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Abstract: This paper presents fabric-based soft robotic modules with primitive morphologies, which
are analogous to basic geometrical polygons—trilateral and quadrilateral. The two modules are
the inflatable beam (IB) and fabric-based rotary actuator (FRA). The FRA module is designed with
origami-inspired V-shaped pleats, which creates a trilateral outline. Upon pressurization, the pleats
unfold, which enables propagation of angular displacement of the FRA module. This allows the
FRA module to be implemented as a mobility unit in the larger assembly of pneumatic structures.
In the following, we examine various ways by which FRA modules can be connected to IB modules.
We studied how different ranges of motion can be achieved by varying the design of the rotary joint
of the assemblies. Using a state transition-based position control system, movement of the assembled
modules could be controlled by regulating the pneumatic pressurization of the FRA module at the
joint. These basic modules allow us to build different types of pneumatic structures. In this paper,
using IB and FRA modules of various dimensions, we constructed a soft robotic limb with an end
effector, which can be attached to wheelchairs to provide assistive grasping functions for users
with disabilities.

Keywords: flexible structures; soft pneumatic actuators; fabric-based soft actuator

1. Introduction

Geometry—the study of points, lines, and angles—is an extensive branch of mathematics that is
deeply ingrained in our daily lives and the objects that surround us. Shape is one of the most basic
ways by which we identify and characterize objects. According to the book of Euclid’s Elements by
Euclid of Alexandria, various types of polygons exist to describe shapes of different forms, and the
simplest one of them all would be trilateral polygon, an amalgamation of which can be used to derive
more complex polygons [1]. It is interesting to note that, throughout civilization, triangles have widely
been implemented in architecture. From the construction of bridges [2] to pyramids [3], the structures
were characterized by triangular supporting elements. Given such extensive application of this specific
geometry, it would be rather intriguing to explore how this particular figure could be further extended
in the development of soft robots. In the field of soft robots where actuators are designed to activate
into shapes of various form, it might be interesting to investigate how to develop a simple actuator
unit of basic polygonal morphology, which can be used as the rudimentary cell structure to build
larger assemblies of more complex shapes.
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Fluidic elastomeric actuators (FEAs) of soft robots are commonly designed to be expanded or
elongated in shape, with an internal pneumatic chamber [4]. Upon pressurization, the fluidic chambers
inflate and FEAs achieve various forms of actuation, such as twisting, curling, and elongation [5],
which intend to imitate the movement of natural beings, such as octopuses [6], snakes [7], and
caterpillars [8]. It has been widely reported in literature that FEAs are designed with pneu-nets,
which are inner channels that form actuation pathways for pressurized fluid, such as water and
air [9]. The common way of fabricating FEAs would be via molding of siloxane-based polymers
such as polydimethylsiloxane (PDMS) and silicone rubber. In order to ensure a correct form of
actuation, reinforcement materials such as stiffer elastomeric polymer or woven nonstretchable fibers
are included in the design as strain limiting layer [10,11]. The thickness of the fluidic chamber wall and
reinforcement materials regulate the variation in stiffness of the fluidic chamber wall of FEA, which
would in turn determine the actuation performance of the FEA. Lately, 3D printing has been used as a
new way of fabricating soft robots, whereby the actuator is designed with 3D computer-aided design
(CAD) software. The design is then fabricated using low-cost consumer-grade printers at varying fill
capacity to create fluidic pathways [12,13]. A top—down fabrication approach is generally adopted for
soft robots, whereby each actuator is custom-designed for target application and actuation form [14].

In addition, modular soft robots have also been developed for various applications and actuation
forms [14-17]. Modularity aims to simplify the fabrication process and troubleshooting process.
If damages were to occur to the module-based soft robot structure, the repair process would be
simpler by replacing the faulty module. In this paper, we further explored the modular concept for
developing soft pneumatic actuator modules, which exhibit shape morphology that is analogous to
basic geometrical polygons.

