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Preface to the

Springer Edition

This book was written as an introductory text for a one-semester course
and, as such, it is far from a comprehensive reference work. Its lack of
completeness is now more apparent than ever since, like most branches of
mathematics, knot theory has expanded enormously during the last fifteen
years. The book could certainly be rewritten by including more material and
also by introducing topics in a more elegant and up-to-date style. Accomplish­
ing these objectives would be extremely worthwhile. However, a significant
revision of the original \vork along these lines, as opposed to \vriting a new
book, would probably be a mistake. As inspired by its senior author, the late
Ralph H. Fox, this book achieves qualities ofeffectiveness, brevity, elementary
character, and unity. These characteristics \vould l:?e jeopardized, if not lost,
in a major revision. As a result, the book is being republished unchanged,
except for minor corrections. The most important of these occurs in Chapter
III, where the old sections 2 and 3 have been interchanged and somewhat
modified. The original proof of the theorem that a group is free if and only
if it is isomorphic to F[d] for some alphabet d contained an error, which
has been corrected using the fact that equivalent reduced words are equal.

I would like to include a tribute to Ralph Fox, who has been called the
father of modern knot theory. He was indisputably a first-rate mathematician
of international stature. More importantly, he was a great human being. His
students and othe~ friends respected him, and they also loved him. This
edition of the book is dedicated to his memory.

Richard H. Cro\vell

Dartmouth College
1977



Preface

Knot theory is a kind of geometry, and one whose appeal is very direct
hecause the objects studied are perceivable and tangible in everyday physical
space. It is a meeting ground of such diverse branches of mathematics as
group theory, matrix theory, number theory, algebraic geometry, and
differential geometry, to name some of the more prominent ones. It had its
origins in the mathematical theory of electricity and in primitive atomic
physics, and there are hints today of new applications in certain branches of
(~hemistry.1 The outlines of the modern topological theory were worked out
hy Dehn, Alexander, Reidemeister, and Seifert almost thirty years ago. As
a HUbfield of topology, knot theory forms the core of a wide range of problems
dealing with the position of one manifold imbedded within another.

This book, which is an elaboration of a series of lectures given by Fox at
Haverford College while a Philips Visitor there in the spring of 1956, is an
attempt to make the subject accessible to everyone. Primarily it is a text­
hook for a course at the junior-senior level, but we believe that it can be used
with profit also by graduate students. Because the algebra required is not
the familiar commutative algebra, a disproportionate amount of the book
is given over to necessary algebraic preliminaries. However, this is all to the
good because the study of noncommutativity is not only essential for the
(Ievelopment of knot theory but is itself an important and not overcultivated
field. Perhaps the most fascinating aspect of knot theory is the interplay
h(\tween geometry and this noncommutative algebra.

For the past ,thirty years Kurt Reidemeister's Ergebnisse publication
A''fI,otentheorie has been virtually the only book on the subject. During that
f.inH~ many important advances have been made, and moreover the combina­
(.ol'ial point of view that dominates K notentheorie has generally given way
to a strictly topological approach. Accordingly, we have elnphasized the
f,opological invariance of the theory throughout.

rrlH're is no doubt whatever in our minds but that the subject centers
nround the coneepts: knot group, Alexander matrix, covering space, and our
pn'S('1l taLiof} is faithful to this point of vie\\!. We regret that, in the interest
of k('('ping thp rnatprial at as (·lernentary a lev('1 as possibl(\ we did not
;1If.rodu('(' and tnak(\ s.vst('n}at,i(~ lise of eov(,l'ing spa(~(' th('ory, How(\v(\r, had
W(' dotH' so, this book would have' lH'('OUI<' UIU(,1t long(' .. , InOI'(' difli(, .. lt, and

I 11.1.. FI·i~..wlt/l.lld It;, \V"N~IC·I'IIIIlIl. "('h4·IIIIC·IlI'l'01'0lugy,".I . . 11ll.('htOIll.8m·.,X:~ (IHHI)



viii PREFACE

presumably also more expensive. For the mathematician with some maturity,
for example one who has finished studying this book, a survey of this central
core of the subject may be found in Fox's "A quick trip through knot theory"
(1962).1

The bibliography, although not complete, is comprehensive far beyond the
needs of an introductory text. This is partly because the field is in dire need
of such a bibliography and partly because we expect that our book will be
of use to even sophisticated mathematicians well beyond their student days.
To make this bibliography as useful as possible, we have included a guide
to the literature.

Finally, we thank the many mathematicians who had a hand in reading
and criticizing the manuscript at the various stages of its development.
In particular, we mention Lee Neuwirth, J. van Buskirk, and R. J. Aumann,
and two Dartmouth undergraduates, Seth Zimmerman and Peter Rosmarin.
We are also grateful to David S. Cochran for his assistance in updating the
bibliography for the third printing of this book.
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Prerequisites

For an intelligent reading of this book a knowledge of the elements of
1110dern algebra and point-set topology is sufficient. Specifically, we shall
assume that the reader is familiar with the concept of a function (or mapping)
and the attendant notions of domain, range, image, inverse image, one-one,
onto, composition, restriction, and inclusion mapping; with the concepts
of equivalence relation and equivalence class; with the definition and
elementary properties of open set, closed set, neighborhood, closure, interior,
induced topology, Cartesian product, continuous mapping, homeomorphism,
eonlpactness, connectedness, open cover(ing), and the Euclidean n-dimen­
~ional space Rn; and with the definition and basic properties of homomor­
phism, automorphism, kernel, image, groups, normal subgroups, quotient
groups, rings, (two-sided) ideals, permutation groups, determinants, and
Inatrices. These matters are dealt with in many standard textbooks. 'Ve may,
for example, refer the reader to A. H. Wallace, An Introduction to Algebraic
'Fopology (Pergamon Press, 1957), Chapters I, II, and III, and to G. Birkhoff
and S. MacLane, A Survey of Modern Algebra, Revised Edition (The Mac­
l}lillan Co., New York, 1953), Chapters III, §§1-3, 7,8; VI, §§4-8, 11-14; VII,
~5; X, §§1, 2; XIII, §§1-4. Sonle of these concepts are also defined in the
index.

In Appendix I an additional requirement is a knowledge of differential and
integral calculus.

l l he usual set theoretic symbols E, c, ~, =, U, (1, and - are used. For
the inclusion symbol we follow the common convention: A c B means that
1) E B whenever pEA. For the image and inverse image of A under f we
write either fA andf -1A, or f(A) and! -l(A). For the restriction off to A we
writef IA, and for the composition of two mappings!: X ~ Y and g: Y ~ Z
wo write gf.

When several mappings connecting several sets are to be considered at the
~alne time, it is convenient to display them in a (mapping) diagram, such as

f g
X~y~Z

~1/·
I r('(l,('h eh'J)\('IlL in ('Hell ~('L di~play('d ill a dingl'atll Il:,s aL Ino~L Ol\(' illlag(' .. 1(,­
In('IIt, in allY giv('J} :..·wL of LIlt, di:l,grnJ)l, t,lle' dia,L!;ralll is ~aid t,o I... ("oll8;:·d('II'.



2 PREREQUISITES

Thus the first diagram is consistent if and only if gf == I andfg == I, and the
second diagram is consistent if and only if bf == a and cg == b (and hence
cgf == a).

The reader should note the following "diagram-filling" lemma, the proof of
which is straightforward.

If h: G -+ Hand k: G -+ K are homomorphisms and h is onto, there
exists a (necessarily unique) homomorphism f: H -+ K making the diagram

G

/~
H f ) K

consistent if and only if the kernel of h is contained in the kernel of k.



CHAPTER I

Knots and Knot Types

1. Definition of a knot. Almost everyone is familiar with at least the
simplest of the common knots, e.g., the overhand knot, Figure 1, and the
figure-eight knot, Figure 2. A little experimenting with a piece of rope will
convince anyone that these two knots are different: one cannot be trans­
formed into the other without passing a loop over one of the ends, i.e.,without
"tying" or "untying." Nevertheless, failure to change the figure-eight into
the overhand by hours of patient twisting is no proof that it can't be done.
The problem that we shall consider is the problem of showing mathematically
that these knots (and many others) are distinct from one another.

Figure 1 Figure 2

Mathematics never proves anything about anything except mathematics,
and a piece of rope is a physical object and not a mathematical one. So before
worrying about proofs, we must have a mathematical definition of what a
knot is and another mathematical definition of when two knots are to be
considered the same. This problem of formulating a mathematical model
arises whenever one applies mathematics to a physical situation. The defini­
tions should define mathematical objects that approximate the physical
objccts under consjderation as closely as possible. The model may be good or
had according as the correspondence between mathematics and reality is
good or bad. There is, however, no way to prove (in the mathematical sense,
and it is probably only in this sense that thc word has a precisc meaning) that
t.lH~ rnathclnatieal definitions df'HCrihc the physical situatioJl pxaet.ly.

()hviou~·dy, t.he figure-eight knot can be tra.nsf()rrr}(~d into t.h(~ oVPf'han<!

IUlot, hy tying and 1Illt.ying in fa('t all kJlOt.H an~ ('qllival('nt, if UliH olH'raLion

iH allow('d. 'rhUH tying and unt.ying tllllHt, IH' pl'ohihif,('d ('iLlIe'" in f,J .. , d('liniLion
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of when two knots are to be considered the same or from the beginning in the
v('ry definition of what a knot is. The latter course is easier and is the one
W(~ shall adopt. Essentially, we must get rid of the ends. One way would be to
prolong the ends to infinity; but a simpler method is to splice them together.
A(~cordingly, we shall consider a knot to be a subset of 3-dimensional space
whieh is homeomorphic to a circle. The formal definition is: K is a knot if there
(~Xist8 a homeomorphism of the unit circle C into 3-dimensional space R3
whose image is K. By the circle 0 is meant the set of points (x,y) in the plane
112 which satisfy the equation x 2 + y2 === I.

rrhe overhand knot and the figure-eight knot are now pictured as in Figure
:l and Figure 4. Actually, in this form the overhand knot is often called the
clover-leaf knot. Another common name for this knot is the trefoil. The figure­
eight knot has been called both the four-knot and Listing's knot.

Figure 3 Figure 4

We next consider the question of when two knots K I and K 2 are to be con­
sidered the same. Notice, first of all, that this is not a question of whether or
not K I and K 2 are homeomorphic. They are both homeomorphic to the unit
circle and, consequently, to each other. The property of being knotted is not
an intrinsic topological property of the space consisting of the points of
the knot, but is rather a characteristic of the way in which that space is
imbedded in R3. Knot theory is a part of 3-dimensional topology and not of
I-dimensional topology. If a piece of rope in one position is twisted into
another, the deformation does indeed determine a one-one correspondence
between the points of the two positions, and since cutting the rope is not
allowed, the eorrespondence is bicontinuous. In addition, it is natural to
think ()rtl)(~ rnotioll of the I'ope as aeeornrani(~dby a nlotiotl of the surrounding
ail' nlol('('lIlps whi(~h thlls det('rrni'H's a hi('olltinuolls ')('f'llllltation of the pointR

of spa('('. 'rlli:--t pi(,tun' ~·nlgg('HLH t.11(' d('filliLion: 1\ 1l0LH A'I and A':! al'(' ()(Inina/tlll

if U1('f'(' ('xiHL~4 it. ltortlC'Onl()l'pltiHrn of /{l Ollf,o if.:-wlf \Vlli(,11 rnapH /\', ollLo /\''!..



Sect. 2 TAME VERSUS WILD KNOTS 5

It is a triviality that the relation of knot equivalence is a true equivalence
relation. Equivalent knots are said to be of the same type, and each equiva­
lence class of knots is a knot type. Those knots equivalent to the unknotted
circle x2 + y2 = I, Z = 0, are called trivial and constitute the trivial type. 1

Similarly, the type of the clover-leaf knot, or of the figure-eight knot is
defined as the equivalence class of some particular representative knot. The
informal statement that the clover-leaf knot and the figure-eight knot are
different is rigorously expressed by saying that they belong to distinct knot
types.

2. Tame versus wild knots. A polygonal knot is one which is the union of a
finite number of closed straight-line segments called edges, whose endpoints
are the vertices of the knot. A knot is tame if it is equivalent to a polygonal
knot; otherwise it is wild. This distinction is of fundamental importance. In
fact, most of the knot theory developed in this book is applicable (as it stands)
only to tame knots. The principal invariants of knot type, namely, the ele­
mentary ideals and the knot polynomials, are not necessarily defined for a
wild knot. Moreover, their evaluation is based on finding a polygonal repre­
sentative to start with. The discovery that knot theory is largely confined to
the study of polygonal knots n1ay come as a surprise-especially to the reader
who approaches the subject fresh from the abstract generality of point-set
topology. It is natural to ask what kinds of knots other than polygonal are
tame. A partial answer is given by the following theorcln.

(2.1) If a knot parametrized by arc length is of class 0 1 (i.e., is continuously

differentiable), then it is tame.

A proof is given in Appendix I. It is complicated but straightforward, and
it uses nothing beyond the standard techniques of advanced calculus. More
explicitly, the assumptions on K are that it is rectifiable and given as the image
of a vector-valued function p(s) = (x(s), y(s), z(s)) of arc length s with con­
tinuous first derivatives. Thus, every sufficiently smooth knot is tame.

It is by no means obvious that there exist any wild knots. For example,
no knot that lies in a plane is wild. Although the study ofwild knots is a corner
of knot theory outside the scope of this book, Figure 5 gives an example
of a knot known to be wild.2 This knot is a remarkable curve. Except for the
faet that the nurnber of loops increases without limit while their size decreases
without lirnit (as is indicated in the figure by the dotted square about p), the

--------

I 1\lly kilo!, wlli('11 IiI'S ill a plalH' is IllH'I'So'-:/l.l'ily I rivill,1. T}lis i.,-: a \vl'lI-kIlOWIi alld dl'Pp

Illl'on'lll or plll,1I1 1 topolog,\. ~lln:\. II. !\;I'Wlllllll. /f//f'/IIf'/lfs fd I/'f' 'I'O!J()/()!lI/ (d !'/f1lu"I...,'('lsfd

/·()"lIls. ~lll'oll(ll\(liIIOII ('lllldll'idgl' (l/livl\l':--lity 1'!'llsH. (1ll.lllhridg(l. I!~;d). p. J7:L
.~ I:. II. Il·ll~." \ /:1'111/1,,1\11'"'' ~llIq"I' ('Io;";l·d (1 11 1'\'1'." .l/lllltl.... f~/ .\1/(I/,III/.{II,.('..... \'01. :)()

(1!.I!q. p,.. :!t; I. :.!n,r>.



K NO'l'H AND KNOT TYPES Chap. I

Figure 5

knot could obviously be untied. Notice also that, except at the single point
p, it is as smooth and differentiable as we like.

3. Knot projections. A knot K is usually specified by a projection; for
example, Figure 3 and Figure 4 show projected images of the clover-leaf knot
and the figure-eight knot, respectively. Consider the parallel projection

defined by f!JJ(x,y,z) == (x,y,O). A point p of the image f!JJK is called a
multiple point if the inverse image f!JJ-lp contains more than one point of K.
The order of p E f!JJK is the cardinality of (f!JJ-1p) n K. Thus, a double point
is a multiple point of order 2, a triple point is one of order 3, and so on.
Multiple points of infinite order can also occur. In general, the image f!JJK
may be quite complicated in the number and kinds of multiple points present.
It is possible, however, that K is equivalent to another knot whose projected
image is fairly simple. For a polygonal knot, the criterion for being fairly
simple is that the knot be in what is called regular position. The definition is
as follows: a polygonal knot K is in regular position if: (i) the only multiple
points of K are double points, and there are only a finite number of them;
(ii) no double point is the image of any vertex of K. The second condition
insures that every double point depicts a genuine crossing, as in Figure 6a.
The sort of double point shown in Figure 6b is prohibited.

FiKUl'e Oa Fif{ure 6b
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Each double point of the projected image of a polygonal knot in regular
position is the image of two points of the knot. The one with the larger
z-coordinate is called an overcrossing, and the other is the corresponding
undercrossing.

(3.1) Any polygonal knot K is equivalent under an arbitrarily small rotation
of R3 to a polygonal knot in regular position.

Proof. The geometric idea is to hold K fixed and move the projectIon.
Every bundle (or pencil) of parallel lines in R3 determines a unique parallel
projection of R3 onto the plane through the origin perpendicular to the bundle.
We shall assume the obvious extension of the above definition of regular
position so that it makes sense to ask whether or not K is in regular position
with respect to any parallel projection. It is convenient to consider R3 as a
subset3 of a real projective 3-space P3. Then, to every parallel projection we
associate the point of intersection of any line parallel to the direction of
projection with the projective plane p2 at infinity. This correspondence is
clearly one-one and onto. Let Q be the set of all points of p2 corresponding to
projections with respect to which K is not in regular position. We shall show
that Q is nowhere dense in P2. It then follows that there is a projection 9 0

with respect to which K is in regular position and which is arbitrarily close
to the original projection f!JJ along the z-axis. Any rotation of R3 which
transforms the line &>0-1(0,0,0) into the z-axis will suffice to complete the proof.

In order to prove that Q is nowhere dense in p2, consider first the set of all
straight lines which join a vertex of K to an edge of K. These intersect p2 in a
finite number of straight-line segments whose union we denote by Q1' Any
projection corresponding to a point of p2 - Q1 must obviously satisfy con­
dition (ii) of the definition of regular position. Furthermore, it can have at
most a finite number of multiple points, no one of which is of infinite order.
It remains to show that multiple points of order n 2 3 can be avoided, and
this is done as follows. Consider any three mutually skew straight lines, each
of which contains an edge of K. The locus of all straight lines which intersect
these three is a quadric surface which intersects p2 in a conic section.
(See the reference in the preceding footnote.) Set Q2 equal to the union of all
such conics. Obviously, there are only a finite number of them. Furthermore,
the image of K under any projection which corresponds to some point of
p2 - (Ql U Q2) has no multiple points of order n 2 3. We have shown that

'rhus Q is a subset ofQl U Q2' whieh is nowhere dense in ]J2. This compl(~teH

the proof of (;~.I ). \ '/

:J FOI' all W'('OIIlIL of 111(\ (·olH'opL:-t lI:-tod ill l.hiN proof', :-t(\O n. Vohloll alld .J. \V. YOIIIIJ.~,

