
1

Optimization Methods

2

1.0. Introduction:
In optimization of a design, the design objective could be simply to
minimize the cost of production or to maximize the efficiency of
production. An optimization algorithm is a procedure which is
executed iteratively by comparing various solutions till an optimum
or a satisfactory solution is found.

With the advent of computers, optimization has become a part of
computer-aided design activities. There are two distinct types of
optimization algorithms widely used today.

(a) Deterministic Algorithms.
They use specific rules for moving one solution to other. These
algorithms are in use to suite some times and have been
successfully applied for many engineering design problems.

3

(b) Stochastic Algorithms.
The stochastic algorithms are in nature with probabilistic

translation rules. These are gaining popularity due to certain
properties which deterministic algorithms do not have.

2.0 Optimal problem formulation:
A naive optimal design is achieved by comparing a few

(limited up to ten or so) alternative solutions created by using a
priori problem knowledge. In this method feasibility of each design
solution is first investigated. Thereafter an estimate of underlying
objective (cost, profit, etc.,) of each solution is compared and best
solution is adopted.

It is impossible to apply single formulation procedure for all
engineering design problems, since the objective in a design
problem and associated therefore, design parameters vary product
to product different techniques are used in

4

different problems. Purpose of formulation is to create a
mathematical model of the optimal design problem, which then
can be solved using an optimization algorithm. Figure 1 shows an
outline of the steps usually involved in an optimal design
formulation.

5

Design variables:
The formulation of an optimization problem begins with

identifying the underlying design variables, which are primarily
varied during the optimization process. A design problem usually
involves many design parameters, of which some are highly
sensitive to the proper working of the design. These parameters
are called design variables in the parlance of optimization
procedures. Other (not so important) design parameters usually
remain fixed or vary in relation to the design variables.

The first thumb rule of the formulation of an optimization problem
is to choose as few design variables as possible. The outcome of
that optimization procedure may indicate whether to include more
design variables in a revised formulation or to replace some
previously considered design variables with new design variables.

6

Constraints:
The constraints represent some functional relationships among

the design variables and other design parameters satisfying certain
physical phenomenon and certain resource limitations. The nature
and number of constraints to be included in the formulation depend
on the user. Constraints may have exact mathematical expressions
or not.

For example, maximum stress is a constraint of a structure. If a
structure has regular shape they have an exact mathematical
relation of maximum stress with dimensions. But incase irregular
shape, finite element simulation software may be necessary to
compute the maximum stress.

The following two types of constraints emerge from most
considerations:

1. Inequality type constraints.
2. Equality type constraints.

7

Inequality constraints state that the functional relationships
among variables are either greater than, smaller than or equal to,
a resource value.

Example:

The stress σ(x) developed anywhere in a component must
be smaller than or equal to the allowable strength (Sallowable) of
the material.

σ(x) ≤ Sallowable

Some constraints may be of greater-than / equal-to type. For
example, the natural frequency (f(x)) of a system to be greater
than 2 Hz or by notation f(x) ≥ 2.

8

Equality constraints state that functional relationships should
exactly match a resource value.

Example:
The deflection δ(x) of a point in the component must be exactly
equal to 5 mm. Then δ(x) = 5.

It is very difficult to handle the equality constraints in the
algorithms. In such cases, equality constraint is relaxed by
including two inequality constraints as given below.

Example:
Previously δ(x) = 5

Now it is changed to inequality constraints as given below:

δ(x) ≥ 4,

δ(x) ≤ 6.

9

Objective functions:
The next task in the formulation procedure is to find the

objective function in terms of the design variables and other
problem parameters. The common engineering objectives involve
minimization of overall cost of manufacturing or minimization of
overall weight of a component or maximization of total life of a
product or others.

Although most of the objectives can be quantified (expressed
in mathematical form), there are some objectives (such as
aesthetic aspect of a design, ride characteristics of a car
suspension design and reliability of a design) that may not be
possible to formulate mathematically. In such a case an
approximating mathematical expression is used.

10

In real world optimization, there could be more than one
objective that the designer may want to optimize simultaneously.
The multiple objective optimization algorithms are complex and
computationally expensive. Therefore the most important objective
is chosen as the objective function and the other objectives are
included as constraints by restricting their values within a certain
range.

For example, consider optimal truss structure design problem.
The designer may be interested in minimizing the overall weight of
the structure and simultaneously be concerned in minimizing the
deflection of a specific point in the truss. In the optimal problem
formulation, the designer may like to use the weight of the truss
(as a function of the cross sections of the members) as the
objective function and have a constraint with the deflection of the
concerned point to be less than a specific limit.

