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Abstract 

In recent years, geopolitical events have raised questions about the security of European 

energy supplies and which electricity generation technologies present an optimal fuel 

mix. Likewise, private investors need to allocate their capital efficiently by devising 

portfolios of generation assets. This paper applies the Modern Portfolio Theory to 

determine an optimal portfolio with four electricity generation technologies. Using UK 

electricity and fuel price data and European carbon allowance prices for the period 

2009-2013, we find that coal assets increase portfolio risk and decrease overall returns, 

whilst a combination of gas, nuclear and wind assets allows an investor to maximise 

risk-adjusted return. In addition, we examine the role of power purchase agreements 

(PPAs) to assess whether predictable revenues create more appealing portfolio 

characteristics. We find that such contracts reduce portfolio returns, highlighting the 

importance of the set prices and their possible fluctuations over time. The findings 

support electricity market reform that discourages coal investment and supports 

investment in renewable technologies. The results also suggest that PPAs could make 

sense for independent renewable generators, although this would require modelling of 

the uncertainty of variable load factors and operating costs. 
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1.  INTRODUCTION 

 

In recent years, declining domestic gas production and the escalation of foreign imports have raised concerns 

over British energy security. Since the turn of the century gross domestic production has fallen by 64% to the 

lowest level since 1984, whilst 2012 imports were 21 times greater than in 2000
1
. The trend does not seem to 

be slowing; the Chief Executive of British utility company Centrica recently warned that the UK will source 

70% of its gas from imports by the year 2020. This trend has invoked considerable debate within the 

government and industry. Doubts remain, however, over the appropriate solution. 

 As fuel costs have risen, carbon prices have moved in the opposite direction. Since peaking in 

January 2011 the price of a European Union Allowance (EUA), which permits the emission of one tonne of 

CO2, has fallen by 46%. Meanwhile, the EU has introduced a policy framework for the period up to 2030 to 

ensure the necessary conditions and targets are in place to tackle climate change. An important element of this 

plan is to increase the share of renewable energy to 27%. A question thus arises: which technologies should 

be present in an optimal portfolio of generation assets? 

 This paper focuses on investment incentives for private investors, considering fuel-mix 

diversification to be a way of mitigating exposure to uncertain electricity, fuel and carbon prices. Firstly, we 

discuss how electricity market liberalisation has affected investment incentives. We then introduce the case 

for using diversification as a risk-mitigation strategy under a Mean-Variance Portfolio theory framework. In 

so doing, we extend the approach developed by Roques et al. (2008) to assess the impact of adding renewable 

generation to the energy mix. This is useful in the context of liberalised energy markets and facilitates the 

consideration of electricity and carbon price risks in addition to fuel price risks examined by previous 

applications of MVP theory. We assess the impact of correlation between these variables. Roques et al. 

(2008) found that the strong correlation between electricity and gas prices reduces the incentive to diversify 

away from CCGT into coal or nuclear assets. This appears concerning given the potential benefits of fuel-mix 

diversification. We question whether this is still the case today, and whether the inclusion of renewable 

energy alters the outcome. 

 The implications of this study are extensive as investment decisions are both long-term and capital 

intensive. At the same time, the government is responsible for achieving a socially optimal fuel mix. 

Therefore, it is necessary to identify mechanisms that align the interests of electricity generators with those of 

the government, particularly given that a significant proportion of installed capacity within the UK is 

scheduled to go offline over the next decade. 

 The next section reviews the previous studies on this topic. Section 3 discusses Mean-Variance 

Portfolio Theory and optimal portfolios in the context of a liberalized electricity sector. Section 4 presents the 

results and their analysis of them. Section 5 concludes this paper. 

 

                                                           
1
 Source: the Department of Energy and Climate Change, 2013: https://www.gov.uk/oil-and-gas-uk-field-data   

https://www.gov.uk/oil-and-gas-uk-field-data
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2.  PREVIOUS STUDIES 

 

2.1 Diversification of technologies  

 

Traditionally, the UK power sector consisted of vertically integrated, state-owned utilities that were involved 

in all segments of the value chain: generation, transmission, distribution and supply. This was true of Scotland 

and Northern Ireland, whereas the English and Welsh markets had a slightly more specific structure in which 

generation and transmission were the responsibility of the Central Electricity Generating Board (CEGB) 

whilst 12 regional Area Boards governed distribution and supply. These models shared important 

characteristics; there was no competition and consumers had no say in where they purchased their electricity. 

After the electricity market was liberalised, the investment risk fell on producers, rather than 

consumers, as utilities could no longer shift costs directly to consumers. This meant that volatility and 

uncertainty in electricity, fuel and emission prices presented risks to private investors. Technology 

diversification offers a strategy for utilities to incorporate risk in their investment decisions (Roques et al., 

2008). In contrast to a centrally planned system, liberalised electricity markets create an incentive to invest in 

capital-intensive technologies such as coal and nuclear (Averch and Johnson, 1962). 

 Stirling (1994) highlights that the revocation of European Community legislation preventing gas 

powered electricity generation was an example of a political decision aimed at diversifying the technology 

mix. Matthews and McGowan (1992) note that diversification must not be used to protect specific industries 

or firms. According to the UK Department of Energy and Climate Change (2012), approximately 20% of 

existing plants are scheduled to close down over the next decade and be replaced by technologies with 

intermittent supply of electricity, e.g. wind, or an inflexible supply, e.g. nuclear. 

 Stirling (1994) takes a quantitative diversity index from information theory to derive a value for the 

government’s inclination to pay for a diverse UK energy supply mix. Grubb et al. (2006) extend this to 

investigate the impact of low carbon objectives on the diversity and security of the UK electricity system. 

Whereas Stirling applied only the Shannon-Weiner diversity index to the UK system to measure diversity, the 

latter also applied the Herfindahl-Hirschmann measure of concentration to the scenarios proposed by the DTI 

(2003) for the period from 2000 to 2050. They found that an increase in diversity would be observed under a 

60% emissions target and that, importantly, insecurity declines as a result of reliance on multiple fuel sources. 

This study also finds that the reliability of wind generation does not have a significant impact on the first 

finding – i.e. low-carbon scenarios can maintain security of supply despite higher intermittency than 

conventional fuels. This casts doubt over a whole body of literature that suggests the contribution of 

renewable energy to the UK fuel mix is inhibited by concerns over its reliability (Spiecker and Weber, 2014; 

Trainer, 2013; Röpke, 2013). 



4 

 

 It is important to distinguish between an individual firm and the industry in which it operates. Some 

diversification benefits discussed hereafter will be more prominent when isolating a particular company and 

some become more prominent when examining the power sector as a whole. However, this paper intends to 

analyse optimal generation portfolios for a utility that acts as a proxy for the sector and as such, assumes that 

all firms in the sector are affected in the same way. 