/Jrojf'('li",> (/('011/.('11'.'/ (~illll /tlld ('olllpaIlY. Bw·d,()Il, lVlaH'''IlH'hll:-l(\LLH, IHIO). Vol. I pp. II,
~~~H, :~O I.
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'rhlls, every tame knot is equivalent to a polygonal knot in regular position.
'ria is j~tet is the starting point for calculating the basic invariants by which
diff('rent knot types are distinguished.

4. Isotopy type, amphicheiral and invertible knots. This section is not a
prerequisite for the subsequent development of knot theory in this book.
'I'he contents are nonetheless important and worth reading even on the first
time through.

Our definition of knot type was motivated by the example of a rope in
motion from one position in space to another and accompanied by a displace­
ment of the surrounding air molecules. The resulting definition of equivalence
of knots abstracted from this example represents a simplification of the
physical situation, in that no account is taken of the motion during the transi­
tion from the initial to the final position. A nlore elaborate construction,
which does model the motion, is described in the definition of the isotopy
type of a knot. An isotopic deformation of a topological space X is a family of
homeolTIorphisms ht, 0 S t S 1, of X onto itself such that ho is the identity,
i.e., ho(p) = p for all p in X, and the function H defined by H(t,p) = ht(p) is
simultaneously continuous in t and p. This is a special case of the general
definition of a deformation which will be studied in Chapter V. Knots K 1

and K 2 are said to belong to the same isotopy type if there exists an isotopic
deformation {ht} of R3 such that h1K1 = K 2 • 'l'helettert is intentionally chosen
to suggest time. Thus, for a fixed point p E R3, the point ht(p) traces out, so to
speak, the path of the molecule originally at p during the motion of the rope
from its initial position at K 1 to K 2 .

Obviously, if knots K I and K 2 belong to the same isotopy type, they are
equivalent. The converse, however, is false. The following discussion of
orientation serves to illustrate the difference between the two definitions.

Every homeomorphism h of R3 onto itself is either orientation preserving
or orientation reversing. Although a rigorous treatment of this concept is
usually given by homology theory,4 the intuitive idea is simple. The homeo­
morphism h preserves orientation if the image of every right (left)-hand screw
is again a right (left)-hand screw; it reverses orientation if the image of every
right (left)-hand screw is a left (right)-hand screw. The reason that there is
no other possibility is that, owing to the continuity of h, the set of points of
R3 at which the twist of a screw is preserved by h is an open set and the same
iH true of the set of points at "\\rhich the twist is reversed. Since h is a homeo-

I /\ 110llll'OIJ10I'pllislll k 0(" tho n-sphe!'o ~""'n, n 1, ont.o itself is orientation preserving or
1'I·,'(·,....unf/ JI.(·(·ol'dillg liS t 11(' iSOlllO!'pllislll k*: l' II U"l'lI) ~ 11,,(8 11

) is OJ' is not tho identity. Lot
I .....'" 1.'''1... J: I : 1)(' till' Oill' !loillt (·()1I1pw·t.ifj(·aLiol\ or t I\(, !'('al (lar f,("..;jan JI-spa~o Un. Any
11l1l1lt'tllll()I'I'III'·HlI It Ill' N" UllIn ils(·If' lias a lIlli'llII' (1:\1('IlLioll to n 110l1H'olllorpllislIl k of

j ...... " N"t J: ' : 11ItlH 11'14·11 dl,lilltld II,\' k II.'" It IIlld 1.'(,/,) '/1. 'I'll( II. Ii is o"//'II/a//on

," .. ." " •. r, I" ',',,'ill 11t'('lIl'dlll~~ 11:1 I, I: III'III/If IIIIH/I P"(':';4'1'\'IIIJ~ HI' 1'l1\·(\1·:-\1111-~.



Sect. 4 ISOTOPY TYPE, AMPHICHEIRAL AND INVERTIBLE KNOTS 9

morphism, every point of R3 belongs to one of these two disjoint sets; and
since R3 is connected, it follows that one of the two sets is empty. The com­
position of homeomorphisms follows the usual rule of parity:

hI h2 h1h2

preserving preserving preserving
reversing preserving reversing
preserving reversing reversing
reversing reversing preserving

Obviously, the identity mapping is orientation preserving. On the other
hand, the reflection (x,y,z) ~ (x,y,-z) is orientation reversing. If h is a
linear transformation, it is orientation preserving or reversing according as its
determinant is positive or negative. Similarly, if both h and its inverse are 0 1

differentiable at every point of R3, then h preserves or reverses orientation
according as its Jacobian is everywhere positive or everywher~ negative.

Consider an isotopic deformation {ht} of R3. The fact that the identity is
orientation preserving combined with the continuity of H(t,p) === ht(p),
suggests that ht is orientation preserving for every t in the interval 0 s;:: t s 1.
This is true.s As a result, we have that a necessary condition for two knots to
be of the same isotopy type is that there exist an orientation preserving
homeomorphism of R3 on itself which maps one knot onto the other.

A knot K is said to be amphicheiral if there exists an orientation reversing
homeomorphism h of R3 onto itself such that hK == K. An equivalent for­
mulation of the definition, \\t'hich is more appealing geometrically, is provided
by the following lemma. By the mirror irnage of a knot K we shall mean the
image of K under the reflection f!l defined by (x,y,z) ~ (x,y,-z). Then,

(4.1) A knot K is amphicheiral ~f and only if there exists an oriental£on
preserving homeomorphism of R3 onto itself which maps K onto its m1'rror iUUlf/P.

Proof. If K is amphicheiral, the composition /Jih is orientation pr(~s('rvillg

and maps K onto its mirror image. Conversely, if h' is an orientation }>n's('rv­
ing homeomorphism of R3 onto itself which maps K onto its mirror irnag(', Lltt'

composition ~h' is orientation reversing and (/~h')K == K. \ j

It is not hard to show that the figure-eight knot is amphi('h('iral. rrhe
('xpprimental approach is th<: best; a rope \\'hich has been tied as a figun'-('ight
and th~n spliced is quite <:asily twist<:d into its rnirror image. Thp 0pt'ratioll iH
illustratpd in Figun~ 7. On the other hand, the' ('l()v('r-h~af knot is not arnphi-

fl Any i~otopi(' d.. fol'rllnt ion :h t }, ... I" I, of 1lin ('Hrtt'~UUl /'I.-spa(',' Uri (h·finit.nly
p4)~snS~t·~ a Ilni'llln ('xtl'n~i()n 10 au i~ot()pit' dt·forrllut lOll {kd, o· I· I, of t lin 1/ '..qdl4\l'n

1\''', i.t-., k t I Nil h" und "',(,1) IJ. Fill' I'lll'h I, thn hOll,f'/1I110l'Jdll"';1I1 k, I"'; Jlflfllfdopll' to
thn ul,·util.\" ulld YII IlllI IlId'lI'l-d I...;OIIlIl!'"III ..... ,1I (k,). Oil /1,,(,\'11) I~; thf' Idfllddy. I" 11IIIowH

tlIlLl. Itt IY 1I1'If'IdHllflli 111"""'1'\ III~~ IIII' HilI III 0 I' I. U·"'.·f· HI',11 1II01llotll L)
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(1)

(4)

(2)

(5)

Figure 7

(3)

(6)

cheiral. In this case, experimenting with a piece of rope accomplishes nothing
except possibly to convince the skeptic that the question is nontrivial.
Actually, to prove that the clover-leaf is not amphicheiral is hard and requires
fairly advanced techniques of knot theory. Assuming this result, however, we
have that the clover-leaf knot and its mirror image are equivalent but not of
the same isotopy type.

It is natural to ask whether or not every orientation preserving homeo­
morphism f of R3 onto itself is realizable by an isotopic deformation, i.e.,
given f, does there exist {h t }, 0 ~ t ~ I, such that f == h11 If the answer were
no, we would have a third kind of knot type. This question is not an easy one.
I'fhe answer is, however, yes.6

Just as every homeomorphism of R3 onto itself either preserves or reverses
orientation, so does every homeomorphism f of a knot K onto itself. The
geometric interpretation is analogous to, and simpler than, the situation in
:~-dirnensionalspace. Having prescribed a direction on the knot,fpreserves or
n~verHe~ orientation according as the order of points of K is preserved or re­
v(~J'Hed under f. A knot K is called invertible if there exists an orientation pre­
HnJ'ving horneoInorphisnl h of R3 onto itself such that the restriction h IK
iH an Ol'inlltatioll ("Pvol'Hing honH~olnorphisrn of K onto itself. Both the c]over-

II (L M. 14'iHllclI·. H()II l.Ilo (:1'0111' of 11.11 1I01lioolllorpiliHIllH or II Mallifold," '/'rOIl8(f('''':ons of
/hl' :1"11'1'1('(111 fl/fI/hnlJ,(//u·(/l/..,'O('II'/.'/, Vol. H7 (IHHO), pp. IH:C ~~I~.
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leaf and figure-eight knots are invertible. One has only to turn them over
(cf. Figure 8).

Figure 8

Until recently no example of a noninvertible knot was known. Trotter
solved the problem by exhibiting an infinite set of noninvertible knots, one
of which is shown in Figure 9. 7

Figure 9

EXERCISES

1. Show that any simple closed polygon in R2 belongs to the trivial knot
type.

2. Show that there are no knotted quadrilaterals or pentagons. What knot
types are reprcHented by hexagonH? hy HPptag(H1H'~

7 II. F. Trot.t.p .. , .. NOllillvnl't.itdn IUlOt.H nxiHt.." '/'o/wl0!l.'l, vol. ~ (I BH·I), pp. ~7[) ~HO.
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:L I )(~vise a method for constructing a table of knots, and use it to find the
f,.'11 knots of not more than six crossings. (Do not consider the question of
Wh<,UH'T' these are really distinct types.)

.1. I )('termine by experilnent which of the above ten knots are obviously
H.lllphi(·hciral, and verify that they are all invertible.

£). Nhow that the number of tame knot types is at most countable.

n. (Brunn) Show that any knot is equivalent to one whose projection has
at, t}lost one multiple point (perhaps of very high order).

7. (1-'ait) A polygonal knot in regular position is said to be alternating
if the undercrossings and overcrossings alternate around the knot. (A knot
type is called alternating if it has an alternating representative.) Show that if
I{ is any knot in regular position there is an alternating knot (in regular
position) that has the same projection as K.

H. Show that the regions into which R2 is divided by a regular projection
ean be colored black and white in such a way that adjacent regions are of
opposite colors (as on a chessboard).

B. Prove the assertion made in footnote 4 that any homeomorphism h of Rn
onto itself has a unique extension to a homeomorphism k of sn == Rn U {oo}
011to itself.

10. Prove the assertion made in footnote 5 that any isotopic deformation
{ht},O :::;: t :::;: 1, of Rn possesses a unique extension to an isotopic deformation
{k t}, 0 :::;: t :::;: 1, of sn. (Hint: Define F(p, t) == (ht(p),t), and use invariance of
dornain to prove that F is a homeomorphism of Rn X [0, IJ onto itself.)



CHAPTER II

The Fundamental Group

Introduction. Elementary analytic geometry provides a good example of
the applications of formal algebraic techniques to the study of geometric
concepts. A similar situation exists in algebraic topology, where one associates
algebraic structures with the purely topological, or geometric, configurations.
The two basic geometric entities of topology are topological spaces and con­
tinuous functions mapping one space into another. The algebra involved, in
contrast to that of ordinary analytic geometry, is what is frequently called
modern algebra. To the spaces and continuous maps between them are made
to correspond groups and group homomorphisms. The analogy with analytic
geometry, ho\vever, breaks down in one essential feature. Whereas the
coordinate algebra of analytic geometry completely reflects the geometry, the
algebra of topology is only a partial characterization of the topology. rrhis
means that a typical theorem of algebraic topology will read: If topological
spaces X and Yare homeomorphic, then such and such algebraic conditions
are satisfied. The converse proposition, however, will generally be false. Thus,
if the algebraic conditions are not satisfied, we know that X and Yare topo­
logically distinct. If, on the other hand, they are fulfilled, we usually can
conclude nothing. The bridge from topology to algebra is almost always a
one-way road; but even with that one can do a lot.

One of the most important entities of algebraic topology is the fundamental
group of a topological space, and this chapter is devoted to its definition and
elementary properties. In the first chapter we discussed the basic spaces and
continuous maps of knot theory: the 3-dimensional space R3, the knots them­
sclves, and the homeomorphisms of R3 onto itself which carry one knot onto
another of the same type. Another space of prime importance is the c01nple­
/Jnentary space R3 - K of a knot K, which consists of all of those points of R3
that do not belong to K. All of the knot theory in this book is a study of the
properticH of the fundarnental groups of the cornplerncntary spaces of knots,
alld this is ind(\(\d th(~ ('(\lltraJ thetne of the (\ntire sttbj(~et. I n this ehapter,
Il()\vevpl', thp d(·v(·loptll(·nt of" t.IH· f"ulldarn(,lltal group iN Inad(\ for all arbitrary
topologi('nl Npn(T .\' nud iN illd(·IH'rld('Ilt. of" our lat('r ilppli('atiottN of" t.hn
f'tlr)(laIlH'nt~" grollp 1,0 I\llof. UH'ory.
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1. Paths and loops. A particle moving in space during a certain interval
()f f,ill)(~ describes a path. It will be convenient for us to assume that the motion
IU'gills at time t == 0 and continues until some stopping time, which may differ
1'01' different paths but may be either positive or zero. For any two real num­
Iwl's :c and y with x :::;: y, we define [x,y] to be the set of all real numbers t
NH,Lisfying x :s: t :s: y. A path a in a topological space X is then a continuous
.napping

a: [0,11 a II] -+ X.

'I'IH' number II a 11 is the stopping time, and it is assumed that II a II ~ O. The
po int~ a(0) and a(" a \I) in X are the initial point and terminal point, respec­
ti vely, of the path a.

It is essential to distinguish a path a from the set of image points a(t) in X
visited during the interval [0,11 a II]. Different paths may very well have the
saIne set of image points. For example, let X be the unit circle in the plane,
gi ven in polar coordinates as the set of all pairs (r,O) such that r == 1. The two
paths

a(t) == (1,t),

b(t) == (1,2t),

o :::;: t :s: 27T,

o :::;: t :::;: 27T,

are distinct even though they have the same stopping time, same initial and
t(~J'rninal point, and same set of image points. Paths a and b are equal if and
only if they have the same domain of definition, i.e., II a \I == II b II, and, if for
(~v(~ry t in that domain, a(t) == b(t).

Con...~ider any two paths a and b in X which are such that the terminal point
()f a eoincides with the initial point of b, i.e., a( II a II) == b(O). The product a . b
of' the paths a and b is defined by the formula

{
a(t),

(a'b)(t) = b(t-lIall)'
o :s: t :s: II a II,
II a II :s: t :S: II a II + II b II·

I t i~ obvious that this defines a continuous function, and a · b is therefore a
I)ath in X. Its stopping time is

II a . b " = II a II + " b II·

\V(~ ernpha~ize that the product of two paths is not defined unless the terminal
,)() i11 t of the first is the same as the initial point of the second. It is 0 bvious that
U)(~ three a~sertions

(i) n' band b . c are defined,
(ii) a' (h . c) is defined,

(iii) (a· h) . c 1:8 d(~fin(J,d,

:In' ('qllivalnllt and that whenever one of thern holdR, the associative lau) ,

a' (h· t) (0 . I)) • (.,

iN varid.

A pilth f1 iN ('alle'd :lll idf'lIlil.'lI}(llh, 01' silnply all ide'lltiLy, if if, has HLopping

f, i ft Ie' 1/ (f" (). 'rh i:-i f,e' rr It i II () I()gy rc' fie' c. f.:-l UIf' 1"11. f • f, Lll Jl, f, UIf' :-14' f, f) r a II id f 'II LiL'y
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paths in a topological space may be characterized as the set of all multipli­
cative identities with respect to the product. That is, the path e is an identity
if and only if e . a = a and b· e = b whenever e· a and b· e are defined.
Obviously, an identity path has only one image point, and conversely, there
is precisely one identity path for each point in the space. We call a path whose
image is a single point a constant path. Every identity path is constant; but
the converse is clearly false.

For any path a, we denote by a-I the inverse path formed by traversing a
in the opposite direction. Thus,

a-I(t) == a(11 a II - t), o s:: t s:: II a II.

The reason for adopting this name and notation for a-I will become apparent
as we proceed. At present, calling a-I an inverse is a misnomer. It is easy to
see that a . a-I is an identity e if and only if a === e.

The meager algebraic structure of the set of all paths of a topological space
with respect to the product is certainly far from being that of a group. One
way to improve the situation algebraically is to select an arbitrary point p in
X and restrict our attention to paths which begin and end at p. A path whose
initial and terminal points coincide is called a loop, its common endpoint
is its basepoint, and a loop with basepoint p will frequently be referred to as
p-based. The product of any two p-based loops is certainly defined and is
again a p-based loop. Moreover, the identity path at p is a multiplicative
identity. These remarks are summarized in the statement that the set of all
p-based loops in X is a semi-group with identity.

The semi-group of loops is a step in the right direction; but it is not a group.
Hence, we consider another approach. Returning to the set of all paths, we
shall define in the next section a notion of equivalent paths. We shall then
consider a new set, whose elements are the equivalence classes of paths. The
fundamental group is obtained as a combination of this construction with the
idea of a loop.

2. Classes of paths and loops. A collection of paths hs in X, 0 s:: s s:: I, will
be called a continuous family of paths if

(i) The stopping time" hs II depends continuously on s.
(ii) The function h defined by the formula h(s,t) == hs(t) maps the closed

region 0 s:: s s:: 1, 0 s:: t s:: II hs II continuously into X.

It should be noted that a function of two variables which is continuous at
every point of its domain of definition with respect to each variable is not
necessarily continuous in both simultaneously. The function f defined on the
unit Hquare 0 <: s .~ I, 0 .< t <--: 1 by the formula

/(8,1)

r I,
. 8 I I

I /') ')'V 8" I lu

if,'; 0,

(If,ll('rwiHC',
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is all ('xample. The collection of paths {fs} defined by fs(t) == f (s,t) is not,
UI('f'('fore, a continuous family.

i\ Ji.rf'd-endpoint family of paths is a continuous family {hs}' 0 ~ s :::;: I,
1411('1. that hs(O) and hs( II hs II) are independent of s, i.e., there exist points p and
(I in .X Nueh that hs(O) == p and hs(11 hs II) == q for aIls in the interval 0 :::;: s :::;: I.
'rl)(~ difference between a continuous family and a fixed-endpoint family is
illuNtrated below in Figure 10.

h

Figure 10

J.Jet a and b be two paths in the topological space X. Then, a is said to be
(Iqnivalent to b, written a r--I b, if there exists a fixed-endpoint family {h s}'

n . - 8 -< 1, of paths in X such that a == ho and b == hI'
rrhe relation,-.....J is reflexive, i.e., for any path a, we have a ,-.....J a, since we may

obviollNly define hAt) == a(t), 0 :::;;: s ~ I. It i~ also symmetric, i.e., a,-.....J b
ilnpJi('N h ~ (J" because we may define ks(t) = h1-s(t). Finally, ,-.....J is transitive,
i,p" a ,-.....J hand b c::: c irnply a ,-.....J c. 1'0 verify the last statement, let us suppose
t.hat. !Is alld /(',:> are t.he fixed-endpoint families exhibiting the equivalences
(( r-J hand /) r-J (' I'('Np(,(~tiv('l'y, rrhCIl the eoJJeetioll of pathN (f,J defined by

o ",. J,

s I,
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is a fixed-endpoint family proving a f"'--J c. To complete the arguments, the
reader should convince himself that the collections defined above in showing
reflexivity, symmetry, and transitivity actually do satisfy all the conditions
for being path equivalences: fixed-endpoint, continuity of stopping time, and
simultaneous continuity in 8 and t.

Thus, the relation f"'--J is a true equivalence relation, and the set of all paths
in the space X is therefore partitioned into equivalence classes. We denote
the equivalence class containing an arbitrary path a by [a]. That is, [a] is the
set of all paths b in X such that a ,-....J b. Hence, we have

[a] === [b] if and only if a f"'--J b.

The collection of all equivalence classes of paths in the topological space X
will be denoted by r(X). It is called the fundamental groupoid of X. The
definition of a groupoid as an abstract entity is given in Appendix II.

Geometrically, paths a and b are equivalent if and only if one can be
continuously deformed onto the other in X without moving the endpoints.
The definition is the formal statement of this intuitive idea. As an example,
let X be the annular region of the plane shown in Figure 11 and consider five
loops e (identity), aI' a2 , a3 , a4 in X based at p. We have the following
equivalences

a
l

f"'--J a
2

f"'--J e,
a3 f"'--J a4•

However, it is not true that

Figure 11 shows that certain fundamental properties of X are reflected in the
equivalence structure of the loops of X. If, for example, the points lying
inside the inner boundary of X had been included as a part of X, i.e., if the

Figure 11
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1,"1.- \\'4'1"(' filled in, then all loops based at p would have been equivalent to the
,d"ltl !f"v Joop e. It is intended that the arrows in Figure II should imply that
II I 1111' interval of the variable t is traversed for each ai' the image point runs
II Ie HI lid the circuit once in the direction of the arrow. It is essential that the
,de'll of a i as a function be maintained. The image points of a path do not
''IH'4'ify the path completely; for example, a3 =j=. a3 • a3 , and furthermore, we
ele. not even have, a 3 ~ a3 • a 3 .

We shall now show that path multiplication induces a multiplication in the
fundamental groupoid r(X). As a result we shall transfer our attention from
paths and products of paths to consideration of equivalence classes of paths
and the induced multiplication between these classes. In so doing, we shall
obtain the necessary algebraic structure for defining the fundamental group.

(2.1) For any paths a, a', b, b' in X, if a· b is defined and a ~ a' and
b ~ b', then a' . b' is defined and a' b ,-....; a' . b'.

Proof. If {hs} and {ks} are the fixed-endpoint families exhibiting the
equivalences a,-....; a' and b~ b', respectively, then the collection of paths
{hs • k s} is a fixed-endpoint family which gives a . b ~ a'· b'. We observe,
first of all, that the products hs • ks' are defined for every s in 0 S s S 1
because

In particular, a' . b' == hI . kI is defined. It is a straightforward matter to
verify that the function h . k defined by

(h . k)(s,t) === (hs · ks)(t), o s s s I, 0 S t s II hs II + II ks II,
is simultaneously continuous in sand t. Since II hs • ks II == II hs /I + /I ks 1/

is a continuous function of s, the paths hs • ks form a continuous family. We
have

and

so that {h s • ks}' 0 s s s I, is a fixed-endpoint family. Since ho . ko === a · b
and hI · kI === a' · b' , the proof is complete.

Consider any two paths a and b in X such that a · b is defined. The product
of the equivalence classes [a] and [b] is defined by the formula

[a] . [b] === [a . b].

Multiplication in r(X) is well-defined as a result of (2.1).
Since all paths belonging to a single equivalence class have the same initial

point and the Harne t~rrninal point, we rnay dpfine the initial point and
t('rminal point, of an ('1(,Tlu'nt ex in r(.X) t,o l)(~ thos(' of an arbitrary r('pr~~en­

tativ(' pat,lt in (1. 'rtH' prodll(,t rx. . II of f,wo ('1('ln4'llt,~ rx. and II ill r(X) i~ thnn
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defined if the terminal point of lI.. coincides with the initial point of fJ. Since
the mapping a~ [a] is product preserving, the associative law holds in r(X)
whenever the relevant products are defined, exactly as it does for paths.

An element E in r(X) is an identity if it contains an identity path. Just as
before, we have that an element E is an identity if and only if E • lI.. = lI.. and
fJ . E = fJ whenever E • lI.. and fJ · E are defined. This assertion follows almost
trivially from the analogous statement for paths. For, let E be an identity, and
suppose that E • lI.. is defined. Let e be an identity path in E and a a represent­
ative path in lI... Then, e· a = a, and so E' lI.. = lI... Similarly, f3. E = f3.
Conversely, suppose that E is not an identity. To prove that there exists an r:J..

such that E • lI.. is defined and E • lI...=I=- lI.., select for lI.. the class containing the
identity path corresponding to the terminal point of E. Then, E • lI.. is defined,
and, since lI.. is an identity, E • r:J.. = E. Hence, if E • lI.. = r:J.., the class E is an
identity, which is contrary to assumption. This completes the proof. We con­
clude that r(X) has at least as much algebraic structure as the set of paths in
X. The significant thing, of course, is that it has more.

(2.2) For any path a in X, there exist identity paths e1 and e2 such that
a · a-I r--J e1 and a-I. a ,-...; e

2
•

Proof. The paths e1 and e2 are obviously the identities corresponding to
the initial and terminal points, respectively, of a. Consider the collection of
paths {hs}, 0 :::;: s ~ 1, defined by the formula

{

a(t),
hs(t) =

a(2s II a II - t),

o ~ t :::;: s II a II,

s II a II :::;: t ~ 2s II a II·

The domain of the mapping h defined by h(s,t) = hs(t) is the shaded area
shown in Figure 12. On the line t = 0, i.e., on the s-axis, h is constantly equal
to a(O). The same is true along the line t = 2s II a II. Hence the paths hs form a

('
1

/lall

Fig-ure 12

2/1all
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Ii x('d-endpoint family. For values of t along the horizontal line s == 1, the
rllll(~tion h behaves like a . a-I. We have

ho == ci

{

a(t),
hI(t) ==

a(2 II a II - t),

(

a(t),

- a-I(t - II a II),

== (a • a-1)(t),

o ~ t ~ II a II,

II a II ~ t ~ 2 II a II,

o ~ t ~ II a II,

II a II ~ t ~ 2 II a II,

and the proof that a . a-I r-J ei is complete. The other equivalence may, of
(·()tlr~e, be proved in the same way, but it is quicker to use the result just
proved to conclude that a-I. (a-I)-I r-J e2 . Since (a-I)-I == a, the proof is
(:ornplete.

(2.3) For any paths a and b, if a r-J b, then a-I ~ b-1.

Proof. This result is a corollary of (2.1) and (2.2). We have

()n the basis of (2.3), we define the inverse of an arbitrary element lI.. in r(X)
hy the formula

lI..-I == [a-I], for any a in r:t..

rl'he element r:t.-I depends only on (I., and not on the particular representative
path a. That is, (1.,-1 is well-defined. This time there is no misnaming. As a
corollary of (2.2), we have

(2.4) For any r:t. in r(X), there exist identities E} and E2 such that (I., • (1.,-1 == EI

and a.-I. a. == E2'

The additional abstract property possessed by the fundamental groupoid
l-'(X) beyond those of the set of all paths in X is expressed in (2.4). We now
obtain the fundamental group of X relative to the basepoint p by defining
the exact analogue in r(X) of the p-based loops in the set of all paths: Set
7T(X,p) equal to the subset of r(X) of all elements having p as both initial and
terminal point. The assignment a~ [a] determines a mapping of the semi·
group ofp-based Ioop~ into 7T(X,p) which is both product preserving and onto.
ft followH that 7T(X,p) is a semi-group with identity and, by virtue of (2.4), we
have

(~.r)) '1 Yhe S()t 7T( X,/», lOfJf)ther un:th the 1nnltir)Z,icaIion d(~fi'n()d, is a group. It
i~ by dnfillitiof} U)(~ fnndflIJtJ,(lJllal yroll/)l (~l ..\ i'(Jlati'I'() to tllf} !Ja,""fJl){n:nt p.

I TIIlI ('Il~lflllllll,ry lI11tHtillll ill tllplliogy rlll"llllN grollp i~i IT,(X.I'), '1'1\(11'/1 i:-: a :-:.l(llllII\(~O of

l-~roIlJl:j 1I 11 ( X ./,). /I I .• 'ldl.,d lit., 1""1101 III'.\' J,..~l'Cllll':-I III' X !'l'lnll\ p t II I'. '1'1111 l'lIl1dllllll'nt,al

l'rHII" Iii 111.' fil':iI lilli' 0/ 1114\ :H'qlll·IWll.
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We conclude this section with the useful observation that as far as equiva­
lence classes go, constant paths are the same as identity paths.

(2.6) Every constant path is equivalent to an identity path.

Proof. Let k be an arbitrary constant path in X defined by

k(t) = p, 0:::;: t :::;: II k II, for some p EX.

Obviously, the collection of paths hs defined by the formula

hs(t) = p, 0:::;: t :::;: s II k II

is a fixed-endpoint family, and hI = k and ho = e, where e is the identity path
corresponding to p.

3. Change of basepoint. The fundamental group 1T(X,p) of X is defined
with respect to and depends on the choice of basepoint p. However we shall
now show that if X is pathwise connected the fundamental groups of X
defined for different basepoints are all isomorphic. A topological space X is
pathwise connected2 if any two of its points can be joined by a path lying in X.

(3.1) Let (/,. be any element of f(X) having initial point p and terminal point

p'. Then, the assignment

(3 --* (/,.-1. (3 . rt. for any (3 in 1T(X,p)

is an isomorphism of 1T(X,p) onto 1T(X,p').

Proof. The product (/,.-1 . {3 . a is certainly defined, and it IS clear that
a-I. {3 · a E 1T(X,p'). For any {3I' fJ2 E 1T(X,p)

131 . {32 --* ex-I. ({31' {32) . a = ((/,.-1. (31 . ex) . ((/,.-1 . {32 . a).

So the mapping is a homomorphism. Next, suppose (/,.-1 • {3' ex = 1 (= E).
Then,

(3 = a . (/,.-1 . f3 . a . a-I = a . ex-I = 1,

and "Te may conclude that the assignment is an isomorphism. Finally, for any
y in 1T(X,p'), (/,. . Y . a-I E 1T(X,p). Obviously,

rrhllS the mapping is onto, and the proof is complete.

~ T"j~ dC'fillit,joli ~llollld hc' c'olll J'll~lC'd wiLli Ulal or (·oIlJH~(~tndJw~:-:.

:\ IOflolClgic'al ~fllH'I' i~ ('Oll/lf'('li'l! if iL i~ lillI, llac l llliioll of" two di~.ioiJlt, 1l01l0JIlpt,y opnn

:"H\I~. II. jSI·Il~.v lo~llo\V 111111 II. pllIII\\'i~HI 1·"I1II1WI(·cl,'-iflIWI\ 1"1 IlI'j'I\~"';lll'il,\' (·Olllll·(·j(·d, hilL UutL

II. C·UIIIIC·c'lc·d HpllC'I' I:{ /lut, 111'''(','i'>lll'rI,\ 1'11111\\'1,'11' C'ClIllllwtpcl.
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It is a corollary of (3.1) that the fundamental group of a pathwise connected
space is independent of the basepoint in the sense that the groups defined for
any two basepoints are isomorphic. For this reason, the definition of the
fundamental group is frequently restricted to pathwise connected spaces for
which it is customary to omit explicit reference to the basepoint and to speak
simply of the fundamental group 7T(X) of X. Occasionally this omission can
cause real confusion (if one is interested in properties of 1T(X,p) beyond those
it possesses as an abstract group). In any event, 1T(X) always means 1T(X,p)
for some choice of basepoint p in X.

4. Induced homomorphisms of fundamental groups. Suppose we are given a
continuous mappingf: X ---+ Y from one topological space X into another Y.
Any path a in X determines a path fa in Y given by the composition

a f
[0, II a II]~X~ Y,

i.e., fa(t) == f (a(t)). The stopping time offa is obviously the same as that of a,
i.e., II fa II == II a II. Furthermore, the assignment a ---+ fa is product­
preserving:

(4.1) If the product a · b is defined, so is fa . fb, and f(a . b) == fa . fb.

The proof is very simple. Since a . b is defined, a( II a II) == b(O). Consequently,

fa(llfa II) ==fa(11 a II) ==f(a(1I a II))

== f(b(O)) == fb(O),

and the product fa · fb is therefore defined. Furthermore,

f(a· b)(t) == f((a· b)(t))

{

f(a(t)),

- f(b(t - II a \1)),

{

fa(l)'

fb(t - II fa II),
== (fa· fb)(t).

It is obvious that,

(4.2) If e is an identity, so is fee

Furthermore,

(4.3)

Proof·

o ::;;: t ::;;: II a II,

II a II ::;;: t ::;;: II a II + II b II,
o ::;;: t ::;;: II fa II,

II fa II ~ t ~ II fa II + II fb II,

fa-1(t) == f(a- 1(l)) ~:: f(o(1I a II - t))

fa(11 fa /1 l) (fa) 1(1).
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For any continuous family of paths {hs}, 0 S s S 1, in X, the collection of
paths {fhs} is also a continuous family. In addition, {fhs} is a fixed-endpoint
family provided {h s} is. Consequently,

(4.4) If a r-J b, then fa r-J fb.

Thus, f determines a mapping f* of the fundamental groupoid r(X) into the
fundamental groupoid r( Y) given by the formula

f *([a]) == [fa].

The basic properties of the function f * are summarized in

(4.5)
(i) If E is an identity, then so is f *E.

(ii) If the product (X . {3 is defined, then so is f *(X . f *{3 and f *((X • (3) ==
f*(X·f*{3·

(iii) If f: X -+ X is the identity function, i.e., f(x) == x, then f* is also
the identity function, i.e., f*(X == (X.

(iv) If X~ Y~ Z are continuous mappings and gf: X -+ Z is the
composition, then (gf)* == g*f*·

The proofs of these propositions follow immediately from (4.1), (4.2), and the
associativity of the composition of functions, i.e., (gf)a == g(fa).

It is obvious that, for any choice of basepoint pin X,f* (1T(X,p)) C 1T( Y,fp).
Thus, the function defined by restricting f* to 1T(X,p) (which we shall also
denote by f*) determines a homomorphism

which is called the homomorphism induced by f. Notice that if X is pathwise
connected, the algebraic properties of the homomorphism f * are independent
of the choice of basepoint. More explicitly, for any two points p, q E X, choose
(X E r(X) with initial point p and terminal point q. Then the homomorphisms

1T(X,p)~ 1T(Y,fp)

(4.6) (3 --+ 1X-
1

{31X 1 1y --+ (f*IX)-ly(f*IX)

1T(X,q)~ 1T(Y,fq)

form a consistent diagram and the vertical mappings are isomorphisms onto
(cf (3.1)). Thus, for example, if either one of the homomorphisms f* is one­
one or onto, so is the other.

As we have indieated in the introduction to this chapter, the notion of a
hOI110TrlOrphiHrll indu('erl by a eontinuous mapping is fundamental to algebraic
topology. rrl)(~ hOlnOI}}OrphiHrn or the fundamental group induced by a con­
tillllOliH Inappillg provid(':-4 t,II(' hridgn froln f,opo!ogy to algebra in knot theory.
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The following important theorem shows how the topological properties of the
function f are reflected in the homomorphism f *.

(4.7) THEOREM. If f: X -+ Y is a homeomorphism of X onto Y, the in­
duced homomorphism f*: 7T(X,p) -+ 7T( Y,fp) is an isomorphism onto for any
basepoint p in X.

The proof is a simple exercise using the properties formulated in (4.5). The
functions

X~Y~X
induce homomorphisms

But the compositionsf-1f andff-1 are identity maps. Consequently, so are
(1-1f)* ==f-1*f* and (!f-l)* ==f*f-1*. It follows from this fact thatf* is
an isomorphism onto, which finishes the proof.

Thus, ifpathwise connected topological spaces X and Yare homeomorphic,
their fundamental groups are isomorphic. It was observed in consideration of
Figure II that certain of the topological characteristics of X were reflected
in the equivalence classes of loops of X. Theorem (4.7) is a precise formulation
of this observation.

Suppose we are given two knots K and K' and we can show that the groups
7T(R3 - K) and 7T(R3 - K') are not isomorphic. By the fundamental Theorem
(4.7), it then follows that R3 - K and R3 - K ' are not topologically equiva­
lent spaces. But if K and K' were equivalent knots, there would exist a
homeomorphism of R3 onto R3 transforming K onto K'. This mapping re­
stricted to R3 - K would give a homeomorphism of R3 - K onto R3 - K'.
We may conclude therefore that K and K' are knots of different type. It is by
this method that many knots can be distinguished from one another.

5. Fundamental group of the circle. With a little experience it is fre­
quently rather easy to guess correctly what the fundalnental group of a not­
too-complicated topological space is. Justifying one's guess with a proof,
however, is likely to require topological techniques beyond a simple knowledge
of the definition ofthe fundamental group. Chapter V is devoted to a discussion
of some of these methods.

An exception to the foregoing remarks is the calculation of the fundamental
group of any convex set. A subset of an n-dimensional vector space over the
real or complex numbers is called convex if any two of its points can be joined
by a straight line Regment which is contained in the subset. Any p-baRed loop
in sueh a Het iR (~qllivalent to a constant path. 1\) prove thiH \VO have only to
set

S/J I (I S)il (I), (). t· II il II, 0·, 8' I .



Sect. 5 FUNDAMENTAL GROUP OF THE CmCLE 25

The deformation is linear along the straight line joining p and a(t). A pathwise
connected space is said to be simply-connected if its fundamental group is
trivial. As a result we have

(5.1) Every convex set is simply-connected.

We next consider the problem of determining the fundamental group of the
circle. Our solution is motivated by the theory of covering spaces,3 one of the
topological techniques referred to in the first paragraph of this section. Let
the field of real numbers be denoted by R and the subring of integers by J.
We denote the additive subgroup consisting of all integers which are a
multiple of 3 by 3J. The circle, whose fundamental group we propose to
calculate, may be regarded as the factor group Rj3J with the identification
topology, i.e., the largest topology such that the canonical homomorphism
4>: R -+ Rj3J is a continuous mapping. A good way to picture the situation
is to regard Rj3J as a circle of circumference 3 mounted like a wheel on the
real line R so that it may roll freely back and forth without skidding. The
possible points of tangency determine the many-one correspondence 4> (cf.
Figure 13). Incidentally, the reason for choosing Rj3J for our circle instead of
R/J (or RjxJ for some other x) is one of convenience and will become apparent
as we proceed.

-1 o

P1

Figure 13

2 3 4

(5.2) The image under ep of any open subset of R is an open subset of R/3J.

Proof. For any subset B of R/3J, B is open if and only if ep-l(B) is open.
Furthermore, for any subset X of R,

ep-lcp(X) = U (3n + X),
nEJ

where 3n + X is the set of all real numbers 3n + x with x E X. Since trans­
lation along R by a fixed amount is a homeomorphism, and the union of any
collection of open sets is open, our contention follows.

rrhe mapping ep reHtrieteu to any interval of R of length less than 3 is one­
one and, by virtue of (f).~), iN tIH'l'p{'ore :d~o a horncomorphism on that interval.

:1 II. Hoifol't. /tlld W. 'I'lll'nll"ll.11. 1,(''',./"((·,, ilf'" 'I'ollu/of/if', ('I'('1I1>llt 1I', Lnipzig and Bodin,
IH:H). (lil. VIII. Hnpl'illt,cld I~,\' Il1c\ ('Ilcd:-H'll. PIII.li:-thillg ('0., Nnw YOI'k, IHfd.
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Thus, 1> is locally a homeomorphism. For any integer n, we define the set Cn

to be the image under 1> of the open interval (n - 1, n + 1). It follows from
(5.2) that each Cn is open and from the above remarks that the mapping

1>n: (n - 1, n + 1) -+ Cn

defined by setting 1>n(x) === 1>(x), n - 1 < x < n + 1, is a homeomorphism.
The sets Cn form an open cover of the circle. However, this cover consists of
only three distinct sets because, as is easily shown,

On === 0 m if and only if 1>(n) === 1>(m).

Moreover, the three points

Po === 1>(0), PI === 1>(1),

are the only distinct members of the image set 1>J. Geometrically, of course,
Po' PI' P2' are three equally spaced points on the circle (cf. Figure 13), Co is the
open, connected arc of length 2 running from PI to P2 and containing Po' etc.

We next define a sequence of continuous functions "Pn by composing 4>n-1

with the inclusion mapping into R.
