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Preface to the
Springer Edition

This book was written as an introductory text for a one-semester course
and, as such, it is far from a comprehensive reference work. Its lack of
completeness is now more apparent than ever since, like most branches of
mathematics, knot theory has expanded enormously during the last fifteen
years. The book could certainly be rewritten by including more material and
also by introducing topics in a more elegant and up-to-date style. Accomplish-
ing these objectives would be extremely worthwhile. However, a significant
revision of the original work along these lines, as opposed to writing a new
book, would probably be a mistake. As inspired by its senior author, the late
Ralph H. Fox, this book achieves qualities of effectiveness, brevity, elementary
character, and unity. These characteristics would be jeopardized, if not lost,
in a major revision. As a result, the book is being republished unchanged,
except for minor corrections. The most important of these occurs in Chapter
III, where the old sections 2 and 3 have been interchanged and somewhat
modified. The original proof of the theorem that a group is free if and only
if it is isomorphic to F[o/] for some alphabet &7 contained an error, which
has been corrected using the fact that equivalent reduced words are equal.

I would like to include a tribute to Ralph Fox, who has been called the
father of modern knot theory. He was indisputably a first-rate mathematician
of international stature. More importantly, he was a great human being. His
students and other friends respected him, and they also loved him. This
edition of the book is dedicated to his memory.

Richard H. Crowell

Dartmouth College
1977



Preface

Knot theory is a kind of geometry, and one whose appeal is very direct
because the objects studied are perceivable and tangible in everyday physical
space. It is a meeting ground of such diverse branches of mathematics as
group theory, matrix theory, number theory, algebraic geometry, and
differential geometry, to name some of the more prominent ones. It had its
origins in the mathematical theory of electricity and in primitive atomic
physics, and there are hints today of new applications in certain branches of
chemistry.! The outlines of the modern topological theory were worked out
by Dehn, Alexander, Reidemeister, and Seifert almost thirty years ago. As
a subfield of topology, knot theory forms the core of a wide range of problems
dealing with the position of one manifold imbedded within another.

This book, which is an elaboration of a series of lectures given by Fox at
Haverford College while a Philips Visitor there in the spring of 1956, is an
attempt to make the subject accessible to everyone. Primarily it is a text-
hook for a course at the junior-senior level, but we believe that it can be used
with profit also by graduate students. Because the algebra required is not
the familiar commutative algebra, a disproportionate amount of the book
is given over to necessary algebraic preliminaries. However, this is all to the
good because the study of noncommutativity is not only essential for the
development of knot theory but is itself an important and not overcultivated
ficld. Perhaps the most fascinating aspect of knot theory is the interplay
hetween geometry and this noncommutative algebra.

For the past ‘thirty years Kurt Reidemeister’s Ergebnisse publication
Knotentheorie has been virtually the only book on the subject. During that
time many important advances have been made, and moreover the combina-
torial point of view that dominates Knotentheorie has generally given way
to a strictly topological approach. Accordingly, we have emphasized the
topological invariance of the theory throughout.

There is no doubt whatever in our minds but that the subject centers
around the concepts: knot group, Alexander matrix, covering space, and our
presentation is faithful to this point of view. We regret that, in the interest
of keeping the material at as elementary a level as possible, we did not
imtroduce and make systematic use of covering space theory. However, had

we done so, this book would have become much longer, more diflicult., and

VL Frisehoand 15 Wasserman, "Chenvenl Topology ™ o b, Chem. Soc., 83 (1961)




viii PREFACE

presumably also more expensive. For the mathematician with some maturity,
for example one who has finished studying this book, a survey of this central
core of the subject may be found in Fox’s ““A quick trip through knot theory”
(1962).1

The bibliography, although not complete, is comprehensive far beyond the
needs of an introductory text. This is partly because the field is in dire need
of such a bibliography and partly because we expect that our book will be
of use to even sophisticated mathematicians well beyond their student days.
To make this bibliography as useful as possible, we have included a guide
to the literature.

Finally, we thank the many mathematicians who had a hand in reading
and criticizing the manuscript at the various stages of its development.
In particular, we mention Lee Neuwirth, J. van Buskirk, and R. J. Aumann,
and two Dartmouth undergraduates, Seth Zimmerman and Peter Rosmarin.
We are also grateful to David S. Cochran for his assistance in updating the
bibliography for the third printing of this book.

! Seo Bibhography
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Prerequisites

For an intelligent reading of this book a knowledge of the elements of
modern algebra and point-set topology is sufficient. Specifically, we shall
assume that the reader is familiar with the concept of a function (or mapping)
and the attendant notions of domain, range, image, inverse image, one-one,
onto, composition, restriction, and inclusion mapping; with the concepts
of equivalence relation and equivalence class; with the definition and
clementary properties of open set, closed set, neighborhood, closure, interior,
induced topology, Cartesian product, continuous mapping, homeomorphism,
compactness, connectedness, open cover(ing), and the Euclidean n-dimen-
sional space R"; and with the definition and basic properties of homomor-
phism, automorphism, kernel, image, groups, normal subgroups, quotient
groups, rings, (two-sided) ideals, permutation groups, determinants, and
matrices. These matters are dealt with in many standard textbooks. We may,
for example, refer the reader to A. H. Wallace, An Introduction to Algebraic
Topology (Pergamon Press, 1957), Chapters I, II, and ITI, and to G. Birkhoff
and S. MacLane, 4 Survey of Modern Algebra, Revised Edition (The Mac-
millan Co., New York, 1953), Chapters ITI, §§1-3, 7, 8; VI, §§4-8, 11-14; VII,
§5; X, §81, 2; XIII, §81-4. Some of these concepts are also defined in the
index.

In Appendix I an additional requirement is a knowledge of differential and
integral calculus.

The usual set theoretic symbols €, <, >, =, U, N, and — are used. For
the inclusion symbol we follow the common convention: 4 < B means that
p € B whenever p € 4. For the image and inverse image of 4 under f we
write either f4 and f 714, or f(A4) and f ~1(A4). For the restriction of f to 4 we
write f | 4, and for the composition of two mappingsf: X — Yandg: ¥ — Z
we write gf.

When several mappings connecting several sets are to be considered at the
same time, it is convenient to display them in a (mapping) diagram, such as

I
XY or B b
g

I cach element in cach set displayed ina diagram has ot most one image ele-
ment in any given setoof the dingram, the diagram is said to be consistent.
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Thus the first diagram is consistent if and only if gf = 1 and fg = 1, and the
second diagram is consistent if and only if 8f = a and c¢g = b (and hence
cgf = a).

The reader should note the following “diagram-filling”’ lemma, the proof of
which is straightforward.

If h: G—H and k: G — K are homomorphisms and h is onto, there
exists a (necessarily unique) homomorphism f: H — K making the diagram

G
/\
H—1 'k

consistent if and only if the kernel of h is contained in the kernel of k.



CHAPTER I

Knots and Knot Types

1. Definition of a knot. Almost everyone is familiar with at least the
simplest of the common knots, e.g., the overhand knot, Figure 1, and the
figure-eight knot, Figure 2. A little experimenting with a piece of rope will
convince anyone that these two knots are different: one cannot be trans-
formed into the other without passing a loop over one of the ends, i.e.,without
“tying” or “untying.” Nevertheless, failure to change the figure-eight into
the overhand by hours of patient twisting is no proof that it can’t be done.
The problem that we shall consider is the problem of showing mathematically
that these knots (and many others) are distinct from one another.

L (BT

Figure 1 Figure 2

Mathematics never proves anything about anything except mathematics,
and a piece of rope is a physical object and not a mathematical one. So before
worrying about proofs, we must have a mathematical definition of what a
knot is and another mathematical definition of when two knots are to be
considered the same. This problem of formulating a mathematical model
arises whenever one applies mathematics to a physical situation. The defini-
tions should define mathematical objects that approximate the physical
objects under consideration as closely as possible. The model may be good or
bad according as the correspondence between mathematics and reality is
good or bad. There is, however, no way to prove (in the mathematical sense,
and it is probably only in this sense that the word has a precise meaning) that
the mathematical definitions deseribe the physical situation exactly.

Obviously, the figure-cight knot can be transformed into the overhand
knot, by tying and untying in fact all knots are equivalent if this operation
isallowed. Thus tying and untying must. be prohibited cither in the definition
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of when two knots are to be considered the same or from the beginning in the
very definition of what a knot is. The latter course is easier and is the one
we shall adopt. Essentially, we must get rid of the ends. One way would be to
prolong the ends to infinity ; but a simpler method is to splice them together.
Accordingly, we shall consider a knot to be a subset of 3-dimensional space
which is homeomorphic to a circle. The formal definition is: X is a knot if there
¢xists a homeomorphism of the unit circle C into 3-dimensional space R3
whose image is K. By the circle C is meant the set of points (2,y) in the plane
[¥% which satisfy the equation 2® + 32 = 1.

The overhand knot and the figure-eight knot are now pictured as in Figure
3 and Figure 4. Actually, in this form the overhand knot is often called the
clover-leaf knot. Another common name for this knot is the trefoil. The figure-
eight knot has been called both the four-knot and Listing’s knot.

Figure 3 Figure 4

We next consider the question of when two knots K, and K, are to be con-
sidered the same. Notice, first of all, that this is not a question of whether or
not K, and K, are homeomorphic. They are both homeomorphic to the unit
circle and, consequently, to each other. The property of being knotted is not
an intrinsic topological property of the space consisting of the points of
the knot, but is rather a characteristic of the way in which that space is
imbedded in R3. Knot theory is a part of 3-dimensional topology and not of
1-dimensional topology. If a piece of rope in one position is twisted into
another, the deformation does indeed determine a one-one correspondence
between the points of the two positions, and since cutting the rope is not
allowed, the correspondence is bicontinuous. In addition, it is natural to
think of the motion of the rope as accompanied by a motion of the surrounding
air molecules which thus determines a bicontinuous permutation of the points
of space. This picture snggests the definition: Knots K and K, arve equivalent

if there exists ahomeomorphism of 1% onto itself which maps K onto K,
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It is a triviality that the relation of knot equivalence is a true equivalence
relation. Equivalent knots are said to be of the same fype, and each equiva-
lence class of knots is a knot type. Those knots equivalent to the unknotted
circle 22 + y2 = 1, z = 0, are called trivial and constitute the trivial type.!
Similarly, the type of the clover-leaf knot, or of the figure-eight knot is
defined as the equivalence class of some particular representative knot. The
informal statement that the clover-leaf knot and the figure-eight knot are
different is rigorously expressed by saying that they belong to distinct knot

types.

2. Tame versus wild knots. A polygonal knot is one which is the union of a
finite number of closed straight-line segments called edges, whose endpoints
are the vertices of the knot. A knot is tame if it is equivalent to a polygonal
knot; otherwise it is wild. This distinction is of fundamental importance. In
fact, most of the knot theory developed in this book is applicable (as it stands)
only to tame knots. The principal invariants of knot type, namely, the ele-
mentary ideals and the knot polynomials, are not necessarily defined for a
wild knot. Moreover, their evaluation is based on finding a polygonal repre-
sentative to start with. The discovery that knot theory is largely confined to
the study of polygonal knots may come as a surprise—especially to the reader
who approaches the subject fresh from the abstract generality of point-set
topology. It is natural to ask what kinds of knots other than polygonal are
tame. A partial answer is given by the following theorem.

(2.1) If a knot parametrized by arc length is of class C1 (i.e., is continuously
differentiable), then it is tame.

A proof is given in Appendix I. It is complicated but straightforward, and
it uses nothing beyond the standard techniques of advanced calculus. More
cxplicitly, the assumptions on K are that it isrectifiable and given as the image
of a vector-valued function p(s) = (x(s), y(s), 2(s)) of arc length s with con-
tinuous first derivatives. Thus, every sufficiently smooth knot is tame.

It is by no means obvious that there exist any wild knots. For example,
no knot that lies in a plane is wild. Although the study of wild knotsis a corner
of knot, theory outside the scope of this book, Figure 5 gives an example
of a knot known to be wild.? This knot is a remarkable curve. Except for the
fact that the number of loops increases without limit while their size decreases
without limit (as is indicated in the figure by the dotted square about p), the

" Any knot which lies in o plance is nocessoarily trivial, This is a well-known and deep
theorem of plano topology . Seo AL L Newoan, flements of the Topology of Plane Sets of
Points, Second odition (Cambridge University Pross, Cambridgo, 1951), po 173,

S0 Fox, N Romanrekable Simple Closed Carve,” dunals of Mathomatics, Vol H0
(LD 19), pp. 261, 265,
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>N

Figure 5

knot could obviously be untied. Notice also that, except at the single point
P, it is as smooth and differentiable as we like.

3. Knot projections. A knot K is usually specified by a projection; for
example, Figure 3 and Figure 4 show projected images of the clover-leaf knot
and the figure-eight knot, respectively. Consider the parallel projection

P:. R®— RS

defined by P(z,y,2) = (2,94,0). A point p of the image K is called a
multiple point if the inverse image &~1p contains more than one point of K.
The order of p € K is the cardinality of (#-'p) N K. Thus, a double point
is a multiple point of order 2, a triple point is one of order 3, and so on.
Multiple points of infinite order can also occur. In general, the image #K
may be quite complicated in the number and kinds of multiple points present.
It is possible, however, that K is equivalent to another knot whose projected
image is fairly simple. For a polygonal knot, the criterion for being fairly
simple is that the knot be in what is called regular position. The definition is
as follows: a polygonal knot K is in regular position if: (i) the only multiple
points of K are double points, and there are only a finite number of them;
(ii) no double point is the image of any vertex of K. The second condition
insures that every double point depicts a genuine crossing, as in Figure 6a.
The sort of double point shown in Figure 6b is prohibited.

/
/

Figure 6a Figure 6b
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Each double point of the projected image of a polygonal knot in regular
position is the image of two points of the knot. The one with the larger
z-coordinate is called an owvercrossing, and the other is the corresponding
undercrossing.

(3.1) Any polygonal knot K is equivalent under an arbitrariy small rotation
of R to a polygonal knot in regular position.

Proof. The geometric idea is to hold K fixed and move the projection.
Every bundle (or pencil) of parallel lines in R3 determines a uniquec parallel
projection of R3 onto the plane through the origin perpendicular to the bundle.
We shall assume the obvious extension of the above definition of regular
position so that it makes sense to ask whether or not K is in regular position
with respect to any parallel projection. It is convenient to consider R as a
subset® of a real projective 3-space P3. Then, to every parallel projection we
associate the point of intersection of any line parallel to the direction of
projection with the projective plane P? at infinity. This correspondence is
clearly one-one and onto. Let @ be the set of all points of P2 corresponding to
projections with respect to which K is not in regular position. We shall show
that @ is nowhere dense in P2. It then follows that there is a projection £,
with respect to which K is in regular position and which is arbitrarily close
to the original projection & along the z-axis. Any rotation of R?® which
transforms the line £,71(0,0,0) into the z-axis will suffice to complete the proof.

In order to prove that @ is nowhere dense in P2, consider first the set of all
straight lines which join a vertex of K to an edge of K. These intersect P2?in a
finite number of straight-line segments whose union we denote by @,. Any
projection corresponding to a point of P2 — @, must obviously satisfy con-
dition (ii) of the definition of regular position. Furthermore, it can have at
most a finite number of multiple points, no one of which is of infinite order.
It remains to show that multiple points of order n > 3 can be avoided, and
this is done as follows. Consider any three mutually skew straight lines, each
of which contains an edge of K. The locus of all straight lines which intersect
these three is a quadric surface which intersects P2 in a conic section.
(See the reference in the preceding footnote.) Set @, equal to the union of all
such conics. Obviously, there are only a finite number of them. Furthermore,
the image of K under any projection which corresponds to some point of
P2 — (Q, U @,) has no multiple points of order n > 3. We have shown that

PP — (@, VQ,) = P2 —Q.

Thus @ is a subsct of @, U Q,, which is nowhere dense in P2. This completes
the proof of (3.1). L

3 For an account of the concopts usod in this proof, soo O, Voblon and J. W. Youny,
Projective Geometry (CGinn and Company, DBoston, Massachusolts, 1910), Vol | pp. 1L,
299, 301,
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Thus, every tame knot is equivalent to a polygonal knot in regular position.
This fact is the starting point for calculating the basic invariants by which
different knot types are distinguished.

4. Isotopy type, amphicheiral and invertible knots. This section is not a
prerequisite for the subsequent development of knot theory in this book.
The contents are nonetheless important and worth reading even on the first
time through.

Our definition of knot type was motivated by the example of a rope in
motion from one position in space to another and accompanied by a displace-
ment of the surrounding air molecules. The resulting definition of equivalence
of knots abstracted from this example represents a simplification of the
physical situation, in that no account is taken of the motion during the transi-
tion from the initial to the final position. A more elaborate construction,
which does model the motion, is described in the definition of the isotopy
type of a knot. An isotopic deformation of a topological space X is a family of
homeomorphisms A, 0 < ¢ < 1, of X onto itself such that &, is the identity,
i.e., hy(p) = p for all p in X, and the function H defined by H(t,p) = h,(p) is
simultaneously continuous in ¢ and p. This is a special case of the general
definition of a deformation which will be studied in Chapter V. Knots K,
and K, are said to belong to the same isofopy type if there exists an isotopic
deformation {%,} of R?such that h K, = K,. Thelettert isintentionally chosen
to suggest time. Thus, for a fixed point p € R3, the point &,(p) traces out, so to
speak, the path of the molecule originally at p during the motion of the rope
from its initial position at K, to K,.

Obviously, if knots K; and K, belong to the same isotopy type, they are
equivalent. The converse, however, is false. The following discussion of
orientation serves to illustrate the difference between the two definitions.

Every homeomorphism % of R3 onto itself is either orientation preserving
or orientation reversing. Although a rigorous treatment of this concept is
usually given by homology theory,* the intuitive idea is simple. The homeo-
morphism A preserves orientation if the image of every right (left)-hand screw
is again a right (left)-hand screw; it reverses orientation if the image of every
right (left)-hand screw is a left (right)-hand screw. The reason that there is
no other possibility is that, owing to the continuity of &, the set of points of
R3 at which the twist of a screw is preserved by A is an open sct and the same
is true of the set of points at which the twist is reversed. Since % is a homeo-

A homcomorphism £ of the n-sphere 87, n 7> 1, onto itself is orientation preserving or
reversony necording as the isomorphism b I1(8™) > 11,(S™) is or is not the identity. Let
N Ll ) be the one point compactification of the real Cartesian v-space R7. Any
homeomorphesm ooof I onto iftsel has o unique oxtention to o homeomorphism A of
N Ry ontoatselt defined by k| e hoand K(o) o Then s orientation

oo repcrsong necordimpe e A rE orionthion Presery g or revorsiing.,
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morphism, every point of R® belongs to one of these two disjoint sets; and
since R3 is connected, it follows that one of the two sets is empty. The com-
position of homeomorphisms follows the usual rule of parity:

by hy hyhy
preserving preserving preserving
reversing preserving reversing
preserving reversing reversing
reversing reversing preserving

Obviously, the identity mapping is orientation preserving. On the other
hand, the reflection (z,y,z) — (z,y,—z) is orientation reversing. If A is a
linear transformation, it is orientation preserving or reversing according as its
determinant is positive or negative. Similarly, if both 2 and its inverse are C!
differentiable at every point of R3, then h preserves or reverses orientation
according as its Jacobian is everywhere positive or everywhere negative.

Consider an isotopic deformation {k,} of R3. The fact that the identity is
orientation preserving combined with the continuity of H(t,p) = k,(p),
suggests that &, is orientation preserving for every ¢ in the interval 0 <t < 1.
This is true.® As a result, we have that a necessary condition for two knots to
be of the same isotopy type is that there exist an orientation preserving
homeomorphism of R? on itself which maps one knot onto the other.

A knot K is said to be amphicheiral if there exists an orientation reversing
homeomorphism A of R3® onto itself such that AK = K. An equivalent for-
mulation of the definition, which is more appealing geometrically, is provided
by the following lemma. By the mirror image of a knot K we shall mean the
image of K under the reflection & defined by (x,y,2) — (x,y,—z). Then,

(4.1) A knot K is amphicheiral if and only if there exists an orientation
preserving homeomorphism of R3 onto itself which maps K onto its mirror image.

Proof. If K isamphicheiral, the composition Zh is orientation preserving
and maps K onto its mirror image. Conversely, if 2" is an orientation preserv-
ing homeomorphism of R3 onto itself which maps K onto its mirror image, the
composition Kk’ is orientation reversing and (Zh)K = K. ()

It is not hard to show that the figure-eight knot is amphicheiral. The
experimental approach is the best; a rope which has been tied as a figure-cight,
and then spliced is quite casily twisted into its mirror image. The operation is

-

illustrated in Figure 7. On the other hand, the clover-leaf knot is not amphi-

5 Any isotopie deformation (A}, 0 - - 1 of the Cartesian nespace R™ definitoly
possosses o unique extension to an isotopic deformation (k4,0 - ¢ - 1, of tho n sphore
Stobe kR hy,,oand k(o g For each £, tho homceomorphism &, 1< homotopie to
' ' ' I ' I
tho adentity, and so tho mdaced somorphesm (& on (S s the adontity, T follows
A I ), n !
that 2, s ovientation preserying for all £ 0 - 1 (See nlho footnote 1)
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@ @) 3

4) (5) (6)
Figure 7

cheiral. In this case, experimenting with a piece of rope accomplishes nothing
cxcept possibly to convince the skeptic that the question is nontrivial.
Actually, to prove that the clover-leaf is not amphicheiral is hard and requires
fairly advanced techniques of knot theory. Assuming this result, however, we
have that the clover-leaf knot and its mirror image are equivalent but not of
the same isotopy type.

It is natural to ask whether or not every orientation preserving homeo-
morphism f of R? onto itself is realizable by an isotopic deformation, i.e.,
given f, does there exist {h,}, 0 < ¢ < 1, such that f = h,? If the answer were
no, we would have a third kind of knot type. This question is not an easy one.
The answer is, however, yes.5

Just as every homeomorphism of R3 onto itself either preserves or reverses
orientation, so does every homeomorphism f of a knot K onto itself. The
geometric interpretation is analogous to, and simpler than, the situation in
3-dimensional space. Having prescribed a direction on the knot, f preserves or
reverses orientation according as the order of points of K is preserved or re-
versed under f. A knot K is called ¢nvertible if there exists an orientation pre-
serving homeomorphism 2 of B3 onto itself such that the restriction kl K
is an orientation revorsing homeomorphism of K onto itsclf. Both the clover-

Sl ML Fishor, ©On the Group of all Homoeomorphisms of a Manifold,” Transactions of
the Ameriean Mathematical Society, Vol 07 (1960), pp. 193 212,
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leaf and figure-eight knots are invertible. One has only to turn them over

(cf. Figure 8).
//JX

Figure 8

Until recently no example of a noninvertible knot was known. Trotter
solved the problem by exhibiting an infinite set of noninvertible knots, one
of which is shown in Figure 9.7

N
(Q\Q\Q\Cj
vQ\/\%\%\J

Figure 9

EXERCISES

1. Show that any simple closed polygon in R? belongs to the trivial knot
type.

2. Show that there are no knotted quadrilaterals or pentagons. What knot
types are represented by hexagons? by septagons?

7 1L K. Trottor, “Noninvertible knots oxist.™ Topology, vol. 2 (1964), pp. 275 280,
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3. Devise a method for constructing a table of knots, and use it to find the
ten knots of not more than six crossings. (Do not consider the question of
whether these are really distinet types.)

4. Determine by experiment which of the above ten knots are obviously
amphicheiral, and verify that they are all invertible.

5. Show that the number of tame knot types is at most countable.

6. (Brunn) Show that any knot is equivalent to one whose projection has
at. most one multiple point (perhaps of very high order).

7. (Tait) A polygonal knot in regular position is said to be alternating
if the undercrossings and overcrossings alternate around the knot. (A knot
type is called alternating if it has an alternating representative.) Show that if
K is any knot in regular position there is an alternating knot (in regular
position) that has the same projection as K.

3. Show that the regions into which R? is divided by a regular projection
can be colored black and white in such a way that adjacent regions are of
opposite colors (as on a chessboard).

9. Prove the assertion made in footnote 4 that any homeomorphism % of B
onto itself has a unique extension to a homeomorphism & of S* = R™ U {oo}
onto itself.

10. Prove the assertion made in footnote 5 that any isotopic deformation
{h,t}, 0 <t < 1, of R™ possesses a unique extension to an isotopic deformation
{k},0 <t <1,of 8™ (Hint: Define F(p, t) = (h(p),t), and use invariance of
domain to prove that F is a homeomorphism of B" X [0, 1] onto itself.)



CHAPTER 1I

The Fundamental Group

Introduction. Elementary analytic geometry provides a good example of
the applications of formal algebraic techniques to the study of geometric
concepts. A similar situation exists in algebraic topology, where one associates
algebraic structures with the purely topological, or geometric, configurations.
The two basic geometric entities of topology are topological spaces and con-
tinuous functions mapping one space into another. The algebra involved, in
contrast to that of ordinary analytic geometry, is what is frequently called
modern algebra. To the spaces and continuous maps between them are made
to correspond groups and group homomorphisms. The analogy with analytic
geometry, however, breaks down in one essential feature. Whereas the
coordinate algebra of analytic geometry completely reflects the geometry, the
algebra of topology is only a partial characterization of the topology. This
means that a typical theorem of algebraic topology will read: If topological
spaces X and Y are homeomorphic, then such and such algebraic conditions
are satisfied. The converse proposition, however, will generally be false. Thus,
if the algebraic conditions are not satisfied, we know that X and Y are topo-
logically distinct. If, on the other hand, they are fulfilled, we usually can
conclude nothing. The bridge from topology to algebra is almost always a
one-way road; but even with that one can do a lot.

One of the most important entities of algebraic topology is the fundamental
group of a topological space, and this chapter is devoted to its definition and
elementary properties. In the first chapter we discussed the basic spaces and
continuous maps of knot theory: the 3-dimensional space R3, the knots them-
selves, and the homeomorphisms of R® onto itself which carry one knot onto
another of the same type. Another space of prime importance is the comple-
mentary space R — K of a knot K, which consists of all of those points of R3
that do not belong to K. All of the knot theory in this book is a study of the
properties of the fundamental groups of the complementary spaces of knots,
and this is indeed the central theme of the entire subject. In this chapter,
however, the development of the fundamental group is made for an arbitrary
topological space X and is independent of our fater applications of the

fundamental group to knot theory.
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1. Paths and loops. A particle moving in space during a certain interval
of time describes a path. It will be convenient for us to assume that the motion
hegins at time ¢ = 0 and continues until some stopping time, which may differ
for different paths but may be either positive or zero. For any two real num-
hers @ and y with <y, we define [z,y] to be the set of all real numbers ¢
sudislying ¢ <t < y. A path a in a topological space X is then a continuous
mapping

a: [0, a|]— X.
The number || a || is the stopping time, and it is assumed that || a || > 0. The
points a(0) and a(|| @ ||) in X are the initial point and terminal point, respec-
tively, of the path a.

It is essential to distinguish a path a from the set of image points a(f) in X
visited during the interval [0,]| @ ||]. Different paths may very well have the
same set of image points. For example, let X be the unit circle in the plane,
given in polar coordinates as the set of all pairs (r,0) such that r = 1. The two
paths

a(t) = (L,t), 0 <t <2m,
bt) = (L,2t), 0 <t < 2m,

are distinet even though they have the same stopping time, same initial and
terminal point, and same set of image points. Paths @ and b are equal if and
only if they have the same domain of definition, i.e., || @ | = | b ||, and, if for
every ¢ in that domain, a(f) = b(?).

Consider any two paths @ and b in X which are such that the terminal point
of a coincides with the initial point of b, i.e., a(|| @ ||) = b(0). The product a - b
of the paths @ and b is defined by the formula

a(t), 0<t<|al,
bt —lal), lal<t<lal+1b].
It is obvious that this defines a continuous function, and a - b is therefore a
path in X. Its stopping time is
la-bl=1al+1b].
We emphasize that the product of two paths is not defined unless the terminal

point of the first is the same as the initial point of the second. It is obvious that
the three assertions

(@- b)) =

(i) @-band b - c are defined,

(if) a -+ (b - ¢) is defined,

(iii) (@ - b) - ¢ s defined,
are equivalent and that whenever one of them holds, the associative law,

a-h-ey  (a-b)-e,
iv vadid,
A path ais ealled an ddentity path, or simply an identity, if it has stopping

time ||« || 0. This terminology refleets the faet thad the set of all identity
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paths in a topological space may be characterized as the set of all multipli-
cative identities with respect to the product. That is, the path e ts an identity
if and only if e-a=a and b-e =0>b whenever ¢-a and b- e are defined.
Obviously, an identity path has only one image point, and conversely, there
is precisely one identity path for each point in the space. We call a path whose
image is a single point a constant path. Every identity path is constant; but
the converse is clearly false.

For any path a, we denote by a~! the inverse path formed by traversing a
in the opposite direction. Thus,

allty=a(la] —1t), O0<t<|al.

The reason for adopting this name and notation for a1 will become apparent
as we proceed. At present, calling a~! an inverse is a misnomer. It is easy to
see that a - a1 is an identity e if and only if a = e.

The meager algebraic structure of the set of all paths of a topological space
with respect to the product is certainly far from being that of a group. One
way to improve the situation algebraically is to select an arbitrary point p in
X and restrict our attention to paths which begin and end at p. A path whose
initial and terminal points coincide is called a loop, its common endpoint
is its basepoint, and a loop with basepoint p will frequently be referred to as
p-based. The product of any two p-based loops is certainly defined and is
again a p-based loop. Moreover, the identity path at p is a multiplicative
identity. These remarks are summarized in the statement that the set of all
p-based loops in X 1s a semi-group with vdentity.

The semi-group of loops is a step in the right direction; but it is not a group.
Hence, we consider another approach. Returning to the set of all paths, we
shall define in the next section a notion of equivalent paths. We shall then
consider a new set, whose elements are the equivalence classes of paths. The
fundamental group is obtained as a combination of this construction with the
idea of a loop.

2. Classes of paths and loops. A collection of paths A,in X, 0 <s < 1, will
be called a continuous family of paths if

(i) The stopping time || A, || depends continuously on s.
(ii) The function A defined by the formula A(s,t) = h(t) maps the closed
region 0 <s < 1,0 <¢ < || A, || continuously into X.

It should be noted that a function of two variables which is continuous at
cvery point of its domain of definition with respect to each variable is not
necessarily continuous in both simultaneously. The function f defined on the
unit square 0 < s <~ 1,0 < ¢ <2 1 by the formula

[l, ifs &0,
Sy s

I - otherwise,
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is an cxample. The collection of paths {f,} defined by f,(t) = f(s,t) is not,
therefore, a continuous family.

A fire d endpoint family of paths is a continuous family {A}, 0 <s <1,
such that h(0) and 2 (|| &, ||) are independent of s, i.e., there exist points p and
¢ in X such that 2(0) = pand A(|| &, ||) = qforall sin the interval 0 <s < 1.
The difference between a continuous family and a fixed-endpoint family is
illustrated below in Figure 10.

s
h
—_—
21 ¢ hs(llRsll)
t
s hq(t)
A hs( "hs "):q
—_—

Il 2l

Figure 10

Let @ and b be two paths in the topological space X. Then, a is said to be
cquivalent to b, written a ~ b, if there exists a fixed-endpoint family {h},
0 -~ s <1, of paths in X such that @ = hyand b = h,.

The relation =~ is reflexive, i.e., for any path a, we have a ~ a, since we may
obviously define A(t) = a(t), 0 <s < 1. It is also symmetric, ie., a =~ b
implies b ~ a, because we may define k(t) = k,_(¢). Finally, ~ is transitive,
i.c,a~bandb =~ cimply a =~ ¢. To verify the last statement, let us suppose
that A, and kg are the fixed-endpoint families exhibiting the equivalences
a~band b~ crespeetively. Then the eollection of paths {j,} defined by

Iy (1), 0 s Y

(1
0 S (N 1
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is a fixed-endpoint family proving @ ~ ¢. To complete the arguments, the
reader should convince himself that the collections defined above in showing
reflexivity, symmetry, and transitivity actually do satisfy all the conditions
for being path equivalences: fixed-endpoint, continuity of stopping time, and
simultaneous continuity in s and ¢.

Thus, the relation ~ is a true equivalence relation, and the set of all paths
in the space X is therefore partitioned into equivalence classes. We denote
the equivalence class containing an arbitrary path a by [a]. That is, [a] is the
set of all paths b in X such that @ ~ b. Hence, we have

[a] =[b] ¢fand onlyif a ~ b.

The collection of all equivalence classes of paths in the topological space X
will be denoted by T'(X). It is called the fundamental groupoid of X. The
definition of a groupoid as an abstract entity is given in Appendix II.
Geometrically, paths ¢ and b are equivalent if and only if one can be

continuously deformed onto the other in X without moving the endpoints.
The definition is the formal statement of this intuitive idea. As an example,
let X be the annular region of the plane shown in Figure 11 and consider five
loops e (identity), a,, @,, a3, a4 in X based at p. We have the following
equivalences

a, ~ a, ~ e,

a; ~ a,.
However, it is not true that

a; =~ as.

Figure 11 shows that certain fundamental properties of X are reflected in the
equivalence structure of the loops of X. If, for example, the points lying
inside the inner boundary of X had been included as a part of X, i.e., if the

Figure 11
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hole were filled in, then all loops based at p would have been equivalent to the
nlentity loop e. It is intended that the arrows in Figure 11 should imply that
wi the interval of the variable £ is traversed for each a,, the image point runs
around the circuit once in the direction of the arrow. It is essential that the
nlea of a; as a function be maintained. The image points of a path do not
npecify the path completely; for example, ay % a, - a3, and furthermore, we
do not even have, a, ~ a, - a,.

We shall now show that path multiplication induces a multiplication in the
fundamental groupoid I'(X). As a result we shall transfer our attention from
paths and products of paths to consideration of equivalence classes of paths
and the induced multiplication between these classes. In so doing, we shall
obtain the necessary algebraic structure for defining the fundamental group.

(2.1) For any paths a, a’, b, V' in X, if a- b is defined and a ~ a’ and
b~ b, thena -b isdefinedand a-b ~ a - b'.

Proof. 1f {h} and {k,} are the fixed-endpoint families exhibiting the
equivalences a ~ a’ and b~ b’, respectively, then the collection of paths
{h, " k} is a fixed-endpoint family which gives a-b ~ a’- 5. We observe,
first of all, that the products &, - k,, are defined for every s in 0 <s <1
because

ho(ll B 1) = holl 2o 1) = a(ll @ ) = b(0) = ko(0) = ky(0).

In particular, @’ - b’ = k- k; is defined. It is a straightforward matter to
verify that the function % - k defined by

(hek)st) = (hy k)0, 0 <s<1,0<t<|h|+ kI

is simultaneously continuous in s and ¢. Since | A,k || = || k|| + || &, ||
is a continuous function of s, the paths A, - k, form a continuous family. We
have
(B« k,)(0) = Ry (0) = a(0),
and
(g - (Il B = Teg 1) = Ro(ll Ky D) = &(1 1),

so that {h -k}, 0 < s <1, is a fixed-endpoint family. Since h,-k, =a - b
and h, - k; = a’ - b’, the proof is complete.

Consider any two paths @ and b in X such that a - b is defined. The product
of the equivalence classes [a] and [b] is defined by the formula

[a] - [6] = [a - B].

Multiplication in I'(X) is well-defined as a result of (2.1).

Since all paths belonging to a single equivalence class have the same initial
point and the same terminal point, we may define the initial point and
terminal point of an clement o in 1°(X) to he those of an arbitrary represen-
tative path in o, The product o - 8 of two elements o and fFin 1'(X) is then
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defined if the terminal point of « coincides with the initial point of 8. Since
the mapping @ — [a] is product preserving, the associative law holds in I'(X)
whenever the relevant products are defined, exactly as it does for paths.

An element € in I'(X) is an identity if it contains an identity path. Just as
before, we have that an element € is an identity if and only if € - 0 = o and
f - €= p whenever €- o and f - € are defined. This assertion follows almost
trivially from the analogous statement for paths. For, let € be an identity, and
suppose that € - o is defined. Let ¢ be an identity path in € and a a represent-
ative path in «. Then, e-a =a, and so €- o = «. Similarly, f-e=§.
Conversely, suppose that e is not an identity. To prove that there exists an «
such that € - o is defined and € - «.5% «, select for « the class containing the
identity path corresponding to the terminal point of €. Then, € - « is defined,
and, since « is an identity, € - « = €. Hence, if € - « = «, the class € is an
identity, which is contrary to assumption. This completes the proof. We con-
clude that I'(X) has at least as much algebraic structure as the set of paths in
X. The significant thing, of course, is that it has more.

(2.2) For any path a in X, there exist identity paths e; and e, such that
a-al~e andal-a~e,.

Proof. The paths e, and e, are obviously the identities corresponding to
the initial and terminal points, respectively, of a. Consider the collection of
paths {A;}, 0 < s < 1, defined by the formula

a(t), 0o<t<s|al
h(t) =

s

a@slall—1, slal <t<2sal.

