, 887–891
navigation scheme, 895
page templates

data framework, 912–913
page styles, 909–911
sketching page design, 905–907
XHTML template framework, 907–909

planning, 896
site diagram, 903–905
site integration and implementation, 898
site layout, 898

site overview, 902–903
site plan, 901–905
testing, 898
theme, 895
user’s technical expertise, 900
XHTML coding, 898
XHTML template, 898

Web-based fonts. See also fonts
CSS 3 embedded fonts, 184
embedded fonts, 184
Flash, 184
images, 184–185
images as headlines, 185–187
problems in, 183–184

Webkit framework, 52
Web-safe color palette, 167–169
Website Baker CMS. See also content

management system (CMS)
administration page, 925
advantages of, 920–921
All Modules and Snippets Project, 934
on CD-ROM, 983
code page, 927–929
content, adding, 925–926
CSS fi les, modifying, 939
downloading, 921–922
form page, 929
functionality, adding new, 934–935
index.php, modifying, 938–939
info.php fi le, changing, 937–938
installing, 922–924
menu link, 929
News V3.5, 929
overview, 925
templates

adding additional, 932–933
changing, 931–932
packaging, 940
prebuilt, 935–937

themes, creating custom, 935–940
wrapper, 929–930

59_9780470537558-bindex.indd 103959_9780470537558-bindex.indd 1039 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Edition1040

Website Baker CMS (continued)

WYSIWYG editor
adding lists, links, and images, 927
multiple paste options, 927
overview, 17, 41, 927–931
predefi ned fonts and styles, 927

WEBSITE_HEADER variable, 938
WEBSITE_TITLE variable, 938
WEEK() function (SQL), 707
WEEKDAY() function (SQL), 707
WHERE clause, 677, 684, 725
while loop. See also loops

basic requirements, 378
conditions, 556
creating, 377–378
for loop versus, 378
initialization, 556
modifi er, 556
in PHP code, 555–558
sentry variable, 556
while.php program, 557
white space, 666
widgets, 154
width attribute, 97–98
Windows Notepad, 16, 44
Windows Paint, 942
WOFF font format, 148
Word, 44
word boundaries, 464
WordPress, 918–919
word-processing formats, 687
word-spacing attribute, 197
wrap in div button (jQuery), 787
wrap method, 794–795
write permission, 884
WYSIWYG editor

adding lists, links, and images, 927
multiple paste options, 927
overview, 17, 41
predefi ned fonts and styles, 927

X
XAMPP

adding fi les with, 874–875
on CD-ROM, 983
control panel, 646, 873
creating server with, 872–878
directory, 646–647
directory password, 877
main directory, 646
MySQL in, 614, 644
running, 873
setting security level, 876–877
subdirectory, 646
testing confi guration, 873

XCF fi les, 957
XEmacs (text editor), 49
XHTML (Extensible Hypertext Markup

Language)
askName.html, 523
building with PHP, 508–509
coding, 898
documents

code, 22
creating, 22–24
<!DOCTYPE> tag, 22–23
meta tag, 23
validator, 23–24
xmlns attribute, 23
fixedWidth.html, 293–294
forms

buttons, 123
check boxes, 122, 132–134
code, 123
with complex elements, 532–534
creating, 433–434, 523–525, 629–630
drop-down list, 130–132
elements, 122–123
fi eldsets, 123–126
fl oating layout, 270–275

59_9780470537558-bindex.indd 104059_9780470537558-bindex.indd 1040 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index 1041

get method, 527–529
getting data from, 530–531
input-style buttons, 137–138
labels, 123–126
legends, 123
multi-line text input, 128–130
password boxes, 122
password fi eld, 127–128
radio buttons, 122, 134–136
reading with PHP program, 525–526
receiving data, 525–526
Reset button, 138
responding to, 535–537
search form, 629–630
select lists, 122
sending to PHP program, 527–529
Submit button, 138
text areas, 122
text boxes, 122
text fi eld, 126–127
transmitting data, 529–530
nestedList.html, 305–306
for site prototype, 908–909
standards, 20–21
switching from PHP to, 517–518
tags
<!DOCTYPE>, 22–23
meta, 23

templates, 898, 907–909
for two-column design, 281–282
twoColumn.html, 281
validation, 21