cP

n
-1

Cn ~(n-l,n+l)

~~n.
R

The important properties of these mappings are summarized in

(5.3)

(i) 1>"Pn(P) === P, whenever "Pn(P) is defined.
(ii) If "Pn(P) and "Pm(P) are defined, then they are equal if and only if

J n - m 1< 2.
(iii) For any real x and integer n, if 1>(x) E Cn' there is exactly one integer

m - n (mod 3) such that

"Pm4>(x) === x.

Proof. (i) is immediate, so we pass to (ii). In one direction the result is
obvious since, if I n - ml ~ 2, the images of "Pn and "Pm are disjoint. The other
direction may be proved by proving that if P E Cn n Cn+I, then "Pn(P) ===
"Pn+I(P). By (i), we have that

P === ~"Pn(P) == ~1p71+I(P)·

Hence "Pn(P) == "Pn+l(P) + 3r for some integer r. Since "Pn(P) and "Pn+I(P) E

(n - 1, n -t- 2), it folloWR that r = 0, and the proof of (ii) is complete. In
proving (iii), W(~ ohHerve firHt of all that 1I1liquelleHH iH an imnlcdiate con­
H('qtlPIl<'(' of (ii). 1~:xiHf,('Il('(' iH proved aH rolloWH: I r (/)(.r) ( (}II' 1JH~1l (/)(:r) 4)(Y)
ror HOIlH' !I ((II I,,, I I). rrIH'Il,.r !I I :~I', for HOIIl(' illf,pg('" 'I', and
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X E (3r + n - 1, 3r + n + 1). Hence,

1fJ3r+nep(x) == X,

and we may set m = n + 3r. This completes the proof.

Consider two arbitrary non-negative real numbers a and T and the rectangle
E consisting of all pairs (s,t) such that °:::;;: s :::;;: a and °:::;;: t :::;;: T. The major
step in our derivation of the fundamental group of the circle is the following:

(5.4) For any continuous mapping h: E ---+ R/3J and real number x E R
such that 4>(x) == h(O,O), there exists one and only one continuous function
h: E ---+ R such that h(O,O) == x and h == 4>h.

Proof of uniqueness. Suppose there are two continuous mappings hand h'
satisfying h = 4>h = 4>k' and x = h(O,O) = k'(O,O). Let Eo be the set of all
points (s,t) E E for which h(s,t) == h' (s,t). Since R is a Hausdorff space, it is
clear that Eo is a closed subset of E. Moreover, F}o contains the point (0,0) and
is therefore nonvoid. We contend that Eo is also open. Suppose k(so,to) =

k'(so,to) = xo' For some integer n, X o E (n - 1, n + 1) and consequently
there exist open subsets U and U' of E containing (so,to) such that both
kU and h'U' are subsets of (n - 1, n + 1). Then, for any (s,t) E U () U',

h(s,t), h'(s,t) E (n - 1, n + 1),
and

4>nk (s,t) == h(s,t) == 4>nk'(s,t).

Since ePn is a homeomorphism, k(s,t) == h' (s,t), and our contention is proved.
Since E is connected, it follows that Eo == E, and the proof of uniqueness is
complete.

Proof of existence. We first assume that the rectangle E is not degenerate,
i.e., that both a and T are positive. Consider a subdivision

°= So < Sl < ... < Sk == a,

°= to < t1 < · .. < t l = T

which is so fine that each elementary rectangle E ij defined by the inequalities
'\-1 :::;;: S :::;;: Si and t j - 1 :::;;: t :::;;: tj is contained in one of the open sets h-1Cn'
(Were no such subdivision to exist, there would have to be a point of E
contained in rectangles of arbitrarily small diameter, no one of which would
lie in any set of h-1Cn , and this would quickly lead to a contradiction. 4) Then
there exists a function v(i,j) == 0, I, 2, such that

i -- -= I, ... , Ie,

.i I , ... , 1.

-I M. II. A. NOWrll/l.lI. /1,'/('111('1118 (~llh(' '/'u/w/U!I.'I (~l!'I(/II(' 1\'('/8 (~r !'uinl8, NIl('olid 1';c1it ion,
( 1ltrll hl'idgn l Jllivpr'HiL.v I'I'PHH. (1Il.rlllll·III.J.~p, I !If, I). p. -In.
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The function h is constructed bit by bit by defining its values on a single
elementary rectangle at a time. Starting with Ell' we have

eP(x) == h(O,O) E CvU,l).

Hence, by (5.3) (iii), there exists a unique integer p(l ,1) == 'v(l ,1) (mod 3)
such that

'If jl(l,l)h(O,O) == x.

We define h(s,t) == "Pjl<l,Uh(S,t), for any (s,t) E Ell. We next assume that h is
extended by adjoining elementary rectangles to its domain in some order
subject only to the restriction that Ei,i-l and Ei-l,j are always adjoined before
E ii . To extend to E ij , we use (5.3) (iii) again to obtain a unique integer
f-l(i,j) - v(i,j) (mod 3) such that

"PjlU,j)h(Si-l' t j- l ) == h(Si_l' ti-l)'

and define h(s,t) == "Pjl(i,j)h(s,t) , for any (s,t) E E ii . That the extension fits
continuously with the previous construction is proved by using the point
h(Si-I' ti - 1 ) and (5.3) (ii) in one direction in order to conclude that

I f-l(i - 1,j) - f-l(i,j) I < 2,

I f-l(i,j - 1) - f-l(i,j) 1< 2.

Then, from (5.3) (ii) in the other direction, it follows that h is well-defined on
the left and bottom edges of E ii . In this manner h is extended to all of E. The
proof for a degenerate E is a corollary of the result for a nondegenerate
rectangle. For example, if a == °and 'T > 0, we choose an arbitrary a' > 0
and define

h' (s,t) == h(O,t), 0:::;: t :::;: T, 0:::;: 8 :::;: a'.

The existence of h' is assured and we set

h(o,t) == h' (O,t), 0:::;: t :::;: 'T.

The proof of (5.4) is complete.

Consider a loop a in the circle based at Po == ~(O). Its domain [0, II a IlJ is a
degenerate rectangle. It follows from (5.4) that there exists one and only
one path a covering a and starting at 0, i.e., a == ePa and a(O) == 0. Since
<f>a(11 a II) == eP(O), we know that ii(11 a II) == 3r for a uniquely determined
integer r == ra , which we call the winding number of a. Geometrically, ra is the
algebraic number of times the loop a wraps around the circle.

(5.5)

Proof. Let a and b be the paths starting at °and covering a and b,
respectively. The function c defined by

{

ii(t),

h(l II ° II) I :~rtl'

o· t· lIall,

11011· 11011 IIIhll,
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is obviously a path with initial point °and covering the product a . b. Since
there is only one such path, it follows immediately that

3ra'b = c(11 a II + II b II) = b(11 b II) + 3ra

= 3(rb + ra )·

(5.6) Loops with equal winding numbers are equivalent.

Proof. This result is an immediate consequence of the 0 bvious fact that all
paths in R with the same initial point and the same terminal point are
equivalent. Let a and b be two po-based loops in the circle whose winding
numbers are equal and defined by paths ii and fj in R. The images hs = ephs '

o ~ s ~ 1, of any fixed-endpoint family {h s } which exhibits the equivalence
of ii and b constitute a continuous family which proves that a is equivalent
to b.

(5.7) Equivalent loops have equal winding numbers.

Proof. It is here that the full force of (5.4) is used. We consider a con­
tinuous family ofpo-based loops hs' °~ s ~ 1, in the circle. Let T be an upper
bound of the set of real numbers II hs II, °~ s ~ 1. We define a continuous
function h by

°~ s ~ 1 and °~ t ~ II hs II,

°~ s ~ 1 and II hs II ~ t ~ T.

Then, where h is the unique function covering h, i.e., eph = hand h(O,O) = 0,
we have

ePh(s, II hs II) = hs( II hs II) = Po = eP(O).

Hence, the set of image points h(s, II hs II), 0 ~ s ~ 1, is contained in the
discrete set 3J. But a continuous function which maps a connected set into a
discrete set must be constant on that set. With this fact and the uniqueness
property of covering paths we have

and the proof is complete.

By virtue of (5.7), we may unambiguously associate to any element of
7T(R/3J,po) the winding number of any representative loop. The definition of
1l1ultiplication in the fundamental group and (5.5) show that this association
iH a honlomorphism into the additive group of integers. (5.6) proves that the
hornornorphisnl is, in faet, an isolnorphisTn. With the obRPfvation that there
('xists a loop whose \\finding nllrnhpl' ('quals any givpn intpg('.. \VP ('onlplet,p the
proor or til(' folio\\' i fig 1,1 l('OI'( 'Ill.

(G.S) '/'11,' f"n,{fI'J}u'nla/ f/I'()I(J) (~r lit" ,',n'/" 'S 'II./ill"" ('.'/('/;('.
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EXERCISES

Chap. II

I. Compute the fundamental group of the union of two cubes joined at one
corner and otherwise disjoint.

2. Compute the fundamental group of a five-pointed star (boundary plus
interior).

3. Prove that if rJ.,{3 E 7T(X,p) and a E rJ., b E {3, then the loops a and bare
freely equivalent (also called freely homotopic) if and only if rJ. and fJ are
conjugate in 7T(X,p). (The definitions of "conjugate" and "freely homotopic"
are given in the index.)

4. Show that if X is a simply connected space and f and g are paths from
p E X to q EX, thenf and g belong to the same fixed-endpoint family.

5. Let f: X -+ Y be a continuous mapping, and f*: 7T(X,p) -+ 7T( Y,!p) the
induced homomorphism. Are the following statements true or false1

(a) If f is onto, then f* is onto.
(b) If f is one-one, then f * is one-one.

6. Prove that if X, Y, and X (') Yare nonvoid, open, pathwise con­
nected subsets of X u Y and if X and Yare simply-connected, then X u y
is also simply-connected.

7. Let the definition of continuous family of paths be weakened by
requiring that the function h be continuous in each variable separately instead
of continuous in both simultaneously. Define the "not so fundamental group"
7T(X,p) by using this weaker definition of equivalence. Show that the "not so
fundamental group" of a circle is the trivial group.



CHAPTER III

The Free Groups

Introduction. In many applications of group theory, and specifically in
our subsequent analysis of the fundamental groups of the complementary
spaces of knots, the groups are described by "defining relations," or, as we are
going to say later, are "presented". We have here another (and completely
different) analogy with analytic geometry. In analytic geometry a coordinate
system is selected, and the geometric configuration to be studied is defined by
a set of one or more equations. In the theory of group presentations the role
that is played in analytic geometry by a coordinate system is played by a
free group. Therefore, the study of group presentations must begin with a
careful description of the free groups.

1. The free group F[d]. Let us assume that we have been given a set sI of
cardinality a. The elements a,b,c of d may be abstract symbols or they may
be objects derived from some other mathematical context. We shall call d
an alphabet and its members letters. By 8t syllable we mean a symbol an where
a is a letter of the alphabet d and the exponent n is an integer. By a word
we mean a finite ordered sequence of syllables. For example b-3aOalc2c2aOcl is a
seven-syllable word. In a word the syllables are written one after another in
the form of a formal product. Every syllable is itself a word-a one-syllable
word. A syllable may be repeated or followed by another syllable formed from
the same letter. There is a unique word that has no syllables; it is called the
empty word, and we denote it by the symbol 1. The syllables in a word are to
be counted from the left. Thus in the example above a l is the third syllable.
For brevity a syllable of the form a1 is usually written simply as a.

In the set W(d) of all words formed from the alphabet d there is defined
a natural multiplication: the product of two words is formed simply by writing
one after the other. The number of syllables in this product is the sum of the
number of syllables in each word. It is obvious that this multiplication is
as~ociative and that the empty word 1 is both a left and a right identity.
rrhus JV(d) is a 8err~i-group.

However W(.qf) is hy IlO rneans a group. In fact, the only element of W(.(d()
that has all illv('J'se is I. III oJ'd('J' to forrll a group \\!(' ('oll('(,t th(' woros tog('th(~r

illto ('quivah'IH'(' ('Iasst's, using a. prot'('SS analogous to that by which til(' fuu­

darll(,lltal group is ot)taillod frotH tilt, ~('rni.group of p-ba~·;('d loops.
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I f a word u is of the form w1aow2, where WI and w2are words, we say that the
word v == W 1W 2 is obtained from u by an elementary contraction of type I or that
Ii j:-; ohtained from v by an elementary expansion of type I, If aO is the nth syll­
able of the \\'ord U, the contraction occurs at the nth syllable.

I f a. word u is of the form w l a
Paqw2, where WI and w2 are words, we say that

the word v == w Ia P+Qw2 is obtained from u by an elementary contraction of type
II Of' that u is obtained from v by an elementary expansion of type II. The
('011 traction occurs at the nth syllable if aQ is the nth syllable.

Words u and v are called equivalent (the relation is written u r-...; v) if one
can he obtained from the other by a finite sequence of elementary expansions
and contractions. It is trivial that this is actually an equivalence relation;
W(s1') is thus partitioned into equivalence classes. As before, we denote by
Iu I the equivalence class represented by the word u. Thus, [u] == [v] means
the same as u r-...; v. We denote by F[dJ the set of equivalence classes of words.

It is easy to verify that if v' is obtained from v byan elementary contraction,
then uv' is also obtained from uv by an elementary contraction, and that if
u' is obtained from u by an elementary contraction, then u'v' is also obtained
frorn uv' by an elementary contraction. From this it is easy to deduce that if
'U I'"'-J u' and v r-...; v', then uv r-...; u'v'. In other words F[d] inherits the multi­
plication of W(d), and the inherited multiplication is defined as follows:
IuJrv] == [uv]. The associativity of the multiplication in F[d] follows im­
HIPdiately from the associativity of the multiplication in W(d). The equi­
valence class [1] is both a left and right identity. Thus F[dl inherits from
W(d) its senIi-group structure. However in F[d] every element also has an
invprse: the inverse [U]-l of the class [u] is represented by the·word ii that is
ohtained from u by reversing the order of its syllables and changing the sign
of the exponent of each syllable. For example, if u == b-3aOalc2c2aOcl, then
ii = c -laOc-2c-2a-laob3. This shows that the semi-group F[dJ is actually a
group; it is called the free group on the alphabet d. Note that we allow the
(~nlpty alphabet; the resulting free group is trivial. The free group on an
alphabet of just one letter is an infinite cyclic group, The abstract definition of
a free group will be given in the third section, and it will be shown that the
group F[d] is, in fact, free according to this definition, The name "free
group on the alphabet d" anticipates these developments.

2. Reduced words. It is important to be able to decide whether or not
two given words u and v in W(d) are equivalent. Of course, if one tries to
t,J'allsform u into v by elementary expansions and contractions and succeeds,
t tU'1l that iH all there if-; to it, but if one fails, the question of equivalence
J'(,lnainH unanHwercd. What i~ wanted is a procedure, or algorithm, for
rnakiug thiH deciHioIl. 'rhe prohlern of finding suell a unifoI'In procedure is
uHually ('ailed the u'ord prolJ{(,1l1 for' thp fn\p groups /11 1. e:ll. A solution to UlO

pl'ohl.'rn is JU'.'H(\llt/(\d ill t tH' 1'('ulailld('1' or thiH H(,(,t,iou.

A word II' iH t'ul!t'd rtJdll('('d if it iH Ilof, p()H~ildt· to apply illl)' t'I('llH'ntar'y
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contraction to it, i.e., if no syllable of w has exponent 0 and no two con­
secutive syllables are on the same letter. It is obvious, since elementary
contraction always reduces the number of syllables, that each equivalence
class of words contains at least one word that is reduced. We propose now to
show that there is only one.

For any word w, the word p(u') is defined as follows: If w is reduced, then
p(w) == w. If w is not reduced, then p(w) is the word obtained from w by an
elelnentary contraction at the first possible syllable of w, i.e., the word p(w)
is obtained from w by an elementary contraction at the jth syllable of w,
where no elementary contraction is possible at the kth syllable for any
k < j. Note that it may be possible to apply an elementary contraction of
both types at the jth syllable of w. However, this situation causes no ambi­
guity, for w must then be of the form w == uaPaov where uaP is a reduced
word containing j - 1 syllables, and so either type of reduction yields
p(w) == uaPv. Clearly,

(2.1) w is reduced if and only if p(w) == w.

(2.2) If u is not reduced, then p(uv) == p(u)v.

The standard reduction of a word w is defined to be the sequence

w == pO(w), p(w), p2(W),···.

If a word is not reduced, an application of p reduces the number of syllables
by 1. Hence, in the standard reduction of any word w there exists a smallest
nonnegative integer r == r(w) such that pf(W) == pf+l(W). This number r is
the reduction length of w, and we define w* == pf(W). Note that p(w*) == w*
and therefore w* is a reduced word. In addition, the standard reduction
becomes constant, i.e.,

pi(w) == w*, for every i > r(w).

Since p(w) t'..J w, we conclude that

(2.3) w* is reduced and w t'..J w*.

Moreover,

(2.4) w is reduced if and only if w == w*.

The central proposition in our solution of the word problem is

(2.5) u t'..J v if and only if u* == v*.

Proof. If u* == v*, then we have

U t'..J u* == v* t'..J V,

and so u t'..J v. In proving the converse, we may assume that v is obtained
fl'orn u by an elcnlcntary contraction.

(/(J"W~ r. 'U 1,oa,o /'0' an( I V-1010'.

Let k equal LfH~ n'dll<~ti()11 l('ng1.l1 of '10. W(' ('ollt('IHI 1.hat

,/ I I (/I,) I)~ (/1).
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The proof is by induction on k. First, suppose that k == 0, i.e., that w is
reduced. Then,

p(u) == ww' == v.

Next, assume that k > O. By (2.2), we have

p(u) == p(w)aOw', p(v) == p(w)w'.

The reduction length of p(w) is k - 1. So the inductive hypothesis yields

pkp(u) == pk-lp(v),

and the contention is proved. Since the words in the standard reductions of
u and v are eventually the same, it follows that u* == v*.

Case II. u == waPaqw' and v == wap+qw'.
Again, let k equal the reduction length of w. We contend that

pk+2(U) == pk+l(v).

The proofis by induction on k. First, assume that k == 0, Le., that w is reduced.
We consider two possibilities.

(a) The last syllahIe of w is not on the letter a. Then,

p(u) == wap+qw' == v,

p2(U) == p(v).

(b) w == w"ar. Then w" is reduced and the last syllable of w" is not on a.
Hence,

p(u) == w"ar+Paqw',

p2(U) == w"ar+p+qw' == p(v),

p2(U) == p(v).

Next, suppose that k > O. By (2.2), we have

p(u) == p(w)aPaqw', p(v) == p(w)ap+qw'.

The reduction length of p(w) is k - 1. Hence, the hypothesis of induction
gives

which is
pk+2(U) == pk+l(V).

Thus, the contention is proved. As in Case 1, \ve conclude that u* == v*. This
completes the proof.

It follows directly from the preceding three propositions that

(2.6) Each equivalence class of words contains one and only one reduced word.
Furthermore, any sequence of elementary contractions of u must lead to the same
reduced u'ord u*_

'rhus W(' ha ve a finit~ algorit.hrn for d(·t('rrnillillg whetht,l' or not u and v
rt'I)J'('s('nt 1lH' saUl(' t'1('IlH'nt of 1{'I,e/l; ()I}(~ has onl,v to find "* and ". and ('Orrl­

pun' tll('ltl ~~ylllll.I(· hy ~~yll:d.r(·.
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3. Free groups. Let G be an arbitrary group, and consider a subset E of
G. The collection of subgroups of G that contain E is not vacuous since the
improper subgroup G is a member of it. It is easily verified that the intersec­
tion of this collection is itself a subgroup that contains E; it is called the
subgroup generated by E. If E =t- 0, then the subgroup generated by E
consists of all elements of G of the form Yl n lY2n2 • •• Ylnl, where gb g2, .. " Yl E E
and nb n2, ... ,nl are integers. On the other hand, the subgroup of G
generated by the empty set is trivial. If the subgroup generated by E is G
itself, E is called a generating set of elements of G.

In the group F [d] each element can be \vritten (in many ways) as a product
of integral powers of [a], [b], [c], .... For example, [a2b3c-2] == [a]2[b]3[c]-2.
Thus the elements [a], [b], [c], · · . constitute a generating set of elements of
F[d]. \\re denote this generating set by Cd].

Let us call a generating set E of elements of a group G a free basis if, given
any group H, any function 1>: E ~ H can be extended to a homomorphism
of G into H. (Since E generates G, such an extension is necessarily unique.)
A group that has a free basis will be called free. The simplest free group is the
trivial group 1; the empty set E == 0 is a free basis of it.

(3.1) A group is free if and only if it is isomorphic to F[d] for some d.

Proof. The group F[sf] is free because Cd] is a free basis of it. To show
this, consider a function 1>: Cd] ~ H. Denote by 1>' the induced mapping of
d into H. Extend 1>' to a homomorphism into H of the semi-group W(d) of
words by defining

1>'(ambn • • • ) == (1)'(a))m(1>'(b))n · · · ,

and observe that if u t"-I v then 1>'(u) == 1>'(v). It follows that 1>' induces a
homomorphism of F[d] into H. This homomorphism is clearly an extension
of the function 1>: [d] ~ H; thus [d] is a free basis of F[d]. If now G is
any group that is mapped onto F[d] by an isomorphism A, then E == A-I[d]
is obviously a free basis of G, so that G must be a free group.

Conversely let G be a free group, and let E be a free basis of G. Let F[d] be
the free group on an alphabet d whose cardinality is the same as that of E.
Every element of d is a reduced word. It follows that ifa =t- b, then [aJ "* [b],
and so there exists a natural one-one correspondence between d and Cd].
Hence, there exists a one-one correspondence K: E -+ Cd]. Since E is a free
basis, the correspondence K extends to a homomorphism ep of ,G into F[d].
Since [d] is a free basis of F[d], the function K-}: Cd] -+ E extends to a
homomorphism 1J of F[d] into G. The homomorphisms epif;: F[d] -+ F[d]
and if;4>: G~ G are extpIlsions of the rCRpective functions KK- I : [..9.1] -+ Cd]
and K-JK: E - -~ E. Sine(' these functions are idputities, they extend to the
identity allf,oJnorphiHlllS of J{'I.c/l and (1 l"('sl)(·(~t,jv('ly. ~ill(~p sll(~h ('xt,(,flsioIlS

arn IIlliqll<" it, folloWH that. 'IH/' alld (I"IJ HI"(' idc'nt it.y alit oJllorphiHlllH. 'l'hUH

(I, InapH (1 isoillorpllic'ally onto Jf'l.f/l and 'IJ (I, I. '1'llis shows t,hat. (1 iH

iHolnorphic' f,o /f'I.<I/, and WC' nrc' fini~..dlc'd.
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The above proof shows also that the cardinality of the free basis E of G is
equal to the cardinality a of the alphabet d. Thus free groups G, G' are
certainly isomorphic if they respectively have free bases E, E' of the same
cardinality. It will be sho\\"n (cf. (4.2) Chapter IV") that conversely, if free
groups G, 0' have bases E, E' of different cardinalities, then they are not
isomorphic. Granting this, it follo""s that to each free group G there corre­
sponds a number n such that each free basis of G has cardinality exactly n.
The cardinal numher n is called the ran k of the free grou p (;.

(3.2) A ny group is a homomorphic image of sonle free group.

This fact is of the utmost importance for the theory of group presentations;
it means that, using free groups as "coordinate systems," any group can he
coordinatized. Its proof is, of course, quite trivial: Let E be any set of genera­
tors of a given group G, and let F[d] be any free group on an alphabet d
whose cardinality a is equal to or greater than the cardinality of E. Let
A: [sf] ~ E be any function whose image is all of E. Since [d] is a free basis
of F[d], the function Aextends to a homomorphism of the free group F[d]
onto G.

EXERCISES
I. In how many ways can the \\'ord a-2bb-la7bb-Ia-l be reduced to a4

by elementary contractions?

2. Develop a finite algorithm for determining \\'hether or not two given
words represent conjugat~ elements of F[sf].

3. Develop a finite algorithm for determining whether or not a given word
represents the nth power of an element of F[d].

4. Prove that the elements y, xyx- l , x2yx-2 , ••• constitute a free basis of
the subgroup of F(x,y) which they generate. Deduce that the free group of
any given finite rank n can be mapped isomorphically into the free group
of any given rank rn ~ 2.

5. Prove that the free group of rank n cannot be generated by fewer than
n elements.

6. It is kno""n (Nielsen, Schreier, etc. I ) that every subgroup ofa free group
is free. Using this fact, prove that in a free group:

(a) There are no elements of finite order (other than the identity).
(b) If two elements commute they are powers of a third element.
(c) If u md == vnd , where m and n are relatively prime, then there is an

element w such that u == w n , V == w m .

(d) Ifuvu == v then u == I.

7. In Exercise 6 prove (a), (b), (c), (d) directly without using the Nielsen
thporem.

S. Sho\\' that if 1I,1',II',V' are clprnpnts of a fr(\c group such that uvu-1V-I ==

1l'/l'(II') 1(/.') I / I, (,11.'11 Ii and u' nppd not ('Ornnluf,p.

I S4'4\ 1<" II Fo'\." 1"1'4'4\ I )Jfl4 IJ'4'11 I uti ('lLI4'lIlw-I III. SIII IgI'lHII)'-I, " .,1 "nfll8 (1 ,'l1fll},"11I,(II/('8,

Vol fi I (I ~ •. lfi). p. 10K,



CHAPTER IV

Presentation of Groups

Introduction. In this chapter we give a firm foundation to the concept of
defining a group by generators and relations, This is an important step; for
example, if one is not careful to distinguish between the elements of a group
and the words that describe these elements, utter confusion is likely to ensue.

The principal problem which arises is that of recognizing \vhen two sets of
generators and relations actually present the same group. Theoretically a
solution is given by the Tietze theorem. However, this leads to practical results
only when coupled \vith some kind of systematic simplification of the groups
involved. Such systematic simplification is acconlplished very neatly by the
so-called word subgroups, which are going to be introduced to\vard the end of
this chapter.

1. Development of the presentation concept. The concept of an abstract
group was derived from the concept of a perlTIutation group (or substitution
group as it was called), and this \vas, naturally, a finite group. Thus, when
workers began to develop a theory of abstract groups they centered attention
almost exclusively on finite groups, and so a group was usually described by
exhibiting its Cayley group table. Of course, the use of a group table is not
usually possible for an infinite group, nor even very practical for a finite group
of large order. Furthermore the group table contains redundant information,
so that it is not a very efficient device. For exanlple, the table

a b

a

b
a
b

a

b
1

b
1
a

has nine entries, but, using the fact (obtained from the middle entry) that
b = a2

, we can reduce the information necessary to determine the group to the
statement that the elements of the group are 1, a, and a2 and the fact that
a3 = 1. Thus the group in question is more efficiently depicted if \ve note that
the element a generates the group, that the equation a3 = 1 is satisfied, and
that neither of the equations a2 = 1 or a = 1 is satisfied.

rrhis IpadH to th(~ Inethod of describing a group by giving g(~n('rators and
n'la,f,ions for ii,. As in1.rod1l('('d hy I)y(,k in I~~~-;~, it rail ahout lik(~ i,his: a

group (/ is d('ft'rrniIH'd if f IH'I'(' is gi\'('1) a S('1, of ('1('l)lf'l)1,s ~Ir, U'.!" •••• ('al/t'd

:t7
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~/('I/('J'(II()I'S, that generate the group, and a set of equations fl(gl' g2' . 0 0) == 1,
.r~(y" !/:!.' ... ) = 1, . 0 0, called defining equations or defining relations, that
1111 \'(', t.Il(' property that every true relation that subsists among the elements
f/l' y:!., ... is an algebraic consequence of the given equations.

Now frorn a stricter point ofvie\v this procedure is some\vhat vague in that
LIlt, 1('ll-hand sides of the equations do not have true existence. What kind of
all ohj('et is fi(gl' g2' ° 0 o)? It cannot be an element of G, for if it were in G, it
\\'ollid have to be the identity element 1. In order to write down such equa­
Lic )IIS w<.~ lnust postulate the existence of some realm in \vhich fi(gl' g2' ° • .)

lIas an independent existence. Clearly, the object required is just the free
grC>lII). rrhus we are led to the follo\ving reformation of the method of descrip­
Lion,

L(~t F be a free group with free basis Xl' x2' ° 0 ° in one-one correspondence
\\'ith the generators gj, g2' ° •• of G. Let ~ be the homomorphism of F onto G
d('fined by ~Xj = gj' j == ], 2, . · o. For each of the defining equations

.I',(Ul' (J2' • 0 0) == 1, set

i == 1, 2, ° 0 ••

'rltat is, r i is the element of F obtained by replacing each occurrence of
U

J
, .J -= 1, 2, · .. , in the expression !i(gl' g2' ° •• ) by Xj' For example, if the

,tit equation is glg2g1-1g2-1 = 1, then r i == Xlx2xl-1X2-1. The assertion that the
('quation !z(gl' g2' ° •• ) == 1 holds in G is then equivalent to the statement that
I', is in the kernel of 1>. Thus,

'rhn elcrnents r1 , r2 , • 0 • are called relators.
It is now easy to say exactly what it means for an equation to be an alge­

braic consequence of some others. Remembering that we have replaced each
('quation !i(gl' g2' . · .) == 1 by a group element r i , we see that the following
nl ust be meant. An element f of an arbitrary group Q is called a consequence of
a set of elements !1' !2' . 0 • in Q if every homomorphism 1jJ of Q into any group
II that maps each of the elements 11,12' ° • • into 1 also maps the element 1
into J. Since every homomorphism of Q determines a normal subgroup, i.e.,
LlH~ kernel of the homomorphism, and conversely, since every normal sub­
grot! p of Q determines a homomorphism of which it is the kernel; the defini­
t.ion ('an be rephrased as follows: An element! ofQ is a consequence of elements
II' I:!., ... iff is contained in every normal subgroup of Q that contains all the
(,I('nH'nts II' f2' .... I.Jet us call the set of all consequences of fv f2' ° •• the
('()Jls('qucn("J~ offl'!2' .... Then what we have found is that the consequence is
LlH~ int(~rs(~cti()ll of all the norn1al 8ubgroup8 of Q which contain all the ele-
IlH'IlLs.l'l' .I':!., . 0 0 , ~in('n thn int(~rs(\eti()nof any colleetion of nor rna1subgroups
is if s(,If' a nOl'lnal slil-grollp, \V(' ('all also say LhaL f h(~ ('OIlS('qtl(~'l(~(~ off" /~, . 0 •

is f 114' Nlllilll('sL lIol'lll:d sllhgroup of(i wlti(,1t ('orltiliIlN all Llll' (·I('IlH' IlLs fl'.!':!.'· . o.

\ \' ( , ( •i HI dc' f.c 'I'lll i lIC ' 1. " c ~ ( ,() II :-1('q IIC ' II ( .( 'S 0 r f I'f'!., . . . C' \' C'1\ rII () re ~ (' x pi i(,it.J y .
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Observe that any product of transforms of powers of these elements; i.e., any
element k of the form

1

IT h f n(j)h -1
j i(j) j

j=1

is mapped into 1 by any homomorphism that maps each of fI' f2' · .. into 1.
Hence every such element k is a consequence offv f2' .... It is easy to see
that the set of all such elements k constitutes a normal subgroup K of Q; thus
K is contained in the consequence of fl' /2' .... On the other hand, K is a
normal subgroup of Q which contains all the elements fI' f2' · · . , and so it is
one of the normal subgroups belonging to the collection \vhose intersection is
the consequence ofII' f2' .... It follov/s that the consequence of fI' f2' . · ·
is just K. vVe have therefore shown that an element ofQ is a consequence of
fl' f2' ... if and only if it is of the form

1

IT h f n(i)h -1
J i(j) j •

j=l

We shall have occasion to use the following theorem.

(1.1) Let gI' g2' · · . be a set of elements of a group G, and let 4> be a homo­
morphism of G onto a group H. '11hen 4> 1naps the consequence of gI' g2' · · . onto
the consequence of the set 4>gv 4>g2' ... of elements of H.

Proof. Denote the consequence ofgl' g2' · · · by KG and the consequence of
hI == 4>gl' h2 == 4>g2' · .. by K H· Since 4>1(0 contains all the elements hv h2, ...
and is normal, 4>Ka must contain K]JTo prove the reverse inclusion,
consider any element h of~Ka and select an element g E K a such that 4>g == h.
If 1jJ is any homomorphism of H that maps each of the elements hI' h2 , • • •

into 1, then 1jJ~ must map each of the elements gl' g2' ... into 1. Since g E K a,
we must have "P4>g == 1, that is to say, VJh == 1. Since h is mapped into 1 by
every such homomorphism, h must belong to K H . This shows that ~Ka is
contained in K H , and therefore ~KG == K li . This completes the proof. r)

Returning no\v to the homomorphism F ~ G, we denote by R the con­
sequence of the relators r I , r 2 , •••• The assertion that the equations

fi(gI' g2'···) == 1, i == 1,2,···,

constitute a defining set of relations for G from which all others can be derived
is simply the assertion that R equals the kernel of ~. In this case the group G
is determined by the free basis Xl' X 2' • • • and the elements r l' r 2' . • • because
G is isomorphic to the factor group FIR.

2. Presentations and presentation types. The following definitions forma­
l iz(~ tIl(' ideas of til(' Pf'('(~('di llg s(\('tioll. Let Ii' be a fret' group \vith a free bai-;iH E
that is Sllppos('d to Iw larg(' ('Ilough to ill(·lud(' all iIH'xhallst.il)I(~supply of hasic

(,le'llI('llt,S.
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'rll(' ~et )/) is called the underlying set of generators. A group presentation,
clc'llot,c'd hy (x : r), is an object that consists of a subset X of the underlying
~IC\t ot' g('llerators and a subset r of the subgroup F(x) generated in F by x.
Not,icC' that F(x) is isomorphic to the free group F[x] on the alphabet x. It is
i III porLant to observe that F(x) is itself a free group and x is a free basis of it;
t.lli~ follows directly from the definition of free basis (without appealing to the
dc·c·p Nielsen-Schreier theorem that asserts that any subgroup of a free group
i~ 1"1'('('). rrhe set X is called the set of generators of the presentation and the set
r iN ('alled the set of relators of the presentation. The group oj, or defined by, a
/Jrt'senlation (x : r) is the factor group I x : r I == F(x)jR, where R is the
('C)IlNequence in F(x) of r.

1\ presentation oj a group G consists of a group presentation (x : r) and
HIl iHomorphism l of the group I X : r I onto G. Clearly, any homomorphism 4>
C)r the free group F(x) onto a group G whose kernel is the consequence of r
d(,tcrmines a presentation of G. Conversely, any presentation of G determines
:-;lIch a homomorphism. That is, if y denotes the canonical homomorphism of
It1(x) upon F(x)/R in the consistent diagram, then either one of 1> and l deter­
lllines the other uniquely. When the extra precision is desired, we write

(x : r)</> to indicate that (x : r) is a presentation of the group G with respect
to the homomorphism ~.

The name "presentation" ,vas selected to describe the situation in which a
group G is studied by mapping a known group (the free group F(x)) onto it
because it was felt that this is in some way dual to the situation in \vhich a
group G is studied by mapping it into a kno\vn group (e.g. a group of permuta­
tions); the latter mappings are what are called "representations" of G.

Although there is no logical necessity for it ,ve shall now reintroduce the
concept of relation. The reason for doing this is that the manipulation of
relations fits more easily into our accustomed patterns of thought than the
manipUlation of relators. For example, it is easy to see thatif a andb commute,
then the fact that (ab)2 == 1 implies that a2b2 == 1, but it is not quite so easy
to show that a2b2 is a consequence of the t\VO relators aba-1b-1 and (ab)2.
(In fact, a2lJ2 == b-l(aba-1b-I)-lb . b-l (ab)2b.) It is not difficult to put the
'4J'('Jation" eoncept on a sound footing as in thp follo\ving: by the forlllula
'II, 'I' iN IlH'(\,nt what \\'ouJd l}lore pro]>f'rJy be \\TittPll U - 1J (IHod Il), i.e.,
'/I' I ( It. 'l'hiN iN, of' ('01ll'N(', ah\'H.YN \vit.h l'('f.'f'('lu'(' t.o a givell IU'('s('lltation
(x : 1'). ()Il o('('nsioll \\'(' rnighf, ('\'('11 \\'l'iL(' (x : "" I I, ... ) OJ' (x : u. '0,

•.. ) tlle'llllitig UIC' Slllll(' t flitlg liN (x : '1/' I, ..• ). 'rhc'n' is 110 IISC' ill Lryillg to h(~

ilion- fll'c'C'isc' JlI)(lId iI. lI:~ I)IC' ollly lICh'lIlIllI~')(' or fll(' 11:';c' of' 1'('htiOIl~~ ill Ul(~

plnC'(' or n'lnLoJ'H lic'H ill Lbc' IIIrc1rlll1llJly I IlliL 1.'1 ill·ltll·\,(·d.
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The presentation notation may be used consistently even \\Then the set of
relators is enlpty. Thus (x :) is a presentation of the free group F(x). Although
it is unlikely that the occasion should often arise, we might even denote by
(:) an especially silnple presentation of the trivial group.

A presentation (x : r) is finitely generated if x is finite, finitely related if r is
finite. A finite presentation is one that is both finitely generated and finitely
related. A group is said to be finitely generated if it has at least one finitely
generated presentation, finitely related if it has at least one finitely related
presentation, finitely presented if it has at least one finite presentation.
Although nonfinite presentations are common enough and by no means
pathological, we shall be primarily concerned with finite sets X and r.

Just as the equations of a curve or of a surface take on different forms in
different coordinate systems, so a group has many different presentations.
For example, it may be shown that

I x,y : xyx = yxy I Rj I a,b : a3 = b2 I,
and that

I x,y : xy2 = y3x , yx2 = x3y I ~ I : I.

The problem of determining whether or not t"ro presentations determine
isomorphic groups is the isomorphism problem. It is not possible to give a
general solution of this probleml , but partial solutions can be found, and these
are of great importance. These are usually of the nature of conditions on
presentations that must be fulfilled if the groups presented are to be iso­
morphic. Such conditions are of inlportance because they are the means of

showing that certain groups are not isomorphic. The methodology of finding
such partial solutions of the isomorphism problenl will now be considered.

A mapping j: (x : r) ~ (y : s) of presentations consists of the twopresenta­
tions (x : r) and (y : s) and a homomorphismf: F(x) ~ F(y) \vhich satisfies
the condition that the image j(r) of r under f is contained in the consequence
of s.

Every presentation mapping f: (x : r) ~ (y : s) determines uniquely a
group homomorphism j *: I X : r I~ I y : S I satisfying j *y == yj, where the
canonical homomorphisms F(x) ~ I X r I and F(y) ~ I y : S I are both
denoted by the symbol y.

1 Thpn' arl' U flllllllH'J' of :-;illlilal" probl('Jn:-; whi('h al'l' knowll to hl1v(' flO rlft/fr((! :--,olut ion:

d<'eidillg wll('LIII\1" 01" Ilot, til(' gl'OllP d('fill('d hy II giv('11 pl"l':-;('ldat.ioll i:-; t J'ivial (t Ill' t I'ivinlif,,v

prohll·III). 1.<..; linIt(', i:-; Ilh(·lilln, i:-; 1"1'1'(\. (·jl·; dl'('ldlllg wlll,tll('" or lIot a giVllfl word 1:-; H.

('OIlHOt(lI(IIl('(1 of" H giV('1l :-lllf, of word:-l (t flO word In'ohll'III); Hfld fltHIlY ot.fWf'H. Hon 1\1. ().
H,ahill ... H.l'l·llf':-li \'0 llll~-loIVlLhdlt,y Ill' (: f'( lllp Thl'OI'I,j,jl' P"ohl(·IIIH." :1 1I1/0/.'i '~l Al al",'ma/ ;('.'i.

\' II I. n7 (I H:) H). PP. I 7~ I H·1.
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Composition of presentation maps is defined in the natural way. If we are
given mappingsf: (x : r) -+ (y : s) and g: (y : s) ---+ (z : t), the composition
gf consists of (x : r) and (z : t) and the homomorphisrn gf: F(x) -+ F(z).
The associative law holds and there are identity mappings. Thus the collec­
tion of presentations and presentation mappings forms a category. Moreover,

1* == 1 and (g!)* == g*f*.
