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Chapter 14

Plastid Genes and Chloroplast Biogenesis

Ralf Reski

TABLE OF CONTENTS

L. Plastids are a Heterogenous Organelle Class

II. Plastids are Semiautonomous Organelles ......
II. Plastids are Targets for Cytokinin Action .....
IV. The Molecular Analysis of Chloroplast Division
ACknowledgments ...........ccoceeeueerereeeieeeceeeseeeeeee.
REfETENCES ...ttt

. PLASTIDS ARE A HETEROGENOUS
ORGANELLE CLASS

Plastids are the DNA-containing organelles with
the widest range of different forms and functions.
Interconversion between different plastid types
implies marked changes in their architecture and
physiology. Furthermore, these changes go hand in
hand with differentiation processes of cells and
organs during plant development (reviewed by
Herrmann et al.).! Energy, organic substances, and
oxygen are provided by photosynthesis, and most
of the photosynthetic products are formed in chlo-
roplasts. They also catalyze key reactions in the
reductive nitrogen and sulfur pathway, in lipid syn-
thesis, and they synthesize important secondary
metabolites. Specialized modifications are
leukoplasts, amyloplasts, elaioplasts, and chro-
moplasts, which are characteristic for different tis-
sues, exhibit marked structural differences, and lack
chlorophyll. These organelle forms are involved in
various fundamental biological processes, such as
carbohydrate or lipid storage and plant propaga-
tion. During leaf senescence in angiosperms, chlo-
roplast structures are degraded, temporally form-
ing the last plastid type, gerontoplasts.? In vascular
plants chloroplast biogenesis from less-differenti-
ated organelle forms occurs: in vegetation tips the
differentiation process starts from colorless pro-
plastids. Angiosperms exhibit an additional pathway
for chloroplast biogenesis: grown in darkness, pro-
plastids differentiate to pale-yellow etioplasts with
characteristic paracrystalline internal structures. Upon
illumination, etioplasts develop into chloroplasts. In
addition to light, in dicotyledonous angiosperms the
biogenesis of chloroplasts is also regulated by intrin-
sic developmental signals that control leaf differen-
tiation.> However, in monocots the processes of pri-
mary leaf development and chloroplast development
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are uncoupled.* The common view is that in vascular
plants only mesophyll cells house mature chloro-
plasts, indicating that cell-specific signals are also
important for chloroplast biogenesis.’ Nevertheless,
recent findings demonstrate active, but not fully
differentiated, chloroplasts even in pith cells.t Fi-
nally, the developmental stage of the chloroplast
itself appears to regulate the expression of nuclear
genes coding for plastid proteins.?

There are several established experimental sys-
tems to study chloroplast biogenesis and correlated
cell and organ morphogenesis at the molecular level.

The light-controlled differentiation is studied
during greening of etiolated seedlings. Morphoge-
netic changes occur within a few hours? and are
thus amenable to molecular analysis. Much work
on chloroplast biogenesis in higher plants, particu-
larly on the photocontrol of gene expression, has
therefore been carried out with this etioplast/chlo-
roplast transition.! However, this system is restricted
to angiosperms, and plastid gene regulation during
etioplast/chloroplast transition appears to be differ-
ent from the one during regular proplastid/chloro-
plast transition.?

The Arabidopsis thaliana det] mutant develops
as a light-grown plant even in darkness. The reces-
sive nuclear mutation affects a variety of
light-regulated traits, including leaf development,
plastid morphology, and gene expression. Most
probably, the wild-type der] gene product is a nega-
tive regulator in a signal transduction pathway that
couples leaf and chloroplast development to light
perception. This implies a constitutive expression
of light-regulated genes in cell types where these
genes are normally silent. In line with this model is
the observation that cell cultures of this particular
mutant become green even in the absence of cyto-
kinins, conditions where normally no chloroplast
biogenesis takes place.’
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Leaves of monocots are widely used to study
plastid differentiation processes. Cell division oc-
curs only in a basal meristem, resulting in a gradi-
ent of cells, with increasing age, from the base to
the tip.’ In a diurnal light regime, a continuous
transition of proplastids to chloroplasts occurs in
parallel to the basipetal increase in cell age.

