Guidelines for development of Matlab
interfaces for HSL packages

M. Arioli, I. S. Duff, N. I. M. Gould,
J. D. Hogg, and H. S. Thorne

April 19, 2010

RAL-TR-2010-13

© Science and Technology Facilities Council

Enquires about copyright, reproduction and requests for additional copies of this report should
be addressed to:

Library and Information Services

SFTC Rutherford Appleton Laboratory
Harwell Science and Innovation Campus
Didcot

OX11 0QX

UK

Tel: +44 (0)1235 445384

Fax: +44(0)1235 446403

Email: library@rl.ac.uk

The STFC ePublication archive (epubs), recording the scientific output of the Chilbolton,
Daresbury, and Rutherford Appleton Laboratories is available online at:
http://epubs.cclrc.ac.uk/

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their reports
or in any communication about their tests or investigation

RAL-TR-2010-013

Guidelines for development of Matlab interfaces for HSL
packages

M. Arioli, I. S. Duff, N. I. M. Gould, J. D. Hogg, and H. S. Thorne,

ABSTRACT

In this report we describe the modus operandi for providing Matlab interfaces for HSL
codes. We discuss the file structure for the HSL-Matlab interface and how the mex file
should be constructed. We also provide details of an hsl_matlab package that is designed

to facilitate the interface and discuss how the user can install the resulting software on
LINUX platforms.

Keywords: MATLAB interfaces, HSL, Fortran

Current reports available by anonymous ftp to ftp.numerical.rl.ac.uk in directory pub/reports.
The work was supported by EPSRC grant GR/S42170/01.

Computational Science and Engineering Department
Atlas Centre

Rutherford Appleton Laboratory

Oxon OX11 0QX

April 19, 2010

Contents
1 Introduction
2 Fortran codes for the HSL package

3 The mex file

3.1 fintrf.h e e e
3.2 The gateway routine Lo
3.3 hslmatlab.FO0 e e
3.4 Variable Declarations e
3.5 Bodyofthemexcode.
3.5.1 Inmitial Check
3.5.2 Matlab structureso
3.5.3 Allocation and deallocation

4 Installation files
4.1 Directory structure e
4.2 The <packagename> install.mfile.

5 Matlab codes to enable simple call of subroutines
6 Interface testing
7 Pitfalls

8 Documentation
8.1 The README file
8.2 On-line documentation L

A Example of the I/O for a sparse matrix

1 Introduction

These guidelines are a simple indication of a safe and consistent approach to the design of inter-
faces between HSL or GALAHAD Fortran codes and the Matlab environment. We will restrict
ourselves to LINUX platforms and rely on the presence of the g95 open source Fortran compiler.
Although developers can maintain reasonable freedom, we strongly encourage them to follow
these guidelines when designing and coding the interface.

Matlab interfaces provide a mechanism for using HSL or GALAHAD packages within the
Matlab environment. Matlab is widely used so the provision of such an interface can be of great
benefit to current HSL or GALAHAD users and should also increase the number of users of this
software.

A Matlab interface is distributed with selected HSL or GALAHAD packages and consists of
the following, in addition to the standard components of a package:

e a mex file for the HSL or GALAHAD package;

e a mex file containing the hsl matlab or galahad matlab package;

an installation file: <packagename> install.m;

a file README containing general information about using the interface;

a file INSTALL containing installation instructions for the interface;

for some HSL codes, additional Matlab mex files may be present if other interfaces are
required. For example, for the HSL packages MA57 and ME57, there are interfaces that
return the factors rather than just solve a set of equations.

We will describe these components in the following sections as well as discussing the directory
structure, documentation, and testing. We focus in what follows on HSL codes: essentially
identical ideas are used within GALAHAD.

2 Fortran codes for the HSL package

When we develop a Matlab interface, our starting point will be the HSL Fortran package. As
the interface will be distributed with the Fortran package as part of the library, any
changes required to the main HSL Fortran package must be reflected in and tested
with the Matlab interface and vice-versa.

There may be occasions when minor changes need to be carried out within the Fortran code
to enable the provision of a Matlab interface. Accordingly, the version should be updated and
passed to the HSL librarian. For example, in the Fortran 95 HSL codes, it is common practice
to use a derived data type that contains components that the user must not alter. To ensure
this, the components are declared as private. However, within our Matlab interface, if we need
access to these components, we will need to remove the private declaration. Similarly, if any of
the dependencies need modification, the associated HSL packages should be formally updated.

