
1

Center for Teaching, Research and Learning
Research Support Group

American University, Washington, D.C.
 Hurst Hall 203

rsg@american.edu
(202) 885-3862

Introduction to MATLAB
__

WORKSHOP OBJECTIVE:
This course provides students with basic tools needed to work with MATLAB.

LEARNING OUTCOMES:

1. Orient to MATLAB interface and help functions
2. Using numbers and variables
3. Using matrices and arrays
4. Basic MATLAB programming

I. STARTING MATLAB

Windows system
You can start MATLAB by double-clicking on the MATLAB icon or invoking the application from the Start
menu of Windows. The main MATLAB window, called the MATLAB Desktop (command window), will
then pop-up.

II. OBTAINING HELP

• Help and information on Matlab commands can be found in several ways:
o from the command line by using the “help topic” command
o from the separate Help window found under the Help menu or
o from the Matlab helpdesk stored on a disk or CD-ROM

• Demonstrations are available as well and there is a comprehensive set of demos available by typing
the command: demo

• Note however that this command will clear values of all current variables.

III. DESKTOP VIEW

• The desktop manages tools differently from documents. The Command History and Editor are
examples of tools, and an M-file is an example of a document, which appears in the Editor tool.

• Desktop menu allows for resizing, opening and closing, docking, grouping and other operations of
the tools.

• It also contains some of the predefined layouts. For example default Matlab appearance is restored by
going to: Desktop > Desktop Layout > Default

IV. NUMBERS AND FORMATS

mailto:rsg@american.edu

2

• Matlab recognizes several different kinds of numbers: integer, real, complex, Inf (result of dividing
by zero), and NaN – Not a Number (result of 0/0)

• Number formats are controlled by the “format” command. Full list is available by typing
>>help format

V. VARIABLE NAMES

• Variable names consist of any number of letters, digits or underscores. Spaces are not allowed. Also,
note that Matlab is case sensitive; so “Beta” and “beta” are not the same variable.

• Text can be assigned to variables by using single quotes around the text you want to assign to a
variable.

o Ex: >>b = ‘this is a variable’
• Note: MATLAB provides three basic types of variables:

o Local Variables
o Global Variables
o Persistent Variables

• Please refer to the Help menu in Matlab for further discussion on use and difference between these
types.

• If the text includes a single quote, use two single quotes within the definition.

• otherText = 'You''re right'

• otherText =
• 'You're right'

VI. MATRICES AND ARRAYS

• MATLAB is an abbreviation for "matrix laboratory." While other programming languages mostly work with
numbers one at a time, MATLAB® is designed to operate primarily on whole matrices and arrays.

•
• All MATLAB variables are multidimensional arrays, no matter what type of data. A matrix is a two-

dimensional array often used for linear algebra.
•
• A matrix is a two-dimensional numeric array that represents a linear transformation. Informally, the

terms matrix and array are often used interchangeably.
• Arithmetic operations on arrays are done element by element. Thus, addition and subtraction are the

same for arrays and matrices, but multiplication is different. Matlab notation dealing with it
discussed below.

Generating matrices
To enter a matrix into Matlab we can type it in row by row: 3
>> A = [1 3 5
4 5 6]
Or by separating rows by semi-colons rather than a new line:
>> B = [0 1 2; 3 4 5]
There are four functions that generate basic matrices:
zeros - All zeros
X = zeros(n)
ones - All ones

3

Y = ones(n)
Y = ones(m,n)
rand - Uniformly distributed random elements
W= rand(n)
randn – Normally distributed random elements
Y = randn(n)
Y = randn(m,n)

Array operations
The list of operators includes:
+ Addition
- Subtraction
 .* Element-by-element multiplication
./ Element-by-element division
.\ Element-by-element left division
.^ Element-by-element power
.' Unconjugated array transpose
To transpose a matrix, use a single quote ('):

a'

ans =

 1 4 7
 2 5 8
 3 6 10

Inverse

Inverse(a)

