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part of their constructive, engaged and reflective citizenship. 
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Introduction 
In PISA 2015, mathematics will be assessed as a minor domain, providing an opportunity to make 
comparisons in student performance over time. This framework continues the description and 
illustration of the PISA mathematics assessment as set out in the 2012 framework, when mathematics 
was re-examined and updated for use as the major domain in that cycle.  

For PISA 2015, computer-based assessment will be the primary mode of delivery for all domains, 
including mathematical literacy. However, paper-based assessment instruments will be provided for 
countries choosing not to test their students by computer. The mathematical literacy component for 
both the computer-based and paper-based instruments will comprise of the same intact clusters of 
mathematics trend items. The number of trend items in both minor domains will be increased, 
therefore increasing the construct coverage whilst reducing the number of students responding to each 
question. This design is intended to reduce potential bias whilst stabilising and improving the 
measurement of trend. 

As the computer-based assessment of mathematics (CBAM) was an optional domain for 2012 and 
was not taken by all countries, it is not part of the mathematical literacy trend. Therefore CBAM items 
will not be included in the 2015 assessment where mathematical literacy is a minor domain, despite 
the change in delivery mode. 

The framework has been updated to reflect the change in delivery mode, including a discussion of the 
considerations of transposing paper items onscreen and examples of how that might look. The 
definition and constructs of mathematical literacy however, remain unchanged and consistent with 
2012.  

The PISA 2015 mathematics framework is organised into several major sections. The first section, 
“Definition of Mathematical Literacy,” explains the theoretical underpinnings of the PISA 
mathematics assessment, including the formal definition of the mathematical literacy construct. The 
second section, “Organisation of the Domain,” describes three aspects: a) the mathematical processes 
and the fundamental mathematical capabilities (in previous frameworks the “competencies”) 
underlying those processes. b) The way mathematical content knowledge is organised in the PISA 
2012 framework, and the content knowledge that is relevant to an assessment of 15-year-old students. c) 
The contexts in which students will face mathematical challenges. The third section, “assessing 
Mathematical literacy,” outlines structural issues about the assessment, including a test blueprint and 
other technical information. The several addenda include further descriptions of the fundamental 
mathematical capabilities, several illustrative PISA items and a reference list. 

The 2012 framework was written under the guidance of the 2012 Mathematics Expert Group (MEG), 
a body appointed by the main PISA contractors with the approval of the PISA Governing Board 
(PGB). The ten MEG members included mathematicians, mathematics educators, and experts in 
assessment, technology, and education research from a range of countries. In addition, to secure more 
extensive input and review, a draft of the PISA 2012 mathematics framework was circulated for 
feedback to over 170 mathematics experts from over 40 countries. Achieve and the Australian 
Council for Educational Research (ACER), the two organisations contracted by the Organisation for 
Economic Co-operation and Development (OECD) to manage framework development, also 
conducted various research efforts to inform and support development work. Framework development 
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and the PISA programme generally have been supported and informed by the ongoing work of 
participating countries (e.g. the research described in the 2010 OECD publication Pathways to 
Success: How Knowledge and Skills at Age 15 Shape Future Lives in Canada). The current PISA 
2015 Framework is an update written under the guidance of the 2015 Mathematics Expert Group 
(MEG), a body appointed by the Core 1 contractor with the approval of the PISA Governing Board 
(PGB). 
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Definition of Mathematical Literacy 
An understanding of mathematics is central to a young person’s preparedness for life in modern 
society. A growing proportion of problems and situations encountered in daily life, including in 
professional contexts, require some level of understanding of mathematics, mathematical reasoning 
and mathematical tools, before they can be fully understood and addressed. Mathematics is a critical 
tool for young people as they confront issues and challenges in personal, occupational, societal, and 
scientific aspects of their lives. It is thus important to have an understanding of the degree to which 
young people emerging from school are adequately prepared to apply mathematics to understanding 
important issues and solving meaningful problems. An assessment at age 15 provides an early 
indication of how individuals may respond in later life to the diverse array of situations they will 
encounter that involve mathematics. 

As the basis for an international assessment of 15-year-old students, it is reasonable to ask: “What is 
important for citizens to know and be able to do in situations that involve mathematics?” More 
specifically, what does competency in mathematics mean for a 15-year-old, who may be emerging 
from school or preparing to pursue more specialised training for a career or university admission? It is 
important that the construct of mathematical literacy, which is used in this report to denote the 
capacity of individuals to formulate, employ, and interpret mathematics in a variety of contexts, not 
be perceived as synonymous with minimal, or low-level, knowledge and skills. Rather, it is intended 
to describe the capacities of individuals to reason mathematically and use mathematical concepts, 
procedures, facts and tools to describe, explain and predict phenomena. This conception of mathematical 
literacy supports the importance of students developing a strong understanding of concepts of pure 
mathematics and the benefits of being engaged in explorations in the abstract world of mathematics. The 
construct of mathematical literacy, as defined for PISA, strongly emphasises the need to develop 
students’ capacity to use mathematics in context, and it is important that they have rich experiences in 
their mathematics classrooms to accomplish this. This is true for those 15-year-old students who are 
close to the end of their formal mathematics training, as well as those who will continue with the formal 
study of mathematics. In addition, it can be argued that for almost all students, the motivation to learn 
mathematics increases when they see the relevance of what they are learning to the world outside the 
classroom and to other subjects. 

Mathematical literacy naturally transcends age boundaries. However, its assessment for 15-year-olds 
must take into account relevant characteristics of these students; hence, there is a need to identify age-
appropriate content, language and contexts. This framework distinguishes between broad categories of 
content that are important to mathematical literacy for individuals generally, and the specific content 
topics that are appropriate for 15-year-old students. Mathematical literacy is not an attribute that an 
individual either has or does not have. Rather, mathematical literacy is an attribute that is on a 
continuum, with some individuals being more mathematically literate than others—and with the 
potential for growth always present. 

For the purposes of PISA 2015, mathematical literacy is defined as follows: 

Mathematical literacy is an individual’s capacity to formulate, employ, and interpret mathematics in a 
variety of contexts. It includes reasoning mathematically and using mathematical concepts, 
procedures, facts and tools to describe, explain and predict phenomena. It assists individuals to 
recognise the role that mathematics plays in the world and to make the well-founded judgments and 
decisions needed by constructive, engaged and reflective citizens. 

Some explanatory remarks are provided below to highlight and clarify aspects of the definition that 
are particularly important. 
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A view of students as active problem solvers in PISA 2015 

The focus of the language in the definition of mathematical literacy is on active engagement in 
mathematics, and is intended to encompass reasoning mathematically and using mathematical 
concepts, procedures, facts and tools in describing, explaining and predicting phenomena. In 
particular, the verbs ‘formulate,’ ‘employ,’ and ‘interpret’ point to the three processes in which 
students as active problem solvers will engage. Formulating situations mathematically involves 
identifying opportunities to apply and use mathematics – seeing that mathematics can be applied to 
understand or resolve a particular problem or challenge presented. it includes being able to take a 
situation as presented and transform it into a form amenable to mathematical treatment, providing 
mathematical structure and representations, identifying variables and making simplifying assumptions 
to help solve the problem or meet the challenge. Employing mathematics involves applying 
mathematical reasoning and using mathematical concepts, procedures, facts and tools to derive a 
mathematical solution. It includes performing calculations, manipulating algebraic expressions and 
equations or other mathematical models, analysing information in a mathematical manner from 
mathematical diagrams and graphs, developing mathematical descriptions and explanations and using 
mathematical tools to solve problems. Interpreting mathematics involves reflecting upon 
mathematical solutions or results and interpreting them in the context of a problem or challenge. It 
includes evaluating mathematical solutions or reasoning in relation to the context of the problem and 
determining whether the results are reasonable and make sense in the situation. 

The language of the definition is also intended to integrate the notion of mathematical modelling, 
which has historically been a cornerstone of the PISA framework for mathematics (e.g. OECD, 2003), 
into the PISA 2015 definition of mathematical literacy. As individuals use mathematics and 
mathematical tools to solve problems in contexts, their work progresses through a series of stages. 
Figure 1 shows an overview of the major constructs of this framework and indicates how they relate 
to each other. 

The outer-most box in Figure 1 shows that mathematical literacy takes place in the context of a 
challenge or problem that arises in the real world. In this framework, these challenges are 
characterised in two ways. The context categories, which will be described in detail later in this 
document, identify the areas of life from which the problem arises. The context may be of a personal 
nature, involving problems or challenges that might confront an individual or one’s family or peer 
group. The problem might instead be set in a societal context (focusing on one’s community—
whether it be local, national, or global), an occupational context (centred on the world of work), or a 
scientific context (relating to the application of mathematics to the natural and technological world). 
A problem is also characterised by the nature of the mathematical phenomenon that underlies the 
challenge. The four mathematical content categories identify broad classes of phenomena that 
mathematics has been created to analyse. These mathematical content categories (Quantity, 
Uncertainty and data, Change and relationships, and Space and shape) are also identified in the outer-
most box of Figure 1. 

 To solve such contextualised problems, individuals must apply mathematical thought and 
action to the challenge, and the framework characterises this in three different ways. First, 
Figure 1 acknowledges the need of the individual to draw upon a variety of mathematical 
concepts, knowledge and skills during the work. This mathematical knowledge is drawn upon 
as the individual represents and communicates mathematics, devises strategies, reasons and 
makes arguments, and so forth. These mathematical actions are characterised in the 
framework in terms of seven fundamental mathematical capabilities which are listed in Figure 
1 and described in detail later in the document. as an individual works on the problem—
which may require problem formulation, employing mathematical concepts or procedures, or 
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interpretation of a mathematical solution—the fundamental mathematical capabilities are 
activated successively and simultaneously, drawing on mathematical content from appropriate 
topics, to create a solution. 

 The visual depiction of the mathematical modelling cycle in the inner-most box of Figure 1 
portrays an idealised and simplified version of the stages through which a problem solver 
moves when exhibiting mathematical literacy. It shows an idealised series of stages that begin 
with the “problem in context.” the problem solver tries to identify the relevant mathematics in 
the problem situation and formulates the situation mathematically according to the concepts 
and relationships identified and simplifying assumptions made. The problem solver thus 
transforms the “problem in context” into a “mathematical problem” amenable to 
mathematical treatment. The downward-pointing arrow in Figure 1 depicts the work 
undertaken as the problem solver employs mathematical concepts, procedures, facts, and tools 
to obtain “mathematical results.” this stage typically involves mathematical reasoning, 
manipulation, transformation and computation. Next, the “mathematical results” need to be 
interpreted in terms of the original problem (“results in context”). This involves the problem 
solver interpreting, applying, and evaluating mathematical outcomes and their reasonableness 
in the context of a real-world-based problem. These processes of formulating, employing, and 
interpreting mathematics are key components of the mathematical modelling cycle and also 
key components of the definition of mathematical literacy. These three processes each draw 
on fundamental mathematical capabilities, which in turn draw on the problem solver’s 
detailed mathematical knowledge about individual topics. 

Figure 1 A model of mathematical literacy in practice 

 
 
The modelling cycle is a central aspect of the PISA conception of students as active problem solvers; 
however, it is often not necessary to engage in every stage of the modelling cycle, especially in the 
context of an assessment (Niss et al., 2007). It is often the case that significant parts of the 
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mathematical modelling cycle have been undertaken by others, and the end user carries out some of 
the steps of the modelling cycle, but not all of them. For example, in some cases, mathematical 
representations, such as graphs or equations, are given that can be directly manipulated in order to 
answer some question or to draw some conclusion. For this reason, many PISA items involve only 
parts of the modelling cycle. In reality, the problem solver may also sometimes oscillate between the 
processes, returning to revisit earlier decisions and assumptions. Each of the processes may present 
considerable challenges, and several iterations around the whole cycle may be required.  

An explicit link to a variety of contexts for problems in PISA 2015 

The reference to “a variety of contexts” in the definition of mathematical literacy is purposeful and 
intended as a way to link to the specific contexts that are described and exemplified more fully later in 
this framework. The specific contexts themselves are not so important, but the four categories selected 
for use here (personal, occupational, societal, and scientific) do reflect a wide range of situations in 
which individuals may meet mathematical opportunities. The definition also acknowledges that 
mathematical literacy helps individuals recognise the role that mathematics plays in the world and in 
helping they make the kinds of well-founded judgments and decisions required of constructive, 
engaged, and reflective citizens. 

A visible role for mathematical tools, including technology in PISA 2015 

The definition of mathematical literacy explicitly includes the use of mathematical tools. These tools 
include a variety of physical and digital equipment, software, and calculation devices. Computer-
based mathematical tools are in common use in workplaces of the 21st century, and will be 
increasingly more prevalent as the century progresses. The nature of work-related problems and 
logical reasoning has expanded with these new opportunities—creating enhanced expectations for 
mathematical literacy. 

A computer-based assessment of mathematics (CBAM) was an optional domain offered within the 
PISA 2012 survey. For the 2015 cycle, computer based assessment (CBA) will be the primary mode 
of testing, although an equivalent  paper-based instrument will be available for those countries who 
choose not to test their students by computer. Reference to mathematical tools in the definition of 
mathematical literacy is, therefore, particularly appropriate. The use of calculators has been permitted 
in all PISA mathematics surveys to date, where consistent with the policy of the participating country. 
While previous PISA mathematics items have been developed to be as ‘calculator neutral’ as possible, 
for some of the paper-based items presented to students in 2012, a calculator would have been of 
assistance. The 2015 computer-based survey includes tools such as an online calculator as part of the 
computer-based test material provided for some questions. Since PISA items reflect problems that 
arise in personal, occupational, societal, and scientific contexts, and calculators are used in all of these 
settings, a calculator is of assistance in some PISA items. The computer-based assessment could 
provide the opportunity to include a wider range of mathematics tools, however to keep the 
assessment maximally comparable to the paper based assessment of 2012 the only tool made available 
will be the onscreen scientific calculator. 
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ORGANISATION OF THE DOMAIN 
The PISA mathematics framework defines the domain of mathematics for the PISA survey and 
describes an approach to the assessment of the mathematical literacy of 15-year-olds. That is, PISA 
assesses the extent to which 15-year-old students can handle mathematics adeptly when confronted 
with situations and problems – the majority of which are presented in real-world contexts. 