Roques (2008) points to a disparity between what is likely to happen in the short run and what is 

likely to happen in the long run. He asserts that in the short run diversification offers a natural hedge against 

unexpected shocks that could increase the cost or decrease the quantity of available fuel, maintaining that it is 

also necessary to diversify between geographical sources of imports. Coal is traded internationally but gas 

tends to be available from fewer locations, attributing greater import risk to each exporting nation. In the long 

run greater fuel mix diversification reduces the macroeconomic impact of high fossil fuel prices (Roques, 

2008). 

Gas prices are usually correlated with oil prices, because of explicit indexation of prices and 

competition between the two fuels. However, even in Britain where formal links to oil prices are present in 

few gas supply contracts, gas prices are generally aligned with oil prices as a result of fuel switching (IEA, 

2006). Consequently, a higher dependence on combined cycle gas turbine (CCGT) generation should increase 

the sensitivity of the economy, and the power sector, to fossil fuel price shocks. 

 

2.2 Risk management in the power market 

 

The range of financial risk management tools available to power generators is not wide. Roques (2008) 

suggests that this may have an impact on the technologies that they employ, as some contain a higher level of 

‘self-hedging’ than others. CCGT plants, for example, due to the strong correlation between gas and 

electricity prices in the UK, generate stable revenues. 

 The DOE (2002), cited in Roques et al. (2006, p. 6), points out that when the electricity market was 

liberalised analysts envisaged a boom in electricity derivatives markets. By the start of 2002, however, the 

three major US exchanges trading electricity futures contracts had de-listed them and suspended trading, 

causing uncertainty over their future. In the case of the power market, this is not particularly informative as 

the Over-The-Counter (OTC) market is the primary channel through which power is traded (ECORYS, 2008). 

Indeed, there is an array of options if one considers forward contracts, swaps and plain vanilla options. 

 A common electricity derivative is a forward contract, which obliges the buyer to purchase and the 

seller to supply a fixed quantity of electricity at a certain price (the forward price), at a pre-specified time in 

the future. Due to the nature of electricity use, this type of contract differs slightly from forward contracts on 

other commodities as delivery of electricity spans a period of time. Thus, there are peak, off-peak and ‘around 

the clock’ forwards depending on when the electricity is delivered (Deng and Oren, 2006). UK electricity 

market reform incorporates forward contracts by using a Feed-in Tariff (FiT) with Contracts-for-Difference 



5 

 

(CfD), whereby the generator is entitled to the designated strike price, a measure of the incurred cost of 

investing in low-carbon technologies less what is defined as a ‘reference price’, a measure of the wholesale 

price of electricity (DECC, 2013b). The CfD mechanism allows generators to stabilise income at a 

predetermined level across the contract period (DECC, 2011), thereby alleviating volatility of cash flows and 

reducing risk. 

 Forward contracts in electricity markets are well documented. The 2000 electricity crisis in 

California shows the risk of spot markets. Utilities were not allowed to use forward contracts to hedge against 

the risk of rising wholesale power prices. When prices began to rise a retail rate freeze was implemented, 

meaning utilities were buying wholesale power at high prices and having to sell it to consumers at fixed low 

prices, leaving them insolvent (Joskow, 2001). Ausubel and Cramton (2010) argue that forward markets solve 

some of the problems and protect the solvency of utilities. Anderson and Hu (2008) make a similar argument, 

building on previous literature which explains how generators can exercise market power and attain higher 

prices. These models assume that the contract price is equal to an expectation of the spot market price, within 

a rational expectations and zero arbitrage framework (Newbery, 1998; Green, 1999). 

 Electricity futures are similar to forward contracts but are marked to market daily meaning payment 

is made over the period of the contract. Furthermore, rather than often being a custom contract arranged 

between the buyer and the seller, futures are more homogeneous and are exclusively traded on exchanges 

(DOE, 2002). Electricity price swaps are another form of electricity derivative that encompass a 

predetermined quantity of power which is linked to the spot price either at the generator’s location or the 

purchaser’s location, making it possible to secure a fixed price at a separate location to the point of delivery 

specified under a futures contract. If a consumer cannot predict how much electricity they will use, option 

contracts provide the right, without an obligation, to acquire a specified quantity of electricity at a certain 

price in the future. In the electricity industry, spark spreads are options created to protect against disparities 

between the price of electricity and the cost of generating it. 

Whilst these products are all used to some extent, several authors have noted the existence of barriers 

to their wider use. Weron (2000), for example, argues that the electricity market is unique because electricity 

cannot be stored and therefore derivatives cannot be priced using the usual arbitrage models; the cost of carry 

(insurance, storage and wastage costs) for electricity is effectively infinite so the formula for pricing a forward 

contract
2
 breaks down. 

 These findings suggest that the use of derivatives to diversify risk exposures remains challenging in 

the absence of a better understanding of industry specifics and more customised instruments. A few products 

that are not based on the underlying electricity spot price have already materialised in the form of weather 

derivatives, emissions permits and insurance contracts so it will be interesting to see how they develop. 

 

                                                           

2. 2
K=U(1+rT)+C where K is the fixed price of electricity, U is the current price of electricity, r is the risk-free interest 

rate, T is the time period of the contract and C is the cost of carry (insurance, storage, obsolescence and spoilage). 
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2.3 Mean-Variance Portfolio (MVP) Theory 

 

Markowitz (1952) first conceived Mean-Variance Portfolio theory. He refuted the claim that investors should 

maximise the value of future returns, given a particular discount rate, on the basis that without market 

imperfections this would imply that there is no diversified portfolio that is preferable to all non-diversified 

portfolios. He also challenged the assertion that due to the law of large numbers, which insures that the true 

yield of the portfolio and the expected yield will be broadly the same (Williams, 1938), there exists a rule 

suggesting investors should diversify their holdings, while maximising their expected return, by holding those 

securities that yield the maximum expected return. Markowitz contends that when applied to a portfolio of 

securities, the assumption that the law of large numbers holds true is unacceptable as the intercorrelation 

between security returns is high, meaning diversification can only partially eradicate variance. Therefore, a 

portfolio that maximises return is not automatically the portfolio that minimises the variance and it becomes 

possible for an investor to achieve higher expected returns by accepting variance or to forego variance by 

targeting lower expected returns. The result is that there exists an ‘efficient frontier’ along which any 

combination of assets maximises returns for a given level of risk. 

 Whilst this theory was originally intended for financial securities, there have been several 

applications to power generation assets to ascertain an optimal portfolio for a firm or a country. The 

assumptions required to perform this kind of analysis are discussed in the methodology section of this paper. 

The application of this theory to the power sector implies it is imperative that we assess alternative portfolios 

of assets as opposed to alternative individual assets to determine the value of electricity generation assets. 

Bar-Lev and Katz (1976) produced one of the first studies when they applied MVP on a region-by-region 

basis to the US electricity industry. Comparing their results to observations within the sector, they found that 

whilst utilities seemed to have efficiently diversified their portfolios, the combinations of assets they held was 

characterised by high rates of risk and return. They attributed this to the ‘cost-plus’ regulation at the time. 

Under such a regime, utilities cannot vary their prices without consent from the regulatory commission. The 

authors argue that a utility will fare better if it can prove that it bought a cheap combination of fuels, as the 

regulator pays little attention to risk and instead emphasises the return, leading a usually conservative sector 

of the economy to conduct risky behavior. 