XML (Extensible Markup Language). See

also AJAX (Asynchronous JavaScript
and XML)

attributes, 856
container for elements, 856
data

in AJAX, 734
creating, 690

creating HTML, 858
manipulating with jQuery, 857–858
processing results, 859
retrieving, 858–859
storing, 854–855

data nodes, 856
description, 20
doctype, 855–856
namespace, 23
nesting elements, 856
XMLHttpRequest object

creating, 738–739
description, 731
methods, 738–739
open() method, 739
send() method, 740
status() method, 740–741
xmlns attribute, 23
XnView, 102, 984

Y
Yahoo User Interface (YUI), 748
YEAR() function (SQL), 707, 711–712

Z
zerofill property, 628
z-index attribute, 320–322
ZIndex variable, 820
Zoom tool (Gimp), 951
zValue variable, 821

59_9780470537558-bindex.indd 104159_9780470537558-bindex.indd 1041 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, XHTML, & CSS All-in-One For Dummies, 2nd Edition1042

59_9780470537558-bindex.indd 104259_9780470537558-bindex.indd 1042 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Apple & Macs

iPad For Dummies
978-0-470-58027-1

iPhone For Dummies,
4th Edition
978-0-470-87870-5

MacBook For Dummies, 3rd
Edition
978-0-470-76918-8

Mac OS X Snow Leopard For
Dummies
978-0-470-43543-4

Business

Bookkeeping For Dummies
978-0-7645-9848-7

Job Interviews
For Dummies,
3rd Edition
978-0-470-17748-8

Resumes For Dummies,
5th Edition
978-0-470-08037-5

Starting an
Online Business
For Dummies,
6th Edition
978-0-470-60210-2

Stock Investing
For Dummies,
3rd Edition
978-0-470-40114-9

Successful
Time Management
For Dummies
978-0-470-29034-7

Computer Hardware

BlackBerry
For Dummies,
4th Edition
978-0-470-60700-8

Computers For Seniors
For Dummies,
2nd Edition
978-0-470-53483-0

PCs For Dummies,
Windows
7 Edition
978-0-470-46542-4

Laptops For Dummies,
4th Edition
978-0-470-57829-2

Cooking & Entertaining

Cooking Basics
For Dummies,
3rd Edition
978-0-7645-7206-7

Wine For Dummies,
4th Edition
978-0-470-04579-4

Diet & Nutrition

Dieting For Dummies,
2nd Edition
978-0-7645-4149-0

Nutrition For Dummies,
4th Edition
978-0-471-79868-2

Weight Training
For Dummies,
3rd Edition
978-0-471-76845-6

Digital Photography

Digital SLR Cameras &
Photography For Dummies,
3rd Edition
978-0-470-46606-3

Photoshop Elements 8
For Dummies
978-0-470-52967-6

Gardening

Gardening Basics
For Dummies
978-0-470-03749-2

Organic Gardening
For Dummies,
2nd Edition
978-0-470-43067-5

Green/Sustainable

Raising Chickens
For Dummies
978-0-470-46544-8

Green Cleaning
For Dummies
978-0-470-39106-8

Health

Diabetes For Dummies,
3rd Edition
978-0-470-27086-8

Food Allergies
For Dummies
978-0-470-09584-3

Living Gluten-Free
For Dummies,
2nd Edition
978-0-470-58589-4

Hobbies/General

Chess For Dummies,
2nd Edition
978-0-7645-8404-6

Drawing
Cartoons & Comics
For Dummies
978-0-470-42683-8

Knitting For Dummies,
2nd Edition
978-0-470-28747-7

Organizing
For Dummies
978-0-7645-5300-4

Su Doku For Dummies
978-0-470-01892-7

Home Improvement

Home Maintenance
For Dummies,
2nd Edition
978-0-470-43063-7

Home Theater
For Dummies,
3rd Edition
978-0-470-41189-6

Living the
Country Lifestyle
All-in-One
For Dummies
978-0-470-43061-3

Solar Power Your Home
For Dummies,
2nd Edition
978-0-470-59678-4

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call (0) 1243 843291. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

