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In this paper, we consider an inverse eigenvalue problem
(IEP) for constructing a special kind of acyclic matri-
ces. The problem involves the reconstruction of matri-
ces whose graph is a banana tree. This is performed by
using the minimal and maximal eigenvalues of all lead-
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1 Introduction

An inverse eigenvalue problem (IEP) concerns the reconstruction of a matrix from pre-
scribed spectral data. In [3] detailed characterization of inverse eigenvalue problems is
mentioned. Special types of inverse eigenvalue problems have attracted attention of many
authors. Inverse eigenvalue problems for graphs have been studied in [4,7,8,10,12,13].
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The inverse eigenvalue problem of a graph is to determine the possible spectra among
real symmetric matrices whose pattern of nonzero off- diagonal entries is described by a
graph. In the last fifteen years a number of papers on this problem have appeared. In this
paper, we investigate an IEP, namely IEPB(c,s) (inverse eigenvalue problem for matrices
whose graph is a banana tree). Similar problems were studied in [9,10,14]. For solving
the problem, the recurrence relations among leading principal minors is used. Some ap-
plications of the acyclic matrix discussed in this paper are in chemistry, energy and graph
theory [1,5].
The paper is organized as follows. In Section 2, we give a brief outline of some preliminary
concepts and clarify the notations used in the paper. In Section 3, we discuss the analysis
of IEPB(c,s) and present an algorithm. In Section 4, we report numerical examples to
illustrate the solutions of IEPB(c,s). In Section 5 conclusion is presented.

2 Preliminaries

Let G be a simple undirected graph (without loops and multiple edges) on n vertices. A
real symmetric matrix A = (aij) is said to have a graph G provided aij 6= 0 if and only if
vertices i and j are adjacent in G.
Given an n × n symmetric matrix A, the graph of A, denoted by G(A), has vertex set
V (G) = {1, 2, 3, . . . , n} and edge set E = {ij : i 6= j, aij 6= 0}. For graph G with n
vertices, we denote by S(G) the set of all real symmetric matrices whose graph is G. A
matrix whose graph is a tree is called an acyclic matrix. Some simple examples of acyclic
matrices are the matrices whose graphs are paths, m-centipedes, brooms or banana tree.
Definition 2.1. An (c, s)-banana tree, as defined by Chen et al.(1997), is a graph ob-
tained by connecting one leaf of each of c copies of an s−star graph with a single root
vertex that is distinct from all the stars.
Properties of banana trees have been studied in [2]. The vertices of an (c, s)-banana tree
with c ≥ 1, s ≥ 3, labeled as follws:
The root vertex is labeled by 1, the vertices of distance 1 from the root vertex as the
intermediate vertices is labeled by (i − 1)s + 2, the center of every (Ss) is labeled by
(i−1)s+3 and leaves of the center is labeled by j = (i−1)s+4, . . . , is+1, i = 1, 2, . . . , c.
(Figure1).
For example matrix of an (3, 4)-banana tree is of the following form:



91 S. A. Shahzadeh Fazeli / JAC 50 issue 2, December 2018, PP. 89 - 101

Figure 1: An (3, 4)-banana tree.

A13 =



a1 b1,2 b1,6 b1,10
b1,2 a2 b2,3

b2,3 a3 b3,4 b3,5
b3,4 a4
b3,5 a5

b1,6 a6 b6,7
b6,7 a7 b7,8 b7,9

b7,8 a8
b7,9 a9

b1,10 a10 b10,11
b10,11 a11 b11,12 b11,13

b11,12 a12
b11,13 a13


where all the b’s are positive.
The following known results will be necessary for solving the problem in this paper.
Lemma 2.2. [11] Let P (λ) be a monic polynomial of degree n with all real zeroes. If λ1
and λn are, respectively, the minimal and the maximal zero of P (λ), then

i. If x < λ1 , we have that (−1)nP (x) > 0.

ii. If x > λn , we have that P (x) > 0.