3 The mex file

The main component of the Matlab interface is its mex file: mex stands for Matlab executable. We
have chosen to construct the mex file based on Fortran 95. The mex file is a way to call Fortran
(or C) routines from Matlab as if they were built-in Matlab functions. A major complication

with these files is that the interface between Fortran and Matlab is far from straightforward,
in particular Matlab pointers are quite different from those used in Fortran and there is no
direct equivalent of the derived data types used in Fortran. The mex file should always have the
extension .F90 and its name determines how the function is called within Matlab. For example,
the mex file factorlu.F90 will produce a Matlab function that can be called as follows

[output_arguments] = factorlu(input_arguments)

Remark 3.1 [t is necessary that the suffiz .FO0 be in upper case format. The mex command
does not accept a suffiz .£90. The capital F90 indicates that a preprocessor must be run to obtain
standard-compliant Fortran code.

All mex files for interfacing with our codes should include three components:
e initial statement: #include <fintrf.h>
e the gateway subroutine
e the statement: use hsl_matlab

In Listing 1, we provide the skeleton of a mex file. We will now describe the components of the
mex file in more detail.

Listing 1: Skeleton of mex file

#include <fintrf.h>
! The gateway routine
SUBROUTINE mexFunction (nlhs , plhs ,nrhs, prhs)

use hsl_matlab
! Other ‘use’ statements

implicit none

! mex declarations

integer*4 :: nlhs, nrhs
mwPointer :: plhs (%), prhs(x)
! Other variable declarations

! Body of the subroutine (in Fortran)

END SUBROUTINE mexFunction

\. J

3.1 fintrf.h

The initial statement #include <fintrf.h> is necessary to provide the underlying interface
routines from Matlab. For further information on this see Matlab “help”.

3.2 The gateway routine

The gateway routine is the entry point to the mex interface. It is through this routine that
Matlab accesses the subroutines from the HSL package. The name of the gateway routine must
be mexFunction and it must contain the parameters nlhs, plhs, nrhs and prhs, where nrhs and
nlhs are the number of input and output arguments, respectively, and prhs and plhs are arrays
of Matlab pointers to the input and output arguments, respectively.

It is good practice to give alias names to the input and output variables even if it is not
necessary. In Listing 2, we provide an example.

Listing 2: Alias in mex file

-
#include <fintrf.h>

! The gateway routine
SUBROUTINE mexFunction (nlhs , plhs ,nrhs, prhs)
use hsl_matlab
! Other ‘use’ statements

implicit none

! mex declarations
integer*4 :: nlhs, nrhs
mwPointer :: plhs (%), prhs(x)

I Alias example

! We assume that we have one input argument

! and two output arguments

! i.e. nlhs = 1 and nrhs = 2

! (a matrix on input and two matrices on output)

mwSize :: A_inp, L_out, U_out
A_inp =1
Lout =1
U_out = 2

! prhs(1) is then equal to prhs(A_inp) and
! plhs(1) is equal to plhs(L_out) and
! plhs(2) is equal to plhs(U_out)

! Body of the subroutine (in Fortran)

END SUBROUTINE mexFunction
\

3.3 hslmatlab.F90

The hsl matlab.F90 package is a Fortran-based module that provides interfaces to commonly
used routines that are provided by fintrf.h. This enables portability of the interfaces between

32 and 64-bit machines and also allows for better maintainability of the code. For example,
any changes to these underlying routines will only result in an alteration to the hsl matlab
package. If you find that you need to use a mex function that is not available via an interface
within hsl matlab, then you should update the hsl matlab package to include an interface to
this function.

The hsl_matlab package is available with the distribution and provides interfaces to a wide
range of mex functions and subroutines. The documentation is in the file:

/numerical /num /hsl2007 /packages/hsl_matlab/hsl_matlab.ral.pdf .

3.4 Variable Declarations

The variable declarations are split into two parts: those associated with mex declarations and
those associated with standard Fortran declarations.