 Awerbuch and Berger (2003) assess the usefulness of MVP theory for developing efficient frontiers 

of generation assets in the European Union to meet both diversification and energy security objectives. 

Building on Awerbuch’s work, different models are presented that incorporate the risk associated with fuel, 

construction periods and operation and maintenance costs. The reason this technological distinction improves 

the analysis is that it allows different cost and risk estimates to be produced for existing versus new 

technologies. The common factor in these models is that technologies with fixed costs, e.g. renewables, are 

necessary for an efficient portfolio. We explore this to establish whether the same is true of the UK. 

Furthermore, Awerbuch (2006) reiterates the importance of renewables using case studies from the EU, the 
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US and Mexico to illustrate that adding more costly technologies can lower the generating cost of the 

portfolio if one evaluates different resource portfolios instead of individual resources. DeLaquil et al. (2005) 

take a similar approach and focus on the commonwealth of Virginia to assess the benefits of different 

portfolios under the Renewable Portfolio Standard legislation that was being considered at the time. Their 

results mirror those of previous studies, showing that portfolios containing renewables “significantly reduce 

electricity cost-risk while increasing cost only slightly”.  

 Since investors do not evaluate investment opportunities in terms of production costs, but in terms of 

risk and return, it is not appropriate to use a cost-based model such as the one used by Awerbuch and Berger 

(2003) in liberalised electricity markets (Roques et al., 2008). Whereas these studies estimate historic cost 

risk per technology using historic fuel cost variations, the introduction of electricity price risk and, in the EU, 

CO2 price risk obscures the optimal portfolio calculation. If the electricity price is regulated and set at the 

levelised cost of production, the returns and intercorrelation of returns between different technologies can be 

derived directly from the magnitude and intercorrelation of the fuel costs used by the different types of 

electricity generator. In a liberalised environment where prices are determined by supply and demand the 

price risks need to be accounted for. This consideration will be factored into the approach taken in the 

following section. 

 In summary, a defining feature of the power market is the lack of risk mitigation tools. DECC 

(2013b) explains how electricity market reform has incorporated a type of forward contract through a Feed in 

Tariff with Contracts-for-Difference, allowing generators to limit the volatility of their earnings. Ausubel and 

Cramton (2010) and Anderson and Hu (2008) argue that forward contracts are beneficial as they encourage 

investment in new resources, mitigate the risk of high prices during shortages and eliminate the incentive for 

market participants to distort bids. Whilst other derivatives exist, such as futures contracts, Weron (2000) 

points out that complexity limits their use. Therefore, the extent to which they constitute an alternative for 

diversification is questionable. Awerbuch (2006) showed that adding more expensive technologies can lower 

the cost of the overall portfolio if one considers entire resource portfolios instead of individual resources. 

Nevertheless, a different approach is required since cost-plus regulation is no longer in use. Liberalisation 

makes it necessary to account for electricity and CO2 price uncertainty and assess portfolios in terms of risk 

and return rather than production costs. Hence, a study of this type is informative. 

3.  MVP THEORY AND OPTIMAL PORTFOLIO IN A LIBERALISED POWER SECTOR 

 

Cost-based studies typically use estimates of the levelised cost of generating electricity, such as those 

presented by the EIA (2013), which corresponds to the cost per kilowatt hour of constructing and running a 

power plant for an assumed number of years. Hence, an examination of prior fuel cost fluctuations facilitates 

a simple estimation of the cost risk associated with each technology, and one needs only a time series of 
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average annual fuel prices and their cross-correlation (Roques et al., 2008). With this approach the returns and 

the cross-correlation between returns from different technologies can be deduced from the fuel costs and their 

respective correlations. 

However, introducing the price risk associated with electricity and CO2 permits calls for a more 

sophisticated approach and for using the correlation between electricity generation fuels (gas, coal and 

uranium) and CO2 prices. The correlation between investment returns for different technologies cannot be 

identified directly, meaning an extra step is required in the form of a Monte Carlo simulation which generates 

an appropriate proxy and allows us to model the distribution of returns. 

 Whilst different measures of return can be used, we choose the expected Net Present Value per 

megawatt of capacity. Similarly, we define the risk of an investment as the standard deviation of the expected 

NPV that it generates. Finally, the correlation between returns of different technologies is defined as the 

correlation between their NPVs. 

 Following Roques et al. (2008) we consider three conventional technologies: gas, coal and nuclear 

(more specifically Combined Cycle Gas Turbine (CCGT), Integrated Gasification Combined Cycle (IGCC) 

and Advanced Gas-Cooled reactor (AGC) technology). However, we extend their research by considering the 

addition of renewable energy to the generation mix. Introducing multiple renewable technologies is outside 

the scope of this paper. Instead, we adopt a similar approach to Awerbuch and Berger (2003) by using wind 

technology as a proxy for a varied set of renewable sources. This is justifiable given that it is the only 

renewable option mature enough to significantly contribute to the resource mix in the short term (Grubb et al., 

2008).  

The optimal technology mix of is obtained using the following steps: 

● A discounted cash flow valuation model is built for each technology 

● The standard deviation and cross-correlations of electricity prices, carbon prices and fuel prices are 

obtained from historical time series data 

● A Monte Carlo simulation is used to estimate the distribution of returns from investments in each 

technology. Electricity, CO2 and fuel prices are assumed to be normally distributed random variables 

and their respective standard deviations and cross-correlations are calibrated using the historical time 

series data 

● A regression of 5,000 simulations of the returns from each technology is run to calculate their 

correlation coefficients 

● MVP theory is applied to determine the risks and returns of different generation portfolios. The 

correlation coefficients are provided by the previous step. 
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3.1 Model Inputs 

 

The model used for this study uses the most accurate parameters available. For example, the average load 

factors were provided by the DECC (2013a) and the construction period and overnight costs
3
 have been 

extracted from a RAE (2009) study. Furthermore, fixed and variable operating cost data were made available 

by the DECC (2010). The cost of emitting CO2 into the atmosphere is represented by the price of purchasing a 

EUA. The financing parameters are somewhat simplified; the marginal tax rate in the UK is 30% and we 

assume the weighted average cost of capital (WACC) to be 8%
4
. The plant life durations of 20 years for wind, 

30 years for CCGT and coal and 40 years for nuclear are consistent with the DECC (2010) report mentioned 

above. Finally, we assume that all plants begin operation in 2009. The parameters used in the discounted cash 

flow for each technology relate to the years 2009-2013. Table 1 summarizes the model inputs. 

In order to identify the optimal mix of technologies we first determine the distribution of NPVs of an 

investment in each technology. The NPV is derived from the ‘free cash flow’ - that which is left over after all 

projects with a positive return have been funded (Lehn and Poulsen, 1989) - which in turn depends on cost 

and revenue streams. For all of the technologies considered here, revenues stem largely from the available 

electricity price and we assume the operating costs to be constant, and then adjusting them in line with 

inflation.  