For purposes of the assessment, the PISA 2015 definition of mathematical literacy can be analysed in 
terms of three interrelated aspects: 

 The mathematical processes that describe what individuals do to connect the context of the 
problem with mathematics and thus solve the problem, and the capabilities that underlie those 
processes; 

 The mathematical content that is targeted for use in the assessment items; and 

 The contexts in which the assessment items are located. 

The following sections elaborate these aspects. in highlighting these aspects of the domain, the PISA 
2012 mathematics framework helps ensure that assessment items developed for the survey reflect a 
range of processes, content, and contexts, so that, considered as a whole, the set of assessment items 
effectively operationalises what this framework defines as mathematical literacy. Several questions, 
based on the PISA 2015 definition of mathematical literacy lie behind the organisation of this section 
of the framework. They are: 

 What processes do individuals engage in when solving contextual mathematical problems, 
and what capabilities do we expect individuals to be able to demonstrate as their 
mathematical literacy grows? 

 What mathematical content knowledge can we expect of individuals—and of 15-year-old 
students in particular? 

 In what contexts is mathematical literacy able to be observed and assessed? 

  
Mathematical processes and the underlying mathematical capabilities 

Mathematical processes 
The definition of mathematical literacy refers to an individual’s capacity to formulate, employ, and 
interpret mathematics. These three words, formulate, employ and interpret, provide a useful and 
meaningful structure for organising the mathematical processes that describe what individuals do to 
connect the context of a problem with the mathematics and thus solve the problem. Items in the 2015 
PISA mathematics survey will be assigned to one of three mathematical processes: 

 Formulating situations mathematically; 

 Employing mathematical concepts, facts, procedures, and reasoning; and 

 Interpreting, applying and evaluating mathematical outcomes. 

It is important for both policy makers and those engaged more closely in the day-to-day education of 
students to know how effectively students are able to engage in each of these processes. The 
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formulating process indicates how effectively students are able to recognise and identify opportunities 
to use mathematics in problem situations and then provide the necessary mathematical structure 
needed to formulate that contextualised problem into a mathematical form. The employing process 
indicates how well students are able to perform computations and manipulations and apply the 
concepts and facts that they know to arrive at a mathematical solution to a problem formulated 
mathematically. The interpreting process indicates how effectively students are able to reflect upon 
mathematical solutions or conclusions, interpret them in the context of a real-world problem, and 
determine whether the results or conclusions are reasonable. Students’ facility at applying 
mathematics to problems and situations is dependent on skills inherent in all three of these processes, 
and an understanding of their effectiveness in each category can help inform both policy-level 
discussions and decisions being made closer to the classroom level. 

Formulating situations mathematically 
The word formulate in the mathematical literacy definition refers to individuals being able to 
recognise and identify opportunities to use mathematics and then provide mathematical structure to a 
problem presented in some contextualised form. In the process of formulating situations 
mathematically, individuals determine where they can extract the essential mathematics to analyse, set 
up, and solve the problem. They translate from a real-world setting to the domain of mathematics and 
provide the real-world problem with mathematical structure, representations, and specificity. They 
reason about and make sense of constraints and assumptions in the problem. Specifically, this process 
of formulating situations mathematically includes activities such as the following: 

 identifying the mathematical aspects of a problem situated in a real-world context and 
identifying the significant variables; 

 recognising mathematical structure (including regularities, relationships, and patterns) in 
problems or situations; 

 simplifying a situation or problem in order to make it amenable to mathematical analysis; 

 identifying constraints and assumptions behind any mathematical modelling and 
simplifications gleaned from the context; 

 representing a situation mathematically, using appropriate variables, symbols, diagrams, and 
standard models; 

 representing a problem in a different way, including organising it according to mathematical 
concepts and making appropriate assumptions; 

 understanding and explaining the relationships between the context-specific language of a 
problem and the symbolic and formal language needed to represent it mathematically; 

 translating a problem into mathematical language or a representation; 

 recognising aspects of a problem that correspond with known problems or mathematical 
concepts, facts, or procedures; 

 using technology (such as a spreadsheet or the list facility on a graphing calculator) to portray 
a mathematical relationship inherent in a contextualised problem. 

 
The released PISA item Pizzas (see Appendix B) calls most heavily on students’ abilities to formulate 
a situation mathematically. While it is indeed the case that students are also called upon to perform 
calculations as they solve the problem and make sense of the results of their calculations by 
identifying which pizza is the better value for the money, the real cognitive challenge of this item lies 
in being able to formulate a mathematical model that encapsulates the concept of value for money. 
The problem solver must recognise that because the pizzas have the same thickness but different 
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diameters, the focus of the analysis can be on the area of the circular surface of the pizza. The 
relationship between amount of pizza and amount of money is then captured in the concept of value 
for money, modelled as cost per unit of area. the released PISA item Rock Concert (see Appendix B) 
is another example of an item that relies most heavily on students’ abilities to formulate a situation 
mathematically, as it calls on students to make sense of the contextual information provided (e.g. field 
size and shape, the fact that the rock concert is full, and the fact that fans are standing) and translate 
that information into a useful mathematical form in order to estimate the number of people attending 
the concert. 

 
Employing mathematical concepts, facts, procedures and reasoning 
The word employ in the mathematical literacy definition refers to individuals being able to apply 
mathematical concepts, facts, procedures, and reasoning to solve mathematically-formulated problems 
to obtain mathematical conclusions. in the process of employing mathematical concepts, facts, 
procedures and reasoning to solve problems, individuals perform the mathematical procedures needed 
to derive results and find a mathematical solution (e.g. performing arithmetic computations, solving 
equations, making logical deductions from mathematical assumptions, performing symbolic 
manipulations, extracting mathematical information from tables and graphs, representing and 
manipulating shapes in space, and analysing data). They work on a model of the problem situation, 
establish regularities, identify connections between mathematical entities, and create mathematical 
arguments. Specifically, this process of employing mathematical concepts, facts, procedures, and 
reasoning includes activities such as: 

 
 devising and implementing strategies for finding mathematical solutions; 

 using mathematical tools, including technology, to help find exact or approximate solutions; 

 applying mathematical facts, rules, algorithms, and structures when finding solutions; 

 manipulating numbers, graphical and statistical data and information, algebraic expressions 
and equations, and geometric representations; 

 making mathematical diagrams, graphs, and constructions and extracting mathematical 
information from them; 

 using and switching between different representations in the process of finding solutions; 

 making generalisations based on the results of applying mathematical procedures to find 
solutions; and 

 reflecting on mathematical arguments and explaining and justifying mathematical results. 

The released PISA unit Walking (see Appendix B) exemplifies items that rely most heavily on 
students’ abilities for employing mathematical concepts, facts, procedures, and reasoning. Both items 
in this unit depend upon employing a given model—a formula—to determine either the pace length 
(Question 1) or walking speed (Question 2). Both questions have been expressed in terms that already 
have mathematical structure, and students are required to perform algebraic manipulations and 
calculations in order to derive solutions. Similarly, the released PISA item Carpenter (see Appendix 
B) relies most heavily on students employing mathematical concepts, facts, procedures, and reasoning. 
The major cognitive challenge is to devise a strategy to find information about the total length of line 
segments of individually unknown lengths and to reason about the comparative lengths. Individuals 
also have to relate the diagrams to the gardens and the perimeters to the amount of timber available, 
but this process of formulating is considerably less demanding than the process of reasoning about the 
perimeter lengths. 
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Interpreting, applying and evaluating mathematical outcomes 
The word interpret used in the mathematical literacy definition focuses on the abilities of individuals 
to reflect upon mathematical solutions, results, or conclusions and interpret them in the context of 
real-life problems. This involves translating mathematical solutions or reasoning back into the context 
of a problem and determining whether the results are reasonable and make sense in the context of the 
problem. This mathematical process category encompasses both the “interpret” and “evaluate” arrows 
noted in the previously defined model of mathematical literacy in practice (see Figure 1). Individuals 
engaged in this process may be called upon to construct and communicate explanations and 
arguments in the context of the problem, reflecting on both the modelling process and its results. 
Specifically, this process of interpreting, applying, and evaluating mathematical outcomes includes 
activities such as: 

 
 interpreting a mathematical result back into the real world context; 

 evaluating the reasonableness of a mathematical solution in the context of a real-world 
problem; 

 understanding how the real world impacts the outcomes and calculations of a mathematical 
procedure or model in order to make contextual judgments about how the results should be 
adjusted or applied; 

 explaining why a mathematical result or conclusion does, or does not, make sense given the 
context of a problem; 

 understanding the extent and limits of mathematical concepts and mathematical solutions; and 

 critiquing and identifying the limits of the model used to solve a problem. 
 
The released PISA item Litter (see Appendix B) calls most heavily on students’ capacity for 
interpreting, applying, and evaluating mathematical outcomes. The focus of this item is on evaluating 
the effectiveness of the mathematical outcome—in this case an imagined or sketched bar graph—in 
portraying the data presented in the item on the decomposition time of several types of litter. The item 
involves reasoning about the data presented, thinking mathematically about the relationship between 
the data and their presentation, and evaluating the result. The problem solver must and provide a 
reason why a bar graph is unsuitable for displaying the provided data. 

Fundamental mathematical capabilities underlying the mathematical processes 
A decade of experience in developing PISA items and analysing the ways in which students respond 
to items has revealed that there is a set of fundamental mathematical capabilities that underpins each 
of these reported processes and mathematical literacy in practice. The work of Mogens Niss and his 
Danish colleagues (Niss, 2003; Niss and Jensen, 2002; Niss and Højgaard, 2011) identified eight 
capabilities — referred to as “competencies” by Niss and in the 2003 framework (OECD, 2003) —
that are instrumental to mathematical behaviour. The PISA 2015 framework uses a modified 
formulation of this set of capabilities, which condenses the number from eight to seven based on an 
investigation of the operation of the competencies through previously administered PISA items 
(Turner et al., 2013). There is wide recognition of the need to identify such a set of general 
mathematical capabilities, to complement the role of specific mathematical content knowledge in 
mathematics learning. Prominent examples include the eight mathematical practices of the Common 
Core State Standards in the united States (2010), the four key processes (representing, analysing, 
interpreting and evaluating, and communicating and reflecting) of the England’s Mathematics 
national Curriculum (Qualifications and Curriculum authority, 2007), and the process standards in the 
national Council of teachers of Mathematics (NCTM) Principles and Standards for School 
Mathematics (NCTM, 2000). These cognitive capabilities are available to or learnable by individuals 
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in order to understand and engage with the world in a mathematical way, or to solve problems. As the 
level of mathematical literacy possessed by an individual increases, that individual is able to draw to 
an increasing degree on the fundamental mathematical capabilities (Turner and Adams, 2012). Thus, 
increasing activation of fundamental mathematical capabilities is associated with increasing item 
difficulty. This observation has been used as the basis of the descriptions of different proficiency 
levels of mathematical literacy reported in previous PISA surveys and discussed later in this 
framework. 

The seven fundamental mathematical capabilities used in this framework are as follows: 

 Communication: Mathematical literacy involves communication. The individual perceives the 
existence of some challenge and is stimulated to recognise and understand a problem 
situation. Reading, decoding and interpreting statements, questions, tasks or objects enables 
the individual to form a mental model of the situation, which is an important step in 
understanding, clarifying and formulating a problem. During the solution process, 
intermediate results may need to be summarised and presented. Later on, once a solution has 
been found, the problem solver may need to present the solution, and perhaps an explanation 
or justification, to others. 

 Mathematising: Mathematical literacy can involve transforming a problem defined in the real 
world to a strictly mathematical form (which can include structuring, conceptualising, making 
assumptions, and/or formulating a model), or interpreting or evaluating a mathematical 
outcome or a mathematical model in relation to the original problem. The term mathematising 
is used to describe the fundamental mathematical activities involved. 

 Representation: Mathematical literacy very frequently involves representations of 
mathematical objects and situations. This can entail selecting, interpreting, translating 
between, and using a variety of representations to capture a situation, interact with a problem, 
or to present one’s work. The representations referred to include graphs, tables, diagrams, 
pictures, equations, formulae, and concrete materials. 

 Reasoning and argument: a mathematical ability that is called on throughout the different 
stages and activities associated with mathematical literacy is referred to as reasoning and 
argument. This capability involves logically rooted thought processes that explore and link 
problem elements so as to make inferences from them, check a justification that is given, or 
provide a justification of statements or solutions to problems. 

 Devising strategies for solving problems: Mathematical literacy frequently requires devising 
strategies for solving problems mathematically. This involves a set of critical control 
processes that guide an individual to effectively recognise, formulate and solve problems. this 
skill is characterised as selecting or devising a plan or strategy to use mathematics to solve 
problems arising from a task or context, as well as guiding its implementation. This 
mathematical capability can be demanded at any of the stages of the problem solving process. 

