Systematic Testing

Mooly Sagiv

Slides taken from :John Heasman(NCC)

The Apple “goto fail bug”

if ((err = SSLHashSHAI.update (&hashCtx,
&signedParams)) != 0)

goto fail;

goto fail;

other checks
fail:
buffer frees (cleanups)
return err;

Recap

Propositional SAT solving MiniSat, Z3

First order solving with theories (SMT) Z3, CVC3

Bounded Model Checking CBMC, JBMC

Concolic Execution DART, KLEE, SAGE, Cloud9, Mayhem
Static analysis SLAM(SDV), Astrée, TVLA, CSSV
Testing PITTEST, AFL

Program Synthesis SKETCH(MIT), Rosettee(UWASH)

Verification vs. Testing

Program Desired
P Properties ¢

Solver

Is there a behavior
of P that violates ¢?

Counterexample | Proof

f

2

Program
P

Testing

Input Tests |

Checker

Does the execution of P on | violate ¢

Desired
Properties ¢

The Testing Goal

* Input: A program

e Qutput: An input to the program which demonstrates fault
e Assertion violation

e Runtime error
e Buffer overrun

* Exception

Sometimes faults can be demonstrated by changing the original program

Testing Terminology

* White vs. Blackbox testing

e Testing levels:
* Unit
* Integration
* System

Adequacy

* How do you know that the set of input tests suffice?
* Coverage
* Mutation testing

Simple Example (Node Coverage, Edge Coverage, Path
Coverage)

<5,7>,<3,0>

Mutation Testing

* Measures the adequacy of the test suit

* Faults are introduced into the program by creating many versions of
the program called mutants

* Each mutant contains a single fault

* The test inputs are applied to the original program and to the mutant
program

* If mutant programs fail on the input test =2 the test suit is adequate
e Otherwise need more tests

Test Case Adequacy

* A test case is adequate if it is useful in detecting faults in a program

* A test case can be shown to be adequate by finding at least one
mutant program that generates a different output than does the
original program for that test case

* If the original program and all mutant programs generate the same
output, the test case is inadequate

Mutant Programs

* Mutation testing involves the creation of a set of mutant programs of
the program being tested

* Each mutant differs from the original program by one mutation

* A mutation is a single syntactic change that is made to a program
statement/condition

Simple Example

<2,3>,<3,2>

return z

Categories of Mutation Operators

* Operand Replacement Operators:

* Replace a single operand with another operand or constant. E.g.,
« if (5>y) Replacing X by constant 5.
 if (x>5) Replacingy by constant 5.
« if (y>x) Replacing x and y with each other.
e E.g., if all operators are {+,-,*,** /} then the following expression a = b * (c - d)

will generate 8 mutants:
* 4 by replacing *
* 4 by replacing -.

Categories of Mutation Operators

* Expression Modification Operators:

* Replace an operator or insert new operators. E.g.,
« if (x==y)
« if (x>=y) Replacing == by »>=.
o if (X == ++y) Inserting ++.

Categories of Mutation Operators

 Statement Modification Operators
* Delete the else part of the if-else statement
* Delete the entire if-else statement
* Replace line 3 by a return statemen

Why Does Mutation Testing Work?

* The operators are limited to simple single syntactic changes

The basis of the competent programmer hypothesis

The Competent Programmer Hypothesis

* Programmers are generally very competent and do not create
“random” programs

* For a given problem, a programmer, if mistaken, will create a program
that is very close to a correct program

* An incorrect program can be created from a correct program by
making some minor change to the correct program

Mutation Testing Procedure

* Generate program test cases

* Run each test case against the original program.
* |f the output is incorrect, the program must be modified and re-tested
* |f the output is correct go to the next step ...

* Construct mutants using a tool like Pitest http://pitest.org/

Mutation Testing Procedure (Cont)

e Execute each test case against each alive mutant

* If the output of the mutant differs from the output of the original program,
the mutant is considered incorrect and is killed

* Two kinds of mutants survive:
* Functionally equivalent to the original program
* Cannot be killed

* Killable: Test cases are insufficient to kill the mutant
e New test cases must be created

Another Example

Testl: 1, 2,3

r=3

main(argc,argv) Mutl: 5. fori=1to3do
2.intargc, r, i;
3. char *argv([]; Mut2: 6. if (i > atoi(argv[r])) r = i;
4.{r=1;
>. for ! =_2 to3 _do _ _ Mut3: 6. if (atoi(argv[i]) >= atoi(argv(r])) r = i;
6. if (atoi(argv[i]) > atoi(argv[r])) r =i;
7. printf(*Value of the rankis %d \n", 1), Muyt4: 6'. if (atoi(argv[r]) > atoi(argvir])) r = ii;
8. exit(0); }

