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Computer-based music feature analysis mirrors human perception
and can be used to measure individual music preference

Kai R. Fricke a,⇑, David M. Greenberg b,d, Peter J. Rentfrow c, Philipp Yorck Herzberg a

aDepartment of Personality Psychology and Psychological Assessment, Helmut-Schmidt-University/University of the German Federal Armed Forces Hamburg, Hamburg, Germany
b The School of Performance, Anglia Ruskin University, Cambridge, United Kingdom
cDepartment of Psychology, School of the Biological Sciences, University of Cambridge, Cambridge, United Kingdom
dAutism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom

a r t i c l e i n f o

Article history:
Received 28 February 2018
Revised 6 June 2018
Accepted 8 June 2018

Keywords:
Music preference
Music features
Music taste
Music perception
Music information retrieval

a b s t r a c t

This paper explores the measurement of individual music feature preference using human- and
computer-rated music excerpts. In the first of two studies, we correlated human ratings of song excerpts
with computer-extracted music features and found good accordance, as well as similar criterion validity
with preference for musical styles (the MUSIC model, mean r = 0.88). In a second online study (N = 2118),
using PCA and Procrustes analysis, we found that measured music preference showed the same estab-
lished three-component structure from previous research (Arousal, Valence, Depth), regardless of
whether the music pieces were rated by humans or the ESSENTIA music analysis software. Our results
suggest that computer-extracted music features can be used to assess individual music preference.

! 2018 Elsevier Inc. All rights reserved.

1. Introduction

Research on musical genre and feature preference has estab-
lished that humans show individual music preferences (e.g.
Rentfrow, Goldberg, & Levitin, 2011), which in turn are related to
various personality traits, such as Sensation Seeking (Litle &
Zuckerman, 1986), the Big Five personality dimensions (Rentfrow
& Gosling, 2003), and their facets (Zweigenhaft, 2008; Greenberg
et al., 2016). Besides its social implications, such as acting as a con-
veyor for social affiliation (North & Hargreaves, 1999), music pref-
erence thus can also be construed as an idiosyncratic personality
characteristic. The assessment of music preferences currently often
relies on audio based assessment, which in turn relies on a selec-
tion of pre-rated music pieces. Software-based rating of music
pieces can be used to broaden the selection of stimuli for music
preference assessment. Concretely, such automated ratings could
be used to measure music preference from actual, individually
selected or even user-provided songs (e.g. own music collections,
playlists, and alike), rather than from a pre-selected pool of music.
However, research has not yet examined whether these computer-
extracted features are empirically equivalent to human perception.
Specifically, while we can assume that computer-extracted

features partly reflect human perception, it is unclear if the results
can also be used to infer idiosyncratic music preference. Therefore,
in this paper we examine how the results from computational
music feature extraction relate to human perception and how they
can be utilized for the measurement of individual music
preference.

In research, music preference is usually assessed in one of two
ways: Participants can state their preference for musical genres
(e.g. Rentfrow & Gosling, 2003; Bonneville-Roussy, Rentfrow, Xu,
& Potter, 2013) or musical features (e.g. Fricke & Herzberg, 2017)
in self-report, or participants can express their liking of certain
selected music excerpts, which are used as a proxy measure to
assess their music preference (e.g. Rentfrow et al., 2011;
Langmeyer, Guglhör-Rudan, & Tarnai, 2012). Much of the past
research on excerpt-based music preference assessment relied on
a pool of neatly compiled music excerpts that have been rated by
humans on various music features (e.g. Rentfrow et al., 2011;
Rentfrow et al., 2012; Greenberg et al., 2016). These excerpts were
selected from professionally produced, yet commercially unre-
leased music pieces (Rentfrow et al., 2011). Over all, 250 song
excerpts have been introduced to this line of research, and they
have been rated by humans on over 40 sonic and psychological
music features. Separate participants would listen to the excerpts
and express their preference, which would then be used to
calculate their music preference profile for the music features.
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The measurements were then used to examine relationships with
cognitive styles (Greenberg, Baron-Cohen, Stillwell, Kosinski, &
Rentfrow, 2015) and personality constructs (Greenberg et al.,
2016).

These music excerpts are suitable for the fine assessment of
music preference in overt assessment. But if we wanted to infer
music preference from indirect data sources, such as actual listen-
ing behavior, we would need access to the music features of a large
body of popular music. While today it is easy to get access to a
large selection of music through online streaming services, gaining
human ratings of thousands of songs on multiple features is a chal-
lenging and very time-consuming task if done manually. A way to
overcome this limitation is to use automatic music feature
extraction from music analysis software. This software can infer
low-level music features directly from audio input and thus
automatically annotate thousands of songs in relatively short time.

Low-level audio features derived from analysis software can be
subjected to machine learning algorithms to classify songs on more
high-level features, such as moods (e.g. Danceable, Aggressive) or
genres (e.g. Rock, Pop, Jazz). These algorithms generalize learned
features from ground truth datasets (i.e. manually annotated music
pieces) to new audio inputs. The ground truth data is usually anno-
tated by humans; still, it is sensible to confirm the validity of the
computed feature output on a different dataset using human rat-
ings. Also, audio classifiers usually use relatively broad categories,
such as Happy, or Sad. Comparing the machine ratings with human
ratings on more detailed music features can help us understand the
facets of such categories and help in the interpretation of the music
analysis results and music preference assessment.

Music preference research shows a robust five-factor (for musi-
cal genres; see Rentfrow et al., 2011) and three-factor (for musical
features; see Greenberg et al., 2016; Fricke & Herzberg, 2017)
structure. If computer-extracted music features proved to be a
valid way to assess music feature preference, we would expect to
find a similar factor structure here, as well.

In our first study we use rating data based on human perception
of 150 songs collected by Rentfrow et al. (2011, 2012) to validate
the feature extractions of the music analysis software ESSENTIA
(Bogdanov et al., 2013). In our second study, we then examine
and compare the component structures of music feature prefer-
ence for human-rated and computer-extracted music features.
Our study aims to show that computer-extracted music features
can be used for the assessment of music preference, just as
human-rated music features have shown in previous research.
The overall goal of this paper is hence to provide a new tool for
the assessment of individual music preference, which can be
applied to any body of music, including individually selected or
user-provided music pieces.