Whilst costs and revenues cannot be estimated with precision, uncertainties have been limited to 

electricity prices, fuel costs and CO2 allowance prices. We assume that fuel and CO2 allowances are traded on 

spot markets or via forward contracts linked to the spot market price and are therefore subject to volatility. 

These uncertain variables are modelled as normally distributed random variables. It must be noted that this is 

a conjecture as they are unlikely to exhibit normal distributions, however in order to apply the MVP theory it 

is a necessary step (Copeland and Weston, 1988).  

In order to simulate the NPV, or returns from each technology, we require data on electricity prices, 

fuel costs and CO2 allowances. From this we derive the mean values, the standard deviations and the cross-

correlations. Time series’ of daily one-month forward gas, coal and base load electricity prices, as well as 

daily European Union allowance prices were examined. Average monthly uranium prices were provided by 

UxC and include enrichment and conversion costs. There are no available data on fabrication costs, however 

the WNA (2008) estimates their proportion of total fuel costs to be 13% so this assumption is used to arrive at 

a predicted cost. As uranium is replaced every 18-36 months, we assume that a fuel cost is incurred every 

other year.  

 

 

                                                           
3
 ‘Overnight cost’ is the capital cost of constructing a power plant, exclusive of financing costs (DECC, 2010). In this 

instance, the overnight cost for a nuclear plant includes a provision for decommissioning costs. 
4
 This is consistent with information provided by the Power, Utilities & Renewable Energy investment banking advisory 

team at Citigroup. 



10 

 

 

Parameters Unit CCGT Coal Nuclear Wind 

Technical Parameters 

Generating Capacity MW 1000 

Load Factor % 30 57 71 27 

Carbon Intensity kgC / mmBTU 116 260 0 0 

Plant Life years 30 30 40 24 

Cost Parameters 

Overnight Cost £/kW 718 1964 2919 1520 

Fuel Costs £ / mmBTU See parameters 

Fixed Operating Costs £ / kW/ year 26 51.5 61.5 34.2 

Variable Operating 

Costs 
£ / MWh / year 2.2 2.5 1.8 0 

Financing Parameters 

Projected Inflation Rate % 2.2 

Discount rate % 8 

Corporate tax rate % 30 

Regulatory Parameters 

Carbon tax £ / tC See parameters 

Revenues 

Electricity Price £ / MWh See parameters 

Table 1: DCF Model Inputs 

Source: DECC (2013a), RAE (2009), DECC (2010) 

 

The period considered is the past 5 years, consistent with Roques et al. (2008) and Bonacina (2013), 

as this analysis is focused on assessing up-to-date diversification incentives and a longer time period would 

necessitate alterations to reflect changes in the fuel mix. The correlation coefficients between electricity, fuel 

and CO2 prices are presented in Table 2. The parameters used in the Monte Carlo simulation are presented in 

Table 3. 
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Correlation  

Coefficient 

Base 

Electricity 

Price 

Gas Price 
Coal 

Price 

Uraniu

m Price 

CO2 

Price 

Base Electricity Price 1.00     

Gas Price 0.91 1.00    

Coal Price 0.58 0.48 1.00   

Uranium Price -0.43 -0.40 0.42 1.00  

CO2 Price -0.41 -0.65 0.18 0.68 1.00 

Table 2: Price correlation coefficients, 2009-2013 

Source: Authors’ own calculations 

 

 

Normal Distribution 

Parameters 
Technology Mean 

Standard 

Deviation 

Cost Parameters 

Fuel cost (£/mmBTU) 

Nuclear 6.77 1.12 

CCGT 6.71 1.45 

Coal 1.81 0.39 

Wind 0.00 0.00 

Carbon tax (£/tC) All 10.51 4.13 

Revenue 

Electricity price 

(£/MWh) 
All 50.19 6.55 

 

Table 3: Risk Distribution Inputs – Monte Carlo simulation 

Source: Authors’ own calculations 

 

Normal distributions are used to model fuel costs, carbon prices and electricity prices using these 

distribution parameters and coefficients of correlation. The mean values of the distributions are based on 2013 

prices. The following section will explore the fluctuations in electricity prices, fuel prices and CO2 prices. 

This should provide a context underlying the results generated by this model, as the correlation between these 

different variables is important to accurately assess diversification incentives. 
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3.2 Electricity, Fuel and CO2 Costs in the UK 

 

Electricity, fuel and CO2 price data were retrieved from Bloomberg
5
 whilst UxC provided uranium price data. 

All fuel costs are converted into pounds per megawatt-hour. Figure 1 shows daily month-ahead electricity 

prices, gas prices and coal prices, daily European Union CO2 allowance prices and average monthly uranium 

prices for 2009-2013. Electricity and gas prices fell sharply at the start of 2009, whilst CO2, uranium and coal 

prices fell to a lesser extent due to the recession: Q2 2008 was the first quarter in which the UK economy 

contracted, whilst in Q4 2008 and Q1 2009 growth declined at the fastest rate; 2.08 and 2.3% respectively 

(Bank of England, 2010). Depressed economic activity and low stock market contributed to lower demand for 

electricity, fuel and CO2. Later electricity and fuel prices began to recover along with economic activity. CO2 

prices fell into another downward trend towards the latter half of 2011. This was partly due to concerns about 

the Greek economy and a vote to allow the European Commission to distribute 300 million additional permits 

to the European Investment Bank (EIB), to be sold into the market. After 2011, the carbon market remained 

depressed due to oversupply of allowances. The reason that uranium prices peaked in 2011 and continued to 

fall was the Fukushima disaster in March 2011 and doubts over the safety of nuclear reactors. 

 

 
 

Figure 1: Daily one month forward electricity and fuel prices and EUA CO2 prices (2009-2013) 

Source: Bloomberg 

 

                                                           
5
 The Bloomberg tickers are as follows: Electricity – ELUB1MON, Gas – NBPG1MON, Coal – API21MON, CO2 – 

EEXX02EA / EEXX03EA. 
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A strong correlation between electricity and gas prices is also evident from the chart. This is 

confirmed by Figures 2 and 3, which present linear regressions of gas and coal prices against electricity 

prices. Uranium price data were only available on a monthly basis, rather than daily, meaning no such 

comparison could be made. 

 

 

Figure 2: Correlation between daily forward electricity and gas prices (2009-2013) 

 

 

Figure 3: Correlation between daily forward electricity and coal prices (2009-2013) 
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Whilst the correlation coefficients over the entire 5-year period are displayed in Table 2, Table 4 displays the 

annual correlation coefficients between electricity prices with gas, coal, uranium and CO2 prices. 

 

Correlation with UK base load 

electricity prices 
2009 2010 2011 2012 2013 

One-month forward gas price 0.94 0.98 0.82 0.98 0.93 

One-month forward coal price 0.84 0.96 0.55 -0.27 0.11 

Monthly uranium price 0.50 0.77 -0.06 -0.79 -0.27 

CO2 Price -0.46 0.57 0.38 0.03 0.25 

Table 4: Correlation between base load electricity price and gas, coal, uranium and  

CO2 prices (2009-2013) 

Source: Authors’ own calculations 

 

The correlation between electricity and gas prices has been stable across the 5 years, however all 

other sets of correlations experience significant variation, fluctuating between positive and negative 

relationships. 