Test2:1,2,1 Test3:3,1, 2 Test1:2,2, 1

r=2 =1 r=1vsr=2

Mutation Score

* The mutation score for a set of test cases is the percentage of non-
equivalent mutants killed by the test data

* Mutation Score =100 * D /(N - E)

e D = Dead mutants
e N = Number of mutants
* E=Number of equivalent mutant

* A set of test cases is mutation adequate if its mutation score is 100%

Evaluation

* Theoretical and experimental results have shown that mutation
testing is an effective approach to measuring the adequacy of test
cases

* The major drawback of mutation testing is the cost of generating the
mutants and executing each test case against them

Selected References

* Richard A. DeMillo, Richard J. Lipton, and Fred G. Sayward. Hints on test data selection: Help for
the practicing programmer. IEEE Computer, 11(4):34-41. April 1978.

* Mathur, A., P., Mutation Testing, In the Encyclopedia of Software Engineering, John Wiley, 1994

. ZPSCSJJB Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge University Press,

* Pitest http://pitest.org/
* Mulava: An Automated Class Mutation System by Yu-Seung Ma, Jeff Offutt and Yong Rae Kwo.

. II\D/!utatlion Operators for Concurrent Java (J2SE 5.0) by Jeremy S. Bradbury, James R. Cordy, Juergen
ingel.

* Mutation of Java Objects by Roger T. Alexander, James M. Bieman, Sudipto Ghosh, Bixia Ji.

* Mutation-based Testing of Buffer Overflows, SQL Injections, and Format String Bugs by H. Shahriar
and M. Zulkernine.

Fuzz Testing

Fuzz testing

* Providing invalid, unexpected, or random data to the inputs

* Observe faults
* Memory crashes
* Violations of assertions
e Security violations

* Sometimes applied by modifying the program based on some
assumptions

Fuzzing Unix Utilities

* Begins in 1998 class project: Wisconsin Bart Miller
 Bombard unix utilities with random data until they crashed

* Repeated in many domains:

 Windows/NT

* MacOS

* Networks
Barton Miller (2008). "Preface". In Ari Takanen, Jared DeMott and Charlie
Miller, Fuzzing for Software Security Testing and Quality Assurance

Michael Sutton; Adam Greene; Pedram Amini (2007). Fuzzing: Brute Force
Vulnerability Discovery. Addison-Wesley.

Summary of malloc Test Results

* Tested programs in /bin and /usr/ucb on our SunOS 4.1.3 system
* 53 of these programs used malloc()
* We could crash 25 of the 53 (47%)

Utilities that Crashed

bar df login rup tsort
cC finger s ruptime users
checknr graph man Tusers vplot
ctags 10stat mkstr sdift W
deroft last rsh symorder xsend

Malloc and Friends

* Intercept the calls to malloc()

program libjig C library
(sym table modified)
malloc{...); void *
malloc(...) { void *
FZ malloc :
rv=FZ malloc(...T;

randomly return zero or rv;

[——

 Randomly change the return value to zero: simulating the lack of virtual memory

Summary of X Window Test Results

List of Utilities Tested

bitmap netscape xclock Xev Xmarn xpostit xweather
emacs puzzle xconsole xfig xmh XSNOW xxgdb
ghostview | rxvt xcutsel xtontsel xminesweep | xspread

idraw xboard xditview Xgas xneko xterm

MOosalc xcalc xdvi Xgc Xpaint Xtv

MXI1 xclipboard | xedit Xmag xpbiff XV

Input Data Stream Type
X Utility | Random Messages | Garbled Messges | Random Events Legal Events
' (Type 1) (Type 2) (Type 3) (Type 4)

tested 38 38 38 38
crash/hang 1 10 18 16
% 3% 26% 47% 42%

Four Types of X Testing

 Completely Random Messages:
* A random series of bytes in a message.

* Garbled Messages:
 Randomly insert, delete, or modify parts of the message stream.

e Random Events:

* Keeps track of messageX Protocol message. Randomly insert or modify events with
 valid size and opcodes. Sequence number, time stamp, and payload may be random.