Presentation mappings 11,12: (x : r) -+ (y : s) are homotopic, written

fl r-I f2' if, for every x in x, the elementfl(x)!2(x--l) belongs to the consequence
of s.

The condition for homotopy of presentation mappings can be restated:
yfl(U) == yf2(U) for every U E F(x). Since the definition of induced mapping
givesfi*Y(u) == yf~(u), i == 1,2, we have sho\vn

(2.1) fl r-I f2 if and only if f1* == !2*'

Furthermore,

We have seen that a presentation map f determines a homomorphism f*"
Conversely,

(2.3) For each h01nomorphism (): I x : r I -+ I y : S I, there exists a
presentation map f: (x : r) -+ (y : s) such that 1* == e. Furthermore, any two
such presentation maps are homotopic.

Proof. Consider the diagram

F(x) F(y)

yt yt
()

I x : r 1---+ I y : S I·

Since Y is onto, we can assign to each x E X an element f(x) E F(y) in such a
way that y.f(x) == ey(x). Since F(x) is a free group with basis x this assignment
may be extended to a homomorphism f: F(x) -+ F(y) such that yf == Oy. The
image fr is contained in the consequence of s; hence f is a presentation
mapping, and!* == O. The uniqueness off up to homotopy follows fronl (2.1). IJ

Thus the honlotopy classes of presentation maps are in one-one corre­
spondence with the homomorphisms between the groups presented. In
addition, the correspondence is composition preserving.

]>resentations (x : r) and (y : s) are of the same type if there exist mappings
r

(x : r) ~~ (y : s) ~ll('h that yf r--J I anu fq ~ ]. rrhe pair of mappings f,g
fl

(or ('iU .. ,1' nll(' s('paraf,(,ly) is ('a.II('d a !)'((J8(Jiltotio}l (or !lfnnol()py) fqll£I)(lJen(",~.

(~"') '/11llU !))'(I."'·('lIlali()JI,s (In' (~llh() S(/,III(' I.II/N' if (/,Ilfl olllN U' Ih(',:,. yroll/>s are

isolllul'!lh if'.
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Proof. If f,g is a presentation equivalence, then

g*f* == (gf)* == I * == I,

f*g* == (fg)* == 1* == I;

hence f* maps I X : r I isomorphically upon Iy : S I (and g* == f* -1). Con­
versely, if 0 maps IX : r I isomorphically upon I y : S Iandf* =:= 0, g* == 0-1,

then
(gf)* == g*f* == 0-10 == I == (I )*,

(fa)* == f *g* == 00-1 == I == (I )*,

hence gf~ I,

hencefg ~ I.

3. The Tietze theorem. Among presentation equivalences special impor­
tance is attached to the Tietze equivalences I, I', II, II' which will now be
considered.

Let (x : r) be any presentation and let s be any consequence of r. Consider
the presentation (y : s) made up of y == X and s == r U s. In this case the
consequence ofr equals the consequence ofs. Hence (x : r), (y : s), and the
identity automorphism I : F(x) ~ F(y) define a presentation mapping
I : (x : r) ~ (y : s). Similarly, (y : s), (x : r), and the identity I define a
presentation mapping I' : (y : s) ~ (x : r). The pair of mappings I and
I' is trivially a presentation equivalence.

Starting again from an arbitrary presentation (x : r) let y be any member
of the underlying set of generators that is not contained in x, and let ~ be any
element of F(x). Consider the presentation (y : s) made up ofy == x u yand
S == r U y~-l. The homomorphism II: F(x) ~ F(y), defined by the rule
IT(x) == x for any x E x, maps r into the consequence of s so that (x : r),
(y : s), and II: F(x) ~ F(y) define a presentation map IT: (x : r) ~ (y : s).
Also the homomorphism IT': F(y) -+ F(x) defined by the rule IT'(x) == x for
any x E X and II'(y) == ~ maps S onto r U I and hence into the consequence of
r. It follows that (y : s), (x : r), and II': F(y) ~ F(x) define a presentation
map II': (y : s) ~ (x : r). The composition IT'IT is the identity. Also for
every x E x, II IT'(x) . X-I == I, and II ll'(y) . y-l == IT(~) . y-l == ~y-l ==
(y~-I)-l which belongs to the consequence of s, so that II II' ~ I. Thus the
pair II,IT' is a presentation equivalence. Note that IT: F(x) ~ F(y) is an
inclusion and II': F (y) ~ F (x) is a retraction.2

Although theoretically I and I' are completely trivial and IT and IT' some­
what less so, in practice the opposite is true. Actually checking that an
element, or proposed relation, is a consequence of certain others can be quite
difficult. (It is a special case of the word problem, cf. footnote I on page 41.)
The same difficulty occurs in the proof of the fundamental Tietze theorem
that we are getting ready to prove. It is precisely in order to verify the use
of I and I' in that proof that the following lemma is needed.

(:l.l) Let X and y IH~ di.~j()int 8fts of u nd(~rl.'linfl hasis fh)nl(~nt8, and let () he
a r(~tr(J,ct'i()n oj fi'(x U y) onto fi'(X). JA't (x : r)4> IH) fl pf()s(~nt(l,ti()noj ([, !!roup (1.

:l. 1\ rf'lradiotl iH H.IlY Illnppillg/:.\ .)' :-HWIa LlIII,I, )' ( S H.nd/( II) II for nvnry I' l r.
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Then the kernel of the homomorphisrn 4>(}: F(x u y) ~ G is the consequence C
of the union of r and the set of all elements y . (}(y)-I, Y E y.

Proof. Clearly, 4>(}(r) == ~(r) == 1 for any r E r. Since 0 is a retraction,
()2 == (), and hence ~()(y· e(y)-I) == ~((}(y) . O(y)-l) == 4>(1) == 1. Thus C is
contained in the kernel of ~O.

To prove the converse, we consider the canonical hon10morphism y of
F(x U y) onto the factor group F(x U y)jC and its restriction y' == y I F(x).

() cP
F(x U y) ----+ F(x) ----+ G

~;/
F(x u y)/C

We have y'()(x) == y'(x) == y(x) for x EX. Moreover, for y E y, \ve have
y(y) . y'(}(y)-I == y(y) . y(}(y)-I == y(y . (}(y)-I) = 1, hence y'e(y) == y(y). l'his
shows that y'e == y. Suppose now that u E F(x u y) such that ~(}(u) == 1.
Then y(u· (}(U)-I) == y'8(u' (}(u)-l) == y'(8(u) . 8(U)-I) == y'(I) == 1, and so
u . O(U)-I E C. But, 4>8(u) == 1, so that (}(u) is in the consequence of rand
therefore lies in C. We conclude that u == u · (}(u)-I . O(u) E C. r

f
(3.2) TIETZE THEOREM. Suppose that (x : r)~ (y : s) is a presentation

u
equivalence and that the presentations (x : r) and (y : s) are both finite. Then
there exists a finite sequence Tv T I'; · . · ; 1\, T/ of Tietze equivalences such
that f == T 1 • • • T l and g == T/ .. · T I'·

Proof. ~L"\\Te shall first prove this under the assumption that X and yare
disjoint sets. We consider the following diagram

F(x uy)

# ~
f

F(x) -0( ~ F(y)

yt t
y

f*
Ix : r I -0( ~ Iy : S I

u*

where land 0 are inclusions, and p and a are retractions defined so that p(y) ==
g(y) for y E y, and a(x) == f(x) for x E x.

It is apparent that the presentation equivalence

l

(x : r) ~-- ~ (x U y : r ,--) b),
/1
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whereb == {y. p(y)-I}, canbefactoredinto'1'1I 11/l' Ilc'qHivalence~'1'11'1'1'~.·· ;
T m,Tm', where m is the number of elementH 01'11,1 1 111'1 Y. so that t == '1'1 ... T m'

p == T m' • • • T 1'. Similarly the presentation Pqlll \," IC'III'C'

o

(y : s)~ (x U y : S U u).
a

where a == {x· a(x)-l},canbefactoredintoTietzeIIequiv"Ic\III"'"I\/, ),\f.'; ..• ;

Sn,Sn', where n is the number of elements of the set x, HO Ull" II SI ..• 8,p
a == Sn' ... SI'·

Now it follows from (3.1) that the kernel of the hOmOnlOl'pllillll1 )'/' 1'1 Illf '
consequence of rUb. But yp == g*ya, and ya(s u a) == 1; !It'IH''' " \ J n III

contained in the consequence of rUb. By the same argument rub "1 C'IIIt

tained in the consequence of sua. Hence the presentation equivul"Ilt'f'l\

~ ~

(x U y : rUb)~ (x U y : r U sua U b)~ (x u y : sua)
~' {3'

carried by the identity automorphism of F(x u y) can be factored into
Tietze I equivalences U1 ,[11'; ••• ; Uq+n,U~+n and VI' Vt'; · · . ; Vp +m,V;+m
respectively, where p is the number of elemcnts of the set rand q is the number
of elcments of the set s. Then, a == U I ... Uq +n , a' == U~+n .. · Ut', f3 ==

VI · .. VVf-m' f3' == V;+m· . · VI" and so

f == af3'at == Sn'· . · )Sl'Tl~+m' .. V1'U1 • • • Uq+nTI • •• T m'

g == pa'f3o == T m' · .. Tl'[J~+n' .. UI'V I . · . V1)+mS l · .. Sn'

,)) If x and y are not disjoint, \ve select froln the underlying set of generatofH
a subset z which is disjoint froIn x U y and is in onc-one correspondence \vith
x. This correspondence induces an isomorphism hI of F(x) onto F(z) and t}l<'

inverse isomorphism h2 == h1- 1 of F(z) onto F(x). Let t == h1(r), k1 == fh 2 , and
k2 == h1g, so that f == k1h1 and g == h2k2 ·

(z : t)

#~
f

(x : r) ~(--
g

(y : s)

Clearly h1 ,h2 is a presentation equivalence. \Ve claim that k1,k2 is also a
presentation equivalence. J.Jet the consequences of r, s, and t be d(~no1,('d

respectively hy R, J.~, and 'If. 'Th(\Tl lcI(t) = fh2(t) == f(r) c 8 and k~(s)

hI[J(s) c h](ll) ~ rr, so that k 1 and Ie'!. (H'(~ prns(,lltatioH Inaps~ ftlTtIH'l'lIlOJ'('

k'.!.k. hJf!.!,h'!. ~ hllh~ I and k.J.·~ fh'.!,h
J
(/ - ./fl ~ I. No\\' W(' ('an apply

t IH' fi l'st pa rt or t I)(, proof 1,\\ je'c' alld we' n1'(' Ii II isllt·d.
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'rill' i"lportancc of the Tietze theorem is that it reduces the problem of
:1110\\ illg Lllat a given function of group presentations depends only on the
~',I'OIiP PI't'~(,llted to one of checking that it is unaltered by the Tietze opera­
114111~ I :t nd II. !1"or example, in Chapter VII we shall show how to compute a
('('rf,ain ~pqllcnce of so-called elementary ideals from each finite group pre­
:ltq!f,af.ioll. Hince presentations that differ by the two Tietze operations will be
HIa .. ", .. t,o give isomorphic sequences, we shall conclude that the elementary
idc'al~ are group invariants.

J\~ all example of how Tietze equivalences are used to obtain one presenta­
Lioll fl'Oln another, let us show that the groups I x,y,z : xyz = yzx I and
I .r '.'/ ,a : xa = ax I are isomorphic:

(x,y,z : xyz(yzX)-l)

~ II

(x,y,z,a : xyz(yzx)-l, a(yz)-l)

~ I

(x,y,z,a : xa(ax)-l, a(yz)-l, xyz(yzX)-l)

~ I'

(x,y,z,a : xa(ax)-l, a(yz)-l)

~ I

(x,y,z,a : xa(ax)-l, z(y-1a)-1, a(yz)-l)

~ I'

(x,y,a,z : xa(ax)-l, z(y-1a)-1)

~ II'

(x,y,a : xa(ax)-l).

As another example let us show that I x,y : xyx = yTy I is isomorphic to
Ia,b : a3 = b2 I. To see how this could be done, we begin by noticing that if
we multiply both sides of xyx = yxy on the left by xyx, we get (xyx)(xyx) =
(xy)(xy)(xy). Then we set a = xy and b = xyx and observe that these last t\VO
relations can be solved for x and y. This reasoning leads us to the following
sequence of Tietze equivalences, which we now write in the informal style:

(x,y : xyx = yxy)

~ II (twice)

(x,y,a,b : xyx = yxy, a = xv' b = xyx)
~ I (thrice)

(x,y,a,b : xyx = yxy, a3 = b2 , a = xy, b = xyx, :.r = a-1b, y = b-1a2 )

~ I' (thrice)

(x,y,a,b : (1,:1 h2 , x =- a-1b, y =-== lJ-1( 2)

~ II' (L w i(~e )

(a,b : a:l h'!.).
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4. Word subgroups and the associated homomorphisms. If one wishes to
find necessary conditions in the isomorphism problem, one is almost forced to
find some uniform method of simplifying groups. To accomplish this we are
going to make use of the "word subgroups," as will now be explained.

To define a word subgroup we begin by selecting a subset W of some free
group F(x). (The elements of Ware represented by words in the underlying
set of generators, and this is the origin of the term "word subgroup.") Given
any group G we consider the set 0 == O(G) of all possible homomorphisms
W of P'(x) into G, and we denote by W(G) the subgroup of G generated by all
the elements cu(w), w E W, OJ EO. Such a subgroup W(G), which is called a
'tvord subgroup, is necessarily a normal subgroup since it is unaltered by any
inner automorphism of G. In fact W(G) has an even stronger property-it is
mapped into itself by every endomorphism of G (such subgroups are called
fully normal). For if lJ., is any endomorphism of G and if W E Q, then lJ.,W E Q
so that lJ.,(W(G)) c W(G).

The simplest examples of word subgroups are the commutator subgroup and
the power. To obtain the commutator subgroup we select x == {x,y} and W
the subset of F(x,y) consisting of the single element [x,y] = xyx-1y-l. The
resulting word subgroup W(G) is called the commutator subgroup and may be
denoted [G,G]. It is the subgroup of G generated by all elements of the form
glg2g1-1g2-1• The quotient group G/[G,G] is called the commutator quotient
group or the abelianized group, and the canonical homomorphism G~ G/[G,G]
is called the abelianizer. The commutator quotient group is ln abelian group;
abelianization just has the effect of making everything commute.

To obtain the nth power (n ~ 0) of G we select x == {x} and W the subset
of F(x) consisting of the single element x n . The resulting word subgroup W(G)
is called the nth power of G and may be denoted Gn. It is the subgroup of G
generated by all elements of the form gn. It should be clear that GO = 1,
Gl == G, and that Gm c an ,,,,henever m is divisible by n. Also it may be noted
that [G,G] c G2; in fact, glg2g1-1g2-1 == (glg2)2 . (g2-1g1-1g2)2 . g2-2, and this
means that G/G2 is always abelian.

If ~: G} ~ G2 is a group homomorphism and W is any subset of a free
group, then ~W(G1) c W(G2) since ~w E 0(G2) for any W E 0(G1). Con­
sequently, there is induced a unique homomorphism ~* such that

t t
G1/W(G1)~ G2/W(G 2 )

is a consistent diagram. It is straightforward to prove that

(..... 1) (a) If (/) '£s tlu J identity, so is 4>*. (1)) Given the cornposition 01 ~ G2 ~
(l:l' the II, ('/'(?)* "I'*(?*. ((') If (? is onln, so ,is (?*. (d) rl (P ':8 ((,1'1, 'isornorphisrn onto,
so is (/)*.
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For example, if (a) and (b) have been verified, (d) follows by simply observ-

identity == (~~-l)* == ~*(~-l)*

== (~-14»* == (~-l)*~*.

Notiee that if (d) is altered by the omission of the word "onto," the result is
false.

lJHing (4.1), we can prove a result that was promised in Chapter III.

(·L2) If m and n are distinct cardinal numbers, then the free groups of rank
lit and n are not isomorphic.

IJroof. Consider free groups F m and F n of rank m and n respectively, and
aHHurne that they are isomorphic. Then by (4.1) we must have an isomorphism
of }f\nlFm2 onto Fn/Fn2 . However the elements of these groups can be exhibited
(\xplicitly and counted; since F mlF m2 is abelian its elements are just the
products X I

l5
1X2

l5
2 • •• xn/m, where Xl' • • • , Xm is a basis for F m, Oi == 0 or 1,

and only a finite number of the exponents Di are different from O. Thus the
nurnber of elements of Fml Fm2 is just the number of finite subsets of a set
of eardinality m; it is 2m for finite m and m forinfinitem. If Fm/Fm2 ~ Fn/F n2 ,

then m and n lnust be both finite or both infinite, and hence m === n. \:'/

From (4.1) there follo\vs the most elementary of all necessary conditions
in the isomorphism problem:

(·L:~) In order that G1 and G2 be isomorphic it is necessary that their com­
II/ufatur quotient groups G1/[G I ,GI J and G2/[G2,G2] be is01norphic.

'rhe cornmutator quotient group G/[G,G] of any group G is the largest
abelian group which is a homolnorphic image of G. This idea is expressed
rigorously in the following "\\Tay. Consider an arbitrary homomorphism () of G
into an abelian group K. Then, there exists a unique homomorphism ()'
rnapping G/[G,G] into K which is consistent with () and the abelianizer
n: (1 --+ GI[G,G].

G )Ka1/ O=O'a

(}/[G,G]

rro 1)l'oV(~ thiH a,Hsertiol1, consider an arbitrary commutator

Ni II ( .(. I{ is a I )(' Iia II ,

01 ria ,f1~ I IOr/a ' Ofl~ I I,
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kernel of (). The group [G,GJ generated by the commutators of G is ipso facto
contained in their consequence; hence 0' is well-defined by

()'ag = ()g, g E: G.

The uniqueness of ()' follows trivially. Notice that since [G,GJ is a normal
subgroup of G it actually equals the consequence of the commutators of G.
The result just proved is succinctly summarized in the statement

(4.4) Any hom01norphism of a group into an abelian group can be factored
through the commutator quotient group.

(4.5) If a group G is generated by gl' g2' ... , then its commutator subgroup
[G,GJ is the consequence of the commutators [gi,gj], i, j = 1, 2, . · · .

Proof. The consequence K of the commutators [gi,gj] is contained in
every normal subgroup of G that contains {[gi,gJ}. Hence K c [G,GJ. To
prove the converse \ve have to show that the commutator [u,v] of any two
elements of G lies in K.

For every element g E: G, let l(g) denote the smallest non-negative integer
n for which there exist E1 , E2' •• • , En = ± 1 such that g = TI%=lgkEk

• Obvi­
ously l(g) = 0 if and only if g = 1. Our proof of the above proposition is by
induction on l(u) + l(v), If either l(u) = 0 or l(v)= 0 then [u,vJ = 1 E: K. If
l(u) = l(v) = 1 the commutator [u,vJ is one of the following:

[g~,gj]'

[gi-l,gjJ = gi-1[gj,g~]gi'

[gi,gj-l] = gj-l[gj,g~]gj'

[gi-1,gj-lJ = gi-1g j-l[gi,gj]gjgi'

and each of these must belong to K. Assume next that either l(u) or l(v) is
greater than 1. As a result of the identity

[u,v] = [v,U]-l,

,ve may assume that it is l(u) that is greater than 1. Then u = U1U2 where
l(u1 ) < l(u) and l(u2) < l(u). By the inductive hypothesis

[U1U2,V] = U1[U2,v]Ul-l[Ul'VJ E: K,

and this completes the proof.

(4.6) If (x : r) is any group presentation, then (x : r U {[xi,x j ], i,j =
1, 2, ...}) is a presentation of the abelianized group of I X : r I.

Proof. T.Jct y denote the canonical homomorphism of the free group F(x)
onto the faetoJ' groll pix : r I. 'rlH' al)('lianizcr of I X : r I is denoted as before
by o. We no\\! have' f,o :--:ho\\' t,hat, f,ltn k('I'I}(,1 of' (1)' i:--: tJH~ (~on:--:eqlH'r}(:(~ I{ of
r lJ f1. f / •. f ) I:· 'rhaL /\r iN c'ollf,;,inc'd in f.hiN I\('I'IH,I i:--: f,rivial. 'ro prove' t.h(~
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ruverse inclusion select any element u of F(x) such that ayu == 1. By (4.5)
)'1/, is contained in the consequence of {[yxi,yx j ]} == {y[xi,x j ]}. But, by (1.1),
Litis is the image under y of the consequence of {[xi,xj ]}. Thus yu === yv for
Horne consequence v of {[xi,x j ]}. Hence u === vw for some consequence w of r,
and the proof is complete. ~,

5. Free abelian groups. In the theory of abelian groups, one encounters
Hnother kind of free group, which is quite analogous to, but different from,
UH~ free group as it is defined in this book. Specifically, a free abelian group of
ranlc n is any group which is isomorphic to the abelianized group of a free
group of rank n. Since the only commutative free groups are those of rank 0
and I, i.e., the trivial groups and the infinite cyclic groups, it is clear that the
Lwo notions overlap but do not coincide. Generally speaking, a free abelian
group is not a free group. For both types, however, the rank is a complete
invariant. Thus,

(G. 1) Two free abelian groups are isomorphic if and only if they have the
s(J/Jne rank.

I t is not hard to construct a proof based on the same result for free groups,
(-I.:~), and the technique used in proving (4.2) (cf. Exercise 2 below).

rrhere is an abstract characterization of the free abelian groups which is
('nt,irely analogous to that of the free groups. A generating set E of elements
of an abelian group G is a basis if, given any abelian group H, any function
</): I~' -+ H can be extended to a homomorphism of G into H. Then,

(!).2) A n abelian group is free abelian if and only if it has a basis.

A proof based on (4.4) is straightforward.
Beeause of (4.6) it is an easy matter to give simple presentations of the free

ah(,lian groups. For example (x,y : xy == yx) and (x,y,z : xy == yx, yz == zy,
:::1: - xz) present the free abelian groups of rank 2 and 3 respectively.

EXERCISES

I. I)rove the following addendum to (4.1): If ~ is an isomorphism into, then
</)* need not be an isomorphism into. (One solution: G1 === (x:), G2 === (u,v:),
(/)(.r) - 'uvU-1V-I , W(G) == [O,G].)

~. IfFn denotes the free group and An the free abelian group of rank n,
Hhow that Fnj.F'n2 ~ A n/A n2. Deduce (5.1) from this.

:~. Prove (G.2).

,1. Ilow lnany different hornornorphisrnH are there of the free group of rank
:! Oil to UH~ (~'y(d i(~ groll p of ord(\J' 4 (~

[». Nltow t.haL t.I,.. pl'C\H(\nt.at.ioIlH (a,h : ((,'!-

((. : ('II I) d(\H(TiIH' t.hc' ~arnc\ group.
I, ah !Ja) and



Sect. 5 FREE ABELIAN GROUPS 51

6. Show that the group presented by (x,y : xy2 == y3x , yx2 = x 3y) is the
trivial group. (This is a hard problem.)

7. In the presentation (a,b,c,d : b == c-1ac, c == dbd-l, d == a-lca, a == bdb-1)

verify that anyone of the relations is a consequence of the others.

8. Show that the presentation (a,b : a3 == 1, b2 == 1, ab == ba2 ) describes
the symmetric group of degree 3.

9. Describe the word subgroup W(G) of an arbitrary groupG for (i) W == xy,

(ii) W == X 6y9, (iii) W == xyxy-l.

10. Is theorem (1.1) necessarily true if 4> is not onto~

11. Show that (4.5) is false if the words "consequence of" are replaced by
the words "subgroup generated by".



CHAPTER V

Calculation of Fundamental Groups

Introduction. It was remarked in Chapter II that a rigorous calculation of
u}(~ fundamental group of a space X is rarely just a straightforward applica­
tion of the definition of 7T(X). At this point the collection of topological spaces
whose fundamental groups the reader can be expected to know (as a result of
the theory so far developed in this book) consists of spaces topologically
c'quivalent to the circle or to a convex set. This is not a very wide range, and
t,h(~ purpose of this chapter is to do something about increasing it. The
t,('ehniques we shall consider are aimed in two directions. The first is con­
C'C'rned with ,,!hat we may call spaces of the same shape. Figures 14, 15, and
I () arc examples of the sort of thing we have in mind. From an understanding
of the fundamental group as formed from the set of classes of equivalent loops
based at a point, it is geometrically apparent that the spaces shown in Figure
I~ hclo\v have the same, or isomorphic, fundamental groups.

Circle

Holicl torus

Figure 14

Plane annular
region

Pilleh('d solid torus
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Similarly for Figure 15.

Sphere

And again in Figure 16.

Ellipses with one
paint in ('ommon

Spiny sphere

Figure 15

Spectacle frames

Double plane annulus

Figure 16

We have purposely chosen these examples so that no two are topologically
equivalent. (This fact is not obvious. I ) Nevertheless, all spaces included in the

1 1\1aRt of the above spaces under the same figure are distinguishable from one another
bn('auso of tho faet, that U10 dilnension of a topological space in the neighborhood of a
point, is a t,opologi('al invariant" i.p., under a hOlneornorphisfil the local dimension for any
puint, iH t.ho HHHIO H.H t,hn-t, of it s illlagn lllHI('r t hn hOH)(~OTnOrrhiRHl.See W. Hurewicz and
II. Wnlllllan, nillu'/l.sio/l. 'J'/in)/"y, (Pri'l(·('toll lfniv('l'Hit,v l»rt'sH, PriTH~f't()n, Now ,JnrHoy,
I!HH).



54 CALCULATION OF FUNDAMENTAL GROUPS Chap. V

same figure have isolnorphic fundamental groups and, in some sense, are of
the saIne :-4ha,p(~. In the first two sections of this chapter we shall study some
of thp rnaLl}(\IlH1tical terminology used in describing this concept precisely and
itK f'(,lil.t.ioll to the fundamental group. The definitions introduced will be
t.hos(\ or j'('lraction, deformation, deformation retract, and homotopy type. The
f'(\laLjol) of homotopy type is the rigorous replacement of our vague notion of
spa('('s of the same shape.

'rite :-4ccond over-all topic of this chapter is the calculation of the funda­
IlH\ntal groups of spaces which are built up in a systematic way from simpler
spaces \\Those fundamental groups are known. As a simple example, consider
the space consisting of the union of two circles X and Y which have a single
point p in common. Now it is very reasonable-and also correct-to guess
that 1T(X U Y) is the free group on two generators: one generating 1T(X) and
the other 71"( Y). However, this conclusion is certainly not an obvious corollary
of any techniques so far developed. Clearly, it would be of tremendous impor­
tance to have a general procedure for cementing together the fundamental
groups which correspond to the spaces that are being joined. For a wide
variety of spaces such a procedure exists; it is derived from the van Kampen
theorem. Most spaces encountered in topology, specifically the so-called com­
plexes, do exhibit a decomposition as the union of structurally simple subsets.
By repeated application of the van I(ampen theorem to these components the
collection of spaces whose fundamental groups are readily calculable is enor­
mously enlarged. In Section 3 we shall give a precise statement of this all
important tool and discuss its application in several examples. A proof for it
appears in Appendix III.

1. Retractions and deformations. A retraction of a topological space X
onto a subspace Y is a continuous mapping p: X --+ Y such that, for any
p in Y, p(p) == p. A space Y is called a retract of X if there exists a retraction
p:X--+Y.

As an example, consider the square Q in 2-dimensional Euclidean space
R2 defined by °:::;:: x :::;:: I, °::;: y ::;: I. A retraction of Q onto the edge E
defined by °::;: x s I, Y = °is given by

p(x,y) = (x,O), °::;: x,y ::;: I.

By restricting the domain of this function to the set Qconsisting of all (x,y)
in Q such that xy(x - l)(y - I) = °(at least one of the factors lllust equal
zero), we obtain a retraction of the boundary of the square onto the edge E.
In addition, the origin (0,0) is a retract of the square, of its boundary (j, and
also of the edge E. 'rhe retraction, with dornain suitably eho:-4en ill each case,
is givPIl by the fUllctioll
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More generally, for any point p of an arbitrary topological space X, the con­
stant mapping p: X ~ p is a retraction. A point is therefore a retract of any
space that contains it.

It follo\vs from the above that any interior point p of a closed circular disc
D is a retract of the disc. By projecting radially outward from p onto the

boundary iJ of the disc, we see that iJ is a retract of the complementary space
D - p. Analogous results hold in 3 dimensions. If p is the center of D and if
D is rotated about a diameter to form a 3-cell B, then p is a retract of B, and
the boundary sphere is a retract of B - p. If the disc D is rotated about a line
lying in its exterior, D describes a solid torus V and p describes a circle G.
We may conclude that C, forming the core of the solid torus, is a retract of V.
Similarly the torus that constitutes the boundary of V is a retract of V-G.

It is equally important, of course, to give examples of subspaces which are
not retracts of their containing spaces. These are also readily available. The

boundary of a square is not a retract of the square. Similarly, iJ is not a
retract of the disc D. There is no retraction of 3-space R3 onto the solid torus
V nor onto its core G. The equator is not a retract of the surface of the earth.
Well, how do we know? How can one possibly prove the nonexistence of a
retraction? An answer is given in the following theorem.

(1.1) If p: X --+ Y is a retraction and X is pathwise connected, then, for
any basepoint p E X, the induced homornorphism p*: 1T(X,p) ~ 1T( Y,pp) is
onto.

Proof. It was observed in Chapter II (cf. (4.6) and accompanying discus­
sion) that the algebraic properties of any homomorphism induced by a con­
tinuous mapping of a pathwise connected space are independent of the
choice of basepoint. For this reason, it is sufficient to check (1.1) for a base­
point p E Y. Consider the induced homomorphisms

where i: Y --+ X is the inclusion. Since p is a retract, the composition pi

is the identity. Hence (cf. (4.5), Chapter II), we have (pi)* = p*i* = identity,
and it follo\ys that p* is onto, and we are finished.

The continuous image of a pathwise connected space is pathwise connected.
Thus, the space Y appearing in (1.1) is connected too. Without the provision
that X be pathwise connected, (1.1) would be false.

The square, the disc, and the space R3 are convex sets and hence possess
trivial fundamental groups. It is true that a proof of the fact that the funda­
mental group of the sphere is trivial is not given until the end of this chapter.
T-f()\\'ev(~r', tJH' fact that all loops on the sphere having a common basepoint
(:an b(~ (:olltra('t,('d to that point eel'tainly Hounds plausible. Incidentally, the
word "spllt'n'" :tlOIIP alwa.vs ftlPans t.h(~ sllrfa('n of th(~ solid cell. Thus, in all
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the exarnples mentioned in the paragraph preceding (1.1), the fundamental
group of the containing space X is the trivial group. The subspace Y, however,
in each example has an infinite cyclic fundamental group. A group containing
only one element can obviously not be mapped onto one containing more
than one, and the contentions of that paragraph are therefore proved.

We turn now to the notion of a deformation. The intuitive idea here is
almost self-explanatory. A topological space X is deformable into a subspace
Y if X can be continuously shrunk into Y. The words "into" and "onto" have
their usual meaning. If the result of the shrinking is a set not only contained in
Y but equal to Y, then we say X is deformable onto Y. For example, a square
is deformable onto one of its edges. The appropriate definitions are: A deforma­
tion of a topological space X is a family of mappings hs: X -+ X, 0 :::;: 8 :::;: I,
such that ho is the identity, i.e., ho(p) === p for all p in X, and the function h
defined by h(s,p) === hs(p) is simultaneously continuous in the two variables
8 and p.2 A deformation of a space X into (or onto) a subspace Y is a deforma­
tion {h s} of X such that the image h1X is contained in (or equal to) Y. We say
that X is deformable into, or onto, a subspace Y if such a deformation exists.

A square, for example, can be defornled onto an edge; a deformation in R2
is given by

(i) hs(x,y) === (x, (I - 8)Y), °:::;: x,y,s :::;: I.

The family of functions

(ii) hs(x,y) === ((I - s)x, (I - s)y), o :::;:x,y,s ~ I,

is a deformation of the square onto the corner (0,0). The disc D defined with
respect to polar coordinates by the inequality °:::;: r :::;: I is deformed onto its
center by the functions

(iii) hs(r,f)) === (r(l - s), f)), {
o :::;: r,s :::;: I,

o :::;: () < 21T.

The complementary space consisting of all points of D except the center can

be deformed onto the boundary Dof the disc. The deformation is given by

(iv) hs(r,()) === (r(l - 8) + 8, ()),
(

0 < r :::;: I,

°< s < I,°:::;: () < 21T.

The reader should check that for 0 < r :::;: 1, °:::;: 8 :::;: 1, the inequalities
r :::;: r(l - 8) -t- s :::;: I are satisfied. Notice also that (iv) cannot be extended

to a deformation of D onto D. As before, we Inay extend our coru.,iderations
of a diRc into :~ dinlensionH and eoneludp, for ~xarnple, that a Holid torus V

:~ .\ gC·lIcll'lllil'.aLioli i~ Lbn dnfilliLioli of a dn("llrrlllll illll Ill' X /11, (f ('on/filn/llfl ....·IU/{·(' h as a

fallltl.\' of 11lIlPP'llg'~ h,,:.\ ~~. 0·..... I. HII.liHf\illg "0(/1) II 1'111'111111 111.\ ll.lId I,ho
"01111111011 01 '\1I11111111111 1CIII·t C·Oldlllllll,\'. 'l'llc' IHurll !'4'·dl'wl.,d d.'lilllllllll cd' dc,flll'lllll.lioll

VoI\'f'll 111)(/\'11 111:111111\.1"0 Illl' lllll' 1'111'111/'111'1.
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can be deformed onto a circle C forming its core, and that V - C can be
deformed onto the torus that forms the boundary of V.

A deformation of a disc onto its boundary can be constructed as follows:
Let the disc D be defined with respect to polar coordinates to be the set of all

points (r,O) that satisfy 0 :s;;: r :s;;: sin (). (See Figure 17.) The boundary iJ is

y

jj

x

Figure 17

the set of points defined by r == sin (). The deformation occurs in two steps:
In the interval 0 :s;;: 8 :s;;: !, the entire disc is shrunk to the origin p. Then, in

! :s;;: s :s;;: 1, points are moved along the boundary iJ in the counterclockwise
direction with increasing rand 8. Specifically, for any ordered pair (r,()) such
that 0 :s;;: r :s;;: sin (), we set

{
(r(I - 2s), (j),

hs(r,()) ==
(sin 7Tr(28 - I), 7Tr(2s - 1)),

for 0 :s;;: s :s;;: !,

for! :s;;: 8 :s;;: 1.

It is not hard to convince oneself that this family of functions satisfies the
requirement of simultaneous continuity prescribed by the definition of a
deformation. This example is particularly interesting because we know from

(1.1) that the boundary b is not a retract of the disc D.
We have just seen an example of a topological space X which can be

deformed onto a subspace which is not a retract of X. It is natural to ask
whether, conversely, there exist retracts which cannot be obtained by de­
formation. The answer is yes, and a good tool for finding examples is Theorem
(1.3) below. We prove first, as a lemma,

(1 .2) If {hs}, 0 :s;;: s :s;;: I, 1:S a deformation of x, then, for any basepoint p
,in X, the hO'Ynom,orphism (h1)*: 7T(X,p) ~ 7T(X,h1(p)) is an isomorphism onto.

J)r()(~r Wn dpfirl(~ a path n with initial point p and terrninal point q == h1(p)
by thn f<H·rnlila.

fI(l ) o· , I.
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L(,t. UH' ('qllivalence class of paths in X containing a be denoted by If... We
Hha II show that, for any f3 in 1T(X,p),

and the result then follows from (3.1), Chapter II. Consider therefore an
arhitrary element f3 ill 1T(X,p) and representative loop b in f3. Set

o ::;: 8 ::;: 1, 0 ::;: t ::;: II b II.

'fhe collection {k s} is certainly a continuous family of loops; its domain is
conveniently pictured in Figure 18.

a k~

J

a

b ~lIbll

Figure 18

Another continuous family of paths is defined as follows and represented
in Figure 19.

{
a(1 - (t - 8)),

js(t) =
q,

a

o ::;: 8 ::;: t ::;: 1,

o ::;: t ::;: 8 ::;: 1.

Figure 19

A final continuous [alnily of paths iH repr~senteu in T~'iglll'e 20 and defined by

t",(l) {
O(,I; I l),

(/ '

8 !

,I; I

I, () ."i,l

I, () s,l

I,

I.
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The product family {js . ks . ls} is clearly defined and is a continuous family of
paths. It is represented in Figure 21.

h1b

q

.v
)'f'

(1- 1 b a

Figure 21

Since {js . kg · is} is a fixed-endpoint family, we have the equivalences

a-I · b . a r-I c . h1b · c,

where c is the constant path at q. The equivalence class containing any con­
stant path is an identity (cf. (2.6), Chapter II). Hence,

~-l. {3. ~ = [a-I. b · a] == [h1b]

== (h1)*{3,
and the proof is complete.

An arhitrary eontinuous mapping f: X ---+ Y of a topological space X into
a Hll hHpH,('(" Y iH Haid t,o I)(~ re(J,h;:'(J,h/(~ hy (J, (hior'J'nation of X if there exists a

<!("f()I'lllat.ioll 'II J, (). ",. I , of' }; HlI('h t.hat, II I 'If, W IH\J'(\ ,,:: y ~ X iH the
ilH·llISioll ...apping. 1\:-4 a ('orollar,\' or (I .~), \\'(\ hav(' Ut(· f'ollowing UH"OI'('ln.
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(1.3) If a continuous mapping f: X -> Y is realizable by a deformation of
X, then, for any basepoint p in X, the induced homomorphism f*: 1T(X,p)---+
1T( Y,!p) is an isornorphisn~ into.

Proof. Let i: Y ---+ X be the inclusion nlapping and {h g } a deformation of
X such that hI == if. Since (ht )* == i*!* and since (h1)* is an isomorphism
by (1.2), we may conclude thatf* is also an isomorphisln. Note thatf* is, in
general, not an onto mapping even though (h1)* is.

Obviously, a space X is deformable into a subspace Y if and only if there
exists a mapping f: X ---+ Y which is realizable by a deformation of X.
Consequently, by virtue of Theorem (1.3), it is easy to find exanlples of
retracts which cannot be obtained by deformation. As we have seen, an edge
E of a square Q is a retract of the boundary Q of the square. However, Q
cannot be deformed into E. The fundamental group 1T(Q) is infinite cyclic and
1T(E) is trivial, so no mapping of 1T(Q) into 1T(E) can be an isomorphism.
Similarly, Qcannot be deformed onto a point. In contrast to a similar state­
ment we observed to hold for retracts, it is certainly false that an arbitrary
space X is deformable onto any point in X.

We are now ready to combine the notions of retraction and deformation
into a single definition. A subspace Y of a topological space X is a deformation
retract of X if there exists a retraction p: X -~ Y which is realizable by a
deformation of X.

Since hI defines a retraction in each of the formulas (i), (ii), (iii), (iv), each
exhibits a deformation retract. Thus, both an edge of a square and a corner
point are deformation retracts of the square. An interior point p of a disc D
is a deformation retract of D, and the boundary of D is a deformation retract
of D - p. In the following theorem, which is a direct corollary of (1.1) and
(1.3), we obtain an important property of deformation retracts.

(1.4) If a subspace Y is a deformation retract of a pathwise connected
topological space X, then 1T(X) 'is isomorphic to 1T( Y).

Notice in this theorem that Y must also be pathwise connected. A more
informative statement of (1.4) is the following:

If X is pathwise connected and the retraction p: X ---+ Y is realizable by a
deformation and if i: Y ---+ X is the inclusion mapping, then, for any points
p in X and q in Y, both induced homomorphisms

p*: 1T(X,p) ---+ 1T( Y,pp),

i*: 1T( Y,q) ---+ 1T(X,q),
are isornorphisn1-s onto.

'rlH' first ('('suit is a di('(~et corollary of (1.1) and (I.:~). To prove the second,
e()n~id('r til(' rnappings
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We have already noted that p* is an isomorphism onto. Moreover, ,ve know
that there exists a deformation {h s } of X such that hI == ip. By (1.2), (hI )* ==
i*p* is an isomorphism onto, and it follows immediately that i* is also an
isomorphism onto. The big difference between the two statements of Theorem
(1.4) is that the latter not only says that two groups are isomorphic, but also
says explicitly what the two relevant isomorphisms are.

The concepts of retraction, deformation, and deformation retract can be
nicely summarized with the example of a square Q. Since there exists a
homeomorphism of Q onto the circular disc D that carries the boundary Q
onto the boundary D, we Inay conclude that the square, like the disc, may be
deformed onto its boundary. We thus have the following diagram:

Q (square)

deformation
but not
retract

deformation
retract Q (boundary)

retract
but not

deformation

retract
hut not
deformation

p (corner point) ( . E (edge).
deformatiOn retract

Let the closed disc defined by the polar coordinate inequality 0 :::;: r :::;: 1
be denoted by D, and its center by p. The open disc, defined by 0 s;: r < 1,

is denoted by D. Notice that D== D - D. The deformation (iv) of D - P

onto Dcan be extended as follows: For any r,s,() such that 0 < r, 0 s;: S :::;: 1,
o :::;: () < 27T, set

_ {(r(1 - 8) + S, (}), if 0 < r ~ 1,
hs(r ,0) - (r,O), if I::;; r.

o

This extended deformation shows that the complement R2 - D of the open
disc in the plane is a deformation retract of the punctured plane R2 - p. By
rotating the disc D about an axis lying outside D, as we have done before,

we obtain a solid torus V, whose surface and interior are denoted by Vand V
respectively. The point p describes a circle C under the rotation, and it is
obvious that the torus V is a deformation retract of the complement V-C.
Consider next a topological ilnbedding of the closed solid torus V into the
3-dimensional space R3. The image of C under the imbedding is a knot K. The
knotted torus which is the image of V and which contains K as a core, we

o

denote by W. Its surface and interior are denoted by TV and W, respectively.
1t can be proved that the imbedding of V into R3 must carry V onto Wand