11

The objective function can be of two types. Either it is to be
maximized or it has to be minimized. Usually the optimization
algorithms were written for minimization problems or
maximization problems. Although in some algorithms, some
minor structural changes would enable to perform either
minimization (or) maximization; this requires extensive
knowledge of the algorithm.

The duality principle helps by allowing the same algorithm to
be used for minimization or maximization with a minor change in
the objective function instead of a change in the entire algorithm.
If the algorithm is for solving a minimization problem, it can be
easily changed to a maximization problem by multiplying the
objective function by − 1 and vice versa.

12

Variable bounds:
The final task of the formulation procedure is to set the

minimum and the maximum bounds on each design variable.
Certain optimization algorithms do not require this information. In
these problems, the constraints completely surround the feasible
region. Other problems require the search algorithm with in these
bounds.

In general, all N design variables are restricted to lie within the
minimum and the maximum bounds as follows.

for i = 1, 2, 3, … N. (1)

In any given problem, the determination of the variables
bounds and may be difficult. One way to remedy this situation
is to make a guess about the optimal solution and set the minimum
and maximum bounds so that the optimal solution lies within these
two bounds

() ()L U
i i ix x x≤ ≤

()L
ix ()U

ix

13

If any design variable corresponding to the optimal solution is
found to lie on or near the minimum or maximum bound, the
chosen bound may be adjusted and optimization algorithm may be
simulated again.
After the above four tasks are completed, the optimization problem
can be mathematically written in a special format, known as
nonlinear programming (NLP) format.
General format:

Denoting the design variables as a column vector x = (x1, x2
…xN)T

-, the objective function as a scalar quantity f(x), J inequality
constraints as gj(x) ≥ 0 and K equality constraints as hk(x) = 0, we
write the NLP problem:

Minimize f(x) Subject to,
gj(x) ≥ 0 j = 1, 2, 3, …….J;
hk(x) = 0 k = 1, 2, 3, …….K;

i = 1, 2, 3, … N.() ()L U
i i ix x x≤ ≤

14

Example:1 Optimal design of a truss structure
Consider the seven bar truss structure shown in the Fig.2. The loading is
also shown in the figure. The length of the members AC = CE = l = 1m
Optimize,
1. Topology of the truss structure (the connectivity of the elements in a
truss).
2. Once optimal layout is known, cross section of every element is another
optimization problem.

15

Since connectivity of truss is given, the cross-sectional area and
material properties of the members are the design parameters.
We choose cross sectional area of the members as the design
variables. Using the symmetry of the truss,

A7 = A1; A6 = A2; A3 = A5

Thus, there are practically four design variables (A1 to A4).

Formulation of the constraints:
The truss carry the given load P = 2 kN , the tensile and

compressive stress generated in each member must not be more
than the corresponding allowable strength Syt and Syc of the
material.

Let us assume, Syt = Syc = 500 MPa and modulus of elasticity
E = 200 GPa. Axial forces in each members of the truss are

16

Member AB – 0.5 Pcsc θ; Member BC + 0.5 Pcsc α;
Member AC + 0.5 Pcot θ; Member BD – 0.5 P(cot θ + cot α);

Now, the axial stress can be calculated by dividing the axial
load by the cross-sectional area of that member. Thus, the first set
of constraints can be written as

1

csc ,
2 yc

P S
A
θ
≤

2

cot ,
2 yt

P S
A
θ
≤

3

csc ,
2 yt

P S
A
α
≤

4

(cot cot) .
2 yc
P S
A

θ α+ ≤

⇒

⇒ ⇒

⇒

17

In most structures, deflection is a major consideration. In
the above truss structure, let us assume that the maximum vertical
deflection at C is δmax = 2 mm. By using Castigliano’s theorem,
we obtain the deflection constraint:

In the above structure, tan θ = 1.0 and tan α = 2/3. The other
set of constraints arises from the stability consideration of the
compression members AB, BD, and DE. According to the Euler
buckling conditions for the axial load in members AB and BD:

2
1

2 ,
2sin 1.281

EAP
l

π
θ
≤

2
4
2(cot cot) .

2 5.76
EAP

l
πθ α+ ≤

max
1 2 3 4

0.566 0.500 2.236 2.700Pl
E A A A A

δ
 

+ + + ≤ 
 

18

In this problem, we are interested in minimizing the weight of
the truss structure. Since we assumed the same material for all
members, the minimization of the total volume of material will yield
the same optimal solution as the minimization of the total weight.
Thus, we write the objective function as

The next task is to set lower and upper bounds for the four cross
sectional areas. We may choose to make all four areas lie between
10 and 500 mm2. Thus the variable bounds are as

In the following, we present the above truss structure problem in
NLP format.