* Legal Events:
* Protocol conformant messages, logically correct individually and in sequence

* Valid values X-Y coordinates, window geometry, parent/child relationships, event
time stamps, and sequence numbers

Intercepting the X Windows Message Stream

* We control the messages going to the X application and server by
interposing our “xjig” tester

L7777 07070707
[T LT 7777

Pointer vulnerability (1)

void null_terminate(char *s)

{

while (*s 1= ‘) s++;

}

Pointer vulnerability (2)

char string[200];

;;\;hile (cc =getch()) !=c¢) {
string[j++] = cc;

The termination condition ignores the size of the buffer (string)

Pointer vulnerability ctags

char line[4*BUFSIZ];
sp = line;
do {

*++sp = ¢ = getc(inf);
} while ((c !1="\n’") && (c != EOF));

Instrumentation

e Automatically modify the input program to create certain behaviors

* Examples

* Checking undefined behaviors in C
* Purify, Valgrid
* Fuzzing

Type of bugs exposed by Fuzzing

* Crashes

* Memory leaks

e Uncaught exceptions

* Incorrect resource management
* Assertion violation

What is fuzzing?

* Feed target automatically generated malformed data designed to trigger
implementation flaws

* Afuzzer is the programmatic construct

* A fuzzing framework typically includes library code to:
* Generate fuzzed data
* Deliver test cases
* Monitor the target

e Publicly available fuzzing frameworks:
* Spike, Peach Fuzz, Sulley, Schemer, American Fuzzy Lop

* Requirement of Microsoft’s Secure Development Lifecycle program
e Still a long way to go - many vendors do no fuzzing!

What data can be fuzzed?

 Virtually anything!

e Basic types: bit, byte, word, dword, gword

« Common language specific types: strings, structs, arrays
* High level data representations: text, xml

What does fuzzed data consist of?

e Fuzzing at the type level:
* Long strings, strings containing special characters, format strings
* Boundary case byte, word, dword, gword values
 Random fuzzing of data buffers

e Fuzzing at the sequence level
* Fuzzing types within sequences
* Nesting sequences a large number of times
* Adding and removing sequences
 Random combinations

e Always record the random seed!!

When to fuzz?

e Fuzzing typically finds implementation flaws, e.g.:
* Memory corruption in native code
e Stack and heap buffer overflows

* Un-validated pointer arithmetic (attacker controlled offset)
* Integer overflows

* Resource exhaustion (disk, CPU, memory)
* Unhandled exceptions in managed code

* Format exceptions (e.g. parsing unexpected types)
* Memory exceptions

* Null reference exceptions
* |Injection in web applications

* SQL injection against backend database
* LDAP injection

 HTML injection (Cross-site scripting)

* Code injection

When not to fuzz

e Fuzzing typically does not find logic flaws
* Malformed data likely to lead to crashes, not logic flaws
* e.g. Missing authentication / authorization checks

* Fuzzing does not find design/repurposing flaws
* e.g. Asitelocked ActiveX control with a method named “RunCmd”.

Fuzzing in practice: the basic steps

< Start >

|
Monitor Target

|

Generate next test case

|

Deliver test case

Target
crashed?

Save crash dump

Any more
test cases?

C Finish >

Monitoring the target

1. Attach a debugger

 Leverage existing functionality
* Scripting, logging, crash dumps etc.

M calc.exe - WinDbg:6.6.0007.5

File Edit View Debug Window Help

= | ENEcE S R R R RO

POEOEDO0E]

Command

Microsoft (R) Windows Debugger Version 6.6.0007
Copyright (c) Microsoft Corporation. All rights reserved

ComnandLine: calc.exe
Synbol search path is: *xx Invalid *xx

% Synbol loading may be unrelisble without a symbol search path *
 Use synfix to have the debugger choose s synbol path *
% After setting your symbol path, use .reload to refresh symbol locations. *

Executable search path is

0500000 0052000
77290000 77bb7000
76920000 76abb000
76240000 77950000
76340000 76322000
76770000 767bb000
766d0000 76764000
767c0000 76886000
76c50000 76d12000
76520000 76573000

calc.exe

ntdll.dll

\Vindows\systen32\kernel32.d11

\Vindows\systen32\SHELL32.d1l

\Vindows\systen32\nsvcrt .dl

\Vindows\systen32\GDI32.dll

\Vindows\systen32\USER32 .d11

\Vindows\systen32\ADVAPI32 . d11

\Vindows\systen32\RPCRT4 .d11

\Vindows\systen32\SHLVAPI .d11

77920000 7726d000 Vindovs\systen32\OLEAUT3Z d1L

76890000 76544000 \Vindows\systen32\ole32

Bresk instruction exception — cods 80000003 (f)rst chance)

