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Abstract 
This study proposes a simple but novel and applicable approach to solve the problem of smoothing effect of 
ordinary kriging estimates. This approach is based on transformation equation in which Z scores are derived 
from ordinary kriging estimates and then rescaled by the standard deviation of sample data with addition of   
the mean value of original samples to the results. It bears great potential to reproduce the histogram and 
semivariogram of the primary data. Actually, raw data are transformed into normal scores in order to avoid 
the asymmetry of ordinary kriging estimates. Thus ordinary kriging estimates are first rescaled using the 
transformation equation and then back-transformed into the original scale of measurement. To test the 
proposed procedure, stratified random samples have been drawn from an exhaustive data set. Corrected 
ordinary kriging estimates follow the semivariogram model and back-transformed values reproduce the 
sample histogram, while preserving local accuracy. 

Keywords: ordinary kriging; smoothing effect; normal score transform; histogram reproduction; 

semivariogram model reproduction; local accuracy 

1. Introduction
Ordinary Kriging (OK), one of the most reliable 
local estimation methods, suffers from a main 
problem which has been known as “Smoothing 
Effect”. OK estimates do not reproduce the 
sample histogram because of reduced variance as 
a consequence of the smoothing effect. In the OK 
estimation process low values are overestimated 
and high values underestimated making the 
estimated histogram narrower than the sample 
histogram. Considering the sample as 
representative of the population from which was 
drawn, it is important that estimates follow the 
sample histogram in order to make inferences 
about the population. In the same way it is also 
important that estimates reproduce the spatial 
correlation model as described by the 
semivariogram. Actually the histogram and the 
semivariogram model characterize the population 

or spatial phenomenon under study. Therefore, the 
challenge in geostatistics is to get estimated maps 
reproducing both the sample histogram and the 
semivariogram model. However, the reproduction 
of histogram and semivariogram model must be 
done without loss of local accuracy. 
The solution for smoothing in kriging calls for 
some post-processing OK estimates in order to 
correct the smoothing effect and keeping the local 
accuracy that characterizes the OK estimation 
process. 
The cornerstone of all research done to correct the 
smoothing effect is to apply some post processing 
to the Kriged values, instead of applying some 
changes to the Kriging equations themselves [1, 2, 
3]. Guertin [1] proposed a nonlinear correction 
function based upon an analytical representation 
of the bivariate distribution of the true grade 
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against the estimated one. Olea and Pawlowsky 
[2] have proposed a procedure called compensated 
kriging in which through a numerical comparison 
they used cross-validation to detect and model 
such as the smoothing effects while the next 
inversion of the model produced a new estimator. 
Based on Olea and Pawlowsky [2] an intermediate 
state of Kriging and simulation was derived for 
the corrected estimates. A spectral approach 
proposed by Yao [4, 5] to conditional simulation 
capitalized on the speed of the Fast Fourier 
Transform (FFT). The strengths and weaknesses 
of a kriging approach vs. a simulation approach 
were recalled by Journel et al. [3]. However, 
according to these authors, semivariogram 
reproduction is achieved at a loss of local 
accuracy, confirming that global accuracy and 
local accuracy are conflicting objectives. 
Yamamoto [6] proposed a four-step procedure for 
correcting the smoothing effect of ordinary 
kriging estimates that was shown to be effective 
for the reproduction of histogram and 
semivariogram without loss of local accuracy, 
sharing both local and global accuracies. 
Yamamoto [7] applied the post-processing 
algorithm for lognormal kriging estimates in order 
to avoid biased back-transformed estimates as 
given by conventional procedure proposed by 
Journel [8]. Yamamoto [9] compared the post-
processing algorithm for correcting the smoothing 
effect of ordinary kriging estimates [6] with 
sequential Gaussian simulation realizations and 
showed the superiority of Corrected Ordinary 
kriging estimates to any individual simulation 
realization.  
In this study a novel approach is proposed that 
yields global accuracy without loss of local 
accuracy. To apply the suggested procedure on the 
kriged estimates, a great deal of skills is needed 
which makes it hard at least for practitioners. The 
method presented in this study is easy to use while 
it reproduces sample histogram and the 
semivariogram model. 