Lemma 2.3. [6] (Cauchy’s interlacing theorem) Let λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenval-
ues of an n× n real symmetric matrix A and µ1 ≤ µ2 ≤ . . . ≤ µn−1 be the eigenvalues of
an (n− 1)× (n− 1) principal submatrix B of A, then

λ1 ≤ µ1 ≤ . . . ≤ µn−1 ≤ λn.
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3 Problem statement and the solution

3.1 Problem statement

Given 2n− 1 real numbers λ
(j)
1 , j = 1, 2, . . . , n and λ

(j)
j , j = 2, . . . , n, find a n× n matrix

An ∈ S(B(c, s)) such that λ
(j)
1 and λ

(j)
j are the minimal and maximal eigenvalues of Aj,

the leading principal submatrix of A, respectively. This is referred to IEPB(c,s) problem.
In the next subsection we discuss the solution of IEPB(c,s).

3.2 The solution of IEPB(c,s)

In the following, we investigate the relation between successive leading principal minors
of λIn − An. Lemma 3.1 The sequence {Pj(λ) = det(λIj − Aj)}nj=1 of characteristic
polynomials of Aj satisfies the following recurrence relations:

i. P1(λ) = (λ− a1)

ii. Pj(λ) = (λ− aj)Pj−1(λ)− b21,jdet(Bλ
j ) j = (i− 1)s+ 2, i = 1, 2, . . . , c

iii. Pj(λ) = (λ− aj)Pj−1(λ)− b2(j−1),jPj−2(λ) j = (i− 1)s+ 3, i = 1, 2, . . . , c

iv. Pj(λ) = (λ− aj)Pj−1(λ)− b2(i−1)s+3,j P(i−1)s+2(λ)
∏j−1

k=(i−1)s+4(λ− ak)
j = (i− 1)s+ 4, . . . , is+ 1, i = 1, 2, . . . , c,

with the convention that Bλ
j is the submarix rows and columns 2, 3, . . . , n−1 of the matrix

λIn − An, p0(λ) = 1 and
∏j−1

k=(i−1)s+4(λ− ak) = 1 when j = (i− 1)s+ 4.

Proof. It is easy to verify by expanding the determinant.

Since λ
(j)
1 and λ

(j)
j are eigenvalues of Aj, we have{

Pj(λ
(j)
1 ) = 0

Pj(λ
(j)
j ) = 0.

(1)

Thus, solving the IEPB(c,s) is equivalent to solving the above system of equations for
j = 1, 2, . . . , n. Observe that from the Cauchy’s interlacing property, the minimal and
the maximal eigenvalue, λ

(j)
1 and λ

(j)
j , respectively, of each leading principal submatrix

Aj, j = 1, 2, . . . , n, of the matrix A ∈ S(B(c, s)) satisfy the relations:

λ
(n)
1 ≤ λ

(n−1)
1 ≤ . . . ≤ λ

(2)
1 ≤ λ

(1)
1 ≤ λ

(2)
2 ≤ . . . ≤ λ(n)n (2)

and
λ
(j)
1 ≤ ai ≤ λ

(j)
j i = 1, 2, . . . , j, j = 1, 2, , . . . , n. (3)

Lemma 3.2. Let λ
(j)
1 and λ

(j)
j be the minimal and maximal eigenvalues of Aj for j =

(i−1)s+ 2, i = 1, 2, . . . , c, then the system of equations 1 has unique solution if and only

if λ
(j)
1 < λ

(j−1)
1 and λ

(j−1)
j−1 < λ

(j)
j .
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Proof. Let Pj−1(λ
(j)
1 ) and Pj−1(λ

(j)
j ) be nonzero for j = (i − 1)s + 2, i = 1, 2, . . . , c,

replacing relation (ii) from Lemma 3.2 in equations (1), we obtain Pj(λ
(j)
1 ) = ajPj−1(λ

(j)
1 ) + b21,jdet(B

λ
(j)
1

j )− λ(j)1 Pj−1(λ
(j)
1 ) = 0

Pj(λ
(j)
j ) = ajPj−1(λ

(j)
j ) + b21,jdet(B

λ
(j)
j

j )− λ(j)j Pj−1(λ
(j)
j ) = 0.