In cereals the formation of plastid ribosomes is
prevented by growth temperatures above 32°C.!!
The ribosome-deficient plastids resemble proplas-
tids in size and structure. They do not differentiate
into chloroplasts, although carotinoids are synthe-
sized, and enzymes for chlorophyll biosynthesis
are functioning, within these plastids.'>** In con-
trast to treating plants with inhibitors of protein
synthesis, the heat-induced deficiency of plastid
ribosomes provides a system for studying interac-
tions between plastids and the cytosol, with mini-
mal risk of toxic side effects or damage by
photodestruction (reviewed by Feierabend and
Berberich!S). Ribosome-deficient plastids can also
be obtained from the barley nuclear mutant
albostrians, with the advantage of ruling out side
effects of elevated temperatures. !¢

Il. PLASTIDS ARE
SEMIAUTONOMOUS ORGANELLES

Plant cells are characterized by three different
genomes that have their own machinery for gene
expression: the prokaryotic ancestors of plastids
and mitochondria lost their autonomy by losing
most of their genes during the establishment of
endosymbiosis.!” Some of these prokaryotic genes
were transferred into the eukaryotic background of
the nucleus. The problems arising for a coordinated
expression of these genes, and the subsequent trans-
port of their products into the ancestral organelle,
are obvious and require the coevolution of three
different genomes in one single cell.'” The
eukaryon achieved its capability of photosynthesis
by a process that started with the engulfment of
autonomous prokaryotic cells, continued with the
establishment of endosymbiosis between eukaryon
and chloroplast, and culminated in the domestica-
tion of virile remnants (chloroplasts) to nongreen
derivatives (proplastids, amyloplasts, gerontoplasts,
chromoplasts, etc.) with specialized functions in
higher plants. Thus, the phenomenon of plastid
differentiation demonstrates the domestication of
the prokaryon by the eukaryon and, finally, the
evolutionary aspect of plant development.

The activity of genes involved in this differen-
tiation of plastids has to be under temporal and
spatial control. Furthermore, these genes have to
respond to multiple extrinsic signals notifying

changes in the environment of the plant. Therefore,
the role and importance of a specific signal, whether
extrinsic or intrinsic, in the complex regulatory
network around chloroplast biogenesis and accom-
panying cell and organ morphogenesis is likely to
differ between the major plant groups.

Based on results from the aurea mutant!$!° and
the ghost mutant® of tomato, the albostrians mu-
tant?! and the albina f17 mutant?? from barley, and
carotinoid-deficient mutants in maize,?® and from
norflurazon treatzd plants,?*? the consensus is now
that the expression of some light-inducible nuclear
genes is modulated by a factor generated by differ-
entiated chloroplasts. This plastidic factor seems to
be responsible for the expression of a certain set of
nuclear genes: genes coding for proteins that are
plastid constituents or that are, at least indirectly,
involved in chloroplast biogenesis.?*-3! These obser-
vations reveal a common trans-acting factor modu-
lating the expression of those nuclear genes that
originally were coded by the prokaryotic DNA of
the ancestors of chloroplasts. Nevertheless, the na-
ture of the postulated plastidic factor is unknown.30.32

A common view about gene regulation during
light-induced chloroplast biogenesis is that it is
transcriptional for nuclear genes, but translational
or posttranslational for plastid genes.’3 Neverthe-
less, the situation seems to be more complex, as
several plastid differentiation processes have been
shown to be accompanied not only by changes in
general transcriptional activity, but also by changes
in the relative transcription rates of individual genes,
indicating the existence of gene-specific mecha-
nisms for transcriptional regulation.! Examples are
the development of proplastids to chloroplasts in
Hordeum and Sorghum,®35 light-dependent trans-
formation of mature barley etioplasts to chloro-
plasts,* amyloplast formation in cultured tobacco
cells,*” and chromoplast formation in tomatoes.38