0017£5c4 edz=77ae9ad4 esi=ffiffffe edi=77ach6f8

ad7dfe esp bi7t0as ebp-0017¢60c iopl- U

o=2001b 5520023 ds-0023 =003b

xx ERROR. Sybol file could ot in fcusd

ntdllIDbgBreakPoint

77a :mu int 3

0

HndLoad 77a70000 77a8e000

0000000000

Defaulted to export symbols for ntdll.dll -

C:\Windows\system32\IMH32 DLL
il

S ocession | o
5 4564

S0 fmgse o0 CHE.
<o

o
e
ENE BUORD TR D

+ CEfizvEoo08a1, 0E
JEE SHORT salo. Gosizeir
R ECH, ECE
EIF BUhD TR 0s; cERsgnonFel, ECK
I SHORT calo, GRELses?
SP Bubro FTR B ceAR-baooral, o
E SHORT calo. GoSLat
R AL
CFF GHIGRD FTR DSt [ERKWSBBBERT, ECK

) DIlORD TR St [EL4FCET, EAX
CRLL calc, GRSLZEEF

FUSH Ry
CALL DR PTR 09: fotnevors, —_sex app.
R GuRD F1 S5043. FEEFFEEE
OF,_DUoRD FIR BR: tetessdy FreRReer

IORD TR DS: [Ctneuert: _p._frode>)
iy DUGFD FTR Go: TE4FEeT

o —
EFCT

Liruort. _adiust_|

mevert,

muort. g

FEvert. g

__sev_app_type

_frode

_connode

5 2qzenion | BUSH calc. Boisezd Encry addrece
P15 B4L25000| CALL DIORD FTR DS: [¢tmsuort. __setusermal miuort.— setusermathers
ECH
16040008 | CALL oalo.BBS12EEC
i) i
ETH
InTs
INT2
INTS
s
coosonss | CHLC calo,osionce
5+ LO0SG 200 1=PEa6a70 (MaVrF: — P Gorade]

[N
Optiens Window Help &
{11 3] = uje]o)n)w) ||/)

&3 G0 T

LastErr ERROR_NO_TOKEN (BBBBBSFE)
EFL 66666246 (MO, B, E, BE, 15, FE, GE, LE)

FL
no

Zi

S £Sdamn el Arrorbnl e
Te

0a

]

,
' Gaoassonsenseansens
ST7 crovs 1 6009030030080900500

PuOZDI
FST 4000 Cond L6 ErGGROOGG0G (E
ITT7117

FOU G27F Pres NERR,S3 Hask

50005 |

Ln0,Col0 SysO:<Local> Proc000:1d8 T

3 -wveezel
200

o
GRELACER| FF 60 o

Module C:\Windows\system32\PG Phk dil

TTRETORN To Kerne (52 72Aaa91T

| Rurring

Monitoring the target

2. Write your own debugger

 Actually easy to do
e Lightweight, fast, full control

(" Cc+t D

BOOL WINAPI WaitForDebugEV?/qS@edef struct DEBUG EVENT { /* de */ \\\\
out LPDEBUG EVENT 1pD DWORD dwDebugEventCode;

in DWORD dwMilliseco| DWORD dwProcessId;
. DWORD dwThreadId;

\\)7 union { EXCEPTION DEBUG INFO Exception;
CREATE THREAD DEBUG INFO CreateThread;
CREATE PROCESS DEBUG INFO CreateProcess;
EXIT THREAD DEBUG INFO ExitThread;

EXIT PROCESS DEBUG INFO ExitProcess;
LOAD DLL DEBUG INFO LoadDll;
UNLOAD DLL DEBUG INFO UnlocadDll1;