2. Related Works

Modular soft robots were previously discussed by Onal and Rus, who designed and fabricated
FEA modules, which can be arranged in serial, parallel, and hybrid configuration [15]. However,
elastomer-based modules are fabricated by molding of liquid silicone polymer, which solidifies into
the desired form upon curing. In order to attach the modules, a similar technique was applied
which made the process irreversible, as the cured modules cannot be detached from one another.
Furthermore, loss of mechanical energy, which would otherwise be used in force or torque generation,
would occur due to deformation of elastic material. There is a limitation on the compatibility of the
actuator, as the air chambers need to be designed and fabricated with minimum thickness to assure
a correct form of actuation [16]. Lee et al. explored an alternative way of designing modular soft
robots [14]. A comprehensive design collection of modules was presented, each of which have diverse
functions—motion generation, air distribution, and connection. By selecting and arranging modules
of different functions, the user is able to develop soft robots of any desired shapes or functions, such as
gripper or locomotion. The actuators modules were fabricated using either multimaterial 3D-printing
or molding. Each module is designed with a pneumatic chamber, and the wall thickness is varied
to permit different actuation modes. Three mechanical connection mechanisms, which are screw
thread, push fitting, and bi-stable junction, were presented and discussed. Each pneumatic module
is fabricated with hollow connectors at either end to allow the modules to be easily attached and
detached to each other by mechanical means and hence, upon connection, a central fluidic pathway
is formed within the assembled modules. However, addition of extruding mechanical connectors
compromises the intrinsic soft nature of the actuators and the maximum engagement pressure [17].

In this paper, a simple modular design concept is adopted, whereby triangular and rectangular
shape primitives are introduced—the inflatable beam (IB) module and fabric-based rotary actuator
(FRA) module. Fabric material is used to fabricate these soft pneumatic actuator modules. Fabric-based
soft actuators have begun to emerge lately for various applications, such as robotic grippers or wearable
rehabilitation devices [18]. The thin nature of fabric sheet allows us to create pneumatic actuators
with walls which are thinner than those of silicone-based actuators, and yet capable of generating
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comparable performance. In contrast to silicone actuators whose fluidic chambers are fabricated using
custom-shaped molds and liquid elastomeric polymers, the sheets of fabric-based actuators can be
folded and sealed into pleats, which would serve as pneumatic chambers. The propagation of actuating
motion is determined by the characteristics of the pleats—dimensions, location, and number of the
pleats. In addition, a fabric-based fabrication protocol enables scaling up of actuator designs, without
compromising on the convenience of fabrication protocol and required time [19-21]. Compared to
3D-printed actuators [13], fabric-based actuators require a lower range of pneumatic pressure to
function. The contributions of the paper as follows: (1) A simple modular design concept using shape
primitives that are inspired by basic geometrical polygons, and (2) construction of larger pneumatic
structures using fabric-based modules which can be assembled and disassembled. In the following
sections, we discuss the design concept of the modules, identify and characterize configurations of the
modules, implement a position control system for the assembled modules, and highlight a possible
application of the modules.

3. Materials and Methods

Two actuator shape primitives were designed—the IB module and the FRA module (Figure 1).
The IB module was designed in a rectangular block form to provide structural function in the assembly
of soft robots, whereas the FRA module provides mobility function to the soft robots. When pressurized,
the IB module will inflate into a rigid beam which can be used as an extension for the network of
a modular-based pneumatic structure. FRAs are designed with origami-inspired V-shaped pleats
which remain folded when they are deflated. Upon pneumatic pressurization, the inner pleats inflate,
which causes the FRAs to open up. Due to pleated design, FRA assumes a triangular outline in both
pressurized and depressurized state. The dimensions of its triangular form, however, change based on
the internal pneumatic pressure. Therefore, by regulating the pneumatic pressure, the FRA form could
be controlled. The opening and closing motion of FRA enable the module to be implemented in larger
pneumatic structures as rotary joint modules.