1 2 3 41.132 2 1.789 1.2Minimize A l A l A l A l+ + +

19

Subject to

1 2 3 41.132 2 1.789 1.2Minimize A l A l A l A l+ + +

4

(cot cot) 0,
2yc
PS
A

θ α− + ≥

,0
sin2 1

≥−
θA

PS yc

,0
cot2 2

≥−
θA

PS yt

,0
sin2 3

≥−
αA

PS yt

20

2
1

2 0,
1.281 2sin

EA P
l

π
θ

− ≥

2
4
2 (cot cot) 0,

5.76 2
EA P

l
π θ α− + ≥

max
1 2 3 4

0.566 0.500 2.236 2.700 0,Pl
E A A A A

δ
 

− + + + ≥ 
 

21

Example: 2 Optimal design of a car suspension

Fig.4. A two-dimensional model of a car suspension system

The comfort in riding a car largely depends on the suspension
characteristics. The car body is usually supported by a
suspension coil spring and a damper at each wheel (Figure 4). In
order to formulate the optimal design problem, the first task is to
identify the important design variables.

22

Sprung mass ms, Front coil stiffness kfs,
Front unsprung mass mfu, Rear coil stiffness krs,
Rear unsprung mass mru, Front tyre stiffness kft,
Rear damper coefficient αr Rear tyre stiffness krt,
Front damper coefficient Axle-to-axle distance l,
Polar moment of inertia of the car J,

As long time is taken for the convergence of the optimization
with all parameters as design variables, only four important
parameters-front coil stiffness kfs, rear coil stiffness krs, front
damper coefficient , and rear damper coefficient αr are
considered as design variables. Other design parameters are kept
constant:
ms = 1000 kg l = 3.2 m
mfu = 70 kg l1 = 1.6 m
mru = 150 kg l2 = 1.6 m
kft = 20 kg/mm J = 550 kg-m2

krt = 20 kg/mm

fα

fα

23

Using these parameters, differential equations governing the
vertical motion of the unsprung mass at the front axle (q1), the
sprung mass (q2), and the unsprung mass at the rear axle (q4), and
the angular motion of the sprung mass (q3) are written (Fig. 5):

Fig.5. The dynamic model of the car suspension system.
The above model has four degrees-of-freedom (q1 to q4)

24

(9)

(10)

(11)

(12)

Where the forces F1 to F6 are calculated as follows:

(13)

The parameters d1, d2, d3, and d4 are the relative deformations in
the front tyre, the front spring, the rear tyre, and the rear spring
respectively. Figure 5 shows all the four degrees of freedom of the
above system (q1 to q4). The relative deformations in springs and
tyres can be written as follows:

21 1 2 2 3

44 4 5 6 3

, , ,

, , .

ft fs f

rs r rt

F k d F k d F d

F k d F d F k d

α

α

= = =

= = =

25

(14)

The time varying functions f1(t) and f2(t) are road irregularities
as functions of time. Any function can be used for f1(t). For
example, a bump can be modeled as f1(t) = A sin , where A is
the amplitude of the bump and T is the time required to cross the
bump. When a car is moving forward, the front wheel experiences
the bump first, while the rear wheel experiences the same bump a
little later, depending upon the speed of the car. Thus, the function
f2(t) can be written as f2(t) = f1(t − l/v), where l is the axle-to-axle
distance and ν is the speed of the car. For the above bump, f2(t) =
A sin((t−l/v)/T).

1 1 1

2 2 1 3 1

3 4 2

4 2 2 3 4

(),
,

(),
.

d q f t
d q l q q
d q f t
d q l q q

= −
= + −
= −
= − −

/t Tπ

π

26

The coupled differential equations specified in equations (9) to (12)
can be solved using a numerical integration technique (for example,
a fourth-order Runge-Kutta method can be used) to obtain the
pitching and bouncing dynamics of the sprung mass ms. Equations
can be integrated for a time range from zero to tmax.

After the design variables are chosen, the next task is to
formulate the constraints associated with the above car suspension
problem. In order to simplify the problem, we consider only one
constraint. The jerk (the rate of change of the vertical acceleration
of the sprung mass) is a major factor concerning the comfort of the
riding passengers. The guideline used in car industries suggests
that the maximum jerk experienced by the passengers should not
be more than about 18 m/s3. Mathematically,

'''
2max q (t) 18≤

27

When the four coupled differential equations (9) to (12) are solved,
the above constraint can be computed by numerically differentiating
the vertical movement of the sprung mass (q2) thrice with respect to
time.