Vonto W. Cons~qllcn tly, it follo\\'s that TV is a deformation retract of W - ](;
Hince t,JH~ poill1.H of J1' ('('rnaill fix(~d throughout! the dpforrnaf,ion, ",,'e may (~X-

1.('IHI t.lu' Inapping t,o all of ItI I\r and ('on(,llId(' that I{' W iH ad.'fol'lnat.ioll
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retract of R3 - K. Thus, R3 - K and R3 - W have isomorphic fundamental
groups.3 It is obvious that any knot of tame type is the core of such an open
toroidal neighborhood. It has been proved4 that conversely, any knot which
possesses such a toroidal neighborhood is tame.

The following theorem, with which we conclude this section, is perhaps an
unexpected result. At first glance, one is very likely to guess that it is false.
As a matter of fact, the proof is almost a triviality.

(1.5) 11' the space X can be deformed into Y and if there also exists a retrac­
tion p of X onto Y, then Y is a deformation retract of X,. moreover, p can be
realized by a deformation.

Proof. Let {hs} be a deformation of X into Y. We define a new deforma­
tion {ks } of X as follows. For any point p in X,

o :::;: 8 :::;: t,
t :::;: s :::;: I.

Then, ko(p) = ho(p) = p. The condition of simultaneous continuity in sand p
is satisfied because the two definitions of ki agree. Using the top line, we get
kJj(p) = h1(p). Since h1(p) is by assumption in Y, \ve obtain from the second
line k}(p) = phl(p) = hJ(p). The retraction p is realized by the deformation
because k1(p) = pho(p) = p(p).

2. Homotopy type. Topological spaces X and Yare of the same homotopy
type if there exists a finite sequence

of topological spaces such that, for each i = I, ... , n, either Xi is topologi.
cally equivalent to Xi-V or Xi is a deformation retract of Xi-I' or vice-versa.5

The relation of belonging to the same homotopy type is obviously an equiv­
alence relation. From (1.4) above, and (4.7) of Chapter II, ":e conclude that

(2.1) If X and Yare pathwise connected spaces of the same homotopy type,
then 1T(X) is is01norphic to 1T( Y).

Any point in a convex set C is a deformation retract of C. It follo\\;'s that

3 However, the fundamental groups of R3 - K and R3 - W may not be isomorphic
(the torus W rnay be "horned"); See J. W. Alexander, "An Example of a Simply Con­
nected Surface Bounding a Region which is not Simply Connected," Proceedings of the
National Academy of Sciences, Vol. 10 (1924), pp. 8-10.

4 E. l\1oise, "Affine Structures in 3-Manifolds, V. The Triangulation Theorern and
Hauptvermutung," Ann. of Math. Vol. 56 (1952), pp. 96-114.

:> For tJw usual definition of hOlnotopy typo see P ..J. Hilton, An Introduction to
Jlo1iwfo!).'1 Th()or.'l, Call1hridg(' Tl'ac·ts in Mat hC\lllaLi('s and 1\1aLl\(\lllaLi('al Pllysi(·s, No. 4:l
((11l11l 11l 'idgn llllivc\rsity Pn'ss, CHlllhridg(', I~~!):q. 11'()l'pl'()oftllllt Ildloll'sdl'fillitioll is Lho
Sll.lI\l1 11.'1 ()llr:-i S(\II H. II. Il'OX, "Oil IIOlllot()I'Y Typlllllld J)(·f()1'I11Iltioll H(ltnwt."," .Itlil. (~f

Itllllh. Vol. -II (I~H:q, 1'1'. 10 ;,0.



Sect. 3 THE VAN KAMPEN THEOREM 63

any convex set is of the same homotopy type as a point. Thus our collection
of spaces of known fundamental group may be characterized as all those of
the homotopy type of a circle or a point. Homotopy type is one of the most
important equivalence relations in algebraic topology; most of the algebraic
invariants are invariants ofhornotopy type. It is a much weaker relation than
that of topological equivalence. Each of the spaces pictured in Figures 14,
15, and 16 is of the same homotopy type as the others in the same figure.

3. The van Kampen theorem. The formulation of this important result
which appears in (3.1) does not, at first glance, look like a computational aid
to finding fundamental groups. There are, however, distinct advantages to
this abstract approach. One is conceptual simplicity: The statement of (3.1)
reflects only the essential algebraic structure of the theorem and, for this
reason, is the easiest and clearest one to prove. In addition, the important
corollaries ((3.2), (3.3), and (3.4)) needed in the next chapter follow most
easily and directly from the abstract presentation. The classical formulation
of the van Kampen theorem in terms of generators and relators is derived
and given in (3.6).

Let X be a topological space \vhich is the union X = Xl U X 2 of open
subsets Xl and X 2 such that Xl' X 2, and X o = Xl n X 2 are all path\vise
connected and nonvoid. Since the intersection X o is nonvoid, it follov/s that
the space X is path,vise connected. vVe select a basepoint p E X o and set
G = 7T(X,p) and Gi = 7T(Xi ,p), i = 0, I, 2. rrhe homomorphisms induced
by inclusion mappings forn1 the consistent diagram

(3.1) THE VAN KAMPEN THEOREl\1. The irnage groups w~G't' i = 0, 1,2,
flpnerate G. Further1nore, if H is an arbitrary group and 'lfJi: G~ ~ H, i = 0, I, 2,
u re honuJ1norphi81ns u'hich satisfy 'lfJo = 'lfJI ()l = 'lfJ2()2' then there exists a unique
hO/llon?orphis fJ)? A: G~ H such that 'lfJz = AWi , i = 0, 1,2.

j\ proof is given in Appendix III. Notice that, in vie'" of the consistency
r('lat ion (I)() (1)1°1 (1):!.()2' t lH~ assertion that (J)lGI and {J)2G2 generate G is
fldly ('qllival('nL Lo and rnay t'('pl;l('(' t h(' first spnt('IH'(' in (:tl). l\n lrnrnediate
('orollary is t 11('11

'\'1 u .\'~.
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As will be shown in detail among other examples at the end of this chapter,
the next corollary of the van Kampen theorem solves the problem of deter­
mining the fundamental group of two circles joined at a point (cf. Figure 22).

(3.3) If Go is trivial and GI and G2are free groups with free bases {(Xl' (X2' • ••}

and {PI' P2' • 0 o}, respectively, then G is free and {W1(Xl' W1(X2' . 0 • , OJ2Pl'
W 2{32' •• o} is a free basis.

Proof. Let H be a free group with free basis {Xl' X 2' • • 0 , Yl' Y2' 0 0 o} such
that the functions "PI and "P2 defined by

"PI(Xi == xi'

"P2Pk == Yk'

j == 1, 2, · · . ,

k== 1,2,···,

are one-one correspondences between {(Xl' (X2' • 0 .} and {Xl' X2' 0 •• } and
between {{3I' {32' .. o} and {YI' Y2' • ••}, respectively. Since GI and G2 are free,
these correspondences extend to homomorphisms

i == 1,2.

Since Go is trivial, there is a corresponding trivial homomorphism "Po: Go -+ H,
and, in addition "Po == "Plf)l == 'lfJ2f)2' By the van Kampen theorem, there exists
a homomorphism A: G -+ H such that "Pi == AW i , i == 0, 1, 2. Consequently

j == 1, 2, · · · ,

k == 1, 2, · 0 • 0

Since H is free, there exists a homomorphism ft: H -+ G defined by

J'==l 2 .0.
o " ,

k == 1, 2, · · ..

Obviously, both compositions Aft and ftA are identity mappings. Hence, both
are isomorphisms onto and inverses of each other, and the proof is complete.

(3.4) If X 2 is simply-connected, then the homomorphism WI is onto. Further­
more, if {aI' (X2' • • .} generates Go' then the kernel of WI is the consequence of
{f) I (XI' f) 1tJ.2, • • o}.

Proof. Since G2 is trivial, the image group wiGI generates G. No group
can be generated by a proper subgroup; so wlGI == G. Turning to the second
assertion, we observe that

j == 1, 2, . · ..

f-fence, the consequence of {Ot(XI' 01ct.2 , •••} is contained in the kernel of (01'

Con v(~rH(~I'y, cOIlHider' an arbitrary elelnpnt fl in the knrnel of (1)1 and the
canoni(~al hornornol'ph iHln "PI: (ll ~ II, \vhere II iH U)(~ quotient grou p
(1

1
1('()IlHnqlu'Il<'(' of {()1I'X 1, (),rJ..'!., ••• }). 'rtl(' e'olnpoHif,ioll 'PIOI' whie'lt w<, de\flote

by 'l'IP iH, of ('oil rHf', f,ri v inl. I ).·nof,i Ilg t.J1(' Lri v inl Ilo,no,norpll iHHI of (:'!. inf,o II
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by tp2' we obtain the consistency relations tpo === tpl()l === tp202- By the van
Kampen theorem, there exists a homomorphism A: G ---+ H such that
tpl === AWl· Therefore

and it follows that f3 is a consequence of {OI(Xl' ()1(X2' • • .}. This completes the
proof. (~

We are now in a position to calculate the fundamental groups of some
interesting topological spaces_ One drawback, however, will be the condition
imposed on Xl and X 2 by the van Kampen theorem that they be open sets.
Most of the common examples don't come that way naturally, and we shall
have to do a little prodding. Actually, under certain conditions, the van
Kampen theorem holds for closed sets Xl' X 2 and could be applied to all our
examples directly.6 However, without introducing a good bit more terlnin­
ology, it is difficult to describe the proper generalization succinctly. What has
to be done in each case will become clear as we proceed.

(i) The n-leaf~d rose. This space, denoted by C(n), is the union of n topo..
logical circles Xl' · . · , X n joined at a point p and otherwise disjoint (cf.
Figure 22). The fundamental group of C(n) is free of rank n. More fully, if Xi

X 4

X1

Figure 22

(~ E. It. VItti Kl1fnpon. "Oil Lho (~()nnn4"l,ion h('(,wonn Lito Flllldu.luollf,al GI'Ollp:-l or SOUlO

H,(,In.Lod Hpa,(~o:-l." 1I'11/.('1'i('an ,/()U1'llftl (d III (11I1f'lIIa/;('s. Vol. !)!) (I B:~:q. pp. ~f) I ~f)7; P. Ollllll.

~~N()Iln.holiu.n (lohoruology artd vall Kll.rt'pon\-\ TllI\IlI'(IIIl." ,.111". (d Illft/h .• Vol. HH (IH[)H).

pp. H!)H (WH.
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is a generator of the infinite cyclic group 1T(Xi ), and Wi: 7T(X i ) ~ 1T(C(n») is
induced by inclusion, then

1T(C(n») == IWIXI , · · • ,wnxn : I·
The proof is by induction on n. The space CO) is a circle, whose group has been
shown in Chapter II to be infinite cyclic, i.e., free of rank 1. Consider

C(n+l) == C(n) U X n+1 ,

{p} == C(n) (\ X n+1•

Except for the fact that C(n), X n+l , and {p} are not open subsets of C(n+I)' the
desired conclusion follows immediately from (3.3). To get around the diffi·
culty, consider an open neighborhood N of p in C(n+l) consisting of p and the
union of2(n + 1) disjoint, open arcs eachofwhich has p as one of its endpoints
(cf. Figure 23). Then C(n), X n+l , and {p} are deformation retracts of C(n) U N,

,,
I I
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Figure 23

X n+1 U N, and {p} U N, respectively. The latter are open subsets of C(n+I)'
and (3.3) may be applied to complete the proof. In particular, for n == 2, we
obtain the answer to the problem posed in the introduction to this chapter­
that of computing the fundamental group of two circles joined at a point.

(ii) 11he sphere. l ..et Xo be an open equatorial band dividing the sphere X
into north and Houth polar capH. Set Xl equal to the union of X o and the
north polar cap and ,i\~, til(' union of ""Yo and thp HOlith polar cap. (~Iearl'y,

.'1' .':~. Hild X o .'. n .,~ an' 0J)(,Il, paUI\ViH(' (·onrl(·(~t,(~d, alld floflvoid in

.\ X I ~) X~. Mol't·ov(·r. t,II'- HJHH'(':-4 XI Hlld .\ ~ nl't' !lolllC'ornorphi(: to eOllV('X



Sect. 3 THE VAN KAMPEN THEOREM 67

discs and hence are simply-connected. By (3.2), it follo\vs that the sphere is
also simply-connected.

(iii) The sphere with n 2 1 holes. By stretching one hole to an equator and
projecting the result on a plane, one can see that the sphere with n 2 1 holes,
denoted by Sen)' is topologically equivalent to a disc with n - 1 holes. If
n > I, the disc contains an (n - I)-leafed rose as a deformation retract
(cf. Figure 24). We conclude that 1T(S(n») is a free group of rank n - I. (The
trivial group is free of rank 0.)

Figure 24

(iv) The torus. We shall exhibit the torus X as the union of two open sub­
sets Xl and X 2 such that X 2 is a disc and Xl contains a 2-leafed rose as a
deformation retract. The decomposition is pictured in Figure 25. The subspace
Xl is the torus minus a closed disc (or hole) D, and X 2 is an open disc of X
\vhich contains D. The intersection Xo == Xl n X 2 is an open annulus,
and its fundamental group is therefore infinite cyclic. That Xl is of the

Fig'ure 25
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homotopy type of a 2-leafed rose can be seen by stretching the hole D as
indicated in Figure 26. Hence, 7T(XI ) is free of rank 2. A generator of 7T(XO)

is represented by a path c running around the edge of X 1 and X 2• From
Figure 26 it is clear that such a path is equivalent in Xl to one running first

Topological
equivalence

~otopy
type

Figure 26

around a, then b, then a in the opposite direction, and finally around b in the
opposite direction. Hence

[c] = [a][b][a]-l[b]-l,

\\'1)('('(' LIlt' bl'lu·I«,t,N illdi(~at(' ('qllival<'r}(~(~ eiaNHeH in Xl' Anothpr good way to
Vi:-4llldjzc' f IliN rc'laLion iN t,o cut, LlIP t,OI'UH along a and IJ and flat,t.(~n it out aH in
I~'ig"n' '27. 'I'll(' :-~t1 h:··wt.."l X I alld X ~ an' HhoWIl UN Lilt, Nilac Ic'd n'gioIlH, and it, iH

('llI-Iy f,C) n'ad Lllc' al H )VC' n,ral ion f"ont l.J1(\ Lit i,.d pic'L" n' or Figlll'(' "27. 'ro
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sumnlarize: 1T(X1) is a free group and x == [a] and y == [b] constitute a free
basis, X 2 is simply-connected, and 1T(XO) is generated by an element whose
image in 1T(X1) under the homomorphism induced by inclusion is xyx-1y-I. It
follows from (3.4) that the homomorphism WI: 1T(X1 ) ~ 7T(X) induced by
inclusion is onto and that its kernel is the consequence of xyx-1y-l. Thus, the
group of the torus has the presentation

(x,y : xyx-1y-I)

or, in the language of relations,

(X,y : xy == yx).

This group is the free abelian group of rank 2.

The final objective of this chapter is to derive from (3.1) a formulation of
the van Kampen theorem in terms of group presentations. The spaces X
and Xi' i == 0, 1, 2, are assumed to satisfy all the conditions imposed in the
paragraph preceding (3.1), and the notation for the various fundamental
groups and homomorphiRms induced by incluRion is also the same. Jn addition,
we aSHumc givpn group preH(~ntationH

(/1 Ix r 1.// 1 '

(:tfi ) (:'.!. IY s I./I~'
( I() /z t 1./.

fI
•
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The problem is to find a group presentation of G, and the solution is stated in
(3.6).

We denote by F 1, F 2 , and F o the free groups which are the dOlnains of
cP1' cP2' and cPo, respectively. It is convenient to assume that x and yare dis·
joint and that their union is a free basis of a free group F. Thus, F 1 and F 2

are subgroups of F. There exists a unique hOlllomorphisnl 4>: F ~ G such
that

i ~ 1,2.

Notice that cPr ~ cPs ~ 1. Inasnluch as Fo is free, the mappings ()1 and ()2

can be lifted to the free groups, i.e., there exist homomorphisms iJi : F o~ F i ,

i ~ 1, 2, so that

is a consistent diagram. Where Z = {zl' z2' ...}, consider the set of all ele­
ments iJIZkiJ2zk-l, k = 1, 2, · . · , in F. Clearly,

4>( iJ1zkiJ2Zk-1) = (wl 4>1iJ1Zk)(W2cP2iJ2Zk-1)

~ (WI()lcPOZk) (W2()24>OZk-1)

~ WOcPO(ZkZk-1) ~ 1.

Thus, the consequence of r u s u {iJIZkiJ2Zk-l} is contained in the kernel of 4>.
We contend that the converse is also true. To prove it, consider an arbitrary
homomorphism 1jJ: F ~ II which maps r u s u {iJ1ZkiJ2zk-l} onto 1. It is then
obvious that there exist homomorphisms 'ljJi: Gi ~ H, i ~ 1, 2, so that

tp! Pi
Fi--+H

~'1/
Gi

is consistent. Furthermore, since 'ljJiJ1Zk = 'ljJiJ2Zk , k ~ 1, 2, . · · , it follows by
diagram chasing that

k ~ 1,2,···.

Sincc the elenlcnts cPOz1' cPOZ2' • .• generate Go, we may conclude that the homo­
rnor-ph iNrn 1po iH \vell-dcfined by

By t Itc' v H II 1\ It Irq Wit t.lH'OI'C',n (:~.I), f,IH'J'(' C'X i~f,s It, hornorllorph iN'" A: (: ~ //
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such that VJi == AWi , i == 0, 1, 2. Consider, finally, an arbitrary element
u i E F i , i == 1, 2. Then,

and hence

VJ == A1>.
It follows that anything in the kernel of 1> is also in the kernel of tp, and our
contention is proved. Thus, the kernel of 1> equals the consequence of

r u S u {OlZk02Zk-I},
and we have proved

(3.6) ALTERNATIVE FORMULATION OF THE VAN KAMPEN THEOREM. If
the groups G1, G2 , and Go have the presentations (3.5), then

G == I x,y : r,s, {OlZk02Zk-
1

} 14>'

EXERCISES

1. Consider the closed circular disc D with center p and boundary D as
shown in Figure 17. We have seen that the complement in the plane R2 of the

open disc D== D - iJ is a deformation retract of the punctured plane
R2 - p. Prove that the complement R2 - D is not a deformation retract of
R2 - p, but that R2 - D and R2 - p are of the same homotopy type.

2. Prove that if X is a deformation retract of Y, and Y is a deformation
retract of Z, then X is a deformation retract of Z.

3. Find a presentation for the fundamental group of (a) a Klein bottle,
(b) a double torus.

4. Prove that the three spaces pictured in Figure 16 belong to the same
homotopy type but to distinct topological types.

5. What is the fundamental group of the complement R3 - X for (a)
X == circle; (b) X == union of two separated circles; (c) X == union of two
simply linked circles1



CHAPTER VI

Presentation of a !(not Group

Introduction. In this chapter we return to knot theory. The major objec­
tive here is the description and verifica tion of a procedure for deriving from
any polygonal knot K in regular position two presentations of the group of
K, which are called respectively the over and under presentations. The
classical Wirtinger presentation is obtained as a special case of the over
presentation. In a later section we calculate over presentations of the groups
of four separate knots explicitly, and the final section contains a proof of the
existence of nontrivial knots, in that it is shown that the clover-leaf knot
can not be untied. The fact that our basic description in this chapter is con­
cerned with a pair of group presentations represents a concession to later
theory. It is of no significance at this stage. One presentation is plenty, and,
for this reason, Section 4 is limited to examples of over presentations. The
existence of a pair of over and under presentations is the basis for a duality
theory which will be exploited in Chapter IX to prove one of the important
theorems.

If K is any knot in 3-dimensional space R3 and Po is any point in R3 - K,
then the fundamental group 7T(R3 - K,po) is called the group of K. Since
R3 - K is connected, different choices of basepoint yield isomorphic groups.
For this reason, it is common practice to omit explicit reference to the base­
point Po and speak simply of the group 7T(R3 - K) of the knot K. Nevertheless,
the precise meaning of "the group of K" is always "the group 7T(R3 - K, Po)
for some basepoint Po'" It will be clear that the particular over and under
presentations obtained from a given knot in regular position depend not only
on the knot but also on a number of arbitrary choices. Hence, the terminology
"the over and under presentations of the knot K" exemplifies to an even
greater degree the same abuse of language as the phrase "the fundamental
group of the space X." A knot in regular position has many pairs of over
and under presentations. All of these will be seen to be of the same type.

1. The over and under presentations. Let K be a polygonal knot in regular
position and f!lJ the projection (!JJ(x,y,z) == (x,y,O) (cf. Chapter I, Section 3).
For some positive integer n, we select a subset Q of K containing exactly 2n
points no one of which is either an overcrossing or an undercrossing. These
divide K into t\VO classes of closed, connected segmented arcs, the overpasses
and the ulu/()rpas,l.ws, \vhieh alternate around the knot, i.e., each point in Q

h.'longH i,o Oll.~ ov('rpaHH alld one llnd.~l'paHH. 'rite Hll hd iv i:--;ion i:--; to hn ehoHcn

7"2
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so that no overpass contains an undercrossing and no underpass contains an
overcrossing. The construction can, of course, be done in many different ways
although ordinarily we would want n as small as possible. We denote the
overpasses by AI' ... , An and their union Al U ... U An by A, the under­
passes by B 1 , • • • , B n and their union B 1 U · · · U B n by B. The ordering is
arbitrary. It should be obvious that there exists a semi-linear homeo­
morphism1 of R3 onto itself which displaces points vertically, i.e., parallel
to the z-axis, such that the image of A - Q lies above the xy-plane R2 and
that of B - Qlies below R2. Since K and its image under this homeomorphism
are equivalent polygonal knots, we make the simplifying assumption that K
is in the image position to begin with. It follows that Q c R2.

Each presentation is made with respect to an orientation of K and of R3.
Accordingly, one of the two directions along the knot is chosen as positive,
i.e., we draw an arrow on K. In R3 we shall consistently refer orientations to a
left-handed screw. Two basepoints are selected: one, Po, lying above the knot
and the other, Po', below. For later convenience, we shall assume that Po ==
(O,O,zo) and Po' == (0,0, -zo) for some positive ZOo (Then (x,y,z) E K implies
that -zo < z < zo.) Thus, a rotation of 1800 about the x-axis carries one
basepoint onto the other. Finally, we choose a point qo E R2 - f?JJK.

Let us call a path a in R2 simple if it satisfies the following three conditions:
It is polygonal, neither initial nor terminal point belongs to f?JJK, and a

intersects f?JJK in only a finite number of points, no one of which is a vertex
of a or a vertex of (!jJK. Let F(x) be an arbitrary free group freely generated
by x == (xv · · · , x n ). To each simple path a in R2 - (!jJB we assign an element
a~ in F(x) defined as follows:

where the projected overpasses crossed by a are, in order, f?JJAil' .. · , (!jJAil'
and where Ek == 1 or -1 according as a crosses under A

ik
from left to right or

from right to left (in other words, according as A
ik

and the path a form a
left-handed or a right-handed screw). The assignment a ~ a~, illustrated in
Figure 28, is clearly product preserving,

(a
1

• a
2

)# == a1#a2#.

It is not, however, necessarily a mapping onto F(x). For any point p E R2, let
p be the path which runs linearly from Po parallel to R2 to a point directly
over p and thence linearly down to p. For any path a in R2, we set

*a == a(O) · a . a(11 a 11)-1.

1'he group F(x) is to be the free group of the over presentation. A homo­
rnorphiHrn 4>: fi'(x) - ~ 7T( 113 --. /(,1)0) iH defined aH follows: T.Jct a j he a simple

1 A lIlU,pping ua ... U:I i:-l snn; "'1I1'tlr if il.:-l 1'0:-l1,l'ic·t.ioll 1,0 oVClr'y c'oll\f)lt('I, :-It.l'aighl. lillC'

Hnglllollt. i:-l I ilion!' Ill. nil tllll II. fillil.n IIlIrrlhol' of poira!,H. TIaIlH, 1'0)Y,lJ,0Il:-l go illt.o pO)ygoIlH.
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path in R2 - f?lJB such that aj~ == x" j == 1, · .. , n. We define

j == 1, · · . , n,

where the square brackets indicate the equivalence class in R3 - K of the
Po·based loop *a j • It is obvious that ~Xj is independent of the particular
choice of representative path a j • The homomorphism 4> is the unique exten­
sion to the entire group F(x) of this assignment on the generators, Xl' •• • , X n .

It follo,vs that
4>a# == [*a],

for any path a in R2 - f!jJ B. It is our contention that the homomorphism 4>
is onto or, in other words, that 4>xl' ... , 4>xn generate 7T(R3 - K, Po). The
proof is deferred until the next section; but it should be pointed out that the
result is a very natural one. As suggested by Figure 2f), it is geometrically
almost obvious that every Po·based loop in R3 - K is equivalent to a product

Fig-ure 29
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of the loops *aj , j == 1, · · . , n, and their inverses. It is hard to see what could
go wrong.

The generators for the under presentation are chosen in an entirely anal­
ogous manner: Let F(y) be a free group freely generated by y == (YI' .. • , Yn)'
To each simple path b in R2 - f!jJA we assign b" in F(y) defined by

b"==y. 61 ••• y. 6m
Jl Jm '

where the projected underpasses crossed by b are in order f!jJ B
i1

, • • • , f!jJ B im ,

and Ok == 1 or -1 according as b crosses over B ik from left to right or from
right to left (i.e., according as B ik and b form a right-handed or a left·handed
screw). The assignment b ---+ b" is illustrated in Figure 30.

A homomorphism 4>': F(y) ---+ 1T(R3 - K, Po') is defined in the same way:
Where fJi is the reflection fJi(x,y,z) == (x,y,-z) and a is any path in R2, we set
*a == fJi*a. J~et bi be a simple path in R2 - f!JJA with bt " == Yi' i == 1, .. · , n.
Then,

i == 1, · · . , n,

where the square brackets indicate the equivalence class in 7T(R3 - K, PO').
Again, we contend that the extension of this assignnlent on the generators is
a homomorphism onto.

The images g;B i , i == ], .• • , n of the underpasses are disjoint segmented
arcs. Hence \ve may select disjoint, simply-connected, open sets VI' ... , Vn

in R2 such tha t :?J> B i C V
t

, i = I, ... , n, and such that their boundaries
arc t he disjoint images of simple loops VI' ••. , vn \vhich run counterclockwise
(frorn above) around VI' ... , Vn , resppctively. Similarly, we choose sinlply­
('oJllleeted, disjoint, oJ)('1l ~··;('ts [11, •.• , [J 11 in R2 such that Y'A J cUi' j =-=

1,"',11, \\itll hOllndari(·s that an' thn disjoint irnag('s of sirnpl(~ loops

"I' ... , "Ii' \\ l,il'}1 nUl clock\\ is{' (froBl alH)v(') ;,rollnd {II" •. , II", J'('sIH'e­

t i \' {".\'. \ \' {' ;" '-, () i rt:-, i '-, I t II; If 1Ill' Pn ·\' i() II '-: Iy {·11 o."{ ,n p() i II f, (Ill Ii(I 0 II t ." id{· t Ii ('
(' II )~ II f'( .:.; () l' ;, II I Ill' I'l'gil)) I .~ l' I' I' J' I. .J I , . • . , ". N•. .'\ 1 1 \\' .' :-w II '{ •L a ~(' L () r
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simple paths c1' ••• , Cn such that each ci has initial point qo and terminal
n

point vi(O), and ci(t) E R2 - U 17k unless t === II ci II· (17k is the closure of Vk.)
k=1

Similarly, we choose a set of simple paths d1 , • • • , dn such that dj(O) === qo'
n

and d,( II dj II) === uj(O), and dj(t) E R2 - U t)k unless t === II dj II. These paths
k=l

may, of course, be chosen in several ways. Examples that illustrate these
regions and paths are shown in Figures 32, 33, and 34.

We are now in a position to describe the two presentations. The over
presentation of 11'( R3 - K, Po) is

(1.1)

,vhere ri == (c i • Vi • Ci -
1)#, i === 1,' . " n. The corresponding under presentation

of 11'(R3 - K, Po') is
(1.2) (Y1' .. • ,Yn : s1' • • • , sn)q,"

where s; == (dj • u j • dj-1)", j === 1, · · · ,n. The validity of the equations
epri === 1 and ep'8 j == 1, i, j == 1, · · · , n, is geometrically easy to see. We have

i == 1, · · · , n,
and

j == 1, · · · ,n.

The contraction of a typical loop *(Ci • Vi • Ci - 1) by sliding it below B i is
illustrated in Figure 31. The analogous picture can, of course, be drawn for
the under presentation. Incidentally, we do not claim that it is obvious that
the relators r1, • • • , rnand 81, • • • , 8 n constitute defining sets.

(2)
..........

' ...... _""

FiJ(ure 31

''-, .... _",

Po .... ~'=',~ __
..............:--.,

..... I
I
I
I
I
I
I
I
I
I
I

1(5)

(4)
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The description of the over and under presentations is almost as compli­
cated as the subsequent proofs. We suggest that the reader carry out the
construction in some exanlples. A fairly complicated sample conlputation is
given below in Figures 32 and 33. Overpasses are drawn in heavy lines and
underpasses in light. The paths ci ' dj , Vi' U j are drawn with dotted lines. It is
convenient to indicate the generators x j and Yi with small arrows, as we have
done. Additional examples of over presentations are derived in Section 4.

It remains to prove that the over and under presentations are what we
claim they are, i.e., group presentations of 71'(R3 - K, Po) and 7T(R3 - K, PO'),

respectively. The proof is given in the next section. An important corollary
will be the theorem.

(1.3) In any over presentation (1.1) [under presentation (1.2)], anyone of
the relators rl , • • • , rn [SI' • • • , sn] is a consequence of the other n - 1.

Thus, in either presentation, anyone of the relators may be dropped. This
fact is a substantial aid to computation. We shall also see that it has signifi­
cant theoretical implications.

t
VI

r .........---....... ~---"':' .... ---·--- .....- .......... - .... ------..,
I I
I .••.••.•. .. .•... ..... ·.•.. 1! r..~-- ...._~:----;.::~T--;.=-.:-----= =~---------,
I • ~ ~: ,'i------------l
I I I t I I I. ..., I: ; : 4: " ,l~----- ----.;., ;
I I I I 11// -~: I
I I , V4 I ~~ Xa I I
I .1 I. . . 1 I q0 W JI I I .. I I Y ,14 L__J : l I V2
1 I - .....-~---- ..... - __ - ---, ~ :
: I I. I •.... •..•..•.·..•·.•.•. <» ....••• ·•·.•.• ·.·.· •. <.....>1 I I
I : ~__ ~...: 2__1 ~ I
: I Va ,.."C~, : I
I ·1 I> •. <1 I I,L__ - __. ..... _ .... ~, I I 1 I
r I I I I I
L_-:. ..... i._ .... ....:.~ __ ..... ;..,;..,...:_~ ........ :.. .... _J :. :... L_ ......J

I ~
X2~- I I X4

r .......<........................7 ........... J ,...---------
I f
I .... ·····•·.·•·.•.••·..•...• >. '."...:=.-:- _ ..... --.-. ......'... - -- - - ~-~- ...

r l = X5 (~XI x2-1x4-lx2XI-l )X5-
1

r:J =X2 XSX2-lx3XI-IXil

r 2 =Xa XIX4XI-IXil X5- 1

r4 = Xs Xl xS-
1 X2-

1

FiJ.nlre 32
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81 = Y2 (Y4 Y1 Y2- 1Y3- 1 Y2 Yl- 1
) Y2- 1

8 3 = Y2 Yl y;l Y3 YS-l Y3- 1

82 = Y3 Yl Ys Yl- 1 Y3- 1 Y4- 1

84 =Y3 (YSY2YS- 1 Yl- 1 )Y3- 1

Figure 33

2. The over and under presentations, continued. In this section we shall
prove that the over and under presentations (1.1) and (1.2) are in fact group
presentations of 1T(R3 - K, Po) and 1T(R3 - K, Po'), respectively. In so doing,
we shall also obtain Theorem (1.3). We observe, first of all, that it is not
necessary to give separate proofs for both presentations. An under presenta­
tion can be characterized in terms of an over presentation by simply reversing
the orientation of K and interchanging the roles of up and do~rn. More
explicitly, let h: R3 --+ R3 be the rotation of 180 0 about the x-axis defined by
h(x,y,z) == (x,-y,-z). Define K' == hK. The homeomorphism h induces the
isomorphism h*: 7T(R3 - K', Po) --+ 1T(R3 - K, Po'). We take as the positive
direction along K' the opposite of that induced by h from the orientation on
K that was used in defining (1.1). Sirnply speaking, we turn K over and
rcverRe the arrow. I....4ct

hc' allY oV('(" pn':-H'nf,a.t.iol) of 7T( U:l A", /)0) ('on:..;( rlu'f,c'd in UH' Hall)(~ \\lay a:..;

(1.1). \Vc' n~1,L~"ItI(' t lint, Ill(' .iLl I OVC'l'pa:--IH of 1\" iH" If} and t haL t,lIc' it,1I n,lat,ol' i~

ot)tninc·d hy f'('ndllig nrollfld .'fJ/,." II lid , fillHlly, UlHt /,rlo i~~ Ill(' ('ollllllOn hH~('-
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.. _- ... - ....-,
I

L J

point in R2 of the loops determining the relators. Then,

J Y1' · · · ,Yn : 81, • • • , 8 n Ih.' = 7T(R3 - K, Po')

obviously coincides with (1.2). To see that it is obvious, try an example.
Figure 34 shows the over presentation obtained by rotating the knot of
Figures 32 and 33 by 1800 and reversing the arrow. As a result of these remarks,
we shall restrict our attention to the over presentation in the remainder of
this section.

VI
r------------------------~

I
I

r------~-----------, I

: ~
I I

,..--, I I
I I I I
I

Va! I! ,~:--;~--~~ ~j- ------1
I + " L __--- ---~-., :v5

I 1 q' / I :
I I ...._.Q~, --"Y : I
'I 1......... _ .... - : ''''r-- -, 4 I I, I I I I I
I I I I I I
I I I ~ I I I II I ,I I ,- __ J

I ,

: I : Y3 • •
"'- _J I I

r- ------ --....---....1, :
L .. .J l

v4 :
I

I l V2
~ L _

8 1 =Y2 (Y4YIY2- 1Y3- 1Y2Yl- I )Yi1
82 =Y3YIY5YI- 1 Y3- 1Y4- 1

83 =Y2YIY2- 1 Y3Y5- 1 Y3-
1

84 =Y3(Y5Y2Y5-
1
Yl-

1
)Y3-

1

85 = Y4 Y3 Y4-
1
Y2-

1

Figure 34

Consider a closed square S (boundary plus interior) parallel to the plan(~

R2, lying below K, and such that
n

(2.1) f!JJK u {qo} u U Vi C f!IJ~,{.
'i I

For any Htl hs(~t L of I{, W(~ d(~llote by 1.1* t,lH~ II n ion of J{, 1."-:, and t.lH~ snt. of all
points (.r,.'!,,-:-) whi(~h li(' 1)(,t,w('('11 J"-: and I~, i.('., whi(·1a :..m,t,iH(V ZI' z· ;:~, wlH'l'n
(.r,.'I,z.) ( }'-.,I, (.r ..'!,,:,J ( I~. 1~'Of' ('xarnplC', (I .. i:4 f.llC~ Ullioll of /\., 8, and t.I .. , "21/,
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vertical segments joining S to Q, the set of points of the original subdivision
which separates the knot into overpasses and underpasses. The set K* for a
typical clover-leaf knot is illustrated in Figure 35.

Figure 35

The derivation is a sequence ofapplications of the van Kampen theorem. The
space R3 - K* is first shown to be simply-connected. Next, the set K* - B.
is adjoined to R3 - K*, and it is proved that 1T(R3 - B*, Po) is a free group
of rank n. A final application of the van Kampen theorem fills in B* - K and
yields an over presentation of 7T(R3 - K, Po).

(2.2) The space R3 - K* is simply-connected.

Proof. The result is geometrically obvious (cf. Figure 35), but a formal
proof using the van Kampen theorem can be given: Let X be the set of all
points of R3 - K* which do not lie below S. That is, if S/ is the set of all
points (x,y,z/) such that (x,y,z) E Sand z/ < z, then

It is not only intuitively apparent but also easy to prove that X is simply..
connected. In fact, the basepoint Po == (O,O,zo) is a deformation retract of X.
This fact is obtained from the following two deformations:

hs(x,y,Z) == (x, y, (1 - s)z + sZo), °s s S 1,

ks(x,y,zo) == ((1 - s)x, (1 - s)y, zo), 0 s s S 1,

The first, {hs}, is a vertical deformation of X onto the horizontal plane con­
taining Po; the second, {ks}, collapses this plane onto Po (cf. Exercise 2,
Chapter V to justify composition of these deformations). Next, set Y equal
to 1,)}(~ Hirnply-connccted Hpaee conRiRting of all pointH lying below the hori­
7.outal plal}(~ that eoutainH the Hqllar(~ A':. CI(~arl'y,
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The sets X, Y, and X () Yare nonvoid, open, and pathwise connected in
X u Y. It follows from the van Kampen theorem, or more specifically
Corollary (3.2), Chapter V, that X u Y is simply-connected, and the proof
of (2.2) is complete.

The set K* - B* is the disjoint union of n open topological discs F I , · · • ,

F n' which we order so that F j consists of those points lying between A j - Q
and S, minus any points that happen also to lie on or belo\v an underpass
(cf. Figure 36). For each j, j = I, · · . , n, let ai be a simple path in R2 - f!}J B

-------=~~'--------------;------'~~-- R 2

F
)

-
___---a...;.../....:....:II....;...I.:....;,.II....;...;II....;...t'....:....L..-/.:....;,.11..;....;1'-.;..1.:....;,.11..;....;11-.;..1.;..;.11..;..;11...;..1.;..;.11..;..;11;..;..1.;..",;"~/~I;..;..I.:..:.II...:...:II:....:..I'-:...L.- S

Figure 36

which crosses under Ai once, from left to right. The loop *ai intersects Fi once
and is otherwise contained in R3 - K*. Let W j be an open neighborhood of
the union of F i and the set of image points of *ai chosen so that:

(i) W j is pathwise connected, and the group 1T(Wj ,pO) is infinite cyclic
and generated by the equivalence class of *a j in Wi"

(ii) Wi () K* == F j •

(iii) Wi - K* is simply-connected.

That these sets can be constructed is geometrically obvious. Each W j is
just the union of F i and the image of *aj-both slightly "thickened" to an
open set in R3. More explicitly, let € > 0 be so small that the open €-neighbor­
hood W/ of the image of *a j satisfies W/ () K* c F j • Set W/' equal to the
set of all points whose distance from F j is less than € and which are closer to
F j than to K* - F j • Proving that W j = W/ u W/' satisfies the above
conditions (i), (ii), and (iii) \vould be admittedly tedious, but presumably
possible.

(2.3) R3 - B* is pathwise connected and 7T(R3 - B*, Po) is a free group.
fi1urthermore, the 8et of equivalence classes Xl' • • • , X n of the loops *a1, • • • , *an
is a free basis.

J>roof. Set

.J I, "', II .
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Since W j n K* === F j ,

(R3 - K*) u Wj == R3 - (K* - Wj) == R3 - (K* - F j )

=== (R3 - K*) u F j ,

and so

In particular,

j

X j === (R3 - K*) u U Fk ,
k=l

j === 1, · . · , n.

X n == (R3 - K*) u (K* - B*)

=== R3 - B*,

and so the sequence terminates in the right space. Furthermore, since

F k n Wj == K* n Wk n Wj === F k n F j == 0,

it follows that
X j - 1 n W j === (R3 - K*) n W j

== W j - K*,

and thus, by (iii), that X j - 1 n W j is simply-connected. Lemma (2.2) states
that X o is simply-connected, and we take as an inductive hypothesis that
X j - 1 is pathwise connected, 7T(X j - 1,po) is a free group, and the set of equiv­
alence classes of *a1, ••• , *a j - 1 in X j - I is a free basis. Since X.i-I' Wj' and
X j- 1 n Wj are pathwise connected, nonvoid, open sub~ets of X j == X j - 1 U

lVj, it follows by (i) above and by (3.3) of Chapter \T, that the set of equiv­
alence classes in X j of *a1, .. • , *a j is a free basis of 7T(X j ,pO)' Induction
completes the proof.

The elements xl' · .. , x n introduced in the preceding lemma are to be the
generators of the over presentation. In other words, the group 7T( R3 - B*, Po)
is to be taken as the free group of the presentation. Notice that, \vhere

(2.4)

is the hOlnomorphism induced by inclusion, the elenlent epx j , j == 1, ... , n,
is the equivalence class in R3 - K of the loop *a j • Thus, to ~Tithin an iso­
morphism, 1> is identical with the homomorphism denoted by the same synlbol
in Section 1. For any simple path a in R2 - [!JJB, the element a~ will be
understood to be a member of 7T(R3 -- B*, Po). In fact, a~ is just the equiv­
alence class in R3 - B* of the loop *a. It is our final contention, \vhich
conlpletes the derivation, that 1> is onto and that its kernel is the consequence
of any n - I of the relators 1'1' ••• ,1"7/ that occur in (1.1). Notice that this
proposition iflellld(~s 'Thcorern (l .:~).

;\ proof is ohLain('d hy tJl(' salll(' L{'(')lniqu(' Lllat, \\'as n:--wd Lo <!('L(,J'rnine

Lit(· group n' (It l 1:*, /)0)' By Hdjoinill,U; f,o Lit(, Sp:l('(' \\ Ilos(' gnHlp is kno\\'11 an

ilpproprinLf' ope'lI 1l('il~ldHJr'h()()f1or f.I)(. ~-wL fo II(' fillc'd ill (l1C'n', 1:* 1\'), LlH~

IIld",o\\ II ~~"OIiP :--111"11('1.111'<' I~I oldlllllf'c1 It.\' HII JlppllC'1I1 ion of 1111' V:HI hnrtlfH'1I
III •• 1.'; .. 1. ",,1\ f "111'1 , I". qc /1111 n' J'\
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in its interior and the knot K in its exterior. Topologically, T is just a sphere;
but for convenience it will be assumed to be thin and flat with two faces parallel
to S. Let W be an open neighborhood of B* - K chosen so that:

(iv) W is simply-connected and contains Po'
(v) W n K == 0.
(vi) T - B* is a deformation retract of W - B*.

Such a set can be constructed in many \vays. For instance, connect T to Po
with a polygonal arc E vvhich is disjoint to K *. Let W' be the union of an
E-neighborhood of T u E and the points inside T. Set W" equal to the set of
all points whose distance from B* is less than E and which are closer to
B* - K than to K. For sufficiently small E, the set W' U W" may be taken
as W.

The goal of this section is the following theorem.

(2.5) The knot group of K has the over presentation

where rk indicates the deletion of the kth relator rk and 4> is the homomorphism
(2.4).

Proof. We shall apply the van I{ampen theorem to the groups of R3 - B*,
W, and (R3 - B*) n W. We first observe that

B* - W == (K u (B* - K)) - W

== (K - fV) u ((B* - K) - W) == K.
Hence,

and so this union is the space whose group we are after. Also,

and T - B* belong to the same homotopy type. The space T - B* is a box
with n knife cuts in the top; it is therefore of the homotopy type of a sphere
\vith n holes and its fundamental group is free of rank n - 1 (cf. Exampl<~

(iii), Chapter V, Section 3). In greater detail: Let h be the vertical projectioJl