 Using symbolic, formal and technical language and operations: Mathematical literacy 
requires using symbolic, formal and technical language and operations. this involves 
understanding, interpreting, manipulating, and making use of symbolic expressions within  a  
mathematical  context  (including  arithmetic  expressions  and  operations)  governed by 
mathematical conventions and rules. It also involves understanding and utilising formal 
constructs based on definitions, rules and formal systems and also using algorithms with these 
entities. The symbols, rules and systems used will vary according to what particular 
mathematical content knowledge is needed for a specific task to formulate, solve or interpret 
the mathematics. 
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 Using mathematical tools1: the final mathematical capability that underpins mathematical 
literacy in practice is using mathematical tools. Mathematical tools encompass physical tools 
such as measuring instruments, as well as calculators and computer-based tools that are 
becoming more widely available. This ability involves knowing about and being able to make 
use of various tools that may assist mathematical activity, and knowing about the limitations 
of such tools. Mathematical tools can also have an important role in communicating results.  

These capabilities are evident to varying degrees in each of the three mathematical processes. The 
ways in which these capabilities manifest themselves within the three processes are described in 
Figure 2. More detail on these capabilities, particularly as they relate to item difficulty, can be found 
in Appendix A. In addition, each of the illustrative examples provided in Appendix B describes how 
the capabilities might be activated by students solving that particular problem. 

 

                                                 
1  In some countries, “mathematical tools” can also refer to established mathematical procedures such as 
algorithms. For the purposes of the PISA framework, “mathematical tools” refers only to the physical and digital 
tools described in this section. 
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Figure 2 Relationship between mathematical processes (top horizontal row) and fundamental 
mathematical capabilities (left-most vertical column) 
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Mathematical content knowledge 
An understanding  of  mathematical content—and  the  ability to  apply  that knowledge  to  the 
solution  of  meaningful contextualised problems—is important for citizens in the modern world. That 
is, to solve problems and interpret situations in personal, occupational, societal and scientific contexts, 
there is a need to draw upon certain mathematical knowledge and understandings. 

Mathematical structures have been developed over time as a means to understand and interpret natural 
and social phenomena. In schools, the mathematics curriculum is typically organised around content 
strands (e.g. number, algebra and geometry) and detailed topic lists that reflect historically well-
established branches of mathematics and that help in defining a structured curriculum. However, 
outside the mathematics classroom, a challenge or situation that arises is usually not accompanied by 
a set of rules and prescriptions that shows how the challenge can be met. Rather it typically requires 
some creative thought in seeing the possibilities of bringing mathematics to bear on the situation and 
in formulating it mathematically. Often a situation can be addressed in different ways drawing on 
different mathematical concepts, procedures, facts or tools. 

Since the goal of PISA is to assess mathematical literacy, an organisational structure for mathematical 
content knowledge is proposed based on the mathematical phenomena that underlie broad classes of 
problems and which have motivated the development of specific mathematical concepts and 
procedures. For example, mathematical phenomena such as uncertainty and change underlie many 
commonly occurring situations, and mathematical strategies and tools have been developed to analyse 
such situations. Such an organisation for content is not new, as exemplified by two well-known 
publications: On the Shoulders of Giants: New Approaches to Numeracy (Steen, 1990) and 
Mathematics: The Science of Patterns (Devlin, 1994). 

Because national mathematics curricula are typically designed to equip students with knowledge and 
skills that address these same underlying mathematical phenomena, the outcome is that the range of 
content arising from organising content this way is closely aligned with that typically found in 
national mathematics curricula. This framework lists some content topics appropriate for assessing the 
mathematical literacy of 15-year-old students, based on analyses of national standards from eleven 
countries. 

To organise the domain of mathematics for purposes of assessing mathematical literacy, it is 
important to select a structure that grows out of historical developments in mathematics, that 
encompasses sufficient variety and depth to reveal the essentials of mathematics, and that also 
represents, or includes, the conventional mathematical strands in an acceptable way. Historically, with 
the 17th century invention of analytic geometry and calculus, mathematics became an integrated study 
of number, shape, change, and relationships; analysis of such phenomena as randomness and 
indeterminacy became instrumental to problem solving in the 19th and 20th centuries. Thus, a set of 
content categories that reflects the range of underlying mathematical phenomena was selected for the 
PISA 2015 framework, consistent with the categories used for previous PISA surveys. 

The following list of content categories, therefore, is used in PISA 2015 to meet the requirements of 
historical development, coverage of the domain of mathematics and the underlying phenomena which 
motivate its development, and reflection of the major strands of school curricula. These four 
categories characterise the range of mathematical content that is central to the discipline and illustrate 
the broad areas of content used in the test items for PISA 2015: 

•  Change and relationships 
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•  Space and shape 

•  Quantity 

•  Uncertainty and data 

 
With these four categories, the mathematical domain can be organised in a way that ensures a spread 
of items across the domain and focuses on important mathematical phenomena, but at the same time, 
avoids a too fine division that would work against a focus on rich and challenging mathematical 
problems based on real situations. While categorisation by content category is important for item 
development and selection, and for reporting of assessment results, it is important to note that some 
specific content topics may materialise in more than one content category. For example, a released 
PISA item called Pizzas involves determining which of two round pizzas, with different diameters and 
different costs but the same thickness, is the better value (see Appendix B to view this item and an 
analysis of its attributes). This item draws on several areas of mathematics, including measurement, 
quantification (value for money, proportional reasoning and arithmetic calculations), and change and 
relationships (in terms of relationships among the variables and how relevant properties change from 
the smaller pizza to the larger one.) This item was ultimately categorised as a Change and 
relationships item since the key to the problem lies in students being able to relate the change in areas 
of the two pizzas (given a change in diameter) and a corresponding change of price. Clearly, a 
different item involving circle area might be classified as a Space and shape item. Connections 
between aspects of content that span these four content categories contribute to the coherence of 
mathematics as a discipline and are apparent in some of the assessment items selected for the PISA 
2015 assessment. 

The broad mathematical content categories and the more specific content topics appropriate for 15-
year-old students described later in this section reflect the level and breadth of content that is eligible 
for inclusion on the PISA 2015 survey. narrative descriptions of each content category and the 
relevance of each to solving meaningful problems are provided first, followed by more specific 
definitions of the kinds of content that are appropriate for inclusion in an assessment of mathematical 
literacy of 15-year-old students. These specific topics reflect commonalities found in the expectations 
set by a range of countries and educational jurisdictions. the standards examined to identify these 
content topics are viewed as evidence not only of what is taught in mathematics classrooms in these 
countries but also as indicators of what countries view as important knowledge and skills for 
preparing students of this age to become constructive, engaged and reflective citizens. 

Descriptions of the mathematical content knowledge that characterise each of the four categories — 
Change and relationships, Space and shape, Quantity and Uncertainty and data — are provided 
below. 

Change and relationships 
The natural and designed worlds display a multitude of temporary and permanent relationships among 
objects and circumstances, where changes occur within systems of interrelated objects or in 
circumstances where the elements influence one another. In many cases these changes occur over time, 
and in other cases changes in one object or quantity are related to changes in another. Some of these 
situations involve discrete change; others change continuously. Some relationships are of a permanent, 
or invariant, nature. Being more literate about change and relationships involves understanding 
fundamental types of change and recognising when they occur in order to use suitable mathematical 
models to describe and predict change. Mathematically this means modelling the change and the 
relationships with appropriate functions and equations, as well as creating, interpreting, and 
translating among symbolic and graphical representations of relationships. 
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Change and relationships is evident in such diverse settings as growth of organisms, music, and the 
cycle of seasons, weather patterns, employment levels and economic conditions. Aspects of the 
traditional mathematical content of functions and algebra, including algebraic expressions, equations 
and inequalities, tabular and graphical representations, are central in describing, modelling, and 
interpreting change phenomena. For example, the released PISA unit Walking (see Appendix B) 
contains two items that exemplify the Change and relationships category since the focus is on the 
algebraic relationships between two variables, requiring students to activate their algebraic knowledge 
and skills. Students are required to employ a given formula for pace length—a formula expressed in 
algebraic form—to determine pace length in one item and walking speed in the other. Representations 
of data and relationships described using statistics also are often used to portray and interpret change 
and relationships, and a firm grounding in the basics of number and units is also essential to defining 
and interpreting Change and relationships. Some interesting relationships arise from geometric 
measurement, such as the way that changes in perimeter of a family of shapes might relate to changes 
in area, or the relationships among lengths of the sides of triangles. The released PISA item Pizzas 
(see Appendix B) is an item that, while firmly grounded in geometry (specifically the area of a circle), 
illustrates a situation whose primary challenge lies in understanding the relationships among the 
variables, the conceptualisation of the relationships among properties of the pizzas, and how the 
relevant properties change from the smaller pizza to the larger one. It is, therefore, categorised as an 
item exemplifying Change and relationships.. 

Space and shape 
Space and shape encompasses a wide range of phenomena that are encountered everywhere in our 
visual and physical world: patterns, properties of objects, positions and orientations, representations of 
objects, decoding and encoding of visual information, navigation and dynamic interaction with real 
shapes as well as with representations. Geometry serves as an essential foundation for Space and 
shape, but the category extends beyond traditional geometry in content, meaning and method, 
drawing on elements of other mathematical areas such as spatial visualisation, measurement and 
algebra. For instance, shapes can change, and a point can move along a locus, thus requiring function 
concepts. Measurement formulas are central in this area. The manipulation and interpretation of 
shapes in settings that call for tools ranging from dynamic geometry software to Global Positioning 
System (GPS) software are included in this content category. 

PISA assumes that the understanding of a set of core concepts and skills is important to mathematical 
literacy relative to Space and shape. Mathematical literacy in the area of Space and shape involves a 
range of activities such as understanding perspective (for example in paintings), creating and reading 
maps, transforming shapes with and without technology, interpreting views of three-dimensional 
scenes from various perspectives and constructing representations of shapes. The released PISA item 
Carpenter (see Appendix B) belongs to this category since it deals with another key aspect of Space 
and shape—properties of shapes. In this complex multiple-choice item, students are presented with 
four different designs for a garden bed and asked which one(s) can be edged with 32 metres of timber. 
This item requires the application of geometrical knowledge and reasoning. Enough information is 
given to enable direct calculation of the exact perimeter for three of the designs; however, inexact 
information is given for one design, meaning that students need to employ qualitative geometric 
reasoning skills. 

Quantity 
The notion of Quantity may be the most pervasive and essential mathematical aspect of engaging with, 
and functioning in, our world. It incorporates the quantification of attributes of objects, relationships, 
situations and entities in the world, understanding various representations of those quantifications, and 
judging interpretations and arguments based on quantity. To engage with the quantification of the 
world involves understanding measurements, counts, magnitudes, units, indicators, relative size, and 
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numerical trends and patterns. Aspects of quantitative reasoning—such as number sense, multiple 
representations of numbers, elegance in computation, mental calculation, estimation and assessment 
of reasonableness of results—are the essence of mathematical literacy relative to Quantity. 

Quantification is a primary method for describing and measuring a vast set of attributes of aspects of 
the world. It allows for the modelling of situations, for the examination of change and relationships, 
for the description and manipulation of space and shape, for organising and interpreting data, and for 
the measurement and assessment of uncertainty. Thus mathematical literacy in the area of Quantity 
applies knowledge of number and number operations in a wide variety of settings. The released PISA 
item Rock Concert (see Appendix B) is an item exemplifying the Quantity category. This item asks 
students to estimate the total number of people attending a concert, given the dimensions of the 
rectangular field reserved for the concert. While this item also has some elements that relate to the 
Space and shape category, its primary demand comes from postulating a reasonable area for each 
person and using the total area available to calculate an estimated number of people attending. 
Alternately, given that this item is multiple-choice, students might work backwards using the area of 
the field and each of the response options to calculate the corresponding space per person, 
determining which provides the most reasonable result. Since response options are provided in terms 
of thousands (e.g. 2000, 5000) this item also calls on students’ numerical estimation skills.  

Uncertainty and data 
In science, technology and everyday life, uncertainty is a given. Uncertainty is therefore a 
phenomenon at the heart of the mathematical analysis of many problem situations, and the theory of 
probability and statistics as well as techniques of data representation and description have been 
established to deal with it. The Uncertainty and data content category includes recognising the place 
of variation in processes, having a sense of the quantification of that variation, acknowledging 
uncertainty and error in measurement, and knowing about chance. It also includes forming, 
interpreting and evaluating conclusions drawn in situations where uncertainty is central. The 
presentation and interpretation of data are key concepts in this category (Moore, 1997). 

There is uncertainty in scientific predictions, poll results, weather forecasts, and economic models. 
There is variation in manufacturing processes, test scores and survey findings, and chance is 
fundamental to many recreational activities enjoyed by individuals. The traditional curricular areas of 
probability and statistics provide formal means of describing, modelling and interpreting a certain 
class of uncertainty phenomena, and for making inferences. In addition, knowledge of number and of 
aspects of algebra such as graphs and symbolic representation contribute to facility in engaging in 
problems in this content category. The released PISA item Litter (see Appendix B) is categorised as 
dealing with Uncertainty and data. This item requires students to examine data presented in a table 
and explain why a bar graph is not suitable for displaying these data. The focus on the interpretation 
and presentation of data is an important aspect of the Uncertainty and data category. 

Content topics for guiding the assessment of mathematical literacy for 15-year-old students 
To effectively understand and solve contextualised problems involving Change and relationships, 
Space and shape, Quantity and Uncertainty and data requires drawing upon a variety of mathematical 
concepts, procedures, facts, and tools at an appropriate level of depth and sophistication. As an 
assessment of mathematical literacy, PISA strives to assess the levels and types of mathematics that 
are appropriate for 15-year-old students on a trajectory to become constructive, engaged and reflective 
citizens able to make well-founded judgments and decisions. It is also the case that PISA, while not 
designed or intended to be a curriculum-driven assessment, strives to reflect the mathematics that 
students have likely had the opportunity to learn by the time they are 15 years old. 