60_9780470537558-badvert01.indd 1043 10/7/10 9:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Internet

Blogging For Dummies,
3rd Edition
978-0-470-61996-4

eBay For Dummies,
6th Edition
978-0-470-49741-8

Facebook For Dummies,
3rd Edition
978-0-470-87804-0

Web Marketing
For Dummies,
2nd Edition
978-0-470-37181-7

WordPress
For Dummies,
3rd Edition
978-0-470-59274-8

Language & Foreign
Language

French For Dummies
978-0-7645-5193-2

Italian Phrases
For Dummies
978-0-7645-7203-6

Spanish For Dummies,
2nd Edition
978-0-470-87855-2

Spanish
For Dummies,
Audio Set
978-0-470-09585-0

Math & Science

Algebra I
For Dummies,
2nd Edition
978-0-470-55964-2

Biology For Dummies,
2nd Edition
978-0-470-59875-7

Calculus For Dummies
978-0-7645-2498-1

Chemistry For Dummies
978-0-7645-5430-8

Microsoft Office

Excel 2010 For Dummies
978-0-470-48953-6

Office 2010 All-in-One
For Dummies
978-0-470-49748-7

Office 2010 For Dummies,
Book + DVD Bundle
978-0-470-62698-6

Word 2010 For Dummies
978-0-470-48772-3

Music

Guitar For Dummies,
2nd Edition
978-0-7645-9904-0

iPod & iTunes For
Dummies, 8th Edition
978-0-470-87871-2

Piano Exercises
For Dummies
978-0-470-38765-8

Parenting & Education

Parenting For Dummies,
2nd Edition
978-0-7645-5418-6

Type 1 Diabetes
For Dummies
978-0-470-17811-9

Pets

Cats For Dummies,
2nd Edition
978-0-7645-5275-5

Dog Training For Dummies,
3rd Edition
978-0-470-60029-0

Puppies For Dummies,
2nd Edition
978-0-470-03717-1

Religion & Inspiration

The Bible For Dummies
978-0-7645-5296-0

Catholicism For Dummies
978-0-7645-5391-2

Women in the Bible
For Dummies
978-0-7645-8475-6

Self-Help & Relationship

Anger Management
For Dummies
978-0-470-03715-7

Overcoming Anxiety
For Dummies,
2nd Edition
978-0-470-57441-6

Sports

Baseball
For Dummies,
3rd Edition
978-0-7645-7537-2

Basketball
For Dummies,
2nd Edition
978-0-7645-5248-9

Golf For Dummies,
3rd Edition
978-0-471-76871-5

Web Development

Web Design
All-in-One
For Dummies
978-0-470-41796-6

Web Sites
Do-It-Yourself
For Dummies,
2nd Edition
978-0-470-56520-9

Windows 7

Windows 7
For Dummies
978-0-470-49743-2

Windows 7
For Dummies,
Book + DVD Bundle
978-0-470-52398-8

Windows 7 All-in-One
For Dummies
978-0-470-48763-1

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call (0) 1243 843291. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

Learn to:
• Create a Pro�le, navigate the site,

and use privacy features

• Find friends and post messages

• Add applications and upload
photos to your Facebook page

• Build a fan page or get the word out
about an event

Leah Pearlman
Carolyn Abram

Facebook

3rd Edition
Making Everything Easier!™

Peter Weverka
Author of PowerPoint
All-in-One For Dummies

8 IN 1
BOOKSBOOKS

• Common O�ce Tools
• Word
• Outlook®
• PowerPoint®
• Excel®
• Access®
• Publisher
• O�ce 2010 — One Step Beyond