(4)

Which can be regarded as a linear system of equations in aj and b21,j. Let D1,j denote the
determinant of the system of equations (4), then

D1,j = Pj−1(λ
(j)
1 )det(B

λ
(j)
j

j )− Pj−1(λ
(j)
j )det(B

λ
(j)
1

j ). (5)

Since b1,j’s are nonzero, from the relation (ii) of Lemma 3.2 we obtain the following:

det(Bλ
j ) =

1

b21,j
((λ− aj)Pj−1(λ)− Pj(λ)).

By replacing det(B
λ
(j)
1

j ) and det(B
λ
(j)
j

j ) in D1,j and simplifying, we obtain

D1,j =
1

b21,j

[
Pj−1(λ

(j)
j )Pj−1(λ

(j)
1 )(λ

(j)
j − λ

(j)
1 )− Pj−1(λ

(j)
1 )Pj(λ

(j)
j ) + Pj−1(λ

(j)
j )Pj(λ

(j)
1 )].

Since Pj(λ
(j)
1 ) and Pj(λ

(j)
j ) are equal to zero and λ

(j)
1 and λ

(j)
j are not roots of Pj−1(λ)

then

D1,j =
1

b21,j
[Pj−1(λ

(j)
j )Pj−1(λ

(j)
1 )(λ

(j)
j − λ

(j)
1 )] 6= 0.

Conversely, let D1,j 6= 0, if λ
(j)
1 = λ

(j−1)
1 then we have

det(B
λ
(j)
1

j ) = 0,

and this implies that D1,j = 0. But this contradicts our hypothesis that D1,j 6= 0. Hence

λ
(j)
1 < λ

(j−1)
1 . Similarly, λ

(j−1)
j−1 < λ

(j)
j .

Lemma 3.3. Let A be a matrix of an (c, s)-banana tree and λ
(j)
1 , λ

(j)
j be the minimal

and the maximal eigenvalue of the leading principal submatrix Aj of A, j = 2, . . . , n. If

λ
((i−1)s+2)
1 < λ

((i−1)s+1)
1 and λ

((i−1)s+1)
(i−1)s+1 < λ

((i−1)s+2)
(i−1)s+2 , then we have

λ
(j)
1 < λ

(j−1)
1 , λ

(j−1)
j−1 < λ

(j)
j (6)

and
λ
(j)
1 < ak < λ

(j)
j k = 1, 2, . . . , j, (7)

for j = (i− 1)s+ 3, . . . , is+ 1, i = 1, 2, . . . , c.



94 S. A. Shahzadeh Fazeli / JAC 50 issue 2, December 2018, PP. 89 - 101

Proof. For i = 1, 2, . . . , c, if j = (i− 1)s+ 3, by Lemma 3.2 we have

P(i−1)s+3(λ) = (λ− a(i−1)s+3)P(i−1)s+2(λ)− b2(i−1)s+2,(i−1)s+3P(i−1)s+1(λ). (8)

If λ
((i−1)s+3)
1 = λ

((i−1)s+2)
1 , by equation (8) we have

P(i−1)s+3(λ
((i−1)s+3)
1 ) = −b2(i−1)s+2,(i−1)s+3P(i−1)s+1(λ

((i−1)s+2)
1 ).

Since λ
((i−1)s+2)
1 < λ

((i−1)s+1)
1 thus P(i−1)s+1(λ

((i−1)s+2)
1 ) 6= 0 hence P(i−1)s+3(λ

((i−1)s+3)
1 ) 6= 0,

but this is a contradiction, then we obtain λ
((i−1)s+3)
1 < λ

((i−1)s+2)
1 . Similary, we have

λ
((i−1)s+2)
(i−1)s+2 < λ

((i−1)s+3)
(i−1)s+3 .