The domain of the mapping % defined by h(s,t) = h(?) is the shaded area
shown in Figure 12. On the line ¢t = 0, i.e., on the s-axis, A is constantly equal
to a(0). The same is true along the line t = 2s || a ||. Hence the paths &, form a

a a

N

/\/ el 2lal t

Figure 12
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lixed-endpoint family. For values of ¢ along the horizontal line s = 1, the
function b behaves like a - 1. We have

o<t<|al,

={a<2nan—t lal <t<2]al,
a(t), 0<i<]al,

e —lal),  fal <t<2al,

= (a-a 7)),
and the proof that a - a1 ~ e, is complete. The other equivalence may, of
course, be proved in the same way, but it is quicker to use the result just
proved to conclude that a=!- (a71)~! ~ e,. Since (a7!)~! = q, the proof is

complete.
(2.3) For any paths a and b, if a ~ b, then a™! ~ b1,
Proof. This result is a corollary of (2.1) and (2.2). We have
at~al-b-bl~al-q-b1~phl

On the basis of (2.3), we define the inverse of an arbitrary element « in I'(X)

by the formula
ol =[a"!], foranyain «.

The clement o1 depends only on « and not on the particular representative
path a. That is, «! is well-defined. This time there is no misnaming. As a
corollary of (2.2), we have

(2.4)  Forany ain I'(X), there exist identities e; and €, suchthat o - ™1 = ¢
and o7l o = €.

The additional abstract property possessed by the fundamental groupoid
I'(X)) beyond those of the set of all paths in X is expressed in (2.4). We now
obtain the fundamental group of X relative to the basepoint p by defining
the exact analogue in I'(X) of the p-based loops in the set of all paths: Set
7(X,p) equal to the subset of I'(X) of all elements having p as both initial and
terminal point. The assignment a — [a] determines a mapping of the semi-
group of p-based loops into 7(X,p) which is both product preserving and onto.
It follows that 7(X,p) is a semi-group with identity and, by virtue of (2.4), we
have

(2.5)  The set w(X,p), together with the multiplication defined, is a group. 1t
is by delinition the fundamental groupt of X relative to the basepoint p.

! lln customary notation in topology for this group s o (X p). Thore is nosoquenco of
proups o, (Xop), n Lo callod the homotopy groups of X relutive to po'The fundamental

Croun i llw firal one ol tho sequence,
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We conclude this section with the useful observation that as far as equiva-
lence classes go, constant paths are the same as identity paths.

(2.6) Ewvery constant path is equivalent to an identily path.
Proof. Let k be an arbitrary constant path in X defined by

kity=p, 0<t < | k]|, forsomepecX.
Obviously, the collection of paths %, defined by the formula
hs(t)=p’ 0<t SS”IC”

is a fixed-endpoint family, and 4, = k and k, = e, where ¢ is the identity path
corresponding to p.

3. Change of basepoint. The fundamental group =(X,p) of X is defined
with respect to and depends on the choice of basepoint p. However we shall
now show that if X is pathwise connected the fundamental groups of X
defined for different basepoints are all isomorphic. A topological space X is
pathwise connected? if any two of its points can be joined by a path lying in X.

(3.1)  Let « be any element of T'(X) having initial point p and terminal point
p'. Then, the assignment

f — ol B afor any B in w(X,p)
is an isomorphism of w(X,p) onto m(X,p’).

Proof. The product «!- f -« is certainly defined, and it is clear that
a1- B+ aen(X,p). For any B, B, € m(X,p)

Pr- By — a7t (Byfy) o = (o7t Py (a7t By )

So the mapping is a homomorphism. Next, suppose a1 f-a =1 (= €).
Then,
B=a-al Bra-ot=aol=1,

and we may conclude that the assignment is an isomorphism. Finally, for any
y in 7(X,p’), « - y - «~t € w(X,p). Obviously,

wryal >y

Thus the mapping is onto, and the proof is complete.

2 Phis definition should be contrasted with that of connectedness.

A topological spnee is connected if il is not the union ol two disjoint. nonempty open
sols T is ensy (o show that w pathwise connected spaco s necossarily conneeted, but that,
1 1""”]1‘1“4'4‘ HIHI"(' " ]Ilb" Ill'('l'.‘i'“”'ll) 'Hl”l\\'l““* 1'“““1\1"“‘].
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It is a corollary of (3.1) that the fundamental group of a pathwise connected
space is independent of the basepoint in the sense that the groups defined for
any two basepoints are isomorphic. For this reason, the definition of the
fundamental group is frequently restricted to pathwise connected spaces for
which it is customary to omit explicit reference to the basepoint and to speak
simply of the fundamental group 7(X) of X. Occasionally this omission can
cause real confusion (if one is interested in properties of #(X,p) beyond those
it possesses as an abstract group). In any event, #(X) always means 7(X,p)
for some choice of basepoint p in X.

4. Induced homomorphisms of fundamental groups. Suppose we are given a
continuous mapping f: X — Y from one topological space X into another Y.
Any path a in X determines a path fa in Y given by the composition

0, a]—>Xx-L>¥,

i.e., fa(?) a(t)). The stopping time of fa is obviously the same as that of a,
ie., | fa || = || @ ||. Furthermore, the assignment a —fa is product-
preserving:

(4.1) If the product a - b is defined, so s fa - fb, and f(a - b) = fa - fb.
The proof is very simple. Since a - b is defined, a(|| @ ||) = 6(0). Consequently,
fall fa 1)) = fa(ll a |) = f(a(]l a )
= f(b(0)) = fb(0)
and the product fa - fb is therefore defined. Furthermore,

fla-b)t) = f((@a
{fﬂt 0<t<|al,
\ree—1nel), lal<t<lal+lbl,
{fat), 0<t<l|fal,
B ﬁt—nmu Ifall <t <lfal + 151,
= (fa- fb)(t

It is obvious that,

(4.2) If e is an identity, so s fe.
Furthermore,

(4.3) Ja=t = (fa)™

Proof.
fa7l (@) = f@™(@®) = f(a(l a || — l))

Jall fal 6y (Ja)
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For any continuous family of paths {#}, 0 <s <1, in X, the collection of
paths {fA} is also a continuous family. In addition, {f~} is a fixed-endpoint
family provided {4} is. Consequently,

(44) Ifa~0b,then fa ~ fb.

Thus, f determines a mapping f, of the fundamental groupoid I'(X) into the
fundamental groupoid I'(Y) given by the formula

fx([a]) = [fa].
The basic properties of the function f, are summarized in

(4.5)
(1) If € is an identity, then so s fye.
(i) If the product o - B is defined, then so is foa - fuf and fo(x - ) =
Jro fuB-
(i) If f: X — X vs the identity function, i.e., f(x) = x, then f, is also

the identity function, i.e., foa = o.

(v) If X s ¥ 25 7 are continuous mappings and gf: X — Z is the

composition, then (gf )e = ¢sfs-

The proofs of these propositions follow immediately from (4.1), (4.2), and the
associativity of the composition of functions, i.e., (gf)a = g(fa).

It is obvious that, for any choice of basepoint pin X, f, (w(X,p)) < #(Y,fp).
Thus, the function defined by restricting f, to #(X,p) (which we shall also
denote by f,) determines a homomorphism

fer m(X,p) = w(Y,fp),

which is called the homomorphism induced by f. Notice that if X is pathwise
connected, the algebraic properties of the homomorphism f, are independent
of the choice of basepoint. More explicitly, for any two points p, ¢ € X, choose
« € I'(X) with initial point p and terminal point ¢. Then the homomorphisms

w(X,p) 2> 7(Y, fp)
(4.6) p—> a'fa l l Y —> (fra) p(fs)
m(X,q) L (¥, fq)

form a consistent diagram and the vertical mappings are isomorphisms onto
(ef (3.1)). Thus, for example, if either one of the homomorphisms f, is one-
one or onto, so is the other.

As we have indicated in the introduction to this chapter, the notion of a
homomorphism induced by a continuous mapping is fundamental to algebraic
topology. The homomorphism of the fundamental group induced by a con-
tinuous mapping provides the bridge from topology to algebra in knot theory.
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The following important theorem shows how the topological properties of the
function f are reflected in the homomorphism f,, .

(4.7) TaeoreEM. If f: X — Y is a homeomorphism of X onto Y, the in-
duced homomorphism f: m(X,p) — w(Y,fp) s an isomorphism onto for any
basepoint p in X.

The proof is a simple exercise using the properties formulated in (4.5). The
functions

xZevlx

induce homomorphisms

S (FHa
m(X,p) — afp _—> 77( P)-

But the compositions f ~If and Jf ! are identity maps. Consequently, so are
(f ) =F 2Ss a0d (ff Yy = fif . It follows from this fact that f, is
an isomorphism onto, which ﬁnlshes the proof.

Thus, if pathwise connected topological spaces X and Y are homeomorphic,
their fundamental groups are isomorphic. It was observed in consideration of
Figure 11 that certain of the topological characteristics of X were reflected
in the equivalence classes of loops of X. Theorem (4.7) is a precise formulation
of this observation.

Suppose we are given two knots K and K’ and we can show that the groups
m(R% — K)and 7w(R® — K') are not isomorphic. By the fundamental Theorem
(4.7), it then follows that R® — K and R3® — K’ are not topologically equiva-
lent spaces. But if K and K’ were equivalent knots, there would exist a
homeomorphism of R? onto R? transforming K onto K'. This mapping re-
stricted to R® — K would give a homeomorphism of R® — K onto R® — K.
We may conclude therefore that K and K’ are knots of different type. It is by
this method that many knots can be distinguished from one another.

5. Fundamental group of the circle. With a little experience it is fre-
quently rather easy to guess correctly what the fundamental group of a not-
too-complicated topological space is. Justifying one’s guess with a proof,
however, is likely to require topological techniques beyond a simple knowledge
of the definition of the fundamental group. Chapter V is devoted to a discussion
of some of these methods.

An exception to the foregoing remarks is the calculation of the fundamental
group of any convex set. A subset of an n-dimensional vector space over the
real or complex numbers is called convex if any two of its points can be joined
by a straight line segment which is contained in the subsct. Any p-based loop
in such a set is equivalent to a constant path. To prove this woe have only to
set

h(ty —sp | (0 sa), 0- ot Jal, O - 1.
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The deformation is linear along the straight line joining p and a(t). A pathwise
connected space is said to be simply-connected if its fundamental group is
trivial. As a result we have

(56.1) Ewvery convex set is simply-connected.

We next consider the problem of determining the fundamental group of the
circle. Our solution is motivated by the theory of covering spaces,? one of the
topological techniques referred to in the first paragraph of this section. Let
the field of real numbers be denoted by R and the subring of integers by J.
We denote the additive subgroup consisting of all integers which are a
multiple of 3 by 3J. The circle, whose fundamental group we propose to
calculate, may be regarded as the factor group R/3J with the identification
topology, i.e., the largest topology such that the canonical homomorphism
¢: R — R[3J is a continuous mapping. A good way to picture the situation
is to regard R/3J as a circle of circumference 3 mounted like a wheel on the
real line R so that it may roll freely back and forth without skidding. The
possible points of tangency determine the many-one correspondence ¢ (cf.
Figure 13). Incidentally, the reason for choosing R/3.J for our circle instead of
R/[J (or R/xJ for some other x) is one of convenience and will become apparent
as we proceed.

X 2 3 4
Figure 13

(6.2) The tmage under ¢ of any open subset of R is an open subset of R[3J.

Proof. For any subset B of R[3J, B is open if and only if ¢—1(B) is open.
Furthermore, for any subset X of R,

$71$(X) = U (3n + X),
neJ
where 3n + X is the set of all real numbers 3n + z with « € X. Since trans-
lation along R by a fixed amount is a homeomorphism, and the union of any
collection of open sets is open, our contention follows.

The mapping ¢ restricted to any interval of R of length less than 3 is one-
onc and, by virtue of (5.2}, is therefore also a homeomorphism on that interval.

. Soifort. and W, 'Theoltull, Lehrbuch der Topologie, (Teubnoer, Loipzig and Borlin,
193:4), Ch. VI Roprinted by the Cholzon Pablishing Co., Now York, 1951,
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Thus, ¢ is locally a homeomorphism. For any integer », we define the set c,
to be the image under ¢ of the open interval (n — 1, n + 1). It follows from
(5.2) that each C,, is open and from the above remarks that the mapping

b (n—1,n+1) > C,

defined by setting ¢,(x) = ¢(x), » — 1 < & < n + 1, is a homeomorphism.
The sets C,, form an open cover of the circle. However, this cover consists of
only three distinct sets because, as is easily shown,

C, = C,, if and only if ¢(n) = $(m).
Moreover, the three points

Do = ¢>(O), P = ?5(1), Py = $(2),

are the only distinct members of the image set ¢J. Geometrically, of course,
Po» P1; Po, are three equally spaced points on the circle (cf. Figure 13), C is the
open, connected arc of length 2 running from p, to p, and containing p,, etc.

We next define a sequence of continuous functions vy, by composing ¢,~1
with the inclusion mapping into R.

Qs -1
Cp————>(n—1,n 4+ 1)
Y inclusion.
R
The important properties of these mappings are summarized in

(5.3)
(1) P, (p) = p, whenever y,(p) is defined.
(ii) If w,(p) and v, (p) are defined, then they are equal if and only if
|m—m| <2
(iii) For any real x and integer n, if $p(x) € C,,, there is exactly one tnteger
m = n (mod 3) such that

Proof. (i) is immediate, so we pass to (ii). In one direction the result is
obvious since, if | n — m| > 2, the images of y,, and y,, are disjoint. The other
direction may be proved by proving that if p € C,, N C,;, then y (p) =
Ynr1(p). By (i), we have that

P = ¢Y,u(p) = dp (D)

Hence w,(p) = 9,,1(p) + 3r for some integer r. Since y,(p) and y, ,(p) €
(n — 1, n -+ 2), it follows that r = 0, and the proof of (ii) is complete. In
proving (iii), we observe first of all that uniquencss is an immediate con-
sequence of (ii). Existenee is proved as follows: 16 p(e) ¢ ¢ then (x)  P(y)
for some gy (n Lo | 1), Theny oy | 3r, for some integer », and
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ze@Br+n—1,3r +n + 1). Hence,

Y3, (2) = 2,
and we may set m = n - 3r. This completes the proof.

Consider two arbitrary non-negative real numbers ¢ and 7 and the rectangle
E consisting of all pairs (s,t) such that 0 < s < 0 and 0 < ¢ < 7. The major
step in our derivation of the fundamental group of the circle is the following:

(5.4) For any continuous mapping h: E — R[3J and real number x € R
such that ¢(x) = h(0,0), there exists one and only one continuous function
h: E — R such that k(0,0) = z and b = ¢h.

Proof of uniqueness. Suppose there are two continuous mappings A and A’
satisfying b = ¢k = k' and x = h(0,0) = £'(0,0). Let E, be the set of all
points (s,t) € E for which h(s,t) = %'(s,t). Since R is a Hausdorff space, it is
clear that £ is a closed subset of E. Moreover, £, contains the point (0,0) and
is therefore nonvoid. We contend that E is also open. Suppose h(sy,t,) =
ﬁ'(so,to) = z,. For some integer n, zy€(n — 1,n 4 1) and consequently
there exist open subsets U and U’ of E containing (s,,t,) such that both
RU and 2'U’ are subsets of (n — 1, n - 1). Then, for any (s,t) € U N U’,

h(st), B(sit)e (n — 1, n + 1),
and

b h(s,t) = h(s,t) = PR (s.0).

Since ¢,, is a homeomorphism, k(s,t) = k'(s,t), and our contention is proved.
Since E is connected, it follows that £, = E, and the proof of uniqueness is
complete.

Proof of existence. We first assume that the rectangle £ is not degenerate,
i.e., that both ¢ and 7 are positive. Consider a subdivision

O0=s,<8 < " <8, =0,
0:t0<t1<"'<tl =T

which is so fine that each elementary rectangle E;; defined by the inequalities
s, <8 <s; and f,_; <t <t is contained in one of the open sets A71C,.
(Were no such subdivision to exist, there would have to be a point of £
contained in rectangles of arbitrarily small diameter, no one of which would
lic in any set of 71C,, and this would quickly lead to a contradiction.4) Then
there exists a function »(z,j) = 0, 1, 2, such that

Wi Y < (! ios b by
'( ’:j) “v(4,9) L]
M. HL AL Nowman, Ilements of the Topology of Plane Sets of Points, Socond Edition,

(Cnmbridpo Univorsity Pross, Cambradgo, TOS1), po 46,
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The function A is constructed bit by bit by defining its values on a single
elementary rectangle at a time. Starting with E,,, we have

$(x) = h(0,0) € Coany-

Hence, by (5.3) (iii), there exists a unique integer u(1,1) = »(1,1) (mod 3)
such that
Yua,nh(0,0) = 2.

We define h(s,t) = ,q1)h(s,t), for any (s,t) € Ey;. We next assume that  is
extended by adjoining elementary rectangles to its domain in some order
subject only to the restriction that E, ;_, and E,_, ;are always adjoined before
E;;. To extend to K, we use (5.3) (iii) again to obtain a unique integer
1(1,j) = v(7,5) (mod 3) such that

Yuti S, tq) = h(s;iy, ti 1)
and define h(s,t) = Y, nh(s,t), for any (s;t) € E;;. That the extension fits

continuously with the previous construction is proved by using the point
h(s,_1,t,_1) and (5.3) (ii) in one direction in order to conclude that

(g — 1) — peg) | < 2.
Then, from (5.3) (ii) in the other direction, it follows that A is well-defined on
the left and bottom edges of E,;. In this manner % is extended to all of E. The
proof for a degenerate E is a corollary of the result for a nondegenerate
rectangle. For example, if ¢ = 0 and = > 0, we choose an arbitrary ¢’ > 0

and define
K(st) =h(0t), 0<t<7, 0<s <o

The existence of &’ is assured and we set

R(0) = R'(0,t), 0 <t <.
The proof of (5.4) is complete.

Consider a loop a in the circle based at p, = ¢(0). Its domain [0, || []is a
degenerate rectangle. It follows from (5.4) that there exists one and only
one path @ covering a and starting at 0, i.e., a = ¢d@ and @(0) = 0. Since
$a(] a|) = ¢(0), we know that (|| a ||) = 3» for a uniquely determined
integer r = r,, which we call the winding number of a. Geometrically, r, is the
algebraic number of times the loop a@ wraps around the circle.

(5.5) Toh =T + 7p-

Proof. Let @ and b be the paths starting at 0 and covering a and b,
respectively. The function ¢ defined by

a, O- ¢t Jal,

b a1 3. a0 all t 10,



Sect. 5 FUNDAMENTAL GROUP OF THE CIRCLE 29

is obviously a path with initial point 0 and covering the product a - b. Since
there is only one such path, it follows immediately that

(lall 4+ 181 =>5(bl) + 3,

3r,y =€
= 3(ry + 1,)-

(5.6) Loops with equal winding numbers are equivalent.

Proof. Thisresult is an immediate consequence of the obvious fact that all
paths in R with the same initial point and the same terminal point are
equivalent. Let a and b be two p,-based loops in the circle whose winding
numbers are equal and defined by paths @ and b in R. The images h, = ¢k,
0 < s <1, of any fixed-endpoint family {&,} which exhibits the equivalence
of @ and b constitute a continuous family which proves that a is equivalent
to b.

(6.7)  Equivalent loops have equal winding numbers.

Proof. Tt is here that the full force of (5.4) is used. We consider a con-
tinuous family of p,-based loops &, 0 < s < 1, in the circle. Let 7 be an upper
bound of the set of real numbers || A, ||, 0 < s < 1. We define a continuous
function % by

hy(t), 0<s<landO <t < | Ay,

Rl ), 0<s<land|h|<t<r

Then, where % is the unique function covering &, i.e., $k = h and £(0,0) = 0,
we have

Gh(s, | by ) = Ry(ll B [}) = po = $(0).

Hence, the set of image points A(s, || &, ||), 0 < s < 1, is contained in the
discrete set 3J. But a continuous function which maps a connected set into a
discrete set must be constant on that set. With this fact and the uniqueness
property of covering paths we have

3r,, = RO, | g 1) = (L, | By ) = 3r,.,
and the proof is complete.

By virtue of (5.7), we may unambiguously associate to any element of
w(R[3J,p,) the winding number of any representative loop. The definition of
multiplication in the fundamental group and (5.5) show that this association
is a homomorphism into the additive group of integers. (5.6) proves that the
homomorphism is, in fact, an isomorphism. With the observation that there
exists a loop whose winding number equals any given integer we complete the

proof of the following theorem.

(h.8)  The fundamental growp of the civele is infinite cyelic,
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EXERCISES

1. Compute the fundamental group of the union of two cubes joined at one
corner and otherwise disjoint.

2. Compute the fundamental group of a five-pointed star (boundary plus
interior).

3. Prove that if o, € #(X,p) and a € a, b € f, then the loops @ and b are
freely equivalent (also called freely homotopic) if and only if « and f are
conjugate in 7w(X,p). (The definitions of “conjugate’” and ‘““freely homotopic”
are given in the index.)

4. Show that if X is a simply connected space and f and g are paths from
p € X to g € X, then f and ¢ belong to the same fixed-endpoint family.

5. Let f: X — Y be a continuous mapping, and f,: =(X,p) — =(Y,fp) the
induced homomorphism. Are the following statements true or false?

(a) If f is onto, then f, is onto.

(b) If fis one-one, then f, is one-one.

6. Prove that if X, Y, and X N Y are nonvoid, open, pathwise con-
nected subsets of X U Y and if X and Y are simply-connected, then X U Y
is also simply-connected.

7. Let the definition of continuous family of paths be weakened by
requiring that the function % be continuous in each variable separately instead
of continuous in both simultaneously. Define the “‘not so fundamental group”
7(X,p) by using this weaker definition of equivalence. Show that the ‘“‘not so
fundamental group” of a circle is the trivial group.



CHAPTER III

The Free Groups

Introduction. In many applications of group theory, and specifically in
our subsequent analysis of the fundamental groups of the complementary
spaces of knots, the groups are described by ‘‘defining relations,” or, as we are
going to say later, are “‘presented’”’. We have here another (and completely
different) analogy with analytic geometry. In analytic geometry a coordinate
system is selected, and the geometric configuration to be studied is defined by
a set of one or more equations. In the theory of group presentations the réle
that is played in analytic geometry by a coordinate system is played by a
free group. Therefore, the study of group presentations must begin with a
careful description of the free groups.

1. The free group F[.2/]. Let us assume that we have been given a set & of
cardinality a. The elements a,b,c of &/ may be abstract symbols or they may
be objects derived from some other mathematical context. We shall call .o/
an alphabet and its members letters. By a syllable we mean a symbol a™ where
a is a letter of the alphabet 27 and the exponent n is an integer. By a word
we mean a finite ordered sequence of syllables. For example b—3a%!c2c%a! is a
seven-syllable word. In a word the syllables are written one after another in
the form of a formal product. Every syllable is itself a word—a one-syllable
word. A syllable may be repeated or followed by another syllable formed from
the same letter. There is a unique word that has no syllables; it is called the
empty word, and we denote it by the symbol 1. The syllables in a word are to
be counted from the left. Thus in the example above a! is the third syllable.
For brevity a syllable of the form a! is usually written simply as a.

In the set W(7) of all words formed from the alphabet .o/ there is defined
a natural multiplication: the product of two words is formed simply by writing
one after the other. The number of syllables in this product is the sum of the
number of syllables in each word. It is obvious that this multiplication is
associative and that the empty word 1 is both a left and a right identity.
Thus W() is a semi-group.

However W(sZ) is by no means a group. In fact, the only element of W(.o)
that has an inverse is 1. In order to form a group we collect the words together
into equivalenee classes, using a process analogous to that by which the fun-

damental group is obtainod from the semi-group of p-based loops.
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If a word u is of the form w,a%,, where w, and w, are words, we say that the
word v = w,w, is obtained from u by an elementary contraction of type I or that
u is obtained from v by an elementary expansion of type 1. If a0 is the nth syll-
able of the word u, the contraction occurs at the nth syllable.

If a word u is of the form w,a”a’w,, where w, and w, are words, we say that
the word v = wya?*%w, is obtained from u by an elementary contraction of type
Il or that « is obtained from v by an elementary expansion of type II. The
contraction occurs at the nth syllable if a? is the nth syllable.

Words u and v are called equivalent (the relation is written u ~ v) if one
can be obtained from the other by a finite sequence of elementary expansions
and contractions. It is trivial that this is actually an equivalence relation;
W(27) is thus partitioned into equivalence classes. As before, we denote by
| ] the equivalence class represented by the word u. Thus, [#] = [v] means
the same as u ~ v. We denote by F[27] the set of equivalence classes of words.

It is easy to verify that if »" is obtained from» byan elementary contraction,
then wv’ is also obtained from uv by an elementary contraction, and that if
u’ is obtained from « by an elementary contraction, then «'v’ is also obtained
from wv” by an elementary contraction. From this it is easy to deduce that if
u ~u" and v ~ v, then uv ~ u'v’. In other words F[.%7] inherits the multi-
plication of W(%/), and the inherited multiplication is defined as follows:
|#][v] = [uv]. The associativity of the multiplication in F[./] follows im-
mediately from the associativity of the multiplication in W(g7). The equi-
valence class [1] is both a left and right identity. Thus F[&/] inherits from
W () its semi-group structure. However in F[o/] every element also has an
inverse: the inverse [u]™! of the class [«] is represented by the-word @ that is
obtained from u by reversing the order of its syllables and changing the sign
of the exponent of each syllable. For example, if u = b~3a%lc%%a’%!, then
% = ¢ 'a% 2% 2a1a%3. This shows that the semi-group F[27] is actually a
group; it is called the free group on the alphabet of. Note that we allow the
empty alphabet; the resulting free group is trivial. The free group on an
alphabet of just one letter is an infinite cyclic group. The abstract definition of
a free group will be given in the third section, and it will be shown that the
group F[&7] is, in fact, free according to this definition. The name ‘‘free
group on the alphabet &7 anticipates these developments.

2. Reduced words. It is important to be able to decide whether or not
two given words « and v in W(27) are equivalent. Of course, if one tries to
transform % into v by elementary expansions and contractions and succeeds,
then that is all there is to it, but if one fails, the question of equivalence
remains unanswered. What is wanted is a procedure, or algorithm, for
making this decision. The problem of finding such a uniform procedure is
usually called the word problem for the free groups Fl.o/]. A solution to the
problem is presented in the remainder of this seetion.

A word s ealled reduced (it is not possible to apply any elementary
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contraction to it, i.e., if no syllable of w has exponent 0 and no two con-
secutive syllables are on the same letter. It is obvious, since elementary
contraction always reduces the number of syllables, that each equivalence
class of words contains at least one word that is reduced. We propose now to
show that there is only one.

For any word w, the word p(w) is defined as follows: If w is reduced, then
p(w) = w. If w is not reduced, then p(w) is the word obtained from w by an
elementary contraction at the first possible syllable of w, i.e., the word p(w)
is obtained from w by an elementary contraction at the jth syllable of w,
where no elementary contraction is possible at the kth syllable for any
k < j. Note that it may be possible to apply an elementary contraction of
both types at the jth syllable of w. However, this situation causes no ambi-
guity, for w must then be of the form w = ua?a% where ua? is a reduced
word containing j — 1 syllables, and so either type of reduction yields
p(w) = uaPv. Clearly,

(2.1)  w 1s reduced if and only if p(w) = w.
(2.2) If u vs not reduced, then p(wv) = p(u)v.

The standard reduction of a word w is defined to be the sequence
w = pOw), p(w), p*w), .

If a word is not reduced, an application of p reduces the number of syllables
by 1. Hence, in the standard reduction of any word w there exists a smallest
nonnegative integer r = r(w) such that p"(w) = p"+(w). This number r is
the reduction length of w, and we define w, = p"(w). Note that p(w,) = w,
and therefore w, is a reduced word. In addition, the standard reduction
becomes constant, i.e.,

piw) = wy, for every i > r(w).
Since p(w) ~ w, we conclude that
(2.3) wy ts reduced and w ~ wy.
Moreover,

(2.4) w is reduced if and only if w = wy.

The central proposition in our solution of the word problem is

(2.5) u ~vif and only if uy, = v,.

Proof. If u, = v,, then we have

U~ Uy = Vy ~ U,
and so u ~v. In proving the converse, we may assume that v is obtained

from « by an elementary contraction.

Case [. w  waw and v - ww'.
Let k equal the reduction length of w. We contend that

pk' Y(n) p‘(l')‘
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The proof is by induction on k. First, suppose that k = 0, i.e., that w is
reduced. Then,

p(u) = ww' = .
Next, assume that £ > 0. By (2.2), we have

p(u) = p(w)a®w’,  p(v) = pw)w'.
The reduction length of p(w) is k& — 1. So the inductive hypothesis yields
prp(u) = p*~1p(v),
and the contention is proved. Since the words in the standard reductions of
w and v are eventually the same, it follows that u, = v,.
Case II. u = waPa%w’ and v = wa?+ o’
Again, let k equal the reduction length of w. We contend that
pFHE(u) = p*+1(v).

The proofis by induction on k. First, assume that k = 0, i.e., that wis reduced.
We consider two possibilities.
(a) The last syllable of w is not on the letter a. Then,

P(u) = wa?tw' =,

p2(u) = p(v).
(b) w = w"ar. Then w” is reduced and the last syllable of w” is not on a.
Hence,
p(u) = w'artPatw’,
pP(u) = w'artrt’ = p(o),
p2(u) = p(v).
Next, suppose that k > 0. By (2.2), we have
plu) = plwaratw’,  plv) = plw)ar+aw.
The reduction length of p(w) is ¥ — 1. Hence, the hypothesis of induction
gives
pr+p(u) = pfp(v),
which is
pk+2(u) = pkt1(v).
Thus, the contention is proved. As in Case 1, we conclude that u, = v,. This
completes the proof.
It follows directly from the preceding three propositions that

(2.6) Each equivalence class of words contains one and only one reduced word.
Furthermore, any sequence of elementary contractions of u must lead to the same
reduced word u,.

Thus we have a finite algorithm for determining whether or not w and v
represent the same element of Fl.o/ |5 one has only to find w, and v, and com-
pare them syllable by syllable,
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3. Free groups. Let G be an arbitrary group, and consider a subset E of
G. The collection of subgroups of @ that contain E is not vacuous since the
improper subgroup @ is a member of it. It is easily verified that the intersec-
tion of this collection is itself a subgroup that contains E; it is called the
subgroup generated by E. If E # o, then the subgroup generated by E
consists of all elements of G of the form g;"1go"2- - - g, where gy, go, - -+, g1 € E
and 7y, ne, - -+, m; are integers. On the other hand, the subgroup of @
generated by the empty set is trivial. If the subgroup generated by E is @
itself, £ is called a generating set of elements of G.

In the group F /] each element can be written (in many ways) as a product
of integral powers of [a], [b], [c], - - - . For example, [a2b%2] = [a]2[b]3[¢c] 2.
Thus the elements [a], [], [c], - - - constitute a generating set of elements of
F[o/]. We denote this generating set by [&/].

Let us call a generating set £ of elements of a group G a free basis if, given
any group H, any function ¢: E — H can be extended to a homomorphism
of G into H. (Since E generates (, such an extension is necessarily unique.)
A group that has a free basis will be called free. The simplest free group is the
trivial group 1; the empty set £ = & is a free basis of it.

(3.1) A4 group is free if and only if it is isomorphic to F[2f] for some 2.

Proof. The group F[.&/] is free because [.«/] is a free basis of it. To show
this, consider a function ¢: [2/] — H. Denote by ¢’ the induced mapping of
&/ into H. Extend ¢’ to a homomorphism into H of the semi-group W (o) of
words by defining

$'(amb™ -+ ) = (¢'(@)™(P'B)" -+,
and observe that if u ~ v then ¢'(u) = ¢'(v). It follows that ¢’ induces a
homomorphism of F[27] into H. This homomorphism is clearly an extension
of the function ¢: [/] — H; thus [/] is a free basis of F[./). If now G is
any group that is mapped onto F[.2/] by an isomorphism 4, then £ = A-1[2/]
is obviously a free basis of &, so that ¢ must be a free group.

Conversely let G be a free group, and let £ be a free basis of G. Let F[.2/] be
the free group on an alphabet o7 whose cardinality is the same as that of E.
Every element of &7 is a reduced word. It follows that if @ 5 b, then [a] # [b],
and so there exists a natural one-one correspondence between &7 and [27].
Hence, there exists a one-one correspondence «: £ — [27]. Since E is a free
basis, the correspondence « extends to a homomorphism ¢ of ¢ into F[</].
Since [«/] is a free basis of F[&7], the function «~1:[2/] — E extends to a
homomorphism ¢ of F[&7] into @. The homomorphisms ¢i: F[.o/] — F[7]
and Yé: G — G are extensions of the respective functions xkx1: (7] — []
and «~lk: K-~ K. Since these functions are identities, they extend to the

identity automorphisms of Fl.o/| and (f respectively. Sinee such extensions
arc unique, it follows that i and ¢dyh are identity antomorphisms. Thus
¢ maps (Cisomorphieally onto Flo/f and o V0 This shows that (f s

isomorphic to Flo/|, and we arve finished,
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The above proof shows also that the cardinality of the free basis £ of G is
equal to the cardinality a of the alphabet .&7. Thus free groups G, G’ are
certainly isomorphic if they respectively have free bases E, E’ of the same
cardinality. It will be shown (cf. (4.2) Chapter IV) that conversely, if free
groups G, @' have bases E, E’ of different cardinalities, then they are not
isomorphic. Granting this, it follows that to each free group @ there corre-
sponds a number n such that each free basis of ¢/ has cardinality exactly n.
The cardinal number = is called the rank of the free group ¢.

(3.2) Any group is a homomorphic image of some free group.

This fact is of the utmost importance for the theory of group presentations;
it means that, using free groups as ‘“‘coérdinate systems,” any group can be
coordinatized. Its proof is, of course, quite trivial: Let £ be any set of genera-
tors of a given group @, and let F[.2/] be any free group on an alphabet &/
whose cardinality a is equal to or greater than the cardinality of E. Let
A: [&/] — E be any function whose image is all of E. Since [%/] is a free basis
of F[&7], the function A extends to a homomorphism of the free group F[.2/]

onto G.
EXERCISES

1. In how many ways can the word a=2bb~la’bb—la~! be reduced to a4
by elementary contractions?

2. Develop a finite algorithm for determining whether or not two given
words represent conjugate elements of F[.o7].

3. Develop a finite algorithm for determining whether or not a given word
represents the nth power of an element of F[&7].

4. Prove that the elements y, xyx~!, 2%yx~2, - - - constitute a free basis of
the subgroup of F(x,y) which they generate. Deduce that the free group of
any given finite rank » can be mapped isomorphically into the free group
of any given rank m > 2.

5. Prove that the free group of rank » cannot be generated by fewer than
n elements.

6. It is known (Nielsen, Schreier, etc.!) that every subgroup of a free group
is free. Using this fact, prove that in a free group:
(a) There are no elements of finite order (other than the identity).
(b) If two elements commute they are powers of a third element.
(c) If um™@ = v, where m and n are relatively prime, then there is an
element w such that u = w", v = w™.
(d) If uvu = v then v = 1.
7. In Exercise 6 prove (a), (b), (c), (d) directly without using the Nielsen
theorem.

8. Show that if w,»,u’»" are elements of a free group such that wvu=lv=! =
w'o'(u')y Y'Yy U/, then wand @ need not commute.

PSeo 1T Fox, U Frea Difforentid Cadenlus THEL Subgroups,” dAnnals of Mathematics,
Vol 61 (1906), p. 108,



CHAPTER IV

Presentation of Groups

Introduction. In this chapter we give a firm foundation to the concept of
defining a group by generators and relations. This is an important step; for
example, if one is not careful to distinguish between the elements of a group
and the words that describe these elements, utter confusion is likely to ensue.

The principal problem which arises is that of recognizing when two sets of
generators and relations actually present the same group. Theoretically a
solution is given by the Tietze theorem. However, thislcads to practical results
only when coupled with some kind of systematic simplification of the groups
involved. Such systematic simplification is accomplished very neatly by the
so-called word subgroups, which are going to be introduced toward the end of
this chapter.

1. Development of the presentation concept. The concept of an abstract
group was derived from the concept of a permutation group (or substitution
group as it was called), and this was, naturally, a finite group. Thus, when
workers began to develop a theory of abstract groups they centered attention
almost exclusively on finite groups, and so a group was usually described by
exhibiting its Cayley group table. Of course, the use of a group table is not
usually possible for an infinite group, nor even very practical for a finite group
of large order. Furthermore the group table contains redundant information,
so that it is not a very efficient device. For example, the table

1 a b

1 1 a
a a b 1
b b 1 a

has nine entries, but, using the fact (obtained from the middle entry) that
b = a?, we can reduce the information necessary to determine the group to the
statement that the elements of the group are 1, a, and a? and the fact that
a® = 1. Thus the group in question is more efficiently depicted if we note that
the element a generates the group, that the equation a® = 1 is satisfied, and
that neither of the equations a2 = 1 or @ = 1 is satisfied.

This leads to the method of deseribing a group by giving generators and
relations for it. As introduced by Dyek in 1882-3) it ran about like this: o
group (fis determined if there is given a set of elements g, ¢y, -+, called

37
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gencerators, that generate the group, and a set of equations f(g;, ¢o, - *) = 1,
Jolttye oy -2 ) =1, -+, called defining equations or defining relations, that
have the property that every true relation that subsists among the elements
¢y s, - - is an algebraic consequence of the given cquations.

Now from a stricter point of view this procedure is somewhat vague in that
the left-hand sides of the equations do not have true existence. What kind of
an object is fi(g1, gs, - * +)? It cannot be an element of ¢, for if it were in G, it
would have to be the identity element 1. In order to write down such equa-
tions we must postulate the existence of some realm in which f,(gy, g5, " * *)
has an independent existence. Clearly, the object required is just the free
group. Thus we are led to the following reformation of the method of descrip-
tion.