1.1. Music features and music preference

Music can be described and classified using various dimensions.
Human-driven classification often revolves around categories, such
as genres, moods, and sound characteristics. Machine-extracted
features on the other hand are typically very technical, as they usu-
ally describe quantitative characteristics of the audio signal, such
as amplitudes, energies, and spectral bands. These technical attri-
butes are referred to as low-level features. Classifications derived
from a combination of these low-level features often mimic human
concepts and are referred to high-level features. We will first dis-
cuss human classification and rating of music attributes, and then
proceed to illustrate machine-extracted low-level and high-level
features.

Traditionally, music has been categorized into genres such as
Rock, Pop, or Jazz. Psychological research suggests that preference
for these genres can be modeled on the five factors of Mellow,

Unpretentious, Sophisticated, Intense, and Contemporary (the MUSIC-
Model; Rentfrow et al., 2011). In the past years, however, research
switched focus from broader music genre preference (e.g. ‘‘I like
Jazz”) to music feature preference (e.g. ‘‘I like relaxing music”)
(Fricke & Herzberg, 2017). Preference for music features in
excerpt-based assessment has been shown to load on three factors:
Arousal, Valence, and Depth (AVD) (Greenberg et al., 2016). This fac-
tor structure has been replicated for self-reported music prefer-
ence assessment (Fricke & Herzberg, 2017).

The relationship of preference for musical styles (i.e., the MUSIC
model dimensions) and for music features (i.e., the AVDmodel) has
been examined in research (e.g. Rentfrow et al., 2012; Fricke &
Herzberg, 2017). Furthermore, the factor structure of the MUSIC
model has been confirmed in various studies, including a large
cohort study with over 250,000 participants (Bonneville-Roussy
et al., 2013). The relationship of music feature preference with
the MUSIC model is hence suitable to determine criterion validity
of the computer-extracted features.

Regarding the relationship to personality, music preference
showed robust relationships to the Big Five personality dimensions
(Fricke & Herzberg, 2017; Langmeyer et al., 2012; Zweigenhaft,
2008; Rentfrow & Gosling, 2003). A recent meta analysis confirmed
some of these findings, but noted that most relationships are rather
small (Schäfer & Mehlhorn, 2017). In addition to their primary rela-
tionships with music preference, personality traits have been
shown to moderate age trends in music preference (Bonneville-
Roussy et al., 2013). Further, some studies showed that music pref-
erence correlated with the same biological indicators as the Big
Five personality traits; for instance, a higher testosterone level cor-
related negatively with preference for sophisticated music in males
(Doi, Basadonne, Venuti, & Shinohara, 2018). All these results sug-
gest that music preference itself is closely related to personality. As
such, the exploration of novel assessment methods for music pref-
erence can be used to enable research and real-world applications
to infer personality characteristics frommusic preference data, and
use these insights to tailor their tasks and services to each user.
Additionally, personality research suggested that digitally derived
behavior data, such as Facebook likes, predicted personality better
than judgments of human peers, and sometimes even self-ratings
(Youyou, Kosinski, & Stillwell, 2015). It is hence conceivable that
computer-based methods might provide increased validity, or at
least increased objectivity over human rating-based assessments.

1.2. Automatic music feature extraction

The subfield of computer sciences that deals with extracting
information from music data is called Music Information Retrieval
(MIR). MIR systems seek to analyze music files in terms of pitch,
tempo, harmony, and timbre, as well as editorial, textual, and bib-
liographic facets (Downie, 2003). The last two decades saw various
research studies developing algorithms to extract these facets from
music files, as well as the creation of several software suites imple-
menting these algorithms.

Among these software suites are open-source solutions such as
librosa (McFee et al., 2015), jMIR (McKay, 2010), ESSENTIA
(Bogdanov et al., 2013), and many others. We chose to use ESSEN-
TIA for our analyses, because (a) it is actively developed and main-
tained, (b) it implemented state-of-the-art MIR algorithms, and (c)
it provides learned models for high-level features based on a large
count of research papers.

ESSENTIA analyzes the digital audio data from songs and
extracts various low-level parameters, such as beats per minute,
spectral complexity and MFCC (Bogdanov et al., 2013). These low-
level parameters can be administered to machine learning algo-
rithms, which map certain low-level audio profiles to high-level
features. ESSENTIA provides pre-trained Support Vector Machines
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(SVM) for the automatic extraction of high-level music features
(Bogdanov et al., 2013). These features include sonic (e.g. acoustic,
electronic, tonal/atonal, instrumental) and psychological features
(e.g. aggressive, happy, sad, relaxed, and party music), as well as
rhythm and genre classifiers (Bogdanov et al., 2013). We included
all available high-level mood and sound classifiers in our analysis,
as well as five broader mood cluster classifiers, as they were all
derived from high-quality ground truth data and proved their
accuracy in previous research (Bogdanov, 2013). We also included
some low-level features in our analysis which were directly related
to sound features. Specifically, these were Average loudness, Disso-
nance, Dynamic complexity, and Speed (Beats-per-Minute; BPM).
Lastly, we included the results from the Rosamerica genre classifier
(Bogdanov, 2013) for supplementary analysis.

In the annotation of ESSENTIA’s ground truth data, experts con-
firmed the correctness of the tags, which were then used to learn
the models. By administering these models to a new set of music
files that has been annotated by different raters, we thus confirm
and strengthen the validity of the models. Additionally, the human
ratings have a higher level of granularity, enabling us to examine
which facets are covered by ESSENTIA’s high-level SVMs. Lastly,
by collecting preference data we examine if we can replicate the
three-factor structure of music feature preference with
computer-extracted music features.

1.3. Aims

This paper aims to answer the following questions: (a) How do
computer-extracted music features relate to human perception?
(Study 1), (b) Are computer-extracted music features valid? (Study
1), (c) Can computer-extracted music features be used to measure
music preference? (Study 2), and (d) How robust is the component
model of music feature preference measured by computer-
extracted music features? (Study 2).