The next task is to formulate the objective function. In this problem,
the primary objective is to minimize the transmissibility factor which
is calculated as the ratio of the bouncing amplitude q2(t) of the
sprung mass to the road excitation amplitude A. Thus, we write the
objective function as

The above objective function can be calculated from the solution of
the four differential equations mentioned earlier. A minimum value of
the transmissibility factor suggests the minimum transmission of road
vibration to the passengers. This factor is also directly related to the
ride characteristics as specified by the ISO standard.

2max abs q (t)Minimize
A

28

Thus, the optimized design of the above car suspension system
would provide the minimum transmissibility of the road vibration to
the passengers with a limited level of jerk.
Finally, a minimum and maximum limit for each design variable can
be set. This may require some previous experience with a car
suspension design, but the following limits for the above car may
include the optimal solution:

Thus, the above optimal car suspension design problem can be
written in NLP form as follows:

Subject to

0 , 2 / ,

0 , 300 /(/).
fs rs

f r

k k kg mm
kg m sα α

≤ ≤

≤ ≤

2max abs q (t)Minimize
A

0,
0 , 2,

0 , 300.

'''
2

fs rs

f r

18 - max q (t)
k k
α α

≥
≤ ≤

≤ ≤

29

Example: 3 Optimal design of a transit schedule

Fig. 2

Figure 2 shows a typical transit system network. The solid lines
represent different routes, the points on the lines represent the
stops and the circled intersections of the routes represent the
transfer stations. The problem is to determine schedules for the
routes such that the transit system provides the best Level of
Service (LOS) to its passengers, within the resources available.

30

One of the good measures of the LOS is the amount of time
passengers wait during their journey- the lesser the waiting time,
the better is the LOS. On any transit network, passengers wait
either to board the vehicle at the station of origin or they wait at a
transfer station at which they transfer from one vehicle to another.

Let Initial Wait Time (IWT),

Transit Time (TT)

Schedule the vehicles such that (IWT + TT) is minimum.

The design variables are:

Arrival time :ai
k k: vehicles

Departure time :di
k i : route.

If the routes are M and vehicle are K

The design variables are 2MK.

31

Minimum stopping time:
(di

k − ai
k) ≥ smin for all i and k (1)

Maximum stopping time:
(di

k − ai
k) ≤ smax for all i and k (2)

Maximum allowable transfer time:
No passenger on the transit network should have to wait more

than a certain period of time T at any transfer station. This can be
enforced by checking all possible differences between departure
and arrival times and limiting those values to T. This constraint can
be formulated by introducing a new set of variables between
the k-th vehicle of the i-th route and the l-th vehicle of the j-th
route.

These variables can take either a zero or one. A value of zero
means that the transfer of passengers between those two vehicles
is not feasible. A value of one means otherwise.

,
,
k l
i jδ

32

Consider the arrival and departure times of vehicles in two different
routes at a particular station, as shown in Fig.3.

Fig.3. Transfers from k-th vehicle on the i-route to three consecutive vehicles in the j-th route

A passenger from the kth vehicle in the ith route can only
transfer to a vehicle in the jth route which is arriving at the station
after ai

k. According to the figure, the transfer of a passengers from
the kth vehicle in the ith route is not possible to the (l−1)th vehicle in
the jth route, because the departure time of the latter vehicle is
earlier than ai

k. Thus, the parameter takes the value zero,
whereas the parameter takes a value one. In order to simplify
the model, we assume that transfers to vehicles departing after lth
vehicle in the jth route are also not possible. All parameters

for q = (l+1), (l+2), … are also zero. Thus, between any two
vehicles, the following condition must be satisfied:

,
,
k q
i jδ

1l
jd −

, 1
,
k l
i jδ −

,
,
k l
i jδ

33

for all i, j, k and l. (3)
The left side expression of the above condition is zero for those
transfers that are not feasible. Since transfers only to the next
available vehicle are assumed, only one for (l = 1, 2, …) is one
and the rest all are zeros for fixed values of i, j, and k.
Mathematically,

for all i, j and k. (4)

The introduction of the artificial variables makes the formulation
easier, but causes a difficulty. Many optimization algorithms cannot
handle discrete design variables efficiently. Since the artificial
design variables can only take a zero or one, another set of
constraints is added to enforce the binary values:

for all i, j, k and l. (5)

,
,()l k k l

j i i jd a Tδ− ≤

,
, 1k l

i j
l
δ =∑

,
,() (1) 0l k k l

j i i jd a M δ− + − ≥

,
,
k l
i jδ

,
,
k l
i jδ

,
,
k l
i jδ

34

Where M is a large positive number. The above constraint ensures
that the variable always takes a value one whenever a transfer
is possible and the value zero whenever transfer is not possible.