Several mechanisms for changes in the tran-
scriptional activity of plastid genes during plastid
differentiation have been suggested; changes in the
ptDNA copy number per cell can only confer to the
nonspecific regulation of plastid genes and do not
seem to play a vital role in chloroplast biogenesis.*
Developmentally related changes in DNA methy-
lation were observed in some studies *3 but not in
others.®40 Likewise, variations in the “onformation
of the plastid DNA template, and dif: rences in the
three-dimensional structure of plas:  nucleoids,*!
have not been unequivocally prc 1 yet. Differ-
ences in promoter strength andcor  tition, changes
in RNA polymerase to template  .0s.>* and differ-
ent half-lives of mRNAs ma+ .fluence transcrip-
tion rates and cause accumv - ion rates that differ
relative to each other as weil.*>% However, such



models are based on the hypothesis that all DNA
circles in a given plastid are, to the same extent,
physiologically active and that the in vivo situation
is reflected by our in vitro data. In addition to these
theories are two just emerging models for differen-
tial gene regulation.

The first model is that changes in the molecular
composition of the transcriptional apparatus itself
can cause differences in gene expression and the
subsequent plastid differentiation processes. There
are two possibilities: either these changes in gene
expression can be caused by changes in the popu-
lations of several putative RNA-polymerases, or a
varying specificity can be conferred, as in prokary-
otes, by sigma factors associated with a core
RNA-polymerase.

Plastid DNA encodes the rpo genes, with all
polypeptides resembling the bacterial RNA-
polymerase, and these genes are transcribed and
translated.** Additionally, first evidence is avail-
able about sigma-like factors in the plastids of
higher plants.*>47 Nevertheless, plastid extracts
contain two fractions with RNA-polymerase activ-
ity, in all plants examined so far, whether alga or
weed. These fractions differ from each other in
biochemical terms (soluble vs. bound, molecular
weight, composition) and were reported to differ in
their preference to transcribe certain plastid genes,
although these reports have given conflicting re-
sults.33444853 Whether the two fractions indeed
contain different enzymes or just different states of
one common core enzyme with various auxiliary
proteins is still unknown.* However, in the last
decade there have been hints for a nuclear-encoded
plastidic RNA-polymerase.5*5" Utilizing barley with
ribosome-deficient plastids, evidence was solidi-
fied for a plastidic RNA-polymerase translated on
extraplastidic ribosomes.!S This nuclear-encoded
enzyme seems to be constitutively active in pro-
plastids, chloroplasts, and senescing plastids,
whereas the soluble fraction, possibly encoded by
the prokaryotic rpo genes, develops activity solely
in differentiated chloroplasts,’®% indicating a dif-
ferential function of two different RNA-poly-
merases, at least in barley. Nevertheless, transcript
levels of plastid genes coding proteins of the photo-
synthetic apparatus only accumulate during chlo-
roplast biogenesis, pointing to the importance of
posttranscriptional regulation.

The second model is that RNA-editing may be
a mechanism involved in the differential regulation
of gene expession. Editing was observed with kine-
toplast RNA, mitochondrial, and nuclear genes.60-62
All groups of plastid genes can be affected as
well.5365 The main function of RNA editing is the
creation of an mRNA that can be translated into a
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biologically active protein either by creating an
initiator codon or by restoring codons for con-
served amino acids. However, at the moment there
are only first hints that differential mRNA editing
really regulates gene expression. If so, quantitative
Northern blots as well as in vitro transcription as-
says would not necessarily reflect the respective in
vivo situation. According to our present knowl-
edge, all editing processes in higher plants seem to
bring down the peptide sequences to a consensus
that is represented by the liverwort Marchantia
polymorpha. This bryophyte is the first plant in
which the total nucleotide sequence of ptDNA, as
well as mtDNA, has been determined.%57 Our analy-
ses of mitochondrial and plastid genes of the moss
Phys-comitrella patens reveal that moss and liver-
wort share significant gene homology different from
higher plants.®*72 Thus, RNA-editing of plastid
genes might be a regulatory mechanism evolved
during the “domestication of chloroplasts.”