Interconnecting

Perforation xahie FRA modules
E\cess ©
fabric _ §
IB module [~~~ """
FRA module Intercommecting [ T
IB module cables
(d)
e —  S—
e — S Y . 2 333
S0mm 25mm Endoskeleton .
Fabric
Excess fabric along (Outer layer)

the edge of FRA

Figure 1. (a) Illustration of the fabric-based rotary actuator (FRA) and inflatable beam (IB) module
assembly, (b) Photo of end-effector to illustrate the connection of FRA and IB modules, (c¢) FRA module
in inactive state, (d) Ninjaflex endoskeleton, and (e) enlarged cross-sectional view of FRA with internal
Ninjaflex endoskeleton.

Fabric was used to fabricate the modules and it was coated with thermoplastic polyurethane
(Jiaxing Inch ECO Materials Co. LID, Zhejiang, China). By inducing heat or ultrasonic acoustic
vibrations on multiple layers of stacked fabrics, the polyurethane coating on the layers will melt
and be welded together. In this way, airtight pneumatic structures can be formed. However, the
fabric materials are not of hyperelastic nature, as compared to the rubber elastomers that are used to
develop soft robotic structures in previous works. Hence, when deactivated, the fabric-based module
takes longer to return to its default state. Therefore, to solve this limitation, the FRA module was
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fitted with a C-shaped frame (Figure 1d), which was fabricated using Ninjaflex filament (NinjaTek,
Manheim, PA, USA) via fused deposition modeling on a LulzBot TAZ 6 at 100% fill capacity. The inner
C-shaped frame serves as the endoskeleton of the module, which improves the passive actuation
process of the module when it is deactivated. This ensures consistent and fast return of the module to
its inactive state.

FRA modules and IB modules can be assembled in various configurations. The basic assembly
would consist of a single FRA module and two IB modules which would be denoted as SNG assembly
in subsequent sections (Figure 2b—e). Intermediate assembly would consist of two IB modules and two
FRA modules assembled in series (Figure 2f-k) or in parallel (Figure 21-q) which will be respectively
denoted as SRS assembly and PLL assembly in subsequent sections. In the following, the static
response of assemblies to supplied pneumatic pressure was analyzed. Three assemblies with different
configuration of FRA modules at the rotary joint (SNG assembly, SRS assembly and PLL assembly)
were fabricated. The FRA modules were fabricated to the size of 50 mm by 25 mm. The attached IB
modules were fabricated to be of 50 mm by 25 mm by 50 mm. The former dimensions were chosen for
the convenience of the fabrication protocol. IB modules were fabricated to be of the same dimensions
as FRA modules to ensure uniform distribution of force. To enable development of reconfigurable
pneumatic structures, the ends of IB modules and FRA modules were fabricated with excess of fabric
(5 mm), which was perforated with holes of 2 mm diameter (Figure 1a,b). This allows IB modules
and FRA modules to be interlaced with each other by weaving cables through the aligned perforation
of adjacent modules. This enables assembly and disassembly of IB modules and FRA modules.
Unlike previously reported modular concepts, there would be no central fluidic pathways within the
structure of connected modules. Each module has its own pneumatic inlet, and a pneumatic network
is formed by linking the inlet tubes of different modules using commercially available connectors.
Hence, it removes the need to create fluid directing units, and there could be a selective activation of
modules within the pneumatic structure by selectively forming multiple pneumatic networks.

() Inactive State (b)

=

Active State

" (k)

\

®

Figure 2. Cont.
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Figure 2. (a) One FRA module in depressurized (inactive) state and pressurized (active) state. (b—q)

)

show assemblies with different configurations of FRA modules with IB modules and the active and
inactive states of the assemblies. Active state refers to pneumatic pressurization of FRA module, which
rotates the assembly. (b—e) One FRA module and two IB modules (SNG assembly), (f-k) two FRA
modules connected in series and two IB modules (SRS assembly), (I-q) two FRA modules connected in
parallel and two IB modules (PLL assembly).