2. Study 1: Equivalence of human ratings and computationally
extracted music features

In the first study, we sought to verify the validity and explore
the facets of computationally extracted features by comparing
them to human ratings of the same songs. Further, we examined
the external validity by comparing the correlations of
computer-extracted and human-rated music features with the
MUSIC model.

2.1. Method

2.1.1. Music excerpts
We examined the same 15 s music excerpts as Rentfrow and

colleagues (Rentfrow et al. (2011);Rentfrow et al. (2012)) used in
previous studies. To ensure that each excerpt was rated within
the same frame of reference, we only included those excerpts
which have been used in studies examining all genres (i.e. not
those which were used to examine the MUSIC model within the
Jazz and Rock genres in Rentfrow et al., 2012). In total, we had
access to human ratings on 150 excerpts.1 All excerpts were from
a mixture of 26 genres (see Rentfrow et al., 2011). Power analysis
revealed that this sample size is suitable to detect correlations of
at least rP 0.25 with a = 0.05 and b = 0.20 (minimum sample size
N = 123; calculated using formula from Hulley, Cummings,
Browner, Grady, & Newman, 2013, p. 79).

2.1.2. Human ratings
The excerpts were rated on 45 selected music features by

judges with no former music training (see Rentfrow et al., 2012;
Greenberg et al., 2016). Ratings on all songs were available for
the music features instrumental, fast, loud, acoustic, percussive,
dense, distorted, aggressive, romantic, sad, complex, relaxing, intelli-
gent, inspiring, as well as various other features for a selection of
the excerpts.

2.1.3. Computer-extracted features
Music features were extracted from the raw audio data using

the ESSENTIA software library (Bogdanov et al., 2013). ESSENTIA
provides an out-of-the-box extractor for low-level and high-level
features. High-level feature output in ESSENTIA is given as the
probability of a song to belong to the respective class. For instance,
a value of 0.90 on the happy output indicates a 90% chance that the
song belongs to the happy category, as opposed to a 10% chance to
not belong to this category. Note that not fitting into the happy cat-
egory not necessarily means the song fits into the sad category.

2.1.4. Analysis
To examine the validity of the extracted features from ESSEN-

TIA, we calculated Pearson correlations with the human rating
data. We selected those ESSENTIA classifiers whose descriptions
directly matched human-rated features (e.g. we compared ESSEN-
TIA’s Relaxed classifier with the human-rated Relaxing feature).
Also, we examined which human features showed the largest pos-
itive and negative correlations with the ESSENTIA classifiers. To
address criterion validity, we examined the correlations of the
extracted features with the MUSIC model and compared themwith
those reported by previous studies.

2.2. Results

Unless otherwise noted, all correlations reported in the results
section are significant with at least p < .01.

2.2.1. Relationship of human ratings with mood and sound classifiers
Analyzing the matching pairs of features between ESSENTIA and

the ratings from Rentfrow et al. (2011, 2012) revealed correlations
between r = 0.21 (Happy; p = .03) and r = 0.65 (Party music,
p < .001), as seen in Table 1. We examined correlations with other
features exploratively and found that they mostly fit well regard-
ing their contents. For instance, ESSENTIA’s Aggressive classifier
correlated positively with the human-rated Auditory features, such
as Fast (r = 0.44), Loud (r = 0.63) and Percussive (r = 0.52). The
largest positive and negative correlations with the ESSENTIA
classifiers from the primary analysis are presented in Table 1.
Correlation tables of all human ratings and the ESSENTIA mood,
sound an genres classifiers are available in the supplementary
material (Tables B1 and B2).

2.2.2. Correlations with the MUSIC factors
Rentfrow and colleagues (Rentfrow et al., 2012) provided factor

loadings on the MUSIC model for music pieces and human-rated
features. First, we correlated the extracted features from ESSENTIA
of the provided song excerpts with the loadings on the MUSIC
model. In this case we used the music classifiers that best fit the
respective human-rated features (e.g. Electronic and Electric). Then,
we compared these correlations with the feature loadings provided
by Rentfrow et al. (2012) using column-vector correlations, as seen
in Table 2.

The correlations between the ESSENTIA features and the MUSIC
factors revealed similar relationships as the research from
Rentfrow et al. (2012). In fact, when comparing the correlations,
we found column-vector correlations between r = 0.84 and

1 The excerpts are freely available at: http://daniellevitin.com/levitinlab/LabWeb-
site/expsupport/MUSIC/Rentfrow_JPSP_Index.html.
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r = 0.94, indicating a high similarity of both feature collection
methods in terms of criterion validity.

2.3. Discussion

Comparison of the automatically extracted music features using
ESSENTIA and the human ratings revealed a good accordance of
both rating methods. Correlations between matching pairs of fea-
tures were mostly of medium magnitude, with the exception of
the Happy classifier, which showed smaller accordance. The largest
negative and positive correlations with the respective ESSENTIA
classifiers were found to be sensible, e.g., a correlation of r =
!0.68 between Sad and Wild indicated that music that ESSENTIA
classified as Sad is perceived as not Wild by human raters. The
results indicate that both methods measure similar dimensions,
which is once more reinforced by the very high similarity between
the human- andmachine-rating method in terms of criterion valid-
ity. Specifically, the correlation pattern with the MUSIC model is so
similar between both methods that we can assume that both
human ratings and machine ratings describe the five MUSIC
dimensions in the same way.

Although machine learned classifiers might not provide the
same accuracy as human ratings, our results indicate that
they are valid and can be used for broad music feature extraction.
Automatic feature extractors thus provide a valid way for automat-
ically annotating music and are suitable for large-scale music
analysis.

3. Study 2: Factor structure of music feature preference

With the indication that music features can be appropriately
retrieved using MIR software, the question arises if such features
can be used to measure individual music preference. In the second
study, we therefore collected music preference data and music fea-
ture ratings from a large online sample. This allowed us to examine
and compare the component structure of music feature preference
measured using either human-rated or machine-extracted feature

ratings. Further, by using two separate lists of songs for different
participants, we can examine the robustness of the component
model for both methods.

