Parallel Computing
Chapter 7

Performance and Scalability
Jun Zhang
Department of Computer Science
University of Kentucky

7.1 Parallel Systems

e Definition: A parallel system consists of an
algorithm and the parallel architecture that
the algorithm is implemented.

e Note that an algorithm may have different
performance on different parallel architecture.

e For example, an algorithm may perform
differently on a linear array of processors and
on a hypercube of processors.

7.2 Performance Metrices for Parallel Systems

e Run Time: The parallel run time is defined as the time
that elapses from the moment that a parallel
computation starts to the moment that the last
processor finishes execution.

* Notation: Serial run timeT,, parallel run time T,.

7.3 Speedup

e The speedup is defined as the ratio of the serial runtime
of the best sequential algorithm for solving a problem to

the time taken by the parallel algorithm to solve the
same problem on p processors.

e Example Adding n numbers on an n processor
hypercube

n

T, =0(n), T, =0(og n), (Iog -

),

Parallel
Speedup

4

Superlinear L

Typical
Success

Processors

Negative

Using Reduction Algorithm

Example 4.1. Computing the sum of 16 numbers
on a 16-processor hypercube

e, S

7.4 Efficiency

 The efficiency is defined as the ratio of speedup to the
number of processors. Efficiency measures the fraction of
time for which a processor is usefully utilized.

p pT,
 Example Efficiency of adding n numbers on an n-processor
hypercube
n 1 1
E=0(—) =0)
logn n log n

7.5 Cost

e The cost of solving a problem on a parallel system is defined
as the product of run time and the number of processors.

e A cost-optimal parallel system solves a problem with a cost
proportional to the execution time of the fastest known
sequential algorithm on a single processor.

e Example Adding n numbers on an n-processor hypercube.

Cost is ®(nlog n) for the parallel system and ©(n) for
sequential algorithm. The system is not cost-optimal.

7.6 Granularity and Performance

Use less than the maximum number of processors.

Increase performance by increasing granularity of
computation in each processor.

Example Adding n numbers cost-optimally on a hypercube.

Use p processors, each holds n/p numbers. First add the n/p
numbers locally. Then the situation becomes adding p
numbers on a p processor hypercube. Parallel run time and
cost:

®(n/ p+log p), ®(n+ plog p)

7.7 Scalability

e Scalability is a measure of a parallel system’s capacity to
increase speedup in proportion to the number of processors.

e Example Adding n numbers cost-optimally

n
T,=—+2log p
P
_ np
n+2plog p

c_ S n
P n+2plog p
Well-known Amdahl’s law dictates the achievable speedup

and efficiency.

=
=1

computed speedup
~o
L1

=

—
[=]
T

computed efficiency
—
(=2

d n v 20 25 N ¥

o
(=1

5 10 19 il 2 30
number of processors

7.8 Amdahl’s Law (1967)

The speedup of a program using multiple processors in

parallel computing is limited by the time needed for the serial
fraction of the problem.

If a problem of size W has a serial component Ws, the
speedup of the program is

W - W

Tp + W s
P
B W
(W —Ws)/ p+Ws
W
S < as p o

W

7.9 Amdahl’s Law

o If Ws=20%, W-W5s=80%, then

1
0.8/ p+0.2

S:

S < 1 5 a p—> o
0.2
 So no matter how many processors are used, the speedup
cannot be greater than 5

e Amdahl’s Law implies that parallel computing is only useful
when the number of processors is small, or when the problem
is perfectly parallel, i.e., embarrassingly parallel

Performance Increase ratio

100 - o] o]] o]
- Performance = 3
increaseratio x4 —— _‘ =)
x: Ratlo of codethat mustbe o o o g e X=0%
executed sequentially . Icom core | |core | |core| 22nm —)
N: Number of CPU cores cpu| [cpul [cpu] cpy »
Core | |Core | |COre | | COre -
s X=10%—
T
=20%
CPU
core x=50%
90nm No significant throughput improvement if ratio
1l of code that can be executed In parallel is low
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Fig 3 Amdahl’s Law an Obstacle to Improved Performance Performance will not rise in
the same proportion as the increase in CPU cores. Performance gains are limited by the ratio
of software processing that must be executed sequentially. Amdahl’s Law is a major obstacle
in boosting multicore microprocessor performance. Diagram assumes no overhead in parallel
processing. Years shown for design rules based on Intel planned and actual technology. Core
count assumed to double for each rule generation.