Now we assume λ
((i−1)s+3)
1 = a(i−1)s+3. Again, by equation (8) we have

P(i−1)s+3(λ
((i−1)s+3)
1 ) = −b2(i−1)s+2,(i−1)s+3P(i−1)s+1(λ

((i−1)s+3)
1 ).

Since λ
((i−1)s+3)
1 < λ

((i−1)s+2)
1 < λ

((i−1)s+1)
1 , we have P(i−1)s+1(λ

((i−1)s+3)
1 ) 6= 0 hence

P(i−1)s+3(λ
((i−1)s+3)
1 ) 6= 0 but this is a contradiction, then we obtain λ

((i−1)s+3)
1 < a(i−1)s+3.

Similary, we have a(i−1)s+3 < λ
((i−1)s+3)
(i−1)s+3 , hence λ

((i−1)s+3)
1 < a(i−1)s+3 < λ

((i−1)s+3)
(i−1)s+3 .

If j = (i− 1)s+ 4, by Lemma 3.2 we have

P(i−1)s+4(λ) = (λ− a(i−1)s+4)P(i−1)s+3(λ)− b2(i−1)s+3, (i−1)s+4 P(i−1)s+2(λ). (9)

If λ
((i−1)s+4)
1 = λ

((i−1)s+3)
1 , by equation (9) we have

P(i−1)s+4(λ
((i−1)s+4)
1 ) = −b2(i−1)s+3, (i−1)s+4 P(i−1)s+2(λ

((i−1)s+3)
1 ).

Since λ
((i−1)s+3)
1 < λ

((i−1)s+2)
1 it means that λ

((i−1)s+3)
1 is not a root of P(i−1)s+2(λ), then

we obtain P(i−1)s+4(λ
((i−1)s+4)
1 ) 6= 0, this is a contradiction and λ

((i−1)s+4)
1 < λ

((i−1)s+3)
1 .

Similary, we have λ
((i−1)s+3)
(i−1)s+3 < λ

((i−1)s+4)
(i−1)s+4 .

If λ
((i−1)s+4)
1 = a(i−1)s+4 or λ

((i−1)s+4)
(i−1)s+4 = a(i−1)s+4 then by equation (9) we have

P(i−1)s+4(a(i−1)s+4) = −b2(i−1)s+3, (i−1)s+4 P(i−1)s+2(a(i−1)s+4).

Since λ
((i−1)s+4)
1 < λ

((i−1)s+3)
1 < λ

((i−1)s+2)
1 then P(i−1)s+4(a(i−1)s+4) 6= 0, which is a contra-

diction. From (3) we have λ
((i−1)s+4)
1 < a(i−1)s+4 < λ

((i−1)s+4)
(i−1)s+4 .

Assume that (6), (7) hold for j = (i− 1)s+ 5, . . . , is now if j = is+ 1 by Lemma 3.2 we
have

Pis+1(λ) = (λ− ais+1)Pis(λ)− b2(i−1)s+3, is+1 P(i−1)s+2(λ)
is∏

k=(i−1)s+4

(λ− ak). (10)
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If λ
(is+1)
1 = λ

(is)
1 , by equation (10) we have

Pis+1(λ
(is+1)
1 ) = −b2(i−1)s+3, is+1 P(i−1)s+2(λ

(is)
1 )

is∏
k=(i−1)s+4

(λ
(is)
1 − ak).

Because P(i−1)s+2(λ
(is)
1 ) 6= 0 and λ

(is)
1 < ak < λ

(is)
is , k = (i−1)s+4, . . . , is, then

∏is
k=(i−1)s+4(λ

(is)
1 −

ak) 6= 0 and we obtain Pis+1(λ
is+1
1 ) 6= 0. This is a contradiction and λ

(is+1)
1 < λ

(is)
1 . Simi-

lary, we have λ
(is)
is < λ

(is+1)
is+1 .