of the plane R2 upon the plane containing the top of T. It is a consequence of
(2.1) that

Hince the eloNures Jl1,···, lin of the regions VI"'·, Vn arc pair\viNn

diNjoillt, w<, rnay N(\I(\ct, a N(>t, of polygonal paUlN f l , ... , fJl in'/' - ur I hV
I

with tlu' ('Ollllllon iniLial point h(lo anclNllhj('('L i.o t,I)(\ f()II()\ving J'('HLri('LioIlN:

I~:(l('h p:dll (', is ;111 ar(, (i.f'., :l 1)()Jn('olnorpllisln) and iLs l('rlninal poinL iH

h (I' , ( 0 )) (i (. , f II f' i III H ~ ~(' 1/11d(.rho" f II(' I til ~H' po jilt. 0 r f 11f' If)() P \\' II i(' II l)f >II II dH J' I ) .
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Figure 37

Chap. VI

The images of e1, ... , en are, except for the point hqo' pairwise disjoint and
are contained, except for their terminal points, in T - Ui=l h Vi (cf. Figure
37).

Set
i == 1, · .. , n.

Clearly, the union of the images of the loops WI' •.• , wn is of the homotopy
type of an n-Ieafed rose (cf. Example (iii), Chapter V). Furthermore, the
union of the images of any n - 1 of WI' • • • , wn is a deformation retract of
T - B*. Although a completely rigorous proof of this fact would admittedly
be a nontrivial affair, the geometric idea is simple: First, widen all the knife
cuts and push them back onto the curves hv i . Then, choose one of the holes
and starting from it, push the rest of the box onto the remaining n - 1 loops
1,Vi . In any event, we conclude that 1T(T - B*, hqo) is a free group and the
equivalence classes of any n - 1 of WI' • •• , wn constitute a free basis. It
follows that the same is true of the group 1T( W - B*, hqo), and finally, where
a is a path in W - B* which runs from Po to hqo' the set of equivalence classes
of any n - 1 of a· Wi • a-I, i == 1, · · . ,n, is a free basis of 1T(W - B*, Po)'

It is then a direct consequence of Corollary (3.4), Chapter V, of the van
Kampen theorem that the homomorphism 4> is onto and that its kernel is the
consequence of any n - 1 of the equivalence classes in R3 - B* of the loops
a · Wi • a-I, i == 1, · · . , n. Thus \\re obtain

1T(R3 - K, Po) == I Xl' • • • ,xn : [a· Wi • a-I], i === 1, · . · , Ie, · . · , n I</>.

The proof is cOlnpleted with the observation that, for each i === 1, ... , n,
the element [a . Wi • a-I] is conjugate to v i

fr and, thence, to r i . To prove this,

consider a path bi (analogous to and equivalent to vt(O)) which runs in a
straight horizontal line from Po to the point directly over vi(O) and thence
straight down to hvi(O). It is obvious (cf. Figure 38) that in R3 - B* a valid
(~ qui va,l (~n e( ~ iH

*''', r-I h, . I"" . h, I, I,"·, 'II.
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Figure 38
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Consequently,

a · Wi . a-I = (a · ei ) . hVi . (a . ei)-l

r-J (a · e
i

• b
i
- 1) • b

i
• hV

i
• b

i
- I . (a . e

i
• bi-1)-I

where Ii = (a · ei • hi-I). As a result,

ra · Wi · a-I] = [Ii]vi~[fi]-l, i = I,·'·, n.

Since v/J is in turn conjugate to ri' the kernel of 4> is the consequence of
r 1, • • • , rk , • • • , r'1l' and the proof of (2.5) is complete.

It is not unlikely that an intelligent reader, having ,vorked his way through
this section, will be unsatisfied. In the first place, the derivation is long and
complicated. What is more unsettling, however, may be the feeling that, in
spite of its length, it is still incomplete. At three places the existence of the
complicated geometric construction essential to the argulnent is assumed
without proof. In the interests of both economy and elegance, would it not

\ be better simply to assume the desired conclusion and be done with it? The
most honest answer is that there are degrees of the obvious. The first section
of this chapter leaves t,vo real questions unanswered: How do we really know
that the elclnents 4XC1' ••• , 4>:( fI g()llerate the knot grou p? And the harder one:
Why do any 'II, - - 1 of 1'" ... , Til eOIlHtitllt(~ a defining Hei of relator-s'? rn
contr:u..d" the H~~('rt,ioll~ who~(' d('Lail~ wn OJlI iU,('d af'(~ of a differellt. ~orL. ()ru'

\volldpl's pnrhaps ho\\' t.o provc' t,!ac'rn in t.!H' 1H'~d, way, hut, 1I0t, ",lu'U,pl' or not.
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they are true. In spite of this preamble, the nlain point of this paragraph is
not to present an apology. It is rather to call attention to the fact that,
although these omitted details are intricate, they are not profound. The
reason simply stems from our exclusive use of finite polygonal constructions.
Everything can be chopped up into a finite number of triangles and tetra­
hedra, and these can be studied one at a time. It is tempting to try to eli­
minate these restrictions of linearity-if for no other reason than that it is
unnatural to draw segmented knots. To some degree this can be done.
However, the existence of wild knots whose groups are not finitely generated
means that more is involved than simply convenience.

3. The Wirtinger presentation. An essential feature of any pair of corre­
sponding over and under presentations is the common basepoint~ denoted in
Section 1 by qo' of the 2n simple paths in R2 \vhose images under ~ and D con­
stitute the relators of the two presentations. The necessity of having a com­
mon point V\Till only become clear when the precise duality bet,veen over and
under presentation is studied in Chapter IX. Notice, hoV\rever, that \\'hatever
the reason may be, it has nothing to do with presentation type. The presenta­
tion

(3.1) (x .•• x . v:;I: ••• v~)
l' 'n' l' 'n eP

of 1T(R3 - K, Po) is obtained from the over presentation (1.1) by n applica­
tions of Tietze operations I and If. (We recall that Vi is the loop in R2 - g>B
around the projected underpass g>B i .) The main advantage of (3.1) over (1.1)
is simply that there is less work in calculating it; one need not bother finding
the elenlents Cl~' • • • , cn~. Therefore, we have used this modified form of the
over presentation exclusively in the examples in the next section. Of course,
it is also true of (3.1) that anyone of the relators Vl~' ••• , vn# is a consequence of
the remaining n - I of theln and therefore may be omitted.

A presentation (3.1) of the group of a given knot is called a Wirtinger
presentation if each underpass contains exactly one undercrossing and each
path Vi cuts the projected overpasses in just four places. 1'hese t,vo con­
ditions can always be imposed unless, of course, the knot has no under­
crossings. That they are natural restrictions to make is evidenced by the fact
that historically this presentation of a knot group ,vas one of the first to be
studied, and it is certainly the commonest one encountered in the literature.
The presentations of the clover-leaf knot and of the figure-eight knot in the
next section are examples. An attractive feature of the Wirtinger presentation
is that the relators are particularly simple: written as a relation, each one is
of the forrn X/c =-= x/:J;lX i -

E
, E -= _I 1 (cf. FigllI"(' :~!)). Notice, ho\vever, that

IInl('NS 1,1)(' knot, pl'oj<'et,ioJl iN alt('l'lla1illg (i.e., ns Oll(' l.rav('rs('s the knot,
IIJHI('f'('rosNillgs and oV('J'('rossings al1,('rllH.1,('), t,IH' \Virt,ing('r ,H'('st'IlLaLion is not,

Lit(, ,nO:-if, ('('ono,ni('HI if) tll(' nll'lllH'r of g("lt'rHtors Hild r(,laLor's ",lli(·1a ,night

t)C· ol)! H ill(·d.
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4. Examples of presentations. We give below over presentations of several
knots. As remarked in the preceding section, ,ve have used (3.1) as a model
instead of (1.1) because it is simpler. In addition, ,ve shall take advantage of
the fact that an arbitrary one of the relators can be dropped. The resulting
presentation is frequently still needlessly complex and can be further simpli­
fied by using Tietze operations. Some of these reductions are illustrated in the
following examples.

(4.1) Trivial knot (Figure 40).

/\.

/ "
" "" "" "" "" "" "/ "

/ "
" "" "" ",," ""

" "" "/ "< ~

" "" "" "" "" "" "" /" //" /" /" /" /" /" /

" "" "" /y"

Figure 40

The single overpass i~ dru\vn ,vith a heavy line, the underpass ,vith a double
light lirH\ and 1hn path 1'1 \vith a dotted line. The presentation is
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(4.2) Clover-leaf knot (Figure 41). Again, the overpasses are shown in
heavy lines and the loops 1)1' v2' va are drawn with dotted lines around the
underpasses. \Ve choose generators x,y,z such that

x == a1'1r, Y == a2~' z == a3fI:·

y

Figure 41

Clearly,
Vl~ = x-1yzy-l

V2'1r == y-1zxz-1

v3# = z-lxyx-1.

Consequently, we obtain for the group 7T(R3 - K) of the clover-leaf knot K
the presentation

(x,y,z : x-1yzy-1, y-1zxz-1),

,vhere v3'lt has been dropped.
Suppose we include in the presentation all three relators obtained by

reading around the underpasses. Writing relations instead of the more formal
relators, we get

7T(R3 - K) == I x,y,z : x == yzy-l, Y = zxz- I, Z == xyx-1 I.

Hu bHtitution of z ~ xyx -1 in t,h(~ othpr two r'(\lati()n~ 'yi(dd~

I{) I.r,y : :r .'1.r.'I.r 1.'1 1,.'1 .r.'IYY I.r I I.
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If the second relation is multiplied through on the right by xyx-1y-1, one
obtains the first. This is empirical verification of the claim that anyone of the
relations obtained by reading around the underpasses of an over presentation
is a consequence of the others. Finally, therefore, we obtain the following
common presentation of the group 7T(R3 - K) of the clover-leaf knot:

(x,y : xyx = yxy).

(4.3) Figure-eight knot (Figure 42). }-'igure 42 shows a different projection

Figure 42

of the figure-eight knot from the ones given in Figures 4 and 7 of Chapter I.
Using either a piece of string or a pencil and paper, one can easily show that
the knot type represented below is the same. A Wirtinger presentation is

(x,y,z,w : x = z-lwz, Y = wxw-t, z = x-1yx).

Substituting z = x-1yx in the other two relations, we obtain

7T(R3 - K) = I x,y,w : x = x-1y-1xwx-1yx, Y = wxw-1 I.

The first relation now gives w = x-1yxy-1X. Substitution in the second yields

Finally,
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(4.4) 'llhree-lead four bight Turk's head knot (Figure 43).2

Figure 43

1T(R3 - K) == I XV X2,X3'X4 Xi == (Xi+3.ri~t\Xi~I-\)(Xi+2Xi+lXi-)2)(Xi+3Xi+2Xi-~.\)'

i == 1, · · . ,j, .. · , 4 I

== I XV X2,X3,X4 : Xi == [Xi+3,xi+12]Xi+l[Xi-+12,Xi+3] I·

We recall that the element [a,b] is the comn1utator, [a,b] == aba-1b-1. Notice
that [a,b]-l == [b,a].

5. Existence of nontrivial knot types. We are now in a position to prove
that different knot types exist. We shall prove that the clover-leaf knot
cannot be untied, i.e., that its type is different from that of the trivial knot.
We recall that ifknots K and K ' are of the same type, then the complementary
spaces R3 - K and R3 - K' are homeomorphic and hence 1T(R3 - K) and
1T(R3 - K') are isomorphic fundamental groups. The fact that knots of the

same type have isomorphic groups is the principle by \vhich we shall distinguish
knot types in this book. The nontriviality of the clover-leaf knot \viII be
established by proving that its group I x,y : xyx == yxy I is not infinite cyclic
(cf. (4.1) and (4.2)). For this purpose, consider the symmetric group 8 3 of
degree 3, which is generated by the cycles (12) and (23). vVe observe, first of
all, that 8 3 is not abelian since

(12)(23) == (132) =1= (123) = (2~)(12).



Sect. 5 EXISTENCE OF NONTRIVIAL KNOT TYPES 91

The over presentation (4.2) of the clover-leaf knot consists of a homomorphism
~ of the free group F, for which x and y constitute a free basis, onto the knot
group, and the kernel of 4> is the consequence of xyx(yxy)-l. The homo­
morphism () of F onto 8 3 defined by

O(x) == (12) fJ(y) == (23),

induces a homomorphism of the knot group onto 8 3 provided e(xyx) == O(yxy).
But

fJ(xyx) == O(x) e(y) O(x) == (12)(23)(12) == (13),

fJ(yxy) == O(y) O(x) fJ(y) == (23)(12)(23) == (13).

Thus, the knot group of the clover-leaf knot can be mapped homomorphically
onto a nonabelian group. It follows that the knot group itself is nonabelian,
and hence it is certainly not infinite cyclic. We conclude that the clover-leaf
knot cannot be untied.

Likewise, in order to prove that the clover-leaf is distinct from the figure­
eight knot, it is sufficient to sho,v that their groups are not isomorphic. These
groups are presented in (4.2) and (4.3). Unfortunately, there is no general
procedure for determining whether or not two presentations determine iso­
morphic groups. We do know, from the Tietze theorem, that if two groups are
isomorphic, their finite presentations are related by the Tietze operations.
However, attempting to show directly that the presentations given in (4.2)
and (4.3) are not related by Tietze operations does not seem a potentially easy
job.3 What is needed are some standard procedures for deriving from a group
presentation some easily calculable algebraic quantities which are the same
for isomorphic groups and hence are so-called group invariants. That is, the
group of a knot type is usually too complicated an invariant, and so we must
pass to one that is simpler and easier to handle. In so doing there is a danger
of throwing the baby away with the bath water. In passing to simpler in­
variants one invariably loses some information. What "\ve ,vant to do is to
achieve readily distinguishable invariants "\vhich are still fine enough to
distinguish the groups of at least a large number of different knots. The next
two chapters are devoted to just this problem.

3 Actually, the clover-leaf (group G) and the figure-eight knot (group G') can be
d istJinguisherl hy the sanle rnethod \ve used in demonstrating the nontriviality of the
('lover-leaf. If 0 :=:::::J 0', there Jl1ust exist a hOlnomorphism ~ mapping G' onto the symmet­
I'i(~ gr'oupJ"t:l . Usillg t.hn pr'(\s('IILaLioll 0' -Ix,y: yx-1yxy-1 = x-1yxy-1xl, and by simply ex­
hausf,ing UIO fillit,n 1111111\)01' or possihiliLj(\s, uno (~an ehnck that no assignment of x and y
illt,o 8:1 (\xt(\lIds to l\. 1Il1llIOIIIOl'phislll o!' (r ollLo 8:1, (1Io\\'ov(\(' t his .lops not, ~how that, tho
liglll'o-oight, kllot ('llllflO(. !In \lId i(,d. lilt hOllgl1 t Ilis will IH' sllo\\'1\ t ('Ill' ill (ihapt,(\r' VITI.)
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EXERCISES

Chap. VI

1. For each of the follo,ving knots find a presentation of the group of the
knot that has just two generators.

(a)

(d)

(b)

Figure 44

(c) titevedore's knot

(e)

2. For each of the five knots considered in Exercise 1, determine the
representations into the symmetric group of degree 3.

3. A torus knot Kp,q of type p,q (where p and q are relatively prime
integers) is a curve on the surface of the "unknotted" torus (r - 2)2 + Z2 == 1
that cuts a meridian in p points and a longitude in q points. It is represented
by the equation r == 2 + cos (qO/p), z == sin (qO/p). By dividing R3 - K
into the part not interior to the torus and the part not exterior to it and
applying van Kampen's theorem, prove that a presentation of the group of
Kp,q is (a,b : a P == b q

).

4. (a) Show geometrically that the clover-leaf knot is the torus knot K2,30

(b) Draw a picture of the torus knot K 2,5'

5. Prove that the presentation of the group of the clover-leaf knot derived
in (4.2) is of the same type as (a,b : a2 == b3 ).

6. Let tlR say that a knot diagram has property l if it is possible to color the
proje(~tpd ov('rpass('s in thrpp colors, assigning a eo]or t.o eaeh edge in sueh a

\vay thH L (a) UH' t.lll'('n OV('rpHSS('H LhaL IlH'<,L aL a ('l'oHHing a('(~ (~iUH'1' all (~olol'P(l

UH' HHIlI(' or Hn' all ('olor('.! diff('I'(·nt.ly: (h) all Uln'(' ('olorH ar(' actually lIs(~d.



EXERCISES B3

Show that a diagranl of a knot K has property l if and only if the group of
K can be mapped homomorphically onto the symmetric group of degree 3.

7. Show that property l is equivalent to the following: It is possible to
assign an integer to each edge in such a way that the sum of the three edges
that meet at any crossing is divisible by 3.

8. Show that no knot group can be represented upon the fundamental
group of the Klein bottle.

9. Using the fact that the group G of the overhand knot has a presentation
(a,b : a2 == b3) find all (classes of) representations of G onto the alternating
group A 5 of degree 5.



CHAPTER VII

The Free Calculus and the Elementary Ideals

Introduction. In the last chapter a method \vas developed for calculating
a presentation of the group of any knot in regular position. Unfortunately, it
does not follow, as was pointed out, that it is now a simple matter to distin­
guish knot groups, and thus knot types. There is no general algorithm for
deciding whether or not two presentations define isomorphic groups, and even
in particular examples the problem can be difficult. We are therefore con­
cerned with deriving some powerful, yet effectively calculable, invariants of
group presentation type. Such are the elementary ideals. In this chapter ,ve
shall study the necessary algebraic machinery for defining these invariants.
Specialization to presentations of knot groups in Chapter VIII then leads
naturally to the knot polynomials. With these invariants we can easily dis­
tinguish many knot types.

1. The group ring. With any multiplicative group G there is associated its
group ring JG with respect to the ring J of integers. The elements of JG are
the mappings v: G~ J ,vhich satisfy v(g) =:: 0 except for at most a finite
number of g E G. Addition and multiplication in JG are defined respectively
by

(VI + v2)g == vIg + 'V2g

(VIV2)g =:: ~(vIh)(V2h-Ig)
hEG

for any VI' v2 E JG and g E G. It is a straightfor\vard matter to verify that JG
is a ring ,vith respect to these two operations. l\lultiplication by an integer
n, which is defined in any ring, satisfies the equation

(nv)g = n(vg)
for any v EJG and g E G.

l'here exists a mapping G ~JG ,vhich assigns to each g E G the function
u* defined by

{
I if h = f!,

!I*(II, ) -- 0 () t. It p f' \ \' is( •.
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product-preserving mapping of a group into a ring is a group, \ve conclude
that the mapping g ~g* is a group isomorphism of G onto its image. Where
e E G denotes the identity, the element e* is a nonzero nlultiplicative identity
for the ring JG.

Let 'V be an arbitrary nonzero element of JG. Let gl' · .. , gk' k ~ 1, be the
elements of G for which v(gJ =F 0 and let

i == 1, .. · , k.

Then

'V == n1g1* + ·.. + nkgk*.
That is, the image of G under the mapping g ----+ g* generates the additive
group JG. Henceforth we identify g and g* and write elements of JG as finite
integral combinations of elements of G. It then becomes obvious, for example,
that

(1.1) J G is a comrnutative ring if and only if G is a cOrJ'~mutative group.

It is trivial to prove that if n1gl + ... + nkgk === 0 and gl' . · · ,gk are
distinct, then n 1 == ... === nk == O. It follo~rs that a nonzero element of JG
can be \vritten as a finite sum of distinct group elements with nonzero
coefficients in one and only one way. This fact implies that, as an additive
group, J G satisfies the analogue of the characteristic property of free groups
that was discussed in Chapter III:

(1.2) An arbitrary mapping ~ of G into an additive abelian group A has a
unique extension to an additive homomorphism ~: J G ----+ A. Moreover, if A is a
ring and ~ preserves products on G, the extension is a ring homomorphism.

Proof. Set ~O === O. Every nonzero element of JG has a unique expression
n1g1 + ... + nkgk ,,,here ni =F 0, i == 1, ... , k, and gl' ... , (Jk are distinct.
1'0 obtain the extension, \\'e define

Next, \ve observe that if this equation holds under the inlposed conditions,
it also holds for arbitrary integers nl' ... , nk and group elements gl' ... , gk'

But then, ~ is trivially addition-preserving. Since any extension of ~ to an
additive homomorphism JG -> A must satisfy this equation, the uniqueness
of the extension is assured. Finally, if A is a ring and ~ is product-preserving
in G,

~C2nigiIn/g/) === ~(Inin/gig/)
i j U

- -= ""11 11, ' ,./..(/ "/"(7" =--=---= '"n '/"'(7'""n '''/''(J.'L- , ) Y'p ,~. ) £- tV'. 'tL- J~')

i.i i j

((/)LII /1,)( (/)LII )'y)'),

;llid t 1)(' proof i~ ('OJll ple't ('. J I ')
A~ all ncldit i\'c' grollp, Lltc'J'(,f())'e', ./(/ i~ rn'e' :d)('liall alld ~ h.. ~llh~(,t, (/ iH a
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basis. (Cf. Section 5, Chapter IV.) Another corollary of (1.2) is

(1.3) Every group homomorphism ~: G -+ G' has a unique extension to a
ring h011~omorphisn~~: JG -+JG'.

Notice that if anyone of the restrictions; (i) ~ is the identity mapping;
(ii) ~ is onto; (iii) ~ is one-one, is satisfied by the group homomorphism
~: G -+ G', then it also holds for the ring homomorphism ~: JG -+ JG'.

T,vo homomorphisms defined on the group ring of every group come up
sufficiently often to warrant special mention and notation. The first of these is
the abelianizer, \vhich \vas introduced in Section 4 of Chapter IV as the
canonical homomorphism of a group onto its commutator quotient group.
By the abelianizer we shall no\v mean either the group homomorphislll
a: G -+ G/[G,G], as before, or its unique extension on the group ring~\The
~econdhomomorphism is the trivializer. For any group G consider the mapping
t: G -+ J defined by t(g) == 1, for all g E G. The trivializer is the unique
extension of t to the ring homomorphism t: JG -+ J. Clearly,

t(~:nigi) := Ln~.
i i

We conclude this section \vith the observation that the mapping J -+ JG
defined by n -+ ne, \vhere e EGis the identity, is a ring isomorphism. Hence,
both G and J are considered as subsets of the group ring JG.

2. The free calculus. By a derivative in a group ringJG will be meant any
mapping D: JG -+ JG \vhich satisfies

(2.1)

(2.2)

D(v} + v2) == Dv} + Dv2,

D(v1v2 ) == (DvI )t(V2 ) + v}Dv2 ,

,vhere t is the trivializer and VI' V2 E JG. For elements of G, (2.2) takes the
simpler form

(2.3)

In fact, in vie'" of (1.2), a derivative may be defined as the unique linear
extension to JG of any mapping D of G into JG \vhich satisfies (2.3). Obviously,
the constant ll1apping of JG onto the element 0 is a derivative. The question
of "'hether_or not nontrivial derivatives al""ays exist in an arbitrary group
ring is settled by the observation that the mapping g -+ g - 1, for any g E G,
determines a derivative. Moreover, if D and D' are t\\'o derivatives in JG and
Vo E JG is an arbitrary element, it is easy to check that the nlappings D + D'
and novo definc:d respectively by

(~"') (I) I IY)v - I)v -I I)' l' }
'I' ( ,/(/

( I) I') "n

JlI'C' 111:-\(. flc'rJVil1 iVf':i ill ,/(/.
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It is worthwhile to note some of t.llf~ C'OItIIf'fjIl4'1l(~eS of the axioms fol' It

derivative:

(2.5)

(2.6)

(2.7)

D(~n1,gi) == ~niDYi'

Dn == 0, for any integer 'II.

Dg-l == -g-lDg, for any y ( (I.

ifn > 0,

if n < 0.

if n == 0,

It follows that

The first follows from the fact that D is an additive h()lnolllol'plli~nl.Since
Dl == D(I·1) === Dl + Dl, we conclude that Dl == 0 and, ulore' gC'lIc'rally,

that (2.6) holds. Lastly, the equations °== D(g-l g) == J)y I I y I I)y c~stah­

lish (2.7). It is useful to define, for any g E G and integer 'f/" tho group ring

element

(2.8)
gn _ 1

Dgn == -- Dg.
g - 1

The proof is by induction on the absolute value of n. For n == 0, +1, -1,
the assertion reduces respectively to Dl === 0, Dg == Dg, and Dg-l == _g-lDg.
Next assume I n I > 1. If n is positive, (2.3) and the hypothesis of induction
yield

n-l

= L giDg + gnDg
i=O

gn+l - 1
---Dg.

g - 1
Similarly, for negative n,

Dgn-l === Dgn + gnDg-l

-1

== - L giDg - gn-lDg
i=n

gn-l - 1
----Dg,

g - I
and the proof is complete.

Another consequence of the axionls is the fact that any ucrivaLivc' iH
uniquely determined hy its vahlPH Oil any generating Hubsnt of (1.

Although wn havn introduc~c'd t,h(' Ilotioll of a d('rivaLivc' in an arhiLrary

group ring, \\'C' an' hc'n' n'ally iIlLt'n'stc'd in, alld Ilc'nC~c'f()f'f,h :--;11/..11 eonfilu' 0111'
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u IL4'IlLioll to, derivatives in the group ring of a free group (hence the title of
IlliN N4,(,t,ion), Suppose F is a free group with a free basis of elements xl' x2' " • ".

i\ II H rhit,rary element of the group ring J F is a finite sum of finite products of
Pll\\ ('rs of t.hese x's, and it is natural to think of such elements as polynomials
III t.Iu' va.riables xl' X 2' 0 0 0 • Of course they are not true polynomials since
114'gnLive powers may occur and, what is more important, the variables do not
4'()lll nlllLe. Nevertheless, an element of J F will be called a free polynomial and
will he denoted generically asf(x) == ~niui' u i E F. The action of the trivial­
iz('" t on a free polynomial is indicated by writing tf(x) == f(I).

(~,H) To each free generator x j there corresponds a unique derivative

D j == a/axj

,:n J F, called the derivative with respect to Xj' which has the property

ax.
-at == 0ij (Kronecker delta).

xi

Proof. Since the values of the derivative ajaxj are specified on a generat­
ing subset of F, uniqueness is automatic. In order to prove existence, we
consider an arbitrary set A of elements aI' a2, 0 0 0 in one-one correspondence
\vith Xl' X 2' " " 0 under the assignment ()a i == Xi' From the results of Chapter
III we know that fJ extends to a product-preserving mapping ofthe semi-group
W(A) of words onto the group F under which equivalent words in W(A) rnap
onto the same group element in F. We propose to define, for each Xj' a map­
ping A j : W(A) --+ J F which will induce the derivative a / aXj' The definition
is by induction on the number of syllables in a word and is given by

Ail == 0 (where 1 denotes the enlpty word),

(*)

aE W(A).

The reason for retreating to the semi-group W(A) for the basic definition
should be clear. With the absence of any cancellation law in W(A), the
function Ai is unambiguously defined by (*). We contend that

(**) Aj(ab) == Aja + fJa " Ajb, a,b E W(A).

The proof is by induction on the number of syllables in abo If a is the empty
word, the result holds trivially; so we assume that a contains at least one
syllable. Hence, a == a/tc and by (*)

;\/,/" , .,./"/\/' I ."/"{)(",\/J
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V\Te next assert that if two words are equivalent, then their images under Ai
are equal. The proof amounts to verifying

Aj(aaiOb) === Aj(ab),

Aj(aai+nb) == Aj(aaima",nb).

With (**) available, these identities follow easily. For the first, we have

Aj(aaiOb) === Aj(aaiO) + ()(aaiO) . Ajb

=== Aja + fJa . Ajb

=== Aj(ab).

For the second, we note first that

X i
m - 1 x.n - 1--- + x.m -~---

Xi - 1 t Xi - 1

Aj(aai+nb) == Aj(aai+ n ) + fJ(aai+ n) . Ajb

== Aja + fJa · Aj(aimain) + fJ(aaimai
n) . Ajb

=== Aj(aaimainb),

and the assertion is proved. The mapping a/axj : F -+ J F is now defined by

(***) for any a E W(A).

The function a/axj is well-defined because () is onto and because if ea == fJb,
then a and b are equivalent words and so Aja === Ajb. (Notice that the proof
that A j depends only on equivalence classes of words depends on the fact that
the same is true of e.) It follows immediately from (***) that aXdoXj == 0'lj.
To check that ajaxj determines a derivative in J F, we have only to verify
Axiom (2.3): For any u == ea and v == eb in F,

a 0 a a
-a (uv) == a-fJ(ab) === A.(ab) == A·a + uA.b === - u + u - v,

x
j

x
j

J J J oX
j

OX
j

and the proof of (2.9) is complete.

The preceding theorem is a remarkable result in that it reveals the entire
structure of the set of derivatives in a free group ring. This assertion is
formulated explicitly in the following important corollary:

(2.10) For any free polynomials hI (x), h2(x), ... , there is one and only one

derivative J) i'n ,f Ji' 8',u:h thal DX j === hJ(x), j === ], 2, .... Moreover, for any

f (x) c=,j If',

I ~l (.r)
,"' oj'
'\ ~h)(.f).

-; a.f)
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Proof. Again, uniqueness is automatic. It should next be checked that the
above sum is a finite one. We leave it to the reader to prove that if the

. . af(x)
generator x j does not occur ~n the free polynom~al f(x), then -a- == O. (cf.

Exercise 5). It then follows that the mapping f(x) ---+ t :~ hj(x)x{s a deriva­

tive in J F (cf. (2.4)) with the desired property, and the proof is complete.

We have already remarked that the mapping f(x) ~ f(x) - f(l) is a
derivative in J F. As a corollary of (2.10), we thus obtain the fundamental
formula

(2.11 )
af

f(x) - f(l) = t oX
j

(xj - 1).

o
ox. y a

JF~JF----*Jlx:rl--+JH.~ //-/

It follows that a free polynomial is determined by its derivatives and its value
at I. The analogy with the familiar law of the mean is obvious and is
also capable of further interesting generalization.

3. The Alexander matrix. The free calculus is the principal mathematical
tool in our construction of useful invariants of group presentation types.
Consider a group presentation (x : r). The set X == (Xl' X 2 ' • • .) is a free basis of
the free group F, and the group of the presentation is the factor group

Ix: r I = FIR~ F

where R is the consequence of r == (rl' r2 , • • • ) and y is the canonical homo­
morphism. Both y and the abelianizer a possess unique extensions to homo­
morphisms of their respective group rings. Denoting the abelianized group of
I x : r I by H, we thus have the composition

Q p (
r

The Alexander matrix of (x : r) is the matrix II aij " defined by the formula

(ar.)
aij == ay ax?'. •

J

The effect of oy on ari/axj is an immense simplification.-The homomorphism
y carries elements of J F into JI X : r I where every consequence of r equals I.
Even more important is the fact that 0 then takes everything into a com­
mutative ring. In a commutative ring one can define determinants, and
fllrth(~rrnore, for knot groups, J H is particularly simple.

It Hhould he rernarked that the definition of the Alexander matrix assumes
an ol'dpring of the gnIH'J'at,oI'H and I'e)at,ol"s wlu'J'('(\,H th(~ original dnfinition of a
group JH'('H('lltation ill (~hapt,('r I V did Ilot. 'l'faiH iH (,1'11(' hut IIllirnp0l'tant. We
HIIUIl H('(' in thc' 1l(·Xf. H(·c·f.iofl t.I1Hf. t,\\'O rnnt,l"ic'('N wlli('It cliffc'l" oflly hy a IH'rrnu-
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tation of the rows or of the columns are considered equivalent anyway. The
additional property of order could, of course, have been ascribed to group
presentations in the first place. It is, ho"",,'ever, (for us) an inessential feature
and the definition seems simpler without it. -

4. The elementary ideals. Let R be an arbitrary commutative ring with a
nonzero multiplicative identity 1, and consider an m (row) X n (column)
matrix A with entries in R. For any non-negative integer k, we define the
kth elementary ideal Ek(A) of A as follows:

If 0 < n - k ~ m, then Ek(A) is the ideal generated by the determinants of
all (n - k) X (n - k) submatrices of A.

If n - k > m, then Ek(A) == O.
lfn - k ~ 0, then Ek(A) = R.

Since the determinant of any matrix can be expanded as a combination of
the cofactors of the elements of any row or column, \ve have immediately

(4.1) The elernentary ideals of A form an ascending chain

If A and A' are t"vo matrices with entries in R, we define A to be equivalent
to A I, denoted A t"../ A I, if there exists a finite sequence of matrices

A = ..AI , · · · ,An == A',

~uch that A i +1 is obtained from A z' or vice-versa, by one of the following
operations :

(i) Permuting rows or permuting columns.

(ii) Adjoining a row of zeros, A --+ II ~ II·
(iii) Adding to a row a linear c01nbination of other rows.
(iv) Adding to a column a linear combination of other columns.
(v) Adjoining a new row and column such that the entry in the intersection

of the new row and column is 1, and the remaining entries in the 11&W row and

column are all 0, A --+ II ~ ~ " .

I t is not hard to show that a matrix A is equivalent to the lnatrix obtained
frotH A by adjoining a lle\V row and column such that the entry in the inter­
sc'ction of the new row and column is I, the rernaining entries in the new
(,()Illllln arc all 0, and the remaining entries in the ne\v row are arbitrary.
Ilc'n('(', (v) nlay he replaeed by the stronger



IO~ '1'lIli~ FREE CALCULUS AND THE ELEMENTARY IDEALS Chap. VII

'rllc' proof of this assertion is obtained in one application of (v) and n applica­
t.iOIlN or (,:v), where n is the number of columns in A. Thus,

A~ II ~ ~ II~ II ~ ~ II .
'rh(' present definition of matrix equivalence differs from the one "Te usually

C'IIC'()lIllter in linear algebra most notably in respect to (ii) and (v). The familiar
01 )('I'ations of multiplication of a row and of a column by a unit e of the ring R,
Ilowcvcr, still preserve equivalence. They may be accomplished as follows:

IIAII A A A A

~"~II.. (ii) (iii) (i) (iii)
(f"i) a --+ a --+ a --+ ea --+ ea

0 ea a a -e-1 ea

(vii) IIAa"~"~
a

~ II~ II ~ ~e-l ~a II-e-1

~II~
ea

_:-ll1~II~
ea

-_~-1110 0

~II~
ea

~ II ~ II A ea II·0

It should also be observed that matrix equivalence, as ,ve have defined it, is
trivially reflexive, symmetric, and transitive. That is, it is a true equivalence
relation.

(4.2) Equivalent matrices define the same chain of elementary ideals.

Proof. The proof depends on the web-known elementary facts of deter­
minant manipulation. Incidentally, these are purely conlbinatorial in nature
and hold in any commutative ring. We must prove that Ek(A) == Ek(A')
where A' is obtained from A by anyone of the above operations (i), ... , (v).
For (i), (iii), and (iv), the result is immediat~J For example, consider (iii): Any
generator of Ek(A') is either already a generator of Ek(A) or, by expansion by
the minors of a row, is a linear combination of generators of Ek(A). The same
expansion shows that the converse proposition is valid.

Next, consider operation (ii): Since n == n' and m' == m + I, we see that
if 0 < n - k :::;: m, then 0 < n' - k :::;: m', and in this range we have
Ek(A) == Ek(A'). The only other possibility that is not definitionally im­
mediate is n -- k == n/. In this case, Ek(A) == 0 follo\vs trivially and Ek(A') is
generated by the determinants of the n~' X m' subrnatrices of A'. Since the
last row of each of these sublnatriccs contains all zeros, Elc(A') = 0 holds as
well.

Filially, W(~ III liNt. (·IH'(·k op('rat.ion (").11('1'<' /I' If I I and 'IU' - 'II/, 1 1.

If 1/ kill, tlu,1t If' /.. (II I I) k 11/ I I 11/' and the
iclc'llf,if,jc':-i h'/,(.I) /f;'I,(.I') 0 ;11'1' illllrlc·dinf..', If 1/ k· 0, t.llC~1l
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n' - k ~ 1. In this case, Ek(A) == R follows trivially, and the same is true
for A' except when n' - k == 1. But En'-I(A') is the ideal generated by the
elements of A'. Since one of these elements is 1, we conclude En'_I(A') == R.
The remaining range is 0 < n - k ~ m. Any (n - k) X (n - k) sub­
matrix of A can be enlarged to an (n' - k) X (n' - k) submatrix of A' by
adjoining appropriate elements of the new row and column of A' including
thereby the element 1 in the intersection. Expansion by the minors of the new
column shows that the determinants of these two submatrices are equal,
except possibly for sign. Thus, Ek(A) C Ek(A'). Conversely, consider any
(n' - k) X (n' - k) submatrix of A' whose rows mayor may not include the
new row of A' (note n' - k ~ 2). If they do, expansion by minors of the
row shows that its determinant is a generator of Ek(A) and, consequently,
belongs to Ek(A). If its rows do not include the new row of A', its determinant
belongs to Ek-I(A), which by (4.1) is contained in Ek(A). We conclude that,
under operation (v), Ek(A) ~ Ek(A'), and the proof is complete.

Consider an arbitrary ring homomorphism 1>: R -+ R' where Rand R' are
any two commutative rings containing multiplicative identities. If A == II aij II
is a matrix with entries in R, we define the image matrix

A useful result is

Proof. Of course, 1>(0) == 0 automatically; but the equation 1>R == R',
which is needed if n - k ~ 0, is just the hypothesis that 1> is onto. Ob­
viously, the image of the set of determinants of all (n - k) X (n - k) sub­
matrices of A equals the set of all determinants of all (n - k) X (n - k)
submatrices of 1>A. Thus, we have only to ask whether the image of an ideal
generated by a set of elements aI' ... , a r in R is the ideal generated by the
images 1>(al ), • • ., 1>(ar ) in R'. The answer is easily seen to be yes; but, again,
only if 1> is onto.

For any finite group presentation (x: r) and non-negative integer k, we
define the kth elementary ideal of (x : r) to be the kth elementary ideal of the
Alexander matrix of (x : r). By virtue of (4.2), of course, the elementary ideals
of a presentation may be calculated from any ll1atrix equivalent to the
Alexander matrix. In any specific example one naturally uses the simplest
nlatrix one can find.

The elementary ideals, defined for any finite group presentation, represent
a generalization of the knot polynonlials \vhich we shall define in the next
ehapter for pn~sentationR of knot groups. 'There arc several reasons for
intl'odtl('ing UIP id('als l)('fon~ t.lH~ POIYIlOtllials. First of all, whereas the ideals

arn dt'fitH'c! {"ot' nrllitrar.y fillitt·l.y 11I·('s('IlL(·d groups, UH' polYllottlial.'-l ('xist alal

an' tlniqll(' ollly fot' a ttlOI'(' I'<':-d,ri(·(,('d ('Inss of ,L!:I'OUpS sat.isfying ('('rLain
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It Igc'hl'ai(~ eonditions. In the next chapter we shall discuss these conditions
alld NltoW that any tame knot group satisfies them. Furthermore, it is, if
Jl.llyUling, easier to prove the invariance of the ideals than of the polynomials.
~illc'c' LlH~ latter can be characterized in terms of the former, we can kill two
hil'dN with one stone. Finally, even where the polynomials do exist, the ideals
C'ont.ain rnore information. We shall exhibit two knots in Chapter VIII which
a ... ' lIot distinguishable by their polynomials, but which do have different
c·lc·lIl(·nf,ary ideals.

'rll(~ irnmediate problem is to prove that the elementary ideals of a finite
I"'c'N('lltation are invariants of the type of the presentation. The proof is based
nil t.he rrietze theorem, which reduces the problem to checking the invariance
of Lll(~ ideals under Tietze operations I and II. The essential part of the proof,
t,hc'J'(~fore, is simply examining the effect on the Alexander matrices of each
of' these operations. For a clear understanding of the formulation of the
invariance theorem which appears below, the reader may wish to review
LlH' hasic definitions and results on presentation mappings and the Tietze
LI H 'orcm in Chapter IV.

Iff: (x: r) ~ (y : s) is an arbitrary presentation mapping, there is induced
a homomorphismf*: IX : r I~ Iy : S Ion the groups of the presentations. This
Inapping in turn induces a homomorphism f** of the abelianized group of
Ix : r I into that of Iy : S I (cf. (4.1), Chapter IV). If (x : r) and (y : s) are known

L() be of the same type, there exists a presentation equivalence (x : r)~
g

(y : s) ---+ (x : r) and
identity == (fg)* == f*g*,

identity == (f*g*)* == f **g**.

Similarly, g**f** is the identity. Thus,

(4.4) If the pair f, g is a presentation equivalence, then each of f** and g**
is an isornorphism onto and the inverse of the other.

Notice that the same conclusion holds for the extensions off** and g** to
their respective ring homomorphisms on the appropriate group rings.

We recall that if the pair of mappings f,g is a presentation equivalence,