Maximum headway:

The headway between two consecutive vehicles should be
less than or equal to the policy headway, hi, or

for all i, and k.

The objective function consists of two terms: the first term
represents the total transfer time (TT) over all the passengers and
the second term represents the initial waiting time (IWT) for all the
passengers. The objective is to minimize the following function:

(6)

,
,
k l
i jδ

1()k k
i i ia a h+ − ≤

1
. 1

, , ,0
() ()[()]

k k
i ia ak l l k k k k

i j j i i j i k i i
i j k l i l

d a w v t a a t dtδ
−− −− + − −∑∑∑∑ ∑∑∫

35

The parameter is the number of passengers transferring from the
k-th vehicle of the i-th route to the j-th route. The first term is
obtained by summing the individual transfer time over all
passengers for all the vehicles for every pair of routes.The
parameter vi,k(t) is the number of passengers arriving at the stop for
the k-th vehicle in the i-th route at a given time t.Since the arrivaltime
for passengers can be anywhere between (the
headway), the initial waiting time also differs from one passenger to
another.

For example, a passenger arriving at the stop just after the previous
vehicle has left has to wait for the full headway time
before the next vehicle arrives. On the other hand, a passenger
arriving at the stop later has to wait for a shorter time. The
calculation of the second term assumes that passengers arrive at
the stop during the time interval

,
k
i jw

()l k
j id a−

10 ()k k
i it to t a a −= = −

1()k k
i ia a −−

1k k
i ia to a−

36

according to the known time-varying function vi,k(t), where t is
measured from .Then the quantity

(7)

gives the sum of the initial waiting times for all passengers who
board the k-th vehicle of the i-th route. We then sum it over all the
routes and vehicles to estimate the network total of the IWT. Thus,
the complete NLP problem can be written as follows:

Minimize

(8)

1k
ia −

1
1

,0
()[()]

k k
i ia a k k

i k i iv t a a t dt
−− −− −∫

1
. 1

, , ,0
() ()[()]

k k
i ia ak l l k k k k

i j j i i j i k i i
i j k l i l

d a w v t a a t dtδ
−− −− + − −∑∑∑∑ ∑∑∫

37

Subject to,

smax -(di
k − ai

k) ≥ 0 for all i, and k,

(di
k − ai

k) –smin ≥ 0 for all i, and k,

for all i, j, k and l,

for all i, j, k and l,

for all i, and k,

for all i, j, and k.

In the above NLP problem, the variables are binary variables
taking only a value zero or a one and other variables

are real-valued

,
,() 0l k k l

j i i jT d a δ− − ≥

,
,() (1) 0l k k l

j i i jd a M δ− + − ≥
1() 0k k

i i ih a a+− − ≥
,

, 1k l
i j

l
δ =∑

,
,
k l
i jδ

k k
i ia and d

38

3. Optimization Algorithms
The formulation of engineering design problems differ from problem

to problem. They are
(i) Linear terms for constraints and objective function
(ii) Non linear terms for constraints and objective function.

The terms are not explicit functions of the design variables. No
single optimization algorithm which will work in all optimization
problems equals efficiently.

For the sake of clarity, the optimization algorithms are
classified into a number of groups, which are now briefly
discussed.

(a) Single-variable optimization algorithms.
These algorithms are classified into two categories

i. Direct methods
ii. Gradient based methods

39

Direct methods do not use any derivative information of the
objective function; only objective function values are used to guide
the search process. However, gradient-based methods use
derivative information (first and/ or second order) to guide the
search process.

Although engineering optimization problems usually contain
more than one variable, single-variable optimization algorithms are
mainly used as unidirectional search methods in multivariable
optimization algorithms.

(b) Multi- variable optimization algorithms.
These algorithms demonstrate how the search for the optimum
point progresses in multiple dimensions. Depending on whether
the gradient information is used or not used, these algorithms are
also classified into direct and gradient-based techniques.

40

(c) Constrained optimization algorithms.
These algorithms use the single variable and multivariable
optimization algorithms repeatedly and simultaneously maintain the
search effort inside the feasible search region. These algorithms are
mostly used in engineering optimization problems.
(d) Specialized optimization algorithms.
Two of these algorithms - integer programming and geometric
programming - are often used in engineering design problems.
Integer programming methods can solve optimization problems with
integer design variables. Geometric programming methods solve
optimization problems with objective functions and constraints
written in a special form.
(e) Non-traditional optimization algorithms.
There are two algorithms which are nontraditional, these are:

a) Genetic algorithms
b) Simulated annealing.