In the remainder of this text we will refer to the previously
obtained ratings by Rentfrow et al. (2012) as the MUSIC-Model
data, and the newly collected ratings as the Musical Universe
(MU) data.

3.1. Method

Music feature human-rating data was obtained from the Musi-
cal Universe project. The Musical Universe is a website (www.mu-
sicaluniverse.org) that collects data from participants in exchange
for feedback on their results. The project was featured in various
news outlets (e.g. CNN, IFLscience.com) and administered different
supplemental questionnaires over its time of existence.

In our study, participants were provided with 10 music excerpts
(two for each MUSIC factor) in two versions. The songs were
selected from the excerpt pool (see Rentfrow et al., 2011) as
described in Study 1. The songs were selected so that they matched
the genre composition of the total song pool. The list of excerpts
can be found in the supplementary material in Table B3.

After answering a set of demographic questions, subjects were
presented with one excerpt at the time. They listened to the
excerpt and were then asked to rate it on 29 features, as well as
to state their preference for the excerpt. With 10 excerpts per ver-
sion this resulted in 300 items per subject. For our analysis, we
only considered subjects who answered at least 120 (40%) of the
items. Also, we excluded participants older than 65 years or
younger than 18 years to avoid impairment from hearing difficul-
ties. This totaled to 2118 participants (1987 in version A, 131 in
version B).

Twenty-five music features were taken from Greenberg et al.
(2016). A further four items have been initially added to the ques-
tionnaire, but have not been included in the analysis as they were
ambiguous and not derived from theory or analysis like the other
items.

Table 2
Correlations between the MUSIC factors and music features.

Mellow Unpretentious Sophisticated Intense Contemporary

E R E R E R E R E R

Aggressive !0.57 !0.62 !0.17 !0.29 !0.50 !0.41 0.85 0.78 !0.21 !0.14
Danceable !0.18 !0.37 !0.24 0.05 !0.40 !0.35 0.04 0.08 0.63 0.43
Electric !0.27 !0.23 !0.42 !0.40 !0.20 !0.57 !0.02 0.38 0.77 0.52
Happy !0.17 !0.04 0.29 0.18 !0.22 0.24 0.1 !0.34 !0.14 0.18
Party music !0.45 !0.55 !0.32 !0.20 !0.60 !0.49 0.43 0.44 0.50 0.41
Relaxing 0.51 0.65 0.05 0.06 0.62 0.53 !0.79 !0.61 0.13 !0.05
Sad 0.60 0.35 0.17 0.23 0.46 0.17 !0.6 !0.21 !0.08 !0.26
Instrumental 0.27 0.20 !0.38 !0.47 0.51 0.28 !0.18 0.09 !0.02 0.01
CVC 0.95 0.87 0.84 0.85 0.87

Note. CVC = Column vector correlations, E = features from ESSENTIA, R = human ratings from Rentfrow et al. (2012).

Table 1
Correlations between matching features of ESSENTIA features and human ratings

Largest negative correlationa Largest positive correlationa

ESSENTIA classifier Human feature r n p Human feature r Human feature r

Danceable Danceable 0.32 102 .001 Thoughtful !0.40 Heavy bassb 0.73
Sad Sad 0.39 150 <.001 Wild !0.68 Gentle 0.71
Happy Happy 0.21 103 .03 Calming !0.36 Danceable 0.35
Relaxed Relaxing 0.59 150 <.001 Abrasive !0.65 Calming 0.71
Party Party music 0.65 102 <.001 Gentle !0.64 Heavy bassb 0.69
Instrumental Instrumental 0.62 150 <.001 Raspy voiceb !0.47 Sophisticated 0.61

Note. (a) All p <.001, and all n = 102, except for (b) n = 50.
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Participants had a mean age of 31.56 years (SD = 11.47). Sex
was almost evenly distributed, with 880 (41.5%) males and
1017 (48.0%) (a further 13 identified as transgender, and another
8 as other while the remainder did not answer the question).
The majority of the participants (1466, or 69.2%) were of white
Caucasian ethnicity (4.5% Latino, 3.7% Mixed, 3.4% Chinese, 9.8%
did not answer). Regarding their origin, most participants came
from English-speaking countries, i.e. 656 participants (31.0%)
resided in the USA, 281 (13.3%) in the UK, 152 (7.2%) in Canada,
and 107 (5.1%) in Australia. Further 222 (10.5%) did not state their
country of origin. The rest is distributed among 67 other
countries.

On average, participants reported the importance of music in
their lives as 5.97 (SD = 1.07) on a 7-item scale, corresponding to
very important. About half participants stated they played a musical
instrument (927, as opposed to 949 not playing an instrument and
242 who did not answer this question).

The minimum sample size to detect correlations of at least rP
0.25 with a = 0.05 and b = 0.20 remains N = 123. Power analysis
revealed that our much larger sample is able to identify correla-
tions under much stricter conditions, i.e. r P 0.13 with a = 0.001
and b = 0.01 (minimum N = 1849; see Hulley et al., 2013, p. 79).
The sample is thus suitable to detect even small effects with great
certainty.

3.1.1. Analysis
Preference for music features was calculated by multiplying the

stated preference of each song with the mean feature rating for
that song, and dividing the sum for each feature through the sum
of all the preference ratings. The following formula gives an exam-
ple to calculate the music preference for the sad feature for one
participant (see also Greenberg et al., 2016):

The music feature preference was calculated for each feature in
both rating methods, i.e. for both the human-rated features and the
computer-extracted music features. We then subjected the mea-
sured music feature preferences from both methods to principal
component analyses to reduce the data into a smaller number of
components.

To cross-validate the results from the PCA, we split the sam-
ple for version A randomly into two halves, calculated a PCA for
both halves and then evaluated replicability of the component
structure using target rotation (i.e. Procrustes analysis). Further,
we calculated a PCA for the B version and examined fit of the
component structure to the loadings extracted from version A,
thus confirming our results on a different set of songs and
participants.

The reported results from the principal component analysis are
based on the first random half of the A version.

3.2. Results

Unless otherwise noted, all correlations reported in the results
section are significant with at least p < .01.