2. The post- processing algorithm for 

correcting kriging smoothing  
The post-processing algorithm proposed by 
Yamamoto [6] and updated by Yamamoto [7] is 
based on four-step procedure. In the first step 
smoothing errors are derived from the cross-
validation procedure. After this step, we have for 

every data point the estimated (  oOK xZ *
) and 

actual (  oxZ ) values and also the interpolation 

standard deviation ( oS ) [10]. These values are 

combined to derive a new random variable named 
number of interpolation standard deviations: 

    
o

ooOK

o
S

xZxZ
NS




*

 

where  oOK xZ *
 is the ordinary kriging estimate 

from cross-validation,  oxZ  is the actual value 

and oS is the interpolation standard deviation.  

In the second step, oNS  is estimated at nodes of a 

regular grid or unsampled locations resulting in 

 oo xNS *
. In the next step, we run ordinary 

kriging to estimate the variable  xZ  at nodes of 

the same regular grid as defined for oNS .  After 

doing these steps for every grid node we have: 

 oOK xZ *
, oS  and  oo xNS *

, that are combined 

for the post-processing in the fourth step as 
follows: 

      ooooOKoOK SxNSxZxZ .**** 
 

On the right side the term   ooo SxNS .*
 is the 

correcting amount that is added to or subtracted 
from the ordinary kriging estimate depending on 

the signal for  oo xNS *
. But sometimes this term 

exceeds in such a way that the corrected estimate 
falls outside the range of neighbor data points, 
thus this term is replaced by a new variable 

usually less than  oo xNS *
. Moreover, the 

correcting amount must be rescaled to reproduce 
the sample variance using a constant factor that 
multiplies all correcting amounts. It is important 
to note that this factor multiplies only the 
correcting amount and not the ordinary kriging 

estimate (  oOK xZ *
). This procedure guarantees 

the local accuracy of corrected estimates. Details 
of this procedure can be found in Yamamoto  
[6, 7]. 

3. The new approach for correcting the 

smoothing effect 
A completely new approach is proposed in this 
paper and it is based on a well-known 
transformation equation in statistics [11] that 
allows calculation of raw score when the Z score 
is known: 

  XSZX X  .  (1) 

where X is the raw score, and X and XS  are the 

mean and standard deviation of the raw score. 
Replacing the terms in (1) to get corrected 
estimates we have: 



Rezaee et al./ Journal of Mining & Environment, Vol.2, No.2, 2011 

 

104 
 

 
    

  
  

  xZE

xZVar
xZVar

xZExZ
xZ

oOK

oOKoOK
oOK















 
 .

*

**
**

 

(2) 

where  oOK xZ *
 is the ordinary kriging estimate, 

    
   








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
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oOK
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xZVar

xZExZ
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**

 is the Z score and 

  xZVar  is the sample standard deviation and 

  xZE  is the sample mean. 

This equation gives corrected estimates presenting 

the sample standard deviation   xZVar  and 

the sample mean   xZE  that are minimum 

requirements for histogram reproduction. 
Before going further it is important to note that 
Equation 2 is based on Z score and therefore the 

distribution of  oOK xZ *
 plays an important role in 

this process. Z score transformation retains the 

shape of  oOK xZ *
, that is if  xZ  follows a 

lognormal distribution,  oOK xZ *
 will follow a 

lognormal distribution and consequently Z scores 
will present the same shape as the former 
distributions. Application of Equation 2 for 
skewed distributions can result in extreme values 
for corrected estimates. Thus, it is important to 
work with distributions as symmetric as possible. 
Evidently, it calls for a data transformation such 
as normal score transform as described by 
Deutsch and Journel [12]: 

 
 











 

1

1

n

xr
Gxy i

i  

where G(y) is the standard normal cdf and  ixr  

is the rank for ith  ixz  associated with a set of n 

data values   nixz i ,, 1 . 