Analyzing plastid differentiation we find a com-
plex informational network between at least two
different genomes in a single cell across several
membranes.!” Therefore, we have to dismiss the
sedative simplification that each plant species re-
acts the same way as any other, neglecting the
ongoing coevolution of these genomes.!” For ex-
ample, the plastid genes of monocots and dicots
diverged 100 to 200 million years ago.” Why should
they use the same dialect in their communication
with nuclear genes?

lll. PLASTIDS ARE TARGETS FOR
CYTOKININ ACTION

Since the pioneering work of Mothes,’ plastids
have seemingly been a primary target of cytokinin
action; numerous papers reported on the hormone-
stimulated synthesis of chloroplast components
during etioplast/chloroplast transition in greening
seedlings, cotyledons, or tissue cultures. In detached
leaves and in cell culture, both depleted in endog-
enous cytokinin, exogenously applied hormone
stimulates this transition in light and in darkness. In
contrast, cytokinins do not influence structural or
physiological plastid parameters in intact plants.
Likewise, cytokinins retard senescence in detached
leaves, including maintenance, or even promote
the synthesis of plastid components, but have no
effect on senescence retardation of albino barley
leaves, or in N-deficient, chlorophyll-free detached
leaves of tobacco (reviewed by Parthier’).

Cytokinin-induced, as well as light-induced,
chloroplast biogenesis is at the molecular level
characterized by the accumulation of transcripts
from plastid genes. A number of polyadenylated
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transcripts exhibit enhanced steady-state levels in
plants treated with naturally occurring cytokinins
or with their nonphysiological substitutes kinetin
or benzyladenine, as well. Interestingly, the hor-
mone seems to act only on a certain set of nuclear
genes: genes coding for proteins that are plastid
constituents or that are at least indirectly involved
in chloroplast biogenesis.3!77-8 These are the same
eukaryotic remnants of prokaryotic ancestors that
were suspected to be regulated by a yet-unknown
plastidic factor. Nevertheless, this factor is trigger-
ing the expression of the rbcS and cab genes to a
much higher extent than the expression of the gene
coding chlorophyll synthetase.’! Furthermore, this
factor seems not to interfere with light responsive-
ness of nuclear genes, at least in monocots.3?

It is still a controversy whether the enhance-
ment of steady-state transcript levels of cytokinin-
responsive genes is due to enhanced transcription
rates or posttranscriptional events, although post-
transcriptional regulation®’ is favored. Translational
control by cytokinins has been described as polyri-
bosome formation,3 modification of the secondary
structure of poly(A*)RNA, which leads to “un-
masking” of the message,? phosphorylation of ri-
bosomal proteins,® or regulation of tRNA activ-
ity.%7 Posttranslational control may be conferred by
retarded protein degradation.®® Stimulation of cor-
rect RNA editing might be another posttranscrip-
tional mechanism modulated by cytokinin.

Already the early reports of Stetler and Laetsch®?
and Seyer et al.”® describe a correlation between the
two cellular processes promoted by cytokinin: the
cell cycle and chioroplast biogenesis. In one case
an inverse relationship between chloroplast differ-
entiation and tissue growth was observed (either
chloroplasts differentiated or cells divided); in the
latter a restriction of cytokinin action on chloro-
plast biogenesis, to the cell growth phase, was
found: cytokinin added during the stationary phase
was inactive. A similar correlation was described
by Suzuki et al.,°! who found preferential synthesis
of plastid DNA prior to that of nuclear DNA, sug-
gesting that ptDNA is synthesized and stored in
large amounts to prepare for the following multiple
cell divisions without organelle DNA synthesis.
Thus, a communication between genome and
plastome does exist, and cytokinin presumably in-
terferes with it.

Repeatedly, a coaction of cytokinin and light, in
plastid differentiation and multiplication, has been
observed.” Even in molecular terms, a coaction of
light and cytokinin is detectable.®2% Molecular
genetic analysis of the regulation of cytokinin-
responsive nuclear genes is scarce, since, up to
now, no gene expression has been known to be

triggered specifically by cytokinin. Thus, the vast
amount of data on light-regulated genes® has to
serve as a guideline for further characterizing the
cytokinin stimulus on gene expression. In dicots,
the expression of several “photogenes” (e.g., rbcS,
rbcL) is seen only after exposure of the plants to
light, leading to the idea that light is required for
the expression of these genes. Leaf and chloroplast
development also require exposure to light, again
suggesting a control mechanism.* In monocots the
situation is quite different, as primary leaf develop-
ment and chloroplast biogenesis are uncoupled.
Nevertheless, leaf expansion and the expression of
several “photogenes” still seem to be coupled; in
contrast to dicots, they occur at near-light-grown
levels, even in dark-grown plants.