3.2.1. Internal consistency
The raters showed an overall good internal consistency with a

mean a = 0.80 for version A and a = 0.79 for version B. Internal

consistencies ranged from .71 (Depressing) to .87 (Systematic) in
version A, and from .72 (Relaxing and Gentle) to .87 (Systematic)
in version B.

3.2.2. Component structure of measured music preference using
human feature ratings

We subjected the calculated music feature preference with
human ratings to a principal component analysis. We included
the 25 music feature items from Greenberg et al. (2015). Seven
items were removed due to high inter-item correlations of
r > 0.97, namely Tender, Sophisticated, Fun, Animated, Manic, Poe-
tic, and Thrilling. The remaining correlation matrix was
smoothed by eigenvalue rescaling. The Kaiser-Meyer-Olkin
(KMO) measure of sampling adequacy was 0.81, and Bartlett’s
test of sphericity was significant (v2(153)=20109.90 p <.001).
Variance analysis suggested three major components. We
decided a priori to retain only items with a component loading
of more than .50, as well as a minimum loading difference of
.20 between components. We excluded the item Party music
because it did not fit these criteria. The loading matrix was
oblimin-rotated.

The first component explained 38% of the variance, the second
component 31%, and the third component 24%. Overall, the model
explained 93% of the variance. Inspection of the component load-
ings suggested we found the three established major components
Arousal (with high loadings on features such as Tense and Strong),
Valence (Amusing, not Depressing), and Depth (Complex, Deep, Intel-
ligent). The component loadings can be found in Table 3. The obli-
min rotation led to two item loadings above 1.0 (Tense and
Warm), indicating inter-factor correlations, which were later
examined.

3.2.3. Component structure of measured music preference using
computer-extracted music features

Again, we subjected the measured music feature preference to a
Principal Component Analysis. Since our goal was to compare the
results with those of the human-rater method, we decided to
exclude genre classifiers from the analysis, and thus included only
mood- and sound-related classifiers. We excluded two classifiers
(Aggressive and Sad) because they showed high correlations with
other classifiers. Again, the correlation matrix was smoothed by
eigenvalue scaling. The KMO was 0.81, and Bartlett’s test of
sphericity was significant (v2(171) = 21170.82, p <.001). Variance
analysis again suggested a three component solution. On terms
of the same a priori criteria as in the human-rated PCA, we
excluded the two classifiers Gender and Relaxed from analysis.
The loading matrix was oblimin-rotated.

The first component explained 37% of the variance, the second
component 26%, and the third component 18%. Overall the model
explained 80 % of the variance. The first component had loadings
such as Acoustic (r = !0.86), Party (r = 0.71), Average Loudness (r =
!0.96), Mood cluster 1 (Rousing, Passionate) (r = 0.75), and Mood
cluster 3 (Literate, Brooding) (r = !0.81). The second component
showed loadings with Mood cluster 2 (Fun, Cheerful) (r = 0.84),
Mood cluster 4 (Humorous, Witty) (r = 0.85), and Mood cluster 5
(Aggressive, Intense) (r !0.75), as well as with Happy (r = 0.78)
and Bright timbre (r = 0.88). Lastly, the third component showed

Preference for sad ¼ Preference for excerpt 1 #Mean sad rating for excerpt 1þ Preference for excerpt 2 #Mean sad rating for excerpt 2þ . . .

Sum of all preferences
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loadings with Instrumental (r = 0.93), Speed (r = !0.84), Dissonance
(r = !0.62), and Tonal (r = !0.59). We thus concluded that we
found the same three components as in the human PCA and named
them Arousal, Valence, and Depth, respectively. The component
loadings can be found in Table 4.

3.2.4. Correlation between component preferences
Next, we tried to determine the equality of both component

structures. Usually, a factorial invariance test would be the method
of choice; however, such tests require that both methods measure
the exact same variables. While we did found a good accordance of
both rating methods, the assessed features are not the same and
thus cannot be used in a factorial invariance test.

Instead, we used Pearson correlations to examine the inter-
component correlations within and between both methods of mea-
surement. Within the human ratings, only the correlation of Depth
and Arousal became significant with r = !0.30 (p < 0.001). The
ESSENTIA-extracted music preference components showed rela-
tively small intra-method correlations between r = 0.14 and r =
!0.19 (all n.s.), as seen in Table 5.

Inter-method correlations showed that the largest correlations
between the components were usually not found between the
matching component pairs, but in a negative relationship with
other components. For instance, Human Arousal was mostly
negatively associated with ESSENTIA Valence (r = !0.83), and the
loading with ESSENTIA Arousal was also found, but smaller
(r = 0.52). The same is true for Human Depth, which correlated
negatively with ESSENTIA Arousal (r = !0.73), and to a lower
degree with ESSENTIA Depth (r = .60). Human Valence showed
negative relationships with ESSENTIA Arousal and Depth
(r = !0.47, and r = !0.38, respectively), but only a low and
non-significant correlation with ESSENTIA Valence (r = 0.18, n.s.).
These results suggest that, while they do capture some of the
same features, the music preference components resulting from
human ratings and machine-extracted features do not align
directly with each other.

3.2.5. Confirmation of component structure
We calculated a PCA for the second half of the dataset from ver-

sion A. We then subjected the component structure to a Procrustes
analysis with target rotation to examine the similarity of both
results. We prefer Procrustes analysis over confirmatory factor
analysis (CFA) because the obtained three component solution
from the first half of the sample showed manifold secondary load-
ings of the music ratings. For instance, and possibly by definition,
the perception of complexity has a substantive negative loading
of .31 on the first component (Arousal) and also on the second com-
ponent (Valence) of .44, with a high main loading of .90 on the third
component (Depth). This holds true for most of the items. Whereas
CFA is best suited to the analysis of simple structure models
(Loehlin, 1998), CFA is inappropriate when cross-ladings on multi-
ple factors occur (McCrae, Zonderman, Costa, Bond, & Paunonen,
1996; Hopwood & Donnellan, 2010), as is the case in our data.
The consequence of failing to include cross-loadings in a CFA
model is that they are then assumed to be zero and any true devi-
ation from zero contributes to model misfit.