Lot F be a free group with free basis x,, x,, - - - in one-one correspondence
with the generators g;, ¢y, - - * of G. Let ¢ be the homomorphism of F onto ¢
defined by ¢, =g¢;, j=1,2,---. For each of the defining equations
g g -7 0) =1, set

7, = fi(®y, 2, * " ), 1 =12 -,

That is, r, is the element of F obtained by replacing each occurrence of
g, j =1,2,+--, in the expression f,(gy, g5, - - ) by z;. For example, if the
ith cquation is g,9,9, 7195 = 1, then r, = x,2,x,71x,71. The assertion that the
cquation f,(gq, ge, * * *) = 1 holds in G is then equivalent to the statement that
r, is in the kernel of ¢. Thus,

1 = ér; = f,(g1, 9o " *)-

The clements 1y, 7y, - - + are called relators.

It is now easy to say exactly what it means for an equation to be an alge-
braic consequence of some others. Remembering that we have replaced each
cquation f,(gy, g, -+ *) = 1 by a group element r,, we see that the following
must be meant. An element f of an arbitrary group @ is called a consequence of
a set of elements f), f,, - - - in @ if every homomorphism o of  into any group
/1 that maps each of the elements f}, f,, - + - into 1 also maps the element f
into 1. Since every homomorphism of @ determines a normal subgroup, i.e.,
the kernel of the homomorphism, and conversely, since every normal sub-
group of @) determines a homomorphism of which it is the kernel; the defini-
tion can be rephrased as follows: An element f of @ is a consequence of elements
Ji.fo, + - if fis contained in every normal subgroup of ) that contains all the
elements fi, f,, + -+ . Let us call the set of all consequences of f;, f,, - - - the
consequence of fy, f,, - -+ . Then what we have found is that the consequence is
the interseetion of all the normal subgroups of @ which contain all the ele-
ments fq, fy, 0 Since the intersection of any colleetion of normal subgroups
is itsella normal subgroup, we can also say that the consequence of fi, f,, -+ -
is the smallest normal subgroup of @ which containg all the clements f1 fy, - -

We can determine the consequences of fi fo, =2 even more explicitly.
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Observe that any product of transforms of powers of these elements;i.e., any
element k of the form

!
LT 7 figyhy™
j=1

is mapped into 1 by any homomorphism that maps each of f;, f,, - - - into 1.
Hence every such element k is a consequence of f,, f5, - - - . It is easy to see
that the set of all such elements k constitutes a normal subgroup K of @; thus
K is contained in the consequence of f;, f,, - - - . On the other hand, K is a
normal subgroup of @ which contains all the elements f;, f,, « - -, and so it is
one of the normal subgroups belonging to the collection whose intersection is
the consequence of f,, f,, - - - . It follows that the consequence of f}, fo, - - *
is just K. We have therefore shown that an element of ) is a consequence of
f1, fo, - - - if and only if it is of the form

l .
LT o fih R
j=1
We shall have occasion to use the following theorem.

(1.1)  Let gy, g5, * - - be a set of elements of a group G, and let ¢ be a homo-
morphism of G onto a group H. Then ¢ maps the consequence of gy, g, * * * ONto
the consequence of the set ¢gy, gy, - * - of elements of H.

Proof. Denote the consequence of g;, g,, * * * by K and the consequence of
hy = ¢gy, by = $gs, - - by K . Since K, contains all the elements Ay, hy, - - -
and is normal, K, must contain K HJ—"I‘O prove the reverse inclusion,
consider any element 4 of ¢.K ;, and select an element g € K 4 such that ¢g = h.
If ¢ is any homomorphism of H that maps each of the elements A, A, -+ -
into 1, then ¢ must map each of the elements g;, g,, * - - into 1. Since g € K,
we must have ppg = 1, that is to say, wh = 1. Since & is mapped into 1 by
every such homomorphism, A must belong to K. This shows that ¢K, is
contained in K, and therefore ¢K, = K ;. This completes the proof. [3

Returning now to the homomorphism F 4 G, we denote by R the con-
sequence of the relators r,, r,, - - - . The assertion that the equations

fi(gl’g2”'.):1’ i=l,2,"',

constitute a defining set of relations for G from which all others can be derived
is simply the assertion that R equals the kernel of ¢. In this case the group G
is determined by the frce basis z,, #,, * - and the elements ry, 7,, - + - because
G is isomorphic to the factor group F/R.

2. Presentations and presentation types. The following definitions forma-
lize the ideas of the preceding secetion. Let F be a free group with a free basis B
that is supposed to be large enough to include an inexhaustible supply of hasic

clements.,
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The set I is called the underlying set of generators. A group presentation,
denoted by (x 1), is an object that consists of a subset X of the underlying
net ol gencerators and a subset r of the subgroup F(x) generated in F by x.
Notice that F(x) is isomorphic to the free group F[x] on the alphabet x. It is
important to observe that F(X) is itself a free group and X is a free basis of it;
this follows directly from the definition of free basis (without appealing to the
deep Nielsen-Schreier theorem that asserts that any subgroup of a free group
is free). The set x is called the set of generators of the presentation and the set
r is called the set of relators of the presentation. The group of, or defined by, a
presentation (X 1) is the factor group |x : r| = F(x)/R, where R is the
conscquence in F(x) of r.

A presentation of a group G consists of a group presentation (x : r) and
an isomorphism ¢ of the group | X : r | onto G Clearly, any homomorphism ¢
of the free group F(x) onto a group G whose kernel is the consequence of r
determines a presentation of (. Conversely, any presentation of G determines
such a homomorphism. That is, if y denotes the canonical homomorphism of
F(x) upon F(x)/R in the consistent diagram, then either one of ¢ and ¢ deter-
mines the other uniquely. When the extra precision is desired, we write

F(x)

4 ]

|x:r| — @

(x : 1), to indicate that (x : r) is a presentation of the group G with respect
to the homomorphism ¢.

The name “‘presentation’ was selected to describe the situation in which a
group G is studied by mapping a known group (the free group F(x)) onto it
because it was felt that this is in some way dual to the situation in which a
group ( is studied by mapping it into a known group (e.g. a group of permuta-
tions); the latter mappings are what are called “representations’ of G.

Although there is no logical necessity for it we shall now reintroduce the
concept of relation. The reason for doing this is that the manipulation of
relations fits more easily into our accustomed patterns of thought than the
manipulation of relators. For example, it is easy tosee thatif @ and b commute,
then the fact that (ab)? = 1 implies that a2h? = 1, but it is not quite so easy
to show that a?b? is a consequence of the two relators aba—1b~1 and (ab).
(In fact, a?? = b~ aba=16"1)"1b - b=1(ab)2b.) It is not difficult to put the
“relation” concept on a sound footing as in the following: by the formula
w v is meant what would more properly be written v - » (mod R), i.e.,
wr Vo ROThis s, of course, always with veference to a given presentation
(x : r). On oceasion we might even write (x @ oun ! Le-syor(x 1w o,

<) meaning the same thing as (X : we - There is no use in trying to be
more precise about it as the only advantage of the use of velations in the

place of relntors Hies in the informahity thato s achieved.
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The presentation notation may be used consistently even when the set of
relators is empty. Thus (X :)is a presentation of the free group F(x). Although
it is unlikely that the occasion should often arise, we might even denote by
(:) an especially simple presentation of the trivial group.

A presentation (X : r)is finitely generated if X is finite, finitely related if r is
finite. A finite presentation is one that is both finitely generated and finitely
related. A group is said to be finitely generated if it has at least one finitely
generated presentation, finitely related if it has at least one finitely related
presentation, finitely presented if it has at least one finite presentation.
Although nonfinite presentations are common enough and by no means
pathological, we shall be primarily concerned with finite sets x and r.

Just as the equations of a curve or of a surface take on different forms in
different coordinate systems, so a group has many different presentations.
For example, it may be shown that

|2y @ ayx = yaxy | ~ |ab : a® = b2,
and that
lzy @2y =yo, ya? =%y |~ | |

The problem of determining whether or not two presentations determine
isomorphic groups is the isomorphism problem. It is not possible to give a
general solution of this problem!, but partial solutions can be found, and these
are of great importance. These are usually of the nature of conditions on
presentations that must be fulfilled if the groups presented are to be iso-
morphic. Such conditions are of importance because they are the means of
showing that certain groups are not isomorphic. The methodology of finding
such partial solutions of the isomorphism problem will now be considered.

A mapping f: (X : 1) — (¥ : 8)of presentations consists of the two presenta-
tions (x : r)and (y : s)and a homomorphism f: F(x) — F(y) which satisfies
the condition that the image f(r) of r under f is contained in the consequence
of s.

Every presentation mapping f: (X : r) — (y : §) determines uniquely a
group homomorphism f,: |X : r|— |y : s|satisfying fuy = yf, where the
canonical homomorphisms F(x) —|x : r| and F(y)— |y : s| are both
denoted by the symbol y.

b
[X:1r]—>|y:s|

! There are a number of similar problems which are known to have no general solution:

deciding whether ornot the group defined by a given presentation is teivial (the triviality
problem), as finite, is abelinn, is freo, ote; decidimg whether or not agiven word s o
consoquence of a given sob of words (the word problem); and many othors, See M, O,
Rabin, “Recursivo Unsolvabihty of Group Theorotie Problems,”” Annals of Mathematics,

Vol 67 (19H8), pp. 172 104,
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Composition of presentation maps is defined in the natural way. If we are
given mappingsf: (x : r)—(y : s)andg: (v : §) — (z : t), the composition
gf consists of (x : r) and (z : t) and the homomorphism gf: F(x) — F(z).
The associative law holds and there are identity mappings. Thus the collec-
tion of presentations and presentation mappings forms a category. Moreover,
1y = 1 and (9f)x = gufs-

Presentation mappings f,f,: (X : 1) —(y : 8) are homotopic, written -
J1 = fs, if, for every x in x, the element f,(x)fy(x~1) belongs to the consequence
of s.

The condition for homotopy of presentation mappings can be restated:
yfi(u) = yfy(u) for every u € F(X). Since the definition of induced mapping
gives fy(u) = vf,(u), + = 1,2, we have shown

(2.1) fi = fy tf and only if f14 = fox-

Furthermore,

(2.2) If f; = foand g, = g,, then g,f; =~ gyf,

We have seen that a presentation map f determines a homomorphism f,.
Conversely,

(2.3) For each homomorphism 0: |X :r|—|y : 8|, there exists a
presentation map f: (X : r) — (¥ : 8) such that f, = 0. Furthermore, any two
such presentation maps are homotopic.

Proof. Consider the diagram
F(x) F(y)

) )

|x:r|—9—>|y:s|.

Since y is onto, we can assign to each x € X an element f(x) € F(y) in such a
way that yf(x) = 0y(x). Since F(X) is a free group with basis X this assignment
may be extended to a homomorphism f: F(x) — F(y) such that yf = 0y. The
image fr is contained in the consequence of s; hence f is a presentation
mapping, and f,, = 6. The uniqueness of f up to homotopy follows from (2.1). f)

Thus the homotopy classes of presentation maps are in one-one corre-
spondence with the homomorphisms between the groups presented. In
addition, the correspondence is composition preserving.

Presentations (x : r)and (y : s)are of the same type if there exist mappings

f
(x :r)<—> (y : 8)such that gf =~ 1 and fg =~ 1. The pair of mappings f,g
7
(or cither one separately) is called w presentation (or homotopy) equivalence.
(2.0)  Two presentations are of the same type if and only (f their groups are

isomorphic,
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Proof. If f,g is a presentation equivalence, then
gefe =@ e =lu =1,
S = (f9he =L =15
hence f, maps | X : r| isomorphically upon |y : s| (and g, = f,1). Con-
versely, if O maps | X : r|isomorphically upon |y : s|andf, = 6,9, = 671,
then
@f )x = gufe =070 =1=(1),, hencegf~1,
(f9)x = fagx = 0071 =1 = (1), hence fg =~ 1.

3. The Tietze theorem. Among presentation equivalences special impor-
tance is attached to the Tietze equivalences I, I', II, II' which will now be
considered.

Let (x : r) be any presentation and let s be any consequence of r. Consider
the presentation (y : 8) made up of y = x and 8 =r U s. In this case the
consequence of r equals the consequence of 8. Hence (x : r), (y : 8), and the
identity automorphism 1 : F(x) — F(y) define a presentation mapping
I: (x:r)—>(y : 8). Similarly, (y : §), (X : r), and the identity 1 define a
presentation mapping I’ : (y : 8) — (x : r). The pair of mappings I and
I’ is trivially a presentation equivalence.

Starting again from an arbitrary presentation (X : r) let y be any member
of the underlying set of generators that is not contained in x, and let £ be any
element of F(x). Consider the presentation (y : 8) made up ofy = x U y and
8 =r U y& . The homomorphism II: F(x) — F(y), defined by the rule
II(z) = z for any z € X, maps T into the consequence of 8 so that (x : r),
(y : 8),andII: F(X) — F(y) define a presentation mapIl: (x : r) - (y : 8).
Also the homomorphism II': F(y) — F(x) defined by the rule II'(x) = x for
any z e Xxand II'(y) = £ mapssontor U 1 and hence into the consequence of
r. It follows that (y : 8), (x : r),and II': F(y) - F(x) define a presentation
map II: (y : 8) > (x : r). The composition II'Il is the identity. Also for
every z€Xx, IIIl'(z)-2!=1, and NI'(y) -y 1 =1II¢) -y 1= &yl =
(1)1 which belongs to the consequence of 8, so that II II' ~ 1. Thus the
pair ILII" is a presentation equivalence. Note that II: F(x) — F(y) is an
inclusion and II': F(y) — F(x) is a retraction.2 .

Although theoretically I and I’ are completely trivial and IT and II' some-
what less so, in practice the opposite is true. Actually checking that an
element, or proposed relation, is a consequence of certain others can be quite
difficult. (It is a special case of the word problem, cf. footnote 1 on page 41.)
The same difficulty occurs in the proof of the fundamental Tietze theorem
that we are getting ready to prove. It is precisely in order to verify the use
of I and I in that proof that the following lemma is needed.

(3.1)  Let X and y be disjoint sets of underlying basis elements, and let 0 be
a retraction of F(X U y) onto F(X). Let (X : 1), be a presentation of a group (.

“ A retraction isany mapping f: X > YVaach that Yoo X oand f(p) plorovoery po Y.
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Then the kernel of the homomorphism ¢$8: F(x U y) — G is the consequence C
of the union of ¥ and the set of all elements y - O(y)™, y €y.

Proof. Clearly, #0(r) = ¢(r) = 1 for any r er. Since 0 is a retraction,
62 = 0, and hence ¢0O(y - O(y)™) = $(8(y) - O(y)™!) = $(1) = 1. Thus C is
contained in the kernel of ¢0.

To prove the converse, we consider the canonical homomorphism y of
F(x U y) onto the factor group F(x U y)/C and its restriction y" = y l F(x)

Fx Uy) ——> F(x)——> G
vy)/C

We have y'0(x) = y'(x) = y(x) for ® €x. Moreover, for y €y, we have
Y)Y 0y = py) - yOy)™ = y(y - O(y)™) = 1, hence y'0(y) = p(y). This
shows that 9’0 = . Suppose now that u € F(x U y) such that ¢0(u) =
Then yp(u - H(u)™) =y 0w - O(u)™t) =" (0(u) - 6(u)™) = (1) = 1, and so
u-0(u)t e C. But, $0(u) = 1, so that 6(u) is in the consequence of r and
therefore lies in C. We conclude that u = w - 6(u)™ - O(u) € C. {

—

S
(3.2) TieTzE THEOREM. Suppose that (X : T) T (¥ : 8) s a presentation
g
equivalence and that the presentations (X : t) and (¥ : 8) are both finite. Then
there exists a finite sequence Ty, T'; -+ ; T, T, of Tietze equivalences such
that f=T, - T,and g =1T,---T,.

Proof. 5VVe shall first prove this under the assumption that x and y are
disjoint sets. We consider the following diagram

Fx uUy)
ZR
Fx) ————>

T >
pu— A I
Ix

|x :r]

where : and o are inclusions, and p and ¢ are retractions defined so that p(y) =
g(y) for y € y, and o(x) = f(z) for z € x.
It is apparent that the presentation equivalence

X D) 7EUY :TrUb),

»
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where b = {y . p(y)"l}, canbe factoredinto 'Iet /¢ 11 quivalences Tl s
T,,T,, , where m is the number of elements of the et y sothat¢ = 7', - - - T
p =T, --- T, Similarly the presentation cquivileiee

m?

o

(y : s)zoi(x Uy :suua),
where a = {z - o(x)™'}, canbefactoredinto Tietze Il equivilencen N, 8,75 - -
S,.,8,’, where n is the number of elements of the set X, so that o N, -+ -8
=38, -8/

Now it follows from (3.1) that the kernel of the homomorphinni jyi t1 the
consequence of r U b. But yp = g.y0, and yg(s U a) = 1; hence 4t
contained in the consequence of r U b. By the same argument r U b ni con
tained in the consequence of s U a. Hence the presentation equivaleneen

’

n?

a B
xuUy :rub):’_(ny:rusuaub)*_;(xuy :suyUa)
o I

carried by the identity automorphism of F(x Uy) can be factored into

Tietze I equivalences U, U5« <« 5 Uy, Uppand Vi, Vi - o5 V0 Vo L

respectively, where p is the number of elements of the set r and ¢ is the number

of elements of the set s. Then, « = U, -- U, ,, o« = Ur’1+n - U/, B=
Viee Viem g = V;)+m -+ ¥V, and so

f=dfou=28,"-- SllV;-i—m e VYU U, Ty T,

g = pot’ﬁo _ Tml . o T1/U(;+n e U1/V1 e Vﬂ+msl e Sn_

; If x and y are not disjoint, we select from the underlying set of generators

a subset z which is disjoint from x U y and is in one-one correspondence with
x. This correspondence induces an isomorphism %, of F(x) onto F(z) and the
inverse isomorphism A, = ;71 of F(z) onto F(X). Let t = (1), k; = fhy, and
ky = hyg, so that f = kih, and g = hyk,.

(z : t)
AN
f

Clearly hy,h, is a presentation equivalence. We claim that k. k, is also a
presentation equivalence. Let the consequences of r, s, and t be denoted
respectively by R, S, and 7. Then ky(t) = fhy(t) = f(r) < S and fy(s)

hyg(s) < hy(R) = T, so that k, and k, are presentation maps; furthermore
koky <o ygfhy ~ hVhy U and kiky  fhyhyg - fy ~ 1. Now we can apply

the first part of the proof twice and we are finished.
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The importance of the Tietze theorem is that it reduces the problem of
showing that a given function of group presentations depends only on the
proup presented to one of checking that it is unaltered by the Tietze opera-
tions T and IL For example, in Chapter VII we shall show how to compute a
certain sequence of so-called elementary ideals from each finite group pre-
sentation. Since presentations that differ by the two Tietze operations will be
shown to give isomorphic sequences, we shall conclude that the elementary
ideals are group invariants.

As an example of how Tietze equivalences are used to obtain one presenta-
tion from another, let us show that the groups | z,y,z : ayz = yza | and
| vy za = ax | are isomorphic:

(2 xyz(yze)™1)
| II
(@,y,2,0 : zyz(yzx)~t, a(yz)1)
I |
(x,y,z,iz s za(ax)™L, a(yz)7Y, wyz(yze)l)
r
(,y,z,a : za(ax)™, a(yz)™1)
VI
(2,0 : zalax) L, 2(y1a)™), a(yz)™L)
¢
(0,2 : zalax)™, z(y~ta)™ 1)

1

(xy,a : za(ax)™).

As another example let us show that | z,y : xyx = yzy | is isomorphic to
| @b : a® = b%|. To see how this could be done, we begin by noticing that if
we multiply both sides of xyx = yxy on the left by zyx, we get (zyx)(xyr) =
(zy)(zy)(zy). Then we set @ = zy and b = xyx and observe that these last two
relations can be solved for x and y. This reasoning leads us to the following
sequence of Tietze cquivalences, which we now write in the informal style:

(y @ xyr = yry)
} II (twice)

(z,y,a,b : 2yr = yxy, a = zy, b = xyx)
4 I (thrice)

(z,y,2,b : zyx = yxy, a® = b%, a = 2y, b = xyx, v = 71, y = b~1a?)
y T (thrice)

(wy,@b : @ D2 x=a b,y = bla?)
VI (twice)

(a,h :a® ).
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4. Word subgroups and the associated homomorphisms. If one wishes to
find necessary conditions in the isomorphism problem, one is almost forced to
find some uniform method of simplifying groups. To accomplish this we are
going to make use of the “word subgroups,” as will now be explained.

To define a word subgroup we begin by selecting a subset W of some free
group F(x). (The elements of W are represented by words in the underlying
set of generators, and this is the origin of the term “word subgroup.”) Given
any group ¢ we consider the set Q = Q(G) of all possible homomorphisms
w of F(x) into G, and we denote by W(G) the subgroup of f generated by all
the elements w(w), w € W, w € Q. Such a subgroup W(@), which is called a
word subgroup, is necessarily a normal subgroup since it is unaltered by any
inner automorphism of G. In fact W(@) has an even stronger property—it is
mapped into itself by every endomorphism of G (such subgroups are called
Sfully normal). For if « is any endomorphism of & and if w € Q, then aw € Q
so that a(W(@®)) < W(G).

The simplest examples of word subgroups are the commutator subgroup and
the power. To obtain the commutator subgroup we select x = {x,y} and W
the subset of F(x,y) consisting of the single element [z,y] = ayx—ly~1. The
resulting word subgroup W (@) is called the commutator subgroup and may be
denoted [(,G]. It is the subgroup of G generated by all elements of the form
919291 2g571. The quotient group G/[G,G] is called the commutator quotient
group or the abelianized group, and the canonical homomorphism G — G/[G,G]
is called the abelianizer. The commutator quotient group is in abelian group;
abelianization just has the effect of making everything commute.

To obtain the nth power (n > 0) of ¢ we select x = {z} and W the subset
of F(x) consisting of the single element z”. The resulting word subgroup W(@)
is called the nth power of G and may be denoted G™. It is the subgroup of @
generated by all elements of the form ¢ It should be clear that G =1,
G' = (@, and that @™ = Q™ whenever m is divisible by n. Also it may be noted
that [(,G] = G2; in fact, g1950, 79, = (9192)% * (9.7'917795)° - 922, and this
means that (/G2 is always abelian.

If ¢: G, — G, is a group homomorphism and W is any subset of a free
group, then $W(G,) = W(G,) since dw €Q(G,) for any w e Q(G,). Con-
sequently, there is induced a unique homomorphism ¢, such that

(}1#»67’2

l l

GW(Gy) 25 Gy W (@)

is a consistent diagram. It is straightforward to prove that

w

(4.1) () If o is the identity, so is ¢y. (b) Given the composition Gy — Gy —
oy then (ph) s Puchy. () If P is onto, sois ¢y () If b is an isomorphism onto,
SO IS by
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For cxample, if (a) and (b) have been verified, (d) follows by simply observ-
ing
identity = (¢d™1)x = bu(d )
= (¢7')x = (¢ Dsbs-

Notice that if (d) is altered by the omission of the word “‘onto,” the result is
false.
Using (4.1), we can prove a result that was promised in Chapter III.

(-+.2)  If m and n are distinct cardinal numbers, then the free groups of rank
m and n are not isomorphic.

Proof. Consider free groups F,, and F of rank m and n respectively, and
assume that they are isomorphic. Then by (4.1) we must have an isomorphism
of F,/F 2 onto F,/F 2 However the elements of these groups can be exhibited
explicitly and counted; since F, [F,? is abelian its elements are just the
products x,°1z,’ - - - x,°m  where w,, - * -, x,, is a basis for F,, 6; =0 or I,
and only a finite number of the exponents J, are different from 0. Thus the
number of elements of F,/F,2 is just the number of finite subsets of a set
of cardinality m; it is 2™ for finite mand mforinfinitem. If ¥ /F, 2 ~ F,|F 2,

then m and n must be both finite or both infinite, and hence m = n. ™

From (4.1) there follows the most elementary of all necessary conditions
in the isomorphism problem :

(+.3) In order that G and G, be isomorphic it ts necessary that their com-
mulator quotient groups G,[[G,G,] and G,/[G,,G,] be isomorphic.

The commutator quotient group G/[G,G] of any group G is the largest
abelian group which is a homomorphic image of ¢. This idea is expressed
rigorously in the following way. Consider an arbitrary homomorphism 6 of &
into an abelian group K. Then, there exists a unique homomorphism 6’
mapping G/[G,G] into K which is consistent with § and the abelianizer
a: (- G/[G,G].

¢—" K

a 0 0 = 6’0
GlG,G)
To prove this assertion, consider an arbitrary commutator
lrgel = 19 927" s € G
Sinee Ais abelian,
Navyal  10g.0usf 1,

and, thevefore the consequence of the commutators of (044 contained in the
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kernel of 0. The group [@,(] generated by the commutators of G is ipso facto
contained in their consequence; hence 0’ is well-defined by

O'ag =069, geQ.

The uniqueness of §’ follows trivially. Notice that since [G,G] is a normal
subgroup of ¢ it actually equals the consequence of the commutators of G.
The result just proved is succinctly summarized in the statement

(4.4) Any homomorphism of a group into an abelian group can be factored
through the commutator quotient group.

(4.5) If a group G is generated by q,, g,, * * - , then its commutator subgroup
[G,G] s the consequence of the commutators [¢,,9;], %, j = 1,2, -+ .

Proof. The consequence K of the commutators [g;,9;] is contained in
every normal subgroup of f that contains {[g,.9,]}. Hence K < [G,G]. To
prove the converse we have to show that the commutator [u,v] of any two
elements of ¢ lies in K.

For every element g € (7, let [(g) denote the smallest non-negative integer
n for which there exist €, €5, -+, €, = =1 such that g = II}_,¢,¢. Obvi-
ously I(9) = 0 if and only if ¢ = 1. Our proof of the above proposition is by
induction on l(u) + l(v), If either l(u) = 0 or {(v)= 0 then [uv] =1 K. If
l(u) = l(v) = 1 the commutator [u,v] is one of the following:

[gz’g;‘]’

l9:709:]1 = 9,959,955

lg:9,711 = 9,70959.195

lg: 971 = 9797 '19:9:19:9.
and each of these must belong to K. Assume next that either I(u) or I(v) is
greater than 1. As a result of the identity

[u7v] == [v’u]_l’

we may assume that it is I(u) that is greater than 1. Then v = u,u, where
l(uy) < Uu) and {(u,) < l(u). By the inductive hypothesis

[Uqtg,0] = uy[Ug,v]uyHuy,v] € K,

and this completes the proof.

(4.6) If (x : 1) is any group presentation, then (X : r U {[z;x;], 4,j =
1, 2, -+ +}) is a presentation of the abelianized group of | X : r|.

Proof. Let y denote the canonical homomorphism of the free group F(x)
onto the factor group | X @ r|. The abelianizer of | X @ 1| is denoted as before
by a. We now have to show that the kernel of ayp is the consequence K of
r U L]l That K is contained in this kernel is trivial. To prove the
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reverse inclusion select any element 4 of F(x) such that ayu = 1. By (4.5)
yu is contained in the consequence of {[yz;yx;]} = {y[2;x;]}. But, by (1.1),
this is the image under y of the consequence of {[x,,z;]}. Thus yu = yv for
some consequence v of {[z,,,]}. Hence u = vw for some consequence w of r,
and the proof is complete. ™

5. Free abelian groups. In the theory of abelian groups, one encounters
another kind of free group, which is quite analogous to, but different from,
the free group as it is defined in this book. Specifically, a free abelian group of
rank n is any group which is isomorphic to the abelianized group of a free
group of rank n. Since the only commutative free groups are those of rank 0
and 1, i.e., the trivial groups and the infinite cyclic groups, it is clear that the
two notions overlap but do not coincide. Generally speaking, a free abelian
group is not a free group. For both types, however, the rank is a complete
invariant. Thus,

(5.1)  Two free abelian groups are isomorphic if and only if they have the
same rank.

It is not hard to construct a proof based on the same result for free groups,
(1.3), and the technique used in proving (4.2) (cf. Exercise 2 below).

There is an abstract characterization of the free abelian groups which is
entirely analogous to that of the free groups. A generating set £ of elements
of an abelian group G is a basts if, given any abelian group H, any function
¢: I — H can be extended to a homomorphism of G into H. Then,

(h.2)  An abelian group s free abelian if and only if it has a basis.
A proof based on (4.4) is straightforward.
Because of (4.6) it is an easy matter to give simple presentations of the free

abelian groups. For example (z,y : zy = yx) and (2,y,2 : vy = yx, yz = zy,
zx - xz) present the free abelian groups of rank 2 and 3 respectively.

EXERCISES

1. Prove the following addendum to (4.1): If ¢ is an isomorphism into, then
¢4 need not be an isomorphism into. (One solution: Gy = (x:), Gy = (u,v:),
Hle) - uvu o™l W(Q) = [G,G].)

2. If F, denotes the free group and 4, the free abelian group of rank =,
show that F,/F 2 ~ A,[A4,2 Deduce (5.1) from this.

3. Prove (5.2).

4. How many different homomorphisms are there of the free group of rank
2 onto the eyclic group of order 47

O, Show  that the presentations (ah @ o? 1, O I, ab ba) and

(¢ = ¢® 1) deseribe the same group,
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6. Show that the group presented by (x,y : zy? = y?x, yx? = %) is the
trivial group. (This is a hard problem.)

7. In the presentation (a,b,c,d : b = ¢ lac,c = dbd~,d = a~'ca, a = bdb™1)
verify that any one of the relations is a consequence of the others.

8. Show that the presentation (a,b : a® =1, b*> = 1, ab = ba?) describes
the symmetric group of degree 3.

9. Describe the word subgroup W((G) of anarbitrary group G for (i) W = zy,
(ii) W = a8, (iii) W = ayzy L.

10. Is theorem (1.1) necessarily true if ¢ is not onto?

11. Show that (4.5) is false if the words “‘consequence of”” are replaced by
the words ‘‘subgroup generated by”.



CHAPTER V

Calculation of Fundamental Groups

Introduction. It wasremarked in Chapter II that a rigorous calculation of
the fundamental group of a space X is rarely just a straightforward applica-
tion of the definition of 77(X). At this point the collection of topological spaces
whose fundamental groups the reader can be expected to know (as a result of
the theory so far developed in this book) consists of spaces topologically
equivalent to the circle or to a convex set. This is not a very wide range, and
the purpose of this chapter is to do something about increasing it. The
techniques we shall consider are aimed in two directions. The first is con-
cerned with what we may call spaces of the same shape. Figures 14, 15, and
16 are examples of the sort of thing we have in mind. From an understanding
of the fundamental group as formed from the set of classes of equivalent loops
hased at a point, it is geometrically apparent that the spaces shown in Figure
14 below have the same, or isomorphic, fundamental groups.

Circle Plane annular
region

Solid torus Pinched solid torus

Figure 14
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Similarly for Figure 15.

Sphere Spiny sphere

Figure 15

And again in Figure 16.

O OO

Ellipses with one Spectacle frames
point in common

Double plane annulus

Figure 16

We have purposely chosen these examples so that no two are topologically
equivalent. (This fact is not obvious.!) Nevertheless, all spaces included in the

! Most of the above spaces under the same figure are distinguishable from one another
beeause of the fact that the dimension of a topological space in the neighborhood of a
point is a topological invariant, i.c., under a homeomorphism the local dimension for any
point is tho same as that of its image under the homeomorphism. Sce W. Hurewiez and
H. Wallman, Dimension Theory, (Princeton University Press, Princeton, New Jersoy,
1918).
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same figure have isomorphic fundamental groups and, in some sense, are of
the same shape. In the first two sections of this chapter we shall study some

of the mathematical terminology used in describing this concept precisely and
its relation to the fundamental group. The definitions introduced will be
those ol retraction, deformation, deformation retract, and homotopy type. The

relation of homotopy type is the rigorous replacement of our vague notion of
spaces of the same shape.

The sccond over-all topic of this chapter is the calculation of the funda-
mental groups of spaces which are built up in a systematic way from simpler
spaces whose fundamental groups are known. As a simple example, consider
the space consisting of the union of two circles X and Y which have a single
point p in common. Now it is very reasonable—and also correct—to guess
that (X U Y) is the free group on two generators: one generating 7(X) and
the other 7(Y). However, this conclusion is certainly not an obvious corollary
of any techniques so far developed. Clearly, it would be of tremendous impor-
tance to have a general procedure for cementing together the fundamental
groups which correspond to the spaces that are being joined. For a wide
variety of spaces such a procedure exists; it is derived from the van Kampen
theorem. Most spaces encountered in topology, specifically the so-called com-
plexes, do exhibit a decomposition as the union of structurally simple subsets.
By repeated application of the van Kampen theorem to these components the
collection of spaces whose fundamental groups are readily calculable is enor-
mously enlarged. In Section 3 we shall give a precise statement of this all
important tool and discuss its application in several examples. A proof for it
appears in Appendix III.

1. Retractions and deformations. A retraction of a topological space X
onto a subspace Y is a continuous mapping p: X — Y such that, for any
pin Y, p(p) = p. A space Y is called a retract of X if there exists a retraction
p: X—7Y.

As an example, consider the square @ in 2-dimensional Euclidean space
R? defined by 0 <2 <1, 0 <y < 1. A retraction of @ onto the edge E
defined by 0 <z <1, y = 0 is given by

plzy) = (2,0), 0<a2zy <1

By restricting the domain of this function to the set ¢ consisting of all (x,y)
in @ such that zy(x — 1)(y — 1) = 0 (at least one of the factors must equal
zero), we obtain a retraction of the boundary of the squarc onto the edge E.
In addition, the origin (0,0) is a retract of the square, of its boundary (), and
also of the edge . The retraction, with domain suitably chosen in cach case,
is given by the function

ple.y) (0,0).
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More generally, for any point p of an arbitrary topological space X, the con-
stant mapping p: X — p is a retraction. A point is therefore a retract of any
space that contains it.

It follows from the above that any interior point p of a closed circular disc
D is a retract of the disc. By prOJectmg radially outward from p onto the
boundary D of the disc, we see that D is a retract of the complementary space
D — p. Analogous results hold in 3 dimensions. If p is the center of D and if
D is rotated about a diameter to form a 3-cell B, then p is a retract of B, and
the boundary sphere is a retract of B — p. If the disc D is rotated about a line
lying in its exterior, D describes a solid torus V and p describes a circle C.
We may conclude that C, forming the core of the solid torus, is a retract of V.
Similarly the torus that constitutes the boundary of V is a retract of V — C.

It is equally important, of course, to give examples of subspaces which are
not retracts of their containing spaces. These are also readily available. The
boundary of a square is not a retract of the square. Similarly, D is not a
retract of the disc D. There is no retraction of 3-space R? onto the solid torus
V nor onto its core C. The equator is not a retract of the surface of the earth.
Well, how do we know? How can one possibly prove the nonexistence of a
retraction? An answer is given in the following theorem.

(1.1) If p: X — Y is a retraction and X is pathwise connected, then, for
any basepoint p € X, the induced homomorphism py: m(X,p) — w(Y,pp) s
onto.

Proof. It was observed in Chapter II (cf. (4.6) and accompanying discus-
sion) that the algebraic properties of any homomorphism induced by a con-
tinuous mapping of a pathwise connected space are independent of the
choice of basepoint. For this reason, it is sufficient to check (1.1) for a base-
point p € Y. Consider the induced homomorphisms

w(¥,p) = (X, p) 2> m( ¥ ,p),

where i: ¥ — X is the inclusion. Since p is a retract, the composition pe
is the identity. Hence (cf. (4.5), Chapter II), we have (pt), = pyisx = identity,
and it follows that p, is onto, and we are finished.

The continuous image of a pathwise connected space is pathwise connected.
Thus, the space Y appearing in (1.1) is connected too. Without the provision
that X be pathwise connected, (1.1) would be false.

The square, the dise, and the space R® are convex sets and hence possess
trivial fundamental groups. It is true that a proof of the fact that the funda-
mental group of the sphere is trivial is not given until the end of this chapter.
However, the fact that all loops on the sphere having a common basepoint
can be contracted to that point certainly sounds plausible. Incidentally, the
word “sphere” alone always means the surface of the solid cell. Thus, in all
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the examples mentioned in the paragraph preceding (1.1), the fundamental
group of the containing space X is the trivial group. The subspace Y, however,
in cach example has an infinite cyclic fundamental group. A group containing
only one element can obviously not be mapped onto one containing more
than one, and the contentions of that paragraph are therefore proved.

We turn now to the notion of a deformation. The intuitive idea here is
almost self-explanatory. A topological space X is deformable into a subspace
Y if X can be continuously shrunk into Y. The words “into”” and “onto” have
their usual meaning. If the result of the shrinking is a set not only contained in
Y but equal to ¥, then we say X is deformable onto Y. For example, a square
is deformable onto one of its edges. The appropriate definitions are : A deforma-
tion of a topological space X is a family of mappings 2, X — X,0 <s <1,
such that A, is the identity, i.e., ky(p) = p for all p in X, and the function
defined by h(s,p) = h (p) is simultaneously continuous in the two variables
s and p.2 A deformation of a space X into (or onto) a subspace Y is a deforma-
tion {A} of X such that the image 4, X is contained in (or equal to) Y. We say
that X is deformable into, or onto, a subspace Y if such a deformation exists.

A square, for example, can be deformed onto an edge; a deformation in R?
is given by

(i) ks(x’y) = (z, (1 — 8)y), 0 < Z,Y,8 < L.