To enable cross-platform flexibility, Matlab contains several preprocessor macros (we call them
Matlab data types) that are used by hsl matlab functions:

e mwSize is a data type for sizes, such as array dimensions and number of elements; default
Fortran integers should be declared as such.

e mwIndex is a data type for index values, needed to identify components of arrays; integer
arguments to hsl matlab functions should be as such.

e mwPointer: is a data type for a Matlab pointer. Matlab uses a unique data type, the
mxArray. Because there is no way to create such a data type in Fortran, Matlab passes a
special identifier, created by the mwPointer preprocessor macro, to a Fortran program.

The Fortran preprocessor hsl matlab converts mwPointer variables to integer*4 variables
when building binary mex-files on 32-bit platforms and to integer*8 variables when building on
64-bit platforms.

After the mex declarations, we have the standard Fortran declarations including any allo-
catable arrays that are required to run the Fortran package and any other functionality that is
required.

3.5 Body of the mex code
3.5.1 Initial Check

The first check is on the arguments nrhs and nlhs of the gateway function. These must be
checked to ensure that the correct number of arguments have been passed to the function. In the
following example, there must be between 1 and 3 input arguments and between 1 and 5 output
arguments.

IF (nrhs < 1 .or. nrhs > 3) THEN

CALL MATLAB_error("Wrong # of input arguments")
END IF
IF (nlhs < 1 .or. nlhs > 5) THEN

CALL MATLAB_error("Wrong # of output arguments")
END IF

The subroutine MATLAB_error prints an error message and returns the user to the Matlab prompt.

3.5.2 Matlab structures

In the Fortran 95 HSL codes, it is common practice to define data types to hold the control
parameters, information details, and data that needs to be stored from one call to the next.
In Matlab, we can use structures to carry out the same functionality. Unfortunately, we have
discovered that there is currently a restriction on the use of array components within structures
(namely, you can define and assign arrays within a Matlab structure but they cannot be read
back from the structure within the interface). Hence, arrays need to be passed separately.

3.5.3 Allocation and deallocation

Having declared the local variables, storage must be allocated for each array to be used in the
mex file. The command

ALLOCATE(name(n+1), STAT = err)

will allocate the array name of dimension n+1. If the allocation is successful err will be equal
to zero. Otherwise, an error has occurred (normally we have run out of storage). Thus, it is
necessary to check if the allocation was successful:

IF (err .ne. 0) THEN
CALL MATLAB_error(" Insufficient memory ")
END IF

Before the final return to Matlab it is necessary to deallocate all the arrays that have been
used. Input or output variables must not be deallocated. To avoid an error return we always
check whether an array is allocated before deallocating it viz.

IF (ALLOCATED(name)) DEALLOCATE(name, STAT = err)

4 Installation files

4.1 Directory structure

The Matlab interface is treated as part of the library package and sits in its own matlab subdi-
rectory of the main package directory.

The files in this directory must all be prefixed with the package name, except for the README
and INSTALL files. This ensures that multiple HSL Matlab interfaces can be stored in the same
directory.

For distribution purposes, the name of the parent directory is included in the name of most
of the following files:

README information on the installation of the package for use with Fortran, including exter-
nal libraries and a pointer to the matlab subdirectory.

<packagename>.pdf user documentation for the Fortran interface.

<packagename>.f/f90 the source code for the main Fortran routine (for Fortran 77/Fortran 90,
respectively).

ddeps.f the source code for Fortran 77 style dependencies, if any. Will not be present if none
exist,.

ddeps90.£90 the source code for Fortran 90 style dependencies, if any. Will not be present if
none exist.

Typical files inside the matlab directory:
<packagename>_install.m installation script
<packagename>_test.m test script
<packagename>_test_datal.mat matlab data for test, file 1
<packagename>_test_data2.mat matlab data for test, file 2
<packagename>_full test.m comprehensive test of interface
<filename>.output sample output from running the test

The matlab directory should not contain any subdirectories except the optional examples
subdirectory containing several Matlab files and data files that give examples of how to use the
interface (supplementary to the <packagename>_test.m file).

It is our convention to use the extension .output for example output files, and .1log for output
files generated when the user runs the code. This prevents example outputs being overwritten
accidentally.

4.2 The <packagename>_install.m file

Installation is performed using the Matlab file <packagename> install.m. It can have several
input arguments passed using the varargin parameter:

<packagename>_install() installs <packagename> and its Matlab Interface. It is assumed that
the BLAS and LAPACK routines provided with the interface are used, the relevant version
of g95 can be called by the command “g95” and that the default libraries (1ibf95.a and
libgcc.a) are available for use. The test example is not run.