For illustration purposes Figure 1 shows 
distribution of Z scores for ordinary kriging 
estimates from raw data and normal score data. 
The range of Z scores for raw data is from -1.19 to 
12.18 whereas for normal score data is from -3.14 
to 3.40. Besides, the shape of raw data Z scores is 
positively skewed such as the sample histogram 
while the shape of normal data Z scores is almost 
symmetric because some asymmetry was 
introduced during the estimation process. Since Z 
scores are measured in a number of standard 
deviations, it is not convenient with scores less 
than -3 or greater than 3. Usually Z scores enlarge 
the range of normal score data from (-2.33 to 

2.33) to (-3.14 to 3.40) and this may represent a 
problem when back-transforming corrected 
estimates to the original scale of measurement. 
However, the worst scenario comes from Z scores 
of raw data in which they range from -1.19 to 
12.18. A large number of corrected estimates will 
likely fall outside the range of original data. This 
subject will be examined in the Section 5 Results 
and Discussion. 
Further work takes place in the Gaussian domain. 
Statistics for sample data are then calculated: 

    



n

i

ixY
n

xYE
1

1

 

        22 xYExYExYVar   
After computing and modeling the experimental 

semivariogram for  xY  we run ordinary Kriging 

for estimation at unsampled locations: 

   



n

i

iioOK xYxY
1

* 
 

(3) 

Once again we can compute the mean and 

variance for OK estimates   oOK xYE *
and 

  oOK xYVar *
. Because the smoothing effect 

  oOK xYVar *
 will be less than   xYVar  and it 

is important to correct for the smoothing effect 

before back-transforming  oOK xY *
 into the 

original scale of measurement  oOK xZ *
 as 

proposed by Yamamoto [7] for lognormal kriging 
estimates.  
Equation 2 becomes: 

 
    

  
  

  xYE

xYVar
xYVar

xYExY
xY

oOK

oOKoOK

oOK















 
 .

*
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 (4) 

After this correction  oOK xY **
 is supposed to 

reproduce the sample histogram  xY  and the 

semivariogram model for  xY . Since we do not 

work with transformed values, it is important to 

check if the semivariogram model for  xY  is 

reproduced, because it guarantees that back-
transformation will be carried out with the same 
spatial correlation. 

Now  oOK xY *
 and  oOK xY **

 are back-transformed 

into the original scale using the inverse operation: 

    oOKoOK xYFxZ *1* 
 

(5) 

    oOKoOK xYFxZ **1** 
 

(6) 
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Back-transformed values after correcting the 

smoothing effect  oOK xZ **
 should be close to the 

sample histogram of  xZ . Therefore, in this 

paper we want to check Equation 4 for 
reproducing the semivariogram model and 
Equation 6 for reproducing the sample histogram. 

4. Materials and methods 
In this study we depart from an exhaustive data 
set composed of 50x50 values on a regular grid. 

This exhaustive data set follows a lognormal 
distribution and it was derived from the public 
domain file true.dat [12]. The secondary variable 
of this data set was transformed into normal 
values using the normal score transform [12]. 
After that normal scores were transformed into a 
new variable using the exponential function: 

   xYexZ   
This new variable presents a perfect lognormal 
distribution (Figure 2). 

 

 
 

Figure 1. Histograms for Z scores calculated from both raw data and normal score data. 
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Figure 2. Spatial distribution of a lognormal variable (A); Cumulative frequency curve and histogram of the lognormal 

variable in exhaustive data set 

Now, from this exhaustive data set we can draw 
samples for this study. In order to avoid clustering 
of sampled data points, we have used the stratified 
random sampling technique. Samples with 25, 49 
and 100 data points have been drawn from the 
exhaustive data set. Since samples should give a 
good representation of the exhaustive data set, we 
compared sample distributions with exhaustive 
distribution (Figure 3). 
It is clear that small size samples do not represent 
well the parent population or the exhaustive data 
set. On P-P plots we can measure an average 
distance to the reference line [6] that gives us an 
idea about how close points are to the reference 
line (Table 1). 