O�ce 2010
A L L - I N - O N E

Making Everything Easier!™

Microsoft®

ART IS TK

TO BE INSERTED

DURING

ROUTING
Edward C. Baig
Bob “Dr. Mac” LeVitus

• Set up your iPad, use the multitouch
interface, and get connected

• Surf the Web, listen to music, watch
videos, and download apps

• Turn your iPad into a portable game
console

IN FULL COLOR!

Learn to:

iPad
™

Making Everything Easier!™

Andy Rathbone
Author of all previous editions of
Windows For Dummies

Learn to:
• potksed7 swodniW ruoy ezilanosreP

with your own photos

• ni-tliub htiw swodniW pu deepS
shortcuts

• lno ot sgninraw swodniW ezimotsuC y
give the notices you want

• evoM your files from your old PC to a
Windows 7 computer

Windows® 7
™

60_9780470537558-badvert01.indd 1044 10/7/10 9:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Wherever you are
in life, Dummies
makes it easier.

Visit us at Dummies.com

From fashion to Facebook®,
wine to Windows®, and everything in between,

Dummies makes it easier.

60_9780470537558-badvert01.indd 1045 10/7/10 9:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

DIY • Consumer Electronics •
Crafts • Software • Cookware •
Hobbies • Videos • Music •
Games • and More!

For more information, go to
Dummies.com® and search
the store by category.

 Dummies products
 make life easier!

60_9780470537558-badvert01.indd 1046 10/7/10 9:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Notes

61_9780470537558-bnotes.indd 104761_9780470537558-bnotes.indd 1047 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Notes

61_9780470537558-bnotes.indd 104861_9780470537558-bnotes.indd 1048 10/7/10 9:02 PM10/7/10 9:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Mobile Apps

There’s a Dummies App for This and That
With more than 200 million books in print and over 1,600 unique
titles, Dummies is a global leader in how-to information. Now
you can get the same great Dummies information in an App. With
topics such as Wine, Spanish, Digital Photography, Certification,
and more, you’ll have instant access to the topics you need to
know in a format you can trust.

To get information on all our Dummies apps, visit the following:

www.Dummies.com/go/mobile from your computer.

www.Dummies.com/go/iphone/apps from your phone.

Start with FREE Cheat Sheets
Cheat Sheets include
 • Checklists
 • Charts
 • Common Instructions
 • And Other Good Stuff!

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
 • Videos
 • Illustrated Articles
 • Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
 • Digital Photography
 • Microsoft Windows & Office
 • Personal Finance & Investing
 • Health & Wellness
 • Computing, iPods & Cell Phones
 • eBay
 • Internet
 • Food, Home & Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/htmlxhtmlandcss

spine=2.16”

www.it-ebooks.info

http://www.it-ebooks.info/

A L L - I N - O N E

Making Everything Easier!™

$39.99 US / $47.99 CN / £27.99 UK

ISBN 978-0-470-53755-8

Programming Languages/HTML

Go to Dummies.com®

for videos, step-by-step examples,
how-to articles, or to shop!

Harris

spine=2.16”

H
TM

L, XH
TM

L,
&

 CSS
A

L
L

-IN
-O

N
E

HTML, XHTML,
& CSS

• Creating the HTML/XHTML Foundation
• Styling with CSS
• Using Positional CSS
• Client-Side Programming with JavaScript®
• Server-Side Programming with PHP
• Managing Data with MySQL®
• Into the Future with AJAX
• Moving from Pages to Sites

Andy Harris

 Open the book and find:

• The basics of building XHTML
documents

• What to do with selectors,
classes, and styles

• How to build flexible layouts

• Tips on using HTML5

• Secrets of managing files and
directories

• All about SQL coding

• AJAX essentials and how to
add events with jQuery

• The advantages of a Content
Management System

You too can become a
Web wizard! Here’s how to go
from simple pages to super sites
Contemplating your first dip into Web page creation, or
ready to take your sites to the next level? All you need are
these eight minibooks. Newbies can start at the beginning
for a complete understanding of basic page creation with
HTML5, XHTML, and CSS. If you’ve been there and done
that, jump ahead to managing data with MySQL, building
AJAX connections, and more!