 The relationship between electricity and fuel prices is complex. The EIA (2014) notes that natural 

gas has a strong influence on the price of power but that decomposing this link into different explanatory 

factors is challenging. Nevertheless, the report suggests that the share of power generation coming from gas 

plants, the cost of transmission and distribution systems and the proportion of power purchased directly from 

wholesale markets are all relevant. Roques et al. (2008) point out that the fuel used by the marginal price-

setting plant can also affect the correlation between fuel and electricity prices. This is consistent with the data 

used in this study since gas is often the marginal price setting plant (DECC, 2012a) and gas prices have the 

highest correlation coefficient with electricity prices. 

 The correlation between coal and electricity prices is strong throughout the period 2009-2011 but 

falls sharply in 2012 and 2013. Figure 4 shows the correlation between these two variables. 

After peaking in the last quarter of 2011, both electricity prices and coal prices begin to decline. 

Unlike electricity prices, which regain an upward trajectory in the 3
rd

 quarter of 2012, coal prices continue to 

fall throughout 2013. The EIA (2013) suggests that this is due to the relative competitiveness of US gas-fired 

production following the emergence of the shale revolution. Gas prices in the US dropped so low in 2012 that 

gas plants became more economical than coal plants, meaning the balance of power generation shifted 

towards gas technologies. This also had an impact in the UK because the excess coal no longer consumed by 

the US was exported and the abundance of coal depressed global prices. 
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Figure 4: Time series comparison, coal and electricity prices (2009 – 2013) 

Source: Bloomberg 

4.  RESULTS AND ANALYSIS 

4.1 Simulation Results 

 

Having examined the underlying relationships between the different variables in the model, this section 

presents the results obtained from the Monte Carlo simulation. Investment returns were simulated for 

investments in the different technologies under three scenarios:  

1. A hypothetical scenario whereby electricity, fuel and CO2 prices are uncertain but completely 

independent of one another.  

2. A scenario appropriate for the structure of today’s electricity market whereby the price of electricity, 

fuel and CO2 are uncertain and the correlation coefficients are equal to those displayed in Table 2. 

3. A scenario whereby electricity markets are liberalised and the correlation coefficients between 

electricity, fuel and CO2 are set equal to those in Table 2. Real electricity prices are held constant at 

the 2009 level to simulate the existence of a power purchase agreement established at the beginning 

of the plant’s life, covering the entire life of the plant.
6
 

 

Figures 5-7 show the distribution of returns from every fuel technology under each scenario. Note that we 

assume that plants cannot be mothballed or de-mothballed when the expected NPV falls below zero. 

                                                           
6
 The assumption that the power purchase agreement covers the entire life of the plant is to simplify the analysis. In reality 

the term may vary (Thumann and Woodroof, 2009). 
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Figure 5: Distribution of asset returns - uncorrelated prices 

 

 

Figure 6: Distribution of asset returns - correlated prices 

 

 

Figure 7: Distribution of asset returns – PPAs 
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Both the nuclear, and to a lesser extent the coal plant seem relatively unaffected by the liberalisation 

of electricity markets as they have similar expected NPVs under the two scenarios. Table 5 displays the 

distribution statistics in more detail.  

 

Scenario 
Independent electricity, fuel and 

CO2 prices (Scenario 1) 

Correlated fuel, electricity and 

CO2 prices (Scenario 2) 

Statistics 
CCG

T 
Coal Nuclear 

Win

d 

CCG

T 
Coal Nuclear 

Win

d 

Mean -255 -1099 -1408 503 -223 -1090 -1413 503 

Standard deviation 355 521 514 171 179 469 549 171 

Minimum -1815 -3270 -3697 -145 -1088 -3361 -3911 -145 

Maximum 1031 676 342 1052 384 527 469 1052 

Range 2847 4396 4039 1197 1471 3889 4381 1197 

Table 5: Returns distribution statistics by technology, £m 

Source: Authors’ own calculations 

 

Comparing the distributions of the four categories of technology reveals larger discrepancies. Whilst 

the spread of coal and nuclear NPVs does not vary significantly between Scenarios 1 and 2, and they are in 

both cases the most risky assets, the spread of CCGT NPVs is narrower, indicating that gas assets are less 

risky in Scenario 2. This is intuitive since the correlation between electricity and gas prices is very high, 

meaning the technology is partially self-hedged and higher fuel prices are approximately matched by higher 

electricity prices. The distribution of the NPVs for wind remains unchanged between the scenarios since a 

wind generator does not incur fuel or CO2 costs. The introduction of PPAs has the greatest influence on coal 

returns, dramatically reducing the spread. Wind is not included in this instance since fixed electricity prices 

eliminate uncertainty from the model. 

 

4.2 MVP theory application 

 

MVP theory states that a rational investor will seek to achieve the maximum possible return without 

exceeding her risk tolerance (Maginn et al., 2007). The efficient frontier is a graphical representation of all 

possible efficient portfolios and is one section of the ‘minimum-variance frontier’ (MVF), which plots all 

portfolios that minimise the variance of each given level of return. The MVF has a turning point that is known 

as the ‘global minimum variance’ (GMV), the left-most point of the curve, representing the portfolio with the 

lowest variance out of every minimum-variance portfolio as demonstrated in Figure 8. The efficient frontier 

consists of the section of the MVF that is above the GMV. 
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Figure 8: The Efficient Frontier 

Source: Maginn et al. (2007) 

 

MVP theory provides a framework to identify a range of efficient portfolios from which investors 

can choose, based on their risk preferences. In the case of a portfolio of two assets the following formulae can 

be used to calculate the risks and returns: 

𝐸(𝑅𝑃) = 𝑋𝐴𝐸(𝑅𝐴) + 𝑋𝐵𝐸(𝑅𝐵) 

That is, the expected return of portfolio P is the weighted average of the expected returns on the two 

assets, A and B, when they are held in proportions 𝑋𝑋 and 𝑋𝑋 respectively. The standard deviation of the 

portfolio can be written as: 

𝜎𝑃 = √𝑋𝐴
2𝜎𝐴

2 + 𝑋𝐵
2𝜎𝐵

2 + 2𝑋𝐴𝑋𝐵𝜎𝐴𝜎𝐵𝜎𝐴𝐵 

r𝜎𝐴𝐵epresents the correlation between the return from asset A and that from asset B. 

In the case of a portfolio that consists of more than two assets the equivalent equation is as follows: 

𝐸(𝑅𝑃) = ∑𝑋𝑖𝐸(𝑅𝑖)

𝑁

𝑖=1

 

In other words the expected return of a portfolio P that consists of N assets is equal to the weighted 

average of the expected returns of the N assets when they are held in proportion 𝑋𝑖.The standard deviation of 

the portfolio is given by the following equation: 

𝜎𝑃 = √∑ 𝑋𝑖
2𝜎𝑖

2 + ∑ ∑ 𝑋𝑖𝑋𝑗𝜌𝑖𝑗𝜎𝑖𝜎𝑗
𝑁
𝑗=1
𝑖≠𝑗

𝑁
𝑖=1

𝑁
𝑖=1  , 

Where 𝜌𝑖𝑗  corresponds to the correlation between the returns of asset i and those of asset j.  
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4.3 Net present value correlations 

 

For the application of MVP theory we require the return and risk of an investment in each technology. In this 

paper we use the expected net present value and the standard deviation of the net present value respectively. 