41

4.0 Single-variable optimization algorithms
The algorithms described in this section can be used to solve
minimization problems of the following type:

Minimize f(x)
Where f(x) is the objective function and x is a real variable. The

purpose of an optimization algorithm is to find a solution x, for which
the function f(x) is minimum.
4.1 Optimality criteria
There are three different types of optimal points are:
(i) Local Optimal point:
A point or solution x* is said to be a local optimal point, if no point in
the neighbourhood has a function value smaller than f(x*).
(ii) Global Optimal point:
A point or solution x** is said to be a global optimal point, if no point in
the entire search space has a function value smaller than f(x**).

42

(iii) Inflection point:
x* is an inflection point if
f(x*) increases locally as x* increases & decreases locally as

x* reduces
or f(x*) decreases locally as x* increases and increases

locally as x* decreases
Let the objective function f(x) is the chosen search space

f '(x) and f ''(x) are first and second derivatives
A point x is a minimum if f'(x) = 0 & f''(x) > 0.

If f ‘(x) = 0, the point is either a minimum, a maximum or an
inflection point

Suppose at point x*, the first derivative is zero and the first
non-zero higher order derivative is denoted by n, then

• If n is odd, x* is an inflection point
• If n is even, x* is a local optimum

(i) If the derivative is +ve, x* is a local minimum
(ii) If the derivative is –ve, x* is a local maximum

43

Example: 4
Consider f (x) = x3, optimal point x = 0 as shown in Fig.6.

Fig.6. The function f(x) = x3

From the figure, we can see that point x = 0 is an inflection point as
f(x) increases for x ≥ 0

decreases for x ≤ 0
Using the sufficient conditions

Third derivative, n =3 is odd, hence x = 0 is an inflection point.

2
0

0

0

'(0) 3 0

''(0) 6 0

'''(0) 6 6()

x

x

x

f x x

f x x

f x Nonzero value

=

=

=

= = =

= = =

= = =

44

Example : 5
Consider f(x) = x4, optimal point x = 0 as shown in Fig.6a.

Fig.6a. The function f(x) = x4

From the figure, we can see that the point x = 0 is a minimal point.
Using sufficient conditions

45

3
0

2
0

0

0

'(0) 4 0

''(0) 12 0

'''(0) 24 0

''''(0) 24 24()

x

x

x

x

f x x

f x x

f x x

f x Nonzero value

=

=

=

=

= = =

= = =

= = =

= = =

Fourth order derivative is positive, n = 4 is even, hence
x = 0 is a local minimum point.

46

4.2 Bracketing Methods:
The minimum of a function is found in two phases. Initially an

approximate method is used to find a lower and an upper bound of
the minimum. Next, a sophisticated technique is used to search
within these two limits to find the optimal solution.

(a) Exhaustive search method
It is the simplest of all search methods. The optimum of a

function is bracketed by calculating the function values at a
number of equally spaced points(Fig.7).

Fig.7 The exhaustive search method that uses equally spaced points

47

Usually the search begin from a lower bound on the variable and
three consecutive function values are compared at a time based on
the assumption of unimodality of the function. Based on the
outcome of comparison, the search is either terminated or
continued by replacing one of the three points with a new point.
Algorithm:
Step 1.
Set

(n is number of intermediate points)

Step 2
If the minimum point lies between

Hence, terminate.
Else

1 , () /x a x b a n= ∆ = −

2 1 3 2, x x x x x x= + ∆ = + ∆

1 2 3() () (),f x f x f x≥ ≤ 1 3(,).x x

1 2 2 3 3 2, , x x x x x x x= = = + ∆

48

Step 3
Is If yes, goto Step 2.
Else no minimum exists in (a,b) or a boundary point (a or b) is the

minimum point.
Example:6
Minimize f(x) = x2 + 54/x in the interval (0,5)
A plot of function is shown in Fig.8

Fig.8 The unimodal, single-variable function used in the exercise problems.