<packagename> install(TEST) installs <packagename> and its Matlab Interface. It is as-
sumed that the BLAS and LAPACK routines provided with the interface are used, the relevant
version of g95 can be called by the command “g95”, and that the default libraries are avail-
able for use. If TEST <= 0, the test example is not run; if TEST > 0, the test example is
run.

<packagename>_ install(TEST, BLAS) installs <packagename> and its Matlab Interface. It
is assumed that the relevant version of g95 can be called by the command “g95” and that
the default compiler libraries are available for use. If BLAS <= 0, the BLAS and LAPACK
routines that are provided with the interface are used. If BLAS > 0, the default BLAS and
LAPACK routines provided by Matlab are used. If the installed BLAS/LAPACK have any bugs,
then this may not be robust and BLAS <= 0 should be used.

<packagename>_install(TEST, BLAS, COMPILER) installs <packagename> and its Mat-
lab Interface. COMPILER is a string and it must contain the path for the relevant g95
compiler. It is assumed that the default compiler libraries are available for use.

<packagename>_ install(TEST, BLAS, COMPILER, LIBF95) installs <packagename> and
its Matlab Interface. LIBF95 is a string and must contain the path where the desired ver-
sion of 1ibf95.a is located, for example, ’/usr/local/g95-install/lib/gcc-1ib/i686-pc-linux-
gnu/4.0.3’. The default gee library is used.

<packagename>_install(TEST, BLAS, COMPILER, LIBF95, LIBGCC) attempts to in-
stall
<packagename> and its Matlab Interface. LIBGCC is a string and must contain the path
where the desired version of libgcc.a is located, for example, ’/usr/lib/gcc/i386-redhat-
linux/3.4.6".

The <packagename>_install.m file has four parts:

1. Initially, it checks whether it is on a Linux system and, if so, whether the version of Matlab
is recent enough for the installation of the interface. It also checks whether the g95 and the
gcc libraries are correctly installed in the directories given as input. Finally, it determines
whether it is on a 32 or 64-bit machine.

2. It sets all the paths in accordance to the directory of sub-section 4.1 and all the libraries
that must be linked. Then it compiles all of the dependences and the Fortran code using
g95. Finally, it executes the mex command.

3. It adds the current path where the <packagename>.mexglc (the object code) is has been
generated.

4. It runs test.m if required.

5 Matlab codes to enable simple call of subroutines

The compiled version of the mex file can be used either standalone or through a short Matlab file.
We recommend the second strategy for two reasons:

e We can design a simpler user interface giving the naive user some simple predetermined
options but also allowing a more aware user the possibility of using more sophisticated
options.

e We can use the header comments in the Matlab files for a quick on-line help that can be
called directly in a Matlab session by the help command.

The short Matlab file will have the name <packagename>.m.

6 Interface testing

As described in Section 4.1, the developer must supply a <packagename>_test.m file that can
be used either to check the installation and/or to supply useful examples of execution with the
different input and output arguments.

In addition, an automated exhaustive testing of the interface should be performed by the
script <packagename> full _test.m. To test errors such as the wrong number of arguments, a
try-catch structure should be used. An example that tests for no arguments is shown in Listing 3.
This mechanism enables all the interface tests to be included in a single script with each test
similar to that shown in Listing 3.

Listing 3: Catching exceptions

f% No inputs
try
x = hsl-mi20 ();
catch
errstr = lasterror;
str=strtrim (errstr . message);
strl=strtrim (["hsl-mi20 requires at least 1’
“input argument’]);
if (size(strfind(str,strl),2)==0)
error ('Failure at error test 1)
end
end
L J

The newer version of the try-catch construct that replaces catch; errstr = lasterror
with the simpler catch errstr version must not be used as this is incompatible with older
versions of matlab. Before an update is accepted to a library code this test and the Fortran
comprehensive test must both complete successfully.