For the PISA 2012 Mathematical Literacy framework, with an eye toward developing an assessment 
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that is both forward-thinking yet reflective of the mathematics that 15-year-old students have likely 
had the opportunity to learn, analyses were conducted of a sample of desired learning outcomes from 
eleven countries to determine both what is being taught to students in classrooms around the world 
and also what countries deem realistic and important preparation for students as they approach entry 
into the workplace or admission into a higher education institution. Based on commonalities identified 
in these analyses, coupled with the judgment of mathematics experts, content deemed appropriate for 
inclusion in the assessment of mathematical literacy of 15-year-old students on PISA 2012, and 
continued for PISA 2015, is described below.2 

The four content categories of Change and relationships, Space and shape, Quantity and Uncertainty 
and data serve as the foundation for identifying this range of content, yet there is not a one-to-one 
mapping of content topics to these categories. For example, proportional reasoning comes into play in 
such varied contexts as making measurement conversions, analysing linear relationships, calculating 
probabilities and examining the lengths of sides in similar shapes. The following content is intended 
to reflect the centrality of many of these concepts to all four content categories and reinforce the 
coherence of mathematics as a discipline. It intends to be illustrative of the content topics included in 
PISA 2015, rather than an exhaustive listing: 

 

 Functions: the concept of function, emphasising but not limited to linear functions, their 
properties, and a variety of descriptions and representations of them. Commonly used 
representations are verbal, symbolic, tabular and graphical. 

 Algebraic expressions: verbal interpretation of and manipulation with algebraic expressions, 
involving numbers, symbols, arithmetic operations, powers and simple roots. 

 Equations and inequalities: linear and related equations and inequalities, simple second-
degree equations, and analytic and non-analytic solution methods 

 Co-ordinate systems: representation and description of data, position and relationships. 

 Relationships within and among geometrical objects in two and three dimensions: Static 
relationships such as algebraic connections among elements of figures (e.g. the Pythagorean 
theorem as defining the relationship between the lengths of the sides of a right triangle), 
relative position, similarity and congruence, and dynamic relationships involving 
transformation and motion of objects, as well as correspondences between two- and three-
dimensional objects. 

 Measurement: Quantification of features of and among shapes and objects, such as angle 
measures, distance, length, perimeter, circumference, area and volume. 

 Numbers and units: Concepts, representations of numbers and number systems, including 
properties of integer and rational numbers, relevant aspects of irrational numbers, as well as 
quantities and units referring to phenomena such as time, money, weight, temperature, 
distance, area and volume, and derived quantities and their numerical description. 

 Arithmetic operations: the nature and properties of these operations and related notational 
conventions. 

 Percents, ratios and proportions: numerical description of relative magnitude and the 
                                                 
2 The standards for two sets of countries were analysed. The sets were nine OECD countries (Australia [new South Wales], [Flemish] Belgium, 
Canada [Alberta], Finland, Ireland, Japan, Korea, new Zealand and the united Kingdom), and six high-performing countries ([Flemish] 
Belgium, Canada [Alberta], Chinese Taipei, Finland, Korea, and Singapore). a constraint of the analysis was that standards had to be available in 
English 
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application of proportions and proportional reasoning to solve problems. 

 Counting principles: Simple combinations and permutations. 

 Estimation: Purpose-driven approximation of quantities and numerical expressions, including 
significant digits and rounding. 

 Data collection, representation and interpretation: nature, genesis and collection of various 
types of data, and the different ways to represent and interpret them. 

 Data variability and its description: Concepts such as variability, distribution and central 
tendency of data sets, and ways to describe and interpret these in quantitative terms. 

 Samples and sampling: Concepts of sampling and sampling from data populations, including 
simple inferences based on properties of samples. 

 Chance and probability: notion of random events, random variation and its representation, 
chance and frequency of events, and basic aspects of the concept of probability. 

Contexts 

An important aspect of mathematical literacy is that mathematics is engaged in solving a problem set 
in a context. The context is the aspect of an individual’s world in which the problems are placed. The 
choice of appropriate mathematical strategies and representations is often dependent on the context in 
which a problem arises. Being able to work within a context is widely appreciated to place additional 
demands on the problem solver (see Watson and Callingham, 2003, for findings about statistics). For 
the PISA survey, it is important that a wide variety of contexts are used. This offers the possibility of 
connecting with the broadest possible range of individual interests and with the range of situations in 
which individuals operate in the 21st century. 

For purposes of the PISA 2015 mathematics framework, four context categories have been defined 
and are used to classify assessment items developed for the PISA survey: 

 Personal – Problems classified in the personal context category focus on activities of one’s 
self, one’s family or one’s peer group. The kinds of contexts that may be considered personal 
include (but are not limited to) those involving food preparation, shopping, games, personal 
health, personal transportation, sports, travel, personal scheduling and personal finance. The 
released PISA item Pizzas (see Appendix B) is set in a personal context since the question 
posed by the item is which pizza provides the purchaser with the better value for the money. 
Similarly, the released PISA unit Walking (see Appendix B) contains two items that reflect a 
personal context. The first item involves applying a mathematical formula to determine of an 
individual’s pace length, while the second item involves the application of the same formula 
to determine of another individual’s walking speed. 

 Occupational – Problems classified in the occupational context category are centred on the 
world of work. items categorised as occupational may involve (but are not limited to) such 
things as measuring, costing and ordering materials for building, payroll/accounting, quality 
control, scheduling/inventory, design/architecture and job-related decision making. 
Occupational contexts may relate to any level of the workforce, from unskilled work to the 
highest levels of professional work, although items in the PISA survey must be accessible to 
15-year-old students. the released PISA item Carpenter (see  Appendix B) is categorised as 
occupational as it deals with a work task of a carpenter to construct a border around a garden 
bed. An item requiring similar mathematical analysis to the Pizza item discussed earlier, 
which presented the situation from the point of view of the pizza seller instead of the 
purchaser, would be placed in the occupational category. 
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 Societal – Problems classified in the societal context category focus on one’s community 
(whether local, national or global). they may involve (but are not limited to) such things as 
voting systems, public transport, government, public policies, demographics, advertising, 
national statistics and economics. Although individuals are involved in all of these things in a 
personal way, in the societal context category the focus of problems is on the community 
perspective. the released PISA item Rock Concert (see Appendix B) is an example of an item 
categorised as societal since it is set at the level of the rock concert organisation, even though 
it draws on the personal experience of being in crowds. 

 Scientific – Problems classified in the scientific category relate to the application of 
mathematics to the natural world and issues and topics related to science and technology. 
Particular contexts might include (but are not limited to) such areas as weather or climate, 
ecology, medicine, space science, genetics, measurement and the world of mathematics itself. 
The released PISA item Litter (see Appendix B) is an example of an item set in a scientific 
context, since its focus is related to scientific issues pertaining to the environment, and 
specifically to data on decomposition time. Items that are intramathematical, where all the 
elements involved belong in the world of mathematics, fall within the scientific context. 

PISA assessment items are arranged in units that share stimulus material. It is therefore usually the 
case that all items in the same unit belong to the same context category. Exceptions do arise; for 
example stimulus material may be examined from a personal point of view in one item and a societal 
point of view in another. When an item involves only mathematical constructs without reference to 
the contextual elements of the unit within which it is located, it is allocated to the context category of 
the unit. In the unusual case of a unit involving only mathematical constructs and being without 
reference to any context outside of mathematics, the unit is assigned to the scientific context category. 

Using these context categories provides the basis for selecting a mix of item contexts and ensures that 
the assessment reflects a broad range of uses of mathematics, ranging from everyday personal uses to 
the scientific demands of global problems. Moreover it is important that each context category be 
populated with assessment items having a broad range of item difficulties. Given that the major 
purpose of these context categories is to challenge students in a broad range of problem contexts, each 
category should contribute substantially to the measurement of mathematical literacy. It should not be 
the case that the difficulty level of assessment items representing one context category is 
systematically higher or lower than the difficulty level of assessment items in another category. 

In identifying contexts that may be relevant, it is critical to keep in mind that a purpose of the 
assessment is to gauge the use of mathematical content knowledge, processes, and capabilities that 
students have acquired by age 15. Contexts for assessment items, therefore, are selected in light of 
relevance to students’ interests and lives, and the demands that will be placed upon them as they enter 
society as constructive, engaged and reflective citizens. National project managers from countries 
participating in the PISA survey are involved in judging the degree of such relevance. 

 

Assessing Mathematical Literacy 
In this section, the approach taken to implement the elements of the framework described in previous 
sections into the PISA survey for 2015, is outlined. This includes the structure of the mathematics 
component of the PISA survey, the reporting of levels of mathematical proficiency, the attitudes to be 
investigated that relate to mathematical proficiency, and arrangements for the transfer of the paper-
based trend items to a computer-based delivery mode. 
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Structure of the PISA 2015 mathematics assessment 

In accordance with the definition of mathematical literacy, assessment items used in any instruments 
that are developed as part of the PISA survey, both paper-based and computer-based, are set within a 
context. Items involve the application of important mathematical concepts, knowledge, 
understandings and skills (mathematical content knowledge) at the appropriate level for 15-year-old 
students, as described earlier. The framework is used to guide the structure and content of the 
assessment, and it is important that the survey instrument, whether computer-based or its paper-based 
equivalent, include an appropriate balance of items reflecting the components of the mathematical 
literacy framework. 

Desired distribution of score points by mathematical process 
Assessment items in the PISA 2015 mathematics survey can be assigned to one of three mathematical 
processes. The goal in constructing the assessment is to achieve a balance that provides approximately 
equal weighting between the two processes that involve making a connection between the real world 
and the mathematical world and the process that calls for students to be able to work on a 
mathematically formulated problem. 

Table 1 Approximate distribution of score points by process category for PISA 2015 
 

Process category Percentage of score points 
Formulating situations mathematically Approximately 25 
Employing mathematical concepts, facts, procedures and 

 
Approximately 50 

Interpreting, applying and evaluating mathematical outcomes Approximately 25 
TOTAL 100 

 
It is important to note that items in each process category should have a range of difficulty and 
mathematical demand. 

Desired distribution of score points by content category 
PISA mathematics items are selected to reflect the mathematical content knowledge described earlier 
in this framework. The trend items selected for PISA 2015 will be distributed across the four content 
categories, as shown in Table 2. The goal in constructing the survey is a distribution of items with 
respect to content category that provides as balanced a distribution of score points as possible, since 
all of these domains are important for constructive, engaged and reflective citizens. 

Table 2 Approximate distribution of score points by content category for PISA 2012 
 

Content category  Percentage of score points 
Change and relationships Approximately 25 
Space and shape Approximately 25 
Quantity Approximately 25 
Uncertainty and data Approximately 25 
TOTAL 100 

 

It is important to note that items in each content category should have a range of difficulty and 
mathematical demand. 

Desired distribution of score points by context category 
For PISA 2015, each item is set in one of four context categories. The trend items selected for the 
PISA 2015 mathematics survey will represent a spread across these context categories, as described in 
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Table 3. With this balanced distribution, no single context type is allowed to dominate, providing 
students with items that span a broad range of individual interests and a range of situations that they 
might expect to encounter in their lives. 

Table 3 Approximate distribution of score points by context category for PISA 2012 
 

Context category Percentage of score points 
Personal Approximately 25 
Occupational Approximately 25 
Societal Approximately 25 
Scientific Approximately 25 
TOTAL 100 

 

It is important to note that items in each context category should have a range of difficulty and 
mathematical demand. 

A range of item difficulties 
The PISA 2015 mathematics survey includes items with a wide range of difficulties, paralleling the 
range of abilities of 15-year-old students. It includes items that are challenging for the most able 
students, and items that are suitable for the least able students assessed in mathematics. From a 
psychometric perspective, a survey that is designed to measure a particular cohort of individuals is 
most effective and efficient when the difficulty of assessment items matches the ability of the 
measured subjects. Furthermore, the described proficiency scales that are used as a central part of the 
reporting of PISA outcomes can only include useful details for all students if the items from which the 
proficiency descriptions are drawn span the range of abilities described. The proficiency scales are 
based on increasing levels of activation of the fundamental mathematical capabilities, described fully 
in Appendix A, “Fundamental mathematical capabilities and their relationship to item difficulty”. 
Previous PISA cycles have shown that collectively these capabilities are indicators of cognitive 
demand, and thus contribute centrally to item difficulty (Turner, 2012; Turner et al., 2013).  The scale 
for PISA 2012, continued for 2015, was developed after the PISA 2012 field test and based on a 
description of the required activation of these capabilities. This scale provides an empirical measure 
of the cognitive demand for each item.  

Structure of the survey instrument 
In 2012, when mathematical literacy was the major domain, the paper-based instrument contained a 
total of 270 minutes of mathematics material. The material was arranged in nine clusters of items, 
with each cluster representing 30 minutes of testing time. The item clusters were placed in test 
booklets according to a rotated design, they also contained link materials.  