The most extensively studied light-responsive
genes are rbcS and cab. Expression of these genes
coding for the small subunit of ribulose-
1,5-bisphosphate carboxylase/oxygenase (rbcS) and
the chlorophyll a/b-binding proteins (cab), respec-
tively, is regulated by light at the transcriptional
level, by sets of cis-acting elements and trans-acting
factors. Moreover, their expression is dependent on
genome—plastome interaction as well as on cytoki-
nin. The light signal is mediated via phytochrome,
although the expression of many light-responsive
genes is modulated by more than one wavelength,
e.g., blue light. In fact, there is increasing evidence
that blue light plays an important role in modulat-
ing plastid differentiation and the accompanying
expression of plastome- as well as genome-coded
genes for plastid polypeptides.®'® A plastid pro-
moter has been characterized that specifically re-
sponds to blue light: the light-responsive promoter
(LRP) of the psbD-psbC operon.'® While genes
such as rbcL, atpB, and 16 S rRNA are fully active
in dark-grown barley, the LRP has evolved a
light-regulated specificity unlike other chloroplast
promoters. Interestingly, LRP is highly conserved
in monocots, less in dicots, and was not found in
liverwort chloroplast DNA, indicating differences
in light-induced gene expression between the ma-
jor plant groups. The same indication was given by
analysis of the nuclear phytochrome gene of the
moss Ceratodon purpureus. In contrast to all known
phytochromes, the 3" terminus of phyCer codes for
a putative polypeptide with striking homology to
protein kinases. % These results suggest that phyto-
chrome in moss is a light-regulated protein kinase,
revealing a simple transduction pathway for the
light stimulus. Protein kinases are prime candidates
for members of the signal transduction pathway for
several stimuli in all kinds of plants; e.g., Kulaeva
et al. proposed that cytokinin-binding proteins
(CBPs) in barley may have protein kinase activity. 13



Both light-responsive genes rbcS and cab are not
single-copy genes, but represent multigene families
with members possessing individual responsiveness
to light in an organ- and developmental-specific
manner.!%-1% An interaction between light respon-
siveness and an endogenous developmental pro-
gram has also been proven for the expression of
plastome-encoded genes.!®110 Furthermore, Eckes
et al. described the organ-specific expression of
three cDNA clones from potato, that are regu-
lated by light and are correlated with chloroplast
development.

Regulatory circuits are even more complex; in
addition to being cytokinin modulated, develop-
mentally programmed, and light responsive, an
endogenous oscillator also controls the expression
of the multigene families of cab and rbcS. Thus,
mRNA levels of these genes exhibit distinct circa-
dian rhythms,!12113 as do other light-responsive
genes such as those coding for nitrate reductase and
phosphoenolpyruvate carboxylase.!!#!!5 Further
extrinsic and intrinsic signals interfering with cyto-
kinin action on chloroplast biogenesis and accom-
panying gene expression are temperature!!® and
auxin.!\?

Bearing these complex parameters in mind, it is
small wonder that reports on the molecular genetic
analysis of cytokinin action are scarce. However,
cytokinins seem to interfere with, or modulate, the
cooperation between the two genomes, but the
molecular mechanisms of this regulatory circuit
are far from being understood. Nevertheless, the
use of mutants with altered response to external
cytokinin as well as ipz-transformants!!8!1° should
facilitate the molecular analysis of cytokinin action.

IV. THE MOLECULAR ANALYSIS OF
CHLOROPLAST DIVISION

Since Schimper, 110 years ago, suggested the
continuity of plastids,'? studies on the number,
orientation, and division of chloroplasts have been
undertaken to trace the mechanisms that provide
for their nearly equal distribution into daughter
cells during cytokinesis.!?! It is now generally as-
sumed that the different plastid types can multiply
by constriction division.!?>12* Additionally, spe-
cies- as well as organ-specific correlations between
nuclear DNA content and plastid number per cell
are well documented.!> However, genes involved
in plastid division have not been identified yet,
although they have been known from prokaryotes
for nearly 30 years.'?61?7 From inhibitor studies it
was postulated that these genes are encoded by
nuclear DNA in higher plants,'?® an indication sup-
ported by a nuclear mutant of Arabidopsis thaliana,
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hampered in chloroplast division.'?® Obviously,
these yet-unknown genes are members of the regu-
latory network around plastid differentiation, wo-
ven by nuclear and plastid genes.?130.131