OUTPUT DEBUG STRING INFO DebugString; }
\\<Ef } DEBUG EVENT, *LPDEBUG EVENT; ////

Monitoring the target

3. Monitor resources:
* File, registry, memory, CPU, logs

ZF Process Monitor - Sysinternals: www.sysinternals.com =N] \@
File Edit Event Filter Tools Options Help

z2Ed RBpE | vAS | &5 | EHEZM

Sequ... Time of Day Process Name PID Operation Path CPU USEIQE
24 9:14:46.2410854 AM (Eiexplore exe 5728 RegOpenKey HKCU\Software\Classes
25 9:14:46.2411572 AM Eiexplore exe 5728 RegQueryKey HKCU\Software'\Classes
26 9:14:46.2411842 AM j@iexplore exe 5728 RegOpenKey HKCU\Software\Classes\CLSID
27 9:14:46. 2412212 AM Eiexplore exe 5728 RegCloseKey HKCU\Software'\Classes
28 9:14:46.2412651 AM @iexplore exe 5728 RegQueryKey HKCU\Software\Classes\CLSID
29 9:14:46.2412908 AM @iexplore exe 5728 RegOpenKey HKCU\Software'\Classes\CLSID\{ADC6CB82-424C-11D2-952A-00C04FA34F 05\ Implem: 1D1-¢
30 9:14:46.2413192 AM Eiexplore exe 5728 RegOpenKey HKCR\CLSID\{ADC6CB82-424C-11D2-352A-00C04FA34F 05} \Implemented Categories\\{ D918
31 9:14:46.2413676 AM (Eiexplore.exe 5728 RegCloseKey HKCR\CLSID\{ADC6CB82-424C-11D2-952A-00C04FA34F 05} \Implemented Categories\{ D918!
32 9:14:46. 2414143 AM [@iexplore exe 5728 RegQueryKey HKCU\Software\Classes\CLSID
33 9:14:46.2414414 AM Eiexplore exe 5728 RegOpenKey HKCR\CLSID\\{ADC6CB82-424C-11D2-952A-D0C04FA34F05}\Required Categories
34 9:14:46.2415052 AM [@iexplore exe 5728 RegCloseKey HKCU\Software\Classes\CLSID
58 9:14:46.2494019 AM ¥ 'lsass.exe 684 RegOpenKey HKLM\SECURITY\Policy
59 9:14:46.2494373 AM ¥ 'lsass.exe 684 RegOpenKey HKLM\SECURITY"\Policy\SecDesc
60 9:14:46 2434643 AM W' Isass exe 684 RegQueryValue HKLM\SECURITY"\Policy\SecDesc"\(Default)
61 9:14:46.2494851 AM ¥-'Isass exe 684 RegCloseKey HKLM\SECURITY\Policy\SecDesc
62 9:14:46.2495047 AM ¥ 'Isass exe 684 RegOpenKey HKLM\SECURITY\Policy\SecDesc
63 9:14:46.2495291 AM ¥-'Isass exe 684 RegQueryValue HKLM\SECURITY\Policy\SecDesc\{Default)
64 9:14:46.2495488 AM T [sass exe 684 RegCloseKey HKLM\SECURITY\Policy\SecDesc Memory
65 9:14:46.2439360 AM ¥ 'Isass exe 684 RegCloseKey HKLM\SECURITY\Policy
68 9:14:46.2517356 AM -'Isass.exe 684 RegOpenKey HKLM\SECURITY\Policy

< 1

Showing 9,594 of 20,580 events (46%) Backed by page file

Deliver the test case

1. standalone test harness

 E.g.tolaunch to client application and have it load fuzzed file format

2. Instrumented client

* Inject function hooking code into target client
* Intercept data and substitute with fuzzed data
e Useful if:

. State machine is complex
. Data is encoded in a non-standard format
. Data is signed or encrypted

Evaluation

* Fuzzing is an effective technique for finding bugs in huge software

e But has many limitations
* Cannot find interesting bugs with correlations
e Scaling is an issue

Projects with Z3

 Explore the ability of propositional/first order to concisely describe
problems
* Reductions between NP-complete problems

* Correct SQL queries
* Bugs in SQL queries
* Empty join
* Correct configurations

Projects with
CBMC/KEE/JBMC/Pittest/AFL/Astree

* Take a small application from Github
* |Instructors can help

Projects with Dafny

* Prove the correctness of parts of Minisat

* Prove the correctness of a data structure from the Data structure
course

* union-find

Projects with IVY/Alloy/TVLA

* Garbage collection algorithms

e Shared memory concurrency
* Concurrent queue

 Distributed applications
e Software defined networks

Thomas Ball, Nikolaj Bjgrner, Aaron Gember, Shachar ltzhaky, Aleksandr
Karbyshev, Mooly Sagiv, Michael Schapira, Asaf Valadarsky:

VeriCon: towards verifying controller programs in software-defined
networks. PLDI 2014: 282-293

Projects with Sketch/Rosette

* Develop a small language for cloud utilization
* Next week