We also require the correlation between the returns of the different assets. These are displayed in Table 6. The 

correlation between the returns on different technologies is very low for every combination except CCGT and 

coal plants. This initial observation suggests that the addition of coal to a portfolio of CCGT assets will have 

an insignificant risk-reduction effect, whereas the addition of any of the other technologies to the same 

portfolio of gas assets should have a more noticeable impact.  

 

Correlation of 

returns 

CCGT/ 

Coal 

CCGT/ 

Nuclear 

CCGT/ 

Wind 

Coal/ 

Nuclear 

Coal/ 

Wind 

Nuclear/ 

Wind 

Uncorrelated 

elec/fuel/CO2 prices 
0.97 0.02 0.006 0.014 0.008 0.003 

Correlated 

elec/fuel/CO2 prices 
0.99 0.02 0.006 0.017 0.007 0.003 

Table 6: Correlation coefficients between returns of different technologies 

Source: Authors’ own calculations 

 

4.4 Optimal portfolio: two assets 

 

Since CCGT represents the majority of modern generation technology built in the UK (Wright, 2006) we have 

analysed different combinations of two-asset portfolios on the basis that they always include CCGT 

technology. Figure 9 displays the efficient frontiers for portfolios of CCGT and coal assets with varying 

degrees of hypothetical correlation. When the correlation coefficient is greater than 0.2 an efficient frontier 

does not exist because the returns of coal assets are both lower and more variable than those of CCGT assets. 

Therefore, if the returns on CCGT plants are strongly correlated with returns on coal plants, it would make 

little sense to complement a pure CCGT portfolio with riskier, lower return assets. If the correlation 

coefficient of the returns is less than 0.2 it is possible to reduce overall portfolio risk by adding coal assets. A 

correlation coefficient of -1 corresponds to a scenario in which returns move in perfectly opposite directions 

so that the assets achieve their highest and lowest level of returns under directly opposite market conditions. 

Hence, the ‘portfolio effect’ becomes gradually larger as we tend towards this point, at which it is possible to 

reduce the risk of the portfolio to zero. This portfolio would yield an expected NPV of around -£450m. The 

observed correlation, however, is 0.99, meaning we cannot achieve risk-reduction through diversification, and 

that no efficient frontier exists. Similar to Figure 9, Figure 10 illustrates the efficient frontiers for a 

combination of CCGT and nuclear using a range of hypothetical correlation coefficients between returns. 
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100% 
CCGT 

100%  
CCGT 

 

Figure 9: Efficient frontiers for portfolios of CCGT and coal –  

different hypothetical correlations, £m 

Again, no efficient frontier exists beyond a correlation coefficient of 0.2. Additionally, the zero-risk portfolio 

has a slightly lower NPV of around -£500m, so if an investor must choose between the two technology 

combinations, assuming the correlation of returns for both is equal to -1, it is preferable to choose the former. 

This view changes when the observed correlation coefficient of 0.02 is recognised. 

Figure 11 displays the efficient frontier of CCGT-nuclear portfolios. If an investor’s risk tolerance is not high 

enough to warrant investing in a pure CCGT portfolio, she can reduce her risk by introducing nuclear assets.  

 

 

Figure 10: Efficient frontiers for portfolios of CCGT and nuclear –  

different hypothetical correlations, £m 
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100% 
CCGT 

100% 
Wind 

 

 

Figure 11: Efficient frontier for portfolios of CCGT and Nuclear, £m 

 

 

 

Figure 12: Efficient frontiers for portfolios of CCGT and wind –  

different hypothetical correlations, £m 

 

This combination provides an interesting result. Firstly, for strong correlations, adding CCGT to a portfolio of 

wind assets does not have a substantial risk reducing portfolio effect. In fact, for a correlation greater than 0.8 

an efficient frontier does not exist. This makes sense given that CCGT returns are lower than those of wind 

assets despite being more risky. As returns move towards a perfectly negatively correlated state, the risk 
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100% 
Wind 

reduction becomes larger relative to the reduction in returns. Figure 13 shows the efficient frontier for these 

assets given the observed return correlation of 0.006. 

 

 

Figure 13: Efficient frontier for portfolios of CCGT and Wind, £m 

 

Due to the lower variance of CCGT returns, an investor who has a lower risk tolerance than that required to 

invest in a pure wind portfolio can complement wind assets with gas generation. The GMV portfolio yields a 

NPV of around £150m, significantly higher than for any other two-asset combination. Hence, if an investor 

were restricted to investing in only two types of generation assets she would make the most efficient use of 

her capital by investing in this combination. The following section examines three-asset portfolios in order to 

assess whether further diversification offers any advantages. 

 

4.5 Optimal Portfolio: Three assets 

 

Figure 14 displays an efficient frontier for combinations of CCGT, coal and nuclear plants given the observed 

correlation coefficients detailed in Table 6. For comparative purposes it is compared to a CCGT-nuclear 

portfolio since this offers a more attractive investment opportunity than a combination of CCGT-coal 

portfolio as noted in section 4.4.  

As the high correlation between coal and gas returns means the inclusion of both technologies in a portfolio is 

inefficient, it is not surprising that graphs A and B are the same. There is no three-asset portfolio of gas, coal 

and nuclear assets that offers a more efficient outcome than portfolios of CCGT and nuclear alone. This is 

consistent with observations of the power industry today as the high carbon intensity of coal plants is 

attracting criticism from environmentalists and politicians alike, and means that coal plants are more sensitive 

to carbon prices than other technologies. For instance, the assumptions applied in this study are based on data 
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provided by the DECC (2013a), which suggest that coal plants emit 886 tonnes of CO2 per GWh of electricity 

compared to the 355 tonnes per GWh emitted by gas plants. Hence, the cost of allowances to cover carbon 

emissions is higher for coal generation. 

 

  

a) CCGT, Coal and Nuclear 

 

 

 

b) CCGT and nuclear 

Figure 14: Efficient frontier for portfolios of CCGT, Coal and Nuclear –  

comparison to portfolios of CCGT and Nuclear, £m 
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Figure 15 shows the efficient frontier of CCGT, nuclear and wind assets. For comparative purposes, 

the efficient frontiers of both CCGT-coal-nuclear portfolios and CCGT-wind portfolios have been provided. 