First we examined the two random halves of version A of our
survey. Comparison of the human-rated music preference compo-
nent structure revealed a root mean squared error (RMSE) of .01
and a between-method correlation of 1.00 (p < .001), indicating
(almost) perfect fit of the loading matrices. The ESSENTIA-rated
music preference component structure also shows an excellent
fit, with a RMSE of .02 and a correlation of 1.00 (p < .001).

Comparison of the component loadings found in version B with
those of version A showed a great fit for the human-rated method:
The RMSE was still low with .05, and the between-model correla-
tion was r = 0.98 (p < .001). The ESSENTIA-rated method showed
a lower, yet still good model fit with RMSE = 0.17 and a correlation
of r = 0.71 (p < .001). The results suggest that the two different sets
of music pieces in version A and B lead to the same principal com-
ponent structures. Further results can be obtained from Table 6.

Table 4
Component loadings for measured music feature preference using computer-
extracted music features.

Classifier Arousal Valence Depth

Cluster (Mirex)1

1 (Rousing, Passionate) 0.75 !0.43 !0.07
2 (Fun, Cheerful) !0.11 0.84 !0.12
3 (Literate, Brooding) !0.81 0.03 0.40
4 (Humorous, Witty) 0.31 0.85 !0.20
5 (Aggressive, Intense) 0.42 !0.75 !0.18

Mood
Happy 0.30 0.78 0.00
Party 0.71 !0.31 !0.35

Sound
Acoustic !0.86 0.20 0.12
Average loudness 0.96 0.13 0.17
Bright timbre !0.22 0.88 0.09
Danceable 0.73 0.48 0.13
Dissonance 0.39 !0.36 !0.62
Dynamic complexity !0.85 !0.23 0.04
Electronic 0.89 !0.15 0.38
Instrumental 0.19 !0.02 0.93
Speed (BPM) !0.10 0.11 !0.84
Tonal 0.26 0.30 !0.59

Note. The component loadings were calculated on base of stated preference for 10
music excerpts (‘‘version A”). The loadings have been oblimin-rotated. Primary
component loadings are presented in bold typeface.
(1) Mood clusters (MIREX) (Hu & Downie, 2007):
Cluster 1: Rowdy, Rousing, Confident, Boisterous, Passionate.
Cluster 2: Amiable/Good natured, Sweet, Fun, Rollicking, Cheerful.
Cluster 3: Literate, Wistful, Bittersweet, Autumnal, Brooding, Poignant.
Cluster 4: Witty, Humorous, Whimsical, Wry, Campy, Quirky, Silly.
Cluster 5: Volatile, Fiery, Visceral, Aggressive, Tense/anxious, Intense.

Table 3
Component loadings for measured music feature preference using human-rated
music excerpts.

Music feature Arousal Valence Depth

Cerebral
Complex 0.32 0.44 0.90
Deep !0.32 !0.32 0.79
Intelligent !0.31 0.16 0.84
Reflective !0.66 !0.34 0.48

Energy
Danceable !0.22 0.84 !0.06
Emotional 0.02 !0.44 0.83
Gentle !0.89 !0.02 0.25
Lively 0.49 0.83 0.02
Relaxing !0.83 !0.06 0.35

Negative affect
Depressing 0.37 !0.90 0.00
Sad !0.23 !0.88 0.21
Tense 1.01 !0.16 0.13

Positive affect
Amusing !0.01 0.93 0.11
Joyful !0.50 0.79 0.14
Sensual !0.64 !0.02 0.42
Strong 1.04 0.04 0.29
Warm !0.82 0.36 0.24

Note. The component loadings were calculated on base of stated preference for 10
music excerpts (”version A”). The loadings of the Arousal component been reversed.
The loadings have been oblimin-rotated. Primary component loadings are pre-
sented in bold typeface.
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3.3. Discussion

In the second study, we examined the structure of music pref-
erence as assessed using human ratings and computer-extracted
features in a large online sample. The principal component analy-
ses showed the same components in both methods of feature rat-
ings. The components (Arousal, Valence, and Depth) match those
found in previous research using excerpt-based assessment
(Greenberg et al., 2016) and self-report (Fricke & Herzberg,
2017). We do have to note that the components are less distinct
in the computer-extracted feature method, especially the Depth
component. We attribute this to the fewer number of features,
and the fact that we’re not able to freely select extracted music fea-
tures, but instead have to use those offered by the analysis soft-
ware. Also, the music classifiers originate from various different
studies, often with their own ground truth data of varying quality.
It might be worthwhile to replicate or re-train the classifiers on a
single, well-constructed ground truth dataset. Further, it could be
interesting to examine if more mood and sound classifiers could
be learned from human-rated music pieces.

The cross-method correlations indicated that some of the
computer-extracted components were more characterized by
adverse relationships with other human components than by the
correlation with the matching component. We suppose this could
be due to the fact that the methods captured different facets of
the same construct. For instance, the human Arousal component
was characterized by loadings on Tense and Strong features, while
the ESSENTIA Arousal component was characterized through Loud,
but Danceable, mostly Electronic music. ESSENTIA’s Depth compo-
nent solely caught the sound-related features, such as Instrumental
and low Speed, while the human-rated Depth component captured
features such as Complex, Intelligent, and Emotional. Importantly,
these results suggest that the two measurements of music prefer-
ence cannot be used interchangeably; i.e., while both methods cap-
ture some of the same features and show similarities, they are not
directly aligned and differ regarding their contents. The similarities
between methods are also limited to two of the three components
– the Valence components only correlate with r = 0.18.

Still, finding the three-component AVD structure using two dif-
ferent rating methods proves the component structure robust and
paves the way for large-scale music analysis to measure music
preference as a psychological phenomenon. There still are

satisfactory correlations between two of the components of the
two methods, which suggests that insights from previous research
can potentially be applied to computer-extracted music feature
preference (these insights should, however, be formally repli-
cated). Also, we found almost identical model fit for two random
samples who rated their preference for the same songs (version
A), and a great model fit for results obtained from a different set
of participants and music excerpts (version B). These results indi-
cate that the extracted components are indeed robust both within
and across methods.