3 ?x b≤

49

The plot shows that the minimum lies at x =3

According to sufficiency conditions, x =3 is a local minimum.
Now consider n = 10 for exhaustive search.
Step 1
According to the parameter chosen,

'

''

(3) 27
(3) 0
(3) 6

f
f
f

=

=

=

1

2

3

0 5

(5 0) /10 0.5

0 0.5 0.5

0.5 0.5 1.0

x a and b

x

x

x

= = =

∴∆ = − =

= + =

= + =

We set

and

50

Step 2 Computing function values at various points, we have

Thus, the minimum does not lie between (0,1)

and minimum does not lie between (0.5,1.5)
Repeat the process till

Solution lies between (2.5, 3.5).
The accuracy solution
If more accurate solution is required, divide into more number of parts by

increasing n.

1 2 3

(0) . (0.5) 108.25 (1.0) 55.00
() () ()

f f f
f x f x f x

= ∞ = =
> >

1 2 30.5 , 1.0, 1.5Set x x x∴ = = =

(1.5) 38.25f =

1 2 3() () ()f x f x f x> >

(2.5) 27.85
(3.0) 27.00
(3.5) 27.68

f
f
f

=
=
=

1 2 3() () ()f x f x f x> <

2() / 2(5 0) /10 1.0a b n− = − =

51

(b) Bounding phase method
Step 1

Choose an initial guess and an increment Set k =0

Step 2

If then

then

Else goto Step 1

Step 3

Set

Step 4

If set k = k+1 and goto Step 3

Else, the minimum lies in the interval and terminate
If is large, accuracy is poor.

(0)x .∆

0 0 0() () (),f x x f x f x x− ∆ ≥ ≥ + ∆ is ve∆ +

0 0 0() () (),f x x f x f x x− ∆ ≤ ≤ + ∆ is ve∆ −

(1) () 2 .k k kx x+ = + ∆

(1) ()() (),k kf x f x+ <

(1) (1)(,)k kx x− +

∆

52

Example 7
Find minimum of using bounding phase method

1. Choose an initial guess and increment set k = 0.

2. Calculate three function values

We observe that

3. Next guess:

4. ... set k = 1 and goto Step 3

2 54()f x x
x

= +

(0) 0.6x = 0.5∆ =

(0)

(0)

(0)

() (0.6 0.5) 540.010

() (0.6) 90.360

() (0.6 0.5) 50.301

(0.1) (0.6) (1.1) 0.5

f x f

f x f

f x f

f f f set

− ∆ = − =

= =

+ ∆ = + =

> > ∴ ∆ = +

(1) (0) 02 1.1x x= + ∆ =

(1) (0)() 50.301 ()f x f x= <

53

3. Next guess:
4. ... set k = 2 and goto Step 3

3. Next guess:
4. ... set k = 3 and goto Step3.

3. Next guess:
4. Thus terminate with interval (2.1, 8.1)

with the obtained bracketing is poor. Functions evaluated
are 7.

the obtained interval is (1.623, 4.695). Functions
evaluated are 15.

(2) (1) 12 1.1 2(0.5) 2.1x x= + ∆ = + =
(2) 1() 30.124 ()f x f x= <

(3) (2)() 29.981 ()f x f x= <

(3) (2) 22 2.1 4(0.5) 4.1x x= + ∆ = + =

(4) (3)() 72.277 ().f x f x= >

0.5,∆ =

0.001,∆ =

54

4.3. Region elimination methods:
Once the minimum point is bracketed, a more sophisticated algorithm is used to
improve the accuracy of the solution. Region elimination methods are used for
this purpose. The fundamental rule for region elimination method is as follows:

Fig.9. A typical single-variable unimodal function with function values at two distinct points

Consider a unimodal function drawn in Fig.9. The two points x1 and x2 lie in the
interval (a,b) and satisfy x1 < x2. For minimization, the following conditions apply

• If then the minimum does not lie in (a, x1)

• If then the minimum does not lie in (x2, b)

• If then the minimum does not lie in (a, x1) and (x2, b)

1 2() ()f x f x>

1 2() ()f x f x<

1 2() ()f x f x=

55

(a) Interval halving method:

Fig.10 Three points x1, xm, and x2 used in the interval halving

Fig.10 shows a region in the interval (a, b). Three points divide the
search space into four regions. The fundamental rule for region
elimination is used to eliminate a portion of search space based on
function values at three chosen points.
x1, xm, x2 are three search points. Two of the function values are
compared at a time and some region is eliminated. The three
possibilities are

(i) If minimum cannot lie beyond xm and reduce the
interval from (a, b) to (a, xm) search space is reduced by 50
percent.