then each off and g may be called a presentation equivalence separately. To
speak of one alone, however, always implies the existence of a mate. The
statement that the elementary ideals of a finite group presentation are
iflvariants of the presentation type is the follo\ving theorel'l'h:

(4.5) THE INVARIANCE OF THE ELEMENTARY IDEALS. If (x : r) and (y : s)
are fi'nite yro'Up presentations and

.1': (x: r) ~ (y : s)

is fI, 1)f'('s('lIlation (,(/lI'i,'o.{,' 1/('(' , th(III au' kth ('/(I""'IIta:r.'/ ,d,'(d (~l (x : r) i8 if/upped

1).'/ f .... nlltn 11,,' kth ,II"II/{'IItar.'/ itl,',d ,~r (y : 8).



Sect. 4 THE ELEMENTARY IDEALS 105

Proof. As a result of the Tietze theorem, the proof inlmediately reduces to
checking only the Tietze equivalences I, I', II, and n'. Also observe that,
in view of (4.4), if (4.5) holds for one member of a pair of presentation equi­
valences, it holds automatically for the other. So we need check only Tietze
I and II.

Tietze I. This is the presentation mapping

I
(x : r) ---+ (x : r Us),

where x == (Xl' .. • , X n ), r = (rl , •.. , rrrJ, the element s is a consequence ofr,
and I: F(x) ~ F(x) is the identity mapping. It follows that 1* and 1** are
also identities. Hence, the argument is completed by simply showing that
(x : r) and (x : r U s) have equivalent Alexander matrices. Since s is a con­
sequence of r, we have

But since

However,

and

Hence,

Thu8, the Alexander matrix of (x : r U 8) is like that of (x : r) except for having
one additionall'ow which iH a linear eornbination of the other rows. So the two
1l1atri('eH arn (\quival(\nt and the fir'Ht part of tlH~ proof iH cornplete.
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y'n === n*y,
o'll* == n**o.

i == 1, · · · , m,

'I' ;('l;:(~ II. This is the presentation mapping

II
(x : r) ---+ (x U y : r U y;-l),

WIH'f'(~ x == (Xl' · • . , X n ), r === (r1 , • • • , r m) C F(x), ; E F(x), y is a member of
f,h(~ underlying set of generators not contained in x, and n: F(x) ---+ F(x,y) is
f,h(~ inclusion mapping. Setting

G === Ix : r I , and G' === Ix U y : r U y;-l I ,
and Hand H' equal to the abelianized groups of G and G' respectively, we
have the following array of homomorphisms: ._

II
J F(x) --+ J F(x U y)

yt y't
JG~JG'

at a't
JH~JH'

We denote the Alexander matrices of (x : r) and (x U y : r U y;-l) by

A == II au II and A' == II au' II , respectively. Then

(ar.)
au === oy ax:. '" j == 1, ... , n,

and

Clearly,
ar.
_t ==0ay , and

a
oy (y~-l) = 1. -

So, if we denote the row of elements

O'y'(~y~-l),j=== 1,···, n, by a', we haveax;
A' = /I II:~A ~ /I.

Hence, by matrix operation (v') of page 101,

A' f'o.In**A.

It foliowH frorn (4.2) and (4.3) that

and Ul(' proof of Utn iuvltriaU4'o Lllf'on'ln iN 4'olnplof,4'.
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A characteristic of the techniques of Chapter IV and of our approach to tho
Alexander matrix and the elementary ideals in this chapter has been the
construction of a theory of group presentations independent of the particular
groups from which the presentations may have come (e.g., in knot theory
from the fundamental groups). Thus, we have defined both the Alexander
matrix and the elementary ideals of a presentation rather than of a presentation
of a group G. Similarly, the Tietze theorem asserts the existence of a factoriza­
tion of presentation mappings; it is not given as a statement about presen­
tations of the same group. We feel that the style which we have adopted is not
only conceptually simpler but also corresponds nlore exactly to the actual
computation of examples in knot theory. The alternative approach, however,
is easily described: Consider a presentation

(x: r)c/>

of a group G. The Alexander matrix is defined to be the matrix II aii " of
elements

"\... --
(a is, of course, the abelianizer of G), and the elementary ideals are those of
this matrix. The invariance theorem then becomes

(4.6) The elementary ideals are invariants of any finitely presented group G,
i.e., any two finite presentations of G have the same chain orideals.

A proof of (4.6) from (4.5) is a simple exercise involving only the most basic
properties of homomorphisms and factor groups.

EXERCISES

1. In the group ring of the free group F(x,y,z) calculate the following
derivatives:

a a a a
(a) ox (xyz2x-Iy-lZ-2), (b) oz (xyz2x-ly-lz-2), (c) ox [xm,y], (d) ox [x,y]n,

o a
(e) ox [xm,y]n, (f) oy [[x,ym],yn].

I).

2. Prove that if J/ is a free group with free basis (Xl' x 2' ••• ) and if there
n

exist finitely many elements aI' ... ,an in JF such that 2 a~(xi - 1) = 0,
then a

l
= ... = an = 0. 'i==l

:L If rll' (/2' ••• g('ll('rat(~ (/, show din·ctly that for allY lJ C ,j (/ th(~r(~ exists a
II,

2.: 'J',(Y;
i I I

finit(~ :--:(,t, or (')('rtH'rlt,s 'J'I' ••• , VII in ,/(/ Sll('h t.llat. I'

(For ('XH.IHpl(', [hfl'.!. I fll(fI~~ I) I (fI, I).)
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4. One cannot help feeling that our proof of Theorem (2.9) is not quite as
good as it might be because it relies essentially on the structure of the free
group as it is derived from the semi- group of words. Is it not, after all, possible
to give an elegant proof of (2.9) based on the definition of a free group as a
group that has a free basis? For example a possible ap'proach would be to
prove Exercise 2 above independently of the existence of a/axj and then to
combine this result with Exercise 3. Thus fronl Exercise 3 we getf(x) - f(l)
== ,Laj(xj - 1) for some a j E J F. If one knew that the elements a j were

. a
uni~uely determined by f(x), one could simply define c/ to be aj • Wrestle
with this a bit! x j

5. Using only (2.1), (2.2), and (2.9), prove that if the generator x j does not

occur in the free polynomialf(x), then aOf = O. Note that this is a problem
x j

about elements of a free group, not about words.

6. Calculate the derivatives of w == [[a,b ],[c,d]]. What would be the effect
on the Alexander matrix of adjoining to a presentation the relation w == I?

7. Denoting by G' the commutator subgroup of a group G and therefore by
G" the commutator sUbgroup of G', discuss the relationship between the
Alexander lnatrices of G and of G/G".

8. By constructing the chain of elementary ideals, give another proof of
the fact that the free groups of distinct finite ranks m and n are not
isomorphic.

9. Suppose f) maps a group G1 homomorphically onto a group G2 in such a
way that its kernel is contained in the commutator subgroup Gl ' of Gl . Prove
that the induced homomorphism ()* of Gl/Gl ' onto G2/G2' is an isomorphism,
and that, for each d, Ed(Gl ) is contained in Ed(G2 ). (Ed(G) is the dth ideal of
the Alexander matrix of any of the presentations of G.)

10. Calculate the chain of elementary ideals for the free abelian group of
rank n, and conclude that, for n > 1, the free group of rank n is not abelian.

II. Calculate the chain of elementary ideals for:
(a) The fundamental group of a Klein bottle I a,b : aba-lb == I I;
(b) The group I a,b : b2 == I I;
(c) The group I a,b : b2 == I, ab = ba I;

and use the result to show that these groups are not isomorphic.

]2. Calculate the chain of elementary ideals for the metacyclic group
I (1,,:r, : 0/> -- I, x p

- 1 = ], X(1X- 1 == ale I, where p is an odd prime and k is a
priJlljt,iv(~ root ruodllio 7J (s('e the index for a d(~finition of this ternl). Deduce
that. Ul iN grou p iN IlOt. al)(·1 iall.
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h

the orientable surface of genuH h, I fI" h, . .... (/11' hli : II [ai,b i ]::::= II, and
i ---= 1

deduce that if h :2: 2 this group is IH,jt,ltc'!' fl'C\C\ !lO" nlu·lian.
14. Calculate the chain of elenH~Ilt,HI''y iclc'nl:1 fot' 1.r,,I1 : (xy)n ::::= (yx)n I,

and deduce that, for n :2: 2, this group j~ Ilc·illlc'" l're'(' Ilor abelian.

15. Calculate the chain of elementary idc'HI~ fet!' I.ltc· groll p

I x,y,z : [[y-l,x],Z] ::::= [[z-I,YI,·rl 1I.r ',·1,.'11 "

and deduce that this group is neither free nor ~('Iin;
16. Calculate the chain of elementary ideals for Lilt· hrH id groll psl

I
()v • • • '()n : ()i()i+l()i: ()i+l()i()i+l (i. I:..... /I 1)'1.

(Jiaj - ajai , I 'It - .J I / I-17. Prove that if the free group of rank n can be Illapp<'d hOlllolnorphically
onto a group G then En(G) == (1).

18. Given any finite set of integral polynomials fl(t), ... , .lll(t) slu·h that
(11(1)"" ,fn(I)) ::::= 1, construct a group G such that (}/(/' (l:) and
E 1(G) == (fl(t), ... ,fn(t)).

1 E. Artin, "The Theory of Braids," American Scientist, Vol. 38, No. I (IH!)()), pp.
112-119; F. Bohnenblust, "The Algebraical Braid Group," Annals of Matherrnatics, Vol.
48 (1947), pp. 127-136.



CHAPTER VIII

The Knot Polynomials

Introduction. The underlying knot-theoretic structure developed in this
book is a chain of successively weaker invariants of knot type. The sequence
of knot polynornials, to which this chapter is devoted, is the last in the chain

knot type of K
{-

presentation type of 1T(R3 - K)

~
sequence of elementary ideals

~
sequence of knot polynomials.

The only complete invariant is the first, i.e., the knot type itself. It is complete
for the not very profound reason that two knots are of the same type if and
only if they are of the same type. Ifwe stop here, we have a definition but no
theory. For all we know, all knots are equivalent. The next step is the major
advance. The theorem that knots of the same type possess isomorphic groups
reduces the topological problem to a purely algebraic one. The remaining
invariants are ainled at the very difficult problem of recognizing when two
presentations present nonisomorphic groups. It is important to realize that
at each step in the chain information is lost. In fact, for each invariant, we
have given at the end of this chapter a pair ofknots whose type is distinguished
by that invariant but not by the succeeding one. The compensating gain is in
the decision problenl, i.e., the question of recognizing whether two values of
an invariant are the same or different. As we have remarked elsewhere, this
problem is unsolvable for group presentations in general. For the knot poly­
nomials, however, it is a triviality.

The knot polynomials can be defined in terms of the elementary ideals
(cf. (3.2)). Unlike the ideals, however, which are defined for all finite presen­
tations, the knot polynomials depend for their existence and uniqueness on
the spceiaI algebraic propertieR of the abclianized group of a knot group. For
this J'(\aSOll, lJ}(~ first H('(:tion of this ehaptcr is d(~vot(~d to proving the theorem
that, UH' :d)(·lianiz('d gl'oup of allY knot, gl'oup is infillit,(\ (~'y(·li('. 'rh(~ second
~c,('t,i()f) c'stahlist)(\s thc' IlC\C'C\SNal''y alg(")J':tic' PI'0PC\l't,jC\S of 1,1)(\ gl'oup ring of an
ildiflifC' ('ye'lic' group. WC' UlC'll dc,tillc' LJI(' I,!lot POIYIlOltli:ds, ('hc'(·k th('ir

I In
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existence, uniqueness, and invariance, and study some of 'their properties.
The final section contains examples of different knot types distinguished by
calculation of their polynomials and ideals. It should be emphasized that we
restrict ourselves throughout to knots whose group~ we know possess over
presentations. By a knot group, therefore, we mean now a fundamental group
of the complement of a tame knot.

1. The abelianized knot group. Our contention is that the abelianized
group of every knot group is infinite cyclic. The proof is based on consideration
of the over presentation of a knot group.

Let G be a knot group and (Xl' ..• 'Xn : r l , •.. ,rn)cP an over presentation of
G. A typical example of how a relator r i is derived by reading around an
underpass is shown below in Figure 45. (It obviously doesn't really matter, Lut

for simplicity we have used the modified over presentation (3.1), Chapter VI,
instead of (1.1), Chapter VI.) For any element u in the free group F generated
by Xl' • • . ,xn ' we define the jth exponent sum of u to be the sum of the
exponents of x j at all occurrences of x j in u. We already have an expression for

au
this quantity; the jth exponent sum of u is the image of -a under the

x j

trivializer t: J F --*J. Let xK(i) and xJ.(i) be the ~enerators corresponding to the
two overpasses adjacent to the underpass with respect to which ri is defined.
To be specific, we assume that, with respect to the orientation of the knot, the
overpass corresponding to xK(i) precedes the overpass corresponding to xJ.(i)'

The example shown in Figure 45 illustrates the fact that the K(i)th and A(i)th

exponent Rums of r i are respectively +1 and -1 whereas the exponent sum
of ri with re~p('et to any other generator iR O. Hence, if 0 iR any homomorphism
of (] into an ab(~)iall group, \VC have

(hl)l' I ((hl)·r I. (I)) ((hl),rA( I») I.
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('V('l'y pair of generators Xi and Xj. Thus any element in the image group eG is

a power of the single element t == e4>xj , j == 1, . · · , n. We have proved

( I . I ) Every abelian homomorphic image of a knot group is cyclic. Further­

1J1()f(~, the generators of any over presentation are all mapped onto a single

Yflnerator.

1n particular, the abelianized group of any knot group is cyclic. It remains

to prove that it cannot be finite. To prove this, consider again the over

presentation of G, and denote by (t) an infinite cyclic group generated by t.

Since F is a free group, the assignment ~Xj == t, j == 1, · .. , n can be extended

to a homomorphism of F onto (t). It is easy to show that there exists

a homomorphism e of G onto (t) such that the diagram

F~(t)

~1/
G

is consistent. For, clearly,

i == 1, · . · , n,

where Si is the sum over j of the exponent sums of r i with respect to Xj. We

have
n ar. n

s· == L t _'t == L (0. (') - O· A()) == O.
~ j=l ax) j=l J,K ~ J, ~

Thus, ~ri == 1, i == 1,·' . ,n, and the consequence of ri ,' . • ,rk , • • • ,rn ,

which is the kernel of <p, is contained in the kernel of ~. It follows that fJ is

well-defined by
fJ<pu == ~u, uEF.

Since ~ is onto, so is ~. Consider next the abelianizer a: G~ G/[G,G]. We

recall the important fact that any honlomorphism of a group into an abelian

group can be factored through the commutator quotient group (cf. (4.4),

Chapter IV). As a result, there exists a homomorphism Of such that the diagram

()

G ---* (t)

°1/
0/[0,0]

is (~()nsist('nt. Sine(~ 0 is onto, so is 0'. A function whose irnage is infinite cannot

havn a finit.n dornain ~ so W(' ('OlH,llId(: thaL (//1 (/,f.l! is illfinit(~. Conlhining this

n'H,tlt, wiLh (1.1), \N(' ohLain
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Another way of arriving at (1.2) is by reducing a presentation by Tietze
operations. If one begins, for example, with a Wirtinger presentation of G,
then Gj[G,G] has the presentation (cf. (4.6), Chapter IV)

which one can then reduce to

Notice that this approach is based on the theorem (cf. (4.5), Chapter IV) that
the consequence of the set of commutators [gi,gj], where gl' g2' ••. generate
a group, is the whole commutator subgroup.

2. The group ring of an infinite cyclic group. A knowledge of some of the
basic algebraic properties of the group ring of an infinite cyclic group H is
necessary for a proper understanding of the knot polynomials. In this section,
therefore, we shall review some of the elementary concepts of divisibility in
rings and integral domainR in general and see how they apply to the group ring
JR.

Let R be an arbitrary ring having a multiplicative identity 1. An element
u of R is called a unit if it has a left and a right inverse, i.e., if there exist
V,W E R such that uv == wu-== I. The associative law implies that

w == w(uv) == (wu)v == v.

Hence, an equivalent definition is that a unit is an element having an inverse,
which, by the same reasoning, must be unique. Since the product of any two
units is again a unit, it is easy to see that the set of units of R is a multiplicative
group. For example, the only units of the ring of integers are +I and -1. In
a group ring, all group elements and their negatives are obviously units. They
are the so-called trivial units of the group ring. The possibility of the existence
of nontrivial units will be considered briefly somewhat later in this section.

For any elements a and b of a commutative ring R, we say that a divides
b, written a Ib, if there exists c E R such that b == ac. Elements a and bare
associates if a Iband b Ia. This relation is an equivalence relation provided
R contains an identity I. The only associate of 0 is 0 itself. A commutative
ring is called an integral domain if it contains at least two elements and has

the property that if a * 0 and b #- 0, then ab * O.

(2.1) Two elements in an integral domain with identity 1 are associates if and
only if one is a unit multiple of the other.

_1!.!.!!!!L [f a and b are ass()eiat(~s, th('('(~ (~xist clcrn(~nts (; and d such that

a =- ,)(: and had. Cons('(pH'ntJy, a ar!f and

(/ ( I fir) o.
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~iIlC'CI t hc' ring is an integral domain, either a or (1 - dc) is 0. If a == 0 it must
ah'll» 1)(' (,rue that b == 0, and we are done. If 1 - dc == 0, then d and care
llllit:\, :llld the desired tlonclusion again follows. Conversely, suppose a == ub
1'01' ~\IIIlIC' unit u. Then, b == u-1a and a and b are associates, and we are finished.

,,\ c'llllllnutative ring R will be said to be associate to a subring Qof R if there
c'\i:d~ a rnapping p: R ~ Q such that, for any a, b E R, the elements a and
IH1 ;11'1' associates, and p(ab) == (pa)(pb). It is immediate that

(~.~) If Q is an integral domain, then so is R.

I'foof. Consider nonzero elements a and b in R. Any associate of a non­
'/.c'ro element must also be nonzero; hence pa and pb are nonzero. Since Q
i~ an integral domain, p(ab) == papb # 0, and therefore ab # 0.

An element d of a commutative ring R is called a greatest common divisor,
abbreviated g.c.d., of a finite set of elements aI' ... , an E R if d Iai' i == 1,
... , n, and, for any e E R, if e Iai' i == 1, ... , n, then e Id. Obviously, any
two g.c.d.'s of the same finite set are associates. There is no reason for
supposing that every finite set of elements in an arbitrary commutative ring
has a g.c.d. A counter-example to this conjecture is provided by the ring of all

complex numbers m + nV-3 where m and n are integers. Since it is a non­
trivial subring of the field of complex numbers, this ring is automatically an
integral domain. The only units are 1 and -I. It is not difficult to show that

any common divisor of 4 and 2(1 + V-3) is one of the numbers I, 2,

I + V-3, 1 - V-3, and their negatives. Since no one of these numbers is

divisible by all of the others, it follows that 4 and 2(1 + V-3) have no
greatest common divisor. A ring will be calle~ a g.c.d. domain ifit is an integral
domain and every finite set of elements has a g.c.d.

(2.3) If a cornmutative ring R is associate to a subring Q which is a g.c.d.
domain, then R is also a g.c.d. domain.

Proof. It follows fron1 (2.2) that R is an integral domain. The product­
preserving mapping of R into Q is denoted, as before, by p: R ~ Q. Consider
any finite set of elements al' . · · , an in R, and let d be a g.c.d. in Qof pal' ... ,
pan. We contend that d is a g.c.d. in R of aI' .. · , an. First of all, since d , pai
and pai Iai' we have d lap i == 1, · . · , n. Next suppose e Iai' i == ], .. · , n.
Then, a i == b'le and pai == phi pe; so pe divides pai in Q. Since d is a g.c.d.,
p~ divide:-; rl in Q and therefore also in R. T'hus, e Ipe and pe Id, and so e Id.
'rhi:-; ('olllpl(,t(,:-; thp proof. ( \,

III all i I tt,~ 'gl':l I dOlllai Il \\' iLit idpilti t.,Y, Hn'y two g .('.tt.'s () rUH' :-;allln fi n i t(~ :-;et

an' IIllit. Illlll('ipl('~ of c'ac'" oUlC'r. As a I'c'~IIIL, ill :-lIlC'" a ring it, i~ ('lI~t.olllal''y to
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speak of any greatest common divisor d of a finite set aI' .. · ,an as the
greatest common divisor and to write d == g.c.d.(al , ... , an).

The concepts of unique factorization and of a prime are also relevant to
the present discussion. An element P in an integral domain with identity is
a prime if p is not a unit and if P === ab implies that either a or b is a unit. A
unique factorization domain is an integral domain with identity in \vhich every
element which is neither zero nor a unit has an essentially unique factoriza­
tion into primes. To say that factorization into primes is essentially unique
means that, for any primes Pi' qj' i === 1, ... ,rn, j = 1, ... ,n, if PI ... Pm ~

ql ... qn' then m/ === n and, for a suitable ordering, Pi and qi are associates,
i === 1, .. · , n. The statement that the ring of integers is a unique factoriza­
tion domain is just the famous Fundanlental Theorem of Arithmetic.

(2.4) Every unique factorization d01nain is a g.c.d. domain.

Proof. If a is any nonzero element of a unique factorization domain R,
the primes which are associates may be combined and a factorization

m :2: 0,

obtained in which no two of PI' ... , Pm are associates, the n j are positive
integers, and u is a unit. Any divisor of a has a factorization U'p~l' ... p~{'/

where u' is a unit and the n/ arc integers such that °~ n/ :::;: n j • Similarly,
if aI' ... ,an are nonzero elements of R, there exist primes PI' ... , Pm'
m :2: 0, no two of which arc associates, such that

i === 1, ... , n,

where the nij are integers :2: 0, and the u i are units. The element

n j === min (n ii ),
i

is obviously a greatest common divisor of aI' ... , an' An integral domain in
which every finite set of nonzero elements has a g.c.d. is a g.c.d. domain;
so the proof is complete.

We assume that the reader has some fanliliarity with the definition and
elementary facts about the ring R[t] of polynomials in one variable t ,with
coefficients in an integral domain R. For example,1 it is easy to show that if
R is an integral domain, then R[t] is an integral domain whose only units are
the units of R. A deeper result, the key point in the proof of which is due to
Gauss, is the following theorem. 2

(2.5) If R is a un l£q1le factori:at1:on dornaiu, then 80 is Rrt I.

1 ~('() N .•J~l(·ol)~oll. 1,,'('llIri's ill .. lhslrlf('1 ,·l/f/(·hrlf, Vol. (D. \''''1 No:...;fl'lllld ('Olllpllll,\',

IIU'.; Pl'il)(·(~t,l)ll. N .•'., I~~:;I). (1Illl.p. :t, ~I\I'I~. l. ;'. li.

2 Nl'(\ N .• JlI('()h~()Il. li/'/'llIn's 11/ .Ilislr(/('I ,lIyt lint, \'1.1. (I). \ 1111 Nll:-;t rllllci (' ll11l 1'1II1,\.

111('.; PI·jIlC·llloll, N .. ' .. I~.:d). (11111f" I. ~1'I'1. n.
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\V(~ return now to the group ring of the infinite cyclic group l1__ For a choice
(.1' a g(~Jlerator t of H, an arbitrary element a ofJ H has a unique representation

00

a === '" a tn
.k., n ,

- 00

\\'11C'f'(~ all but a finite number of integers an are equal to zero. It follows that
I.IlC~ polynomial ring J[t] is a subring of JH. For every nonzero element a in
,111, we define f.l(a) to be the smallest integer n such that an =F 0. For ex­
;Iltlplo,

p(t3 + 2t - 7t-5 ) === -5, p(l) === O.

I fa = 0, we set p(a) === CI) with the usual convention that (fJ + CI) === (fJ and
'/1 I n == n + CI) === CI). Then,

(~.(») p(ab) === p(a) + f.l(b), for a, b E J H.

I>roof. If either a == °or b === 0, our convention gives the result; so we
lIssumc that both are nonzero. Let c === abo Then, if

\\(' have - 00

and
00

C == '" C tn
L..,n'

- 00

00 00

cn == L aib n- i == L aibn- i ·
i = - 00 i = /1-(a)

I r n < ft(a) + f.l(b) and i :2: ft(a), then n - i ~ n - p(a) < p(b) and so
a/)n-i == 0. Hence,

Cn === 0 for n < p(a) + fl(b).

I r n -== p(a) + p(b) and i > p(a), then n - i < n - f.l(a) == p(b) and so
(f"h n_ i === O. Thus,

C/1-(a)+/1-(b) === a/1-(a)b/1-(b) =F °
I)('(~ause the ring of integers is an integral domain. This completes the proof. 0

With the convention that t- 00 == 0, it is apparent that, for any a E J H, the
(·I(~1l1ent at-Il(a) is a polynomial. Hence, the function given by pa == at-/1-(a)

dc·filleH a mappinb of JH into the subring J[t] of polynomials. The fact that
allY power of t is a unit of J H implies that, for any a E J H, a and pa are
;l.~s()(:iates. Since t-/1-(a)t-/1-(b) == t-(/1-(a)+J1.(b)) for any a, b E J H, it is a corollary of

(~.H) that p is product-preserving. We conclude that JH i::; associate to the
Sll bring J[t] of polynomials. As a consequence of the Fundamental Theorem
or Arithmetic and Lemmas (2.5) and (2.4), it follows that J[t] is a g.c.d.
dOlnain. Hence, by (2.:3), we obtain our rnain theorem:

It is worth notillg Ull"t,,/ II iN :Ut inL('gral dOlnaill as a Lrivial ('()Il:-;(~qtH~llee of

(2.H). All exalllpic of a grollp rillg ""liC'11 is not. nil illt'('grnl dOlliaill iN LIlt· group
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ring of a cyclic group of order 2, in which

(t + I)(t - 1) = t2 - I = ()

is a valid equation. Another important result is

(2.8) The group ring of an infinite cyclic [jroup ha,s only trivial unit8, i.e.,
the powers of a generator t and their negatives.

Proof. Let a be a un~, of J Hand b its inverse. rrhCIl, ah =--= I and

(pa)(pb) == pI ~ I.

The only units of the polynomial ring J[t] are I and -I. Hence,

pa == at-l1-(a) === ±I,

a = ±tl1-(a),

and the proof is complete.

For an example of nontrivial units in a group ring, consider the group
ring of the cyclic group of order f5 generated by t. Then,

(I - t 2 + t4)(1 - t + t2)t2 === (1 - t + t3 - t5 + t 6 )t2

=== (1 - t + t3 - 1 + t)t2

=== t5 == 1.

Our conclusions about the group ring of an infinite cyclic group are actually
valid for the group ring of any finitely generated free abelian group. The
proof is the same. Let J( be a free abelian (nlultiplicative) group of rank'n~

generated by tI , ... , trn . Then, an arbitrary element a of J]( has a unique
representation

00

a == .L a'n
1
," . ,nmtln 1 ••• t m n m ,

n 1," • ,nm = - 00

where aU but a finite nUlnber of the integers ani'" . ,n
m

arc zero. For a "* 0,
we define fli(a) to be the smallest po\ver of ti which occurs in a. The function
p given by

{

at - 11-1 (a) ••• t - I1- m (a)
1 m'

pa ===
0,

a #- 0,

a === 0,

defines a product-preserving mapping of J K into the polynomial ring in m
variables J[tl' ... , tmJ. Clearly, every element is associate to its image under
p, and so J K is associate to J[t I , ••. , tmJ. Starting with the ring of integers,
\ve obtain after n~ applications of Theorem (2.5) the fact that J[t I , . · • , tm]
is a unique factorization domain, and a similar argument shows that the only
units are 1 and -1. -Lenllnas (2.4) and (2.3) together with the obvious ana­
logue of (t.H) then corn pl<~t(~ th(~ proof of

(~.n) 'flh(1 yr()lIfJ 'l'illf/ (~r ((, IOI(I (/f)(lhall yt'Ollp (~j' r","k JlI ~-. () 1:8 rt (J.~.d.

dOJJlu/:U u'h(),..;(' UllIN ul/its (to' (/ru,,}) ("('I/If'ots ((lid their l/f'(/Oti"(,,,,;.
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The notion of a greatest common divisor can be elegantly described in
terms of ideals. We recall that, in a commutative ring R \vith identity 1,
the ideal E generated by a subset S is the set of all finite sums

An equivalent characterization of E is as the smallest ideal containing S.
By this is meant the intersection of all ideals of R which contain S. Since any
ideal which contains S must contain the ideal generated by J,.';, the equivalence
of the two characterizations is obvious. An ideal is called a principal ideal if it
is generated by a single element. It is a simple matter to check that any two

associates generate the sa11~e ideal in R, and, conversely, any two generators of a
principal ideal of R are associates. A notion we shall find useful is that of the
snlallest principal ideal containing a given finite set of elements. The only
trouble is that, for commutative rings in general, there isn't any such thing.
The smallest principal ideal containing aI' . · . , an means the intersection of
all principal ideals of the given ring \vhich contain aI' ... ,an' This inter­
section is an ideal all right; but it doesn't have to be a principal ideal.

(2.10) If R is a cOJn1nutative ring with identity and at, ... , an E R, then d

is a g.c.d. of aI' . · . , an if and only if the intersection of all principal ideals of
R which contain aI' ... , an is itself a principal ideal generated by d.

Proof. Suppose first that the smallest principal ideal D containing
aI' .. · ,an does exist and that d is a generator. Then we certainly have
d Iai' i == I, . · . ,n. Consider next an arbitrary e E R such that e Iai'
i == I, ... , n. The principal ideal E generated by e contains aI' . · . , an and,
therefore, also contains D. Thus dEE and so e Id. We conclude that d is a
g.c.d. of aI' · . · , an' Conversely, suppose d is given as a g.c.d. of aI' .. · , an
and generates the principal ideal D. Since d Iaz' i == 1, ... ,n, it follows
that D contains aI' · .. , an' Consider next any principal ideal E containing
at, . · . , an' If e is a generator of E, \ve have e Iai' i == I, . · . , n. Consequently,
e Id and this implies that E contains D. Any lnember of a collection of sets
which is a subset of every set in the collection must itself equal the inter­
section of the collection. It follows that D is the smallest principal ideal
containing aI' · . · , an' and the proof of (2.10) is complet:JAs a corollary, we
have

(2.11) In a g.c.d. d01nain with identity, the g.c.d. of any finite set of elements
is the generator of the smallest principal ideal that contains them.

rrhe g<'llPrator of a prineipal iupa,J in sueh a ring is, of eourse, determined
only t,o wit,hin unit, Illlllt,ipl<'s, and tlH' Sc\'IlH' g()('S fot' LlH' g.e.d. 'rhllS this Jast
rc'slIlt. is LI'lI(' illsofar CIS it, IlIakc's S('IIS('; stl'i('Uy :..qwal\ing, it, is t,ll(' ('quival('nee

(·lilS~~C'S ",hic·1t nn' I'qllnl.
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3. The knot polynomials. The group rillg o!' nil ill(lnite cyclic group
becomes, upon selection of a generator t of tl1(~ gro\l p. \\' Ita,L tnay be called a
ring of L-polynon"ials in t. The letter "L" is sugg('st(~d !).\' L/l(' Laurent power
series with negative exponents which arises in the tlH\()I',V of' C'Olllplc·\: variables.
More generally, a ring of L-polynomials in n variable:-; ll' .... 11/ is Lilt' group
ring of a free abelian group of rank n generated by t1 , •.. , '", NoLi('(' that,
for one variable, the notion of L-polynonlial coincides with LhaL of rrc~(~

polynomial which was introduced in the last chapter. This is Hilllply l)('c'H.IIS('

an infinite cyclic group happens to be both free and free abelian. It Hhotlld he

emphasized tha~ the ring of L-polynomials is not determined by the group
ring alone. An element of the group ring of an infinite cyclic group generally
has two representations as an L-polynomial, e.g.,

3t2 - 5t + t-3 and t3 - 5t-1 + 3t-2 ,

depending on which of the two generators is set equal to t. Nevertheless, \ve
commonly refer to an element of the group ring of a free abelian group as an
L-polynolnial. In fact, the following definition of the knot polynomials is an
example of this practice.

For any integer k ~ 0, the kth knot polynolnial ~lc of a finite presentation
(x : r) == (Xl' ••• 'X n : r1, ••• ,rnJ of a knot group is the g.c.d. of the
deterlninants of all (n - k) X (n - k) submatrices of the Alexander matrix
of (x : r) \vhere it is understood that

~k == °
~k == 1

if

if

n - k > rn,

n - lC::;;: o.

The group I X : r I is canonically isomorphic to the knot group it presents;
hence, by (1.2), the abelianized group is certainly infinite cyclic. It follows
froln (2.7) and (2.8) that the group ring of the abelianized group of I x : r I
is a g.c.d. domain with only trivial units. "'Te conclude that

(3.1) The knot polynornials exist and are unique to within ±tn , where n is
any integer and t is a generator of the infinite cyclic abelianized group of the
presentation (x : r) of the knot group.

The smallest principal ideal containing a given finite set of elements is the
smallest principal ideal containing the ideal generated by this finite set of
elements. Hence, as a consequence of (2.11) and the definitions of the poly­
nonlial ~k and the elementary ideal Ek , we obtain the following characteriza­
tion of the knot polynomials.

(3.2) Each knot polynomial ~k is the generator of the smallest principal ideal
containing the elernentary ideal E k'

j\ very illl portant pra\·tical corollary of (:1.2) and our result that equivalent
Inatl'i('(\s have t.he S(\,Il1(~ ('I('n1(~lltaJ''y ideals is tilt' f:tet that th(\ knot poly-
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nomials of a presentation, like the elementary ideals, can be calculated from
any matrix equivalent to the Alexander matrix. One naturally uses the
sirnplest nlatrix one can find.

(3.3) ~k+l I~k'
Proof. We shall use a corollary of (3.2) and the fact that the elementary

ideals form an ascending chain (cf. (4.1), Chapter VII). Let (~k) and (~k+l)

denote the principal ideals generated by ~k and ~k+l' respectively. 'Ve have

(~k+l) ~ E k+1 ~ E k ·

Since (~k) is the smallest principal ideal containing Ek,

Thus, ~k === a~k+l' or ~k+l I~k'
The next theorem is the analogue for knot groups of the invariance theorem

for the elementary ideals, (4.5) of Chapter VII. Its essential content is that
the knot polyn01nials are invariants of knot type.

(3.4) INVARIANCE OF THE KNOT POLYNOMIALS. If (x : r) and (y : s) are
finite presentations of knot groups and

f: (x : r) ~ (y : s)

is a presentation equivalence, then, to within units, the kth knot polynon1ial ~k
of (x : r) is nlapped by f** onto the kth knot polynon1,ial ~k' of (y : s).

Proof. We shall use a corollary of (3.2) and the Invariance Theorem (4.5)
of Chapter VII. We recall that f** is the linear extension to the group rings
of an induced isomorphism of the abelianized group of I X : r I onto that of
I y : S I (cf. (4.4) and preceding paragraph in Chapter VII). Denote by (~k)

and (~k') the principal ideals generated by ~k and ~k" respectively, and by
E lc and E k ' the elementary ideals of (x : r) and (y : s), respectively. Then,

Now, an isomorphic image of a principal ideal is principal, and f**(~,J ~

f**Ek === E ,/. Since (~k') is minimal,

By the same argument,

and so

Nill('('f**(~/,') iN g('!H'raf,('d I).v.l'**/:).", UI(' ('I(·IIH'IIf.~ 1:1,..' :tlld.l'.t.*t1" :tn' a,~s()('iat,('s

:tile! t lte'n·r()n' IIl1it rtlldt iplc·;; or ('ill'" ot 11('1'. '('IIi;; ('olllpl(,t(,~ f II(' PI'()of'.
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The preceding theorem is of fundamental importance. It implies directly
that the knot polynomials are invariants of knot type. We recall the basic
principles: (I) If two knots represent the same knot type, their groups are
isomorphic (cf. (4.7) and the subsequent discussion in Chapter II). (2) Two
presentations of isomorphic groups are of the same presentation type, and,
hence, there exists a presentation equivalence between them (cf. (2.4) and
accompanying discussion in Chapter IV). Let us see how this invariance
theorem applies to a fictitious example. Suppose we are given two knots K
and K', known to be of the same type, and are asked to obtain, for some integer
k, their respective polynomials ~k and ~k" We determine an over presentation
of K, possibly simplify it, calculate the matrix of derivatives, select a genera­
tor t of the abelianized group, and obtain the Alexander matrix. We then
manage to find a g.c.d. of all determinants of order n - k and, finally, end up
\vith an L-polynomial, say ~k == 3t3 - 5t2 + t. Since the knot polynomials
are unique only up to units, it is natural to normalize ~k to the polynomial

~k == 3t2 - 5t + 1,

i.e., no negative powers of t and a positive constant term. Notice, however,
that the form of the normalized polynomial ~k depends on the choice of
generator of the abelianized group of the presentation. For if \ve select the
other generator 8 == t-I , the final normalized polynomial is

~k == 8 2
- 58 + 3,

which is not of the same form as 3t2 - 5t + 1 but is, in the ring J H, an
associate of it. The next question is: If we go through a similar calculation
for K' and obtain ~k" what must it look like? Let us assume that we have
picked a generator x so that ~k' is an L-polynomial in x. Since K and K' arc of
the same type, their knot groups are isomorphic and there exists an iso­

morphismf** between the abelianized groups of the presentations of the knot
groups. Notice that regardless of how difficult it may be to describe the is()­

morphism between the knot groups, the mapping f** is very simple. rrl}(\r(\

are only two ways to map one infinite cyclic group isomorphically onto
another: either f**(t) == x or f**(t) == X-I. In our example, therefore, cith('1'

f**~k == 3x2 - 5x + 1 or 3x-2 - 5x-1 + I.

By the Invariance Theorem (3.4), we havef**~k == ±xn~k" Hence, if~,/ is
norrnalized, there are just the two possibilities

~,/ == 3x2 - 5x -1- 1 or x2 - fix -~ :~.

AH \ve have jndi('(lted a!>ovp, these two reciprocal fOl'rns of the POIYllolllial aI'<'
cq ually good.

rrhe ahov(' fiet iLious (' xarn pl(~ is V('l'y fi(·t,i Lio1ls i Il<l('(\( I. \V(\ shall prove' i It

t,hp 1l<'xL ('hnpL('1' LhaL if t1 k (f) (.//Il I ('/1 1/ /1 I I I ('0 is all ;lrbif rary

Ilol'lnaliz('d kllot. poIYllortli:d, Lh('11 ('J ('11 I' I 0, , II. As a 1'<':-41111. or f Iti:--:
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symmetry, it follows that the normalized form of a knot polynomial is an
invariant of knot type. Specifically, if the normalized knot polynomials
~k and ~k' of respective knots K and K' are not identical for every k ~ 0,
then K and K' represent distinct knot types.

In any over presentation of a knot group any relator is a consequence of
the others and therefore can be dropped (cf. (1.3), Chapter VI). Thus, every
knot group has a presentation whose Alexander matrix is (n - I) X n.
Consequently,

(3.5) The Oth elementary ideal and polynomial of a knot group are trivial:

Eo == ~o == o.
This is actually a special case of the more general fact that the Oth ele­

mentary ideal of a finite presentation is trivial if and only if the abelianized
group of the presentation is infinite.

Let (x : r) == (Xl' • • • 'Xn : r l , • • • , r m ) be a presentation of a given knot
group. We denote by y the homomorphism of the free group generated by
Xl' . • • , X n onto the factor group IX : r I, and by a the abelianizer of Ix : r I·
Suppose that all the generators of the presentation are mapped by oy onto a
single element, i.e.,

i, j == I, . · . , n.

This condition is in fact satisfied by any over presentation (cf. (1.1)). The
entries of the Alexander matrix A == II aij II of (x : r) are defined by

(or.)
aij == oy ax'l. '

3

i == I, .. · , m and j == I, · · · , n.

By the fundamental formula (cf. (2.11), Chapter VII),

n (or.)r i - 1 == 1 _z (Xj - I).
j=l aXj

Since yri == 1,

n (or.)0==.1 ay -aZ (ayx j - I).
)=1 X j

Since ayxl == ayxj , j == 1, · . · , n, we can write

n

o == (1 aij)(ayx1 - 1).
j=l

The element ayx1 is a generator of the infinite cyclic abelianized group of
IX : r I; so (ayxl - I) # O. Since the group ring of an infinite cyclic group is
an integral domain, .",

() : - 2: ftd'
oj I
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(3.7) The Alexander matrix A of any finite presentation of a knot group
which satisfies (3.6) is equivalent to the matrix obtained by replacing any column
of A with a column of zeros.

Suppose (x : r) is an over presentation with n generators and n - 1
relators. As remarked above, (3.6) holds, and so (3.7) is applicable. In this