The family of functions
(i) hy@y) = (1 — s, (1 —sly), 0 <=zys <1,

is a deformation of the square onto the corner (0,0). The disc D defined with
respect to polar coordinates by the inequality 0 < r < 1 is deformed onto its
center by the functions

0<rs <1,

(i) Ay(r.0) = ((1—2).0), o _ g o

The complementary space consisting of all points of D except the center can
be deformed onto the boundary D of the disc. The deformation is given by

0<r <1,
(iv) hy(r,0) = (r(1 —s) + s, 0), 0 <s <1,
0 <0 <2m

The reader should check that for 0 << r <1, 0 <s <1, the inequalities
r <r(l —s)-Fs <1 are satisfied. Notice also that (iv) cannot be extended
to a deformation of D onto D. As before, we may extend our considerations
of a disc into 3 dimensions and conclude, for example, that a solid torus V

2\ genoralization is tho dofinition of a doformation of X ina containing space 7 as o
fanuly of mappimpgs b N - 7,0 0 s Fosbisfy g by () p for all poan X and the
condition ot smultancows continmty. ‘T'he more roatectod dolimtion of deformation
givon nhove waattablo for oar PUrposed,
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can be deformed onto a circle C forming its core, and that V — C can be
deformed onto the torus that forms the boundary of V.

A deformation of a disc onto its boundary can be constructed as follows:
Let the disc D be defined with respect to polar coordinates to be the set of all
points (r,0) that satisfy 0 < r < sin 0. (See Figure 17.) The boundary Dis

Y

800
,(/

e

Figure 17

the set of points defined by r = sin #. The deformation occurs in two steps:
In the interval 0 < s < 1, the entire disc is shrunk to the origin p. Then, in
} < s <1, points are moved along the boundary D in the counterclockwise
direction with increasing r and s. Specifically, for any ordered pair (r,0) such
that 0 < r < sin 6, we set

(r(1 — 2s), 0), for0 <s <3,

h =
= \(gin mr@s — 1), mr(@s — 1)), fory <s <l

It is not hard to convince oneself that this family of functions satisfies the
requirement of simultaneous continuity prescribed by the definition of a
deformation. This example is particularly interesting because we know from
(1.1) that the boundary D is not a retract of the disc D.

We have just seen an example of a topological space X which can be
deformed onto a subspace which is not a retract of X. It is natural to ask
whether, conversely, there exist retracts which cannot be obtained by de-
formation. The answer is yes, and a good tool for finding examples is Theorem
(1.3) below. We prove first, as a lemma,

(1.2) If {h;}, 0 < s < 1, is a deformation of X, then, for any basepoint p
i X, the homomorphism (h))y: m(X,p) — m(X,h(p)) is an isomorphism onto.

Proof.  Wedefine a path @ with initial point p and terminal point ¢ = A,(p)

by the formula
a(ty  h(p), O -1



58 CALCULATION OF FUNDAMENTAL GROUPS Chap. V

Let the equivalence class of paths in X containing @ be denoted by «. We
shall show that, for any § in 7(X,p),

(h)x(f) = o« B - o,

and the result then follows from (3.1), Chapter II. Consider therefore an
arbitrary element f in 7(X,p) and representative loop b in f. Set

ky(t) = hy(b(t), O0<s<1,0<t<]|b].

The collection {k} is certainly a continuous family of loops; its domain is
conveniently pictured in Figure 18.

S
hyd
a ky a
1 1
b ol ¢
Figure 18

Another continuous family of paths is defined as follows and represented
in Figure 19.

) a(l — (t — s)), 0<s<t<l,
t) —
Js(t) q, 0<t<s<l.
S
q
a
a~! ‘ t
Figure 19

A final continuous family of paths is represented in Figure 20 and defined by
a(s |, st 0 st

[t
A0 q. st 0 st L.
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Figure 20

The product family {j; - k, - I} is clearly defined and is a continuous family of
paths. It is represented in Figure 21.

S
hyb
/ / 7
g b a 14
Figure 21

Since {j, - k, * I} is a fixed-endpoint family, we have the equivalences
al-bra~c-hb-c,

where c is the constant path at ¢. The equivalence class containing any con-
stant path is an identity (cf. (2.6), Chapter II). Hence,

al-Bra=1[a1-b-a] = [hb]
= (h1)*/3>

and the proof is complete.

An arbitrary continuous mapping f: X — Y of a topological space X into
a subspace Vs said to be realizable by a deformation of X if there exists a
deformation (A, 0 - s 1 of X sueh that by if, where i V' > X is the

inclusion mapping. As a corollary of (1.2), we have the following theorem,
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(1.3) If a continuous mapping f: X — Y is realizable by a deformation of
X, then, for any basepoint p in X, the induced homomorphism fy: w(X,p) —
7(Y,fp) is an tsomorphism into.

Proof. Lett: Y — X be the inclusion mapping and {&} a deformation of
X such that &, = ¢f. Since (), = 4 fyx and since (hy), is an isomorphism
by (1.2), we may conclude that f, is also an isomorphism. Note that f is, in
general, not an onto mapping even though (%), is.

Obviously, a space X is deformable into a subspace Y if and only if there
exists a mapping f: X — Y which is realizable by a deformation of X.
Consequently, by virtue of Theorem (1.3), it is easy to find examples of
retracts which cannot be obtained by deformation. As we have seen, an edge
E of a square @ is a retract of the boundary @ of the square. However, Q

cannot be deformed into £. The fundamental group (@) is infinite cyclic and
7(E) is trivial, so no mapping of #(¢)) into #(E) can be an isomorphism.
Similarly, Q cannot be deformed onto a point. In contrast to a similar state-
ment we observed to hold for retracts, it is certainly false that an arbitrary
space X is deformable onto any point in X.

We are now ready to combine the notions of retraction and deformation
into a single definition. A subspace Y of a topological space X is a deformation
retract of X if there exists a retraction p: X — Y which is realizable by a
deformation of X.

Since %, defines a retraction in each of the formulas (i), (ii), (iii), (iv), each
exhibits a deformation retract. Thus, both an edge of a square and a corner
point are deformation retracts of the square. An interior point p of a disc D
is a deformation retract of D, and the boundary of D is a deformation retract
of D — p. In the following theorem, which is a direct corollary of (1.1) and
(1.3), we obtain an important property of deformation retracts.

(1.4) If a subspace Y is a deformation retract of a pathwise connected
topological space X, then w(X) is isomorphic to =(Y).

Notice in this theorem that Y must also be pathwise connected. A more
informative statement of (1.4) is the following:

If X is pathwise connected and the retraction p: X — Y is realizable by a
deformation and iof i: Y — X s the inclusion mapping, then, for any points
pin X and q in Y, both tnduced homomorphisms

P*: ﬂ(X?.p) - 77( Y)Pp)’
i*: 7T( qu) g ”(X»Q),
are isomorphisms onto.
The first, result is a direet corollary of (1.1) and (1.3). To prove the second,

consider the mappings

(N ) " m(Y.y) s m(N.q).
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We have already noted that p, is an isomorphism onto. Moreover, we know
that there exists a deformation {&} of X such that &, = ip. By (1.2), (h))y =
14 ps is an isomorphism onto, and it follows immediately that ¢, is also an
isomorphism onto. The big difference between the two statements of Theorem
(1.4) is that the latter not only says that two groups are isomorphic, but also
says explicitly what the two relevant isomorphisms are.

The concepts of retraction, deformation, and deformation retract can be
nicely summarized with the example of a square . Since there exists a
homeomorphism of @ onto the circular disc D that carries the boundary Q
onto the boundary D, we may conclude that the square, like the disc, may be
deformed onto its boundary. We thus have the following diagram :

@ (square)
deformation
but not
retract
deformation
retract Q (boundar}’)

retract retract
but not but not
deformation deformation

p (corner point) «—— — —F (edge).

deformation retract

Let the closed disc defined by the polar coordinate inequality 0 <r <1
be denoted by D, and its center by p. The open disc, defined by 0 < r < 1,
is denoted by D. Notice that D = D — D. The deformation (iv)of D —p
onto D can be extended as follows: For any r,s,0 such that 0 < r,0 <s <1,
0 <0 < 2, set

(rl —8)+s,0), if 0<r <1,

k(0 =\ 1.0, it 1 <r

This extended deformation shows that the complement R? — D of the open
disc in the plane is a deformation retract of the punctured plane R? — p. By
rotating the disc D about an axis lying outside D, as we have done before,

we obtain a solid torus V, whose surface and interior are denoted by V and V
respectively. The point p describes a circle €' under the rotation, and it is
obvious that the torus V is a deformation retract of the complement V — C.
Consider next a topological imbedding of the closed solid torus V into the
3-dimensional space R3. The image of C under the imbedding is a knot K. The
knotted torus which is the image of V and which contains K as a core, we

denote by W. Its surface and interior are denoted by W and IjV, respectively.
1t can be proved that the imbedding of V into R3 must carry V onto W and

V onto W. Consequently, it follows that W is a deformation retractof W — K ;
since the points of W remain fixed throughout the deformation, we may ex-

tend the mapping toallof % K and conclude that. % Wisa deformation
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retract of R® — K. Thus, R® — K and R3 — W have isomorphic fundamental
groups.? It is obvious that any knot of tame type is the core of such an open
toroidal neighborhood. It has been proved? that conversely, any knot which
possesses such a toroidal neighborhood is tame.

The following theorem, with which we conclude this section, is perhaps an
unexpected result. At first glance, one is very likely to guess that it is false.
As a matter of fact, the proof is almost a triviality.

(1.5) If the space X can be deformed into Y and if there also exists a retrac-
tion p of X onto Y, then Y is a deformation retract of X; moreover, p can be
realized by a deformation.

Proof. Let {h,} be a deformation of X into Y. We define a new deforma-
tion {k,} of X as follows. For any point p in X,

h2s(p)> 0 g S g %:
Ph2~2s(p)’ % <s < 1'

Then, ky(p) = ko(p) = p. The condition of simultaneous continuity in s and p
is satisfied because the two definitions of k, agree. Using the top line, we get
ky(p) = hy(p). Since k,(p) is by assumption in Y, we obtain from the second
line ky(p) = phy(p) = hy(p). The retraction p is realized by the deformation

because k,(p) = phy(p) = p(p).

2. Homotopy type. Topological spaces X and Y are of the same homotopy
type if there exists a finite sequence

X=X, X, ,X, =Y

n

of topological spaces such that, for each 7 = 1, - - -, n, either X, is topologi-
cally equivalent to X, ;, or X, is a deformation retract of X, ,, or vice-versa.?
The relation of belonging to the same homotopy type is obviously an equiv-
alence relation. From (1.4) above, and (4.7) of Chapter II, we conclude that

(2.1) If X and Y are pathwise connected spaces of the same homotopy type,
then w(X) is isomorphic to m(Y).

Any point in a convex set C is a deformation retract of C. It follows that

3 However, the fundamental groups of R* — K and R? — W may not be isomorphic
(the torus W may be ‘‘horned’’); See J. W. Alexander, “*An Example of a Simply Con-
nected Surface Bounding a Region which is not Simply Connected,” Proceedings of the
National Academy of Sciences, Vol. 10 (1924), pp. 8-10.

4 B, Moise, ‘‘Affine Structures in 3-Manifolds, V. The Triangulation Theorem and

Hauptvermutung,” Ann. of Math. Vol. 56 (1952), pp. 96-114.
5 For the usual definition of homotopy type sce P. J. Hilton, An Iniroduction to

Homotopy Theory, Cambridge Tracts in Mathematies and Mathematical Physies, No. 43
(Cambridgo University Press, Cambridge, 1953). For proof that Hhilton’s definition is tho
same s ours soo B HL Fox, “On Homotopy 'Typo and Deformation Rotracts,” Ann. of

Math. Vol 41 (1913), pp. 1050,
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any convex set is of the same homotopy type as a point. Thus our collection
of spaces of known fundamental group may be characterized as all those of
the homotopy type of a circle or a point. Homotopy type is one of the most
important equivalence relations in algebraic topology; most of the algebraic
invariants are invariants of homotopy type. It is a much weaker relation than
that of topological equivalence. Each of the spaces pictured in Figures 14,
15, and 16 is of the same homotopy type as the others in the same figure.

3. The van Kampen theorem. The formulation of this important result
which appears in (3.1) does not, at first glance, look like a computational aid
to finding fundamental groups. There are, however, distinct advantages to
this abstract approach. One is conceptual simplicity: The statement of (3.1)
reflects only the essential algebraic structure of the theorem and, for this
reason, is the easiest and clearest one to prove. In addition, the important
corollaries ((3.2), (3.3), and (3.4)) needed in the next chapter follow most
easily and directly from the abstract presentation. The classical formulation
of the van Kampen theorem in terms of generators and relators is derived
and given in (3.6).

Let X be a topological space which is the union X = X; U X, of open
subsets X; and X, such that X;, X,, and X; = X; N X, are all pathwise
connected and nonvoid. Since the intersection X is nonvoid, it follows that
the space X is pathwise connccted. We select a basepoint p € X, and set
G = #(X,p) and G, = 7(X,,p), ¢ = 0, 1, 2. The homomorphisms induced
by inclusion mappings form the consistent diagram

o, w, Wy = w0 = w,0,.

G

(3.1) Tue vaNn KampPeEN THEOREM. The image groups w,G,, + =0, 1, 2,
yenerate G. Furthermore, of H vs an arbitrary group and w,: G, — H,1 = 0,1, 2,
are homomorphisms which satisfy wy, = w0, = p,0,, then there exists a unique
homomorphism A: G — H such that v, = Aw,;, 1 = 0, 1, 2.

A proof is given in Appendix ITI. Notice that, in view of the consistency
relation o, af)y  m,0,, the assertion that G and w,G, generate @ is
fully equivadent to and may replace the first sentence in (3.1). An immediate

corollary is then

(3.2)  Af Ny and Ny are simply connceted Ahen so s X N, U\,
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As will be shown in detail among other examples at the end of this chapter,
the next corollary of the van Kampen theorem solves the problem of deter-
mining the fundamental group of two circles joined at a point (cf. Figure 22).

(8.3) If Gyistrivial and Gy and G, are free groups with free bases {ay, oy, * - *}
and {fy, Pg -}, respectively, then G is free and {w oy, wyoty, =+, Wyfy,
Wyfy, * * *} 18 a free basis.

Proof. Let H be a free group with free basis {x,, ,, - - *, ¥, ys, * * *} such
that the functions y; and y, defined by

P, = Xy, j=1y21°"7
w2ﬁk=yk’ k=1,2,---,

are one-one correspondences between {ay, oy, * * -} and {z;, 2,, * - -} and
between {B;, By, -+ *} and {yy, ¥, * * *}, respectively. Since @, and G, are free,
these correspondences extend to homomorphisms

W, G’l—>H, 1=1, 2.

Since G, is trivial, there is a corresponding trivial homomorphism y,: G, — H,
and, in addition y, = ¥,0; = y,0,. By the van Kampen theorem, there exists
a homomorphism A: G — H such that v, = lw;, + = 0, 1, 2. Consequently

Ao, = o, = 25, j=1,2---,
Ao = oy = Ya k=1,2,---.
Since H is free, there exists a homomorphism u: H — @ defined by
B = 1%, J=12",
WYy = WoPy, k=1,2,---.

Obviously, both compositions Ax and ul are identity mappings. Hence, both
are isomorphisms onto and inverses of each other, and the proof is complete.

(8.4) If X, is simply-connected, then the homomorphism w, is onto. Further-
more, if {0y, oy, ** } generates G, then the kernel of w, is the consequence of

{0504, 0105, - - -}
Proof. Since G, is trivial, the image group w,@, generates G. No group

can be generated by a proper subgroup; so w,G¢; = G. Turning to the second
assertion, we observe that

wy0,0; = wyblyo; = 1, j=12,---.
Hence, the consequence of {00, 00, + - <} is contained in the kernel of ;.
Conversely, consider an arbitrary clement 8 in the kernel of @, and the
canonical  homomorphisim g, 2 (1, > 1, where Il s the quotient group
01,/ (consequence of {00, Qo - - 1), The composition g0, which we denote

by g, s, of course, trivinl. Denoting the trivinl homomorphism of ¢/, into /1
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by v, Wwe obtain the consistency relations y, = 9,0, = y,0,. By the van
Kampen theorem, there exists a homomorphism A: G — H such that
y; = Aw,. Therefore

i = Aw,f =1,

and it follows that § is a consequence of {f;a;, 0,ay, - - -}. This completes the

proof. P

We are now in a position to calculate the fundamental groups of some
interesting topological spaces. One drawback, however, will be the condition
imposed on X, and X, by the van Kampen theorem that they be open sets.
Most of the common examples don’t come that way naturally, and we shall
have to do a little prodding. Actually, under certain conditions, the van
Kampen theorem holds for closed sets X;, X, and could be applied to all our
examples directly.® However, without introducing a good bit more termin-
ology, it is difficult to describe the proper generalization succinctly. What has
to be done in each case will become clear as we proceed.

(i) The n-leafed rose. This space, denoted by C,), is the union of n topo-
logical circles X, - -+, X, joined at a point p and otherwise disjoint (cf.
Figure 22). The fundamental group of C,, is free of rank n. More fully, if x;

X,

XS
Figure 22
6 13, R. van Kampoen, “On thoe Connection betwoen the Fundamontal Groups of Somo
Rolatod Spacos,” Awmerican Jowrnal of Mathematics, Vol 55 (1933), pp. 261 267; P.Olum,
“Nonabolinn Cohomology and van Kam yon's Thoorem,” Ann. of Math., Vol. 68 (1958
#) ] .

pp. 658 GOR.
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is a generator of the infinite cyclic group (X)), and w;: =(X;) > #(C,) is
induced by inclusion, then

7(Cln) = oy, - -+, 0, ¢ .

The proofis by induction on n. The space C|;, is a circle, whose group has been
shown in Chapter II to be infinite cyclic, i.e., free of rank 1. Consider

Cinsn = Oty Y Xy,
{p} = O(n) N Xn+1'

Except for the fact that C(,, X,,,, and {p} are not open subsets of C,.,,, the
desired conclusion follows immediately from (3.3). To get around the diffi-
culty, consider an open neighborhood N of p in C,,,,, consisting of p and the
union of 2(n + 1) disjoint, open ares each of which has p as one of itsendpoints
(cf. Figure 23). Then C,,,, X, ,,, and {p} are deformation retracts of C,, U N,

Figure 23

X,.1 UN, and {p} U N, respectively. The latter are open subsets of C(,.,,),
and (3.3) may be applied to complete the proof. In particular, for n = 2, we
obtain the answer to the problem posed in the introduction to this chapter—
that of computing the fundamental group of two circles joined at a point.

(ii) The sphere. Let X, be an open equatorial band dividing the sphere X
into north and south polar caps. Set X, equal to the union of X, and the
north polar cap and X,, the union of X, and the south polar cap. Clearly,
N Xy, and X X, N X, are open, pathwise conneeted, and nonvoid in
X N, W X, Morcover, the spaces X and X, ave homeomorphie to convex
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discs and hence are simply-connected. By (3.2), it follows that the sphere is
also simply-connected.

(ili) The sphere with n > 1 holes. By stretching one hole to an equator and
projecting the result on a plane, one can see that the sphere with n > 1 holes,
denoted by 8,,, is topologically equivalent to a disc with » — 1 holes. If
n > 1, the disc contains an (n — 1)-leafed rose as a deformation retract
(ef. Figure 24). We conclude that (S, is a free group of rank n — 1. (The
trivial group is free of rank 0.)

N 4
\ / \
N| |1/
NN /
N AR ot S
V] N
/1 N
(, W\)

il

Figure 24

(iv) The torus. We shall exhibit the torus X as the union of two open sub-
sets X, and X, such that X, is a disc and X, contains a 2-leafed rose as a
deformation retract. The decomposition is pictured in Figure 25. The subspace
X, is the torus minus a closed disc (or hole) D, and X, is an open disc of X
which contains D. The intersection X, = X; N X, is an open annulus,
and its fundamental group is therefore infinite cyclic. That X, is of the

X,
Figure 25
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homotopy type of a 2-leafed rose can be seen by stretching the hole D as
indicated in Figure 26. Hence, (X)) is free of rank 2. A generator of =(X)
is represented by a path ¢ running around the edge of X, and X,. From
Figure 26 it is clear that such a path is equivalent in X; to one running first

Topological
equivalence

4ompy

type

Figure 26

around a, then b, then a in the opposite direction, and finally around b in the
opposite direction. Hence

[c] = [a][b][a]"[6]™,

where the brackets indicate equivalence classes in X, Another good way to
visualize this relation is to cat the torus along a and 6 and flatten it out as in
Iigare 27 The anbsets X and X, are shown as the shaded regions, and it is

cany Lo read Che above relntion from the thied pictare of Figare 27, To
. S
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Figure 27

summarize: 7(X,) is a free group and « = [a] and y = [b] constitute a free
basis, X, is simply-connected, and 7 (X,) is generated by an element whose
image in (X,) under the homomorphism induced by inclusion is zyz—1y~1. It
follows from (3.4) that the homomorphism w,: 7(X;) - 7(X) induced by
inclusion is onto and that its kernel is the consequence of xyxz—1y—1. Thus, the
group of the torus has the presentation

(xy @ xya~ly™)
or, in the language of relations,

(xy : xy = yx).
This group is the free abelian group of rank 2.

The final objective of this chapter is to derive from (3.1) a formulation of
the van Kampen theorem in terms of group presentations. The spaces X
and X,, ¢ = 0, 1, 2, are assumed to satisfy all the conditions imposed in the
paragraph preceding (3.1), and the notation for the various fundamental
groups and homomorphismsinduced by inclusion is also thesame. In addition,
we assume given group presentations

Gy Ixorfy,
(3.5) Gy 1y @8],
Go 1% b,
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The problem is to find a group presentation of @, and the solution is stated in
(3.6).

We denote by F,, F,, and F, the free groups which are the domains of
&1, bs, and @, respectively. It is convenient to assume that X and y are dis-
joint and that their union is a free basis of a free group F. Thus, F, and F,
are subgroups of F. There exists a unique homomorphism ¢: F — G such
that

g{)]F,.:w,gAi, i =12

Notice that ¢r = ¢s = 1. Inasmuch as F is free, the mappings 0, and 0,
can be lifted to the free groups, i.e., there exist homomorphisms 6;: F, — F,,
1 =1, 2, so that

Fi<2 F 25 F,
I
G<— Gy —> G,
91 02
is a corlsist_ent diagram. Where z = {zl, Zy, * '}, consider the set of all ele-
ments 0,2,0,2,71, k=1,2, -+, in F. Clearly,
$(0,2,0,27) = (011012 (03he05271)
= (w0102 (Waladozc )
= wopolzz ) = 1.
Thus, the consequence of T U s U {6,2,0,2,7'} is contained in the kernel of ¢.
We contend that the converse is also true. To prove it, consider an arbitrary

homomorphism y: F — H which mapst U s U {0,2,0,2,7%} onto 1. It is then
obvious that there exist homomorphisms y,: @; — H, ¢ =1, 2, so that

y| Fi
F,25 H
‘tl
Vi
G

is consistent. Furthermore, since 90,2, = w0y, k = 1, 2, - - -, it follows by
diagram chasing that

Y101b62 = Vabadbozis k=1,2,-

Since the clements ¢gz,, oo, * * - generate G, we may conclude that the homo-
morphism 1, is well-defined by

vo 0 = pul,.

By the van Kampen theorem (3.1), there exists 1 homomorphism A: ¢ > [
A | ) |
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such that y;, = Aw,, 1 =0, 1, 2. Consider, finally, an arbitrary element
u; € F;, v =1, 2. Then,

yu; = pbpu; = odu; = Apu,
’lp = A¢o

It follows that anything in the kernel of ¢ is also in the kernel of g, and our
contention is proved. Thus, the kernel of ¢ equals the consequence of

and hence

r Us U {0202,
and we have proved

(3.6) ALTERNATIVE FORMULATION OF THE VAN KAMPEN THEOREM. If
the groups Gy, Gy, and G, have the presentations (3.5), then

G=|xy : 18 {0,202,

EXERCISES

1. Consider the closed circular disc D with center p and boundary D as
shown in Figure 17. We have seen that the complement in the plane R? of the

open disc D= D — D is a deformation retract of the punctured plane
R2 — p. Prove that the complement R2 — D is not a deformation retract of
R2 — p, but that R2 — D and R? — p are of the same homotopy type.

2. Prove that if X is a deformation retract of ¥, and Y is a deformation
retract of Z, then X is a deformation retract of Z.

3. Find a presentation for the fundamental group of (a) a Klein bottle,
(b) a double torus.

4. Prove that the three spaces pictured in Figure 16 belong to the same
homotopy type but to distinct topological types.

5. What is the fundamental group of the complement R3 — X for (a)
X = circle; (b) X = union of two separated circles; (¢} X = union of two
simply linked circles?



CHAPTER VI

Presentation of a Knot Group

Introduction. In this chapter we return to knot theory. The major objec-
tive here is the description and verification of a procedure for deriving from
any polygonal knot K in regular position two presentations of the group of
K, which are called respectively the over and under presentations. The
classical Wirtinger presentation is obtained as a special case of the over
presentation. In a later section we calculate over presentations of the groups
of four separate knots explicitly, and the final section contains a proof of the
existence of nontrivial knots, in that it is shown that the clover-leaf knot
can not be untied. The fact that our basic description in this chapter is con-
cerned with a pasr of group presentations represents a concession to later
theory. It is of no significance at this stage. One presentation is plenty, and,
for this reason, Section 4 is limited to examples of over presentations. The
existence of a pair of over and under presentations is the basis for a duality
theory which will be exploited in Chapter IX to prove one of the important
theorems.

If K is any knot in 3-dimensional space R? and p, is any point in R — K,
then the fundamental group m(R® — K,p,) is called the group of K. Since
R?® — K is connected, different choices of basepoint yield isomorphic groups.
For this reason, it is common practice to omit explicit reference to the base-
point p, and speak simply of the group w(R? — K) of the knot K. Nevertheless,
the precise meaning of “‘the group of K is always “‘the group #(R3 — K, p,)
for some basepoint p,.” It will be clear that the particular over and under
presentations obtained from a given knot in regular position depend not only
on the knot but also on a number of arbitrary choices. Hence, the terminology
“the over and under presentations of the knot K’ exemplifies to an even
greater degree the same abuse of language as the phrase “‘the fundamental
group of the space X.”” A knot in regular position has many pairs of over
and under presentations. All of these will be seen to be of the same type.

1. The over and under presentations. Let K be a polygonal knot in regular
position and &£ the projection P(x,y,2) = (x,y,0) (cf. Chapter I, Section 3).
For some positive integer n, we select a subset @ of K containing exactly 2n
points no one of which is either an overcrossing or an undercrossing. These
divide K into two classes of closed, connected segmented arcs, the overpasses
and the underpasses, which alternate around the knot, i.c., each point in @
belongs to one overpass and one underpass. The subdivision is to be chosen

72
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so that no overpass contains an undercrossing and no underpass contains an
overcrossing. The construction can, of course, be done in many different ways
although ordinarily we would want n as small as possible. We denote the
overpasses by 4,,- -+, 4, and their union 4, U --- U 4, by 4, the under-
passes by By, - -+, B, and their union B; U - - - U B, by B. The ordering is
arbitrary. It should be obvious that there exists a semi-linear homeo-
morphism! of R3 onto itself which displaces points vertically, i.e., parallel
to the z-axis, such that the image of A — @ lies above the zy-plane R? and
that of B — @ lies below R2. Since K and its image under this homeomorphism
are equivalent polygonal knots, we make the simplifying assumption that K
is in the image position to begin with. It follows that @ < R2.

Each presentation is made with respect to an orientation of K and of R3.
Accordingly, one of the two directions along the knot is chosen as positive,
i.e., we draw an arrow on K. In R® we shall consistently refer orientations to a
left-handed screw. Two basepoints are selected : one, p,, lying above the knot
and the other, p,’, below. For later convenience, we shall assume that p, =
(0,0,25) and p," = (0,0, —z,) for some positive z,. (Then (z,y,2) € K implies
that —z, < 2z < z,.) Thus, a rotation of 180° about the x-axis carries one
basepoint onto the other. Finally, we choose a point ¢, € R? — 2K.

Let us call a path a in R? simple if it satisfies the following three conditions:
It is polygonal, neither initial nor terminal point belongs to ZK, and a
intersects 2K in only a finite number of points, no one of which is a vertex
of a or a vertex of ZK. Let F(X) be an arbitrary free group freely generated
by x = (2, * -+, z,). To each simple path a in R? — & B we assign an element
a¥ in F(x) defined as follows:

¥ _ € ... €
af =z, @ z, %,

where the projected overpasses crossed by a are, in order, 4, ,- -+, P4,
and where ¢, = 1 or —1 according as a crosses under 4, from left to right or
from right to left (in other words, according as 4, and the path a form a
left-handed or a right-handed screw). The assignment a — a¥, illustrated in
Figure 28, is clearly product preserving,

(@, ag)* = a;*a,f.
It is not, however, necessarily a mapping onto #(x). For any point p € R?, let
P be the path which runs linearly from p, parallel to R? to a point directly
over p and thence linearly down to p. For any path a in R2, we set

*a =a(0)-a-afal)L

The group F(x) is to be the free group of the over presentation. A homo-
morphism ¢: F(X) - > w(R? - K, p,) is defined as follows: Let a; be a simple

VA mapping B* > B% is semd inear if its rostriction to ovory compaet streaight lino
sogmont is linone at all hut o tinito numbor of points. Thos, polygons go into polygons,
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Figure 28. a* = xya, 2,7, 12,7}

path in R? — #B such that a* = x,,j = 1, -, n. We define
¢x [*a j:l7...7n’

where the square brackets indicate the equivalence class in R® — K of the
py-based loop *a;. It is obvious that ¢z; is independent of the particular
choice of representative path a,. The homomorphism ¢ is the unique exten-
sion to the entire group F(x) of this assignment on the generators, z,, - -+,
It follows that

n

pat = [*a],
for any path a in R? — ZB. It is our contention that the homomorphism ¢
is onto or, in other words, that ¢x,, - - -, ¢z, generate (R — K, p,). The

proof is deferred until the next section; but it should be pointed out that the
result is a very natural one. As suggested by Figure 29, it is geometrically
almost obvious that every p,-based loop in R? — K is equivalent to a product

7’0//‘

Figure 29
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of the loops *a;,j = 1, - - -, », and their inverses. It is hard to see what could
go wrong.

The generators for the under presentation are chosen in an entirely anal-
ogous manner: Let F(y) be a free group freely generated by y = (y,, - -+, v,)).
To each simple path b in R — 24 we assign b in F(y) defined by

[ [
bb=yj11 ..‘yj m

m

where the projected underpasses crossed by b are in order .@B,l, SN Q”B,.m,
and §, = 1 or —1 according as b crosses over B; from left to right or from
right to left (i.e., according as B; and b form a right-handed or a left-handed
screw). The assignment b — b? is illustrated in Figure 30.

By

Figure 30 ” = y,y, 0007 'y5 !

A homomorphism ¢": F(y) — w(R® — K, p,’) is defined in the same way:
Where Z is the reflection %#(x,y,2) = (x,y,—2) and a is any path in R2 we set
«@ = #*a.Let b, be a simple path in B2 — £4 withd =y, i =1,--+, n.
Then,

(ﬁ/yz‘:[*bi]» t=1,",n,

where the square brackets indicate the equivalence class in m(R3 — K, p,’).
Again, we contend that the extension of this assignment on the generators is
a homomorphism onto.

The images #B;, i = 1, -+ -, n of the underpasses are disjoint segmented
arcs. Hence we may select disjoint, simply-connected, open sets Vy, - -+, V,
in R? such that B, < V,,i =1, ---,n, and such that their boundaries
are the disjoint images of simple loops vy, * - -, v, which run counterclockwise
(from above) around V,, -+ -, ¥, respectively. Similarly, we choose simply-
connected, disjoint, open sets U7, -+ U in R? such that 4, < U, j =
| ISR
[Z NN T which run clockwise (from above) around Uy - U, respee-

n, with boundaries that are the disjoint images of simple loops

tively. We also insist that the previonsly chosen point g, lie outside the

closures of all the vegnons 17 /'l, ‘) 1o -, n. Next, we seleet o set of
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simple paths ¢, - - -, ¢, such that each ¢, has initial point g, and terminal
point v,(0), and c,(t) € R? — U V. unless t = | ¢, ||. (V, is the closure of V.)
Similarly, we choose a set of s1mple paths d;, - - -, d, such that d,(0) = g,
and d,(|| d; [|) = »,(0), and d,(t) € R? —plﬁk unless ¢ = || d; ||. These paths

may, of course, be chosen in several ways. Examples that illustrate these
regions and paths are shown in Figures 32, 33, and 34.

We are now in a position to describe the two presentations. The over
presentation of m(R® — K, p,) is

(1.1) (T, sy Zy 2 TR
wherer; = (c; v, - ¢;”)¥,i = 1,- - -, n. The corresponding under presentation
of m(R® — K, p,’) is
(12) (yl’ s Yn St sn)¢"
where s; = (d; u;-d;/1)?, j=1,-+-,n The validity of the equations
¢r,=1and ¢'s;, =1,4,j =1, -, n, is geometrically easy to see. We have
or; = [*(c; v, ¢, )], t=1,--,n,
and
¢'s; = [x(d; - u,; - d;7)], J=1-",n

The contraction of a typical loop *(c; * v, - ¢,!) by sliding it below B, is
illustrated in Figure 31. The analogous picture can, of course, be drawn for
the under presentation. Incidentally, we do not claim that it is obvious that
the relators r;, - -+, r, and s, - - -, s, constitute defining sets.

[P N S — |

—~
(53]
=

Figure 31
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The description of the over and under presentations is almost as compli-
cated as the subsequent proofs. We suggest that the reader carry out the
construction in some examples. A fairly complicated sample computation is
given below in Figures 32 and 33. Overpasses are drawn in heavy lines and
underpasses in light. The paths c;, d;, v,, u; are drawn with dotted lines. It is
convenient to indicate the generators x; and y; with small arrows, as we have
done. Additional examples of over presentations are derived in Section 4.

It remains to prove that the over and under presentations are what we
claim they are, i.e., group presentations of m(R* — K, p,) and n(R? — K, p,’),
respectively. The proof is given in the next section. An important corollary
will be the theorem.

(1.3) In any over presentation (1.1) [under presentation (1.2)], any one of
the relators ry, -+ -, 7, [8,** +, 8,] is a consequence of the other n — 1.

Thus, in either presentation, any one of the relators may be dropped. This
fact is a substantial aid to computation. We shall also see that it has signifi-
cant theoretical implications.
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2. The over and under presentations, continued. In this section we shall
prove that the over and under presentations (1.1) and (1.2) are in fact group
presentations of #(R® — K, p,) and n(R3 — K, p,’), respectively. In so doing,
we shall also obtain Theorem (1.3). We observe, first of all, that it is not
necessary to give separate proofs for both presentations. An under presenta-
tion can be characterized in terms of an over presentation by simply reversing
the orientation of K and interchanging the roles of up and down. More
explicitly, let 2: R3 — R3 be the rotation of 180° about the z-axis defined by
h(z,y,2) = (x,—y,—z). Define K’ = hK. The homeomorphism % induces the
isomorphism &, : w(R3 — K', p,) — w(R® — K, p,’). We take as the positive
direction along K’ the opposite of that induced by % from the orientation on
K that was used in defining (1.1). Simply speaking, we turn K over and
reverse the arrow. Let

(.’/17".‘”11 : 'Ql’.”"qn){
be any over presentation of m(R?Y K’ p) constructed in the same way as
(1.1). We e that the jth overpass of K is A B, and that the ith relator is

obtuined by veading avound 2h 4 and, finally, that Ay, i the common base-
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point in R? of the loops determining the relators. Then,

[ Y05 Yn :81,“’,8"',“(=1r(R3—K,p0')

obviously coincides with (1.2). To see that it is obvious, try an example.
Figure 34 shows the over presentation obtained by rotating the knot of
Figures 32 and 33 by 180° and reversing the arrow. As a result of these remarks,
we shall restrict our attention to the over presentation in the remainder of
this section.
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Consider a closed square S (boundary plus interior) parallel to the planc
R2?, lying below K, and such that

n
(2.1) PK U{q v UV, < 8.
il
For any subset, L of K, we denote by Ly the union of K, 8, and the set of all

points (r,y.z) which lie between Sand L e, which satisly 2 - 2 -z, where
(r,z) N, (egz) O L For example, @ is the union of KA, S, and the 2n
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vertical segments joining S to ¢, the set of points of the original subdivision
which separates the knot into overpasses and underpasses. The set K, for a
typical clover-leaf knot is illustrated in Figure 35.

Figure 35

The derivation is a sequence of applications of the van Kampen theorem. The
space R? — K, is first shown to be simply-connected. Next, the set K, — B,
is adjoined to R® — K, and it is proved that m(R3 — B,, p,) is a free group
of rank %. A final application of the van Kampen theorem fills in B, — K and
yields an over presentation of 7(R3 — K, p,).

(2.2) The space R® — K, is simply-connected.

Proof. The result is geometrically obvious (cf. Figure 35), but a formal
proof using the van Kampen theorem can be given: Let X be the set of all
points of R® — K, which do not lie below S. That is, if 8" is the set of all
points (,y,2) such that (z,y,z) € S and 2’ < z, then

X=(RP—K,) — 8.
It is not only intuitively apparent but also easy to prove that X is simply-

connected. In fact, the basepoint p, = (0,0,z,) is a deformation retract of X.
This fact is obtained from the following two deformations:

h(ry2) = (x,y, (1 — s)z + sz,), 0<s <1,
ks(x’yrzo) = ((1 — sz, (1 — s)y, 20), 0<s <1,

The first, {hs}, is a vertical deformation of X onto the horizontal plane con-
taining p,; the second, {k, collapses this plane onto p, (cf. Exercise 2,
Chapter V to justify composition of these deformations). Next, set Y equal
to the simply-connected space consisting of all points lying below the hori-
zontal plane that contains the square S. Clearly,

XUuY =R K,
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The sets X, Y, and X N Y are nonvoid, open, and pathwise connected in
X U Y. It follows from the van Kampen theorem, or more specifically
Corollary (3.2), Chapter V, that X U Y is simply-connected, and the proof
of (2.2) is complete.