1() ()mf x f x<

56

(ii) If , minimum cannot lie in the interval (a, x1).The
point x1 is ¼ in search space, hence reduction is 25 percent.
Then compare and to eliminate further 25 percent of search
space. Continue the process till small enough interval is found.
Algorithm:

1. Choose lower bound a and upper bound b and a small value
for desired accuracy. Compute

2. Set Compute and
3. If set Goto Step 5, else goto Step 4
4. If set Goto Step 5, else goto

Step 5
5. Calculate L = . If terminate. Else goto step 2.

1() ()mf x f x>

∈ 0() / 2, .mx a b L L b a= + = = − ()mf x

1 2, .
4 4
L Lx a x b= + = − 1()f x 2()f x

1() (),mf x f x<
1, .m mb x x x= =

2() (),mf x f x<
2, .m ma x x x= =

1 2, ;a x b x= =

b a− ,L <∈

57

(a) Fibonacci search method:
The search interval is reduced according to Fibonacci numbers.

where n=2,3,4,….. and

Fig.11. Fibonacci search points(x1 and x2)

Algorithm:
1. Choose a lower bound a and an upper bound b. Set L = b-a.

Assume the desired number of function evaluations to be n. Set
k=2

2. Compute Set and

1 2n n nF F F− −= + 0 1 1F F= =

1 1
* ()n k nL F F Lk − + += 1

*x a L k= + 2
*x b L k= −

58

3. Compute one of which was not evaluated earlier.
Use the fundamental region elimination rule to eliminate a region.
Set new a and b.
4. Is k = n? If no, set k = k+1 and goto Step 2. Else terminate.
(c) Golden section search method
Difficulties with Fibonacci search method:

(i) Fibonacci numbers have to be calculated and stored.
(ii) At every iteration the proportion of the eliminated region is not

the same.
In golden section search method, the search space (a,

b) is first linearly mapped to a unit interval search space (0,1).
Two points at from either end of search space are chosen so
that at every iteration the eliminated region is to that in the
previous iteration (Fig.12). This can be achieved by equating

This yields the golden number

1 2() () ,f x o r f x

τ
(1)τ−

0.618τ =

59

Fig.12. The points (x1 and x2) used in the golden section

Algorithm:
1. Choose a lower bound a and an upper bound b. Choose a small

value .Normalize the variable x by using the equation
Thus , Set k=1.

2. Set and Compute
depending on whichever of the two was not evaluated earlier.
Use the fundamental region elimination rule to
eliminate a region. Set new

3. Is If no, set k=k+1, go to Step 2. Else terminate.

∈ () .()
x aw b a
−= −

0, 1, 1.w w wa b and L= = =

1 (0.618)w ww a L= + 2 (0.618) .w ww b L= − 1 2() () ,f w o r f w

 and w wa b
?wL <∈

60

4.4 Gradient based methods
Despite the difficulty of finding the derivatives, they are popular
because of their effectiveness.

(a) Newton- Raphson method

Considering Taylor series expansion

Algorithm:

1. Choose initial guess and small value Set k = 1.Compute

2. Compute

3. Calculate Compute

4. If Terminate. Else k = k+1 and go to Step 2.

Convergence will depend on initial guess value and nature of the
objective function.

()
(1) ()

()

'()
''()

n
n n

n

f xx x
f x

+ = −

(1)x .∈
(1)'().f x

()''().kf x
()

(1) ()
()

'()
''()

k
k k

k

f xx x
f x

+  
= −  

 

(1)'().kf x +

(1)'() ,kf x + <∈

61

Example 8
Minimize using Newton-Raphson method.
1. Choose initial guess and

is parameter, usually taken a small value (0.001).

2 54()f x x
x

= +
(1) 1.x = 310 , 1k−∈= =

() () () ()
()

()

() () () () ()
()

() 2

() ()'()
2

() 2 () ()''()
()

n n n n
n

n

n n n n n
n

n

f x x f x xf x
x

f x x f x f x xf x
x

+ ∆ − −∆
=

∆
+ ∆ − + −∆

=
∆

()nx∆
()'() 52.005nf x = −

()''() 110.011nf x =

62

2.

The iterative values of x, for various k’s are tabulated below.

f ' is small enough to terminate.

(1)

(1)

'()(2) (1)
''()

52.0051 1.473
110.011

f xx x
f x

= −

− = − = 
 

()kx ()'()kf x
()''()kf xk

1 1 -52.005 110.011

2 1.473 -21.944 35.796

3 2.086 -8.239 13.899

4
2.679 -2.167

-

7 3.0001 -4(10)-8

	Optimization Methods
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
		In most structures, deflection is a major consideration. In the above truss structure, let us assume that the maximum vertical deflection at C is δmax = 2 mm. By using Castigliano’s theorem, we obtain the deflection constraint:�
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62