• Lay the foundation — build the skeleton of your pages with
XHTML, use CSS to add color and formatting, and create dynamic
buttons or menus

• Serve it up — move to the server and use PHP to program
responses to Web requests or connect to databases

• Manage data — set up a secure data server and create a reliable
and trustworthy data back-end for your site

• Explore AJAX — learn the essentials of AJAX, how to add events
and animation, and cool ways to use the UI library

• Create super sites — understand clients and servers, work with
content management systems, and more

Andy Harris taught himself programming because it was fun. Today he
teaches computer science, game development, and Web programming at
the university level; is a technology consultant for the state of Indiana; and
has helped people with disabilities to form their own Web development
companies.

8 IN 1
BOOKSBOOKS

Valuable bonus programs on CD-ROM

Bonus CD Includes
Firefox browser plus valuable extensions and plugins

Aptana programmer’s editor that simplifies the process

XAMPP, an easy-to-install server package

Visit the companion Web site at www.dummies.com/
go/htmlxhtmlandcssaiofd2e for code and other
supporting materials

Valuable bonus
tools on CD-ROM!

Covers HTML5 and prior versions of HTML!
2nd Edition

2nd Edition

www.it-ebooks.info

http://www.it-ebooks.info/

	HTML, XHTML & CSS All-in-One For Dummies, 2nd Edition
	About the Author
	Dedication
	Author’s Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	No Experience Necessary
	Great for Advanced Folks, Too!
	Use Any Computer
	Don’t Buy Any Software
	How This Book Is Organized
	New for the Second Edition
	Icons Used in This Book
	What’s Next?

	Book I: Creating the HTML/XHTML Foundation
	Contents at a Glance
	Chapter 1: Sound HTML Foundations
	Creating a Basic Page
	Understanding the HTML in the Basic Page
	Meeting Your New Friends, the Tags
	Setting Up Your System

	Chapter 2: It’s All about Validation
	Somebody Stop the HTML Madness!
	Building an XHTML Document
	Validating Your Page

	Chapter 3: Choosing Your Tools
	What’s Wrong with the Big Boys?
	Alternative Web Development Tools
	Picking a Text Editor
	The Web Developer’s Browser
	Tricking Out Firefox
	Using a Full-Blown IDE
	Introducing Komodo Edit

	Chapter 4: Managing Information with Lists and Tables
	Making a List and Checking It Twice
	Building Tables

	Chapter 5: Making Connections with Links
	Making Your Text Hyper
	Making Lists of Links
	Working with Absolute and Relative References

	Chapter 6: Adding Images
	Adding Images to Your Pages
	Choosing an Image Manipulation Tool
	Choosing an Image Format
	Manipulating Your Images
	Using Images as Links

	Chapter 7: Creating Forms
	You Have Great Form
	Building Text-Style Inputs
	Creating Multiple Selection Elements
	Pressing Your Buttons

	Chapter 8: The Future of HTML: HTML 5
	Can’t We Just Stick with XHTML?
	Semantic Elements
	Using New Form Elements
	Using Embedded Fonts
	Audio and Video Tags
	The Canvas Tag
	Other Promising Features
	Limitations of HTML 5

	Book II: Styling with CSS
	Contents at a Glance
	Chapter 1: Coloring Your World
	Now You Have an Element of Style
	Specifying Colors in CSS
	Choosing Your Colors
	Creating Your Own Color Scheme