To perform element-wise multiplication rather than matrix multiplication, use the .* operator:

p = a.*a

p =

 1 4 9
 16 25 36
 49 64 100

The matrix operators for multiplication, division, and power each have a corresponding array operator that
operates element-wise. For example, raise each element of a to the third power:

a.^3

ans =

 1 8 27
 64 125 216
 343 512 1000

4

‘ Matrix/Array Conjugated transpose

Concatenating matrices
Matrix concatenation is the process of joining one or more matrices to make a new matrix. The brackets []
operator discussed earlier in this section serves not only as a matrix constructor, but also as the MATLAB
concatenation operator. The expression C = [A B] horizontally concatenates matrices A and B. The
expression C = [A; B] vertically concatenates them.
This example constructs a new matrix C by concatenating matrices A and B in a vertical direction:

Concatenation
Concatenation is the process of joining arrays to make larger ones. In fact, you made your first array by
concatenating its individual elements. The pair of square brackets [] is the concatenation operator.

A = [a,a]
A =

 1 2 3 1 2 3
 4 5 6 4 5 6
 7 8 10 7 8 10

Concatenating arrays next to one another using commas is called horizontal concatenation. Each array must
have the same number of rows. Similarly, when the arrays have the same number of columns, you can
concatenate vertically using semicolons.

A = [a; a]

A =

 1 2 3
 4 5 6
 7 8 10
 1 2 3
 4 5 6
 7 8 10

A = ones(2, 5)*6; % 2-by-5 matrix of 6's
B = rand(2, 5); % 2-by-5 matrix of random values
C = [A; B] % Vertically concatenate A and B
C =
6.0000 6.0000 6.0000 6.0000 6.0000
6.0000 6.0000 6.0000 6.0000 6.0000
0.9501 0.4860 0.4565 0.4447 0.9218
0.2311 0.8913 0.0185 0.6154 0.7382

Some built in functions to concatenate matrices are:
cat - Concatenate matrices along the specified dimension

5

Sytnax:
C = cat(dim, A, B) where dim=1 is for columns and dim=2 for rows
Example:
C = cat(1, A, B)
horzcat - Horizontally concatenate matrices
Sytnax:
C = horzcat (A1, A2, ...)
vertcat - Vertically concatenate matrices
Sytnax:
C = vertcat(A1, A2, ...)
repmat - Create a new matrix by replicating and tiling existing matrices
Syntax:
repmat(M, v, h) : Matlab will replicate matrix M v times vertically and h times horizontally
blkdiag - Create a block diagonal matrix from existing matrices

The colon operator
The colon operator (first:last) generates a 1-by-n matrix (or vector) of sequential numbers from the first value
to the last. The default sequence is made up of incremental values, each 1 greater than the previous one:
A = 10:15
A =
10 11 12 13 14 15 5
The numeric sequence does not have to be made up of positive integers. It can include negative numbers and
fractional numbers as well:
A = -2.5:2.5
A =
-2.5000 -1.5000 -0.5000 0.5000 1.5000 2.5000
By default, MATLAB always increments by exactly 1 when creating the sequence, even if the ending value
is not an integral distance from the start:
A = 1:6.3
A =
1 2 3 4 5 6
Also, the default series generated by the colon operator always increments rather than decrementing. The
operation shown in this example attempts to increment from 9 to 1 and thus MATLAB returns an empty
matrix:
A = 9:1
A =
Empty matrix: 1-by-0

Using the colon operator with a step value
To generate a series that does not use the default of incrementing by 1, specify an additional value with the
colon operator (first:step:last). In between the starting and ending value is a step value that tells MATLAB
how much to increment (or decrement, if step is negative) between each number it generates.
To generate a series of numbers from 10 to 50, incrementing by 5, use
A = 10:5:50
A =
10 15 20 25 30 35 40 45 50
You can increment by noninteger values. This example increments by 0.2:
A = 3:0.2:3.8
A =
3.0000 3.2000 3.4000 3.6000 3.8000

6

To create a sequence with a decrementing interval, specify a negative step value: 6
A = 9:-1:1
A = 9 8 7 6 5 4 3 2 1

Accessing single elements
To reference a particular element in a matrix, specify its row and column number using the following syntax,
where A is the matrix variable. Always specify the row first and column second:
A(row, column)

Every variable in MATLAB® is an array that can hold many numbers. When you want to access selected
elements of an array, use indexing.

For example, consider the 4-by-4 magic square A:

A = magic(4)

A =

 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

There are two ways to refer to a particular element in an array. The most common way is to specify row and
column subscripts, such as

A(4,2)

ans =

 14

test = A(4,5)

Index exceeds matrix dimensions.