If λ
(is+1)
1 = ais+1 or λ

(is+1)
is+1 = ais+1 then by equation (10) we have

Pis+1(ais+1) = −b2(i−1)s+3, is+1 P(i−1)s+2(ais+1)
is∏

k=(i−1)s+4

(ais+1 − ak).

From the above verified results, we know

λ
(is+1)
1 < λ

(is)
1 < . . . < λ

((i−1)s+2)
1 < . . . < λ

((i−1)s+2)
(i−1)s+2 < . . . < λ

(is)
is < λ

(is+1)
is+1 ,

then P(i−1)s+2(ais+1) 6= 0 and we get Pis+1(ais+1) 6= 0. This is a contradiction and from

(3) we have λ
(is+1)
1 < ais+1 < λ

(is+1)
is+1 .

Theorem 3.4. The IEPB(c,s) has a unique solution if and only if

λ
(n)
1 < λ

(n−1)
1 < . . . < λ

(2)
1 < λ

(1)
1 < λ

(2)
2 < . . . < λ(n)n . (11)

Proof. First we assume that λ
(j)
1 and λ

(j)
j for all j = 1, 2, . . . , n satisfying (11), thus

P1(λ
(1)
1 ) = 0⇒ a1 = λ

(1)
1 .

For i = 1, 2, . . . , c, if j = (i − 1)s + 2, by Lemma 3.2 we have D1,j 6= 0, by solving the
system (4) we obtain

aj =
λ
(j)
1 Pj−1(λ

(j)
1 )det(B

λ
(j)
j

j )− λ(j)j Pj−1(λ
(j)
j )det(B

λ
(j)
1

j )

D1,j

,

b21j =
(λ

(j)
j − λ

(j)
1 )Pj−1(λ

(j)
1 )Pj−1(λ

(j)
j )

D1,j

.

From equation (5) we have

(−1)j−1D1,j = (−1)j−1Pj−1(λ
(j)
1 )det(B

λ
(j)
j

j ) + (−1)j−2Pj−1(λ
(j)
j )det(B

λ
(j)
1

j ).

From Lemma 2 and (11) we get (−1)j−1Pj−1(λ
(j)
1 ) > 0, det(B

λ
(j)
j

j ) > 0, Pj−1(λ
(j)
j ) > 0 and

(−1)j−2det(B
λ
(j)
1

j ) > 0 then
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b21,j =
(−1)j−1(λ

(j)
j − λ

(j)
1 )Pj−1(λ

(j)
1 )Pj−1(λ

(j)
j )

(−1)j−1Pj−1(λ
(j)
1 )det(B

λ
(j)
j

j ) + (−1)j−2Pj−1(λ
(j)
j )det(B

λ
(j)
1

j )

> 0.

For j = (i− 1)s+ 3 the existence of Aj is equivalent to show that the system of equations{
Pj(λ

(j)
1 ) = ajPj−1(λ

(j)
1 ) + b2(j−1),jPj−2(λ

(j)
1 )− λ(j)1 Pj−1(λ

(j)
1 ) = 0

Pj(λ
(j)
j ) = ajPj−1(λ

(j)
j ) + b2(j−1),jPj−2(λ

(j)
j )− λ(j)j Pj−1(λ

(j)
j ) = 0,

(12)

has solutions aj and b2(j−1),j. The determinant of the coefficients matrix of the above
system is

D(j−1),j = Pj−1(λ
(j)
1 )Pj−2(λ

(j)
j )− Pj−1(λ

(j)
j )Pj−2(λ

(j)
1 ).