7.10 Gustafson’s Law (1988)

e Also known as the Gustafson-Barsis’s Law

* Any sufficiently large problem can be efficiently parallelized
with a speedup

S=p-a(p-1)
 where p is the number of processors, and a is the serial
portion of the problem

e Gustafson proposed a fixed time concept which leads to
scaled speedup for larger problem sizes.

e Basically, we use larger systems with more processors to solve
larger problems

7.10 Gustafson’s Law (Cont)

e Execution time of program on a parallel computer is (a+b)
e gaisthe sequential time and b is the parallel time

e Total amount of work to be done in parallel varies linearly
with the number of processors. So b is fixed as p is varied. The
total run time is (a + p*b)

e The speedupis (a+p*b)/(a+b)
 Define a =a/(a+b), the sequential fraction of the execution
time, then

S=p-a(p-1)

Speedup - S(P)

Gustafson’s Law

Gustafson's Law: S(P) = P-a*(P-1)

12”]]] L L] ()l ‘(l]

x - 0. x-1)
Xx-02*(x-1) /
Xx-03*(x-1y ——
100 |- x -04+7x-1)
0.5 * (x-1)

X -0.6*(x-1)
x-0.7 * (x-1

o i x -0, x-1) El
=09 * (x-1) v

60 |- -
40 |- -
20 | I ' i
0 1 1 1 1 1 |

0 20 40 60 80 100 120

Number of Processors - P

7.11 Scalability (cont.)

* Increase number of processors --> decrease efficiency
* Increase problem size --> increase efficiency

e Can a parallel system keep efficiency by increasing the
number of processors and the problem size
simultaneously???

Yes: --> scalable parallel system
No: --> non-scalable parallel system

A scalable parallel system can always be made cost-optimal by
adjusting the number of processors and the problem size.

7.12 Scalability (cont.)

e E.g.7.7 Adding n numbers on an n-processor hypercube, the
efficiency is

1
|)
og n

e No way to fix E (make the system scalable)

E =0

 Adding n numbers on a p processor hypercube optimally, the

efficiency is
n

E:
n+2plog p

Choosing n = Q(plog p) makes E a constant.

7.13 Isoefficiency Metric of Scalability

Degree of scalability: The rate to increase the size of the
problem to maintain efficiency as the number of processors
changes.

Problem size: Number of basic computation steps in best
sequential algorithm to solve the problem on a single

processor (\y — T,).

Overhead function: Part of the parallel system cost
(processor-time product) that is not incurred by the fastest
known serial algorithm on a serial computer

To = pT, -W

7.14 |soefficiency Function

W +T, (W, p)
p
- _ 1
1+ T, (W, p)/W

e Solve the above equation for W

E
W ZETo(W, p)=KT,(W, p)

T, =

 The isoefficiency function determines the growth rate of W
required to keep the efficiency fixed as p increases.

 Highly scalable systems have small isoefficiency function.

7.15 Sources of Parallel Overhead

e Interprocessor communication: increase data locality to
minimize communication.

e Load imbalance: distribution of work (load) is not uniform.
Inherent parallelism of the algorithm is not sufficient.

e Extra computation: modify the best sequential algorithm may
result in extra computation. Extra computation may be done
to avoid communication.

7.6 Minimum Execution Time

n
T,=—+2log p
P

A Few Examples

e Example Overhead Function for adding n numbersonap
processor hypercube.

Parallel run timeis: T, = 4 2log p
Parallel system cost is: prp =n+2plog p
Serial cost (and problem size) is: T = n
The overhead function is:
To = pT, -W
=(n+2plog p)—n
=2plog p

What can we know here?

Example

 Example Isoefficiency Function for adding n numberson ap
processor Hypercube.

The overhead function is:

T, =2plog p
Hence, isoefficiency function is
W =2Kp log p

Increasing the # of processors from Po toP: , the problem size has
to be increased by a factor of

p, log p, /(p, log p,)
Ifp=4,n=64,E=0.8.Ifp=16, for E=0.8, we have to have n=512.

Example

 Example Isoefficiency Function with a Complex Overhead Function.
Suppose overhead function is:

T = p3/2 n p3/4W 3/4
o=
For the first term:

W — Kp 3/2
For the second term:
W — Kp 3/4W 3/4
Solving it yields
W — K4 p3

The second term dominates, so the overall asymptotic isoefficiency
functionis ©(p?).

Example

Example Minimum Cost-Optimal Execution time for Adding n
Numbers
Minimum execution time is:

n

P= T." =2log n

If, for cost-optimal
W =n=f(p)=plog p (1)
then
logn=1log p—loglog p ~log p
Now solve (1) for p, we have

p=f*(n)=n/log p~n/logn

Cost —Optimal
To P

=3log n—2log log n