Table 1: Average distances measured on P-P plots for 

stratified random samples. 

Samples 
Sample size 

25 50 100 

1 4.59 2.33 1.21 
2 4.21 2.75 1.63 
3 3.48 2.41 1.91 
4 2.71 1.88 1.47 
5 3.66 2.44 1.33 
6 3.11 1.79 1.97 

 
Looking at Figure 3 and Table 1, one readily 
concludes that samples with 100 data points are 
more representative of the exhaustive data set. 
Even when sampling 100 points the maximum 
value was not reproduced, but this happens when 
we are working with lognormal distribution. In 
this study we will consider these samples as 
representative of the exhaustive data set and 
consequently they can be used to make statistical 
inferences about the exhaustive data set as well as 
the spatial distribution shown by the parent 

population (Figure 2). Parameters for the 
exhaustive data set and statistics for samples are 
presented in Table 2. 
As we can see in Table 2, samples follow either 
lognormal distribution with CV > 1.2 (samples 1-
2-3) or positively-skewed distribution with CV < 
1.2 (samples 4-5-6). Since sample distributions 
are not symmetric, we have to transform raw data 
into normal scores that follow a bell-shaped 
distribution presenting a mean zero and a variance 
equal to one. Thus, all data have been transformed 
into normal scores using the normal score 
transform as described in Deutsch and Journel 
[12, p. 138 and 209-211]. Experimental 
semivariograms have been calculated and 
modeled for normal scores data (Figure 4). 
Thus, all calculations are made in the normal 
score domain in which we get the OK estimates 
after Equation 3. The grid on which further 
calculations are done is the same as primary 
exhaustive data set. It should be noted that the 
estimation is performed only on the nodes which 
belong to the convex hull [13]. Even in the 
Gaussian domain, OK estimates will present some 
smoothing that must be corrected using Equation 
4. Corrected estimates can be back-transformed 
into original scale of measurement according to 
Equation 6. 

Moreover, this procedure can be compared with 

the former procedure for correcting the smoothing 

in kriging as published by Yamamoto [6,7]. 

Actually, this paper will consider the same 

procedure for back-transforming lognormal 

kriging estimates [7]. OK estimates in the normal 

scores domain (Equation 3) will be corrected for 
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smoothing (Equation 4) and then back-

transformed using the inverse operation as 

Equation 5 or 6. For comparison purposes back-

transformed values from corrected estimates 

according to the former algorithm [6,7] will also 

be considered in this paper. 

 

5. Results and discussion 
Figure 5 presents the image maps of back-
transformed values based on Equation 5 which are 
not corrected after kriging. These are given for 
comparison purposes. Results for corrected 
estimates from raw data will not be displayed but 
discussed accordingly. 

  

 
Figure 3. Cumulative frequencies for samples (thin black lines) compared with exhaustive distribution (thick red line) for 

samples with: 25 points (A), 49 points (B) and 100 points (C) 

Table 2.  Parameters and statistics for exhaustive data and samples. 

Parameter/ 
Statistics 

Exhaustive Samples 

1 2 3 4 5 6 

N 2500 100 100 100 100 100 100 
Mean 1.640 1.688 1.658 1.747 1.671 1.732 1.583 

Std. Dev. 2.057 2.172 2.300 2.614 1.939 1.879 1.764 
CV 1.254 1.286 1.387 1.496 1.160 1.085 1.114 

Maximum 28.596 17.784 19.067 20.817 12.333 9.002 13.330 
Upper Q. 1.961 1.954 2.080 1.954 1.918 1.971 1.750 
Median 0.999 1.046 1.084 0.861 0.940 0.966 1.104 

Lower Q. 0.509 0.542 0.555 0.514 0.592 0.580 0.604 
Minimum 0.035 0.085 0.109 0.088 0.056 0.068 0.087 
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Figure 4. Experimental and modeled semivariograms for normal score data. 