 

 

a) CCGT, Wind and Nuclear 

 

 

b) CCGT, Coal, Nuclear 
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c) CCGT and Wind 

Figure 15: Efficient frontier for portfolios of CCGT, Nuclear and Wind, £m 

 

Replacing coal with wind assets has a dramatic effect. It is possible to construct a CCGT-wind-nuclear 

portfolio whose GMV portfolio is characterised by a NPV standard deviation of c. £122m, compared to over 

£170m for the CCGT-coal-nuclear combination. Furthermore, this portfolio yields an expected NPV of £80m 

versus -£330m.  

Whilst it seems unlikely that a portfolio of all four generation technologies will produce any further 

benefits to the CCGT-wind-nuclear, or the CCGT-wind portfolio, the following section examines the efficient 

frontier of such portfolios.  

 

4.6 Optimal portfolio: four assets 

 

Figure 16 displays this four-asset efficient frontier, comparing it to the two most attractive asset combinations 

previously identified. 

Graphs A and B are the similar, signaling that coal neither reduces risk nor enhances returns relative 

to a three-asset portfolio. Whilst coal plants have higher expected returns and a lower variance of expected 

return than nuclear plants, we have seen how the strong correlation between coal and gas returns means 

combining the two assets in the same portfolio makes little sense. Therefore it is not surprising that coal does 

not form part of an optimal portfolio. 
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a) CCGT, Coal, Nuclear and Wind 

 

 

 

b) CCGT, Wind, Nuclear 
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c) CCGT and Wind 

Figure 16: Efficient frontier for portfolios of CCGT, Coal, Nuclear and Wind, £m 

 

 

4.7 Optimal portfolios with Power Purchase Agreements 

 

This analysis has so far focused on liberalised electricity markets with uncertain electricity, fuel and CO2 

prices. A power producer, however, could benefit from secure future revenues. For example, since investing 

in power infrastructure is by nature long-term, capital spending decisions are extremely important and it is 

helpful to be able to predict profits in advance. For this reason, power producers sometimes seek to lock in 

guaranteed prices for their power by signing long-term power purchase agreements (PPAs). These agreements 

consist of contracts between two parties that specify a particular quantity of electricity to be supplied at a 

specified price over a certain time period. Whilst many PPAs were between state utilities and private power 

producers, in liberalised electricity markets they often occur between two private parties. 

This section examines the impact of agreeing a constant electricity price on the optimal portfolio, taking first 

a three-asset portfolio excluding wind. To simplify the analysis we assume that a PPA is agreed upon the start 

of operation and covers the entire life of the plant. We also assume that the agreed upon rate is in line with 

electricity prices at the start of 2009. Figure 17 shows the efficient frontier of CCGT-coal-nuclear portfolios 

under this scenario, with the CCGT-nuclear and CCGT-coal-nuclear frontiers from Figure 14 displayed for 

comparison. 

Recalling our observations from Figure 14, the frontier of a CCGT-nuclear asset combination is the same as 

that of a CCGT-coal-nuclear combination. Furthermore, we can see that the introduction of a power purchase 

agreement reduces the returns of a three-asset portfolio, with the GMV portfolio achieving an expected NPV 
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of c. -£800m. The reason for this is that our analysis assumes the plant begins operation in 2009. Figure 4 

shows that the electricity price was significantly depressed at the time of signing the contract, highlighting a 

potential danger in the negotiation of a PPA: unpredictable electricity prices mean that producers run the risk 

of missing out on any future upside to the power price. The standard deviation of this PPA-based portfolio is 

admittedly smaller, however an investor can achieve a marginally higher standard deviation of £170-£171m 

with a significantly higher expected NPV of around -£330m by investing in a CCGT-nuclear portfolio that is 

not characterised by power purchase agreements. 

Introducing wind assets under the assumption of PPAs has an interesting conclusion. Table 7 displays the 

expected NPV and its standard deviation for each technology. Since wind plants do not have either a CO2 or a 

fuel cost, a PPA eliminates the only uncertain variable, meaning the risk of investing in a wind plant falls to 

zero. Of course this is a simplification since we assumed that all other variables in the discounted cash flow 

model are certain. In order to provide further clarity on the impact of PPAs for wind assets it would be 

necessary to make alterations to variables such as the load factor, operating and maintenance costs and 

ancillary revenues. In this simplified scenario, it is possible to reduce the standard deviation of the expected 

NPV to zero by holding only wind assets that have secured long-term PPAs. The expected NPV of this 

portfolio would be £276mn. Since the equivalent figures for each of the remaining three technologies are 

lower, and since the standard deviations are greater than zero, there is no point creating a multi-asset portfolio 

and an investor should allocate all of her capital to the wind asset. 

 

 

a) CCGT, Coal and Nuclear – PPA 
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b) CCGT, Coal and Nuclear – No PPA 

 

 

 

c) CCGT and Nuclear – No PPA 

Figure 17: Efficient frontier for portfolios of CCGT, Coal and Nuclear –  

long-term PPA contract, £m 
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Technology Mean Std. Deviation 

CCGT -722.89  174.45  

Coal -1721.51  180.92  

Nuclear -1539.38  549.04  

Wind 275.86  0 

 

Table 7: Mean and standard deviation of expected NPV with PPAs 

Source: Authors’ own calculations 

 

 The simplification we have made is important, and if other variables were treated as uncertain then 

the revenues of a wind plant would not be risk-free. The analysis does, however, highlight the significant 

advantage of investing in power generation that is not affected by fuel prices. Whilst it would be interesting to 

include uncertain load factors for wind generation, we show that even with an assumed load factor of 27%, 

compared to 57% for coal, 71% for nuclear and 30% for gas generation, the returns on wind assets are 

relatively high. 

It would also be useful to extend the analysis to cover the introduction of gas and coal procurement 

contracts for hedging fuel input risks, and the impact of contracts with different levels of flexibility. 

Flexibility is determined by the precise technology installed in a power plant as well as the terms and 

conditions of the contract and exposure to fuel prices depends on (1) the correlation between generation costs 

and fossil fuel prices, (2) the variance in fuel prices, (3) the risk allocation between investors in the power 

plant and other parties through long-term contracts, and (4) the investor’s ability to mitigate the risk to which 

she is exposed (Roques, 2007).  

In a separate study, Charalampous and Madlener (2016) use a multivariate GARCH model to 

identify the optimum forward contract for hedging power output and fuel input price risk simultaneously, 

concluding that spot electricity and coal prices should be hedged with long-term contracts, while natural gas 

prices are more effectively hedged with short-term futures. In light of this, it would seem plausible that 

procurement contracts of different lengths may be required for coal and gas generation. 

It should also be noted that the determinants of the average load factor in a given year for a particular 

type of electricity generation are complex. The merit order, a ranking of energy sources in order of their short 

run marginal cost, changes over time. As the sole component of marginal cost for a renewable plant is the 

operating cost, price per unit of electricity generated is lower than that of conventional plants. As a result, 

transmission companies buy from renewable plants before turning to fossil fuel plants. Importantly, therefore, 

conventional plants are also susceptible to variations in the load factor, which depends on the load factor of 

the technologies that precede them in the merit order.  
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5.  CONCLUSIONS AND POLICY IMPLICATIONS 

 

This paper studies the extent to which fuel mix diversification can mitigate the risks associated with uncertain 

electricity, fuel and CO2 prices and identify the incentives to invest in generation technology mixes. This has 

two important implications: firstly, it allows us to revisit current allocations of capital from private investors 

and ascertain whether they make choices consistent with Mean-Variance Portfolio theory. In other words, it 

allows us to identify whether investors are making efficient long-term diversification choices. Secondly, in 

the context of energy security, the government has an interest in directing investment towards technologies 

that ensure a secure future. By analysing the risks associated with different combinations of assets we can 

assess whether this objective aligns with the private objectives of investors. Furthermore, if incentives are not 

aligned, it may be possible to improve government policy.  