The genome-plastome interaction in chloroplast
multiplication can be seen in electron micrographs,
as division appears to be a two-step process: (1) it
is preceded by events within the plastid, such as the
disintegration of starch grains and thylakoid mem-
branes at the prospective constriction site, and is
then followed by (2) the occurence of a plastid
dividing ring (PD ring) outside the plastid around
this constriction. This cytoplasmic PD ring is com-
posed of a bundle of actin-like filaments and can be
found around dividing plastids of red, brown, and
green algae, mosses and fems (archegoniates), and
gymnosperms. In angiosperms, the plastid dividing
ring is a doublet that is composed of an outer ring
and an inner ring. In any case plastid division oc-
curs by contraction of the filament bundle (re-
viewed by Kuroiwal!3?),

We have concentrated our studies on the mode
of action of the physiological cytokinin N5-(A%-iso-
pentenyl)adenine on differentiation of the haploid
protonema of the moss Physcomitrella patens.!33
Special interest is directed at the mutant PC22,
which is defective in chloroplast division, and thus
the majority of cells possesses only one chloroplast
per cell (Figures 1 and 2). Nevertheless, these
macrochloroplasts have a normal internal fine struc-
ture (Figure 3). Under white-light conditions, they
are severed during cell division by the enlarging
cell plate, this being a, so far, unknown mechanism
of plastid division. The defect of this particular
mutant can be partially compensated for by exog-
enous cytokinin' and by blue-light treatment.3!
Cytokinin-induced chloroplast division is accom-
panied by a transient accumulation of several plas-
tid polypeptides and a dramatic increase in rbcL
mRNA levels. Such molecular changes cannot be
detected under blue-light conditions with already
divided chloroplasts, indicating a coaction of cyto-
kinin and light quality in chloroplast division at the
molecular level.13

Restriction Fragment Length Polymorphism
(RFLP) analyses revealed methylation of a puta-
tive regulatory gene (zfpA gene'*®) near the rbcL
in chloroplast mutant PC22,'35 as a possible form
of transcriptional control in plastid differentia-
tion. We sequenced the 3’ region of the wild-type
rbcL and found a tRNA gene that was, so far, only
known from the ptDNA of the liverwort
Marchantia,®® and an open reading frame (ORF)
of 948 bp with homology to the zfpA from Pisum.
The deduced polypeptide of this ORF contains a
sequence (—Cys—X2-Cys-X15-Cys—X2-Cys-) that
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Figure 14-1

Electron micrographs of a cross-section through one protonema cell of (a) the wild type

of Physcomitrella patens and (b) the chloroplast mutant PC22 derived from it. Note the cup-shaped

giant chioroplast in the mutant.

may fold to form a zinc-finger element.®® These
elements can interact with nucleic acids, thereby
revealing a regulatory function of the respective
polypeptide. However, the function of this protein
is still unknown and is a subject of debate.!37:138
Nevertheless, sequence comparison revealed that
this protein contains two distinct domains: the

hydrophilic zinc-finger zlement and a hydrophobic
C-terminal region.® [oreover, zfpA may be a
marker gene for ple d evolution, as it is highly
homologous within 2 archegoniate: and dicots,
respectively, but ¢ _ers significant!y between the
two groups.*® F' iermore, it is mutilated in the
plastid DNA of onocots. In the moss we found



Figure 14-1

(continued).

prokaryotic promoter consensus sequences (-10,
-35, Shine Dalgamno) as well as three TATA boxes
that are known to be typical eukaryotic promoter
sequences. Additionally, these elements are in-
volved in the differential control of the Sinapis
alba plastid psbA gene, depending on the state of
plastid differentiation.’*® However, a multiplica-
tion of TATA boxes has not previously been re-
ported for plastid promoters and reveals a complex
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mechanism of transcriptional control. A gene-
specific hybridization probe detected three tran-
scripts of low abundance with apparent molecular
weights larger than the gene. RNA accumulation
patterns differed between wild-type and chloro-
plast mutants. Additionally, under the influence of
cytokinin, the high-molecular-weight transcript of
the mutant decreased in amount (Figure 4). Using
riboprobes we ensured that these transcripts were
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Figure 14-2 Electron micrograph of a longitudinal section through a PC22 protonema tip cell with

one giant chloroplast.