Mathematical literacy will be a minor domain for 2015 and students will take fewer clusters, however 
the item clusters will be constructed and rotated in a similar way. Seven mathematics clusters from 
previous cycles, including one ‘easy’ and one ‘hard’, will be used in one of three designs, depending 
on (1) whether countries take the Collaborative Problem Solving option, or (2) whether they do not 
take this option, or (3) whether they take the test on paper. Using seven clusters rather than three as 
was customary for the minor domains in previous cycles means the number of trend items will be 
increased, therefore increasing the construct coverage. However the number of students responding to 
each question will be lower. This design is intended to reduce potential bias thereby stabilising and 
improving the measurement of trend (PGB(2012)5 PISA 2015 design).The field test will be used to 
perform a mode-effect study and to establish equivalence between the computer- and paper-based 
forms. 
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Design of the PISA 2015 mathematics items 
Three item format types are used in both the computer-based and paper-based components to assess 
mathematical literacy in PISA 2015: open constructed-response, closed constructed-response and 
selected-response (multiple- choice) items. Open constructed- response items require a somewhat 
extended written response from a student. Such items also may ask the student to show the steps taken 
or to explain how the answer was reached. These items require trained experts to manually code 
student responses. Closed constructed-response items provide a more structured setting for presenting 
problem solutions, and they produce a student response that can be easily judged to be either correct 
or incorrect. Often student responses to questions of this type can be keyed into data capture software, 
and coded automatically, but some must be manually coded by trained experts. The most frequent 
closed constructed-responses are single numbers. Selected- response items require the choice of one 
or more responses from a number of response options. Responses to these questions can usually be 
automatically processed. About equal numbers of each of these item format types are being used to 
construct the survey instruments. 

The PISA mathematics survey is composed of assessment units comprising verbal stimulus material 
and often other information such as tables, charts, graphs or diagrams, plus one or more items that are 
linked to this common stimulus material. This format gives students the opportunity to become 
involved with a context or problem by responding to a series of related items. However, the 
measurement model used to analyse PISA data assumes item independence, so whenever units 
comprising more than one item are used, the objective of item writers is to ensure maximum possible 
independence among the items. PISA employs this unit structure to facilitate the employment of 
contexts that are as realistic as possible, and that reflect the complexity of real situations, while 
making efficient use of testing time. However, it is important to ensure that there is an adequate range 
of contexts so that bias due to choice of contexts is minimised and item independence is maximised. a 
balance between these two competing demands is therefore sought in developing the PISA survey 
instruments. 

Items selected for inclusion in the PISA survey represent a broad range of difficulties, to match the 
wide ability range of students participating in the assessment. In addition, all the major categories of 
the assessment (the content categories, the process categories, and the context categories,) are 
represented, to the degree possible, with items of a wide range of difficulties. Item difficulties are 
established as one of a number of measurement properties in an extensive field trial prior to item 
selection for the main PISA survey. Items are selected for inclusion in the PISA survey instruments 
based on their fit with framework categories and their measurement properties. 

In addition, the level of reading required to successfully engage with an item is considered very 
carefully in item development and selection. A goal in item development is to make the wording of 
items as simple and direct as possible. Care is also taken to avoid item contexts that would create a 
cultural bias, and all choices are checked with national teams. Translation of the items into many 
languages is conducted very carefully, with extensive back-translation and other protocols. Attention 
to item bias is even more critical in PISA 2015 since the move to a computer-based delivery may 
present new challenges to students who have not had access to computers in their mathematics 
classrooms. 

Mathematical Tools 
PISA policy allows students to use calculators in the paper-based components as they are normally 
used in school. This represents the most authentic assessment of what students can achieve, and 
provides the most informative comparison of the performance of education systems. A system’s 
choice to allow students to access and use calculators is no different, in principle, from other 
instructional policy decisions that are made by systems that are not controlled by PISA. In 2012, for 
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the first time in a PISA mathematics assessment, some of the items written for paper-based delivery 
were constructed in such a way that a calculator would be likely to make the calculations required 
quicker and easier—meaning that for some assessment items, it was likely that availability of a 
calculator would be an advantage for many students. In the paper-based component of PISA 2012, 
functionalities beyond the arithmetic functionality of a basic calculator were required. In the optional 
computer-based component of PISA 2012 (CBAM), students were given access to an online 
calculator and/or software with equivalent functionality for items where this could be relevant.  

PISA 2015 will include a tool that will allow students to provide typed constructed response answers 
and show their work as required for Mathematical Literacy. The tool allows students to enter both text 
and numbers. By clicking a button, students can enter a fraction, square root, or exponent. Additional 
symbols such as pi and greater/less than signs are available, as are operators such as multiplication 
and division signs. An example is shown in Figure 3 below. 

Figure 3 Example of the PISA 2015 editor tool 

 
The suite of tools available to students is also expected to include a basic scientific 
calculator.  Operators to be included are addition, subtraction, multiplication and division, as well as 
square root, pi, parentheses, exponent, square, fraction (y/x), inverse (1/x) and the calculator will be 
programmed to respect the standard order of operations.  

Students taking the assessment on paper can have access to a hand-held calculator, as approved for 
use by 15-year-old students in their respective school systems. 

Mathematical tools  - placeholder 
 

Although students will be able to enter their working onscreen, the MEG recommends that they 
should also be allowed to use a ‘scratch-pad’ (scrap-paper or an erasable white-board) in the 
computer-based component. This is to ensure comparability with the 2012 paper-based component. 
This will require further logistical consideration and is to be confirmed. 

 
Item scoring 
Although the majority of the items are dichotomously scored (that is, responses are awarded either 
credit or no credit), the open constructed-response items can sometimes involve partial credit scoring, 
which allows responses to be assigned credit according to differing degrees of “correctness” of 
responses. For each such item, a detailed coding guide that allows for full credit, partial credit or no 
credit is provided to persons trained in the coding of student responses across the range of 
participating countries to ensure coding of responses is done in a consistent and reliable way. To 
maximise the comparability between the paper-based and computer-based assessment, careful 
attention will be given to the scoring guides in order to ensure that the important elements are 
included.  

Reporting proficiency in mathematics 

The outcomes of the PISA mathematics survey are reported in a number of ways. Estimates of overall 
mathematical proficiency are obtained for sampled students in each participating country, and a 
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number of proficiency levels are defined. Descriptions of the degree of mathematical literacy typical 
of students in each level are also developed. For PISA 2003, scales based on the four broad content 
categories were developed. In Figure 4, descriptions for the six proficiency levels reported for the 
overall PISA mathematics scale in 2003, 2006 and 2009 are presented. These form the basis for the 
PISA 2012 mathematics scale. The finalised 2012 scale will be used to report the PISA 2015 
outcomes. As mathematical literacy is a minor domain in 2015, only the overall proficiency scale is 
reported. 
 
Figure 4 Proficiency scale descriptions for mathematics (2003-2009) 
 
 
 
 
6 

At Level 6 students can conceptualise, generalise and utilise information based on their investigations and 
modelling of complex problem situations. They can link different information sources and representations and 
flexibly translate among them. Students at this level are capable of advanced mathematical thinking and 
reasoning. These students can apply their insight and understandings along with a mastery of symbolic and formal 
mathematical operations and relationships to develop new approaches and strategies for attacking novel situations. 
Students at this level can formulate and precisely communicate their actions and reflections regarding their 
findings, interpretations, arguments and the appropriateness of these to the original situations. 

 
 
5 

At Level 5 students can develop and work with models for complex situations, identifying constraints and 
specifying assumptions. They can select, compare and evaluate appropriate problem-solving strategies for dealing 
with complex problems related to these models. Students at this level can work strategically using broad, well-
developed thinking and reasoning skills, appropriate linked representations, symbolic and formal characterisations 
and insight pertaining to these situations. They can reflect on their actions and formulate and communicate their 
interpretations and reasoning. 

 
 
4 

At Level 4 students can work effectively with explicit models for complex concrete situations that may involve 
constraints  or call for making assumptions. They can select and integrate different representations, including 
symbolic, linking them directly to aspects of real-world situations. Students at this level can utilise well-developed 
skills and reason flexibly, with some insight, in these contexts. They can construct and communicate explanations 
and arguments based on their interpretations, arguments and actions. 

 
 
3 

At Level 3 students can execute clearly described procedures, including those that require sequential decisions. 
They can select and apply simple problem-solving strategies. Students at this level can interpret and use 
representations based on different information sources and reason directly from them. They can develop short 
communications when reporting their interpretations, results and reasoning. 

 
 
2 

At Level 2 students can interpret and recognise situations in contexts that require no more than direct inference. 
They can extract relevant information from a single source and make use of a single representational mode. 
Students at this level can employ basic algorithms, formulae, procedures, or conventions. They are capable of 
direct reasoning and making literal interpretations of the results. 

 
 
1 

At Level 1 students can answer questions involving familiar contexts where all relevant information is present and the 
questions are clearly defined. They are able to identify information and to carry out routine procedures according to 
direct instructions in explicit situations. They can perform actions that are obvious and follow immediately from 
the given stimuli. 

 
 
Fundamental mathematical capabilities play a central role in defining what it means to be at different 
levels of the scales for mathematical literacy overall and for each of the reported processes —they 
define growing proficiency for all these aspects of mathematical literacy. For example, in the 
proficiency scale description for level 4 (see Figure 4), the second sentence highlights aspects of 
mathematising and representation that are evident at this level. The final sentence highlights the 
characteristic communication, reasoning and argument of level 4, providing a contrast with the short 
communications and lack of argument of level 3 and the additional reflection of level 5. Appendix A 
describes the fundamental mathematical capabilities and the relationship each one has to development 
across levels of mathematical proficiency. In an earlier section of this framework and in Figure 2, 
each of the mathematical processes was described in terms of the fundamental mathematical 
capabilities that individuals might activate when engaging in that process. 
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Computer-based assessment of mathematics. 

The main mode of delivery for the PISA 2012 assessment was paper-based. In moving to computer 
based delivery for 2015, care must be taken to maximise comparability between the two assessments. 
The following section describes some of the features made available by a computer-based assessment. 
Although these features provide the opportunities outlined below, to ensure comparability the PISA 
2015 survey will consist solely of items from the 2012 paper-based assessment. The features 
described here however, will be used in future PISA assessments when their introduction can be 
controlled to ensure comparability with prior assessments. 

There were two aspects to the rationale for including a computer-based mathematics assessment in 
PISA 2012. First, computers are now so commonly used in the workplace and in everyday life that a 
level of competency in mathematical literacy in the 21st century includes usage of computers (Hoyles 
et al., 2002). Computers now touch the lives of individuals around the world as they engage in their 
personal, societal, occupational and scientific endeavours. They offer tools for—among other 
things— computation, representation, visualisation, modification, exploration and experimentation on, 
of and with a large variety of mathematical objects, phenomena and processes. The definition of 
mathematical literacy for PISA 2015 recognises the important role of computer-based tools by noting 
that mathematically literate individuals are expected to use these in their endeavours to describe, 
explain, and predict phenomena. in this definition, the word “tool” refers to calculators and computers, 
as well as to other physical objects such as rulers and protractors used for measuring and construction. 
A second consideration is that the computer provides a range of opportunities for designers to write 
test items that are more interactive, authentic and engaging (Stacey and Wiliam, 2013). These 
opportunities include the ability to design new item formats (e.g. drag-and-drop), to present students 
with real-world data (such as a large, sortable dataset), or to use colour and graphics to make the 
assessment more engaging. For 2015, the former argument holds for the decision to make computers 
the primary mode of delivery, however it is important to note that as the need for trend with the 2012 
paper-based test is of paramount importance, the opportunity to exploit the full range of item types 
available on screen will not be exploited. 

Making use of enhancements offered by computer technology results in assessment items that are 
more engaging to students, more colourful, and easier to understand. For example, students may be 
presented with a moving stimulus, representations of three-dimensional objects that can be rotated, or 
more flexible access to relevant information. New item formats, such as those calling for students to 
‘drag and drop’ information or use ‘hot spots’ on an image, are designed to engage students, permit a 
wider range of response types and give a more rounded picture of mathematical literacy. A key 
challenge is to ensure that these items assess mathematical literacy and that interference from domain 
irrelevant dimensions is kept to a minimum. In order to maintain trend, the richer computer-based 
item types implemented in the optional CBAM component in 2012 will not be used, however care 
needs to be taken to ensure the CBT operationalisation of previously paper-based items does not add 
significantly to item difficulty. 

Investigations show that the mathematical demands of work increasingly occur in the presence of 
electronic technology so that mathematical literacy and computer use are melded together (Hoyles et 
al., 2002). For employees at all levels of the workplace, there is now an interdependency between 
mathematical literacy and the use of computer technology. A key challenge is to distinguish the 
mathematical demands of a PISA computer-based item from demands unrelated to mathematical 
proficiency, such as the information and communications technology (ICT) demands of the item, and 
the presentation format. Solving PISA items on a computer rather than on paper moves PISA into the 
reality and the demands of the 21st century. 