 The results show that when the correlation between electricity, fuel and CO2 prices is taken into 

account, private investors would achieve the most efficient outcome by investing in a combination of CCGT, 

wind and nuclear generation assets. Table 8 summarises the composition of power generation portfolios for 

each of the ‘Big 6’ utility companies in the UK.  

Most of these companies source a significant proportion of energy from coal and an insignificant 

proportion from renewable technologies. We have even seen large utilities disposing of renewable energy 

portfolios since the financial crisis. When demand for power dropped, many of these firms were left over-

invested and large proportions of installed capacity remained out of use. The consequence was that they 

streamlined their businesses by offloading ‘non-core’ assets, which included renewable technologies. Also, 

only EDF and Centrica have made the decision to invest in nuclear assets. 

 

UK Utilities 
Parent 

Company 

Installed Capacity (MW) 

Gas Coal Nuclear Renewable Total 

British Gas Centrica 3,400 - 1,800 540 5,740 

EDF Energy EDF 1,332 4,000 8,900 599 14,831 

E.ON UK E.ON 3,747 2,000 - 518 6,265 

npower RWE 1,998 600 - - 2,598 

Scottish 

Power 
Iberdrola 1,967 2,304 - 2,189 6,460 

SSE SSE Group 5,055 2,000 - 3,326 10,381 

Table 8: Installed capacity breakdown of ‘Big 6’ utility companies 

Source: Company information, 2014 
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The Power of Wind 

We showed that wind investment improves the characteristics of power portfolios for private investors. In 

addition, renewables form an important component of a secure energy mix; as we have seen, fossil fuel prices 

are subject to uncertainty. Domestically, the annual growth rate of primary energy production has been 

negative in every year since 1999
7
. In order to avoid over-reliance on fuel imports, it makes sense to utilise 

sustainable technologies and it is in the interest of both the private and public sectors to encourage investment 

in wind power. In this respect there are several informative findings of this study.  

 The Feed in Tariff system sets a ‘strike price’ for each type of technology, guaranteeing that 

generators will receive a certain price for the electricity they supply. If the market price is below this level, the 

government covers the deficit. On the other hand, if the market price is above the strike price, the generator 

pays the surplus to the government. Therefore, the volatility in revenue is limited to being a function of the 

volatility in electricity output, itself a function of load factor and plant efficiency, and electricity price risk is 

eliminated. Investors can predict with greater certainty the revenues from investing in wind technology, 

increasing the incentive to invest.  

 Secondly, a factor discouraging investors from investing in wind is that the levelised cost of energy 

(LCOE) is higher than for conventional fuels. The LCOE calculation, however, ignores the impact of future 

carbon costs. When these factors are considered, many estimate the cost of wind energy to be highly 

competitive with that of fossil fuel energy. A carbon price floor can also provide additional incentives to 

invest in low-carbon technology by increasing certainty over the future price of carbon.  

 

The Old Guard: Implications for Conventional Fuels 

This analysis indicates that coal should not be present in an optimal portfolio. Whilst gas prices in 2012 

reached levels that shifted the balance of electricity generation from gas to coal (DECC, 2013a), the returns 

from gas generation outweigh those from coal over a five-year period. From an energy security perspective, 

one might argue that due to the added diversification of including coal, we should continue generating a 

proportion of energy from coal. Additionally, natural gas production has fallen by 64% since peaking in 2000. 

However, domestic coal production is also declining and coal imports were 38% higher in 2012 than 2011 

meaning coal production remains susceptible to import risk in a similar way to gas.  

To some extent, the findings suggest that IGCC coal plants can be phased out. The Emissions 

Performance Standard (EPS) limits the emissions of fossil fuel plants to 450g/kWh, which means that all new 

coal plants will require carbon capture and storage (CCS) technology, thereby eliminating IGCC plants 

without CCS technology installed. Furthermore, strike prices under the Contracts-for-Difference system apply 

to co-fired biomass generation. A proportion of the fuel used in fossil fuel plants can be substituted with 

biomass such as wood, olive cake and energy crops, providing the incentive to replace coal with a renewable 

                                                           
7
 Data provided by the DECC (2013a).  
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source. Whilst biomass generation is outside the scope of this research, removing the least efficient fuel from 

portfolios seems a step in the right direction.  

Although there are concerns over the flexibility of nuclear power, it is central to the long-term plan 

of replacing aging capacity whilst meeting carbon objectives. Energy security concerns suggest that nuclear 

will be important due to the risks from imported gas and coal. We showed that regardless of the social 

benefits, nuclear power is a desirable component of a generation portfolio. Whilst a Contract-for-Difference 

charge was announced in 2014 in connection to the Hinkley Point nuclear plant, subsidies for the nuclear 

industry are generally ill defined. 

 Finally, the methodology presented in this paper has some potential drawbacks. The assumptions to 

simplify the analysis also prevent the results from being comprehensive. The simulations were run on the 

basis that generators cannot mothball plants and halt production when it becomes uneconomical. In reality the 

ease with which this can be done differs across technologies; CCGT plants have the shortest start-up time and 

coal and nuclear the longest. Furthermore, some types of gas, coal and nuclear plants are ignored in this 

paper. The characteristics of a CCGT plant without carbon capture and storage (CCS) technology are different 

from those with CCS capabilities, and the properties of an integrated gasification combined cycle (IGCC) 

plant - the specification used here as a proxy for all coal plants - differ from those of a pulverised coal plant or 

an IGCC plant with CCS technology. 
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ABBREVIATIONS 

 

AGC: Advanced Gas-Cooled 

CCGT: Combined-cycle gas turbine 

CCS: Carbon capture and storage 

CEGB: Central Electricity Generating Board 

CfD: Contract-for-Difference 

DCF: Discounted cash flow 

DECC: Department of Energy and Climate Change 

DOE: Department of Energy 

DTI: Department of Trade and Industry 

EAC: Environmental Audit Committee 

EIA: Energy Information Administration 

EPS: Emissions performance standards 

EUA: European Union allowance 

FiT: Feed-in Tariff 

GMV: Global minimum variance  

IEA: International Energy Agency 

IGCC: Integrated gasification combined cycle 

LCOE: Levelised cost of energy 

MVF: Minimum variance frontier  

MVP: Mean-Variance Portfolio 

NPV: Net present value 

OTC: Over-the-counter 

PPA: Power purchase agreement 

R&D: Research and development 

WACC: Working average cost of capital 

WNA: World Nuclear Association 

 