4. General discussion

Our research yielded two main results: First, human-rated and
computer-extracted music features are mostly aligned and mea-
sure similar concepts of music attributes. And second, measured
music feature preference can be described on the three compo-
nents Arousal, Valence, and Depth – regardless whether the features
were rated by humans or extracted by the ESSENTIA software
library. Thus, we showed that music features extracted with the
ESSENTIA software library can be used to assess individual music
preference.

The correlations of human music feature ratings and computer-
extracted features suggest that both methods measure similar con-
cepts of music features. However, it remains unclear whether
machines are able to identify more detailed music features. One
of the main problems with examining this would be the detailed
annotation of music features for a large body of music to generate
the ground truth data for the SVMs. However, our research indi-
cated that most music feature ratings are relatively robust across
different rater groups. Therefore, the rating effort could be crowd-
sourced, with raters rating only a handful of songs and features at a
time and integrating these results to a combined dataset.

The second study found the three-component structure Arousal,
Valence, and Depth (AVD) for both human ratings and computer-
extracted features. The results from the two methods are, however,
not identical: Most of ESSENTIA’s music preference components
are more characterized by adverse relationships with other Human
preference components, rather than their matching counterparts.
Only ESSENTIA’s Depth factor shows the greatest inter-
component correlation with the respective matching human

Table 5
Within- and between-method component score correlations.

1 2 3 4 5

1 Human Arousal –
2 Human Valence !0.01a –
3 Human Depth !0.30 !0.02a –
4 ESSENTIA Arousal 0.52 !0.47 !0.73 –
5 ESSENTIA Valence !0.83 0.18 !0.16 !0.19 –
6 ESSENTIA Depth !0.49 !0.38 0.60 !0.18 0.14

Note. N = 786. All correlations are significant with p < .001, except (a) n.s.. Correlations larger than 0.30 are presented in bold typeface.

Table 6
Results of symmetric procrustes analysis.

SS RMSE MPE Correlation p

A first half vs. A second half
Human 0.00 0.01 0.01 1.00 <.001
ESSENTIA 0.01 0.02 0.02 1.00 <.001

B vs. A first half
Human 0.05 0.05 0.16 0.98 <.001
ESSENTIA 0.50 0.17 0.15 0.71 <.001

Note. SS = Sum of Squares, RMSE = Root Mean Squared Error, MPE = Median procrustes error.

100 K.R. Fricke et al. / Journal of Research in Personality 75 (2018) 94–102



component (which itself correlates more with negative ESSENTIA
Arousal). As discussed in Study 2, this could be due to the compo-
nents capturing different facets of the same underlying factors.
Another reason could be the selection of attributes as a whole:
We had to rely on the available music classifiers from ESSENTIA
and could not select our own adjectives. We might find a more
aligned component structure if we had access to more detailed
and nuanced classifiers, as discussed above.

The implication from this finding is mainly that we have to
choose our assessment method carefully concerning the questions
we’re trying to answer. Intuitively, human raters should be able to
more precisely distinguish between music characteristics. How-
ever, they are also prone to biases, such as their own music prefer-
ence. Computer-extracted features are especially useful when
there is much data to rate, as it can be done automatically, and
when no human rating data is available. Also, they can avoid objec-
tivity restraints arising from human biases. Computer-based fea-
ture extraction thus should be especially useful when examining
actual listening data, such as in the construction of music recom-
mendation systems. We also think that music preference measured
from computer-extracted features is accurate enough to examine
relationships with other variables, such as personality dimensions,
in large samples. However, until a higher similarity can be
obtained between computer-extracted features and human rat-
ings, human ratings are more descriptive and accurate for single
songs, and should also yield a more detailed assessment of individ-
ual music preference.

The research on music feature preference showed the AVD
structure using various methods: In excerpt-based assessment
(Greenberg et al., 2016), in self-report assessment (Fricke &
Herzberg, 2017), in excerpt-based assessment with another group
of raters (Study 2) and in excerpt-based assessment using
computer-extracted features (Study 2). It is thus safe to say that
music feature preference has proven to be a robust personality
phenomenon across different measures.

With yet another method for the assessment of music feature
preference, the question arises how measurements from this
method relate to established research on the relationship of music
preference and personality. While a recent meta-analysis found
that the correlations of musical styles (i.e. the MUSIC-Model) with
the Big Five personality dimensions are rather weak (Schäfer &
Mehlhorn, 2017), it would be interesting to examine those rela-
tionships more deeply with music feature preference. In self-
report, relationships between Openness, Neuroticism and Depth,
as well as between Extraversion, Agreeableness and Valence were
found (Fricke & Herzberg, 2017). It would be worthwhile to see if
these relationships are robust and found in excerpt-based assess-
ment, as well, and more so in computer-based assessment, as this
method is suitable to be applied on a large scale by music content
providers such as Spotify, Deezer, or Apple Music. Also, since music
features stem from features that can be used to describe various
other constructs, relating preference for certain music features to
those other areas, such as creative arts or movie preference, could
be interesting for research and business appliances. Lastly, we’d
like to encourage the examination of relationships with personality
constructs other than the Big Five. For instance, research on the
relationships with Sensation Seeking (e.g. Litle & Zuckerman,
1986) could be relived with music feature preference, or research
could examine relationships with other constructs that are likely
related to musical preference, such as Need for Uniqueness or
Hypersensitivity.

Our results also demonstrate the accuracy of modern music
analysis libraries and classifiers. With these tools on hand, it is pos-
sible to measure music feature preference from other music
sources, such as actual listening behavior, and use insights from
previous research regarding the psychological phenomenon of

music feature preference. There have been some efforts to include
lyric analysis in music information retrieval appliances, and even
mood classification (e.g. Van Zaanen & Kanters, 2010). Integrating
or comparing these methods with music feature analysis could
open up yet another way to assess music preference, and for vari-
ous other research questions.