2  

29 
 

There is a great deal of research evidence into paper- and computer-based test performance, however 
findings are mixed. Some research suggests that a computer-based testing environment can influence 
students’ performance. Richardson et al (2002) reported that students found computer-based problem 
solving tasks engaging and motivating, often despite the unfamiliarity of the problem types and the 
challenging nature of the items. They were sometimes distracted by attractive graphics, and sometime 
used poor heuristics when attempting tasks. In one of the largest comparisons of paper-based and 
computer-based testing, ETS (2008) found that eighth-grade students’ mean scale point score was 
four points higher on a computer-based mathematics test compared to an equivalent paper-based test. 
Bennett (2008) concluded from his research that computer familiarity affects performance on 
computer-based mathematics tests, while others have found that the range of functions available 
through computer-based tests can affect performance. For example, Mason (2001) found that 
students’ performance was negatively affected in computer-based tests compared to paper-based tests 
when there was no opportunity on the computer version to review and check responses. Bennett 
(2003) found that screen size affected scores on verbal-reasoning tests, possibly because smaller 
computer screens require scrolling. On the other hand, Wang et al (2008) conducted a meta-analysis 
of studies pertaining to K-12 students’ mathematics achievements which indicated that administration 
mode has no statistically significant effect on scores. Moreover, recent mode studies performed on the 
Programme for the International Assessment of Adult Competencies (PIAAC) suggested that equality 
can be achieved (PIAAC technical report, to be published October 2013). In this study, adults were 
randomly assigned to either a computer- based or paper-based assessment of literacy and numeracy 
skills. The majority of the items used in the paper delivery mode were adapted for computer delivery 
and used in this study. Analyses of these data revealed that almost all of the item parameters were 
stable across the two modes, thus demonstrating the ability to place respondents on the same literacy 
and numeracy scale. Given this, it is hypothesised that 2012 Mathematical literacy items can be 
transposed onto screen without impacting on trend. Nevertheless, evidence will be gathered and 
analysed in the planned field test mode study. 

2015 Mode Study: Placeholder 
 
A similar study to the PIAAC mode study is planned for the PISA 2015 field trial. Students will be 
randomly assigned to either a computer-based or paper-based assessment of Reading, Mathematical 
and Scientific Literacy. Each domain will include 6 clusters of paper-based trend items that have been 
used in previous cycles of PISA. These items will be adapted for computer delivery so that countries 
opting to take the computer-based delivery option will be able to link back to previous cycles and will 
be comparable with countries choosing the paper-based option. It should be noted that some two 
thirds of the items from PISA use objective scoring such as multiple choice, true false, and simple 
open ended response formats that are easily adapted and reliably scored by computer; the rest are 
scored by human coders within each country. These more complex open ended items will be retained 
and scored in a similar fashion for PISA 2015. Analyses of the PISA field trial will be used to 
determine the comparability between the two modes of presentation across all trend items.  Results 
will be presented to the TAG, the OECD and to all participating countries in 2014.   

Just as pencil and paper assessments rely on a set of fundamental skills for working with printed 
materials, computer-based assessments rely on a set of fundamental ICT skills for using computers. 
These include knowledge of basic hardware (e.g. keyboard and mouse) and basic conventions (e.g. 
arrows to move forward and specific buttons to press to execute commands). The intention is to keep 
such skills to a minimal core level in the computer-based assessment. 

Summary 
The aim of PISA with regard to mathematical literacy is to develop indicators that show how 
effectively countries are preparing students to use mathematics in every aspect of their personal, civic 
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and professional lives, as part of their constructive, engaged and reflective citizenship. To achieve this, 
PISA has developed a definition of mathematical literacy and an assessment framework that reflects 
the important components of this definition. The mathematics assessment items selected for inclusion 
in PISA 2015, based on this definition and framework, are intended to reflect a balance of relevant 
mathematical processes, mathematical content and contexts. These items are intended to determine 
how students can use what they have learned. They call for students to use the content they know by 
engaging in processes and applying the capabilities they possess to solve problems that arise out of 
real-world experiences. the assessment provides problems in a variety of item formats with varying 
degrees of built-in guidance and structure, but the emphasis is on authentic problems where students 
must do the thinking themselves. In PISA 2015 the items will be presented in a computer-based test to 
reflect PISA’s commitment to presenting real life problems as they occur in real life. Although many 
of the features of computer-based testing will not be used in 2015 to preserve comparability with the 
paper-based 2012 test, this will be an area for advancement in future PISA tests. 

 



2  

31 
 

Appendix A: Fundamental  Mathematical  Capabilities  and  their  
Relationship  to  Item  difficulty   
A good guide to the empirical difficulty of items can be obtained by considering which aspects of the 
fundamental mathematical capabilities are required for planning and executing a solution (Turner, 
2012, Turner and Adams, 2012; Turner et al., 2013). The easiest items will require the activation of 
few capabilities and in a relatively straightforward way. The hardest items require complex activation 
of several capabilities. Predicting difficulty requires consideration of both the number of capabilities 
and the complexity of activation required. The sections below describe characteristics which make the 
activation of a single capability more or less complex (see also Turner, 2012). 

 

 Communication: various factors determine the level and extent of the communication demand 
of a task, and the capability of an individual to meet these demands indicates the extent to 
which they possess the communication capability. For the receptive aspects of 
communication, these factors include the length and complexity of the text or other object to 
be read and interpreted, the familiarity of the ideas or information referred to in the text or 
object, the extent to which the information required needs to be disentangled from other 
information, the ordering of information and whether this matches the ordering of the thought 
processes required to interpret and use the information, and the extent to which there are 
different elements (such as text, graphic elements, graphs, tables, charts) that need to be 
interpreted in relation to each other. For the expressive aspects of communication, the lowest 
level of complexity is observed in tasks that demand simply provision of a numeric answer. 
As the requirement for a more extensive expression of a solution is added, for example when 
a verbal or written explanation or justification of the result is required, the communication 
demand increases. 

 Mathematising: in some tasks, mathematisation is not required – either the problem is already 
in a sufficiently mathematical form, or the relationship between the model and the situation it 
represents is not needed to solve the problem. the demand for mathematisation arises in its 
least complex form when the problem solver needs to interpret and infer directly from a given 
model, or to translate directly from a situation into mathematics (e.g. to structure and 
conceptualise the situation in a relevant way, to identify and select relevant variables, collect 
relevant measurements, and/or make diagrams). The mathematisation demand increases with 
additional requirements to modify or use a given model to capture changed conditions or 
interpret inferred relationships; to choose a familiar model within limited and clearly 
articulated constraints; or to create a model where the required variables, relationships and 
constraints are explicit and clear. At an even higher level, the mathematisation demand is 
associated with the need to create or interpret a model in a situation where many assumptions, 
variables, relationships and constraints are to be identified or defined, and to check that the 
model satisfies the requirements of the task; or, to evaluate or compare models. 

 Representation: this mathematical capability is called on at the lowest level with the need to 
directly handle a given familiar representation, for example going directly from text to 
numbers, or reading a value directly from a graph or table. More cognitively demanding 
representation tasks call for the selection and interpretation of one standard or familiar 
representation in relation to a situation, and at a higher level of demand still when they require 
translating between or using two or more different representations together in relation to a 
situation, including modifying a representation; or when the demand is to devise a 
straightforward representation of a situation. Higher level cognitive demand is marked by the 
need to understand and use a non-standard representation that requires substantial decoding 
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and interpretation; to devise a representation that captures the key aspects of a complex 
situation; or to compare or evaluate different representations. 

 Reasoning and argument: in tasks of very low demand for activation of this capability, the 
reasoning required may involve simply following the instructions given. at a slightly higher 
level of demand, items require some reflection to connect different pieces of information in 
order to make inferences (e.g. to link separate components present in the problem, or to use 
direct reasoning within one aspect of the problem). at a higher level, tasks call for the analysis 
of information in order to follow or create a multi-step argument or to connect several 
variables; or to reason from linked information sources. at an even higher level of demand, 
there is a need to synthesise and evaluate information, to use or create chains of reasoning to 
justify inferences, or to make generalisations drawing on and combining multiple elements of 
information in a sustained and directed way. 

 Devising strategies: in tasks with a relatively low demand for this capability, it is often 
sufficient to take direct actions, where the strategy needed is stated or obvious. at a slightly 
higher level of demand, there may be a need to decide on a suitable strategy that uses the 
relevant given information to reach a conclusion. Cognitive demand is further heightened 
with the need to devise and construct a strategy to transform given information to reach a 
conclusion. even more demanding tasks call for the construction of an elaborated strategy to 
find an exhaustive solution or a generalised conclusion; or to evaluate or compare different 
possible strategies. 

 Using symbolic, formal and technical language and operations: the demand for activation of 
this capability varies enormously across tasks. in the simplest tasks, no mathematical rules or 
symbolic expressions need to be activated beyond fundamental arithmetic calculations, 
operating with small or easily tractable numbers. Work with more demanding tasks may 
involve sequential arithmetic calculations or direct use of a simple functional relationship, 
either implicit or explicit (e.g. familiar linear relationships); use of formal mathematical 
symbols (e.g. by direct substitution or sustained arithmetic calculations involving fractions 
and decimals); or an activation and direct use of a formal mathematical definition, convention 
or symbolic concept. Further increased cognitive demand is characterised by the need for 
explicit use and manipulation of symbols (e.g. by algebraically rearranging a formula), or by 
activation and use of mathematical rules, definitions, conventions, procedures or formulas 
using a combination of multiple relationships or symbolic concepts. a yet higher level of 
demand is characterised by the need for a multi-step application of formal mathematical 
procedures, working flexibly with functional or involved algebraic relationships, or using 
both mathematical technique and knowledge to produce results. 

 Using mathematical tools: tasks and activities involving a relatively low level of demand for 
this capability may require direct use of familiar tools, such as a measuring instrument, in 
situations where use of those tools is well-practised. Higher levels of demand arise when 
using the tool involves a sequence of processes, or linking different information using the tool, 
and when familiarity of the tools themselves is lower or when the situation in which the 
application of the tool is required is less familiar. Further increased demand is seen when the 
tool is to be used to process and relate multiple data elements, when the application of a tool 
is needed in a situation quite different from familiar applications, when the tool itself is 
complex with multiple functionalities and when there is a need for reflection to understand 
and evaluate the merits and limitations of the tool. 
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Appendix B: Illustrative PISA Items 
The following released PISA items are intended to illustrate relevant aspects and nuances of the PISA 
2012 framework. The seven items were selected to represent a spread across item type, process, 
content and context, as well as to describe the activation of the fundamental mathematical capabilities, 
but they are not intended to represent the full range of any particular aspect. 

Although the PISA 2015 assessment will be delivered on computer, the items used will be taken from 
the PISA 2012 paper-based assessment. The illustrative items in this section were all used as part of 
paper-based assessments and the figures quoted refer to the results of those assessments. Each item is 
shown as it appeared in the paper based assessment and screenshots are also provided for some of the 
units to show how the items would appear when presented onscreen. 

Charts 
The first illustrative unit is titled Charts. It comprises stimulus information in the form of text and a 
bar graph that represents music CD sales for four bands over a period of six months (Figure 5), and 
three simple multiple choice items (Figure 6). 

 
Figure 5 Stimulus material for illustrative items - Charts 
In January, the new CDs of the bands 4U2Rock and The Kicking Kangaroos were released. In 
February, the CDs of the bands No One’s Darling and The Metalfolkies followed. The 
following graph shows the sales of the bands’ CDs from January to June. 

 
 
Figure 6 Three illustrative items – Charts Q1-3 
Question 1  
How many CDs did the band The Metafolkies sell in April? 
A. 250 
B. 500 
C. 1000 
D. 1270 
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Question 2 
In which month did the band No One’s Darling sell more CDs than the band The Kicking Kangaroos for the first 
time? 
A. no month 
B. March 
C. April 
D. May 
 
Question 3 
The manager of The Kicking Kangeroos is worried because the number of their CDs that sold decreased from 
February to June.  
What is the estimate of their sales volume for July if the same negative trend continues? 
A. 70 CDs 
B. 370 CDs 
C. 670 CDs 
D. 1340 CDs 
 
 
In preparing national versions, PISA countries were expected to replace the band names with fictitious 
names suitable for their local context. 

Charts was used in the PISA 2012 main survey. The three items of Charts each lie in the Uncertainty 
and data content category, since they ask students to read, interpret and use data presented in a 
mathematical graphical form. They each lie in the Societal context category, since the data relate to 
public information about music sales, the kind that might be found in a newspaper, music magazine or 
on line. The first two questions are examples of the interpreting, applying and evaluating 
mathematical outcomes process category, since these questions involve interpreting the mathematical 
information presented in the chart in relation to context features represented; while the third question 
fits the employing mathematical facts, concepts, procedures and reasoning category because its focus 
is on applying procedural knowledge to manipulate the mathematical representation in order to make 
a further inference. The three questions were among the easiest questions used in the PISA 2012 main 
survey. 

Question 1, shown in Figure 6, calls for a straight-forward reading of data from the graph to answer a 
question about the context. Students needed to orient themselves to the information presented, identify 
which data series represents sales for the specified band, which bar represents the specified month 
within that series, and read the value 500 CDs directly from the vertical axis. The text is simple and 
clear, creating a very low communication demand. The strategy required is straightforward: simply to 
find the specified information in the graph. The mathematising demand is to make an inference about 
the sales situation directly from the graphical model. The representation capability is called on at a 
low level, involving reading a value directly from the graph. The graph format would be familiar to 
most 15-year-olds, and with effort required only to read the labels to identify what is represented. One 
axis of the graph is a category axis (months) and the height of the relevant bar is labelled (500) so no 
understanding of scale is required. The technical knowledge required is minimal beyond familiarity 
with the graph form; and only a direct inference is required, hence very low level demand for 
reasoning and argument. This was an extremely easy item, with some 87% of students identifying the 
correct response, B. 

Question 2 is only slightly more difficult, with about 78% correctly identifying response C. to answer 
this question, students must observe the relationship between two data series displayed in the bar chart, 
taking notice of how that relationship changes over the time period shown, in order to recognise that 
the condition specified in the question was first met in April. 

The communication demand is similar to that for Question 1. The strategy needed is slightly more 
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involved, since multiple elements of the two data series need to be drawn together. The 
mathematisation required again involves making an inference about the sales situation fairly directly 
from the graph. The representation demand is slightly raised from the requirement to read a single 
data point in Question 1, involving the linking of two data series and the time variable. The demand 
for using symbolic, formal and technical language and operations remains low as only a qualitative 
comparison is required; and the reasoning and argument demand is slightly elevated since a small 
sequence of reasoning steps is required. 