	Chapter 2: Styling Text
	Setting the Font Family
	The Curse of Web-Based Fonts
	Specifying the Font Size
	Determining Other Font Characteristics

	Chapter 3: Selectors, Class, and Style
	Selecting Particular Segments
	Using Emphasis and Strong Emphasis
	Defining Classes
	Introducing div and span
	Using Pseudo-Classes to Style Links
	Selecting in Context
	Defining Multiple Styles at Once

	Chapter 4: Borders and Backgrounds
	Joining the Border Patrol
	Introducing the Box Model
	Changing the Background Image
	Manipulating Background Images
	Using Images in Lists

	Chapter 5: Levels of CSS
	Managing Levels of Style
	Understanding the Cascading Part of Cascading Style Sheets
	Using Conditional Comments

	Book III: Using Positional CSS
	Contents at a Glance
	Chapter 1: Fun with the Fabulous Float
	Avoiding Old-School Layout Pitfalls
	Introducing the Floating Layout Mechanism
	Using Float with Block-Level Elements
	Using Float to Style Forms

	Chapter 2: Building Floating Page Layouts
	Creating a Basic Two-Column Design
	Building a Three-Column Design
	Building a Fixed-Width Layout
	Building a Centered Fixed-Width Layout

	Chapter 3: Styling Lists and Menus
	Revisiting List Styles
	Creating Dynamic Lists
	Building a Basic Menu System

	Chapter 4: Using Alternative Positioning
	Working with Absolute Positioning
	Managing z-index
	Building a Page Layout with Absolute Positioning
	Creating a More Flexible Layout
	Exploring Other Types of Positioning
	Determining Your Layout Scheme

	Book IV: Client-Side Programming with JavaScript
	Contents at a Glance
	Chapter 1: Getting Started with JavaScript
	Working in JavaScript
	Writing Your First JavaScript Program
	Introducing Variables
	Using Concatenation to Build Better Greetings
	Understanding the String Object
	Understanding Variable Types
	Changing Variables to the Desired Type

	Chapter 2: Making Decisions with Conditions
	Working with Random Numbers
	Using if to Control Flow
	Using the else Clause
	Using switch for More Complex Branches
	Nesting if Statements

	Chapter 3: Loops and Debugging
	Building Counting Loops with for
	Looping for a while
	Introducing Bad Loops
	Debugging Your Code
	Catching Logic Errors
	Using the Interactive Debug Mode

	Chapter 4: Functions, Arrays, and Objects
	Breaking Code into Functions
	Passing Data to and from Functions
	Managing Scope
	Building a Basic Array
	Working with Two-Dimension Arrays
	Creating Your Own Objects
	Introducing JSON

	Chapter 5: Talking to the Page
	Understanding the Document Object Model
	Harnessing the DOM through JavaScript
	Managing Button Events
	Managing Text Input and Output
	Writing to the Document
	Working with Other Text Elements

	Chapter 6: Getting Valid Input
	Getting Input from a Drop-Down List
	Managing Multiple Selections
	Check, Please: Reading Check Boxes
	Working with Radio Buttons
	Working with Regular Expressions

	Chapter 7: Animating Your Pages
	Making Things Move
	Reading Input from the Keyboard
	Following the Mouse
	Creating Automatic Motion
	Building Image-Swapping Animation
	Preloading Your Images

	Book V: Server-Side Programming with PHP
	Contents at a Glance
	Chapter 1: Getting Started on the Server
	Introducing Server-Side Programming
	Installing Your Web Server
	Inspecting phpinfo()
	Building XHTML with PHP
	Coding with Quotation Marks
	Working with Variables PHP-Style
	Building XHTML Output

	Chapter 2: PHP and XHTML Forms
	Exploring the Relationship between PHP and XHTML
	Sending Data to a PHP Program
	Choosing the Method of Your Madness
	Retrieving Data from Other Form Elements