Computer-based music analysis primarily enables researchers
to examine a large pool of music pieces in short time. Using this
technology, we can infer insights about music preference not only
on an intra-personal, but on a national or even global level. For
instance, by examining music charts (e.g. the Billboard Hot 100)
over a large timespan, researchers could see if national music pref-
erence changed over the years, and relate these insights to similar
research, like the development of intra-individual music prefer-
ence over the lifespan (see Bonneville-Roussy et al., 2013). Another
interesting perspective is to compare the features of the music
charts of different countries, thus examining cultural differences
in music perception and preference. Current research mostly
focused on western music. Especially the sound-related classifiers
offer a way to objectively assess music features, enabling unbiased
comparability between different cultures. Since our current
research examined mostly western participants, such research
could also examine the generalizability of our findings. Lastly,
computer-based music feature analysis can be used to infer indi-
vidual music preference from actual listening behavior. It would
be interesting to see if music preference assessed that way show
the same component structure, and to see if they have any predic-
tive power for biographic variables, such as age, gender, and coun-
try of origin, or even personality traits, such as the Big Five or
Sensation Seeking.

Music feature preference is a robust personality phenomenon.
We have various tools on hand to assess it, and many research
questions to answer. Lots of potential use-cases emerge from the
result that computers can actually measure music preference. In
this paper, we further advanced knowledge of how music prefer-
ence is structured and paved the way for many more research
and real-world applications utilizing the assessment of individual
music preference.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.jrp.2018.06.004.

References

Bogdanov, D. (2013). From music similarity to music recommendation: Computational
approaches based on audio features and metadata Ph. D. dissertation. Barcelona
(Spain): Universitat Pompeu Fabra.

Bogdanov, D., Wack, N., Gómez, E., Gulati, S., Herrera, P., & Mayor, O. (2013).
ESSENTIA: An audio analysis library for music information retrieval. In
International Society for Music Information Retrieval Conference (ISMIR’13)
(pp. 493–498).

Bonneville-Roussy, A., Rentfrow, P. J., Xu, M. K., & Potter, J. (2013). Music through
the ages: Trends in musical engagement and preferences from adolescence
through middle adulthood. Journal of Personality and Social Psychology, 105(4),
703–717.

Doi, H., Basadonne, I., Venuti, P., & Shinohara, K. (2018). Negative correlation
between salivary testosterone concentration and preference for sophisticated
music in males. Personality and Individual Differences, 125, 106–111.

Downie, J. S. (2003). Music information retrieval. Annual Review of Information
Science and Technology, 37(1), 295–340.

Fricke, K. R., & Herzberg, P. Y. (2017). Personality and self-reported preference for
music attributes. Journal of Research in Personality, 68, 114–123.

Greenberg, D. M., Baron-Cohen, S., Stillwell, D. J., Kosinski, M., & Rentfrow, P. J.
(2015). Musical preferences are linked to cognitive styles. PloS One, 10(7),
e0131151.

Greenberg, D. M., Kosinski, M., Stillwell, D. J., Monteiro, B. L., Levitin, D. J., &
Rentfrow, P. J. (2016). The song is you. Social Psychological and Personality
Science, 7(6), 597–605.

K.R. Fricke et al. / Journal of Research in Personality 75 (2018) 94–102 101



Hopwood, C. J., & Donnellan, M. B. (2010). How should the internal structure of
personality inventories be evaluated? Personality and Social Psychology Review,
14(3), 332–346.

Hu, X., & Downie, J. S. (2007). Exploring mood metadata: Relationships with genre,
artist and usage metadata. In ISMIR (pp. 67–72).

Hulley, S. B., Cummings, S. R., Browner, W. S., Grady, D. G., & Newman, T. B. (2013).
Designing clinical research. Lippincott Williams & Wilkins.

Langmeyer, A., Guglhör-Rudan, A., & Tarnai, C. (2012). What do music preferences
reveal about personality? Journal of Individual Differences, 33(2), 119–130.

Litle, P., & Zuckerman, M. (1986). Sensation seeking and music preferences.
Personality and Individual Differences, 7(4), 575–578.

Loehlin, J. C. (1998). Latent variable models: An introduction to factor, path, and
structural analysis. Lawrence Erlbaum Associates Publishers.

McCrae, R. R., Zonderman, A. B., Costa, P. T., Jr., Bond, M. H., & Paunonen, S. V. (1996).
Evaluating replicability of factors in the revised neo personality inventory:
Confirmatory factor analysis versus procrustes rotation. Journal of Personality
and Social Psychology, 70(3), 552–566.

McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M., & Battenberg, E. (2015).
librosa: Audio and music signal analysis in python. In Proceedings of the 14th
Python in science conference (pp. 18–25).

McKay, C. (2010). Automatic music classification with jMIR. McGill University.

North, A. C., & Hargreaves, D. J. (1999). Music and adolescent identity. Music
Education Research, 1(1), 75–92.

Rentfrow, P. J., Goldberg, L. R., & Levitin, D. J. (2011). The structure of musical
preferences: A five-factor model. Journal of Personality and Social Psychology, 100
(6), 1139–1157.

Rentfrow, P. J., Goldberg, L. R., Stillwell, D. J., Kosinski, M., Gosling, S. D., & Levitin, D.
J. (2012). The song remains the same: A replication and extension of the MUSIC
model. Music Perception, 30(2), 161–185.

Rentfrow, P. J., & Gosling, S. D. (2003). The do re mi’s of everyday life: the structure
and personality correlates of music preferences. Journal of Personality and Social
Psychology, 84(6), 1236–1254.

Schäfer, T., & Mehlhorn, C. (2017). Can personality traits predict musical style
preferences? a meta-analysis. Personality and Individual Differences, 116,
265–273.

Van Zaanen, M., & Kanters, P. (2010). Automatic mood classification using TF* IDF
based on lyrics. In ISMIR (pp. 75–80).

Youyou, W., Kosinski, M., & Stillwell, D. (2015). Computer-based personality
judgments are more accurate than those made by humans. Proceedings of the
National Academy of Sciences, 112(4), 1036–1040.

Zweigenhaft, R. L. (2008). A do re mi encore: A closer look at the personality
correlates of music preferences. Journal of Individual Differences, 29(1), 45–55.

102 K.R. Fricke et al. / Journal of Research in Personality 75 (2018) 94–102