 
Figure 6 illustrates the image maps of back-
transformed estimates (into original scale) for 
both approaches used in this study  
It is very clear that corrected estimates produce 
enhanced maps in which low areas are lower and 
high areas are even higher. Moreover both 
approaches give similar and highly correlated 
results. Statistics calculated for back-transformed 
values after Equation 5 are in Table 3 and after 
Yamamoto [6-7] are presented in Table 4 and 
statistics for back-transformed values based on 
this paper’s approach are listed in Table 5. 

Comparing these statistics on Table 3 with sample 
statistics (Table 2), we realize back-transformed 
values after Equation 5 are biased. Actually, these 
values are mean biased and present reduced 
standard deviations. Besides, statistics of upper 
tails are strongly biased (maximum values and 
upper quartiles). 
Both methods give similar results. Statistics for 
back-transformed values (Tables 4 and 5) are very 
close to the sample statistics (Table 2). Therefore, 
unbiased back-transform is only possible when 
estimates in the transform domain are corrected 
previously to the inverse operation as proposed by 
Yamamoto [7] for lognormal kriging estimates. It 
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is important to note that any correction based on 
the kriging variance or its square root will result 
in biased back-transformed values. Figure 7 

presents cumulative curves and P-P plots 
comparing the sample distribution with back-
transformed values. 

  

  

  
Figure 5. Image maps of back-transformed values after equation (4). Letters A-F correspond to samples 1-6. Legend: cross = 

sample data location 
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Figure 6. Image maps of back-transformed values to the original scale based on Yamamoto (2005 and 2007) are on the left 

(A-C-E-G-I-K – corresponding to samples 1 to 6) and on the right (B-D-F-H-J-L – corresponding to samples 1 to 6) are image 

maps back-transformed based on the new approach (this paper). Legend: cross = sample data location. 

Table 4. Statistics for back-transformed values after Yamamoto (2005 and 2007). 

Statistics 
Samples 

1 2 3 4 5 6 

N 2332 2233 2285 2272 2253 2264 
Mean 1.680 1.713 1.713 1.678 1.720 1.588 

Std. Dev. 2.103 2.471 2.439 1.940 1.930 1.764 
Coeff. Var. 1.252 1.442 1.424 1.156 1.122 1.111 
Maximum 17.784 19.067 19.611 12.333 9.002 13.330 
Upper Q. 1.943 2.079 2.039 1.917 1.972 1.920 
Median 1.064 1.055 0.904 0.941 0.954 1.061 

Lower Q. 0.547 0.556 0.517 0.589 0.575 0.607 
Minimum 0.086 0.109 0.088 0.075 0.083 0.090 

 
Table 5. Statistics for back-transformed values according to this paper’s approach. 

Statistics 
Samples 

1 2 3 4 5 6 

N 2332 2233 2285 2272 2253 2264 
Mean 1.653 1.615 1.738 1.674 1.755 1.589 

Std. Dev. 2.020 2.115 2.404 1.875 1.935 1.750 

Coeff. Var. 1.222 1.310 1.383 1.120 1.103 1.102 
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Median 1.049 1.027 0.849 0.909 0.949 1.065 

Lower Q. 0.547 0.572 0.526 0.590 0.591 0.587 
Minimum 0.085 0.109 0.088 0.056 0.068 0.087 
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Figure 7. Cumulative curves and P-P plots comparing sample distribution with cumulative distributions of back-transformed  

estimates. Legend: red cross = sample data; green circle = back-transformed estimates after Yamamoto (2005 and 2007); blue 

square = back-transformed estimates according to this paper; black diamond = back-transformed after equation (5). Letters 