If D(j−1),j 6= 0 then the system will have a unique solution. From Lemma 2 and (11)
we get (−1)j−1D(j−1),j > 0, it is clear that D(j−1),j 6= 0 and the unique solutions of the
system (12) are:

aj =
λ
(j)
1 Pj−1(λ

(j)
1 )Pj−2(λ

(j)
j )− λ(j)j Pj−1(λ

(j)
j )Pj−2(λ

(j)
1 )

D(j−1),j

,

b2(j−1),j =
(λ

(j)
j − λ

(j)
1 )Pj−1(λ

(j)
1 )Pj−1(λ

(j)
j )

D(j−1),j

.

Again, from Lemma 2 and (11) we have (−1)j−1Pj−1(λ
(j)
1 ) > 0 and Pj−1(λ

(j)
j ) > 0, then

it is evident that:

b2(j−1),j =
(−1)j−1(λ

(j)
j − λ

(j)
1 )Pj−1(λ

(j)
1 )Pj−1(λ

(j)
j )

(−1)j−1Pj−1(λ
(j)
1 )Pj−2(λ

(j)
j ) + (−1)j−2Pj−1(λ

(j)
j )Pj−2(λ

(j)
1 )

> 0.

Finally, for j = (i− 1)s+ 4, . . . , is+ 1, using the last recurrence relation from Lemma 3.2
in equations 1 we have{

ajPj−1(λ
(j)
1 ) + b2((i−1)s+3),jP(i−1)s+2(λ

(j)
1 )
∏j−1

k=(i−1)s+4(λ
(j)
1 − ak)− λ

(j)
1 Pj−1(λ

(j)
1 ) = 0

ajPj−1(λ
(j)
j ) + b2((i−1)s+3),jP(i−1)s+2(λ

(j)
j )
∏j−1

k=(i−1)s+4(λ
(j)
j − ak)− λ

(j)
j Pj−1(λ

(j)
j ) = 0.

(13)
The determinant of the coefficients matrix of the system (13) is

D(i−1)s+3, j =

{
Pj−1(λ

(j)
1 )P(i−1)s+2(λ

(j)
j )
∏j−1

k=(i−1)s+4(λ
(j)
j − ak)

}
−
{
Pj−1(λ

(j)
j )P(i−1)s+2(λ

(j)
1 )
∏j−1

k=(i−1)s+4(λ
(j)
1 − ak)

}
.

(14)

From (14 ) we have

(−1)j−1D(i−1)s+3, j =

{{
(−1)j−1Pj−1(λ

(j)
1 )
}
P(i−1)s+2(λ

(j)
j )
∏j−1

k=(i−1)s+4(λ
(j)
j − ak)

}
+

{
Pj−1(λ

(j)
j )
{

(−1)(i−1)s+2P(i−1)s+2(λ
(j)
1 )
}{

(−1)j−(i−1)s−4
∏j−1

k=(i−1)s+4(λ
(j)
1 − ak)

}}
.

(15)
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By Lemma 2 and (11) we get (−1)j−1Pj−1(λ
(j)
1 ) > 0, Pj−1(λ

(j)
j ) > 0, (−1)(i−1)s+2P(i−1)s+2(λ

(j)
1 ) >

0 and P(i−1)s+2(λ
(j)
j ) > 0. Also, by Lemma 3.2, we have (−1)j−(i−1)s−4

∏j−1
k=(i−1)s+4(λ

(j)
1 −

ak) > 0 and
∏j−1

k=(i−1)s+4(λ
(j)
j −ak) > 0. Hence, (−1)j−1D(i−1)s+3), j > 0 and D(i−1)s+3, j 6= 0.