The set K, — B, is the disjoint union of n open topological discs F,, - - -,
F,, which we order so that F'; consists of those points lying between 4; — @
and S, minus any points that happen also to lie on or below an underpass

(cf. Figure 36). For each j,j = 1,-- -, n, let a, be a simple path in R? — #B
A
\\\\\\\\"//////]
\\\\\““"HI\\\\\\\ ////,
A 2
:\‘\ NP = R
= NV N = =
S - -
;llIllllis__/.llllllllll||||||I||||5;IIIIIII; S
Figure 36

which crosses under 4; once, from left to right. The loop *a; intersects F; once
and is otherwise contained in R® — K. Let W, be an open neighborhood of
the union of F; and the set of image points of *a, chosen so that:

(i) W, is pathwise connected, and the group =(W,p,) is infinite cyclic
and generated by the equivalence class of *a, in W,.

(@ W,NnK, = F,.

(iii) W; — K, is simply-connected.

That these sets can be constructed is geometrically obvious. Each W, is
just the union of F; and the image of *a,—both slightly “thickened” to an
open set in R3. More explicitly, let ¢ > 0 be so small that the open e-neighbor-
hood W, of the image of *a; satisfies W,/ N K, = F;. Set W," equal to the
set of all points whose distance from F, is less than e and which are closer to
F; than to Ky, — F;. Proving that W, = W, U W,” satisfies the above
conditions (i), (i), and (iii) would be admittedly tedious, but presumably
possible.

(2.3) R3 — B, is pathwise connected and m(R* — B, p,) is a free group.
Frurthermore, the set of equivalence classes zy, - « - , z,, of the loops *a,, « -+, *a,
18 a free basis.

Proof.  Set,

X, — B K,

X, X, ,uWw, oL



82 PRESENTATION OF A KNOT GROUP Chap. VI

Since W; N K, = F,,
(R*—K)UW, =R — (K, —W)=R— (K, — F)

=(R3—-K*) UFj,
and so
Jj
X, =R —-K,)uU UF, j=1-,n
E=1

In particular,
Xn = (R3 - K*) > (K* _ B*)

= R® — B,,
and so the sequence terminates in the right space. Furthermore, since
FNW,=K,NW,NNW,=F, NF,=9, k7,

it follows that
X, NW,

J

— (B —K,) N W,
=W, — K,,

and thus, by (iii), that X, ; N W, is simply-connected. Lemma (2.2) states
that X, is simply-connected, and we take as an inductive hypothesis that
X,_, is pathwise connected, 7(X;_;,p,) is a free group, and the set of equiv-
alence classes of *ay, - -+, *a, ; in X, , is a free basis. Since X, ;, W,, and
X, 1~ W, are pathwise connected, nonvoid, open subsets of X, = X, , U
W, it follows by (i) above and by (3.3) of Chapter V, that the set of equiv-
alence classes in X; of *a,,---, *a; is a free basis of #(X,,p,). Induction
completes the proof.

The elements z,, * - -, z,, introduced in the preceding lemma are to be the
generators of the over presentation. In other words, the group =(R?® — By, p,)
is to be taken as the free group of the presentation. Notice that, where

(2.4) ¢: w(R? — By, py) — m(R? — K, p,)

is the homomorphism induced by inclusion, the element ¢x;, j =1, -, n,
is the equivalence class in R® — K of the loop *a;. Thus, to within an iso-
morphism, ¢ is identical with the homomorphism denoted by the same symbol
in Section 1. For any simple path a in R? — # B, the element a* will be
understood to be a member of 7(R3 — By, p,). In fact, a* is just the equiv-
alence class in R® — B, of the loop *a. It is our final contention, which
completes the derivation, that ¢ is onto and that its kernel is the consequence
of any n — 1 of the relators », - - -, r, that occur in (1.1). Notice that this
proposition includes Theorem (1.3).

A proof is obtained by the same technigue that was used to determine
the group 7 (I3 By, py). By adjoining to the spaee whose group is known an
appropriante open neighborhood of the set o be filled in (here, 12, ), the
unhnown proup stracture weohtmmed by an application of the vion Kampen

"o Mo st ae Hhes sonnre N
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in its interior and the knot K in its exterior. Topologically, 7 is just a sphere;
but for convenience it will be assumed to be thinand flat with two faces parallel
to S. Let W be an open neighborhood of B, — K chosen so that:

(iv) W is simply-connected and contains p,.
vy WNK=4.
(vi) T — B, is a deformation retract of W — B,.

Such a set can be constructed in many ways. For instance, connect 7' to p,
with a polygonal arc E which is disjoint to K,. Let W’ be the union of an
e-neighborhood of 7' U E and the points inside 7'. Set W” equal to the set of
all points whose distance from B, is less than ¢ and which are closer to
B, — K than to K. For sufficiently small ¢, the set W' U W”" may be taken
as W.

The goal of this section is the following theorem.

(2.5) The knot group of K has the over presentation

m(R® — K, p)) = |2, ",

n :Tl,"'ark’...$r'n|¢

where 7, indicates the deletion of the kth relator r, and ¢ ts the homomorphism
(2.4).

Proof. We shall apply the van Kampen theorem to thegroups of B3 — B,,
W, and (R® — B,) N W. We first observe that

By — W= (KU (By —K)— W

=K — W)U (By — K)— W)=K.
Hence,
(R® — B,) UW =R} — (B, — W)= R® — K,

and so this union is the space whose group we are after. Also,
(R — By) "W =W — B,

and T — B, belong to the same homotopy type. The space T' — B, is a box
with n knife cuts in the top; it is therefore of the homotopy type of a sphere
with » holes and its fundamental group is free of rank n — 1 (cf. Example
(iii), Chapter V, Section 3). In greater detail: Let & be the vertical projection
of the plane R? upon the plane containing the top of 7'. It is a consequence of
(2.1) that

({hqo} U iL:JI hV1.> T

Since the closures Vo, -+, 7, of the regions V,, -+, V

" are pairwise

n
disjoint, we may seleet a set of polygonal paths e, -« e in1" - Ui AV,
with the common initial point hqg, and subjeet to the following restrictions:
Kach path ¢, is an are (e a homeomorphism) and its terminal point is

h(e () (e the image under b ol the basepoint ol the loop which bounds 7).
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Figure 37

The images of e;, - - -, e, are, except for the point Ag,, pairwise disjoint and
are contained, except for their terminal points, in 7' — J?_, AV, (cf. Figure
37).

Set

w,=e; hv, - e, t=1-,m.

Clearly, the union of the images of the loops w;, * - + , w,, is of the homotopy
type of an nm-leafed rose (cf. Example (iii), Chapter V). Furthermore, the
union of the images of any n — 1 of w,, - - -, w,, is a deformation retract of
T — B,. Although a completely rigorous proof of this fact would admittedly
be a nontrivial affair, the geometric idea is simple: First, widen all the knife
cuts and push them back onto the curves hv,. Then, choose one of the holes
and starting from it, push the rest of the box onto the remaining » — 1 loops
w,. In any event, we conclude that 7(7' — By, hq,) is a free group and the
equivalence classes of any n — 1 of wy, -+ -, w, constitute a free basis. It
follows that the same is true of the group (W — By, hq,), and finally, where
a is a path in W — B, which runs from p, to hq,, the set of equivalence classes
ofanyn — lofa-w,-at,i =1, -, n,isafreebasis of m(W — By, p,).

It is then a direct consequence of Corollary (3.4), Chapter V, of the van
Kampen theorem that the homomorphism ¢ is onto and that its kernel is the
consequence of any n — 1 of the equivalence classes in B3 — B, of the loops
a-w; a1, i=1,---,n Thus we obtain

m(RB3— K,pp) = |2y, ", 2, & [a w, a7l], i=l,---,fc,--~,n[d,.

The proof is completed with the observation that, for each ¢ =1,---,n,
the element [a - w; - a~1] is conjugate to ;¥ and, thence, to r;. To prove this,
consider a path b, (analogous to and equivalent to v,(0)) which runs in a
straight horizontal line from p, to the point directly over v,(0) and thence
straight down to hv;(0). It is obvious (cf. Figure 38) that in R® — B, a valid
cquivalence is

*p,~ b < ho, b, 1 h 1, -« n.
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Figure 38
Consequently,
a-w,ral=(a-e¢) hv,- (@a-e)?!

~(a-e b b,-hv, b1 (a-e b,

=~ fi*v o fi7h

where f, = (a ‘¢, - b;71). As a result,

fa w; a]= [fi]vi#[fi]_l, 1=1,:-+,n.

Since v, is in turn conjugate to r,, the kernel of ¢ is the consequence of

A

P45 % * s P * ¢+, 7, and the proof of (2.5) is complete.

It is not unlikely that an intelligent reader, having worked his way through
this section, will be unsatisfied. In the first place, the derivation is long and
complicated. What is more unsettling, however, may be the feeling that, in
spite of its length, it is still incomplete. At three places the existence of the
complicated geometric construction essential to the argument is assumed
without proof. In the interests of both economy and elegance, would it not

" be better simply to assume the desired conclusion and be done with it? The
most honest answer is that there are degrees of the obvious. The first section
of this chapter leaves two real questions unanswered : How do we really know

that the elements ¢z, - - -, i, generate the knot group? And the harder one:
Why do any » -- 1 of r;, -+, r, constitute a defining set of relators? In
contrast, the assertions whose details we omitted are of a different sort. One

wonders perhaps how to prove them in the best way, but not. whether or not,
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they are true. In spite of this preamble, the main point of this paragraph is
not to present an apology. It is rather to call attention to the fact that,
although these omitted details are intricate, they are not profound. The
reason simply stems from our exclusive use of finite polygonal constructions.
Everything can be chopped up into a finite number of triangles and tetra-
hedra, and these can be studied one at a time. It is tempting to try to eli-
minate these restrictions of linearity—if for no other reason than that it is
unnatural to draw segmented knots. To some degree this can be done.
However, the existence of wild knots whose groups are not finitely generated
means that more is involved than simply convenience.

3. The Wirtinger presentation. An essential feature of any pair of corre-
sponding over and under presentations is the common basepoint, denoted in
Section 1 by g,, of the 2»n simple paths in B2 whose images under % and » con-
stitute the relators of the two presentations. The necessity of having a com-
mon point will only become clear when the precise duality between over and
under presentation is studied in Chapter IX. Notice, however, that whatever
the reason may be, it has nothing to do with presentation type. The presenta-
tion

(3.1) @, @, o 0, F),

of w(R® — K, p,) is obtained from the over presentation (1.1) by » applica-
tions of Tietze operations Iand I'. (We recall that v, is the loop in R? — #B
around the projected underpass & B,.) The main advantage of (3.1) over (1.1)
is simply that there is less work in calculating it; one need not bother finding
the elements ¢,*, - - -, ¢,*. Therefore, we have used this modified form of the
over presentation exclusively in the examples in the next section. Of course,
it is also true of (3.1) that any one of the relators v,¥, - - -, v, ¥ is a consequence of
the remaining n — 1 of them and therefore may be omutted.

A presentation (3.1) of the group of a given knot is called a Wirtinger
presentation if each underpass contains exactly one undercrossing and each
path v, cuts the projected overpasses in just four places. These two con-
ditions can always be imposed unless, of course, the knot has no under-
crossings. That they are natural restrictions to make is evidenced by the fact
that historically this presentation of a knot group was one of the first to be
studied, and it is certainly the commonest one encountered in the literature.
The presentations of the clover-leaf knot and of the figure-eight knot in the
next section are examples. An attractive feature of the Wirtinger presentation
is that the relators are particularly simple: written as a relation, cach one is

of the form z, = afxx, ¢, ¢ = | 1 (cf. Figure 39). Notice, however, that
unless the knot projection is alternating (i.c., as one traverses the knot,
undererossings and overerossings alternate), the Wirtinger presentation is not,

the most cconomiceal in the number of generators and relators which might

he obtained.
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Figure 39. v =z, ', xx,”€, where e = +1

4. Examples of presentations. We give below over presentations of several
knots. As remarked in the preceding section, we have used (3.1) as a model
instead of (1.1) because it is simpler. In addition, we shall take advantage of
the fact that an arbitrary one of the relators can be dropped. The resulting
presentation is frequently still needlessly complex and can be further simpli-
fied by using Tietze operations. Some of these reductions are illustrated in the
following examples.

(4.1)  Triveal knot (Figure 40).

Figure 40

The single overpass is drawn with a heavy line, the underpass with a double
light line, and the path #; with a dotted line. The presentation is

(B - K) -l ).

Henee, the group of the trivial knot type is infinile cyelic.
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(4.2) Clover-leaf knot (Figure 41). Again, the overpasses are shown in
heavy lines and the loops vy, v,, v5 are drawn with dotted lines around the
underpasses. We choose generators z,y,z such that

x=af y=at z=a

Figure 41
Clearly,
vf = a7lyzy~!
vf = ylawzl

4 __ 1 ~1
vy =z xyx .

Consequently, we obtain for the group 7(R® — K) of the clover-leaf knot K
the presentation
(@,y,2 : xlyzyL, ylzazl),

where v,* has been dropped.

Suppose we include in the presentation all three relators obtained by
reading around the underpasses. Writing relations instead of the more formal
relators, we get

m(RP— K)=|zyz : e =yzy Ly =2zl 2z = ayx |
Substitution of z = ayx 1 in the other two relations yields

(R K) ey o yeye Yy Ly wyey e V.
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If the second relation is multiplied through on the right by zyz—'y~1, one
obtains the first. This is empirical verification of the claim that any one of the
relations obtained by reading around the underpasses of an over presentation
is a consequence of the others. Finally, therefore, we obtain the following
common presentation of the group 7(R3 — K) of the clover-leaf knot:

(x.y : xyx = yay).

(4.3) Figure-eight knot (Figure 42). Figure 42 shows a different projection

Figure 42

of the figure-eight knot from the ones given in Figures 4 and 7 of Chapter I.
Using either a piece of string or a pencil and paper, one can easily show that
the knot type represented below is the same. A Wirtinger presentation is

(yzw : x =z lwz, y = waw, z = 2 lyx).
Substituting z = 2~y in the other two relations, we obtain
(R — K) = |zyw : v =z Yy awrlyz, y = waw™! |.

The first relation now gives w = x~lyaxy . Substitution in the second yields

(R — K)=|zy : y= 2 yayayzly 2]
Finally,

(R K) |y : yrlyzy = a lyay 1z |.
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(4.4) Three-lead four bight Turk’s head knot (Figure 43).2

-1
TyT3Ty

zy RN

Zy Ty

-1
T3TaT3 T3

2y71 25"

Figure 43

3 _ Ky — o -1 ,.—1 ~1 -1
(R — K) = | 2,202y & = (%5507 9% 13)(¥i0%541%i 12) (¥ 5%042%i 1 3)s

P=1,0,7, -+, 4|
o -1 —1
= | 2,0, 03, %y 1 Xy = (X5, o) [T 0 %] |-

We recall that the element [a,b] is the commutator, [a,b] = aba—'b~1. Notice
that [a,b]"1 = [b,a].

5. Existence of nontrivial knot types. We are now in a position to prove
that different knot types exist. We shall prove that the clover-leaf knot
cannot be untied, i.e., that its type is different from that of the trivial knot.
We recall that if knots K and K’ are of the same type, then the complementary
spaces R® — K and R® — K’ are homeomorphic and hence =(R?® — K) and
m(R® — K') are isomorphic fundamental groups. The fact that knots of the
same type have tsomorphic groups is the principle by which we shall distinguish
knot types in this book. The nontriviality of the clover-leaf knot will be
established by proving that its group | z,y : zyx = yxy | is not infinite cyeclic
(cf. (4.1) and (4.2)). For this purpose, consider the symmetric group S; of
degree 3, which is generated by the cycles (12) and (23). We observe, first of
all, that S5 is not abelian since

(12)(23) = (132) # (123) = (23)(12).

2 Indices aro mod §; thus, E. oy ele,
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The over presentation (4.2) of the clover-leaf knot consists of a homomorphism
¢ of the free group F, for which z and y constitute a free basis, onto the knot
group, and the kernel of ¢ is the consequence of zyx(yxzy)~!. The homo-
morphism 6 of F onto S; defined by

b(z) = (12) O(y) = (23),

induces a homomorphism of the knot group onto S, provided 6(zyx) = 0(yzy).
But

O(zyx) = 6(x) O(y) O(x) = (12)(23)(12) = (13),
O(yzy) = 6(y) O(x) O(y) = (23)(12)(23) = (13).

Thus, the knot group of the clover-leaf knot can be mapped homomorphically
onto a nonabelian group. It follows that the knot group itself is nonabelian,
and hence it is certainly not infinite cyclic. We conclude that the clover-leaf
knot cannot be untied.

Likewise, in order to prove that the clover-leaf is distinct from the figure-
eight knot, it is sufficient to show that their groups are not isomorphic. These
groups are presented in (4.2) and (4.3). Unfortunately, there is no general
procedure for determining whether or not two presentations determine iso-
morphic groups. We do know, from the Tietze theorem, that if two groups are
isomorphic, their finite presentations are related by the Tietze operations.
However, attempting to show directly that the presentations given in (4.2)
and (4.3) are not related by Tietze operations does not seem a potentially easy
job.2 What is needed are some standard procedures for deriving from a group
presentation some easily calculable algebraic quantities which are the same
for isomorphic groups and hence are so-called group invariants. That is, the
group of a knot type is usually too complicated an invariant, and so we must
pass to one that is simpler and easier to handle. In so doing there is a danger
of throwing the baby away with the bath water. In passing to simpler in-
variants one invariably loses some information. What we want to do is to
achieve readily distinguishable invariants which are still fine enough to
distinguish the groups of at least a large number of different knots. The next
two chapters are devoted to just this problem.

3 Actually, the clover-leaf (group @) and the figure-eight knot (group G’) can be
distinguished by the same method we used in demonstrating the nontriviality of the

clover-leaf. If (7 &~ (’, there must exist a homomorphism & mapping G’ onto the symmet-
rie group Ny. Using the presentation 7~ |x,y : yz—yzy = = a:“z/xy“xl, and by simply ex-
hausting tho finito mumboer of possibilities, ono can cheek that no assignment of « and ¥
into N, extends to ahomomorphism of (7 onto Sy, (Howover this does not, show that the

tiguro-oight. knot cannot bo untiod, although Chis will he shown true in Chapter VITIL)
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EXERCISES

1. For each of the following knots find a presentation of the group of the
knot that has just two generators.

S e

(b) (¢) Stevedore's knot

Figure 44

2. For each of the five knots considered in Exercise 1, determine the
representations into the symmetric group of degree 3.

3. A torus knot K, , of type p,q (where p and g are relatively prime
integers) is a curve on the surface of the “unknotted” torus (r — 2)% + 22 =1
that cuts a meridian in p points and a longitude in g points. It is represented
by the equation r = 2 + cos (¢f/p), z = sin (¢0/p). By dividing R® — K
into the part not interior to the torus and the part not exterior to it and
applying van Kampen’s theorem, prove that a presentation of the group of
K,,is (ab : a? = b9).

4. (a) Show geometrically that the clover-leaf knot is the torus knot K, ,.
(b) Draw a picture of the torus knot K, 5.

5. Prove that the presentation of the group of the clover-leaf knot derived
in (4.2) is of the same type as (a,b : &% = b%).

6. Let us say that a knot diagram has property [ if it is possible to color the
projected overpasses in three colors, assigning a color to cach edge in such a
way that (n) the three overpasses that meet at a erossing are cither all colored
the snme or are all colored differently s (b) all three colors are actually used.
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Show that a diagram of a knot K has property [ if and only if the group of
K can be mapped homomorphically onto the symmetric group of degree 3.

7. Show that property ! is equivalent to the following: It is possible to
assign an integer to each edge in such a way that the sum of the three edges
that meet at any crossing is divisible by 3.

8. Show that no knot group can be represented upon the fundamental
group of the Klein bottle.

9. Using the fact that the group G of the overhand knot has a presentation
(@,b : a® = b3) find all (classes of) representations of (f onto the alternating
group 4, of degree 5.



CHAPTER VII

The Free Calculus and the Elementary Ideals

Introduction. In the last chapter a method was developed for calculating
a presentation of the group of any knot in regular position. Unfortunately, it
does not follow, as was pointed out, that it is now a simple matter to distin-
guish knot groups, and thus knot types. There is no general algorithm for
deciding whether or not two presentations define isomorphic groups, and even
in particular examples the problem can be difficult. We are therefore con-
cerned with deriving some powerful, yet effectively calculable, invariants of
group presentation type. Such are the elementary ideals. In this chapter we
shall study the necessary algebraic machinery for defining these invariants.
Specialization to presentations of knot groups in Chapter VILI then leads
naturally to the knot polynomials. With these invariants we can easily dis-
tinguish many knot types.

1. The groupring. With any multiplicative group G there is associated its
group ring JG with respect to the ring J of integers. The elements of JG are
the mappings v: G — J which satisfy »(g) = 0 except for at most a finite
number of ¢ € G. Addition and multiplication in JG are defined respectively
by

(v + wo)g = vig + vy
(v = 2(7’1}‘)(”2}&_19)
heGs
for any »,, v, € JG and g € G. It is a straightforward matter to verify that JG
is a ring with respect to these two operations. Multiplication by an integer
n, which is defined in any ring, satisfies the equation

(nv)g = n(vg)
for any v e JG and g € .
There exists a mapping G — JG which assigns to each ¢ € ¢ the function
g* defined by
1ifh =y,
T 10 otherwise,

g*(h)

This mapping i one one and product-preserving. Sinee the image of any
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product-preserving mapping of a group into a ring is a group, we conclude
that the mapping g — g* is a group isomorphism of ¢ onto its image. Where
e € G denotes the identity, the element e* is a nonzero multiplicative identity
for the ring JG.

Let » be an arbitrary nonzero element of JG. Let gy, * - -, g5, ¥ > 1, be the
elements of @ for which »(g;) 7= 0 and let

ni:v(gi)’ i:1>'.'>k~
Then
v = nygy* o gt

That is, the image of G under the mapping g — g* generates the additive
group JG. Henceforth we identify g and g* and write elements of J@ as finite
integral combinations of elements of G. It then becomes obvious, for example,
that

(1.1) JG is a commutative ring if and only if G is a commutative group.

It is trivial to prove that if n,9; + -+ + n,9, = 0 and gy, -, g, are
distinet, then n, = - -+ = n, = 0. It follows that a nonzero element of JG
can be written as a finite sum of distinet group elements with nonzero
coefficients in one and only one way. This fact implies that, as an additive
group, J @G satisfies the analogue of the characteristic property of free groups
that was discussed in Chapter IIL:

(1.2)  An arbitrary mapping ¢ of G into an additive abelian group 4 has
unique extension to an additive homomorphism ¢: JG@ — A. Moreover, if A is a
ring and ¢ preserves products on G, the extension is a ring homomorphism.

Proof. Set $0 = 0. Every nonzero element of J& has a unique expression

nygy + 0+ ng, wheren;, 40,1 =1, -,k and g, - - -, g, are distinct.
To obtain the extension, we define

dnygy + -+ + mgh) = mydgy + -+ gy

Next, we observe that if this equation holds under the imposed conditions,
it also holds for arbitrary integers n,, - - - , n, and group elements g, * - -, g,.
But then, ¢ is trivially addition-preserving. Since any extension of ¢ to an
additive homomorphism JG — 4 must satisfy this equation, the uniqueness
of the extension is assured. Finally, if 4 is a ring and ¢ is product-preserving

in G,
(g 2n9,) = Zn ;995
f J
= Zwu b9, by = 2npg.2n, by,
0 1 J
(‘/’Z"/r‘/:)(‘/’Z";,f/;,)*

and the prool is complete. ! ! /\
As an additive group, therefore, Jo0 s free abelian and the subset (0 is



96 THE FREE CALCULUS AND THE ELEMENTARY IDEALS Chap. VII

basis. (Cf. Section 5, Chapter IV.) Another corollary of (1.2) is

(1.3)  Every group komomorphism ¢: G — G has a unique extension to a
ring homomorphism ¢: JG — JG'.

Notice that if any one of the restrictions; (i) ¢ is the identity mapping;
(ii) ¢ is onto; (iii) ¢ is one-one, is satisfied by the group homomorphism
¢: G — @', then it also holds for the ring homomorphism ¢: JG —J&.

Two homomorphisms defined on the group ring of every group come up
sufficiently often to warrant special mention and notation. The first of these is
the abelianizer, which was introduced in Section 4 of Chapter IV as the
canonical homomorphism of a group onto its commutator quotient group.
By the abelianizer we shall now mean either the group homomorphism
a: G — G/[G,G], as before, or its unique extension on the group rings.@he
second homomorphism is the trivializer. For any group @ consider the mapping
t: ¢ —J defined by t(g) = 1, for all g € G. The trivializer is the unique
extension of t to the ring homomorphism t: JG@ — J. Clearly,

t(znigi) = an-

We conclude this section with the observation that the mapping J —JG
defined by n — ne, where e € G is the identity, is a ring isomorphism. Hence,
both ¢ and J are considered as subsets of the group ring JG.

2. The free calculus. By a derivative in a group ring JG will be meant any
mapping D: JG — JG which satisfies

(2.1) D(vy + vy) = Dvy + Dy,,
(2.2) D(vyv,) = (Dvy)t(vy) + v, Dv,,

where t is the trivializer and »,, v, € JG. For elements of @, (2.2) takes the
simpler form

(2.3) D(9,9,) = Dg, + ¢,Dys,, 91, 92 € G-

In fact, in view of (1.2), a derivative may be defined as the unique linear
extension to J G of any mapping D of G into J@ which satisfies (2.3). Obviously,
the constant mapping of J& onto the element 0 is a derivative. The question
of whether or not nontrivial derivatives always exist in an arbitrary group
ring is settled by the observation that the mappingg —g¢ — 1, foranyg e @,
determines a derivative. Moreover, if D and D’ are two derivatives in J@ and
vy € J(/ is an arbitrary element, it is easy to check that the mappings D 4- D’
and D oy, defined respectively by
(2.4) (D DYyw -~ Dyv- Dy
v JO
(D (D,

nee also derrvatives in J(
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It is worthwhile to note some of the comwquences of the axioms for a
derivative:

(2.5) D(Zn,g,) = Zn,Dy,.
(2.6) Dn = 0, for any integer n.
(2.7) Dg=1 = —g~1Dyg, for any g ¢ (/.

The first follows from the fact that D is an additive homomaorphism. Since
D1 = D(1-1) = D1 + D1, we conclude that D1 = 0 and, more generally,
that (2.6) holds. Lastly, the equations 0 = D(g71g) = Dy ' | ¢ 'Dy estab-
lish (2.7). It is useful to define, for any g € G and integer », tho group ring

element 0, ifn =0,
n—1
g —1 | ¥g ifn >0,
7 —1 =1i=0
-39 if n < 0.
i=n
It follows that
g — 1
(2.8) Dg* = Dyg.
g—1

The proof is by induction on the absolute value of n. For n =0, 41, —1,
the assertion reduces respectively to D1 = 0, Dg = Dy, and Dg~! = —g~1Dyg.
Next assume | n | > 1. If » is positive, (2.3) and the hypothesis of induction

yield Dg™1 = Dg" + gDy

n—1

= _Zog"Dg + g"Dyg
1=
gn+1 — 1

Dy.
g—1 7

Similarly, for negative n,
Dyt = Dg* - g"Dg~*

-1
= —2 ¢'Dg — g~'Dg

i=n

n—-1 __ 1
=S
and the proof is complete.
Another consequence of the axioms is the fact that any derivative is
uniquely determined by its values on any generating subset of (/.
Although we have introduced the notion of a derivative in an arbitrary
group ring, we are here really interested in, and heneeforth shall confine our
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attention to, derivatives in the group ring of a free group (hence the title of

thisseetion). Suppose F is a free group with a free basis of elements 2y, ,, - - -
An arbitrary element of the group ring J F is a finite sum of finite products of
powers of these 2’s, and it is natural to think of such elements as polynomials
m the variables @y, @, + - . Of course they are not true polynomials since

negative powers may oceur and, what is more important, the variables do not
commute. Nevertheless, an element of J F will be called a free polynomial and
will be denoted generically as f(z) = Zn,u,, u; € F. The action of the trivial-
izer t on a free polynomial is indicated by writing tf(x) = f(1).

(2.9)  To each free generator x; there corresponds a unique derivative

D, = 0/0x;
inJ F, called the derivative with respect to x;, which has the property
Ox; -
— = 0,; (Kronecker delta). -
ox;

Proof. Since the values of the derivative d/dx; are specified on a generat-
ing subset of F, uniqueness is automatic. In order to prove existence, we
consider an arbitrary set 4 of elements a,, a,, * * * in one-one correspondence
with 2, 2, - - + under the assignment 0a, = x,. From the results of Chapter
IIT we know that § extends to a product-preserving mapping of the semi-group
W(4) of words onto the group F under which equivalent words in W(4) map
onto the same group element in F. We propose to define, for each x;, a map-
ping A;: W(4)— JF which will induce the derivative d/0dz;. The definition
is by induction on the number of syllables in a word and is given by

A;1 = 0 (where 1 denotes the empty word),

n
z”—1

*) Ao = s

2, — 1
Aja"a) = A + x,"Aqa, ac W(A).
The reason for retréating to the semi-group W(A4) for the basic definition

should be clear. With the absence of any cancellation law in W(4), the
fanction A; is unambiguously defined by (*). We contend that

(**) Aj(ab) = A + ba - Ap, abe W(A).

The proof is by induction on the number of syllables in ab. If a is the empty
word, the result holds trivially; so we assume that a contains at least one
syllable. Hence, @ = a,"c and by (*)

Aab)  Afa by Aa oA (eh).
By the hypothesis of induction, therefore,

/\,(u/;) /\/ul” | ,r'”/\’t‘ | ‘:'1”()4“.\}/: /\,rl | Url‘/\]/'.
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We next assert that if two words are equivalent, then their images under A;
are equal. The proof amounts to verifying

Aj(aa %) = A,(ab),
Aj(aai ") = A(aa;,a,"b).
With (**) available, these identities follow easily. For the first, we have

Aj(aa %) = Aj(aa®) + O(aal) - A

=Aa+ 0a-ADd
= A,(ab).
For the second, we note first that
x%"*"-l_xim—] +xmxi"——1

x,—1 oz, —1 Poa,— 1

Thus, A @ " = Aj(a,"e;"); hence,
Aj(aa ™) = Ajaa ™) + O(aat™) - Ab

= A + Oa - Aya;"a") + O(aa,a;") - A

and the assertion is proved. The mapping 0/dz;: F — JF is now defined by
0
(FF¥) . fa = Aa, for any a e W(4).
.

J

The function 9/0x; is well-defined because 6 is onto and because if a = 6b,
then @ and b are equivalent words and so A,a = Ab. (Notice that the proof
that A; depends only on equivalence classes of words depends on the fact that
the same is true of 0.) It follows immediately from (***) that ox,/0x; = J,;.
To check that 0/dz; determines a derivative in JF, we have only to verify
Axiom (2.3): For any v = fa and v = 6b in F,

0 0 0 0

oy (uv) = éze(ab) = Aj(ab) = Aja + uAp = a—x’u + u 5;} v,

7 J
and the proof of (2.9) is complete.
The preceding theorem is a remarkable result in that it reveals the entire

structure of the set of derivatives in a free group ring. This assertion is
formulated explicitly in the following important corollary:

(2.10) For any free polynomials hy(x), ho(x), < « -, there is one and only one
derivative D on JF such that Dx; = h(x), j = 1,2, --. Moreover, for any
J) eI,

Cof
Die)y D i I ().

=,
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Proof. Again, uniqueness is automatic. It should next be checked that the
above sum is a finite one. We leave it to the reader to prove that ¢f the

0
generator x; does not occur in the free polynomial f(x), then ja”(x) = 0. (cf.
Z;
Exercise 5). It then follows that the mapping f(z) — > = h;(z) is a deriva-

ox;
7 )
tive in JF (cf. (2.4)) with the desired property, and the proof is complete.

We have already remarked that the mapping f(x) — f(x) — f(1) is a
derivative in JF. As a corollary of (2.10), we thus obtain the fundamental
formula

of
(2.11) f@ =) =235~ (&=
i 0%;
It follows that a free polynomial is determined by its derivatives and its value
at 1. The analogy with the familiar law of the mean is obvious and is

also capable of further interesting generalization.

3. The Alexander matrix. The free calculus is the principal mathematical
tool in our construction of useful invariants of group presentation types.
Consider a group presentation (X : r). The set X = (z,, @, * * ) is a free basis of
the free group ¥, and the group of the presentation is the factor group

|x:r|=F/R<—F

where R is the consequence of r = (ry, 75, - - + ) and y is the canonical homo-
morphism. Both 9 and the abelianizer a possess unique extensions to homo-
morphisms of their respective group rings. Denoting the abelianized group of
|x:r| by H, we thus have the composition

- 9

JP D gF s T |z | <> JH p0 )0
/

The Alexander matriz of (X :1) is the matrix || a;; || defined by the formula

or;
aij = aqay a— .

The effect of ay on 0r,/0x; is an immense simplification. The homomorphism
y carries elements of J F' into J| X : r | where every consequence of I equals 1.
Even more important is the fact that a then takes everything into a com-
mutative ring. In a commutative ring one can define determinants, and
furthermore, for knot groups, JH is particularly simple.

It should be remarked that the definition of the Alexander matrix assumes
an ordering of the generators and relators whercas the original definition of a
group presentation in Chapter IV did not. This is trae but unimportant. We

shall seein the next section that two matrices which differ only by a permu-
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tation of the rows or of the columns are considered equivalent anyway. The
additional property of order could, of course, have been ascribed to group
presentations in the first place. It is, however, (for us) an inessential feature
and the definition seems simpler without it. )

4. The elementary ideals. Let R be an arbitrary commutative ring with a
nonzero multiplicative identity 1, and consider an m (row) X = (column)
matrix A with entries in R. For any non-negative integer k, we define the
kth elementary ideal E,(A) of 4 as follows:

If0 < n — k < m, then E,(A) is the ideal generated by the determinants of
all (n — k) x (n — k) submatrices of A.

If n — k > m, then E,(4) = 0.

If n — k <0, then E,(4A) = R.

Since the determinant of any matrix can be expanded as a combination of
the cofactors of the elements of any row or column, we have immediately

(4.1)  The elementary ideals of A form an ascending chain
EyAd) < E(A)< - < B (4)=E,(d)=---=R.

If 4 and A’ are two matrices with entries in R, we define 4 to be equivalent
to A’, denoted A ~ A’, if there exists a finite sequence of matrices

A=4,--+,4,=4,
such that 4, is obtained from A,, or vice-versa, by one of the following
operations:

(1) Permuting rows or permuting columns.

0
(113) Adding to a row a linear combination of other rows.
() Adding to a column a linear combination of other columns.
(v) Adjoining a new row and column such that the entry in the intersection
of the new row and column is 1, and the remaining entries vn the new row and

A0
column are all 0, A — “ 01 ” .

)

(t7) Adjoining a row of zeros, A —
)
)

[t is not hard to show that a matrix 4 is cquivalent to the matrix obtained
from A4 by adjoining a new row and column such that the entry in the inter-
section of the new row and column is 1, the remaining entries in the new
column are all 0, and the remaining cntries in the new row arc arbitrary.
Hence, () may be replaced by the stronger

, A0
"y A- > ol “
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T'he proof of this assertion is obtained in one application of (v) and n applica-
tions of (tv), where n is the number of columns in 4. Thus,

A0 A0
01 al

(v)

(iv)
A —

The present definition of matrix equivalence differs from the one we usually
encounter in linear algebra most notably in respect to (42) and (v). The familiar
operations of multiplication of a row and of a column by a unit e of the ring R,
hiowever, still preserve equivalence. They may be accomplished as follows:

A ) A » A ) Al . B A
. (%) (%22) (2) (iee) (1)
() lall—>fall—1| al| —>]|e|| — ea <~ |lea|l.
0 ea a a —elea
(wii) || 4 a @) || A4 a Of it |4 a ea
- 0 —el 1 0 —el 0
@ ||4 ea a @ |4 ea 0
0 0 —el 0 0 —e
wi) || A eax O () 4 e
0o 0 1

1t should also be observed that matrix equivalence, as we have defined it, is
trivially reflexive, symmetric, and transitive. That is, it is a true equivalence
relation. N

(4.2) Equivalent matrices define the same chain of elementary ideals.

Proof. The proof depends on the well-known elementary facts of deter-
minant manipulation. Incidentally, these are purely combinatorial in nature
and hold in any commutative ring. We must prove that K, (4) = E,(4")
where 4’ is obtained from 4 by any one of the above operations (z), - - -, (v).
For (¢), (i17), and (zv), the result is immediatel For example, consider (¢77) : Any
generator of E,(A’) is either already a generator of E,(A4) or, by expansion by
the minors of a row, is a linear combination of generators of £,(4). The same
expansion shows that the converse proposition is valid.