Question 3 is somewhat different from the first two, in that the main focus is on understanding a 
mathematical relationship depicted in the graph, and extrapolating that relationship to predict the next 
monthly value. The link to the context is still there, but the main demand is to work with the 
mathematical information shown. One way to do this would be to read the monthly data values for the 
series in question, estimate a reasonable average value by which each monthly value is reducing, and 
apply that same reduction to the data value given for the final month shown. The communication 
demand remains low. The main challenge is to avoid the distraction of the data series of other bands. 
However, the only common wrong answer was perhaps due to an error in understanding the phrase 
“the same negative trend”. Overall, 15% of students answered C, estimating the sales for July to be 
equal to the sales for June. They may have chosen the constant value because it maintained the same 
bad June sales figures into July. The strategy needed is clearly more involved than in the first two 
questions and its implementation requires some monitoring. There are decisions to make, such as 
whether to use all five February to June data points for this band, or to use the average change from 
February to June, and whether to calculate exactly, to draw or visualise a trend line or to work with 
broad estimates noting that each month the sales drop by just over one vertical scale division. The 
mathematisation demand involves a small manipulation of the given model in relation to the context; 
some calculation is required (repeated subtraction of multi-digit numbers, scale reading between 
labelled points) that would add to the demand for using symbolic, formal and technical language and 
operations. The representation demand involves inferring a trend relationship depicted in the graph; 
and a small sequence of reasoning steps is required to solve the problem. Nevertheless, this item is 
also relatively easy, with some 76% of students selecting the correct response B in the PISA 2012 
main survey administration. 

Fuji  
Figure 7 Three illustrative items - Climbing Mount Fuji, Q1-Q3 
 
Climbing Mount Fuji 
 
Mount Fuji is a famous dormant volcano in Japan. 
 
Question 1  
Mount Fuji is only open to the public for climing from 1 July to 27 August each year. About 200 000 people climb 
Mount Fuji during this time.  
On average, about how many people climb Mount Fuji each day? 
A. 340 
B. 710 
C. 3400 
D. 7100 
E. 7400 
 
Question 2 
The Gotemba walking trail up Mount Fuji is about 9 kilometres (km) long.  
Walkers need to return from the 18 km walk by 8 pm.   
Toshi estimates that he can walk up the mountain at 1.5 kilometres per hour on average, and down at twice that 
speed. These speeds take into account meal breaks and rest times. 
Using Toshi’s estimated speeds, what is the latest time he can begin his walk so that he can return by 8pm? 
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Answer: ______________________________________________________________ 
 
Question 3 
Toshi wore a pedometer to count his steps on his walk along the Gotemba trail. His pedometer showed that he 
walked 22 500 steps on the way up. 
Estimate Toshi’s average step length for his walk up the 9km Gotemba trail. Give your answer in centimetres 
(cm). 
Answer: _______ cm 
 

 
A second illustrative unit is titled Climbing Mount Fuji, shown in Figure 7. The first question is a 
simple multiple choice item and the second and third questions are constructed response items 
requiring numerical answers. The third item has partial credit available. This is used for a small 
proportion of PISA items where qualitatively different kinds of response can be given, and where 
markedly different abilities can be associated with different kinds of responses. 

Climbing Mount Fuji was used in the PISA 2012 main survey, and then released into the public 
domain. Questions 1 and 3 lie in the Quantity content category, since they ask students to calculate 
with dates and measurements and make conversions. Question 2 has speed as its central concept and 
is therefore in the Change and relationships content category. 

They each lie in the Societal context category, since the data relate to information about public access 
to Mount Fuji and its trails. The first two questions are examples of the formulating situations 
mathematically process category, since the main demand of these questions involves creating a 
mathematical model that can answer the posed questions. 

Question 3 is placed in the employing mathematical facts, concepts, procedures and reasoning 
category because the main demand here is to calculate an average, taking care to convert units 
appropriately, hence working essentially within the mathematical details of the problem rather than 
connecting those details with the contextual elements. The three questions were of varying difficulty 
in the PISA 2012 main survey. Question 1 was of medium difficulty, and Questions 2 and 3 were both 
very difficult.  

Question 1 calls for calculation of the average number of people per day. The text is simple and clear, 
creating a low communication demand. The strategy required is of moderate demand, because it 
involves finding the number of days from the dates provided and using this to find the average. This 
multiple step solution requires some monitoring, which is also part of the devising strategies demand. 
The mathematising demand is very low, because the mathematical quantities required are directly 
given in the question (number of people per day). Demand for the representation capability is 
similarly low – only numerical information and text are involved. The technical knowledge required 
includes knowing how to find an average, being able to calculate number of days from dates, being 
able to perform the division (using calculator or not, depending on country assessment policy), and 
rounding the result appropriately. There is low level demand for reasoning and argument. This was an 
item of medium difficulty, with some 46% of students in the PISA 2012 main survey administration 
identifying the correct response, C. the two most popular wrong choices were e (which is obtained by 
using 27 days instead of 31+27 days) with 19% of responses; and a (a place value error) with 12% of 
responses. 

Question 2 is considerably more difficult, with about 12% correct in the PISA 2012 main survey. One 
factor in this difficulty is that it is a constructed response item, rather than selected response, so 
students are given no guidance regarding possible answers, but there are many other factors. About 
61% of responses to the PISA 2012 survey administration of this question were wrong answers, not 
missing. 
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The communication demand is low and, in its receptive aspects, similar to that for Question 1. The 
constructive communication only requires a numerical response. The strategy needed is much more 
involved, since a plan with three main parts needs to be assembled. Times up and down the mountain 
need to be calculated from the average speeds, and then the starting time needs to be calculated from 
the finishing time and the time the walk takes. The mathematisation required is moderately high, 
involving aspects such as understanding how meal times are already included and even that the trail 
will first be up and then separately down. The representation demand is minimal, with only the 
interpretation of text required. the demand for using symbolic, formal and technical language and 
operations is moderately high: all the calculations are relatively simple (although division by the 
decimal 1.5 km per hour may be challenging) but it requires sustained accuracy, and the formula for 
time from speed and distance is required either implicitly or explicitly. The reasoning and argument 
demand is also moderately high. 

Question 3 is also quite difficult. The main focus is to calculate average step length from distance and 
number of steps, with unit conversions required. For this item, 11% of responses in the PISA 2012 
survey administration gained full credit for the correct response 40 cm, and a further 4% gained 
partial credit for responses such as 0.4 (the answer left in metres) or 4000 where an incorrect 
conversion factor from metres to centimetres has probably been used. For the PISA 2012 main survey 
administration, 62% of responses were incorrect answers, not missing. The communication demand 
remains low as with the earlier questions, since the text is fairly clear and easy to interpret and the 
requirement for a single number as a sufficient answer. The strategy needed for Question 3 is similar 
to that for Question 1 – both require finding an average. Although both use similar models to find 
‘averages’, the reasoning and argument needed for Question 3 is more involved than for Question 1. 
In Question 1, the quantity required is “people per day” where the number of people is given and the 
number of days is readily calculated. Question 3 requires “step length” to be calculated from a total 
distance and a total number of steps. More reasoning is required to link these quantities in Question 3 
(for example linking the given distance with the length). The mathematisation demand is similarly 
higher in Question 3, understanding how the real world quantity of step length relates to the overall 
measures. An appreciation of the real world context, including that step length is likely to be around 
50 cm (rather than 500 cm or 0.5 cm), is also useful for monitoring the reasonableness of the answer. 
The demand for using symbolic, formal and technical language and operations is moderately high, 
because of the division of a small number (9 km) by a large number (22 500 steps) and the need for 
using known conversion factors. The representation demand is again low, since only text is involved. 

Pizzas 
The open constructed-response item Pizzas shown in Figure 8 is simple in form, yet rich in content, 
and illustrates various elements of the mathematics framework. It was initially used in the first PISA 
field trial in 1999, then was released for illustrative purposes and has appeared as a sample item in 
each version of the PISA mathematics framework published since 2003. This was one of the most 
difficult items used in the 1999 field trial item pool, with only 11% correct. 

Figure 8 An illustrative item – Pizzas 
 
A pizzeria serves two round pizzas of the same thickness in different sizes. The smaller one has a diameter of 30 
cm and costs 30 zeds. The larger one has a diameter of 40 cm and costs 40 zeds. 
Which pizza is better value for money? Show your reasoning. 

 
 

Pizzas is set in a personal context with which many 15-year-olds would be familiar. The context 
category is personal since the question posed is which pizza provides the purchaser with the better 
value for the money. It presents a relatively low reading demand, thereby ensuring the efforts of the 
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reader can be directed almost entirely to the underlying mathematical intentions of the task. 

Every day terms from the real world must be interpreted mathematically (round, same thickness, 
different sizes). The size variable is given mathematical definition in the diameters provided for the 
two pizzas. The costs are provided in the neutral currency zeds. Size and cost are linked through the 
concept of value for money. 

The item draws on several areas of mathematics. It has geometrical elements that would normally be 
classified as part of the Space and shape content category. The pizzas can be modelled as thin circular 
cylinders, so the area of a circle is needed. The question also involves the Quantity content category 
with the implicit need to compare the quantity of pizza to amount of money. However, the key to this 
problem lies in the conceptualisation of the relationships among properties of the pizzas, and how the 
relevant properties change from the smaller pizza to the larger one. Because those aspects are at the 
heart of the problem, this item is categorised as belonging to the Change and relationships content 
category. 

The item belongs to the formulating process category. a key step to solving this problem, indeed the 
major cognitive demand, is to formulate a mathematical model that encapsulates the concept of value 
for money. The problem solver must recognise that because pizzas ideally have uniform thickness and 
the thicknesses are the same, the focus of analysis can be on the area of the circular surface of the 
pizza instead of volume or mass. The relationship between amount of pizza and amount of money is 
then captured in the concept of value for money modelled as ‘cost per unit of area.’ variations such as 
area per unit cost are also possible. Within the mathematical world, value for money can then be 
calculated directly and compared for the two circles, and is a smaller quantity for the larger circle. The 
real world interpretation is that the larger pizza represents better value for money. 

An alternative form of reasoning, which reveals even more clearly the item’s classification in Change 
and relationships, would be to say (explicitly or implicitly) that the area of a circle increases in 
proportion to the square of the diameter, so has increased in the ratio of (4/3),2 while the cost has only 
increased in the proportion of (4/3). Since (4/3)2 is greater than (4/3), the larger pizza is better value. 

While the primary demand and the key to solving this problem comes from formulating, placing this 
item in the formulating situations mathematically process category, aspects of the other two 
mathematical process are also apparent in this item. The mathematical model, once formulated, must 
then be employed effectively, with the application of appropriate reasoning along with the use of 
appropriate mathematical knowledge and area and rate calculations. The result must then be 
interpreted properly in relation to the original question. 

The solution process for Pizzas demands the activation of the fundamental mathematical capabilities 
to varying degrees. Communication comes in to play at a relatively low level in reading and 
interpreting the rather straight-forward text of the problem, and is called on at a higher level with the 
need to present and explain the solution. The need to mathematise the situation is a key demand of the 
problem, specifically the need to formulate a model that captures value for money. The problem 
solver must devise a representation of relevant aspects of the problem, including the symbolic 
representation of the formula for calculating area, and the expression of rates that represent value for 
money, in order to develop a solution. The reasoning demands (for example, to decide that the 
thickness can be ignored, and justifying the approach taken and the results obtained) are significant, 
and the need for devising strategies to control the calculation and modelling processes required is also 
a notable demand for this problem. Using symbolic, formal and technical language and operations 
comes into play with the conceptual, factual and procedural knowledge required to process the circle 
geometry, and the calculations of the rates. Using mathematical tools is evident at a relatively low 
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level if students use a calculator efficiently. 

In Figure 9, a sample student response to the Pizzas item is presented, to further illustrate the 
framework constructs. A response like this would be awarded full credit. 

 
Figure 9 Sample response to Pizzas 
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Figure 10 shows how Pizzas might look presented onscreen. The response format comprises of a 
single-answer multiple-choice and a space to show the reasoning behind the selection. Full credit is 
dependent on both the selection and the reasoning behind it. 

Figure 10 Pizzas presented onscreen 

 
 
Litter 
 

The item Litter shown in Figure 11 is also presented to illustrate aspects of the mathematics 
framework. This constructed- response item was used in the PISA 2003 main survey and then 
released into the public domain. The average percent correct for this item in OECD countries was 
slightly over 51%, placing it near to the middle of the item pool in difficulty. 
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Figure 11 An illustrative item - Litter 
Litter 
For a homework assignment on the environment, students collected information on the decomposition time 
of several types of litter that people throw away: 

Type of litter Decomposition 
time 

Banana peel 1-3 years 

Orange peel 1-3 years 

Cardboard 
boxes 

0.5 year 

Chewing gum 20-25 years 

Newspapers A few days 

Polystyrene 
cups 

Over 100 years 

A student thinks of displaying the results in a bar graph. 
Give one reason why a bar graph is unsuitable for displaying these data. 
 