	Chapter 3: Control Structures
	Introducing Conditions (Again)
	Building the Classic if Statement
	Making a switch
	Looping with for
	Looping with while

	Chapter 4: Working with Arrays
	Using One-Dimensional Arrays
	Using Loops with Arrays
	Introducing Associative Arrays
	Introducing Multidimensional Arrays
	Breaking a String into an Array

	Chapter 5: Using Functions and Session Variables
	Creating Your Own Functions
	Managing Persistence with Session Variables

	Chapter 6: Working with Files and Directories
	Text File Manipulation
	Using Delimited Data
	Working with File and Directory Functions

	Chapter 7: Connecting to a MySQL Database
	Retrieving Data from a Database
	Improving the Output Format
	Allowing User Interaction

	Book VI: Managing Data with MySQL
	Contents at a Glance
	Chapter 1: Getting Started with Data
	Examining the Basic Structure of Data
	Introducing MySQL
	Setting Up phpMyAdmin
	Making a Database with phpMyAdmin

	Chapter 2: Managing Data with SQL
	Writing SQL Code by Hand
	Running a Script with phpMyAdmin
	Using AUTO_ INCREMENT for Primary Keys
	Selecting Data from Your Tables
	Editing Records
	Exporting Your Data and Structure

	Chapter 3: Normalizing Your Data
	Recognizing Problems with Single-Table Data
	Introducing Entity-Relationship Diagrams
	Introducing Normalization
	Identifying Relationships in Your Data

	Chapter 4: Putting Data Together with Joins
	Calculating Virtual Fields
	Calculating Date Values
	Creating a View
	Using an Inner Join to Combine Tables
	Managing Many-to-Many Joins

	Book VII: Into the Future with AJAX
	Contents at a Glance
	Chapter 1: AJAX Essentials
	AJAX Spelled Out
	Making a Basic AJAX Connection
	All Together Now — Making the Connection Asynchronous

	Chapter 2: Improving JavaScript and AJAX with jQuery
	Introducing jQuery
	Your First jQuery App
	Creating an Initialization Function
	Investigating the jQuery Object
	Adding Events to Objects
	Making an AJAX Request with jQuery

	Chapter 3: Animating jQuery
	Playing Hide and Seek
	Changing Position with jQuery
	Modifying Elements on the Fly

	Chapter 4: Using the jQuery User Interface Toolkit
	What the jQuery User Interface Brings to the Table
	Resizing on a Theme
	Dragging, Dropping, and Calling Back

	Chapter 5: Improving Usability with jQuery
	Multi-element Designs
	Improving Usability

	Chapter 6: Working with AJAX Data
	Sending Requests AJAX Style
	Building a Multipass Application
	Working with XML Data
	Working with JSON Data

	Book VIII: Moving from Pages to Sites
	Contents at a Glance
	Chapter 1: Managing Your Servers
	Understanding Clients and Servers
	Creating Your Own Server with XAMPP
	Choosing a Web Host
	Managing a Remote Site
	Naming Your Site
	Managing Data Remotely

	Chapter 2: Planning Your Sites
	Creating a Multipage Web Site
	Planning a Larger Site
	Understanding the Client
	Understanding the Audience
	Building a Site Plan
	Creating Page Templates
	Fleshing Out the Project

	Chapter 3: Introducing Content Management Systems
	Overview of Content Management Systems
	Previewing Common CMSs
	Building Custom Themes

	Chapter 4: Editing Graphics
	Using a Graphic Editor
	Introducing Gimp
	Understanding Layers
	Introducing Filters
	Solving Common Web Graphics Problems

	Chapter 5: Taking Control of Content
	Building a “Poor Man’s CMS” with Your Own Code
	Creating Your Own Data-Based CMS

	Appendix A: What’s on the CD
	System Requirements
	Using the CD
	What You’ll Find on the CD
	Troubleshooting

	Index