Next, consider operation (¢¢): Since n = »n’ and m’ = m - 1, we see that
if 0<n—%k<<m, then 0 <n»n' —k <m', and in this range we have
E,(A) = E,(A"). The only other possibility that is not definitionally im-
mediate isn — k = m’. In this case, £,;(4) = 0 follows trivially and £,(A4") is
generated by the determinants of the m’ X m' submatrices of A’. Since the
last row of cach of these submatrices contains all zeros, £,(4’) = 0 holds as
well.

Finally, we must check operation (0). Here o’ no ] landw' - m | 1.
I n k& m, then n' kb (7 b I VTR m’ and  the
identitios I, (1) 1)y 0 are immedinte, I n -0, then

»
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n' — k < 1. In this case, E,(4) = R follows trivially, and the same is true
for A" except when n’ — k = 1. But E,._,(4’) is the ideal generated by the
elements of 4. Since one of these elements is 1, we conclude E,._,(4') = R.
The remaining range is 0 < n — k < m. Any (n — k) X (n — k) sub-
matrix of 4 can be enlarged to an (" — k) X (n' — k) submatrix of 4’ by
adjoining appropriate elements of the new row and column of 4’ including
thereby the element 1 in the intersection. Expansion by the minors of the new
column shows that the determinants of these two submatrices are equal,
except possibly for sign. Thus, E,(4) < E,(A’). Conversely, consider any
(n" — k) x (n" — k) submatrix of 4" whose rows may or may not include the
new row of A’ (note n’ — k > 2). If they do, expansion by minors of the
row shows that its determinant is a generator of E,(A4) and, consequently,
belongs to E,(4). If its rows do not include the new row of 4’, its determinant
belongs to E,_,(4), which by (4.1) is contained in E,(A4). We conclude that,
under operation (v), E,(4) = E,(A4’), and the proof is complete.

Consider an arbitrary ring homomorphism ¢: R — R’ where R and R’ are
any two commutative rings containing multiplicative identities. If 4 = | a,; ||
is a matrix with entries in R, we define the image matrix

dA = | play) |.

A useful result is
(4.3) If ¢ is onto, then E(A) = E (b4).

Proof. Of course, ¢(0) = 0 automatically; but the equation ¢R = R’,
which is needed if n — k& <0, is just the hypothesis that ¢ is onto. Ob-
viously, the image of the set of determinants of all (n — k) X (n — k) sub-
matrices of 4 equals the set of all determinants of all (n — k) X (n — k)
submatrices of 4. Thus, we have only to ask whether the image of an ideal
generated by a set of elements a,, - - -, a, in R is the ideal generated by the
images ¢(a,), - -+, p(a,) in R’. The answer is easily seen to be yes; but, again,
only if ¢ is onto.

For any finite group presentation (x:r) and non-negative integer k, we
define the kth elementary ideal of (x : T) to be the kth elementary ideal of the
Alexander matrix of (x : r). By virtue of (4.2), of course, the elementary ideals
of a presentation may be calculated from any matrix equivalent to the
Alexander matrix. In any specific example one naturally uses the simplest
matrix one can find.

The elementary ideals, defined for any finite group presentation, represent
a generalization of the knot polynomials which we shall define in the next
chapter for presentations of knot groups. There are several reasons for
introducing the ideals before the polynomials. First of all, whereas the ideals
are defined for arbitrary linitely presented groups, the polynomials exist and

are unique only for a more restricted class of groups satisfying certain
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algebraie conditions. In the next chapter we shall discuss these conditions
and show that any tame knot group satisfies them. Furthermore, it is, if
nnything, casier to prove the invariance of the ideals than of the polynomials.
Sinee the latter can be characterized in terms of the former, we can kill two
hirds with one stone. Finally, even where the polynomials do exist, the ideals
contain more information. We shall exhibit two knots in Chapter VIII which
are not distinguishable by their polynomials, but whieh do have different
clementary ideals.

T'"he immediate problem is to prove that the elementary ideals of a finite
presentation are invariants of the type of the presentation. The proof is based
on the Tietze theorem, which reduces the problem to checking the invarjance
of the ideals under Tietze operations I and II. The essential part of the proof,
therefore, is simply examining the effect on the Alexander matrices of each
ol these operations. For a clear understanding of the formulation of the
invariance theorem which appears below, the reader may wish to review
the basic definitions and results on presentation mappings and the Tietze
theorem in Chapter IV.

If f: (x : 1) — (y : §) is an arbitrary presentation mappiiig, there is induced
a homomorphism f,: | X : 1| — | ¥ : 5| on the groups of the presentations. This
mapping in turn induces a homomorphism f,, of the abelianized group of
|x :r|intothat of |y : 8| (cf. (4.1), Chapter IV). If (x : ) and (y : §) are known

to be of the same type, there exists a presentation equivalence (X :T) ,
(y:8) > (x:1) and

identity = (fg)y = fsgx

identity = (f4g4)x = fesGas-
Similarly, ¢4 fex is the identity. Thus,

(4.4) If the pair f, g is a presentation equivalence, then each of fyy and guq
s an 1somorphism onto and the tnverse of the other.

Notice that the same conclusion holds for the extensions of f,, and g, to
their respective ring homomorphisms on the appropriate group rings.

We recall that if the pair of mappings f,g is a presentation equivalence,
then each of f and g may be called a presentation equivalence separately. To
speak of one alone, however, always implies the existence of a mate. The
statement that the elementary ideals of a finite group presentation are
ihvariants of the presentation type is the following theorems

(4.5) THE INVARIANCE OF THE ELEMENTARY IDEALS. If (X :T)and (y :8)
are finite group presentations and

fi(x:r) »(y:8)

i a presenlation equivalence, thew the kth elewmentary ideal of (X : 1) is mapped
byt [yw Onto the kth elementary ideal of (y :8).
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Proof. As a result of the Tietze theorem, the proof immediately reduces to
checking only the Tietze equivalences I, I, II, and II'. Also observe that,
in view of (4.4), if (4.5) holds for one member of a pair of presentation equi-
valences, it holds automatically for the other. So we need check only Tietze
Iand II.

Tietze 1. This is the presentation mapping
(x:r);(x:r U s),

where X = (z;, -+, ,), T = (ry, -, 7,,), the element s is a consequence of r,
and I. F(X) — F(X) is the identity mapping. It follows that I, and I, are
also identities. Hence, the argument is completed by simply showing that
(x:r)and (X :r U s) have equivalent Alexander matrices. Since s is a con-
sequence of r, we have

p
— 1 -1
s = Hukrik kg,

E=1
ﬁ—i(ur gl g, “ru e — (upr; *ru, )
ax,-_axj 17, U 17:, ' oz, oy, * Ug

-1 0
"t P! (g™ ) - o, (upry, ™ uy ).
But since
y(r) =1,
R )
== — (uyr, " u, 7t
‘y(axj kzl‘y a ( k" 1y k )
However,
0 ou r. % — 1 0r, -~ ou
— (uyr, Moy, ) = —% " B gy Skq 1%
ax]-(k”‘ e ) Oz, . —1 0w i Tk
and
r, %% — 1
S0,
r, —
Hence, *

(i) )
Y 2z (wpr;, " w1 ) = oy (wy)y a_xj .

J

Setting o,ap(u,) = ¢, we obtain finally

as) 2 (8% )

ayl—) = cay | —%].

v (axj kgl K ox;

Thus, the Alexander matrix of (X : T U s) is like that of (X : r) except for having

one additional row which is a linear combination of the other rows. So the two
matrices are cquivalent and the first part of the proof is complete.
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Tietze II. This is the presentation mapping

(x:r)—n>(xu;q:rUy§-1),

where X = (@, -+ -, 2,), T = (ry, "+, 7,,) © F(X), £ € F(X), y is a member of
the underlying set of generators not contained in x, and II: F(x) — F(x,y) is
the inclusion mapping. Setting

G=|x:r|,and ' =|x Uy :rUytl|,

and H and H' equal to the abelianized groups of @ and G’ respectively, we
have the following array of homomorphisms: _

JF(x) 2> JF(x U y)

)’l Y

I, ’ V,H = II*)/,
JT—“’JT oI, =1I, .
a a

I,
JH-Z s gH

We denote the Alexander matrices of (x:r) and (X Uy :r Uyél) by

A=|a;| and 4" = | a; | , respectively. Then
(ari) i:l»..')m’
@ = e X .
ij ay axj j=1,-+,m,
and
ari ’r ari
O, = Myay (‘5;’) =ay n(a—x,)
’ l(ari) ’
= qQa —_— ) =, .
y axj 27
Clearly,
or, 0
— =0, d — W& =1. _
E» an 3 (23

So, if we denote the row of elements

0
a,y'(-—y'f—l)’j = 1’ PN () by a,’ we have

Oz,
4 — om,.4 0
a 1]
Hence, by matrix operation (v) of page 101,
A"~ .A.

It follows from (4.2) and (4.3) that
LAY B A) Iy Ey(A),

and the prool of the invarinnee theorem is complete.
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A characteristic of the techniques of Chapter IV and of our approach to the
Alexander matrix and the elementary ideals in this chapter has been the
construction of a theory of group presentations independent of the particular
groups from which the presentations may have come (e.g., in knot theory
from the fundamental groups). Thus, we have defined both the Alexander
matrix and the elementary ideals of a presentation rather than of a presentation
of a group G. Similarly, the Tietze theorem asserts the existence of a factoriza-
tion of presentation mappings; it is not given as a statement about presen-
tations of the same group. We feel that the style which we have adopted is not
only conceptually simpler but also corresponds more exactly to the actual
computation of examples in knot theory. The alternative approach, however,
is easily described : Consider a presentation

(x:r)y

of a group G. The Alexander matrix is defined to be the matrix || a,; | of
elements

ari)
a; = ag (a_x; N -~
(a is, of course, the abelianizer of @), and the elementary ideals are those of

this matrix. The invariance theorem then becomes

(4.6) The elementary ideals are invariants of any finitely presented group @,
i.e., any two finite presentations of G have the same chain of ideals.

A proof of (4.6) from (4.5) is a simple exercise involving only the most basic
properties of homomorphisms and factor groups.

EXERCISES

1. In the group ring of the free group F(xz,y,2) calculate the following
derivatives:

a 21y —1,—2 a 2,1y ~1,—2 a m E n
(a) o= (ay22ely2272), - (b) = (ayPay ), () - [amyl, (d) 5 [ey"

a m o, n f a my . m
(e) a[x >?/] ’ ( )@[[%y ]’?/ ]

2. Prove that if # is a free group with free basis (2, Z,, - - -) and if there
n

exist finitely many elements a,, - - -, @, in J F such that > a,(z; — 1) = 0,
thena, =---=a, = 0. i=1

3. If g1, g9 0 - generate (7, show directly that for any v ¢ JJ @ there exists a
h

finite set of elements v, == v in JG such that v e Y (g, 1).
(For example, gyge U ayls 1) 1 (1)) I
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4. One cannot help feeling that our proof of Theorem (2.9) is not quite as
good as it might be because it relies essentially on the structure of the free
group as it is derived from the semi- group of words. Is it not, after all, possible
to give an elegant proof of (2.9) based on the definition of a free group as a
group that has a free basis? For example a possible approach would be to
prove Exercise 2 above independently of the existence of 0/0x; and then to
combine this result with Exercise 3. Thus from Exercise 3 we get f (z) — f(1)
= Ya,(x; — 1) for some a; € JF. If one knew that the elements a; were

j

0
uniquely determined by f(z), one could simply define é—f to be a;. Wrestle
with this a bit! i

5. Using only (2.1), (2.2), and (2.9), prove that if the generator x; does not
of

occur in the free polynomial f(x), then P 0. Note that this is a problem
i
about elements of a free group, not about words.
6. Calculate the derivatives of w = [[a,b],[c,d]]. What would be the effect
on the Alexander matrix of adjoining to a presentation the relation w = 1?

7. Denoting by G’ the commutator subgroup of a group G and therefore by
G” the commutator subgroup of G, discuss the relationship between the
Alexander matrices of ¢ and of G/G".

8. By constructing the chain of elementary ideals, give another proof of
the fact that the free groups of distinct finite ranks m and = are not
isomorphic.

9. Suppose 6 maps a group G; homomorphically onto a group G, in such a
way that its kernel is contained in the commutator subgroup &,’ of G;. Prove
that the induced homomorphism §, of G,/G," onto G,/G,’ is an isomorphism,
and that, for each d, £,(G,) is contained in E,(G,). (E,(G) is the dth ideal of
the Alexander matrix of any of the presentations of G.)

10. Calculate the chain of elementary ideals for the free abelian group of
rank n, and conclude that, for n > 1, the free group of rank » is not abelian.

11. Calculate the chain of elementary ideals for:
(a) The fundamental group of a Klein bottle | a,b : aba™'b =1 |;
(b) The group |ab : b2 =1];
(c¢) The group |ab : b2 =1, ab = ba|;
and use the result to show that these groups are not isomorphic.

12. Calculate the chain of elementary ideals for the metacyclic group
| e 2 a? 1, 2771 =1, zaxr~! = aF |, where p is an odd prime and k is a
primitive root. modulo p (sce the index for a definition of this term). Deduce
that this group is not abelian.

13, Calenlate the chain of clementary ideals for the fundamental group of
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R
the orientable surface of genus A, |, by, - «, b, :T] [a,b;] =1], and
icl

deduce that if & > 2 this group is neither free nor abelian,
14. Calculate the chain of elementary ideals for |y @ (2y)" = (yx)" |,
and deduce that, for » > 2, this group is neither free nor abelian.

15. Calculate the chain of elementary ideals for the group

lzyz : [y talz] = [=hylel (e Wlwl T
and deduce that this group is neither free nor TnTwlim/
16. Calculate the chain of elementary ideals for the braid groups?
01,50, 1 0,0,90;, = 0,100, (¢ Lo, n 1),
0:0; = 0,0 le- 1 /1
17. Prove that if the free group of rank % can be mnp\]w«l homomorphically
onto a group G then E (G) = (1).

18. Given any finite set of integral polynomials f(¢), - - -, [, (1) such that
(f1(1), - -+, f.(1)) =1, construct a group G such that G/ (1) and

E\(G) = (f1D), - -+, [ult))-

1 E. Artin, “The Theory of Braids,”” American Scientist, Vol. 38, No. | (1950), pp.
112-119; F. Bohnenblust, “The Algebraical Braid Group,” Annals of Mathematics, Vol.
48 (1947), pp. 127-136.



CHAPTER VIII

The Knot Polynomials

Introduction. The underlying knot-theoretic structure developed in this
book is a chain of successively weaker invariants of knot type. The sequence
of knot polynomials, to which this chapter is devoted, is the last in the chain

knot type of K
presentation type of 7(R3 — K)
sequence of elementary ideals ..

sequence of knot polynomials.

The only complete invariant is the first, i.e., the knot type itself. It is complete
for the not very profound reason that two knots are of the same type if and
only if they are of the same type. If we stop here, we have a definition but no
theory. For all we know, all knots are equivalent. The next step is the major
advance. The theorem that knots of the same type possess isomorphic groups
reduces the topological problem to a purely algebraic one. The remaining
invariants are aimed at the very difficult problem of recognizing when two
presentations present nonisomorphic groups. It is important to realize that
at each step in the chain information is lost. In fact, for each invariant, we
have given at the end of this chapter a pair of knots whose type is distinguished
by that invariant but not by the succeeding one. The compensating gain is in
the decision problem, i.e., the question of recognizing whether two values of
an invariant are the same or different. As we have remarked elsewhere, this
problem is unsolvable for group presentations in general. For the knot poly-
nomials, however, it is a triviality.

The knot polynomials can be defined in terms of the elementary ideals
(cf. (3.2)). Unlike the ideals, however, which are defined for all finite presen-
tations, the knot polynomials depend for their existence and uniqueness on
the special algebraic properties of the abelianized group of a knot group. For
this reason, the first section of this chapter is devoted to proving the theorem
that the abelianized group of any knot group is infinite eyclie. The second
section establishes the necessary algebraic properties of the group ring of an
infinite eyelic group. We then define the knoto polynomials, cheelke their
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existence, uniqueness, and invariance, and study some of ‘their properties.
The final section contains examples of different knot types distinguished by
calculation of their polynomials and ideals. It should be emphasized that we
restrict oursclves throughout to knots whose groups we know possess over
presentations. By a knot group, therefore, we mean now a fundamental group
of the complement of a tame knot.

1. The abelianized knot group. Our contention is that the abelianized
group of every knot group is infinite cyclic. The proof is based on consideration
of the over presentation of a knot group

Let G be a knot group and (z,, - - -, x,, : 7, * * + ,r,), an over presentation of
G. A typical example of how a relator r; is derived by reading around an
underpass is shown below in Figure 45. (It obviously doesn’t really matter, but

IK @)

Figure 45. 7, = 2, @y '@y ;) a3 1wy

for simplicity we have used the modified over presentation (3.1), Chapter VI,
instead of (1.1), Chapter VI.) For any element u in the free group F generated
by x,,*- -, x,, we define the jth exponent sum of u to be the sum of the
exponents of z; at all occurrences of z; in u. We already have an expression for

this quantity; the jth exponent sum of % is the image of g—u under the

2
trivializer t: JF —J. Let z,; and ,, be the generators corresponding to the
two overpasses adjacent to the underpass with respect to which r, is defined.
To be specific, we assume that, with respect to the orientation of the knot, the
overpass corresponding to z,,;, precedes the overpass corresponding to z,,.
The example shown in Figure 45 illustrates the fact that the «(:)th and A(:)th
cxponent sums of r; are respectively +1 and —1 whereas the exponent sum
of 7, with respect to any other generator is 0. Hence, if 0 is any homomorphism
of @ into an abelian group, we have

| Ocpr, (()(/).lf"(‘ ))(()‘/"rl(: )

Sinee every knot projection is connected, we conelude that e, Odur, for
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every pair of generators Z; and z;. Thus any element in the image group 6G is
w power of the single element ¢ = Obay, j = 1.7 ™ We have proved

(1.1) Every abelian homomorphic image of a knot group is cyclic. Further-
more, the generators of any over presentation are all mapped onto a single
(e nerator.

In particular, the abelianized group of any knot group is cyclic. 1t remains
to prove that it cannot be finite. To prove this, consider again the over
presentation of G, and denote by (t) an infinite cyclic group generated by f.
Since F is a free group, the assignment lo; =47 = 1, ,ncan be extended
to a homomorphism of F onto (). It is easy to show that there exists
a homomorphism § of G onto (?) quch that the diagram

4

F—— ()
¢ 0
G
is consistent. ¥or, clearly,
l’ri:tsia 7::17."’”)

where s, is the sum over j of the exponent sums of r, with respect to &;. We
have

Qv

(85 iy — O30 = 0.

\

¥
=

8; = 2’[
i=1

Thus, {r; = ,i=1"-"">" and the consequence of rp- "> Frn® 't T
which is the kernel of ¢, 18 contained in the kernel of {. It follows that 0 is
well-defined by

T,L—‘
Z, j=1

Gcﬁu:Cu, we F.

Since  is onto, SO is 0. Consider next the abelianizer a: G — GGG We
recall the important fact that any homomorphism of & group into an abelian
group can be factored through the commutator quotient group (cf. (4.4),
Chapter IV). As a result, there exists a homomorphism 6’ such that the diagram

G ——> (1)

%

G/[G,G)

is consistent. Sinee 0 is onto, 50 is 0" A function whose image is infinite cannot
have a finite domain; so we conclude that GGG s infinite. Combining this

pesult, with (1.1), we obtain

ey he abelianized growp e Cany knol growp is tnfinide ey elie.
{ P ! { , |
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Another way of arriving at (1.2) is by reducing a presentation by Tietze
operations. If one begins, for example, with a Wirtinger presentation of G,
then G/[G,G] has the presentation (cf. (4.6), Chapter IV)

PN . 1€ —€ b = 1.+~
(21 » Ty 2 Xy 3Tk L ks) %], 1,5 = 1, ) M),

which one can then reduce to
.. . N T ~ (f -
(24, s Xy L Xy, =1, , )= (¢ ).

Notice that this approach is based on the theorem (cf. (4.5), Chapter IV) that
the consequence of the set of commutators [g,,9,], where g;, g,, - - - generate
a group, is the whole commutator subgroup.

2. The group ring of an infinite cyclic group. A knowledge of some of the
basic algebraic properties of the group ring of an infinite cyclic group H is
necessary for a proper understanding of the knot polynomials. In this section,
therefore, we shall review some of the elementary concepts of divisibility in
rings and integral domains in general and see how they apply to the group ring
JH.

Let R be an arbitrary ring having a multiplicative identity 1. An element
% of R is called a unat if it has a left and a right inverse, i.e., if there exist
v,w € R such that uv = wu = 1. The associative law implies that

w = w(uv) = (wu)v = v.

Hence, an equivalent definition is that a unit is an element having an inverse,
which, by the same reasoning, must be unique. Since the product of any two
units is again a unit, it is easy to see that the set of units of R ts a multiplicative
group. For example, the only units of the ring of integers are +1 and —1. In
a group ring, all group elements and their negatives are obviously units. They
are the so-called ¢rivial units of the group ring. The possibility of the existence
of nontrivial units will be considered briefly somewhat later in this section.

For any elements a and b of a commutative ring R, we say that a divides
b, written a | b, if there exists ¢ € R such that b = ac. Elements ¢ and b are
associates if a | band b | a. This relation is an equivalence relation provided
R contains an identity 1. The only associate of 0 is 0 itself. A commutative
ring is called an tntegral domain if it contains at least two elements and has
the property that if @ = 0 and b # 0, then ab £ 0.

(2.1)  Two elements in an integral domain with identity 1 are associates if and
only if one ts a unit multiple of the other.

Proof. If a and b are associates, there exist elements ¢ and d such that
a = beand b ad. Consequently, @ ade and

a(l dey 0.
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Sinee the ring is an integral domain, either @ or (1 — de) is 0. If @ = 0 it must
also he true that b = 0, and we are done. If 1 — d¢ = 0, then d and ¢ are
unit:x, and the desired conclusion again follows. Conversely, suppose @ = ub
for some unit «. Then, b = w1la and a and b are associates, and we are finished.

A commutative ring B will be said to be associate to a subring @ of R if there
exints o mapping p: B — @ such that, for any a, b € R, the elements a and
pt e associates, and p(ab) = (pa)(pb). It is immediate that

(2.2)  If Q is an integral domain, then so s R.

I’roof.  Consider nonzero elements @ and b in E. Any associate of a non-
7o clement must also be nonzero; hence pa and pb are nonzero. Since @
ix an integral domain, p(ab) = papb 7= 0, and therefore ab 7= 0.

An element d of a commutative ring R is called a greatest common divisor,
abbreviated g.c.d., of a finite set of elements a,, ---,a,e Rif d | a;,t =1,
--+,m,and, for any e R, if e | a,t=1,+-,n,thene | d. Obviously, any
two g.c.d.’s of the same finite set are associates. There is no reason for
supposing that every finite set of elements in an arbitrary commutative ring
has a g.c.d. A counter-example to this conjecture is provided by the ring of all

complex numbers m -+ V "3 where m and 7 are integers. Since it is a non-
trivial subring of the field of complex numbers, this ring is automatically an
integral domain. The only units are 1 and —1. It is not difficult to show that

any common divisor of 4 and 2(1 + \/:5) is one of the numbers 1, 2,
1+ \/—3, 1 — \/—3, and their negatives. Since no one of these numbers is

divisible by all of the others, it follows that 4 and 2(1 -+ \/:5) have no
greatest common divisor. A ring will be called a g.c.d. domain if it is an integral
domain and every finite set of elements has a g.c.d.

(2.8) If a commutative ring R is associate to a subring Q which is a g.c.d.
domain, then R s also a g.c.d. domain.

Proof. It follows from (2.2) that R is an integral domain. The product-
preserving mapping of R into @ is denoted, as before, by p: R — . Consider

any finite set of elements @y, - - -, @, in B,andletd beag.c.d.in Q of pa,, - - -,
pa,,. We contend that dis a g.c.d.in Rofa,, - - -, a,. First of all, since d l pa;
andpailai,wehavedlaz,iz 1,-~-,n.Nextsupposeelai,iz 1,--+, n.

Then, a, = b,e and pa;, = pb, pe; so pe divides pa; in Q. Since d is a g.c.d.,
pe divides d in @ and therefore also in E. Thus, e [ pe and pe I d, and so e l d.
This completes the proof. ("

In an integral domain with identity, any two g.e.d’s of the same finite set

are unit. multiples of ench other. As acoresult, in such o ring it is cnstomary to
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speak of any greatest common divisor d of a finite set a,, -, a, as the
greatest common divisor and to write d = g.e.d.(a,, - - -, a,).

The concepts of unique factorization and of a prime are also relevant to
the present discussion. An element p in an integral domain with identity is
a prime if p is not a unit and if p = ab implies that either @ or b is a unit. A
unique factorization domain is an integral domain with identity in which every
element which is neither zero nor a unit has an essentially unique factoriza-
tion into primes. To say that factorization into primes is essentially unique
means that, for any primes p;, ¢;,¢ =1,--+-,m,j=1,---,n,ifp;- - - p,, =
¢, "¢, then m = n and, for a suitable ordering, p, and ¢, are associates,
¢t =1,--+,n. The statement that the ring of integers is a unique factoriza-
tion domain is just the famous Fundamental Theorem of Arithmetic.

(2.4) Every unique factorization domain is a g.c.d. domain.

Proof. If a is any nonzero element of a unique factorization domain R,
the primes which are associates may be combined and a factorization

a=up,™ - -p,"m, m >0,

v

obtained in which no two of p,, - -+, p,, are associates, the n; are positive
integers, and u is a unit. Any divisor of @ has a factorization u'pjt - - - pl»’
where u’ is a unit and the »;" arc integers such that 0 <2, < ;. Similarly,
if ), -+, a, are nonzero elements of R, there exist primes p;, -, p,,
m > 0, no two of which arc associates, such that

im i:17...,n,

a; = U;Py " m o

where the n;; are integers > 0, and the u; are units. The element
n ” 1
d= Pyt P ™ n; = mn (nii)7
i
is obviously a greatest common divisor of @,, * - -, @,. An integral domain in

which every finite set of nonzero elements has a g.c.d. is a g.c.d. domain;
so the proof is complete.

We assume that the reader has some familiarity with the definition and
elementary facts about the ring R[t] of polynomials in one variable ¢ with
coefficients in an integral domain R. For example,! it is easy to show that if
R is an integral domain, then R[t] is an integral domain whose only units are
the units of R. A deeper result, the key point in the proof of which is due to
Gauss, is the following theorem.?

(2.5) If Ris a unique factorization domain, then so s R[t|.

! Seo N.oJdacobson, Lectures in Abstract Algebra, Vol T (D van Nostrand Company,
Ine; Princeton, NoJo, 1951), Chap. 3, Secis, (0, 6.
2 Neo NoJacohson, Lectures o Abstract Hgebra, Vol T (Do van Nostrand Company

Ine; Princoton, NG HOL D) Chapl 1) Seet. 6,
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We return now to the group ring of the infinite cyclic group H. For a choice
ol'a generator ¢ of H, an arbitrary element a of JH has a unique representation

o0
a = Zant”,
—©

where all but a finite number of integers a,, are equal to zero. It follows that
{he polynomial ring J[t] is a subring of JH. For every nonzero element a in
J1I, we define u(a) to be the smallest integer n such that a, # 0. For ex-
ample,

w4 26 — T8 = —5, (1) = 0.

Ifa =0, weset u(a) = o with the usual convention that o + o = o and
s | m=mn 4+ o = . Then,

(2.6)  u(ab) = u(a) + w(b), fora,beJH.

/ ’roof If either @ = 0 or & = 0, our convention gives the result; so we
assume that both are nonzero. Let ¢ = ab. Then, if

el «© [ee]
a=Yat", b=7bt", and c¢= ¢t
pvs s — @

we have
2] e}
Cp = E a’z‘bn—i = z aibn~i'
i=—0 i=pula)

Il n < pla) + u(d) and ¢ > u(a), then n — ¢ < n — u(a) < u(d) and so
ab, .= 0. Hence,

ton—u

¢, =0 forn < ula) + u(d).

If n = p(a) + u(d) and ¢ > u(a), then n — ¢ < n — u(a) = u(d) and so
b, .= 0. Thus,

U n—1

Cutay +udy = au(a)b#(b) #0
hecause the ring of integers is an integral domain. This completes the proof.

With the convention that ¢~ * = 0, it is apparent that, for any a € JH, the
clement at=#® is a polynomial. Hence, the function given by pa = at=*®@
defines a mapping of JH into the subring J[t] of polynomials. The fact that
any power of ¢ is a unit of JH implies that, for any a e JH, a and pa are
associates. Since —#(@—#®) = —(#(@)+L0) for any a, b € JH, it is a corollary of
(2.6) that p is product-preserving. We conclude that JH is associate to the
subring J[t] of polynomials. As a consequence of the Fundamental Theorem
of Arithmetic and Lemmas (2.5) and (2.4), it follows that J[t] is a g.c.d.
domain. Hence, by (2.3), we obtain our main theorem:

(2.7)  The group ring of an infinite cyelic group is a g.c.d. domain.

It is worth noting that J/1 is an integeal domain as a trivial consequence of
(2.6). An example ol a pgroup ving which is not an integral domain is the group
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ring of a cyclic group of order 2, in which
G+ —1)=£—1=0
is a valid equation. Another important result is
(2.8) The group ring of an infinite cyclic group has only trivial units, i.e.,
the powers of a generator t and their negatives.
Proof. Let a be a unit.of JH and b its inverse. Then, ah = 1 and

(pa)(pb) = pl = 1.
The only units of the polynomial ring J[¢] are 1 and —1. Hence,
pa = at="M = L1,
a — :I:t”(a),
and the proof is complete.

For an example of nontrivial units in a group ring, consider the group
ring of the cyclic group of order 5 generated by ¢. Then,

Q=241 —t+ 22 =1 —t+ 85—+ B2
= —t+8B—14 t)2
— =1, .
Our conclusions about the group ring of an infinite cyclic group are actually
valid for the group ring of any finitely generated free abelian group. The
proof is the same. Let K be a free abelian (multiplicative) group of rank m

generated by ¢,, -, t,,. Then, an arbitrary element a of JK has a unique
representation )

Ny ... n
My, * ,nmtl tm ™

Ms

[22
=—w

a —
Ny, v,

3

m

where all but a finite number of the integers a,, ... , are zero. Fora # 0,
we define u;(a) to be the smallest power of t; which oceurs in a. The function
p given by
atf”l(”) oo %umm), a # 0,

pe 0, a=0,
defines a product-preserving mapping of JK into the polynomial ring in m
variables J[¢, - - - , ¢,,]. Clearly, every element is associate to its image under
p, and so JK is associate to J[¢;, - - -, ¢, ]. Starting with the ring of integers,
we obtain after m applications of Theorem (2.5) the fact that J[¢;, -« -, ¢,]
is a unique factorization domain, and a similar argument shows that the only
units arc 1 and —1. Lemmas (2.4) and (2.3) together with the obvious ana-
logue of (2.8) then complete the proof of

(2.9)  The group ring of « free abelian group of rank m =~ 0 is a g.c.d.
domain whose only wnits are growp clements and their negalines.
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The notion of a greatest common divisor can be elegantly described in
terms of ideals. We recall that, in a commutative ring R with identity 1,
the ideal E generated by a subset S is the set of all finite sums

Sab, a;€8,b€R.
@

An equivalent characterization of £ is as the smallest ideal containing S.
By this is meant the intersection of all ideals of R which contain S. Since any
ideal which contains S must contain the ideal generated by S, the equivalence
of the two characterizations is obvious. An ideal is called a principal ideal if it
is generated by a single element. It is a simple matter to check that any two
associates generate the same ideal vn R, and, conversely, any two generators of o
principal ideal of R are associates. A notion we shall find useful is that of the
smallest principal ideal containing a given finite set of elements. The only
trouble is that, for commutative rings in general, there isn’t any such thing.
The smallest principal ideal containing a,, - - -, @, means the intersection of
all principal ideals of the given ring which contain a,, - -+, a,. This inter-
section is an ideal all right; but it doesn’t have to be a principal ideal.

(2.10) If R s a commutative ring with identity and a, -+ -, a, € R, then d
wsag.cd. of a, -+, a, if and only if the intersection of all principal ideals of
R which contain a,, - - -, a, ts uself a principal ideal generated by d.

Proof. Suppose first that the smallest principal ideal D containing
a,, -+, a, does exist and that d is a generator. Then we certainly have
d|a; i=1,-+-,n Consider next an arbitrary e¢€ R such that e|a,
¢t =1, -+, n. The principal ideal £ generated by e contains a,, - - -, a,, and,
therefore, also contains D. Thus d € ¥ and so ¢ | d. We conclude that d is a
g.cd. of ay, - -+, a, Conversely, suppose d is given as a g.c.d. of ay,- -+, a,
and gencrates the principal ideal D. Since d | a, t=1,---,n, it follows
that D contains a, « - -, a,. Consider next any principal ideal £ containing
ay, -+, a, Ifeis a generator of £, we have e | a,1=1,-+-,n. Consequently,
e | d and this implies that £ contains D. Any member of a collection of sets
which is a subset of every set in the collection must itself equal the inter-
section of the collection. It follows that D is the smallest principal ideal
containing a,, * * * , @, and the proof of (2.10) is completﬂi&s a corollary, we
have

(2.11) Inag.cd. domarn with identity, the g.c.d. of any finite set of elements
ts the generator of the smallest principal ideal that contains them.

The generator of a principal ideal in such a ring is, of course, determined
only to within unit. multiples, and the same goes for the g.e.d. Thus this last
result is true insofar as it makes sense s strietly speaking, it is the equivalence

classes which are equal,
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3. The knot polynomials. The group ring of an infinite cyclic group
becomes, upon selection of a generator ¢ of the group, what may be called a
ring of L-polynomials in t. The letter “L” is suggested by the Laurent power
series with negative exponents which arises in the theory of complex variables.
More generally, a ring of L-polynomials in » variables ¢y, - - - ./, is the group
ring of a free abelian group of rank » generated by ¢, -- - ./,. Notice that,
for one variable, the notion of L-polynomial coincides with that of free
polynomial which was introduced in the last chapter. This is simply beeause
an infinite cyclic group happens to be both free and free abelian. It should he

emphasized that the ring of L-polynomials is not determined by the group
ring alone. An element of the group ring of an infinite cyclic group generally
has two representations as an L-polynomial, e.g.,

32 — 5t +t3 and 3 — 5t 4 32

depending on which of the two generators is set equal to t. Nevertheless, we
commonly refer to an element of the group ring of a free abelian group as an
L-polynomial. In fact, the following definition of the knot po]ynomlals is an
example of this practice.

For any integer k > 0, the kth knot polynomial A, of a finite presentation
(X :r)= (2, ",2x, : 7, *,7,) of a knot group is the g.c.d. of the

determinants of all (n — k) X (n — k) submatrices of the Alexander matrix
of (x : r) where it is understood that

A, =0 if  n—k > m,
A, =1 if n—FkF<O.

The group | X : r| is canonically isomorphic to the knot group it presents;
hence, by (1.2), the abelianized group is certainly infinite cyclic. It follows
from (2.7) and (2.8) that the group ring of the abelianized group of | x : r|
is a g.c.d. domain with only trivial units. We conclude that

(3.1)  The knot polynomials exist and are unique to within 4-t*, where n is
any integer and t is a generator of the infinite cyclic abelianized group of the
presentation (X : T) of the knot group.

The smallest principal ideal containing a given finite set of elements is the
smallest principal ideal containing the ideal generated by this finite set of
elements. Hence, as a consequence of (2.11) and the definitions of the poly-
nomial A, and the elementary ideal E,, we obtain the following characteriza-
tion of the knot polynomials.

(3.2) Each knot polynomial A, is the generator of the smallest principal ideal
containing the elementary ideal E,.

A very important practical corollary of (3.2) and our result that equivalent
matrices have the same clementary ideals is the fact that the knot poly-
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nomials of a presentation, like the elementary ideals, can be calculated from
any matrix equivalent to the Alexander matrix. One naturally uses the
simplest matrix one can find.

(33) Ap | Aw

Proof. We shall use a corollary of (3.2) and the fact that the elementary
ideals form an ascending chain (cf. (4.1), Chapter VII). Let (A,) and (A,;)
denote the principal ideals generated by A, and A, ,, respectively. We have

(Bpy1) @ By 2 By
Since (A,) is the smallest principal ideal containing %,
(Bpr1) = (Ay)
Thus, A, = alyy, or Ay | A

The next theorem is the analogue for knot groups of the invariance theorem
for the elementary ideals, (4.5) of Chapter VII. Its essential content is that
the knot polynomials are invariants of knot type.

(3.4) INVARIANCE OF THE KNOT POLYNOMIALS. If (X : T) and (¥ : 8) are
finite presentations of knot groups and

is a presentation equivalence, then, to within units, the kth knot polynomial A,
of (X : ) is mapped by fyy onto the kth knot polynomial A, of (y : s).

Proof. We shall use a corollary of (3.2) and the Invariance Theorem (4.5)
of Chapter VII. We recall that f,, is the linear extension to the group rings
of an induced isomorphism of the abelianized group of | x : r| onto that of
'y : s8] (cf. (4.4) and preceding paragraph in Chapter VII). Denote by (A,)
and (A,") the principal ideals generated by A, and A,’, respectively, and by
E, and E,’ the elementary ideals of (x : r) and (y : s), respectively. Then,

E.,<=(A,) and E, < (4)) and fu.E,=E,/ .