4. Experiments

4.1. Deflection Behavior of IB Module

Wrinkling effect is a common phenomenon in textile-based pneumatic structures, which
subsequently affects the stiffness of the structure and its load supporting capacity. Wrinkling occurs
on the concave side of the inflated textile structure, where the textile is unable to resist compressive
loads. In the wrinkled region, the bending stress due to the applied moment equilibrates axial stress in
the textile layer [22]. In this paper, we focus on the load bearing capability of IB module in its initial
unwrinkled phase. Most of the applications require IB module to have minimal vertical deflection
when the external load is applied on it. For instance, in the subsequent sections, we illustrate a portable
pneumatic limb structure that has an end-effector that enables it to grasp objects in its surrounding
environment. In this case, minimal vertical deflection of the IB module is essential to allow the limb
to efficiently transfer objects from one location to another. For this experiment, the IB module was
fabricated to be 200 mm in length and 25 mm in diameter when inflated. One end of the beam was fixed
onto a rigid platform, while the other end of the beam was placed in contact with a load cell (1000 N)
of Instron Universal Tester 3345 (Instron, Norwood, MA, USA) (Figure 3). When the test begins, the
load cell moves in vertical displacement (Figure 3). Deflection of the beam and the corresponding
load exerted by the load cell is recorded by Instron machine. Two sets of deflection behaviors were
observed, when the IB module is pressurized at 10 kPa and 20 kPa.

Universal
Testing

Machine

(1000N load cell)

Inflatable
Beam
module

Fixture

(b)

Figure 3. Photo (a) and illustration (b) of deflection-load test set-up for the IB module.



Micromachines 2019, 10, 236 6 of 15

4.2. Angular Displacement Profile of Assembled Modules

The displacement characteristics of assembled modules due to pneumatic pressurization of
the FRA module would vary based on the number and configuration of FRA modules at the joint.
Hence, it is essential to understand the range of motion of assemblies of different configurations
(SNG assembly, SRS assembly, and PLL assembly) (Figure 2). Based on this information, appropriate
assemblies can be chosen and applied to form different pneumatic structures of variable functions and
uses. IB modules of the assembly are supplied with constant pneumatic pressure of 20 kPa. The IB
module at one end of the assembly is fixed and the second IB module at the other end is allowed to
move freely upon activation of the FRA module at the joint. Changes in angle displacement of the
assembly due to actuating the FRA module are recorded at different pressure levels. The FRA module
at the rotary joint is pneumatically actuated from 0 kPa to 50 kPa. Pneumatic pressurization causes the
FRA module to expand and deform. However, upon removal of the pneumatic source, the module
returns to its original state.

4.3. Stiffness of Assembled Modules

Joint stiffness of assembly is introduced by the intrinsic resistance of the FRA module to rotational
efforts caused by pneumatic pressurization. The joint stiffness is obtained by measuring the passive
torque output of the assembled modules at different actuation angles. SNG assembly with a single FRA
module is loaded onto the test platform, whereby the IB module at one end of the assembly is fixed
and the second IB module at the other end is moved to specific joint angles (Figure 4), during which
the joint FRA module remains depressurized. A torque sensor (Forsentek, Shenzhen, China) is used to
record the passive torque output of the assembly, from which joint stiffness can be approximated as a
function of joint angles.

Joint FRA module

Base platform

IB module

IB module Constraining
platform

Figure 4. Illustration of passive resistive torque measurement set up of the SNG assembly.

5. Results and Discussion

5.1. Deflection Behavior of IB Module

Figure 5 shows the deflection behavior of the IB module in response to applied load, when it is
supplied with 10 kPa and 20 kPa of pneumatic pressure. Nylon fabric forms the external skin of the
IB module and is isotropic in nature (Young’s Modulus = 34700 N/m). Upon application of load, the
beam deflects, and this behavior is dependent on the elastic modulus of the fabric and the dimensions
of the beam. Deflection of the beam would undergo three phases [22]. In the initial phase of beam
deflection, the external fabric layer of the beam is unwrinkled. The beam would exhibit a linear
relationship between deflection of the beam and applied load. This relationship can be described using
conventional solid elastic beam and Euler beam theory [22]. In the subsequent phase, wrinkling of the
external skin (nylon fabric) of the beam would occur, when the applied load reaches the wrinkling
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point [22]. Increase in magnitude of applied load leads to propagation of wrinkling of the nylon
fabric until it reaches the collapse point, whereby the beam is no longer able to support the applied
load. This experiment measures the load bearing capacity of the inflatable beam before wrinkling
occurs. Based on Euler theory [22], deflection of the beam in the unwrinkled phase can be modeled as
a regression line with a gradient of 0.0799 N/mm, which is also indicated in Figure 5.