It follows that the linear sysyem equations (13) has a unique solution for aj and b2(i−1)s+3, j.

aj =
Aj −Bj

D(i−1)s+3, j

,

b2(i−1)s+3, j =
(λ

(j)
j − λ

(j)
1 )Pj−1(λ

(j)
1 )Pj−1(λ

(j)
j )

D(i−1)s+3, j

,

where Aj and Bj are given by

Aj = λ
(j)
1 Pj−1(λ

(j)
1 )P(i−1)s+2(λ

(j)
j )

j−1∏
k=(i−1)s+4

(λ
(j)
j − ak),

Bj = λ
(j)
j Pj−1(λ

(j)
j )P(i−1)s+2(λ

(j)
1 )

j−1∏
k=(i−1)s+4

(λ
(j)
1 − ak).

We can write b2(i−1)s+3, j as:

b2(i−1)s+3, j =
(λ

(j)
j − λ

(j)
1 )
{

(−1)j−1Pj−1(λ
(j)
1 )Pj−1(λ

(j)
j )
}

(−1)j−1D(i−1)s+3, j

.

From Lemma 2 and (11) we have (−1)j−1Pj−1(λ
(j)
1 ) > 0 and Pj−1(λ

(j)
j ) > 0. Also, from

the above verified results, we know (−1)j−1D(i−1)s+3, j > 0, hence b2(i−1)s+3, j > 0.

Conversely, suppose the IEPB(c,s) has a unique solution then from Lemma 3.2 and
Lemma 3.2 we can obtain (11) thus the proof is completed.

The resulting algorithm takes the form of Algorithm 1.
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Algorithm 1. (To solve problem IEPB(c,s))

Input: c, s, λ
(1)
1 , λ

(2)
1 , λ

(2)
2 , . . . , λ

(n)
1 , λ

(n)
n , where n = cs+ 1.

Output: A ∈ S(B(c, s)).

a1 = λ
(1)
1 .

For j = 2 to n
if j ∈ (i− 1)s+ 2 for i = 1, 2, . . . , c Then

aj =
λ
(j)
1 Pj−1(λ

(j)
1 )det(B

λ
(j)
j
j )−λ(j)j Pj−1(λ

(j)
j )det(B

λ
(j)
1
j )

D1,j

b1,j =

√
(λ

(j)
j −λ(j)1 )Pj−1(λ

(j)
1 )Pj−1(λ

(j)
j )

D1,j

elseif j ∈ (i− 1)s+ 3 for i = 1, 2, . . . , c then

aj =
λ
(j)
1 Pj−1(λ

(j)
1 )Pj−2(λ

(j)
j )−λ(j)j Pj−1(λ

(j)
j )Pj−2(λ

(j)
1 )

D(j−1),j

b(j−1),j =

√
(λ

(j)
j −λ(j)1 )Pj−1(λ

(j)
1 )Pj−1(λ

(j)
j )

D(j−1),j

else
for j = (i− 1)s+ 4 to is+ 1, i = 1, 2, . . . , c do

aj =
Aj−Bj

D(i−1)s+3, j

b(i−1)s+3, j =

√
(λ

(j)
j −λ(j)1 )Pj−1(λ

(j)
1 )Pj−1(λ

(j)
j )

D(i−1)s+3, j

EndIf
EndFor

4 Numerical examples

Algorithm 1 is tested for various examples by matlab software. In this section we report
some of examples. Example 4.1 For given 17 real numbers

−7,−6.1,−5,−3.6,−2.5,−1,−0.5, 1.5, 2, 2.5, 3, 4, 5.3, 6, 7, 8, 9.2,

rearrange and label them as λ
(j)
1 , j = 1, 2, . . . , 9 and λ

(j)
j , j = 2, . . . , 9, and find a matrix

9×9 ∈ S(B(2, 4)) such that λ
(j)
1 and λ

(j)
j are the minimal and maximal eigenvalues of Aj,

j = 1, 2, . . . 9.
We rearrange the given numbers. The following numbers:

−7 < −6.1 < −5 < −3.6 < −2.5 < −1 < −0.5 < 1.5 < 2 < 2.5 < 3 < 4 < 5.3 < 6 < 7 < 8 < 9.2,
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satisfy the sufficient condition (11). By applying Algorithm 1, we get the unique solution