Now, an isomorphic image of a principal ideal is principal, and fy.(A,) 2
fesEy = E,. Since (A,’) is minimal,

Fa(B) 2 (&)
By the same argument,
and so

TexlB) (D))

Sinee [y (A,) s generaded by [ AL the elements A and [, A, are associates
and therefore unit multiples of cach other, '"This completes the proof.
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The preceding theorem is of fundamental importance. It implies directly
that the knot polynomials are invariants of knot type. We recall the basic
principles: (1) If two knots represent the same knot type, their groups are
isomorphic (cf. (4.7) and the subsequent discussion in Chapter II). (2) Two
presentations of isomorphic groups are of the same presentation type, and,
hence, there exists a presentation equivalence between them (cf. (2.4) and
accompanying discussion in Chapter IV). Let us see how this invariance
theorem applies to a fictitious example. Suppose we are given two knots K
and K’, known to be of the same typc, and are asked to obtain, for some integer
k, their respective polynomials A, and A,’. We determine an over presentation
of K, possibly simplify it, calculate the matrix of derivatives, select a genera-
tor ¢ of the abelianized group, and obtain the Alexander matrix. We then
manage to find a g.c.d. of all determinants of order » — k and, finally, end up
with an L-polynomial, say A, = 38 — 5t + ¢. Since the knot polynomials
are unique only up to units, it is natural to normalize A, to the polynomial

A, =32 — 5t + 1,

i.e., no negative powers of ¢ and a positive constant term. Notice, however,
that the form of the normalized polynomial A, depends on the choice of
generator of the abelianized group of the presentation. For if we select the
other generator s = ¢7%, the final normalized polynomial is

A, =% — bs + 3,

which is not of the same form as 3t> — 5{ 4+ 1 but is, in the ring JH, an
associate of it. The next question is: If we go through a similar calculation
for K’ and obtain A,’, what must it look like? Let us assume that we have
picked a generator z so that A, is an L-polynomial in z. Since K and K’ arc of
the same type, their knot groups are isomorphic and there exists an iso-
morphism f, between the abelianized groups of the presentations of the knot
groups. Notice that regardless of how difficult it may be to describe the iso-
morphism between the knot groups, the mapping f is very simple. There
are only two ways to map one infinite cyclic group isomorphically onto
another: either fy,(t) = @ or fy4(f) = 1. In our example, therefore, cither

JesDy = 32> — 52+ 1 or 3a2 — 5zt + L.

By the Invariance Theorem (3.4), we have fy A, = +2"A,’. Hence, if A, is
normalized, there are just the two possibilities

A =322 —5x 41 or a?— bz + 3.

As we have indicated above, these two reciprocal forms of the polynomial are
cqually good.

The above fictitious example is very fictitions indeed. We shall prove in
the next chapter that it A () e v | e, (" Y <= | e, is an arbitrary
normalized knot polynomial, then ¢, [ O, -« n. Asacresult ol this

"o
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symmetry, it follows that the normalized form of a knot polynomial is an
invariant of knot type. Specifically, if the normalized knot polynomials
A, and A}’ of respective knots K and K’ are not identical for every k > 0,
then K and K’ represent distinct knot types.

In any over presentation of a knot group any relator is a consequence of
the others and therefore can be dropped (cf. (1.3), Chapter VI). Thus, every
knot group has a presentation whose Alexander matrix is (n — 1) X =.
Consequently,

(3.5) The Oth elementary ideal and polynomial of a knot group are trivial:
E,=A,=0.

This is actually a special case of the more general fact that the Oth ele-
mentary ideal of a finite presentation is trivial if and only if the abelianized
group of the presentation is infinite.

Let (X : v) = (x,--°,x, : r,"*,7,) be a presentation of a given knot
group. We denote by 3 the homomorphism of the free group generated by
@y, ***, x, onto the factor group | X : r |, and by a the abelianizer of | x : r|.
Suppose that all the generators of the presentation are mapped by ay onto a
single element, i.e.,

(3'6) ayxi = ayxj’ i,] = 1) N (2

This condition is in fact satisfied by any over presentation (cf. (1.1)). The
entries of the Alexander matrix 4 = || a,; || of (x : r) are defined by

or; . )
aij:ay_, Z:l,~-°,mandj:l’...,n.
0w,
By the fundamental formula (cf. (2.11), Chapter VII),

ri—lzi( ) (x; — 1).
i=1\0%;

or
0x
Since yr; =1,

0=3 ay(g;—f) (ayz, — 1).

j=1 j
Since ayx, = ayz;,j = 1, -+, n, we can write
n
0= (z a)ayz, — 1).
J
The element ayx; is a generator of the infinite cyclic abelianized group of

| x :r|;s0 (ayx, — 1) # 0. Since the group ring of an infinite cyclic group is
an integral domain, "
0:->a,
i

e, the sum of the column vectors of the Alexander matrix is the zero veetor.
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Hence,

(3.7) The Alexander matrix A of any finite presentation of a knot group
which satisfies (3.6) ts equivalent to the matrix obtained by replacing any column
of 4 with a column of zeros.

Suppose (X : r) is an over presentation with » generators and n» — 1
relators. As remarked above, (3.6) holds, and so (3.7) is applicable. In this
case, however, 4 is an (n — 1) X = matrix. If one column is replaced by
zeros, there remains at most one (n — 1) X (n — 1) submatrix with non-
zero determinant. Since equivalent matrices define the same elementary
ideals, it follows that the 1st elementary ideal of (X : r)is principal. Hence, by
3.2),

(3.8) The 1st elementary ideal of a knot group is a principal ideal generated
by the 1st knot polynomial A,.

The 1st knot polynomial A, is the most important member of the sequence
of knot polynomials. It is called the Alexander polynomial of the knot group
and is commonly written without the subscript. Thus,

Aty = A, ().

Tt also follows, of course, that the determinant of any one of the (n — 1) X
(n — 1) submatrices of 4 may be taken to be the polynomial A,.

. 7 4. Knot types and knot polynomials. The following examples illustrate the
power of the knot polynomials. It will become apparent that these invariants
provide a systematic tool for distinguishing knot types on quite a respectable
scale. The computational procedure is based on the results of the preceding
sections. For example, it is a consequence of (1.1) that the Alexander matrix
of an over presentation can be obtained from the matrix of derivatives simply
by setting all generators x; equal to . On the other hand, it is usually to one’s
advantage to simplify an over presentation before starting to compute deriv-
atives. However, if all the generators of one presentation of a knot group are
mapped by ay onto a single generator of the abelianized group, the same will
be true for any other presentation obtained from the first by means of Tictze
operations I, I, and II'. So one may still set all generators z; equal to ¢ after
simplifying an over presentation provided no new generators have heen
introduced in the process. Notice, moreover, that (3.7) is valid for such
presentations. This fact obviously offers a substantial computational shorteut.

More often than not, a group presentation is written with relations rather
than the more formal relators:

! . . .. . g . ... w >
( l"l' ot . 'I S . ,m ™ l
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The relation r, = s, corresponds to the relator r;s,71. We have

or;s,! o, 0s;

Since the canonical homomorphism y maps every relator onto 1, computation
of the entries a,; of the Alexander matrix is simplified by the observation that

In the examples which follow we consider first those knots for which we
have already computed group presentations in Chapter VI.

(4.1)  Trivial knot (Figure 46).

Figure 46. =(R3 — K) = |x ||

Rather than talk about a matrix with one column and no rows, we observe
that the presentation (z :) is of the same type as (x : 1). Hence, the Alex-
ander matrix is simply 4 = || 0 || and

A,=1 for k>1.
(4.2) Clover-leaf knot (Figure 47).

Figure 47. «(I'* K)oy aoye yey|
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The two entries of the Alexander matrix 4 = || a;; a;, || are

5}
4y =0y = (vyx — yzy) = ay(l + zy — y),

0
@y = ay 3 (vyx — yry) = ay(x — 1 — yx).

Setting ayr = ayy = t, we obtain

A= |1—t+8£ —14t—2].
Hence,
Aj=1—¢t+¢ and A, =1 for k>2.

So the clover-leaf knot cannot be untied. We have, however, already proved
this fact in Chapter VI.

(4.3)  Figure-eight knot. A Wirtinger presentation in which x and y cor-
respond to the overpasses shown in Figure 48 can be simplified to give

(R — K) = |2y : yrlyzy™ = x lyzy 1z |.

Y

Figure 48

Again. we set ayr = ayy = ¢. The computation is halved by the observation
that since (3.7) holds for the above presentation, either one of the two entries
of the Alexander matrix may be set equal to the polynomial A,. Thus

0
Ar = ay o= (yayay ™t — a7 lyay )

-1 bt -l —1l=t—3+4¢tL

Normalizing, we obtain

AV A

Obviously, \, I for k2 We conelude that the ficure-cizht knot s not

frivial nnd ol a different tope from the elover leal
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(4.4) Three-lead four bight Turk’s head knot (Figure 49).

. -1 -1
(RS — K) = [ 2,20,25,%5 ¢ & = [Ty3, T o)l 70, Tiys],

t=1,--, % integers mod 4 |.

-1
T, T T,

% BN

-1
3Ty T3 Z3

I

EX

Figure 49

As can be read from Figure 49, this presentation is obtained by simplifying a
Wirtinger presentation; the generators x;, - - -, z, are four of the original

eight. Accordingly, we set ayx, =¢ ¢ =1, --,4. The Alexander matrix
A = | a,; | is given by

—1 -1
a; = ay 7. (@ — (%3 B o) T30, Zipsl)-
j

Hence,
a, =1 ]
i |
@i = —1 I 1 =1,+++,4; indices
— G -1 :
@0 = —t + 2 ¢t are integers mod 4.

Wiy =1t— 2+ 171

Any one of the four relations is a consequence of the other three and may be
discarded. As a result, we may drop the 4th row of the matrix and obtain




Sect. 4 KNOT TYPES AND KNOT POLYNOMIALS 127

The reader should check the operations in the following reduction of 4 to an
equivalent matrix of simpler form.

1 —1 42— 0
A~ |[t—2 12 1 —1
0 t—1 41 0 0
1 0 42— 0
A~ [t —2 41 0 —1
0 it — 14 ¢1 0
0 0 —t4+1—¢1 0
A~ |[t—3 11 0 —1 0
0 t—1 4 ¢2 0 0
(¢t — 3 4+ ) (—t + 1 — ¢t 0 0 0
A~ 0 —1 0
t—1 4 ¢ 0 0
(t—3 + )¢t —1+ 7 0 0
A~
0 t—1+t‘1

Hence, the normalized polynomials are
Ay = (82 — 3t + 1)(82 —t + 1),
Ay =12 —t+1,

A,=1 for k=>3.

So this knot is neither trivial, nor the clover-leaf, nor the figure-eight. Notice
that the elementary ideals £| and E, are both principal ideals: £, generated
by A, and E, by A,.

(4.5) Stevedore’s knot (Figure 50).

.« and y are Wirtinger generators, and we set ayxr = ayy = ¢. Using (3.7),
we have immediately

J
A =ay P [y 2y(wy )2 — y(zy ) 2y(xy )%

2 2t (— 28 22)

22 62
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Figure 50. #(R3 — K) = | 2,y : (xy™)2y(zy )2 = ylxy ) 2y(zy ) |

The higher polynomials are, of course, all equal to 1. On normalizing, we
obtain
A, =282 — 5t + 2,

A,=1 for k>2.

The higher elementary ideals are also trivial.

E, = (22 — 5t + 2),
E,= (1) for k>2.

(4.6) (Figure 51).

x” z:cz x
“layzTly

Figure 51
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We omit the details; but one can simplify a Wirtinger presentation and obtain
7T(R3 - K) = l x>?/;2 : 71’72 l

where z, y, z are the Wirtinger generators indicated in Figure 51, and the
relators 7, and r, correspond to the following relations.

ry oy layxrly = vl lzpz iy,
B U O S |
ry @ xlzwz e = ylzyzly.

Under the mapping ay the generators z, y, 2z are each sent into ¢, and the
Alexander matrix of the presentation can be written down quite easily. We
get

0
a; = ay (5%) — 31— 3

or

g = ay (a_yl) = —t14+2

a3 = ay (%) = —2t1 L1
or.

gy = ay(a—;) = —t142
0

Aoy = ay(g;—%) =¢1—-2
0

Gy = QY (a—rf) =0

Consequently,
4 31 —3 — 142 21 4]
|-ttt 2 -2 0

' 3—3t —1+4 2 0“

Tolcre2 1—2 0
21 0 0
~ 0 1—2 0

Since 2 — ¢t and 1 — 2¢ are distinet irreducibles, their g.c.d. is 1. Hence
)
Ap = (2 =0 — 28) =2 — 5t + 22,
A, I for k& -2
The second clementary ideal 17, is generated by 2 tand 26 1. That this
ideal is not. the whole greoup ving 1 ol the abelinnized group of the presenta.
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tion may be seen by mapping JH homomorphically onto the integers J by
setting t — —1, ¢t — —1. Under this homomorphism the ideal F, is mapped
onto the integral ideal generated by 3 since

2—t —3,

1 —2t —3.
We conclude

I

2 — 5t + 2),

I

E, =2
E, = (2 —t,1 — 2t) is not a principal ideal,
E, =1

) for &k >3.

I

Comparison with the preceding example shows that the two knots exhibited
in Figures 50 and 51 have the same knot polynomials but distinct elementary
ideals. These examples verify the contention made in Chapter VII and in the
introduction to this chapter that the clementary ideals are stronger invariants
than the polynomials.

(4.7) (Figures 52 and 53).

K
K5 e

Figure 52

The Alexander matrix of each of these knot types is equivalent to the matrix
[| 462 — 7t + 4 01].

Thus, the methods developed in the last two chapters fail to distinguish them. Their
groups can, however, be shown to be nonisomorphic by other methods.3

By the inlomg mvariant of the second eyehie branched covering; ef. o Sceifert,  Dio
Versehlhingpranpe mvarinton dor 2y Llischen Knotonaboerlngerangen " Hlaomb . UWL T (T935)
P S0
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(4.8)  Granny knot and Square knot (Figures 54 and 55).

a ra=zax™!

Va

a
Figure 54
x Y
a
N
e\
% .
“a
Figure 55

It can be shown by more advanced techniques that the knots shown in
Figure 54 and Figure 55 represent distinct knot types.* However, the
methods of this book fail to distinguish them from the very outset. Not only
do they have equivalent Alexander matrices, but they even possess isomorphic
groups. For each, we have

(R — K) = | z,y,0 : o lza = zax~!, a"lya = yay™ |.

EXERCISES

1. For each of the five knots in Exercise 1 of Chapter VI, find an Alexander
matrix with one row and two columns. Compute the elementary ideals and
knot polynomials.

1 R. H. Fox, “On tho Complomoentary Domains of a Certain Pair of Inequivalont
Knots,” Ned. Akademie Wetenseh., Indag. Math. Vol. 14 (1952), pp. 37 -40; H. Seifort,
“Vorschlingungsinvarinnton,”” S. B Prewss. Akad. Wiss. Berlin Vol. 26 (1933), pp.

|11 R23.



132 THE KNOT POLYNOMIALS Chap. VIII

2. Compute the elementary ideals and knot polynomials for each of the
following four knots.

(a) True lover’s knot. (b) False lover’s knot.
(¢) Chinese button knot. (d) Bowline knot.
@ @
Figure 56a Figure 56b
Figure 56¢ Figure 56d

3. Using the presentation of the group of the torus knot K, , given in
Chapter VI, Exercise 3, show that the Alexander polynomial is

A(t) :w,
@ =1 —1)
and £, = 1.

4. Prove that the degree of the normalized Alexander polynomial of a knot
is not greater than the number of crossings of any of its diagrams.

5. Show that the Alexander matrix class of the knot in Figure 57 is the
same as that of a trivial knot.

6. Prove that the group of the figure-eight cannot be mapped homomorphi-
cally upon the group of the overhand knot.

7. If we tie two knots on the same picee of string, the result is called a
composite knot. Prove that the Alexander polynomial of & composite knot is
the product of the polynomials of the constituent. knots.
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o 7
oy~

\,
Figure 57

8. Let k& and n be positive integers and let us try to assign to each overpass
x; of a regular knot projection an integer A, in such a way that corresponding
to each crossing r; —> | —> z,, therelation k(4 — 1)) = 4, — 4;,; (mod n)

z,
holds. Prove that this ckan be done nontrivially if and only if A(k) =0
(mod n).
9. Prove that the group of a knot can be mapped homomorphically upon
the group of Chapter VII, Exercise 12, if and only if A(k) = 0 (mod p).

10. Let f(t) be an integral polynomial and let us try to assign to each
overpass z; of a regular knot projection an integral polynomial A,(¢) in such
a way that corresponding to each crossing as shown in Exercise 8 the relation
HALR) — Ay(t)) = Ay(t) — A, 11(t) (mod f(¢)) holds. Prove that this can be
done nontrivially if and only if f(¢) divides A(t).



CHAPTER IX

Characteristic Properties of the

Knot Polynomials

Introduction. A survey of the knot polynomials A,(¢) computed at the end
of the preceding chapter shows that, for each of them, A, (1) = 4-1. A proof
that this equation holds for all knot polynomials is the objective of the first
section of the present chapter. The survey also substantiates the assertion
that all knot polynomials are reciprocal polyromials, i.e., for every knot
polynomial A,(¢), there exists an integer n such that A,(¢) = t"A,(t71). Thus,
if Ay(t) = ct™ + ¢, _t" 1 4 - - - 4 ¢,, the coefficients exhibit the symmetry
nei» © =0, ,m. As was pointed out in Section 3 of Chapter VIII,
this property is essential to our conclusion that knots of the same type possess
identical polynomials. It is therefore important to close this gap in the theory.
The proof that knot polynomials are reciprocal polynomials will be effected in
Sections 2 and 3 by introducing the notion of dual group presentations, the
crucial examples of which are the over and under presentations of knot groups
defined in Chapter VI. It should be emphasized that our arguments apply only
to tame knots, and throughout this chapter “knot”’ always means ‘“tame knot.”

It is known! that the two properties

A1) = +1,

A, (t) is a reciprocal polynomial,

c; =2¢

characterize the 1st polynomial or Alexander polynomial A,(¢) of a knot; in
other words any L-polynomial that has these two properties is the 1st poly-
nomial of some knot.

1. Operation of the trivializer. An element a of the group ring JH of an
infinite cyclic group H has a representation as an L-polynomial

0

a=alt) =Y a,t"

— 0

where all but a finite number of the integers a,, are equal to zero. The image of a

UL Seifort, “Uber das Geschleet von Knoten,” Math. Ann. Vol. 110 (1934), pp. 571-
592 (. Torros and R. H. Fox, “Dual Prosontations of tho Group of a Knot.,” Ann. of
Math. Vol. 59 (195 1), pp. 211 218,

131
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under the trivializing homomorphism t : JH — J is obtained by setting ¢t = 1
(cf. Section 1, Chapter VII). Thus, we write ta = a(1). An invariant of knot
type, simpler than the knot polynomials A,(f), is the sequence of integers
| A1) ], E=1,2,---. Although each knot polynomial is specified only to
within a unit factor +¢", the absolute value | A (1) | is uniquely determined
by the isomorphism class of the knot group. This invariant, however, is useless
as a tool for distinguishing knot types. In this section we shall prove the
interesting theorem that, for any knot group,

(1.1) [ A ] =1, k=12, -
An equivalent result is

(1.2) For any finite presentation (X : r) of a knot group and integer k > 1,
the tmage of the elementary ideal E, of (X : r) under the trivializer t is the entire
ring of integers,ie , tE, =J, k=1,2---.

It is easy to show that (1.1) and (1.2) are equivalent. Observe, first of all,
thatsince A, | A, (cf. (3.3), Chapter VIII), (1.1) isequivalent to the statement
that | A;(1) | = 1. Similarly, the elementary ideals form an ascending chain,
and so (1.2) is equivalent to the equation tE, = J. We have shown that E, is
a principal ideal generated by A;. It follows that tH; is generated by
tA; = A,(1). Thus, if | Aj(1)| =1, then tE, =J. Conversely, since the
generator of an ideal in an integral domain is unique to within units, if tE;, = J,
then | Ay(1)| = 1.

We now prove (1.2). Let (x : 1) = (%,--*,%, : r,"**,7,) be a finite
presentation of a knot group and 4 its Alexander matrix. As a result of (4.6) of
Chapter IV, the abelianized group of the knot group can be presented by
(x:r,[r,2,],¢,5 =1, -,n). Denote the Alexander matrix of this presen-
tation by 4’. Since the abelianized group of any knot group is infinite cyclic,
(x : 1, [2,2,], 6,5 =1, -+, n) is of the same presentation type as (x :). The
elementary ideals of the latter are E, = (0), E; = E, = - - - = (1). It follows
from the fundamental invariance theorem for elementary ideals (cf. (4.5),
Chapter VII) that
), k=0,

BAY=\0), k=1

The ideal (1), generated by the identity 1, is, of course, the entire ring. We
next observe that the image of any Alexander matrix under the trivializer is
identical with the image of the original matrix of free derivatives under the
trivializer. Furthermore,

0
P [z,2)] = 041 — zwx ™) + Oylx; — w1, h).
T
And so,

t J | | 0 W |
] £ s gk — 1, .
(7.",‘ " !
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or,
_* tA
0 0

Using the results of this paragraph and (4.2) and (4.3) of Chapter VII, we

obtain

Henee,

tE(4) = By(td) = B(t4') = tBy(4")
_[(0),  ifk=0,
“\V,  ifk>1,

and the proof of (1.2) is complete.

2. Conjugation. The immediate objective of this and the next section is
the theorem:

(2.1)  For any knot polynomial A(t), there exists an even integer n such that
1
At) = t"Ak(z).

Notice that if (2.1) holds for a polynomial A(t), it also holds for any unit
multiple of A(¢).

The degree of an arbitrary L-polynomial a(t) = X% _ a,,t™ (a,, = 0 for all but
a finite number of values) is the difference between the largest and smallest
values of m for which a,, = 0. Since this number is unaffected by multipli-
cation by a unit factor 4-t* or by the change of variable s = -1, the degree
of a knot polynomial is a well-defined invariant of knot type. If the poly-
nomial A.(#) is chosen in normalized form (no negative powers of ¢ and a
positive constant term), then the integer n which appears in the statement of
(2.1) above is obviously the degree of A,(t). Thus, in addition to stating that
knot polynomials are reciprocal polynomials, (2.1) implies that

(2.2) Ewvery knot polynomial is of even degree.

The mapping ( )™': G — G which assigns to every element g of an arbitrary
group @ its inverse g1, is one-one and onto but not an isomorphism (unless G
is abelian). Since it is product-reversing instead of preserving, i.e.,

(gh)—l = h—lg_l’ 9, he@,
it is called an anti-isomorphism. An important fact, albeit trivially verifiable,

is that ( ) 1 1is consistent with homomorphisms: Given any homomorphism
¢ (> I, the mapping diagram is consistent. The unique lincar extension

()
(f — > (/

1

(!

I > 1l
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of ( )1 to the group ring J@G (cf. (1.2), Chapter VII) will be called conjugation
and denoted by a bar. Thus,

Zaigi = Zai(gi)—l, a,€d, g;€G.

Using the theory of dual presentations developed in the next section, we shall
prove the important theorem

(2.3) The elementary ideals E, of any finite presentation of a knot group are
invariant under conjugation, ie., B, = K,k =0,1,2,---.

Theorem (2.1) is a corollary of (2.3) and (1.1). The proof is as follows:
Denote by (A,) the principal ideal generated by the knot polynomial A,. We
recall that (A,) is the smallest principal ideal containing E,. Since E, < (A,),

EkZEkC(AT'

In the group ring of an abelian group, conjugation is a ring isomorphism.

Hence, (A,) is a principal ideal, and (A;) = (A,). Since (A,) is minimal,

(Ay) = @) < @) = (Ay).

We conclude that .
(Ak) = (Ak)'

Generators of a principal ideal in an integral domain are unique to within

units; hence,

1
Ak(t) S étnAk (?),
1 —
where € = 1. (Of course, A,(t) = A, and Ak(?) = A,.) For k = 0, both
sides of the equation are zero, and the value of € doesn’t much matter. For
k > 0, we know from (1.1) that A, (1) 7 0. Hence, substituting t = 1 gives
immediately e = 1. Writing A (t) = ¢, + ¢t + -+ - 4 ¢,t", wehavec, =c,,_
1 =20,---,n. If n were odd, we would have by (1.1)

7

A | =1=2]co+ "+ oy

which is impossible. Hence, n is even, and the proof of (2.1) from (2.3) and
(1.1) is complete.

3. Dual presentations. The definition of dual presentations is conveniently
expressed using the terminology of congruences. If f: B — R’ is any ring
homomorphism and a,,a, € B, we write a, = a, (mod f), translated a, s
congruent to a, modulo f, whenever fa, = fa,. (The expression appears most
commonly in consideration of the homomorphism of the integers J onto the
ring J, of residue classes)) Two o finite group  presentations (x @ r)

(oo, corpeeur,) and (yooos) (" i o St s,) consti
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tute a pair of dual presentations if there exists a presentation equivalence
0: (x : 1) — (¥ : §) such that

(¢) Oz, =y, 1 (mod ay), i=1,-+-,m,

r. X
) G(S—é(xj—l))zg—;(yi—n (moday), #4,j=1,-+-,n.
The homomorphism y is the extension to the group ring of the canonical
homomorphism of the free group generated by y,, - - -, y, onto the factor
group |y : s|, and a is the abelianizer.

Dual presentations are ¢pso facto of the same type, and it therefore makes
sense to speak of dual presentations of a given group. It is our contention
that the group of any knot has a pair of dual presentations. Specifically, we
shall prove that the over and under presentations (1.1) and (1.2), Chapter VI,
are mutually dual. We assume that K is a polygonal knot in regular position
situated as described in Section 1, Chapter VI, and that overpasses, under-
passes, orientations, basepoints, generators, etc. have been selected as there
described. The notation will be the same. The presentations (1.1) and (1.2)
are abbreviated (X : r) and (y : s) respectively, and the canonical homo-
morphisms of F(x) and F(y) onto the factor groups |X : r| and |y : s|
are both denoted by y. Let o be the equivalence class of a path in R® — K
with initial point p," and terminal point p,. The mapping % defined by

np=a ot

for all Ben(R®— K,p,) is an isomorphism of =(R®— K,p,) onto
m(R3 — K, py), cf. (3.1), Chapter II. This isomorphism induces a natural
isomorphism 0, of | X : r|onto |y : s| which isrealizable by a presentation
equivalence 6: (X : r)—>(y : 8) (cf. (2.3) and (2.4), Chapter IV). All of
these actually very simple ideas are summed up in the following completely
consistent diagram.

F(x)

\1
¢ [x:r|

|~

m(R3 — K,p,) —> m(R3 — K,p,)

Consider an arbitrary underpass B, adjacent to an overpass 4, Where §
is the equivalence class of the path shown in Figure 58 below, it is clear that

nge; = (a f0) - (- day ) (B o,
/f . (/).’17‘ . /; ] . (‘/),:’/h«) |.

and that
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Hence,

nez; = (- ) - (y ) - (B a7,

and so
Oxya; = - (yy ™) - o7,

where ¢ is the image of (« - §~!) under the isomorphism =(R3 — K, p,’) ~
| ¥ : s|. We denote the abelianizer on | X : r|and on |y : 8| by the same
letter a. Finally, therefore,

ayfz; = abyyz; = alo - (yy ) - 071 = ayy L
This coupled with the fact (cf. (1.1), Chapter VIII) that
(3.1) =, =z, (mod ay), Gj=1,"",n,

implies
Oz, = y, ! (mod ay),

and Condition (¢) of the definition of dual presentations is established.
It is a corollary of the preceding two equations that

32) y,=y; (mod ay), 4,7 =1,-+-,n.

Morcover (c¢f. (1.1) and (1.2), Chapter VI, the infinite cyclie abelinnized
group of| y : 8 [ is generated by the single element s ayy,, ¢ I, n.
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In order to establish (i¢), we shall need the following lemma:

(3.3) Let a and b be any two simple paths in R2 — PB and R* — PA,
respectively, having the same initial and terminal points (i.e., a(0) = b(0) and
a(llal)=0([lb]). Then,

6a* = (°)" (mod ay).
Proof. As a result of (3.1) and (3.2), we have
a* = 2,' (mod ay), for some integer [,
b” = y,™ (mod ay), for some integer m.

Next, choose a simple path ¢ in R* — 24 with the same initial and terminal
points as @ and b such that
l

¢ =y' (mod ay).

There are several ways to pick c. For example, one may simply follow along a
as closely as possible skirting around every projected overpass encountered
(cf. Figure 59). Suppose, for example, that the path a crosses under the

Figure 59

overpass A; so that the resulting contribution to a* is z,°. Then, as is illu-
strated in Figure 59, in skirting around £ 4, the contribution to ¢ obtained by
crossing underpasses is

e v, -

Thus the exponent sum of @ and ¢® must be equal. Since ¢h=! is a closed
path which cuts no projected overpasses, we have

Py Yy
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Hence,
® =b"  (mod ay),
and so
n=y" (mod ay).

Since ayy, generates an infinite cyclic group, we conclude that [ = m. Finally,
using Condition (z), we obtain

faf = fr,™ =y, " = (bb)_1 (mod ay),

and the proof is complete. Notice, incidentally, that (3.3) includes (z) as a
special case.

The presentations (x : r) and (y : s) are unaffected by the size and shape
of the regions V,--+, V, and Uy, -+ -, U,. Consequently, we shall assume
that the points of each one remain close to the particular projected underpass
or overpass covered. Consider an arbitrary pair of integers 4,5 =1, - -, n.
We have (cf. (1.1) and (1.2), Chapter VI) 7, = ¢ 0% (c,f)? and
s; =d - u} - (dL) 1. Notice that

or; oc¥ ov¥ et o ¥
L= —= kA N dy),
oz; oz; ‘ ox;  Ox; ‘i 0, (mody)
and similarly
aSj au.b
o =d? == d y).
ayi J ayl (mo )’)

Thus, in checking (#), we need only consider occurrences of z; in »,* and y,
in u;”. We shall say that the overpass 4, is adjacent to the underpass 13, if
they have an endpoint in common, i.e., if they occur consecutively along A"
The different cases may be classified as follows:

Caskg (1) The overpass A; neither crosses over nor is adjacent to the underpass
B,. In this case, v,# does not contain x, and u,” does not contain y,. Henee,

—_—— = (mod ).

Case (2) The overpass A; crosses over B, at least once, but is not adjacent lo
B;. We include the possibility that A4, crosses B; several times. However,

. . . , : or

cach interseetion of v, with £A4; contributes a monomial term to —  and
o, . o . 5 v

— i just the sum of these contributions. Similarly, — is the sum of the

-, "

monomials contributed by the intersections of w, and 2B, Thus we may
study one crossing at o time, The situation at o single erossing of 1) by .l
is shown in Figure 60,
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Then,
r; = cHefe g (e,
8; = dP(hy Koy, ol ) (d,0)
Hence,
or; zf—1
i (oteh — oty cfip—) T e
axj (cz Cl .’Z']f 2 ) .’l?j . l +
ds; s _1
= = (d,'h° — d,hoy K"y, ~) ~ +o
0y; Yy, — 1
Therefore,
or; 34 (e €
(= 1) = ol — (@ — 1)+ - (mod ay),
i
0; bpb by (yy 8
5 W= D = A0 =B — 1) oo (mod ay)
i

By the lemma (3.3),
fcFe¥ = (dPh")1 (mod ay),

Bf# = yi_é (mod a?’),
Oxf = (k)1 (mod ay).

Hence,

0(?2 (% — 1)) =dR(1 —y )k — 1)+ (moday),
i

and it follows that

ar, 0s, 7
()( (r I)) (v, 1) (mod ay).

- !
. : '
o f
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CasE (3) The overpass A, is adjacent to B;. The situation is illustrated in
Figure 61.

qO
Figure 61
We have
Ty = ci#(e#xjef#)(ci#)_l>
8; = djb(gb?/iehb)(dib)_l-
Hence,
I e, — 1) = o — 1)+ -+ -
ax’- 7 1 7 ’
0s;

oW — 1) =dfys — D)+ -
Yi

By the Lemma (3.3),
O(cfe*) = (d;79")? (mod ay),
bz =y, ~¢ (mod ay),
and so

%%m—@s@%w—n+~ (mod ay)

We have already observed in Case (2) that the contribution from the crossings
of A4; over B; yield terms that cancel in pairs (mod ay). It follows that

or; 05
0(a_x, (2 — l)) =%, (y:—1)  (moday),

and the proof that (x : r)and (y : 8) are dual presentations is complete. We
have proved

(3.4)  Corresponding over and under presentations of the group of a knot are

dual presentations,
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The invariance under conjugation of the elementary ideals of a knot group,
i.c., (2.3), is an easy corollary of Theorem (3.4). In view of (3.1) and (3.2) and
Condition (i), we have the stronger result

3r~) s,
0(-—' =L mod a 5,5=1,"-+,m.
oz, 3, ( ¥) J
That is, if 4 and B are the Alexander matrices of (X : r) and (y : §),
respectively, then

(3.5) 64,4 = B

(The { indicates the transposed matrix.) The transpose of a square matrix
obviously has the same elementary ideals as the original. Let us denote the
kth elementary ideals of (x : r) and (y : s) by E{¥ and E{?, respectively.
The kth ideal of an arbitrary matrix M we denote by E,(M). Thus E{Y =
E,(4) and E® = E,(B). Finally, therefore (cf. Chapter VII, (4.3) and (4.5)),

E;cz) = 0**Ei~l) = Ek(BT)

= Ek(B) = Ek(B)

— ED.

Hence Theorem (2.3) of this chapter is proved.

EXERCISES

1. Show that there exists an automorphism of the group & of the clover-
leaf knot that induces conjugation on the group ring of the abelianized group
G|G'.

2. Use the result of Exercise 1 to prove directly (i.e., without using dual
presentations) that the elementary ideals of the group of the clover-leaf knot
are invariant under conjugation.

3. Prove directly (i.e., without using dual presentations) that the elemen-
tary ideals of any invertible knot are invariant under conjugation.

4. Show that the Alexander polynomial A(¢) of any knot can be written in the
form
A@t) =" + et N1 — 1)2 + cot® 21 — ) 4 - -+ + ¢, (1 — 1),

and that, conversely, given any set of integers ¢,, - - *, ¢, there is a knot whose

Alexander polynomial is
h
4 3 et — )P
b

5. Prove that there is no knot whose group is

'.r,// sayae lya g gy ,
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6. Prove that A(—1) is always an odd integer.

7. If the Alexander polynomial A(¢) of a knot is of degree 2A and € is a
complex number on the unit circle, show that A(e)/e" is real.

8. If the Alexander polynomial A(t) of a knot is of degree 2k and o is a
prlmltlve cube root of unity, show that A(w /w is an integer.
9. (See Exercise 8.) Show that A(w)/w" = A(w?)/w?*, and hence that
A(w)A( 2) is the square of an integer.

10. Prove similarly that if ¢ is a primitive fourth root of unity, then
A(7)A(—7) is the square of an integer.
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Differentiable knots are tame. Let K be a knot in 3-dimensional space R®
which is rectifiable and which is given as the image of a periodic vector-
valued function p(s) = (x(s), y(s), z(s)) of arc length s whose derivative
p'(s) = (2'(s), ¥'(s), 2'(s)) exists and is continuous for all s. The period [ is the
length of K. We shall prove that K is tame, i.e., equivalent to a polygonal
knot.

We denote the norm, or length, of a vector p € R® by | p || and the dot
product of two vectors p,, p, € R® by p, - p,. If neither p; nor p, is zero, the
angle between them is given by
—1 Py Pa

F(Pupy) = cosTHmmmE

Consider any three parameter values sy, s, s, which satisfy s, < s, < s,.

From
f u) du __f "(8) du —{—f '(8)) du
follows
(1) P(s2) — P(sy) = (53 — 8)(P'(50) + @),
where
1 82 ’ ’
Q= f (P'(w) — p'(s0)) du.
Sg — S1 s
Since parametrization is made withrespect toarclength, wehave || p'(s,) || = 1.
Hence,
[1T—1QII<1p'(s) +QI <L+ QI

and so

[P (so) + QI =1+¢g
for some number ¢ which satisfies | ¢ | < || @ ||. Thus,
(2) | p(s3) — p(sy) | = (85 — s1)(1 + ¢).

Choose an arbitrary positive e < }. Since the derivative p’(s) is continuous
and hence uniformly continuous, there exists § > 0 so thatif | s — s" | < 4,
then || p'(s) — p’(s") | < e. Accordingly, we impose the restriction s, — s, < 6.
Then,

(55— 5) | @ I—uf P(so)) du |

— Sl)
and

() lal- 1@ - e

147
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Dividing (1) by (2), we obtain
p(s) — plsy)

‘“ Tpe —plep] 20+
where
Q= qp'(sy)
- l+gq
Since ¢ > —e > —1, we have 1/(1 + ¢) < 2. Hence,
(8) TPl <201Q—ap'(s)ll <2(1 QI +1q]) <4e

We shall draw two conclusions from the equations of the preceding para-
graph. The first, an immediate corollary of (2) and (3), is the well-known fact

(I.1)  The ratio of chord length to arc length along K approaches 1 as the
latter approaches 0.

The second conclusion is the principal lemma on which our proof of the
tameness of K depends.

(1.2)  For any angle « > 0, there exists & > 0 such that, for any s, s', u, v’
in an tnterval of length & and such that s << s’ and w < u’,

L (P(s") — p(s), p(u) — p(w)) < .
Proof. This lemma is a consequence of (4) and (5). For if

So =min{s, s’, u, u'},

then
p(s") — p(s)
Py P, P| < 4e,
26 —p@ ] 2 I Pl < 4e
PO PO ey 1 P | P < de.
| p(u') — p(u) |
Hence,
p(s:) — p(s) _ p(u’, ) —pl) 14 g
| 2(s") — p(s) | |l p(w) — p(u) |
where
g=2p'(s) (P+ P)+ P-P.
Consequently,

LZI<IPI+1PI+IPIIP | <8e+ 16

which can be made arbitrarily small. Thus, cos < (p(s’) — p(s), p(u’) — p(u))
can be made arbitrarily ncar 1, and (I.2) follows.