However, on the left side of an assignment statement, you can specify elements outside the current dimensions.
The size of the array increases to accommodate the newcomers.

A(4,5) = 17

A =

 16 2 3 13 0
 5 11 10 8 0
 9 7 6 12 0
 4 14 15 1 17

The colon alone, without start or end values, specifies all of the elements in that dimension. For example, select
all the columns in the third row of A:

A(3,:)

ans =

 9 7 6 12 0

The colon operator also allows you to create an equally spaced vector of values using the more general
form start:step:end.

7

B = 0:10:100

B =

 0 10 20 30 40 50 60 70 80 90 100

To refer to multiple elements of an array, use the colon operator, which allows you to specify a range of the
form start:end. For example, list the elements in the first three rows and the second column of A:

A(1:3,2)

ans =

 2
 11
 7

Specifying all elements of a row or column
The colon by itself refers to all the elements in a row or column of a matrix. Using the following syntax, you
can compute the sum of all elements in the second column of a 4-by-4 magic square A:
>> sum(A(:,2))
ans =
12

Sorting matrix elements
The sort function sorts matrix elements along a specified dimension. The syntax for the function is
sort(matrix, dimension)
To sort the columns of a matrix, specify 1 as the dimension argument. To sort along rows, specify dimension
as 2.

Sorting the data in each row
Use issorted to sort data in each row. Using the example above, if you sort each row of A in descending
order, issorted tests for an ascending sequence. You can flip the vector to test for a sorted descending
sequence:

Sorting the data in each column
The sortrows function keeps the elements of each row in its original order, but sorts the entire row of
vectors according to the order of the elements in the specified column. 7

VII. BASIC PROGRAMMING COMPONENTS

MATLAB expressions for string evaluation
eval
The eval function evaluates a string that contains a MATLAB expression, statement, or function call. In its
simplest form, the eval syntax is
eval('string')
feval
The feval function differs from eval in that it executes a function rather than a MATLAB expression. The
function to be executed is specified in the first argument by either a function handle or a string containing the
function name.

8

Example:

>> sin(5)
>> feval(@sin,5)

fun = {@sin; @cos; @log};
k = input('Choose function number: ');
x = input('Enter value: ');
feval(fun{k}, x)

VIII. PROGRAM CONTROL STATEMENTS

If, else, ifelse
if evaluates a logical expression and executes a group of statements based on the value of the expression. In
its simplest form, its syntax is
if logical_expression
statements
end
if evaluates a logical expression and executes a group of statements based on the value of the expression. In
its simplest form, its syntax is
if logical_expression
statements
end

Loop control – for, while, continue, break
The for loop executes a statement or group of statements a predetermined number of times. Its syntax is:

for index = start:increment:end
statements
end
The default increment is 1. You can specify any increment, including a negative one. For positive indices,
execution terminates when the value of the index exceeds the end value; for negative increments, it
terminates when the index is less than the end value.
For example, this loop executes five times.
for n = 2:6
x(n) = 2 * x(n - 1);
end

The while loop executes a statement or group of statements repeatedly as long as the controlling expression
is true (1). Its syntax is
while expression
statements
end

If the expression evaluates to a matrix, all its elements must be 1 for execution to continue. To reduce a
matrix to a scalar value, use the all and any functions.
For example, this while loop finds the first integer n for which n! (n factorial) is a 100-digit number.
n = 1;
while prod(1:n) < 1e100
n = n + 1; end

9

IX. FUNCTIONS AND SCRIPTS

A Matlab script is an ASCII text file that contains a sequence of Matlab commands (expressions and
assignments). To execute all of the lines of the file sequentially just type the filename at the command
prompt.
Any text editor or program editor can be used to create scripts, but you must make sure that scripts are saved
as simple text documents. Matlab has a built-in 9 text editor which will automatically save files as ASCII
text file. Also, when naming script files suffix “.m” is needed (ex. “myprogram.m”).
M-files can be scripts that simply execute a series of MATLAB statements, or they can be functions that also
accept input arguments and produce output.
MATLAB scripts:
-Are useful for automating a series of steps you need to perform many times.
-Do not accept input arguments or return output arguments.
-Store variables in a workspace that is shared with other scripts and with the MATLAB command line
interface.
MATLAB functions:
-Are useful for extending the MATLAB language for your application.
-Can accept input arguments and return output arguments.
-Store variables in a workspace internal to the function.