encoded by the same ptDNA strand, thus being
immature transcripts including zfpA sequences.
We performed Northern blots for several plastid
genes with the Physcomitrella wild type, and two
cytokinin-sensitive mutants derived from it (PC22
and P24), P24 not obviously being a chloroplast
mutant. In every case we found an accumulation of
immature plastid transcripts in both mutants (e.g.,
Figure 5). The amounts of high-molecular-weight
transcripts were less in the wild type, as well as in
mutant protonemata treated with cytokinin.'4!
Reports on qualitative changes in the RNA pro-
cessing patterns of plastid genes are infrequent,

although most of them are organized in polycis-
tronic transcription units, as in the ancestral bacte-
rial operons.!#>1% Evidence came from light-
induced chloroplast development in mustard,!®
maize,'” and barley.!*® Likewise, in an Oenothera
plastome, mutant processing of plastid proteins,
whether encoded by ptDNA or by nucDNA, was
affected.’” Thus, processing of mRNAs and pro-
teins might be one way for cytokinins to modulate
plastid gene expression posttranscr ntionally.
Obviously. Western analyses vill need to be
employed to prove changes in zfr -protein amounts
upon cytokinin treatment of th: moss mutants, in
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e

Figure 14-3 Electron micrograph of a PC22 protonema cell showing a normal internal fine structure
of the mutant chloroplast.
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a: zfp A-transcripts

WT
c 3 c 3 7 c 3 12

b:  Quantification of zfp A-transcripts

WT PC 22

W64k BH:17k O :

Figure 14-4 Northern analysis of Physcomitrella zfpA transcripts. [WT: wild-type; PC22: cytokinin-
sensitive chloroplast mutant; P24: cytokinin-sensitive mutant; C: protonemata grown 12 days without
cytokinin; 3: protonemata after 9 days of culture with additional 3 days in cytokinin; 7: protonemata
arter 5 days of culture with additional 7 days in cytokinin; 12: protonemata after 12 days in cytokinin
(compare to References 135 and 154).] (a:) Northern blot using a radioactive zfpA-specific gene
probe. (b:) Densitometric quantification of the autoradiogram shown in (a). (Unit: pixel x 1000.

Transcript sizes are given in kilobases.)

Figure 14-5 Northern analysis of Physcomitrella
psbB transcripts. [WT: wild-type; PC22: cytokinin-
sensitive chloroplast mutant; P24: cytokinin-sensitive
mutant; C: protonemata grown 12 days without cyto-
kinin; 3: protonemata after 9 days of culture with
additional 3 days in cytokinin; 7: protonemata after 5
days of culture with additional 7 days in cytokinin; 12:
protonemata after 12 days in cytokinin (compare to
References 135 and 154).] (Transcript sizes are given

in kilobases.)

order to correlate them to the proposed enhancing
effect on transcript processing. Furthermore, the
postulated interaction of zfpA protein with nucleic
acids has to be proven. However, we do not yet
know if the mutation affecting plastid division in
this particular moss mutant is located on nucDNA
or on ptDNA.!% Furthermore, most of the data on
plastid gene regulation during chloroplast develop-

psb B-transcripts

WT

2.7 —
2.3

1.55—
1.5 —

ment result from in vitro studies, and there is a need
for plastid transformation systems to study gene
regulation in vivo. First reports the successful
transformation of the giant chivioplast of Chlamy-
domonas,’! as well as of higher-plant chloro-
plasts,'5215 demonstrate the feasibility of such an
approach. The macrochloroplast of PC22 seems to
be a prime candidate for chloroplast transformation



of multicellular plants, as it is amenable for micro-
injection.!3* Thus, we will try to unravel the infor-
mational network around cytokinin-induced
chloroplast division, with mutant curing experi-
ments. Furthermore, we will attempt to transform
moss mutants with ipz constructs, in order to
manipulate endogenous cytokinin concentrations.
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