The load bearing capacity of the IB module is independent of inflation pressure during the initial
unwrinkled phase. Hence, the slope of the regression line, which relates deflection of the IB module
with respect to applied load, remains the same for different pneumatic pressures [23]. However, the
threshold of load, which is required for wrinkling to occur, is affected by input pneumatic pressure.
The wrinkling load threshold of beam increases, when the supplied pneumatic pressure to the beam
increases from 10 kPa to 20 kPa. For an inflated beam of 25 mm in diameter and 200 mm in length,
it is able to theoretically withstand a wrinkling load of 0.307 N, when it is supplied with 20 kPa of
pressurized air. When input pneumatic pressure is reduced to 10 kPa, the wrinkling load threshold
reduces to 0.153 N (Figure 5). At this point, the experimental data also begin to deviate from the
expected linear regression model for load bearing capacity in the unwrinkled phase.

0.4

--10kPa Wrinkling Threshold
- - 20kPa Wrinkling Threshold
= 20kPa - experimental result
* 10kPa - experimental result

==Predicted deflection in unwrinkled
phase (Euler's theorem)

Deflection (mm)

Figure 5. Load—deflection behavior of the IB module.

5.2. Angular Displacement Profile of Assembled Modules

Angular displacement of assembled modules is generated by the unfolding action of the joint
FRA module. SNG assembly exhibits higher angular displacement compared to assemblies with
double FRA modules (SRS assembly and PLL assembly). For the SNG assembly, maximum angular
displacement (124.86 & 0.50°) is reached at 30 kPa, beyond which a plateau is observed upon further
increment in pneumatic pressure (Figure 6). This is because the unfolding of the FRA module is limited
by the length of inner folded fabric layer. The SRS assembly exhibits maximum angular displacement
of 56.14 £ 0.26° and 64.39 £ 1.66° in either direction. The PLL assembly exhibits maximum angular
displacement of 48.98 £ 1.71° and 48.67 & 0.74° in either direction.
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——SNG = = =SNG (model)
—— SRS MD1——SRS MD2~- - -SRS (model)
——PLL MD1——PLL MD2- = -PLL (model)
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Figure 6. Experimental and predicted angular displacement profiles of assemblies—SNG assembly,
SRS assembly, and PLL assembly. SRS and PLL assemblies have two FRA modules, each of which is
pressurized selectively. Hence, two sets of angular displacement profiles are presented for the SRS
(SRS_MD1 and SRS_MD?2) and PLL assembly (PLL_MD1 and PLL_MD?2). MDI1 refers to the state
whereby the first FRA module is pressurized and the second FRA module depressurized. MD2 refers
to the state whereby the first FRA module is depressurized and the second FRA module pressurized.

The morphology of the actuated FRA module is assumed to adopt a simplified outline with
resemblance of a triangle. Upon pressurization, the unfolded section of the inner fabric layer forms a
triangular outline with the outer fabric layer. As the FRA module expands upon pressurization, the
outline of the module also increases with pneumatic pressure. The unfolding action of the activated
FRA module causes a respective change in the angulation. It is assumed that the external fabric
layer is inextensible and that during the initial unpressurized state, the external and internal layer
form rectilinear edges. Figure 7 shows a simplified illustration of changes in the FRA outline during
pressurization. When pressurization begins and the inner pleats of FRA begin to unfold, the external
and internal layers form an angle with respect to each other. Compression force, which is generated
along the inner fabric layer of FRA due to pressurized air, is translated into a pushing force due to the
way the inner layer is folded. Increasing pneumatic pressure within the FRA results in corresponding
increment in the pushing force. This causes FRA to unfold further, until force equilibrium is reached
along the inner fabric layer of the module. The inner fold of the FRA module is approximated as a
wide beam [24], and the corresponding change in unfolded length of inner fabric layer at respective
pneumatic pressure is expressed by the following relation:

AP =P; =P, =Py, (1)

Bp = ((Pr-Bo(Bo — Bp.1))/ c-tp-E) + Bp.g. ()
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Poa >AP>0

Pneumatic Inlet
AP=0 ==

(d)

Figure 7. (a—c) Simplified illustration of FRA module outline at different pneumatic pressure,

(d) enclosed view of the dotted section in (b).