Basic parts of an m-file
This simple function shows the basic parts of an M-file. Note that any line that begins with % is not
executable:

function f = fact(n) Function definition line
% Compute a factorial value. H1 line
% FACT(N) returns the factorial of N, Help text
% usually denoted by N!
% Put simply, FACT(N) is PROD(1:N). Comment
f = prod(1:n); Function body

Both functions and scripts can have all of these parts, except for the function definition line which applies
to functions only.
Note:
1) If a MATLAB command is followed by a semicolon the output associated is suppressed. 2) The variables
defined in the script remain in the workspace even after the script finishes running.

Scripts
Scripts are the simplest kind of M-file because they have no input or output arguments. They are useful for
automating series of MATLAB commands, such as computations that you have to perform repeatedly from
the command line. 10
Scripts share the base workspace with your interactive MATLAB session and with other scripts. They
operate on existing data in the workspace, or they can create new data on which to operate. Any variables
that scripts create remain in the workspace after the script finishes so you can use them for further
computations. You should be aware, though, that running a script can unintentionally overwrite data stored in
the base workspace by commands entered at the MATLAB command prompt.
Simple Script Example
These statements calculate rho for several trigonometric functions of theta, then create a series of polar plots:
% An M-file script to produce % Comment lines

10

% "flower petal" plots
theta = -pi:0.01:pi; % Computations
rho(1,:) = 2 * sin(5 * theta) .^ 2;
rho(2,:) = cos(10 * theta) .^ 3;
rho(3,:) = sin(theta) .^ 2;
rho(4,:) = 5 * cos(3.5 * theta) .^ 3;
for k = 1:4
polar(theta, rho(k,:)) % Graphics output
end
Try entering these commands in an M-file called petals.m. This file is now a MATLAB script. Typing petals
at the MATLAB command line executes the statements in the script.
After the script displays a plot, press Enter or Return to move to the next plot. There are no input or output
arguments; petals creates the variables it needs in the MATLAB workspace. When execution completes, the
variables (i, theta, and rho) remain in the workspace. To see a listing of them, enter „whos‟ at the command
prompt.

Functions
Functions are program routines, usually implemented in M-files, that accept input arguments and return
output arguments. They operate on variables within their own workspace. This workspace is separate from
the workspace you access at the MATLAB command prompt. 11
Each M-file function has an area of memory, separate from the MATLAB base workspace, in which it
operates. This area, called the function workspace, gives each function its own workspace context.
While using MATLAB, the only variables you can access are those in the calling context, be it the base
workspace or that of another function. The variables that you pass to a function must be in the calling
context, and the function returns its output arguments to the calling workspace context. You can, however,
define variables as global variables explicitly, allowing more than one workspace context to access them.
You can also evaluate any MATLAB statement using variables from either the base workspace or the
workspace of the calling function using the evalin function. See Extending Variable Scope for more
information.

Simple function example
The average function is a simple M-file that calculates the average of the elements in a vector:
function y = vector_average(x)
% VECTOR_AVERAGE Mean of vector elements.
% VECTOR_AVERAGE(X), where X is a vector, is the mean of vector
% elements. Nonvector input results in an error.
[m,n] = size(x);
if (~((m == 1) | (n == 1)) | (m == 1 & n == 1))
error('Input must be a vector')
end
y = sum(x)/length(x); % Actual computation

Try entering these commands in an M-file called average.m. The average function accepts a single input
argument and returns a single output argument. To call the average function, enter
z = 1:99;
vector_average(z)
ans =50

X. OTHER NOTES

11

MATLAB is available on computers in the Hurst 202, 203 labs and in Anderson Computing Labs.

For a full list of our other workshops, go to http://www.american.edu/ctrl/rsgevents.cfm

Assistance with MATLAB is also available in the CTRL lab during normal business hours. For more
information, go to http://www.american.edu/ctrl/lab.cfm

http://www.american.edu/ctrl/rsgevents.cfm
http://www.american.edu/ctrl/lab.cfm

	Concatenation