7 Pitfalls

For those used to Fortran programming and the good diagnostics available from most Fortran
compilers, the Matlab environment can come as a shock, in particular the debugging of mex files
is not always a pleasurable business. In this section, we highlight some of the problems we have
already encountered and request that you report any other issues to us so that we can expand
this section accordingly.

e One of the main issues is that Matlab structures and pointers do not really have anything
in common with Fortran derived data types or pointers.

e Variables in mexfiles are case sensitive so that variable jimmy is quite different from Jimmy;,
for example.

e If an array is allocated both within a mexfile and in a Fortran subroutine called by the
mexfile, then no warning or error flag is raised but the program will fail badly, usually with
a segmentation fault.

e There is very little helpful diagnostic messages when a Matlab program fails, a return is
always made back to the Matlab calling environment and very often the Matlab window is
closed.

8 Documentation

8.1 The README file

The README file contains details about the installation requirements and the use of the Matlab
interface. Some of this information will be repeated in the online documentation (Section 8.2).
The README file should contain the following sections:

1. A short introduction that describes what the package is used for, any assumption made,
and references.

2. The requirements for installing the interface

e version of Matlab and g95;

e the Matlab environment variables point to the correct place.
3. The directory structure with description of the files and subdirectories.
4. Reference to installation instructions contained in the INSTALL file.

5. A description of the Matlab interface <packagename>.m and of the test examples. Some
Matlab interfaces will be only a way to give on-line information. Other interfaces will be
more sophisticated and will allow the user to use more options.

6. A description of any control substructures and their components.

7. A description of any information structures and their components.

8.2 On-line documentation

The documentation for the code is included in the <packagename>.m file so that it can be
viewed using the Matlab help <packagename> command. Analogously, with the command help
hsl_install the documentation of the installation can be seen on-line.

A Example of the I/0O for a sparse matrix

In this section, we will firstly show how to take a sparse Matlab matrix (given as the first input
to the Matlab function) and copy it to a matrix of zd11_type with compressed column format
storage.

! Store matrix¥%m, matrix’n and matrixYne
m = MATLAB_get_m(prhs(1))
matrixym = m
n = MATLAB_get_m(prhs(1))
matrixjn = n
ne = MATLAB_get_nzmax(prhs(1))
matrixne = ne

! Allocate arrays
ALLOCATE(matrixlrow(ne), matrix¥%val(ne), matrix)ptr(n+1l), STAT=err)
IF (err .ne. 0) THEN
CALL MATLAB_error(" Insufficient memory ")
END IF

! Copy pointers to column start

cpr_pr = MATLAB_get_jc(prhs(1))

CALL MATLAB_copy_from_ptr(cpr_pr, matrixyptr, n+l)
! Use Fortran indexing

matrixyptr(l:n+1) = matrixjptr(l:n+1)+1

! Copy row indices

row_pr = MATLAB_get_ir(prhs(1))

CALL MATLAB_copy_from_ptr(row_pr, matrixjrow, ne)
! Use Fortran indexing

matrixjrow(l:ne) = matrixjrow(l:ne)+1

! Copy nonzero entries
val_pr = MATLAB_get_ptr(prhs(1))
CALL MATLAB_copy_from_ptr(val_pr, matrixyval, ne)

! Core of Fortran routine
CALL dummy(matrix,matrix_out)

I Extract information for Matlab
! plhs(1) = matrix_out stored by rows
CALL_MATLAB_CreateSparse(matrix_out’m, matrix_outln, matrix_out%ne, O, plhs(1))
jc_pr = MATLAB_get_jc(plhs(1))
ir_pr = MATLAB_get_ir(plhs(1))
ptr_pr = MATLAB_get_ptr(plhs(1))
DO i= 1,n+1

jc(i) = matrix_outyptr(i)-1
END DO

CALL MATLAB_copy_from_ptr(jc, jc_pr, n+l)

ALLOCATE (ir(matrix_out%ne), STAT = err)
IF (err .ne. 0) THEN

CALL MATLAB_error(" Insufficient memory ")
END IF

DO i=1,matrix_out¥ne

ir(i) = matrix_outlrowl(i)-1
END DO

CALL MATLAB_copy_from_ptr(ir, ir_pr, matrix_out’ne)
CALL MATLAB_copy_from_ptr(matrix_out¥%val, ptr_pr, matrix_out’ne)

! Free workspace

IF (ALLOCATED(ir)) DEALLOCATE(ir, STAT
IF (ALLOCATED(jc)) DEALLOCATE(jc, STAT

err)
err)

10