AP is pneumatic pressure supplied to the FRA module. P; and P, refer to pressure along the
inner surface of FRA during the equilibrium state. P is pressure applied along the inner folded
edge to generate pushing force, which causes the FRA module to unfold. By is the breadth of the
inner fabric layer of the FRA module. Bp is the length of the inner layer, which is unfolded at current
pneumatic pressure (AP), whereas Bp.; is the length of the inner layer, which has previously been
unfolded at lower pneumatic pressure. E refers to Young’s Modulus of fabric [25]. « refers to the
stiffness coefficient of the joint of the assembled modules. The joint stiffness coefficient is derived
directly from the experiment in Section 4.3, whereby resistive torque output of the SNG assembly with
one FRA module at the joint is measured at different joint angles (Figure 8).

0.00

-0.05

Torque (Nm)

-0.10

-0.15 4

-0.20 T T T T 1
0 20 40 60 80 100

Joint angle (Degrees)

Figure 8. Measurement of resistive torque generated by SNG assembly (one FRA module and two
IB modules).

tp is the length of the inner layer, upon which pushing force is concentrated to cause unfolding of
FRA. t;, is assumed to be of minimum length of 0.4 mm, which is the thickness of the fabric. The range
of motion of the FRA module is limited by the amount of fabric within the pleat and the inherent
resistance of the Ninjaflex endoskeleton. The inner folding of fabric and Ninjaflex endoskeleton of
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the FRA module provides resistance to the unfolding motion of the module. This enables the module
to resume its initial angle at an unactuated state. In an assembled modular structure, resistance to
deformation may vary based on the number of FRA modules attached at the rotary joint. As seen in
Figure 6, the angular displacements of the SRS and PLL assemblies are smaller than that of the SNG
assembly. To explain this occurrence, a spring model is adopted based on the assumption that stiffness
of the assemblies varies with the number and orientation of the FRA modules. Due to variation in
stiffness of rotary joints, module assemblies with different configurations of FRA modules would have
different ranges of motion. Rotary joints that are designed with multiple FRA modules would exhibit
higher resistance. In the following, the multiple modular joint design is modeled using a parallel spring
model to reflect the increase in stiffness of the joint. Due to the increase in joint resistance to rotation,
the length of unfolded fabric would also decrease and, hence, the range of angular displacement.

Bp =2sin~! (Bp/Ly), 3)
F= Keq~X, 4)

Keq = K1 + K2, ®)

X = Kq. (6)

Ly is the length of the inner fabric layer of the FRA module. 6p refers to angular displacement of
the FRA module. keq is the equilibrium stiffness of the rotary joint of the assembled modules, whereby
k1 and k; refer to the stiffness of the FRA modules in the rotary joint. In intermediate rotary joint
assemblies, two identical FRA modules were fabricated, whereby k1 = ;.

Figure 6 also shows the expected angular displacement profile of module assemblies based on the
mathematical assumption and model (SNG (model), SRS (model), and PLL (model)). For assembly
with one FRA joint module (SNG assembly), a similar angular displacement profile was observed
between the experimental and model-derived data. However, discrepancy was observed between
the expected and measured displacement profiles of assemblies with intermediate joint assemblies
(SRS and PLL assemblies). This discrepancy is due to the simplified assumptions of the spring model.
Additional parameters such as resistance to rotation due to stacking of multiple layers of fabric may
need to be considered. In order to more accurately predict the motion of intermediate assemblies,
a more complex spring model would be required. In general, the displacement profiles of all three
assemblies (SNG, SRS, and PLL assemblies) are comparable between the experimental results and
model. The SNG assembly showed a larger displacement, followed by an SRS assembly and then
PLL assembly.