A-F correspond to samples 1-6. 
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Examining Figure 7, we conclude both 
approaches give very close results and 
consequently are valid approaches for correcting 
the smoothing effect of ordinary kriging 
estimates. Average distances on P-P plots confirm 
that both approaches give similar results (Table 
5). However, back-transformed values after 
Equation 5 show different distributions to their 
respective sample distributions. Consequently, 
these values cannot be used to make statistical 
inference about the parent population. 
Now we can check for semivariogram model 
reproduction after these approaches (Figure 8). 
Looking at this figure we conclude the former 
algorithm seems to reproduce the semivariogram 
model better. The new proposal also reproduces 

the semivariogram model, but experimental 
semivariograms show more continuity than 
sample semivariograms.  
Since we have the exhaustive data set, we can 
compare actual values with back-transformed 
estimates (Figure 9). This comparison gives an 
idea of the local precision as measured by the 
correlation coefficient in a scattergram. 
Once again correlation coefficients are very close 
to each other proving both methods give a good 
correlation with actual values. Moreover, it also 
confirms that samples are representative of the 
exhaustive data set. 
Now results provided by both approaches can also 
be compared on scattergrams and the correlation 
coefficient can be computed (Figure 10). 

  

  

  
Figure 8. Experimental semivariograms computed from back-transformed estimates: open circle for values after Yamamoto 

(2005 and 2007); full circle for values after this paper; star = sample semivariogram; thick line = semivariogram model. 

Letters A-F correspond to samples 1-6. 
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Figure 9. Scattergrams comparing actual values with back-transformed values to the original scale based on Yamamoto 

(2005 and 2007) are on the left (A-C-E-G-I-K – corresponding to samples 1 to 6) and on the right (B-D-F-H-J-L – 

corresponding to samples 1 to 6) are scattergrams comparing actual values with back-transformed based on the new 

approach (this paper).  
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Figure 10. Scattergrams comparing back-transformed estimates after Yamamoto (2005 and 2007) with back-transformed 

estimates according to this paper. Letters A-F correspond to samples 1-6. 

High correlation coefficients shown in Figure 10 
confirm once again both methods give equivalent 
results. Evidently, back-transformed values are 
just close to each other but not equal because they 
are based on completely different approaches. 

Finally we can check the effectiveness of the 
proposed method regarding corrected scores after 
the transformation equation. It can be tested by 
counting the number of times that corrected scores 
fall outside the permissible range (Tables 6 and 7, 
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respectively for raw data scores – Equation 2 and 
normal data scores – Equation 4). 
Table 6 confirms that we cannot apply the 
transformation equation (Equation 2) for 
correcting Z scores from raw data because a large 
number of values are less than the sample 

minimum. On the other hand, corrected Z scores 
from normal data present a little number of values 
falling outside the range of normal score data (-
2.330 to 2.330) for samples considered in this 
study presenting 100 points. 

 
Table 5. Average distances measured on P-P plots of sample data versus back-transformed values. 

Procedure 
Samples 

1 2 3 4 5 6 

Equation (5) 4.32 4.76 4.23 4.02 4.74 4.02 

Yamamoto (2005) 0.81 0.66 0.54 0.45 0.56 0.96 
This paper 0.66 0.94 1.17 0.88 0.98 0.90 

 
Table 6. Counting of times falling outside range of sample data for raw data corrected scores. 

Sample Estimated 
values minZ

 maxZ
 

  min

** ZxZ oOK 
 

  max

** ZxZ oOK 
 

1 2332 0.085 17.784 434 4 
2 2233 0.109 19.067 444 4 

3 2285 0.088 20.817 525 3 
4 2272 0.056 12.333 286 3 
5 2253 0.068 9.002 220 15 
6 2264 0.087 13.330 247 6 

6. Conclusions 
This paper presented a new approach for 
correcting the smoothing effect of ordinary 
kriging estimates based on the well-known 
transformation equation used in statistics. Since 
this equation uses the Z score, it works better if 
data are transformed into a symmetric normal 
distribution. Calculations are then made in this 
domain and ordinary kriging estimates are 
corrected for smoothing before back-transforming 
into the original scale of measurement. 
Comparisons made with the former algorithm 
proved this new approach gives similar and 
equivalent results. The simplicity of this method is 
the most impressive feature. 
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