We now turn to the main argument thai & is tame. For any two points
p, p O K let are (pop’) be the shorter are length between them along A
Note that if |« " - 12, where (s the total length of the knot, then
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arc (p(s),p(s’)) = | s — s’ |. Consider the function f: K X K — R defined by
I » —p" l/arc (p.p’),  p#*P,
1, p=2p.

We have shown that the ratio of chord length to arc length approaches 1 as

the latter approaches 0. Consequently, f is continuous. Since it is positive and
its domain is compact, it has a positive minimum value m. Thus,

f(PaP') =

(6) lp—2"| =mare (p,p), p,p €K.

We next select a positive angle oy < m/4 such that tan o, < m/2. For
this angle o, choose § in accordance with Lemma (I.2). Let » be a positive
integer so large that I/n < 8/2, and select parameter values {s,}° _, such
that s,,, — s, = I/n. Notice that p(s;) = p(s;) if and only if ¢ =j (mod n),
so that the set {p(s,)};> _,, consists of exactly » points of the knot. For each
s;, we form the double solid cone C; with apex angle «, whose axis is the
chord joining p(s;) and p(s,,,) (cf. Figure 62).

Figure 62

The following four propositions are corollaries of (I.2) and (6).
(I1.3) Adjacent cones intersect only at their common apez.

Proof. Since s, — 8; = (8;,0 — 84p1) + (854 — ;) < 0 it follows that
the acute angle between the axes of the cones C; and C,_, is less than «g, which
in turn is less than #/4. The apex angle of the cones is a,. Thus, there is no
chance of intersection except at the apex.

(L4) Ifs, <s < s, then p(s)e C,.

Proof. We have
F(P(s) = 2(s,), P(s,41) — P(s.)) < g,
(Pl ) pls, ) - ps)) -7 o,

whenee (14) follows immediately.
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(I.8)  For every perpendicular cross section D of any cone C,, there is
exactly one s in the interval [s,,s,. 4] such that p(s)eD.

Proof. The existence of s follows from (I.4) and the continuity of the
function p. To get uniqueness, suppose that s, < s <s’ <s,,; and that p(s)
and p(s’) lie on a single plane perpendicular to the axis of C,. Then the angle
<X (p(s’) — p(8), P(8;41) — p(s;)) must, on the one hand, be equal to /2 and,
on the other hand, be less than «,. This is a contradiction.

(I.6) Nonadjacent cones are disjoint.

Proof. Suppose otherwise, i.e., we assume that there exist nonadjacent
cones C; and C; and a point p in their intersection, cf. Figure 63. Let p(s) be

Figure 63

the point with s; < s <'s, ; on the plane which contains p and is normal to
the axis of C;. The analogous point for C, is p(s’). Then,

l
[p(s) —pll < (;) tan o,

and the same inequality holds for p(s’). Since C; and C; are not adjacent along

1
K, we know that — < arc (p(s), p(s’)). Thus,
n

| p(s) — p(s’) || << 2 are (p(s), p(s)) tan o, -~ m arc (p(s), p(s)).

This contradiets (6), and (1.6) is proved.
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The proof that K is tamo is virtunlly complete. It only remnims to verify
that, for each double cone (!, there exists a homeomorphisi 4, of 7, onto
itself which is the identity on the houndary of the cono nnd mnpn K N C;
onto the axis. In view of (1.4) and (1 h), the construction of wuch w mnpping is
not hard. Consider an arbitrary clowed circular dise D with center p,. We
include the possibility that D) is dogenerate, ie., D = {po}. For every iterior
point p of D, a mapping g5 ,: /7 » I’ iudefined by mapping any tiny jounng
P to a point ¢ on the circumferenco of /) lincarly onto the ray joining p, to ¢
so that p — py and g — g (cf. Figure G1). 1t is obvious that gp, , in 0 hiomen

Figure 64. Perpendicular cross section of a cone

morphism of D onto itself which leaves the circumference fixed and maps
p onto p,. Furthermore, g, ,(p’) is simultaneously continuous in p and p’.

Returning to the double cone, we consider an arbitrary point p € C,. Let
p(s) be the intersection of the knot K with the plane containing p and normal
to the axis of C,. This plane intersects C; in a disc (degenerate at the end-
points) which we denote by D,. The desired homeomorphism 4;: C, — C, is
now defined by

hi(P) = 9p, p(s)(D)-

The existence and uniqueness of p(s) as an interior point of D, are conse-
quences of (I.5) and the proof of (I.4). The final step is the extension of the
homeomorphisms %, to a single mapping k of R, onto itself which is defined by

h(p) = :
hip) if peC,

That k is a well-defined homeomorphism follows from ([.3) and (I.6) and the
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fact that the homeomorphisms A; are the identity on the boundaries of the
cones. We conclude

(I.7) THEOREM. The knot K is tame.

There are two interesting ramifications of this theorem which are worth
mentioning. The first is that the cones C, can clearly be chosen arbitrarily
small, i.e., so that the maximum diameter is less than any preassigned e. As
a result, the knot K is what is called e-equivalent to a polygonal knot. For
any € > 0, there is a homeomorphism h of R3 onto itself so that kK is polygonal
and || (p) — p | < € for all p € R%. Furthermore, & moves only points lying
within a distance e of the knot. The second remark is that & is realizable by
an isotopic deformation of E3. This is simply because the mapping g, , is
isotopic to the identity. Using vector notation, we may set

9D,0t = 9IDup—D4) +10°

Thus differentiable knots (as defined in the first paragraph of the appendix)
are tame in the strongest possible sense.

The question of when a knot is tame has been studied by several authors.
For example Milnor! defines the total curvature « of an arbitrarily closed curve
and proves (among other results) that if the total curvature of a knot is finite,
the knot is tame. He also shows that if a closed curve C is given as the image
of a function p(s) of arc lengﬁh s with continuous 2nd derivative, then « is
given by the usual integral formula

o= j I 27(s) | ds.
C

1J. W. Milnor, “On the Total Curvature of Knots,” Ann. of Math. Vol. 52 (1950),
pp. 248-257.
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Categories and groupoids. The tendency of modern mathematics to isolate
almost any set of properties from its original context, to name, and to develop
an abstract theory has produced an amazing vocabulary and array of defini-
tions. Obviously, these definitions differ widely in the scope of their appli-
cability and in the depth of the concomitant abstract theories. A few, like that
of a group or of a topological space, have a fundamental importance to the
whole of mathematics that can hardly be exaggerated. Others are more in the
nature of convenient, and often highly specialized, labels which serve
principally to pigeonhole ideas. As far as this book is concerned, the notions of
category and groupoid belong to the latter class.! It is an interesting curiosity
that they provide a convenient systematization of the ideas involved in
developing the fundamental group.

A set C is a category if, for some pairs of elements «, 8 in C, a product « -
in C is defined which satisfies Axioms (¢) and (4¢) below. An element € in C
is an identity if, for any « in O, whenever € - « (or « - €) is defined, then
€=« (Or ot " € = o).

(¢) The product « - (8 - y) is defined if and only if (a- f) -y is defined.
When either is defined the associative law holds:

- (Bry)=(xp)-y.

Furthermore, o+ B - y is defined (parentheses are dropped by virtue of associa-
tivity) if and only if both products o - § and f -y are defined.
(¢t) For any element o in O, there exist identities €, and €, in C such that
€ - o and o - €, are defined.

The reader will recognize that we have come across these properties
before. In fact a fair amount of the material in the beginning of Chapter II
can be summarized in the following: Both the set of all paths in a topological
space X and the fundamental groupoid I'(X) are categories. The mapping of the
former category into the latter which assigns to each path a its equivalence class
[a] s onto, product-preserving, and carries the identities of one category onto
those of the other.

We may now observe how the constructions carried out in our development
of the fundamental group may be paralleled in abstracto. We prove first

(IL.1) For each o tn the category C, the identities e, and €, such that €, - «
and o - €, are defined, are unique.

1 The idea of a category plays a basic role in the axiomatic development of homology
theory. In fact tho definition and Lemma (TT.1) above are taken direetly from Chaptor TV
of S. Kilonborg and N. Stoonrod, Foundations of Algebraie Topology (Princoton Univorsity
Pross; Princoton, N.J., 1952).
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Proof. Suppose there exist identities €, and ¢, in C such that ¢ - « and
¢, - aare defined. Then ¢," - (¢, * «) is defined since ¢, * « = a«. Consequently,
€, - € is defined, and hence ¢, = ¢," - €, == ¢,. Similarly e, is unique.

FFor any category C and identity e in C, we denote by C, the set of all
elements o in C such that € - « and « - € are defined.

(IL2) C, is a semi-group with identity e.

Proof. The product of any identity with itself is always defined. Hence,
e € C,. Consider next arbitrary elements o and §in C.. Since o - ¢ and €
are defined, (a - €) - B is defined, and («-€) - f = o - . Thus, the product
of any two elements of C, is defined. Since the associative law is known to
hold, the proof is complete.

The set of all p-based loops in X and the fundamental group =(X,p) are,
of course, both examples of sets C, in their respective categories.

An element ! in a category C' is an tnverse of an element « if there exist
identities € and e, in C such that o a1 == ¢, and a1 - o = ¢,.

(I1.3) The products €, - &, & * €, €5 oL, and a1 - € are defined.
Proof. Since ¢, * €, is defined, the products €, - o -« and o - o1 - ¢; are

defined. It follows that ; - « and a1 - ¢, are defined. The analogous argument
holds for « - €, and €, - a 1.

(I1.4) If an inverse exists, it is unique.

Proof. Suppose fand g’ are inverses of «. It follows from (I1.3) and (I1.1)
that the identities €, and e, whose existence follows from the assumption of
the existence of an inverse of « are uniquely determined by «. Consequently,
we have

af=a"f=gandf-a=pF" o=e¢,.
Since, by (I1.3), €, - f is defined, we have
B=epf=pap =pF¢=04
and we are done.

A groupoid is a category in which every element has an inverse. In view of
(2.4) of Chapter II, it is apparent that the set I'(X) of equivalence classes of
paths in X does satisfy the requirements of being a groupoid.

(I1.5)  If C is a groupoid and € is any identity, then C, is a group.

Proof.  Consider any « in C,. Since C is a groupoid, « has an inverse a1,
and there exist identities €, and €, in € such that

o('rx' €, 'X"O( €0,

and the produets o o o0 6 ¢ a0 and o Ve are defined. Sinee o c (0
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however, the products € * « and « - € are defined, and we may therefore con-
clude from (IL.1) that € = €, = €,. Consequently, «~! € C,. This conclusion,
together with (II.2), completes the proof.

The abstract parallel of Theorem (3.1), Chapter II, also holds. The proof
is in all essentials identical:

(IL.6) Suppose C is a groupoid, €, and €, are any two identities in C, and
o 18 an arbitrary element of C such that €, - « and « - €, are defined. Then, for any
B in C, , the product o= - f - o is defined, and the assignment f — o™ - - wis
an isomorphism of C, onto C,.
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Proof of the van Kampen theorem. This is stated in theorem (3.1) of
Chapter V. There are two things to be proved:

(ITI.1)  The image groups w,G;, 1 = 0, 1, 2, generate G.

i i

Proof. Consider an arbitrary non-trivial element « € G and a p-based loop
a: [0, || @ | ] — X representing «. Since o 7= 1, we know that || a | > 0. We
construct a subdivision

O=ty<t < - <t,=|al

such that! each difference ¢; — ¢;_; is contained in at least one of the inverse
images a~1X;, ¢ = 0, 1, 2. We then choose an index function 4 mapping the
integers 1, - - -+, n onto 0, 1, 2 such that

aft,_, 8] < X t=1,-,m

pu(i)

For each point ¢;, ¢ = 0, - - -, n, of the subdivision we select a path b, in X
subject to the conditions:

() b,(0) =pand b,( | b; || ) = alt,).
(22) If a(t,) = p, then b,(t) = p for all t.
(155) b,(t) € X5y N X i1y o<t<|bjlandi=1,---,n— 1.

Notice that Condition (i#7) may be satisfied because X ,;; N X ;1 is one of
the subspaces X,, X;, and X,, and each of these is pathwise-connected. Next,
consider pathsa;: [0,t, — ¢,_;] — X,¢=1,-+-,n,defined bya,(t) = a(t 4 ¢,_,).

Clearly n
a=T]a,.
i=1
Since each product b, , - a, - b, 7! is defined and b, and b, are identity paths,

n

ca. b1

a~T1] by e b
i=1

Each path b,_, - a; - b,7!is a p-based loop whose image lies entirely in X, and

which, therefore, is a representative loop of w,qa; for some «, € G,;). Thus
n
o« = [T ounes
i=1
and the proof of (III.1) is complete.
1S, Lofschotz, Algebraic Topology (American Mathomatical Socioty Colloquium Publi-

cations Vol. 27; Now York, 1942), p. 37.
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The second part of the van Kampen theorem is

(II1.2) If H is an arbitrary group and p;: Gy, — H,i = 0,1, 2, are homo-
morphisms which satisfy w, = 10, = p,0,, then there exists a unique homomor-
phism A: G — H such that v, = Aw;, © =0, 1, 2.

Proof. The uniqueness of A is no problem. If it exists, the relations
Y, = Aw,, 1 = 0, 1, 2, together with the conclusion of (III.1) imply that it is
unique. The only question is of existence, and there is an obvious construction.
Let « be an arbitrary element of G'. We have shown that

n
a =T ®,u%:
i=1
So we define

n
Ao = H Y u(iy%s
=1

The hard problem is to prove that A is well-defined. If it is, we are finished ;
for the preceding formula implies both that 2 is a homomorphism and that it
satisfies p, = Aw;, ¢ = 0, 1, 2. The problem clearly amounts to proving that,
for any finite set of elements «; € G, where ¢ =1,---,7 and u is any
mapping of the integers 1, -+ -, r into 0, 1, 2, then

r r
l—l;w#(i)oci = 1 implies lep#(i)oci =1.
i= =

Verification of this proposition is the objective of the remainder of the proof.
We select representative loops a, € a;, ¢ == 1, - - -, r. Then the product

T
a =] ®uum
=1

is equivalent to the identity path. (For simplicity we shall denote an inclusion
mapping and its induced homomorphism of the fundamental groups by the
same symbol.) The equivalence is effected by a fixed-endpoint family {A,}
or, what amounts to the same thing, a continuous mapping A: R — X,
where
B =1[0,]all]x]I0,1],

which satisfies

h(t,0) = a(t),

h0.8) = h(t.]) = K( | a |, s) = p.

i
The vertical lines t = > || a, |, ¢ =1,---,r, provide a decomposition of
k=1
the rectangle R, and we consider a refinement
0 ”_t() "':tl'L.".rtN [I"’”?

0 S P I,
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into subrectangles R;;, so fine! that each R; is contained in at least one of the
inverse images h71X,, + = 0, 1, 2. Each subrectangle R;; consists of all pairs
(t,s) satisfying the inequalities ¢, ; <t <t¢,ands; | <s <s;,t=1,---,n
and j = 1, -+ -, m. The subdivision has been chosen so fine that there exists
an index function »(¢,j) such that

hRy;CX,u =1+ ,n and j=1,---,m.

For each lattice point (¢,s;), we select a path e;; in X subject to the conditions:
(2v) Theinitial and terminal points of e; are p and h(t,,s;), respectively.
(v) If h(t;,8;) = p, then e (t) = p for all t.
(vi) The image of the path e; is contained in
Xy O Xy O X O Xy

(AssumeX lez_Oorn+lor1fj—Oorm+1)

vli,5) —
(viz) If z la | <ty <t < z | @y |, then the image of e,y is a

subset of X (-

Conditions (w), (v), and (vt) are entirely analogous to (i), (#%), and (s1),

o

>

cl,j—l

Figure 65

respectively; (vii) is an additional complexity. We next define paths, (cf
Figure 65)

Cij(t) = h(t 4 bicts Sj)! 0 ¢ b — b

d;;(s) = h(t;, s + s;_1), 0 <s <8, — 8.1,

IA
IA

and set

Qs = €1 ;" Cyi* €5 Y, t=1,-++,n and j=0,---,m,

by =51 d; e, t=0,---,n and j=1+- m.
It is a consequence of (vi) that the image points of the loopsa,;, b5, a, ; ,, and
by alllicin X, . Henee, they define group elements o, 8,50 o, and 8,7,

. T . . . . 1. ! PN et
respeetively, in (0 The product a, ;b oa, b Yk contractible



APPENDIX III 159

(i.e., equivalent to the identity path) in X ; moreover, since the image of R;;
as well as the images of the four paths lies in X, ;, the product is also con-
tractible in X, ;. We conclude that

(1) o B B ) = 1.

The central idea in the proof of (III.2) is the fact that if group elements o € G,
and B € G, 1,5 =0,1,2, possess a common representative loop, then o = p,f.
The proof is easy: Since X; N X; = X, for some k =0, 1, or 2, each of
the two inclusion mappings
X, <> X, > X,

is either an identity mapping or one of 6, and 0,. As a result, the induced
homomorphisms
0, <26, 25,

must be consistent with the homomorphisms y,, y,, and p,, i.e.,

Vil = Y = Yl
The assertion that « and § possess a common representative loop states that
there exists a p-based loop ¢ in X, such that ;¢ € « and n,c € 8. Thus, if ¢
defines y € G,, we have
my =o Ny =p
Hence,
Y% = Py = ¥y = Yy = Y,
and the assertion is proved.
Applying this result, we obtain
2) Yoi,y%is = Poi,it1) %+ 10
Vi nBii = VoerrnBitr i

Now apply the homomorphism y,,; ;, to (1). The equation obtained says that
the result of reading counterclockwise around each R,; under v, ; is the
identity. Equations (2) show that edges of adjacent rectangles will cancel.
It follows (by induction) that the result of reading around the circumference
of the large rectangle R is the identity. Furthermore, only the elements along
the bottom edge, s = 0, are nontrivial. We conclude, therefore, that

n

’
H Yo% = L.
i=1

j
Since each of the numbers Z la.l,j=1,+++,r isamemberof {¢,--- ¢},
k-1

there exists an index function 4(j) such that ¢(0) — 0 and

i
Loy 2 ladl G 1,
!
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Then, as a result of Conditions (:v) and (v), we have

i) ,

Ao = Wu(;)%5 J=1L-r
i=9(j—1)+1
By virtue of (vit), we may assume that the equivalence is in X ;. Thus, each
loop a,, ¢ =4(j — 1)+ 1, -+, 4(j), determines a group element o, € G
and
i(J) ,
o = oy
i=i(j—-1+1

Since «,, and «, possess a common representative loop a,, it follows from
our central assertion that

Wﬂ(j)“i/ = wv(i,l)ailrv 1= i(j - 1) +1,---, l(])
Finally, therefore,

r 2(3) r i(j) ,
1=H( ) Wn)“n) = ( 11 %(J‘)‘Xi)

J=1\i=i(—-1)+1 i=i(j—-1+1

j=
r 1(])
~ v T )= nom

= z(]—l)+1
and the proof of (II1.2) is complete.

The above proof of the van Kampen theorem can be used to prove a more
general theorem,? from which the present proof is virtually copied. Instead of
regarding X as the union of just two subspaces X, and X,, we consider an
arbitrary collection of pathwise-connected, open subsets X; (¢ may range
over any index set whatever) which is closed under finite intersections and
which satisfies

X = UX,
peNX,, forsome p.

Let G, = n(X,p) and G = #(X,p) and consider all homomorphisms
0,;: G;— G, and w,;: G; > G induced by inclusion (the existence of 0,;
presupposes that X;c X,). Then, the conclusions of the van Kampen
theorem hold: The groups w,G, generate G, and, for any group H and homomor-
phisms p;: G; — H which satisfy y, = p,0,;, there exists a unique homomor-
phism A: G — H such that yp, = Aw,.

This generalization may be used to calculate the fundamental group of the
union of an increasing nest of open sets each of whose groups is known. This
result can be used to obtain presentations of the groups of wild knots and
other wild imbeddings.?

2 R. . Crowoll, ““On the van Kampen theorom,” Pacific J. Math. Vol. 9, No. 1 (1959),
pp. 43 50,

3R Fox and 15 Artin, “Somo Wild Colls and Sphoros in Throo-dimoensional Spaco.”’
Anncof Math. Vol 49 (1948), pp. 979 990,



Guide to the Literature

The literature of knot theory is scattered, and some of it is difficult reading.
The only comprehensive book on the subject is [Reidemeister 1932], and the
literature has more than tripled since then. The following notes are intended
to help the student find some of the more easily accessible papers and to
orient him in the field. For the most part, the papers quoted are recent ones.
The references are to the subsequent Bibliography, which is a chronological
listing. Such references as [Fox 1954], [Brody 1960'], and [Murasugi 1958"]
refer respectively to the first, second, and third paper of the author within
the year indicated. Many important earlier papers that are not quoted
in the Guide can be found in the Bibliography and in the bibliographies
of the quoted papers.

The problem with which we have been concerned in this book is a special
case of the problem of placement: Given topological spaces X and Y, what
are the different ways of imbedding X in Y'? The case that we have studied
is X =81, Y = R3. Its significance is that it is the simplest interesting case
and that the methods used to study it have, mutatis mutandis, general
validity.

Thus we may always consider the group G = #(¥Y — X) of a placement
X < Y. If this group is finitely presented it has Alexander matrices and
elementary ideals [Fox 1954), but if the group cannot be finitely presented
its Alexander matrices are infinite matrices and things get more complicated
[Brody 1960'].

If X is a lunk of u components, i.e., the union of y mutually disjoint simple
closed curves in Y = R3, the commutator quotient group G/G’ is free
abelian of rank u, so that we must deal with L-polynomials in u variables.
If the link is tame, a polynomial A(t, ,-- -, t,) can be defined even when
4 =2, and it has properties analogous to the Alexander polynomial in one
variable [Reidemeister and Schumann 1934, Fox 1954, Torres and Fox 1954,
Hosokawa 1958, Fox 1960°]. If X is just any one-dimensional complex in
Y = R3, then the group G/G’, though free abelian, may no longer have a
preferred basis, and this causes special difficulties [Kinoshita 1958, 1959].

A natural generalization of knot theory is the case X an m-sphere, or
union of u (> 2) mutually disjoint m-spheres, and Y == K" (n -~ m). It is
reasonably well-established that the case of a single m-sphere (knotting) is
really interesting only if m n 2, while the ease of several m-spheres

161
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(linking) is not interesting unless <m <n— 2 [M. Brown 1960,

Stallings 1961, Zeeman 1960]. If m = n — 2, G/ is free abelian of rank g,
and the theory is very similar to that of knots and links in R3 [Artin 1925,
van Kampen 1928, Andrews and Curtis 1959, Fox and Milnor 1957, Terasaka
1959, Zeeman 1960, Kinoshita 1961], however for » > 3 the reciprocal
character of the polynomial A no longer holds in general. Naturally the case
n = 4 has received the most attention. If X is a surface other than S2 in
R*, G/G" may have elements of finite order, and this causes new difficulties
[Fox 1960’, Kinoshita 1961']. Knots and links in arbitrary 3-dimensional
manifolds have been considered [Blanchfield 1957, Brody 1960] although
much remains to be done. This is an especially interesting case because of
the possibility of applying it to the yet unsolved problem of classifying the
3-manifolds. The group itself is a more powerful invariant than the poly-
nomial, so naturally less is known about its properties [Fox 1948, Torres and
Fox 1954, Rapport 1960, Neuwirth 1959].

Placement of surfaces, with or without boundary, in R® has some inter-
esting and difficult problems that are relevant to knot theory [Alexander
1924, Fox 1948, Kyle 1955]. Especial attention should be paid to the Dehn
lemma, whose solution was one of topology’s recent important breakthroughs
[Papakyriakopoulos 1957, Shapiro and Whitehead 1958, Papakyriakopoulos
1958]. An immediate consequence of Dehn’s lemma is the fact that a tame
knot (in R3) is trivial if and only if its group is cyeclic [Dehn 1910].

A simple and elegant construction shows that a tame knot can always be
spanned by an orientable surface, and this fact can be used to give an es-
pecially practical form of the Alexander matrix [Seifert 1934, Wendt 1937,
Fox 1960].

One of the most important chapters of knot theory has to do with covering
spaces. Unbranched cavering spaces are described, for example, in the book
of Seifert and Threlfall 1934, and the description of branched ones has been
recently formalized [Fox 1957]. Every closed orientable 3-manifold is a
branched covering space of S3 [Alexander 1919 together with Clifford 1877].
By means of the branched cyclic covering spaces of a knot (or link) new
geometric meaning can be attached to the various aspects of the Alexander
matrix, and even more powerful invariants can be defined [Seifert 1933’,
1935, Blanchfield and Fox 1951, Kyle 1954, 1959, Fox 1956, 1960].

The theory of companionship of knots includes the multiplication (com-
position), doubling, and cabling of knots [Schubert 1953, 1954, Whitehead
1937, Seifert 1949]. To multiply two knots you simply tie one after the other
in the same picce of string. Under this operation the tame knot types form a
commutative semigroup S in which factorization is unique |Schubert 1949].
In this semigroup only the trivial type has an inverse; this proves that it is
impossible to tie two knots in a picee of string in such a way that they ‘cancel’.
The problem “Which knot types can appear when a (locally flat) S* in 14
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is cut by a hyperplane R3?” leads to a classification of knot types such that
these classes of types, with multiplication induced from S, form a group
[Fox and Milnor 1957, Terasaka 1959]. Not much is known, as yet, about
this group.

There are interesting problems of knot theory centered about knot-
diagrams, i.e., regular projections of knots. Thus alternating knots, i.c., those
that have projections whose crossings are alternately under and over around
the knot, have some surprising properties [Murasugi 1958, 1958', 1958",
1960, Crowell 1959, 1959], one of which virtually amounts to a pun: the
Alexander polynomial of an alternating knot is alternating. The problem of
recognizing from their diagrams whether two knots are equivalent is in
general unsolved, but a method has recently been given for deciding from a
diagram whether a knot is trivial [Haken 1961). and the solutions of similar
problems for alternating knots and links were already known [Crowell 1959).
If a knot has a diagram in which there is only one overpass it is obviously
trivial; those knots that have diagrams containing just two overpasses have
been completely classified [Schubert 1956]. It is known that any tame knot
has a certain kind of diagram called a plat [Reidemeister 1960]; the simplest
case is that of a plat with four strings (Viergeflechte) and this has received
some attention [Bankwitz and Schumann 1934].

The homotopy groups m, (k = 1, 2, - - -) generalize the fundamental group
m = my, so it is natural to examine the homotopy groups of ¥ — X for a
placement of X in Y. It is now known [Papakyriakopoulos 1957] that
7, (S® — X)) is trivial for ¥ > 2 for any tame knot X, and that if X is a link
my(S® — X) is trivial if and only if X cannot be ‘‘pulled apart into two
pieces’’. An earlier investigation into this problem led to some highly inter-
esting algebraic problems but no general solution [Whitehead 1939, Higman
1948]. If X is an (n — 2)-sphere in S™ or a union of mutually disjoint
(n — 2)-spheres in S”, then 7,(S® — X) may or may not be trivial and some
interesting problems arise [Andrews and Curtis 1959, Epstein 1960].

The most venerable invariant of knot theory is the linking number of a
link of two components; this was first considered over a hundred years ago
[Gauss 1833]. Its value can be read from a diagram [Brunn 1892] or from its
polynomial [Reidemeister and Schumann 1934, Torres and Fox 1954]. It has
been generalized in various ways that deserve further study { Pannwitz 1933,
Eilenberg 1937, Milnor 1954, 1957, Plans 1957].

Can the set of fixed points of a transformation of R3 of finite period p be
a (tame) knot? This problem is unsolved, although some results on it have
been obtained [Montgomery and Samelson 1955, Kinoshita 1958°, Fox 1958].
A related problem concerns the knots that can be mapped on themselves by
transformations of period p [Trotter 1961], and it is also only slightly solved.

The connections between knot theory and differential geometry |Firy
1949, Milnor 1950, 1953, Fox 1950] and between knot theory and algebraie
geometry [Zarske 1935, Reeve 1955] deserve further exploration,
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There is a bewildering array of papers on wild knots and on wildness, of
which we can indicate only a sampling [Borsuk 1947, Fox and Artin 1948,
Fox 1949, Blankinship and Fox 1950, Kirkor 1958, 1958, Bing 1958,
Debrunner and Fox 1960, Brody 1960'].

Finally we must mention the closely related theory of braids [Artin 1925,
1947, 1947, 1950, Newman 1942, Markoff 1935, Weinberg 1939, Fox and
Neuwirth 1962] and several provocative papers of mysterious significance
[Fox 1958’, Kinoshita and Terasaka 1957, Hashizume and Hosokawa 1958,
Curtis 1959].

The standard table of (prime) knots of 9 or fewer crossings may be found
in the book of Reidemeister, 1932, pp. 25, 31, 41, 70-72. The tables on pp.
70-72 were extended by various workers in the 19th century up through 10
crossings and through the alternating 11 crossings. The corresponding ex-
tension of the table on p. 41 of A(t) has been made by machine but has not
yet been published. No corresponding tables of links have ever been made.

The Ashley book of knots [Ashley 1944] is an immense compendium of
knots, as the term is understood by sailors, weavers, etc. With a little
patience one can find in it all sorts of provocative examples of knots and
links.
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granny knot

greatest common divisor 114

greatest common divisor domain 114,
118

group 1, 163

—, abelianized, 47, 49, 111-113, 144

—, alternating, 93

—-, braid, 109

—, commutator quotient, 47, 48, 49,
161

—, ecyclie, 50, 112, 162

—, free, 31, 32, 35, 36, 50, 64, 81, 84,
107, 108, 109, 111

—, free abelian, 50, 69, 108, 161, 162

—, fundamental, 20, 52

—, knot, 72, 111

—, infinite cyclic, 29, 56, 87, 111-118

— meﬁacyclic, 108

—, power of a, 47

—, symmetric, 51, 90, 92, 93

group of a placement 161

group presentation 40, 50, 51, 69- 71

group ring 94, 113--118

group table 37

groupoid 154, 155
A groupoid s a catogory in which
ovory oloment has an invorso.
, fundamontal, 1711, 1563
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homotopy 42

—, free, 30
Two loops are called freely homotopic
if they belong to a continuous family
of loops (not necessarily having a
common basepoint).

homotopy group 20, 42, 163

homotopy type 54, 62, 71

hyperplane 163

ideal 1, 118

—, elementary, 5, 94, 101ff, 103, 104,
108,109, 110, 119, 122,123, 131-132,
135, 137, 144, 161

—, principal, 118, 130

identification topology 25

identity 19, 31, 153

identity path 14

imbedding 161

inclusion 1

induced homomorphism 23, 30

infinite matrices 161

initial point 14, 18

integral domain 113

inverse 20, 31, 32, 154, 162

inverse path 15

invertible 10, 11, 144

isomorphism problem 41, 110

isotopic deformation 8, 10, 152

isotopy type 8

Jacobian 9

Klein bottle 71, 93, 108

knot 4, 61, 62, 162

—, alternating, 12, 163, 164

—, amphicheiral, 9

—, bowline, 132

—, Chinese button, 132

—, clover leaf, 3, 4, 6, 9, 10, 72, 80, 88,
90, 91, 92, 93, 124, 127, 132, 144

— diagram, 163

—, differentiable, 5, 6, 147-152

— equivalence, 4, 8, 24, 163

—, false lover’s, 132

—, figure eight, 3, 4, 6, 9, 11, 89, 91,
125, 127, 132

—, four = figure eight

—-, Flemish figure cight
,granny, 131
group, 72, 111

cnvertiblo, 10, 1L, 144

—, Listing’s = figure eight

—, noninvertible, 11

—, overhand = clover leaf

—, polygonal, 5

— polynomial

—, prime, 164
A knot type is prime if it is not the
composition of two nontrivial knot
types.

— projection, 6

—, simple = clover leaf

—, single = clover leaf

—, square, 131

—, stevedore’s, 127

— table, 11
—, tame
—, torus, 134

—, trefoil = clover leaf

—, trivial, 5, 11, 87, 90, 91, 124, 132,
162, 163

—, true lover’s, 132

—, Turk’s head, 90, 126

— type, 5, 24, 110

—, wild, 5, 86, 160, 164

knotted sphere 161-163

knotted torus 61

length, arc

letter 31

link 161, 162, 163

—, tame, 161

linked spheres 162
linking invariant 130, 162
linking number 163

link polynomial 161, 163
link table 164

Listing’s knot

locally flat 162

loop 15

L-polynomial 119, 134, 161

machine calculation of knot poly-
nomials 164

manifold 162

mapping of presentations 41

matrices, equivalent

matrix 1

—, Alexander, 100, 108, 123, 131-132,
135, 161, 162
, infinite, 161

metacyehie group 108

mirror imago $)

multiple pomt 6, 7, 12



multiplication of knots = composition
of knots

Nielsen theorem 36
noninvertible 11

norm of a vector 147

normal, fully, 47

normalized knot polynomial 121
nowhere dense

number of crossings 132

open cover(ing)

order of a point 6

orientation preserving 8, 9, 10

orientation reversing 8, 9, 10

overcrossing 7, 12, 73, 78ff

overhand knot

overpass 72, 73, 133, 163

overpresentation 72, 76ff, 83, 111, 134,
143

paths 14

—, constant, 15

—, continuous family of, 15
—, equality of, 14

—, equivalence of, 16

—, fixed-endpoint family of, 16
—, identity, 14

—, inverse, 15

—, product of, 14

—, simple, 73

pathwise connected
placement 161, 162, 163

plane 5

plat 163

point

—, base, 15, 21, 22
—, double, 6, 7

—, initial, 14, 18
—, multiple, 6
—, terminal, 14, 18

—, triple, 6

polygonal knot 5, 7, 86

polynomial

—, alternating, 12, 163, 164

—, Alexander, 123, 131-133, 134,
144-145, 161, 163

—, free, 98

—, knot, 5, 94, 110, 119, 122, 123,
131-133, 134-145, 162

—-, L, 119, 134, 161

—, rociprocnl, 134, 162

position, rogular, 6, 7, 72

INDEX 181

power of a group 47

presentation equivalence 42, 104, 120

presentations 31, 40, 50, 51, 69-71,
107, 160

—, dual group, 134, 138, 143

—, mapping of, 41

presentation type 42, 110

prime 115

— knot

primitive root 108
An integer k is a primitive root
modulo a prime p if k generates the
multiplicative group of residue classes
,2,---,p — 1.

principal ideal

product of knots = composition of
knots

product of paths 14

product of words 31

projection of a knot 6, 72, 163

projective plane 7

projective space 7

quadric surface 7

rank 36, 48, 50, 108, 161

real projective space 7
reciprocal polynomial 134, 162
reduced word 32, 33, 34, 35
reduction 33, 34

reflection 9, 75

region 12

regular position 6, 7, 12, 72
relation 37, 40

—, defining, 31, 38, 39

relator 38, 40

representation 40

retract 54, 57

—, deformation, 54, 60, 61, 62, 71
retraction 43, 54, 61

ring 1

—, group, 94, 113-118

rose 65, 84

Schlauchknoten = cable knots
Schlingknoten = doubled knots
semigroup 15, 31, 108, 154, 162
A semigroup is a catogory that has
only one identity.

semilinear 73
simple path 73, 140
simplo knot

stmply -connected
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single knot

skew lines 7

solid torus 55, 61
space

—, covering

—, Euclidean, 1, 8
—, projective, 7
sphere 55, 66, 161-163
splice 4

splittable link 163
square knot

standard reduction 33
stopping time 14
stevedore’s knot
subgroup 1

—, commutator, 47, 108
—, fully normal, 47
—, word, 37, 47

sum, exponent, 111
surface 109, 162
syllable 31

symmetric group 51, 90, 92, 93

table

—, group, 37

—, knot, 11, 164

—, link, 164

tame knot 5, 11, 62, 111, 147-152, 162,
163

tame link 161

terminal point 14, 18

time, stopping, 14

Tietze equivalence 43, 91, 105, 106, 123
Tietze theorem 37, 43ff, 44, 104, 113
toroidal neighborhood 62

torus 55, 61, 67, 132

—, double, 71

torus knot 92

total curvature

transformation of finite period 163
transpose of a matrix 144

trefoil = clover leaf knot

triple point 6, 7

trivial knot

trivial unit 117

triviality problem 41
trivializer 96, 134-136
true lover’s knot
Turk’s head knot
tying 3

type

—, alternating, 12
—, homotopy

—, isotopy, 8

—, knot

—, presentation

—, tame, 5, 11

—, trivial, 5, 11

—, wild, 5

unbranched covering space 162
undercrossing 7, 12, 73

underlying set of generators 40
underpass 72, 73

underpresentation 72, 76ff, 134, 143
unique factorization domain 115, 162
unit 113

—, trivial, 117

untying 3, 6

van Kampen theorem 54, 63, 65, 69-71
80, 156-160

Verkettung = link

Verschlingung = link

vertex of a knot 5, 6, 7

Viergeflechte 163

wild knot

wildness 164

winding number 28
Wirtinger presentation 72, 86, 113
words 31

—, empty, 31

—, equivalent, 32

—, product of, 31

—, reduced, 32, 33, 34, 35
word problem 32, 41, 47
word subgroup 47, 51

Zopf = braid