6. Design of Control System

A state machine was developed as a position control system for the assembled modules, whereby
pneumatic pressure within the FRA modules at the rotary joint is regulated to control the position of
the linked IB modules. Zhao et al. developed state machine controllers for the elastomeric fingers
in the soft orthotic glove [26], whereby optical fiber sensors were used to provide feedback of the
curvature of the elastomeric actuators. Similarly, in this paper, a state machine controller was designed
for each FRA module in the joint of the assembled modules. For each state machine controller, an
integrated valve system was designed with two miniature normally-closed solenoid valves (X-Valve,
Parker Hannifin Corp., OH, USA), which have a nominal response time of 20 ms (Figure 9). One valve
was used as the inflating valve, which links the actuator to the pneumatic source, and the other valve
was used as the deflating valve, which links the actuator to the atmosphere. The integrated valve
system enables (1) air flow in to the actuator and (2) air flow out of the actuator and (3) contains air
within the actuator.
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Figure 9. Position control of the module assembly.

The state machine controller was designed with five control states, each of which requires different
actions of the two valves in the integrated valve system (Figure 10). Transition between states is
determined by the percentage error of the measured angle with respect to the set angle (¢) and the
location of ¢ in the preset error margin (K,, Ky, and K¢). K, determines the acceptable margin of error
for €. K and K. determine the allowable threshold of the error margin. In the following test, the
control parameters were selected to be as follows: K, = 0.05, Ky, = 0.01, and K. = —0.01. When the error
thresholds are exceeded, the controller would switch to either an “in” or “out” state, and inflation and
deflation of the actuator occur accordingly. At each control state, the opening and closing duration of
respective valves are controlled using pulse width modulation, the duty cycle of which is varied based
on the preset time variables (X and Y).

An inertial measurement unit (IMU) (Pololu Corp., Las Vegas, NV, USA) was used to provide
sensor feedback for the measured angle of the IB module that is linked to the actuating FRA module.
The IMU is placed at the distal end of the freely moving IB module along the central axis. By tracking
the orientation of IMU, the angle of the actuating IB module can be tracked. Due to the actuation
form of FRA, the movement of the attached IB module would be assumed to be a single plane and
that the movement of the assembled modules would be minimal in other planes. Hence, based on the
orientation of IMU on the actuator, the estimated roll angle of IMU output data is used to provide joint
angular displacement feedback to the state machine.

Assembly with FRA modules in parallel configuration (PLL assembly) was chosen to analyze
the step response of the position controller (Figure 11). For the step position tracking experiment, the
reference angle was set from 20° to 30°, with increments of 5°. For the step response, the rise time was
550 ms and the settling time was 660 ms. The steady state error was 1.30%. Despite the “hold” control
state, the assembly is observed to oscillate around the target value.

Figure 10. State transition map for the position control algorithm.
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Figure 11. Position control step response.

Amidst steady state oscillation, a higher magnitude of oscillation is observed at lower reference
angles (20°and 25°) than at 30°. This is because the pneumatic source is supplying air at 35 kPa. Hence,
when the inflating valve opens, the inflow of air within the actuator is at 35 kPa, which would cause
the actuator to displace at a higher angle than the expected value. An inner pressure control loop
would have to be included to automatically adjust the supplied pressure of the pneumatic source.

7. Implementation

Based on the characterization tests, a trade-off exists regarding the range of motion and joint
stiffness for the different module assemblies. Hence, to construct larger pneumatic structures, the most
suitable form of assembly would have to be chosen based on the requirement of the end structure. The
following demonstrates a possible application of pneumatic actuator modules in the construction of
soft robotic limb—also known as textile-based robotic arm (TERA). Previously, Otherlab developed a
soft robotic limb, which was designed with bellow shaped joint actuators. The multiple folding of the
bellow shaped actuator makes the actuator prone to wrinkling effect, which can reduce the stiffness
of the actuator and its ability to support load [27]. TERA is constructed with FRA modules and IB
modules, which are arranged in variable configurations and orientations along the structure (Figure 12).
PLL assemblies are used to create limbs of TERA, which are able to perform bidirectional rotation. It is
designed with two rotary joints, each of which has a pair of FRA modules in parallel configuration.
The rotary joints of TERA are interconnected using IB modules (Figure 12). FRA modules of rotary
joints are fabricated to 50% of the dimensions (50 mm by 25 mm) of linkage IB modules (50 mm by
50 mm by 150 mm).
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Figure 12. (a) Illustration of textile-based robotic arm (TERA). (b—e) The limb segment of TERA.