A9 =



2.0000 0.5000 0 0 0 4.6952 0 0 0
0.5000 2.0000 1.4142 0 0 0 0 0 0

0 1.4142 0.3333 1.6101 3.0587 0 0 0 0
0 0 1.6101 3.0029 0 0 0 0 0
0 0 3.0587 0 2.3925 0 0 0 0

4.6952 0 0 0 0 0.3752 3.6226 0 0
0 0 0 0 0 3.6226 0.9421 5.0534 4.4313
0 0 0 0 0 0 5.0534 1.1223 0
0 0 0 0 0 0 4.4313 0 2.2202


.

From the matrix A9 we recomputed the eigenvalues of Aj, and obtained
σ(A1) = {2.0000}
σ(A2) = {1.5000, 2.5000}
σ(A3) = {−0.5000, 1.8333, 3.0000}
σ(A4) = {−1.0000, 1.7143, 2.6219, 4.0000}
σ(A5) = {−2.5000, 1.5649, 2.4890, 2.8749, 5.3000}
σ(A6) = {−3.6000,−2.4916, 2.0448, 2.8688, 5.2820, 6.0000}
σ(A7) = {−5.0000,−2.4970, 1.2356, 2.1448, 2.8698, 5.2929, 7.0000}
σ(A8) = {−6.1000,−2.5108,−2.1528, 2.0401, 2.8686, 4.7171, 5.3061, 8.0000}
σ(A9) = {−7.0000,−2.6646,−2.4642, 1.7361, 2.0463, 2.8688, 5.2344, 5.4318, 9.2000}.

The underlined eigenvalues are in consonance with the minimal and maximal eigenvalues.
Example 4.2. For given 11 real numbers

−8,−6,−3,−1, 1, 2, 5, 6, 8, 11, 13,

rearrange and label them as λ
(j)
1 , j = 1, 2, . . . , 6 and λ

(j)
j , j = 2, . . . , 6, and find a matrix

6×6 ∈ S(B(1, 5)) such that λ
(j)
1 and λ

(j)
j are the minimal and maximal eigenvalues of Aj,

j = 1, 2, . . . 6.
We rearrange the given numbers. The following numbers:

−8 < −6− 1 < 1 < 2 < 5 < 6 < 8 < 11 < 13,

satisfy the sufficient condition (11). By applying Algorithm 1, we get the unique solution

A6 =


2.0000 1.7321 0 0 0 0
1.7321 4.0000 2.5820 0 0 0

0 2.5820 0.6667 4.4117 6.5160 6.1730
0 0 4.4117 4.4146 0 0
0 0 6.5160 0 4.3427 0
0 0 6.1730 0 0 4.3356

 .

From the matrix A6 we recomputed the eigenvalues of Aj, and obtained
σ(A1) = {2.0000}
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σ(A2) = {1.0000, 5.0000}
σ(A3) = {−1.0000, 1.6667, 6.0000}
σ(A4) = {−3.0000, 1.2100, 4.8713, 8.0000}
σ(A5) = {−6.0000, 1.0811, 4.3918, 4.9511, 11.0000}
σ(A6) = {−8.0000, 1.0521, 4.3389, 4.3999, 4.9686, 13.0000}.

The underlined eigenvalues are in consonance with the minimal and maximal eigenvalues.

5 Conclusions

In this paper, we have solved the IEP for construction of matrices whose graphs are
banana trees. This is performed by using the minimal and maximal eigenvalues of all
leading principal submatrices of the required matrix. The results obtained in this paper
provide an efficient method for constructing such matrices. The problem IEPB(c,s) is
important in the sense that it partially describes inverse eigenvalue problem while it
constructs matrices from partial information of prescribed eigenvalues. Such partially
described problems may occur in computations involving a complex physical system that
is difficult to obtain in its entire spectrum. It would be interesting to consider such IEPs
for other acyclic matrices as well.
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