 
This item is set in a scientific context, since it deals with data of a scientific nature (decomposition 
time). The mathematical content category is Uncertainty and data, since it primarily relates to the 
interpretation and presentation of data, although Quantity is involved in the implicit demand to 
appreciate the relative sizes of the time intervals involved. the mathematical process category is 
interpreting, applying and evaluating mathematical outcomes since the focus is on evaluating the 
effectiveness of the mathematical outcome (in this case an imagined or sketched bar graph) in portraying 
the data about the real world contextual elements. The item involves reasoning about the data 
presented, thinking mathematically about the relationship between the data and their presentation, and 
evaluating the result. The problem solver must recognise that these data would be difficult to present 
well in a bar graph for one of two reasons: either because of the wide range of decomposition times for 
some categories of litter (this range cannot readily be displayed on a standard bar graph), or because of 
the extreme variation in the time variable across the litter types (so that on a time axis that allows for 
the longest period, the shortest periods would be invisible). Student responses such as those reproduced 
in Figure 12  have been awarded credit for this item. 

 
Figure 12 Sample responses for Litter  

Response 1: “Because it would be hard to do in a bar graph because there are 1-3, 1-3, 0.5, etc. so it would 
be hard to do it exactly.” 

Response 2: “Because there is a large difference from the highest sum to the lowest therefore it would be 
hard to be accurate with 100 years and a few days.” 

 
The solution process for Litter demands the activation of the fundamental mathematical capabilities as 
follows. Communication comes in to play with the need to read the text and interpret the table, and is 
also called on at a higher level with the need to answer with brief written reasoning. The demand to 
mathematise the situation arises at a low level with the need to identify and extract key mathematical 
characteristics of a bar graph as each type of litter is considered. The problem solver must interpret a 
simple tabular representation of data, and must imagine a graphical representation, and linking these 
two representations is a key demand of the item. The reasoning demands of the problem are at a 
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relatively low level, as is the need for devising strategies. Using symbolic, formal and technical 
language and operations comes into play with the procedural and factual knowledge required to 
imagine construction of bar graphs or to make a quick sketch, and particularly with the understanding 
of scale needed to imagine the vertical axis. Using mathematical tools is likely not needed. 

Figure 13 shows how Litter might look presented onscreen. The response format remains the same. 
 

Figure 13 Litter presented onscreen 

 
 
 
Rock Concert 
A further illustrative item, Rock Concert, is presented in Figure 14. This selected-response item (here 
simple multiple choice) was used in the field trial prior to the PISA 2003 survey, then was released 
into the public domain for illustrative purposes. About 28% of sampled students got this item correct 
(choice C), making it a moderately difficult item relative to the pool of items used in the field trial. 
Rock Concert is set in a societal context, because the item is set at the level of the rock concert 
organisation, even though it draws on personal experience of being in crowds. It is classified within 
the Quantity content category because of the numerical calculation required, though it also has some 
elements that relate to the Space and shape category. 
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Figure 14 An illustrative item – Rock Concert 
Rock Concert 
For a rock concert a rectangular field of size 100 m by 50 m was reserved for the audience. The concert was 
completely sold out and the field was full with all the fans standing. 
Which one of the following is likely to be the best estimate of the total number of people attending the concert? 
A. 2 000 
B. 5 000 
C. 20 000 
D. 50 000 
E. 1000 000 
 
This item calls on each of the three process categories but the primary demand comes from 
formulating situations mathematically, with the need to make sense of the contextual information 
provided (the field size and shape; the rock concert is full; fans are standing) and translate it into a 
useful mathematical form. There is also the need to identify information that is missing, but that could 
reasonably be estimated based on real-life knowledge and assumptions. Specifically there is a need to 
devise a model for the space required for an individual fan or a group of fans. Working within 
mathematics, the problem solver needs to employ mathematical concepts, facts, procedures and 
reasoning to link the area of the field and the area occupied by a fan to the number of fans, making the 
quantitative comparisons needed. And interpreting, applying and evaluating mathematical outcomes is 
required to check the reasonableness of the solution, or to evaluate the answer options against the 
mathematical results of calculations performed. 

An alternative model is to imagine the fans standing uniformly in equal rows across the field and to 
estimate the number of fans by multiplying the estimated number of rows by the estimated number of 
fans in each row. Problem solvers with strong skills in formulating mathematical models may 
appreciate the effectiveness of this rows-and-columns model, despite the stark contrast between it and 
the behaviour of fans at a rock concert. The correct answer is insensitive to which of several 
reasonable models is being adopted by the student. 

The fundamental mathematical capabilities come into play for this question in the following ways. 
Communication is called on at a relatively low level with the need to read and understand the text. 
The mathematical importance of words such as rectangular and size, the phrase the field was full, and 
the instruction to estimate, must all be interpreted and understood. Some real-world knowledge will 
help to do this. The task has a significant mathematisation demand, since solving the problem would 
require making certain assumptions about the space that a person might occupy while standing as well 
as requiring the creation of a basic model such as (number of fans) x (average space for a fan) = (area 
of field). To do this one must represent the situation mentally or diagrammatically, as part of 
formulating the model to link the space for a fan with the area of the field. Devising a strategy comes 
into the process of solving this problem at several stages, such as when deciding on how the problem 
should be approached, when imagining what kind of model could be useful to capture the space 
occupied by a fan at the concert, and when recognising the need for some checking and validation 
procedures. One solution strategy would involve postulating an area for each person, multiplying it by 
the number of people given in each of the options provided, and comparing the result to the conditions 
given in the question. Alternatively, the reverse could be done, starting with the area provided and 
working backwards using each of the response options to calculate the corresponding space per 
person, and deciding which one best fits the criteria established in the question. Using symbolic, 
formal and technical language and operations comes into play in implementing whatever strategy 
was adopted, by interpreting and using the dimensions provided and in carrying out the calculations 
required to relate the field area to the area for an individual. Reasoning and argument would come in 
to play with the need to think clearly about the relationship between the model devised, the resulting 
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solution, and the real context, in order to validate the model used and to check that the correct answer 
is chosen. Using mathematical tools is unlikely to be needed. 

Figure 15 shows how Rock concert might look when presented onscreen.  

 
Figure 15 Rock Concert presented onscreen 

 
 
Walking 
The PISA unit Walking, presented in Figure 16, shows a somewhat counter-intuitive but well-
established algebraic relationship between two variables, based on the observation of a large number 
of men walking at a natural pace, and asks students two questions that demand activation of algebraic 
knowledge and skills. For the second question, strategic thinking, reasoning and argument capabilities 
are also demanded at a level that challenges many 15-year-olds. these items were used in the PISA 
2003 main survey, then released into the public domain and have subsequently been used as 
illustrative items in the PISA 2009 and 2012 frameworks and in other publications. Both questions 
require students to work with the information given and to construct their response. Both items fit 
within the same framework categories: the Change and relationships content category, since they 
relate to the relationships among variables, in this case expressed in algebraic form; the personal 
context category, since they focus on matters relating directly to the experience and perspective of the 
individual; and the employing mathematical facts, concepts, procedures and reasoning process 
category, since the problems have been expressed in terms that already have mathematical structure, 
and the work required is largely intra- mathematical manipulation of mathematical concepts and 
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objects. 

Figure 16 An illustrative item - Walking 

WALKING 

 
The picture shows the footprints of a man walking. The pacelength P is the distance between the rear of two 
consecutive footprints. 

For men, the formula  gives an approximate relationship between n and P where  
n = number of steps per minute, and 
P = pacelength in metres. 

Question 1: 
If the formula applies to Heiko’s walking and Heiko takes 70 steps per minute, what is Heiko’s pacelength? Show 
your work. 
Question 2: 
Bernard knows his pacelength is 0.80 metres. The formula applies to Bernard’s walking. 
Calculate Bernard’s walking speed in metres per minute and in kilometres per hour. Show your working out. 

 

Question 1 had an international percentage correct figure of 36% in the 2003 main survey, making it 
more difficult than about 70% of items in the 2003 pool. This is surprising, since mathematically all 
that is required is to substitute the value n=70 into the formula, and implement some reasonably 
straight-forward algebraic manipulation of the formula to find the value of P. This item illustrates the 
observation that has frequently been made about PISA survey items that when test questions are 
placed in some real world context, even when the mathematical components are presented clearly in 
the question, 15-year-old students often struggle to apply their mathematical knowledge and skills 
effectively. 

The fundamental mathematical capabilities come into play for this question  in the following  ways. 
Communication is called on with the need to read and understand the stimulus, and later to articulate a 
solution and show the work involved. The task has no real mathematisation demand, since a 
mathematical model is provided in a form that would be familiar to many 15-year-old students. The 
representation demand is significant, given that the stimulus includes a graphic element, text and an 
algebraic expression that must be related to each other. Devising a strategy comes into the solution 
process at a very low level, since the strategy needed is very clearly expressed in the question. 
Minimal reasoning and argument is needed, again because the task is clearly stated and all required 
elements are obvious. Using symbolic, formal and technical language and operations comes into play 
in performing the substitution and manipulating the expression to make P the subject of the equation. 

Question 2 is more difficult, with an international average percentage correct of 20%, meaning it was 
among the most difficult 10% of items used in the 2003 survey. Devising a strategy for this question 
is complex because of the number of steps involved, and the resulting need to keep focused on the 
desired endpoint: P is known and so n can be found from the given equation; multiplying n by P gives 
the speed in number of metres travelled per minute; then proportional reasoning can be used to change 
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the units of speed to kilometres per hour. Three levels of credit were available to accommodate 
solutions for which only partial progress towards a complete solution was achieved. The difference in 
the observed percentage correct for Question 2 compared to Question 1 can probably best be 
explained by describing the different activation of the fundamental mathematical capabilities that are 
required. the communication required for the two questions is comparable at the stage of reading and 
understanding the question, but in Question 2 the diagram has to be used to explicitly link one step 
and the given pacelength, a relationship not needed in Question 1, and the presentation of the solution 
demands higher level expressive communication skills for Question 2. The task has a new 
mathematisation demand, since solving the problem would require devising a proportional model for 
Bernard’s walking speed in the units requested. Such a solution process requires activation of 
effective and sustained control mechanisms across a multi-step procedure, hence the devising a 
strategy capability is required at a much higher level than was the case for Question 1. The 
representation demands in the second question go beyond those needed for Question 1 with the need 
to work more actively with the given algebraic representation. Implementing the strategy devised and 
using the representations identified involves using symbolic, formal and technical language and 
operations that includes the algebraic manipulations, and the application of proportions and arithmetic 
calculations to perform the required conversions. Reasoning and argument comes in to play 
throughout with the sustained and connected thought processes required to proceed with the solution. 
Using mathematical tools is evident at a relatively low level if students use a calculator efficiently. 

Figures 17 and 18 show Walking as it might look onscreen, showing Questions 1 and 2 respectively. 
Note that in the computer-based delivery only one question is presented at a time alongside the 
stimulus.  
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Figure 17 Walking Question 1 presented onscreen 
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Figure 18 Walking Question 2 presented onscreen 

 
 
Carpenter 
The PISA item Carpenter is presented in Figure 19. This item was used in both the PISA 2000 and 
2003 surveys, and then released into the public domain. It illustrates a form of selected-response item 
known as the complex multiple- choice format, for which students must select one response from 
options attached to each of a number of statements or questions. In this case, students gained full 
credit by correctly identifying that all designs except design B can be made with the specified amount 
of timber. 

The item fits into the Space and shape content category, since it deals with properties of shapes. It is 
associated with the occupational context category as it deals with a work task of a carpenter. The item 
is classified under the employing mathematical concepts, facts, procedures and reasoning process 
category, since most of the work involves applying procedural knowledge to well defined 
mathematical objects; although it also involves some degree of interpreting, applying and evaluating 
mathematical outcomes given the need to link the mathematical objects represented to the contextual 
element – the constraint imposed by the available timber.



2  

49 
 

 
Figure 19 An illustrative item - Carpenter 
Carpenter 
 
A carpenter has 32 metres of timber and wants to make a border around a garden bed. He is considering the 
following designs for the garden bed. 

 

Circle either “Yes” or “No” for each design to indicate whether the garden bed can be made with 32 metres of 
timber. 

Garden bed design Using this design, can the garden bed 
be made with 32 metres of timber? 

Design A Yes / No 

Design B Yes / No 

Design C Yes / No 

Design D Yes / No 
 

 

This was one of the more difficult items in the PISA 2003 survey, with a correct response rate of a 
little less than 20%. It can be solved by the application of geometrical knowledge and reasoning. 
Enough information is given to enable direct calculation of the exact perimeter for designs a, C and d, 
each of which is 32 metres. However, insufficient information is given for design B; therefore a 
different approach is required. It can be reasoned that while the ‘horizontal’ components of the four 
shapes are equivalent, the oblique sides of design B are longer than the sum of the ‘vertical’ 
components of each of the other shapes. 

The communication capability is called on in reading and understanding the question, and to link the 
information provided in the text with the graphical representation of the four garden beds. The task 
has been presented in overtly mathematical form, hence no mathematisation is needed. Real world 
considerations, such as the lengths of the pieces of timber available and the geometry of the corners, 
do not come into the problems as posed here, the key capability demanded to solve the problem is the 
reasoning and argument needed to identify design B has too great a perimeter and to appreciate that 
the lengths of the ‘vertical’ components of design a are in themselves unknown, but that the total 
‘vertical’ length is known (similarly with design C with both vertical and horizontal lengths). 
Devising a strategy involves recognising that the perimeter information needed can be found in spite 
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of the fact that some of the individual lengths are not known. Using symbolic, formal and technical 
language and operations is needed in the form of an understanding and manipulating of the perimeter 
of the shapes presented, including both the properties of the sides, and the addition of the side lengths. 
Using mathematical tools is likely not needed. 

Figure 20 shows how Carpenter might look presented onscreen. Note that the complex multiple 
choice format has been retained but students are required to select the radio button, rather than circle 
their answer choices. 

 
Figure 20 Carpenter presented onscreen 
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