—_End effector

Hence, when paired in parallel configuration, the FRA modules would be fitted evenly to the
adjacent IB modules. This is to ensure uniform transmission of force by the actuating FRA module in
the rotary joint to the linked IB module, therefore maximizing the range of motion of the structure.
The two pairs of FRA modules in the rotary joints are arranged in different orientations. Activation of
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FRA modules at different joints would enable movement of the robot along different orientation
planes, therefore increasing the degree of freedom. Reversible linkage is formed between FRA modules
and IB modules using cables. Each module is fabricated with excess fabric perimeter at either end
of the module, which is perforated to create paths for weaving of interconnecting cables between
adjacent modules. Should the design require alteration, the interlacing cables can be removed, and
the affected modules can be rearranged to the desired conformation. As opposed to the usage of
parallel configuration, the end effector of TERA is designed with two sets of FRA modules in series
configuration (Figure 13), whereby FRA modules are selectively activated to initiate grasping mode.
As a portable, mobile system, TERA can be used as a supernumerary limb or it can also be attached to
items such as wheelchairs for the disabled and be used to perform simple grasping tasks for household
items, such as glassware and stationery (Figure 14). In the future, electromyography control can be
incorporated to detect the intention of the disabled user.

Compared to existing similar rigid robotic arms, a soft robotic arm can be made at lower cost
and greater ease of fabrication. As it is mainly made with nylon fabric and actuated with air, the soft
robotic arm is also much lower in weight. However, the payload of the soft robotic arm is smaller
than that of a rigid robotic arm. Nevertheless, due to its lightweight and intrinsic soft nature, the soft
robotic limb can be integrated onto structures such as wheelchairs and be deployed in close proximity
with human users.

Depressurized FRA modules Pressurized FRA modules
Pressurized FRA modules

VRS

Figure 13. Photo of the end effector in (a) initial state, (b) intermediate state to prepare for the grasping

(@)

of objects, (c) final state of grasping mode.

Figure 14. (a,b) Photo of TERA on a wheelchair for the disabled. Grasping and moving of a glass.
The pneumatic pressure for IB modules is 20 kPa and the actuating FRA module of the respective joint
is 50 kPa.

8. Conclusions

To give a new perspective to the conventional design and way of fabrication, we opted to
design soft pneumatic modules with morphological resemblance of basic polygons of three-sided and
four-sided figures—triangle and rectangle. A simplistic modular approach was adopted whereby two
shape primitives were introduced—the IB module and the FRA module, which are fabricated with
thermoplastic polyurethane-coated fabric. The rudimentary polygonal outline of modules enhances
their versatility, for it permits construction of larger pneumatic structures of more complex shapes and
actuation modes through selective congregation of multiple modules. The contributions of the paper
are as follows: (1) A simple modular design concept using shape primitives that are inspired by basic
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geometrical polygons, and (2) construction of larger pneumatic structures using fabric-based modules,
which can be assembled and disassembled. Module-based construction of pneumatic structure requires
lower volume of operating fluid to function and is able to operate within a lower range of pneumatic
pressure, compared to continuum actuators. Reconfigurable fabrication allows the usage of the same
designs of actuators to construct more than one type of pneumatic structures. The versatility of the
modules was illustrated by the construction of a soft textile-based robotic arm (TERA) with two rotary
joints and an end-effector, all of which were developed using the two essential modules. TERA is a
lightweight, mobile system which can be attached to objects such as wheelchairs for the disabled to
assist with grasping tasks.
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