case, however, A is an (n - 1) X n matrix. If one column is replaced by
zeros, there remains at most one (n - 1) X (n - 1) submatrix with non­
zero determinant. Since equivalent matrices define the same elementary
ideals, it follows that the 1st elementary ideal of (x r) is principal. Hence, by
(3.2),

(3.8) The 1st elementary ideal of a knot group is a principal ideal generated
by the 1st knot polynomial ~1'

The 1st knot polynomial ~1 is the most important member of the sequence
of knot polynomials. It is called the Alexander polynomial of the knot group
and is commonly written without the subscript. Thus,

~(t) == ~l(t).

It also follows, of course, that the determinant of any one of the (n - 1) X

(n - 1) submatrices of A may be taken to be the polynoInial ~1'

4. Knot types and knot polynomials. The following examples illustrate the
power of the knot polynomials. It will become apparent that these invariants
provide a systematic tool for distinguishing knot types on quite a respectable
scale. The computational procedure is, based on the results of the preceding
sections. For example, it is a consequence of (1.1) that the Alexander matrix
of an over presentation can be obtained from the nlatrix of derivatives simply
by setting all generators Xi equal to t. On the other hand, it is usually to one's
advantage to simplify an over presentation before starting to compute deriv­
atives. However, if all the generators of one presentation of a knot group are
mapped by oy onto a single generator of the abelianized group, the same will
be true for any other presentation obtained from the first by means of Tiet~e
operations I, I', and II'. So one may still set all generators Xi equal to t after
simplifying an over presentation provided no new generators have hn(~1l

introduced in the process. Notice, moreover, that (3.7) is valid for sHeh

presentations. This faet ohviouRlyoffers a subRtantial conlputational ShOl't.(~HL.

More often than not, a group presentation is written \vith relations J'ath(~1'

than thn tnor<' fOl'lual n,laf,ol's:

( " I r ... r. I' ,. /I -",'1' ••• , 'fUt "i I• 1ft •
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The relation ri == Si corresponds to the relator risi - 1 . We have

orisi-I ori -1 OSi
---==--r·s· -OX

j
OX

j
1, 1, ox

j
•

Since the canonical homomorphism y maps every relator onto 1, computation
of the entries ali of the Alexander matrix is simplified by the observation that

In the examples which follow we consider first those knots for which we
have already computed group presentations in Chapter VI.

(4.1) Triv£al knot (Figure 46).

Figure 46. n(R3 - K) == Ix :/

Rather than talk about a matrix with one colutnn and no ro\v~, \ve observe
that the presentation (x :) is of thc san1C typP (1:-; (x : 1). Hence, the Alex­
ander matrix is simply A == II 0 II and

~k == 1 for k?,: 1.

(4.2) Clover-leaf knot (Figurc 47).

x y

Fig-tlrc 4'7_ 1T( 1(1 I .r ..'/ : .f.'/.r .'/.1'.'1 I
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The two entries of the Alexander matrix A == II all a l2 II are

a
all == ay ax (xyx - yxy) == ay(l + xy - y),

a
a12 = oy oy (xyx - yxy) = oy(x - I - yx).

Setting ayx == ayy == t, we obtain

Hence,
A == II I - t + t2 -I + t - t2 11.

~l == I - t + t2 and ~k == I for k ~ 2.

So the clover-leaf knot cannot be untied. We have, however, already proved
thi8 fact in Chapter VI.

(4.3) Figure-eight knot. A Wirtinger presentation in which x and y cor­
respond to the overpasses shown in Figure 48 can be sirnplified to give

7T( R3 - K) == I x,y : yx-1yxy-l == x-1yxy-1x I.

x

Figure 48

;\gaill. ,,"e set ayx == ayy == t. The cOlnputation is halved by the observation
that :-;incl' (3.7) hold~ for the above presentation, either one of the t\VO entries
of the ...-\Jexandef Inatrix Il1ay be ~pt equal to the polynomial ~l' Thus

- -It] -- I - 1 = t - :~ -t- t-1 .

:\("'III:dizill,~. \\(' olJtaili

:~I I I.

( ) II \ i011 S Iy, ,\ I, I 1'4 I I' " ' ~~ \ \ ' 4' 4' Oll (' IIId4' t II: It t IH' Ii~ II 1'4 ' - ( , j~ II t I\ II () t' is II 4) t,

Iri\'j;t111lld I:~ Or:l dll14'I'4',II 1,\ 114' 1"t"11 tl\4' (,1<1\4'1' 1(';11
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(4.4) Three-lead jOfur bight Turk's head knot (Figure 49).

Chap. VIII

'Tf(R3 - K) == I X I ,X2,X3 ,X4 : Xi == [Xi+3, Xi-+\]Xi+l[Xi+12' X i+3 ],

i === 1, . · . ,4: integers Tnod 41.

Figure 49

As can be read from Figure 49, this presentation is obtained by simplifying a
Wirtinger presentation; the generators xl' . · . , x4 are four of the original
eight. Accordingly, we set ayxi == t, i == 1, .. · ,4. The Alexander matrix

A == II aii II is given by

a
aij == oy -a (Xi - [Xi+3' Xi+12]Xi+l[Xi+12' X i+3J)·

X j

Hence,

aii == 1

a i ,i+l == -1

ai ,i+2 == -t + 2 - t-l

a i ,i+3 == t - 2 + t-l

I
I

I

J
i == 1, .. · ,4; indices
are integers mod 4.

Anyone of the four relations is a consequence of the other three and may be
discarded. As a result, \\'e lnay drop the 4th row of the matrix and obtain

2 :l 4

- -I t I .) l I .) t -l

.1 ,--.' ... 0) t I I I .) , t-
:~

0) f I .) I f I-
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The reader should check the operations in the following reduction of A to an
equivalent matrix of simpler form.

1 -1 -t + 2 - t-I

~IA~ t - 2 + t-I I -1

0 t - I + t-I 0 01

I 0 -t + 2 - t-I 0

A 1"0./ t - 2 + t-I 0 -1 0

0 t - 1 + t-I 0 0

0 0 -t + I - t-I 0

A 1"0./ t - 3 + t-I 0 -1 0

0 t - 1 + t-I 0 0

(t - 3 + t-I)(-t + 1 - t-I) 0 0 0

A 1"0./ 0 0 -1 0

0 t - 1 + t-I 0 0

II (t - 3 + t-I)~ - 1 + t-I) 0

~IIA 1"0./

t - 1 + t-I

Hence, the normalized polynomials are

~1 == (t2 - 3t + l)(t2 - t + 1)2,

~2 = t2 - t + 1,

~k = I for k ~ 3.

So this knot is neither trivial, nor the clover-leaf, nor the figure-eight. Notice
that the elementary ideals E I and E 2 are both principal ideals: E I generated
by ~I and E 2 by ~2'

(4.5) Stevedore's knot (Figure 50) .

.r and yare Wirtinger generators, and ,ve set ayx = ayy = t. Using (:~.7),

\Vc have immediately

a
~I == oy ax [(X!J-l)-2y (xy-l)2X - y(xy-I)-2y (xy-I)2]

--·-~-I"2t -j-t---(-2t-f-2t2 )
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y

x

Chap. VIII

The higher polynomials are, of course, all equal to I. On normalizing, we
obtain

~1 == 2t2 - 5t + 2,

~k == 1 for k ~ 2.

The higher elementary ideals are also trivial.

E 1 == (2t2 - 5t + 2),

Ek==(l) for k~::!.

(4.6) (Figure 51).

Fig-tire 51

y
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We omit the details; but one can simplify a Wirtinger presentation and obtain

1T(R3 - K) = I x,y,z : r1,r2 1

where x, y, z are the Wirtinger generators indicated in Figure 51, and the
relators r 1 and r2 correspond to the following relations.

r
1

y~lxyx-ly = x-1zx-1zxZ-1x,

r2 x-l ZXZ-1X == y-lzyz-Iy .

Under the mapping oy the generators x, y, z are each sent into t, and the
Alexander matrix of the presentation can be written down quite easily. We
get

_ (ar l ) _ -1a13 - oy az - -2t + 1

(ar2)
a21 == oy ax = -t-1 + 2

~ II

~II.

/I ~~~1-+32 -;=: ~:
I)

3 3t -I + 2t

-1~2t 1-2t

II
2 -0 t 0

1 - 2t

Consequently,

Nince 2 - t and 1 - 2t are distinct irreducibles, their g.c.d. IS I. Hence,

~l ::~ (2 - t)( I - 2t) = 2 - 5t + 2t2 ,

11
k

I (()f' Ie .~.

'rlt(· ~('('()I)(I (·I(,tlu·lIf,ar,Y i(!«'nl If;''.!, iN g('I)('r~,f,('d hy ~ I alld ~l I. rrhat thi~

id~'al iH lIot, f,f)(. \vhol(' :~I'OUp I'i.,:--,: ,111 of Ll14' alwlialliz('d group or f,f)(, PI'('~('ld,a.
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tion may be seen by mapping J H homomorphically onto the integer~ J by
setting t ---+ -I, t-I ---+ -I. Under this homomorphisln the idcal E 2 is Inapped
onto the integral ideal generated by 3 since

2 - t ~ 3,

I - 2t ---+ 3.
We conclude

E1 === (2t2 - 5t + 2),

E 2 === (2 - t, 1 - 2t) is not a principal ideal,

E k === (I) for k 2 3.

Comparison with the preceding exanlple sho\\·s that the t\\·o knots exhibited
in Figures 50 and 51 have thp sanle knot polynontials but distinct e[(!)Jlentary
ideals. These examples verify the contention nlude in Chapter "y'II and in the
introduction to this chapter that the clelnentary ideals are strong{~r invariants
than the polynomials.

(4.7) (Figures 52 and 53).

Figure 53

Figure 52

The Alexander matrix of each of these knot types is equivalent to tlu\ n1atrix

114t2 -7t+4 011·
rl'hllS, flip ))/cthods developed 'in the last lu'o chapters fail to di8tinf/ui8hthelll. rrheir
groups ('clll, ho\\'(\\'('I', be shown to 1)(' nOllisornorphic by oUH'r tlH,thods. 3

:1 H,\ Ill.' IlIddllg III VII l'ill.ll!, ur 11111 S.'C·OllcJ (',yc·llc' 1)f'll.IlC'lwd c·o\'.'ri'lg; c·r. II. :--l.'Il'.'I't, "Din
\ .',. ,.'ldllll'IIII1-" 111\'111'111111.111 e1.,/' 1,,\ I.lis.,IH'/l 1\IHll..'llldH,r111g. ' /,llIlgl'II." /llllI/h, .Il/h. II (I!t:~;))

I'll S I 101
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(4.8) Granny knot and Square knot (Figures 54 and 55).

a-Ixa =xax- 1

x

a,.

a

Figure 54

a,.

a

Figure 55

y

y

It can be shown by more advanced techniques that the knots shown in
Figure 54 and Figure 55 represent distinct knot types.4 However, the
methods of this book fail to distinguish them fronl the very outset. Not only
do they have equivalent Alexander matrices, but they even possess isomorphic
groups. For each, we have

7T(R3 - K) = I x,y,a a-Ixa = xax-I , a-1ya == yay-II.

EXERCISES

1. For each of the five knots in Exercise I of Chapter VI, find an Alexander
Inatrix with one row and two columns. Compute the elementary ideals and
knot polynolnials.

-1 I{,. H. Fox. "On t.lw (lolnplnlJlont,JI.I·'y I )oJJHl.inH of a Certain Pair of Inequivalont,
Knot,H," Ned. Ak(((!,'lnit' JFt'ft'II..,U'1I., /mlofl. 1"0111. Vol. I,J (IH!)2), pr. 37 -40; H. ~nifOf'f"

"V(H't"l('ltlillgllllgHillvu,riu,lIlnll," I .....'. H. /1""1188 . ..1k(((l. JVi,..;s. Ut'rfin Vol. 2H (IB:~:~), pp.

HII H~:l.
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(b) False lover's knot.
(d) Bowline knot.

2. Compute the elementary ideals and knot polynonlials for each of the
following four knots.

(a) True lover's knot.
(c) Chinese button knot.

CL0-
Figure 56a

Figure 56c

Figure 56b

Figure 56d

3. Using the presentation of the group of the torus knot Kp,q given in
Chapter VI, Exercise 3, show that the Alexander polynomial is

~(t) _ _(t
p
_

q
_-_l)_(t_-_l)

- (tP - I )(tq - I) ,

andE2 ==1.

4. Prove that the degree of the normalized Alexander polynonlial of a knot
is not greater than the number of crossings of any of its diagrams.

5. Show that the Alexander matrix class of the knot in Figure 57 is the
Harne as that of a trivial knot.

H. Prove that the group of the figure-eight cannot be mapped homomorphi­
('cd l.v 11 pon the grou p of the overhand knot.

7. I r wC' f,ic~ two knot.s Oil t.he NalrH' pie('c~ of Ntring, thn ('('Nult is called a
('oJrlpoNit.c' kllot. Prov(' t.hat, U}(, Alc'xalldc',. POIYIlOlllial or a ('olnpoNitn knot is

t 114' product, of UIC' pol.vJrortlial~~of Ul(' "OIl~~t.it,uc·llt, kIlOt.N.



EXERCISES 133

Figure 57

8. Let k and n be positive integers and let us try to assign to each overpass
x j of a regular knot projection an integer Aj in such a way that corresponding
to each crossing x j ---+ I ---+ x j +1 the relation k(Ak - Aj ) == Ak - Aj +1 (mod n)

tXk
holds. Prove that this can be done nontrivially if and only if Ll(k) == 0
(mod n).

9. Prove that the group of a knot can be mapped homomorphically upon
the group of Chapter VII, Exercise 12, if and only if Ll(k) == 0 (mod p).

10. Let j(t) be an integral polynomial and let us try to assign to each
overpass x j of a regular knot projection an integral polynomial Aj(t) in such
a way that corresponding to each crossing as sho"\\TJ1 in Exercise 8 the relation
t(Ak(t) - Aj(t)) - Ak(t) - A j +1(t) (mod j(t)) holds. Prove that this can be
done nontrivially if and only if j(t) divides d(t).



CHAPTER IX

Characteristic Properties of the

{(not Polynomials

Introduction. A survey of the knot polynomials Llk(t) computed at the end
of the preceding chapter shows that, for each of them, Llk(l) == ±1. A proof
that this equation holds for all knot polynomials is the objective of the first
section of the present chapter. The survey also substantiates the assertion
that all knot polynomials are reciprocal polynomials, i.e., for every knot
polynomial Llk(t), there exists an integer n such that Llk(t) == tndk(t-1 ). Thus,
if dk(t) == cntn + cn_1tn- 1 + ... + co' the coefficients exhibit the symnletry
Ci == cn- i ' i == 0, ... , n. As was pointed out in Section 3 of Chapter VIII,
this property is essential to our conclusion that knots of the same type possess
identical polynomials. It is therefore important to close this gap in the theory.
The proof that knot polynomials are reciprocal polynon1ials will be effected in
Sections 2 and 3 by introducing the notion of dual group presentations, the
crucial examples of which are the over and under presentations of knot groups
defined in Chapter VI. It should be emphasized that our arguments apply only
to tame knots, and throughout this chapter "knot" always means "tame knot."

It is known l that the two properties

dl(l) == ±1,
Lll (t) is a reciprocal polynomial,

characterize the 1st polynomial or Alexander polynomial Ll1(t) of a knot; in
other words any L-polynon1ial that has these two properties is the 1st poly­
nomial of some knot.

1. Operation of the trivializer. An element a of the group ring J H of an
infinite cyclic group H has a representation as an L-polynomial

00

a == a(t) == ~ antn,
- 00

where all but a finite number of the integers an are equal to zero. The ilnage ofa

I II. N~'ifnl't" "Obnr das Onsd,ln('L von Knot,on," Math. Ann. Vol. llO (In:l4), pp. fi71­
[)!.~; <L Tol'l'o:-! ltnd IL fl. Fox, "Dunl Pl'tl:-!(Hlt.a,f,iorm of UlO <:I'OUp of H, Knot.," Ann. of
ill(l/h. V(,I. [)~J (l!tI,I), 1'1" ~II ~IH.
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under the trivializing homomorphism t : J H -+ J is obtained by setting t == 1
(cf. Section 1, Chapter VII). Thus, we write ta == a(I). An invariant of knot
type, simpler than the knot polynomials ~k(t), is the sequence of integers
I ~k(I) I, k == 1,2, " " ". Although each knot polynomial is specified only to
within a unit factor ±tn , the absolute value I ~k(l) I is uniquely determined
by the isomorphism class of the knot group. This invariant, however, is useless
as a tool for distinguishing knot types. In this section we shall prove the
interesting theorem that, for any knot group,

(1.1) I ~k(l) I == 1, k == 1,2, " . ".

An equivalent result is

(1.2) For any finite presentation (x : r) of a knot group and integer k 2 1,
the image of the elementary ideal E k of (x : r) under the trivializer t is the entire
ring of integers, i.e., tEk == J, k == 1, 2 " " ".

It is easy to show that (1.1) and (1.2) are equivalent. Observe, first of all,
thatsince~k+ll ~k(cf. (3.3), Chapter VIII), (1.1) is equivalent to the statement
that I ~l(I) I == 1. Similarly, the elementary ideals form an ascending chain,
and so (1.2) is equivalent to the equation tEl == J. We have sho\vn that E l is
a principal ideal generated by ~1' It follows that tEl is generated by
t~l === ~l(I). Thus, if I ~1(1) I === 1, then tEl == J. Conversely, since the
generator ofan ideal in an integral domain is unique to within units, if tEl == J,

then I ~l(I) I == 1.
We now prove (1.2). Let (x : r) === (Xl' .• " 'Xn : r l , " .. ,rn ) be a finite

presentation of a knot group and A its Alexander matrix. As a result of (4.6) of
Chapter IV, the abelianized group of the knot group can be presented by
(x : r, [xi,x j ], i, j === 1, . " . , n). Denote the Alexander matrix of this presen­
tation by A'. Since the abelianized group of any knot group is infinite cyclic,
(x : r, [xi,x:J, i, j === 1, · " . , n) is of the same presentation type as (x :). The
elementary ideals of the latter are Eo === (0), E l === E 2 == . ". === (1). It follows
from the fundamental invariance theorem for elementary ideals (cf. (4.5),
Chapter VII) that

E (A') == {(O),
k (1),

k == 0,
k 21.

The ideal (1), generated by the identity 1, is, of course, the entire ring. We
next observe that the image of any Alexander matrix under the trivializer is
identical ,vith the image of the original matrix of free derivatives under the
trivializer. Furthermore,

And so,

a
t,) I·r, ,.r) I 0,

( .fA

":, j, Ie -- I, ... , n.
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Ilt'll('(',

tA' = ( II t ~:: II ) = e:) ~ tAo

l Jsing the results of this paragraph and (4.2) and (4.3) of Chapter VII, we
obtain

tEk(A) == Ek(tA) == Ek(tA') == tEk(A')

== {(O), if k == 0,
J, if k ~ 1,

and the proof of (1.2) is complete.

2. Conjugation. The immediate objective of this and the next section is
the theorem:

(2.1) For any knot polynon~ial dk(t), there exists an even integer n such that

Notice that if (2.1) holds for a polynomial dk(l), it also holds for any unit
multiple of dk(t).

The degree of an arbitrary L-polynomial a(t) == ~~ 00 amtm (am == 0 for all but
a finite number of values) is the difference between the largest and smallest
values of m for "\\Thich am #- O. Since this number is unaffected by multipli­
cation by a unit factor ±tlc or by the change of variable s == t-1, the degree
of a knot polynomial is a well-defined invariant of knot type. If the poly­
nomial Lik(t) is chosen in normalized form (no negative powers of t and a
positive constant term), then the integer n which appears in the statement of
(2.1) above is obviously the degree of Lik(t). Thus, in addition to stating that
knot polynomials are reciprocal polynomials, (2.1) implies that

(2.2) Every knot polynornial is of even degree.

The mapping ( )-1: G~ G which assigns to every element g of an arbitrary
group G its inverse g-1, is one-one and onto but not an isomorphism (unless G
is abelian). Since it is product-reversing instead of preserving, i.e.,

g,h EG,

it is called an anti-isornorphism. An important fact, albeit trivially verifiable,
is that ( )- 1 iH consiHtent \\,ith homomorphisnls: Given any homomorphism
4>: (/ )- JI, 1,h(~ rnapping diagnun i~ consistent. 'fhe unique linear extension

{f't
( ) I

._---~ (/

'/'1 0/'1
II

( ) I

~ II
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of ( )-1 to the group ring JG (cf. (1.2), Chapter VII) will be called conjugation
and denoted by a bar. Thus,

Using the theory of dual presentations developed in the next section, we shall
prove the important theorem

(2.3) The elementary ideals E k of any finite presentation of a knot group are

invariant under conjugation, i.e., E k == E k , k == 0, 1, 2, ....

Theorem (2.1) is a corollary of (2.3) and (1.1). The proof is as follows:
Denote by (Llk ) the principal ideal generated by the knot polynomial Llk • We
recall that (Llk ) is the smallest principal ideal containing Ek. Since Ek C (Llk),

In the group ring of an abelian group, conjugation is a ring isomorphism.
- - -

Hence, (Llk) is a principal ideal, and (Llk) == (Llk). Since (Llk) is minimal,

We conclude that

Generators of a principal ideal in an integral domain are unique to within
units; hence,

f1 k (t) = d n f1k (}) ,

where E = ±l. (Of course, f1k (t) = f1k and f1k (}) = ~k.) For k = 0, both

sides of the equation are zero, and the value of € doesn't much matter. For
k > 0, we know from (1.1) that Llk(I) =F 0. Hence, substituting t == 1 gives
immediately € == 1. Writing Llk(t) == Co + cIt + ··.+ cntn

, ,ve have ci == cn- i '

i == 0, · · · ,n. If n were odd, we would have by (1.1)

I Llk(1) I == 1 == 2 I Co + · · · + c( n-I)/2 I,
which is impossible. Hence, n is even, and the proof of (2.1) from (2.3) and
(1.1) is complete.

3. Dual presentations. The definition of dual presentations is conveniently
expressed using the terminology of congruences. If f: R -+ R' is any ring
homomorphism and a 1 ,(1,2 E R, we write a1 -- a2 (mod!), translated at is
COn!/r1J,(~'Jlt to (1,2 'JJlod'ulo.!, whenever fat =- .!a2. (The expression appears lTIOst
cOlllnlonJy in ('oll~id~ratioll of tl}(~ hOlno'llOrphi~1l1of U1P int(\gers J onto thn
ring ,/ It or r('~idll(, (1Ias:"H~N.) rrwo finiLn grollp pn's('IlLaLioIlS (x : r)

(;t:., ... ,.r" : 1"1"'·' r,,) and (y : s) (.'I" ... ,.'I" : SI' ••• ,SIl) ('oll:-4f,i
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tute a pair of dual presentations if there exists a presentation equivalence
(): (x : r) -+ (y : s) such that

(i) ()x i == Yi-1 (mod oy), i == 1, · · · , n,

(
ar. ) as.

(ii) () _t (X j - 1) == _, (Yi - 1)
aXj aYi

The homomorphism y is the extension to the group ring of the canonical
homomorphism of the free group generated by Yl' · . · , Yn onto the factor
group I y : s" and a is the abelianizer.

Dual presentations are ipso facto of the same type, and it therefore nlakes
sense to speak of dual presentations of a given group. It is our contention
that the group of any knot has a pair of dual presentations. Specifically, we
shall prove that the over and under presentations (1.1) and (1.2), Chapter VI,
are mutually dual. We assume that K is a polygonal knot in regular position
situated as described in Section 1, Chapter VI, and that overpasses, under­
passes, orientations, basepoints, generators, etc. have been selected as there
described. The notation will be the same. The presentations (1.1) and (1.2)
are abbreviated (x : r) and (y : s) respectively, and the canonical homo­
morphisms of F(x) and F(y) onto the factor groups I X : r I and I y : S I
are both denoted by y. Let (I., be the equivalence class of a path in R3 - K
with initial point Po' and terminal point Po. The mapping 'YJ defined by

'YJfJ == (I., • fJ • (1.,-1

for all fJ E 7T(R3 - K, Po) is an isomorphism of 7T(R3 - K, Po) onto
7T(R3 - K, Po'), cf. (3.1), Chapter II. This isomorphism induces a natural
isomorphism ()* of Ix : r I onto I y : S Iwhich is realizable by a presentation
equivalence (): (x : r) -+ (y : s) (cf. (2.3) and (2.4), Chapter IV). All of
these actually very simple ideas are summed up in the following completely
consistent diagram.

Consider an arbitrary underpass B k adjacent to an overpass A j • Where f3
is the equivalence class of the path shown in Figure 58 below, it is clear that

and that
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Hence,

ex

p'o
Figure 58
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and so

where a is the image of (r:J.. • fJ-l) under the isomorphism 7T(R3 - K, Po') ~
I y : S I. We denote the abelianizer on I X : r I and on IY : s I by the saIne
letter Q. Finally, therefore,

This coupled with the fact (cf. (1.1), Chapter VIII) that

(mod oy), i,j == 1, · · · , n,

implies
(mod oy),

and Condition (i) of the definition of dual presentations is established.
It is a corollary of the preceding two equations that

(3.2) Yi == Yj (mod oy), i,.i = 1, ... , n.

Moreover (ef. (1.1) anrl (1.2), Chapt('1' VIII), the infillit<~ ey<die al)(dialliz('d
group of I y : S I iH g(~n(~r'at(~d by thn Hingl.. pl.'U1PIli, s <l/,Y,., 'i I, ... , n.
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In order to establish (ii), we shall need the following lemma:

(3.3) Let a and b be any two simple paths in R2 - [JJJBand R2 - [JJJA,
respectively, having the same initial and terminal points (i.e., a(O) == b(O) and
a( II a II ) == b( II b II ). Then,

Oa# - (bD)-l (mod oy).

Proof. As a result of (3.1) and (3.2), we have

a# == X l
l (mod oy), for some integer l,

b~ == Ylm (mod oy), for some integer m.

Next, choose a simple path c in R2 - [JJJA with the same initial and terminal
points as a and b such that

c~ == Yl l (mod oy).

There are several ways to pick c. For example, one may simply follow along a
as closely as possible skirting around every projected overpass encountered
(cf. Figure 59). Suppose, for example, that the path a crosses under the

a
,....,,...., --~-----

~,...., ------- ..... --.... c

Y~

Figure 59

overpass Ai so that the resulting contribution to a# is X j l5. Then, as is illu­
strated in Figure 59, in skirting around f?JJA j the contribution to c obtained by
crossing underpasses is

(y . EI ••• y. Ep)y 6(y~Ep ... y~El).
~l 1p k 1p • 11

rrhllH th(~ ('xIH)Ju'nt Hlim of (J,:tt and (~o rnllst 1)(, equal. Sin('(~ ch- t is a elosed
path whi('h ('lItN no Pl'().i(,(~t,(~d OV('J'paNS('N, w(' hav(~



Sect. 3 DUAL PRESENTATIONS 1·11

Hence,

-and so
(mod ay),

(nlod ay).

Since aYY1 generates an infinite cyclic group, we conclude that l == In. Finally,
using Condition (i), we obtain

(mod ay),

and the proof is complete. Notice, incidentally, that (3.3) includes (i) as a

special case.

The presentations (x : r) and (y : s) are unaffected by the size and shap..
of the regions Vl' ... , Vnand Ul' · · · , Un' Consequently, we shall aSSUIlH'

that the points of each one remain close to the particular projected underpass
or overpass covered. Consider an arbitrary pair of integers i, j == 1, ... , II.

We have (cf. (1.1) and (1.2), Chapter VI) r i == Ci~ • v i
fr • (Ct~)-l and

8 j == dj~ . u/v. (d}')-l. Notice that

(mody),

and sirnilarly

(mody).

Thus, in checking (i'i), ",'e need only consider occurrences of x j jn 'l't'; and .'I,

in Uj~' \\'e shall say that the overpass A j is adjacent to the underpass /1, if

they haye an endpoint in common, i.e., if they occur con~ecutivelyalong 1\".
The different cases may be classified as follo,vs:

CASE (1) The overpass A j neither crosses over nor is adjacent to the lIlIf!('l'jJ(/ ....·....·

B i . In this case, v/: does not contain x
J

and u/ does not contain ?fl' 11('lll'(',

(mody).

CASE (2) The overpass A j crosses over B i at least once, but ':8 '}lot (/,(~j(/,('(Illf /0

B i . \Ve include the possibility that A j crosses B i sevpral tinles. I I ()\\'l'\'('I',

ar
t(\l'1l1 t () -' , (\ lid

a.r)
is till' Slllll of t It(,

each intersection of v
l

,vith f!JJA j f'ontribut(,s a n1onOlll ia I

ari . , !" aS j
- IS .J llst the SlUll of these con tl'i bll tiollS, ~Iln I1arly, -
a:rJ a.'l,
JllOIlOlllials ('ontl'ihllL('d hy t.Ju' int,('r's('ct.ions of II) and :fJlt,. 'rl"ls \\,(' III:lY

sttldy (1)(' Cl'ossi JIg cd, a Li 1Il('. 'rill' sif Iia Lioll :l 1, a si Ilgl(' ('I'ossi ".~~ of' I:, I,.\' . I )
is sllo\\ II ill Figlll't, no.
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~

tl"r _ __ /, :\
I --- _~ I '..., \ I~
I _ /1 \ I \ / I
I c

1
-"', / ~'I I

I ....... / v I

" /~, ....... , { , g
I / ,d. '~ I
J,/ ,J we [

, T I
" I I
/"-------~----+--- ----+--------------""7

/// h I I // _-7
./ I E I, //_/_.-.-'-- //

/.// X J AJ ;~.- /

~~ -;;? : Y~ //' k
/",,/ I I //

// -------~-----+--- ----!-------------_../
~~----- I I :

I I
I Bz I
I I
I Il to ~ __ J

\. :'" \
f \ I ,~\

\1 ~

'J

Figure 60

Then,
ri == ci#(e~xj1#xj-~gJ)(Ci·)-1,

Sj == djP(hPy/kPYi-~lP)(dl)-l.

Hence,

Therefore,

aari (x j - 1) == ci~e~(1 - f~)(x/ - 1) + ·· ·
X j

as.
-aJ (Yi - 1) == djPhP(1 - kP)(y/ - 1) + . ··

Yi

(mod oy),

(mod oy).

By the lemlna (3.3),

Hence,

Oc/e# == (djPhP)-l

Of~ == Yi-~

Ox} == (kP)-l

(mod oy),

(mod oy),

(mod oy).

o(or, (xj - I l) === dJDhP( 1 - y/)(kD - I) + .·.
a:r j

and it follo\vN UlaL

(lnod oy),

(
or

() -' (.r)
a.r)

I) (rnod oJ').
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(mod ay).

(mod ay),

CASE (3) The overpass A j is adjacent to B i . The situation is illustrated in
Figure 61.

Figure 61

We have
ri == ci~(e~xjEf~)(Ci~)-l,

Sj == djD(gDy/hD)(d/)-l.
Hence,

By the Lemma (3.3),
O(Ci~e~) = (djDgD)-l (mod ay),

Oxj
E = Yi -E (mod ay),

and so

(ar. )o _t (x j - 1) == (djPgD)(y/ - 1) + . · .aX j

We have already observed in Case (2) that the contribution from the crossings
of A j over B i yield terms that cancel in pairs (mod oy). It follows that

(or. ) as.o _t (x j - 1) == -' (Yi - 1)
aX j aYi

and the proof that (x : r) and (y : s) are dual presentations is complete. We
have p('()v(~d

(:~.4) ('orn's/Jullt!ill!! 01'('1' alld 1I"t!f'r pn's('IIlal':olls (~lllM~ !lrou/) (~l (1, knol arr,

dual pn's('IIla,li(}lIs.
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'rl)(~ inval'iance under conjugation of the elementary ideals of a knot group,
i.(~., (~.:q, is an easy corollary of Theorenl (3.4). In view of (3.1) and (3.2) and
Conditioll (i), we have the stronger result

i, j == I, · .. , n.(moday)(ar i ) _ 08 j
() - =-

GX j OYi

'rhat is, if A and B are the Alexander matrices of (x : r) and (y s),
reRpcctively, then

Cfhe t indicates the transposed matrix.) The transpose of a square matrix
obviously has the same elementary ideals as the original. Let us denote the
kth elementary ideals of (x : r) and (y : s) by E~l) and Ek2), respectively.
The kth ideal of an arbitrary matrix M we denote by Ek(M). Thus E11

) ==
Ek(A) and E~2) == Ek(B). Finally, therefore (cf. Chapter VII, (4.3) and (4.5)),

Ei2) == (}**Ei1) == Ek(Bt)

== Ek(B) == Ek(B)

- E(2)
- k'

Hence Theorem (2.3) of this chapter is proved.

EXERCISES

1. Show that there exists an automorphism of the group G of the clover­
leaf knot that induces conjugation on the group ring of the abelianized group
GIG'.

2. Use the result of Exercise 1 to prove directly (i.e., without using dual
presentations) that the elementary ideals of the group of the clover-leaf knot
are invariant under conjugation.

3. Prove directly (i.e., without using dual presentations) that the elemen­
tary ideals of any invertible knot are invariant under conjugation.

4. Show that the Alexander polynomial Ll(t) ofany knot can be written in the
form

Ll(t) == th + c1th- 1(1 - t)2 + c2t
h- 2(1 - t)4 + ... + ch(1 - t)2h,

and that, conversely, given any set of integers c1 ' •• • , ch there is a knot whose
Alexander polynomial is

h

th -{- .L CJh-i( I - t)2i.
i I

f). Prove' that, t.he·I'«' is no knof, \\ hOSf' group is

I.r ,.'/ : .1'.'/." '.'1- 1 yy 'yyy I·
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6. Prove that ~(-1) is always an odd integer.

7. If the Alexander polynomial ~(t) of a knot is of degree 2h and E is a
complex number on the unit circle, show that ~(E)/Eh is real.

8. If the Alexander polynomial ~(t) of a knot is of degree 2h and w is a
primitive cube root of unity, show that ~(W)/Wh is an integer.

9. (See Exercise 8.) Show that ~(W)/Wh = ~(w2)/W2h, and hence that
,~(w)~(w2) is the square of an integer.

10. Prove similarly that if i is a primitive fourth root of unity, then
~(i)~(-i) is the square of an integer.
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Differentiable knots are tame. Let K be a knot in 3-dimensional space R3
which is rectifiable and which is given as the image of a periodic vector..
valued function p(s) == (x(s), y(s), z(s)) of arc length s whose derivative
p'(s) == (x'(s), y'(s), z'(s)) exists and is continuous for all s. The period l is the
length of K. We shall prove that K is tame, i.e., equivalent to a polygonal
knot.

We denote the norm, or length, of a vector P E R3 by II P II and the dot
product of two vectors PI' P2 E R3 by PI · P2' If neither PI nor P2 is zero, the
angle between them is given by

P .p
~ (p P ) _ cos-I 1 2
~ l' 2 - II PI II II P2 II .

Consider any three parameter values so' SI' 82 which satisfy So :::;; S1 < 82­

From

follows

(1)

where

Since parametrization is made with respect to arc lellgth, we have II p'(so) II == I.
Hence,

and so
II - II Q III :::;; II p'(so) + Q II :::;; 1 + II Q II,

II p'(8o) + Q II == 1 + q

for some number q which satisfies Iq I :::;; II Q II. Thus,

(2)

Choose an arbitrary positive E :::;; i. Since the derivative p'(s) is continuous
and hence uniformly continuous, there exists ~ > 0 so that if I s - s' I < b,
then II p'(s) - p'(s') II < E. Accordingly, we impose the restriction S2 - So < b.
Then,

and

I q I· II (2 II . - E.

1-17



(4)

148 APPENDIX I

Dividing (1) by (2), we obtain

P(S2) - P(Sl) _ ' s P
\I P(S2) - P(Sl) \I - P ( 0) + ,

where

P == Q - qp'(so) .

1 + q

Since q ~ -e ~ -t, we have 1/(1 + q) :s: 2. Hence,

(5) II P II :::;: 2 II Q - qp'(so) II :::;: 2(11 Q II + I q I) :::;: 4e.

We shall draw two conclusions from the equations of the preceding para­
graph. The first, an immediate corollary of (2) and (3), is the well-known fact

(1.1) The ratio of chord length to arc length along K approaches 1 as the
latter approaches o.

The second conclusion is the principal lemma on which our proof of the
tameness of K depends.

(1.2) For any angle oc > 0, there exists c5 > 0 such that, for any s, s', U, u'
in an interval of length c5 and such that s < s' and u < u',

<9: (p(s') - p(s), p(u') - p(u)) < ri.

Proof. This lemma is a consequence of (4) and (5). For if

. {' '}So == mIn s, s , u, u ,
then

Hence,

p(s') - p(s) ,
II p(s') - p(s) \I = p (so) + P,

p(u') - p(u) _ ' s P'
II p(u') - p(u) I! - p ( 0) + ,

II P II ~4e,

II P' II ~4E.

where

Consequently,

p(s') - p(s) p(u') - p(u) _
, ., == 1 + q,II p(s ) - p(s) II II p(u ) - p(u) II

fj == p'(so) . (P + P') + p. P'.

I q I :::;: II P II + II P' II + II P 1111 P' II :::;: 8e + 16e2
,

which can be made arbitrarily small. Thus, cos <t (p(s') - p(s), p(u') - p(u))
can h(~ made arbitrarily near I, and (1.2) foIlowH.

Wc~ now turn to UlP ulain argll flu'raf, thai, !{ is tanH'. For any two points

p, ,/ ( /\'. Ic'(. an' (p.l/) Iw tJu' shol'(.(·r an' 1('ngU. Iw(.w('.'n Hac'fll along !{.
N() (.( , LllaLi r I S 8 I I . II:!' I w It (,n' ... i:--I UIt ' (.0 (.n I I('II g (.Ia () r Ul( • k fa () (. ! LI )( '11
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arc (p(s),p(s')) == Is - s' I. Consider the function f: K X K ~ R defined by

{
II p - p' II/arc (p,p'),

f (p,p') ==
1,

p;;j=-p',

p ==p'.

We have shown that the ratio of chord length to arc length approaches 1 as
the latter approaches 0'. Consequently, f is continuous. Since it is positive and
its domain is conlpact, it has a positive minimum value m. Thus,

(6) II p - p' 11 ~ marc (p,p'), p,p'EK.

We next select a positive angle (Xo < 1T/4 such that tan (Xo < mJ2. For
this angle (Xo, choose ~ in accordance with Lemma (1.2). Let n be a positive
integer so large that lJn < ~J2, and select parameter values {silt:: _ 00 such
that Si+l - Si == lJn. Notice that P(Si) == p(Sj) if and only if i == j (mod n),
so that the set {P(Si')}t~ _ 00 consists of exactly n points of the knot. For each
Si' we form the double solid cone Ci with apex angle (Xo whose axis is the
chord joining P(Si) and P(Si+l) (cf. Figure 62).

Figure 62

The following four propositions are corollaries of (1.2) and (6).

(1.3) Adjacent cones intersect only at their common apex.

Proof· Since Si+2 - Si == (Si+2 - Si+l) + (Si+l - Si) < ~ it follows that
the acute angle between the axes of the cones Ci and Ci+1 is less than (Xo, which
in turn is less than 1TJ4. The apex angle of the cones is (Xo. Thus, there is no
chance of intersection except at the apex.

(1.4) If Si :::;: S :::;: Si+l' then p(s) E Ci .

Proof. We have

<t (p(s) - p(St)' P(Sz-t-l) - p(St)) < C(o'

. ). (1) (8 l I I) P(8 ), 1)(8 I I 1) - p (8 ,)) < ~ <XC),

when('(~ (I.·t) f()II()\V~ irnlll('dia{,('ly.
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(1.5) For every perpendicular cross section D of any cone Ci' there is
exactly one s in the interval [Si,Si+l] such that p(s)ED.

Proof. rrhe existence of S follows from (1.4) and the continuity of the
function p. To get uniqueness, suppose that Si ::;: S < s' ::;: Si+l and that p(s)
and p(s') lie on a single plane perpendicular to the axis of C i . Then the angle
<9= (p(s') - p(s), P(Si+l) - P(Si)) must, on the one hand, be equal to TT/2 and,
on the other hand, be less than ClO• This is a contradiction.

(1.6) Nonadjacent cones are disjoint.

Proof. Suppose otherwise, Le., we assume that there exist nonadjacent
cones Ci and OJ and a point p in their intersection, cf. Figure 63. Let p(s) be

Figure 63

the point with Si ::::;: S ::;: Si+l on the plane which contains p and is normal to
the axis of 0i. The analogous point for OJ is p(s'). Then,

II p(s) - p II ~ (D tan oto'

and the same inequality holds for p(s'). Since C i and OJ are not adjacent along
I ,

K, we know that - ::;: arc (p(s), p(s )). Thus,
n

IIp(s) - p(s') II < 2 arc (p(s), 1)(s')) tan ao .-~ 'ffl arc (p(s), p(8')).

'rhi:-; (·ollt.radi('t,:-; (H), alld (I.H) i:-; l)f·ovnd.
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The proof that K is tanlO iH virl.lIally complete. It only "illl" 11l~ to verify
that, for each double cone (,t" t.h,·I'C~ f'xiHts a homeornol'ph'f-t'11 It, fir (Ji onto
itself which is the identity on t.hf~ JU)lllldary of the cOile, ,1.lld tll'll"1 1\' (\ Ci

onto the axis. In view of (1.4) and (I [)), UH~ construction of t-UIIIIl ,. '"" pping is
not hard. Consider an arbitrary (·Iolwel (·ircular disc D wiLh ,lllfd Ilf I'CI' We

include the possibility that J) iN d('g"t14~rll L(', i.e., D = {Po}. 1.'01' ,'v,,, \' tid 'trior
point P of D, a mapping gD,p: J) .. I) iH d('fined by mapping any I ",y Iflltltll~

P to a point q on the circumfef'(~Il('(~of I) lirlt'arly onto the ray joiluuJ.'. I'll t .. if

so that P ~ Po and q~ q (cf. Figlln~ H·I). It. iN obvious that gD,p iH n. 1a0'''I'I)

/)

Figure 64. Perpendicular cross section of a cone

morphism of D onto itself which leaves the circumference fixed and maps
P onto Po' FurtherIIlore, gD,P(P') is simultaneously continuous in p and p'.

Returning to the double cone, we consider an arbitrary point p E Cio Let
p(s) be the intersection of the knot K with the plane containing p and normal
to the axis of Ci . This plane intersects Ci in a disc (degenerate at the end­
points) which we denote by D s' The desired homeomorphism hi: Ci ~ Ci is
now defined by

hAp) == gDs,P(S)(p) ,

The existence and uniqueness of p(s) as an interior point of Ds are conRe­
quences of (1.5) and the proof of (1.4). The final step is the extension of the
homeomorphisms hi to a single mapping h of R3 onto itself which is defined by

That It, iH a well-d(~fined homeomorphiHm foIIoWH frorn (r.:l) and (T.H) and tho
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fact that the homeomorphisms hi are the identity on the boundaries of the
cones. We conclude

(1.7) THEOREM. The knot K is tame.

There are two interesting ranlifications of this theorem which are worth
mentioning. The first is that the cones Ci can clearly be chosen arbitrarily
small, i.e., so that the maximum diameter is less than any preassigned E. As
a result, the knot K is what is called E-equivalent to a polygonal knot. For
any E > 0, there is a homeomorphism h of R3 onto itself 80 that hK is polygonal
and II h(p) - p II < Efor all P E R3. Furthermore, h moves only points lying
within a distance E of the knot. The second remark is that h is realizable by
an isotopic deformation of R3. This is simply because the mapping gD,p is
isotopic to the identity. Using vector notation, we may set

gD,p,t == gD,t(p-po)+Po·

Thus differentiable knots (as defined in the first paragraph of the appendix)
are tame in the strongest possible sense.

The question of when a knot is tame has been studied by several authors.
For example Milnor1 defines the total curvature K of an arbitrarily closed curve
and proves (among other results) that if the total curvature of a knot is finite,
the knot is tame. He also sho~s that if a closed curve C is given as the image
of a function p(s) of arc length s with continuous 2nd derivative, then K is
given by the usual integral formula

K = LII p"(s) II ds.

1 J. W. Milnor, "On the Total Curvature of Knots," Ann. of Math. Vol. 52 (1950),
pp. 248-257.
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Categories and groupoids. The tendency of modern mathematics to isolate
almost any set of properties from its original context, to name, and to develop
an abstract theory has produced an amazing vocabulary and array of defini­
tions. Obviously, these definitions differ widely in the scope of their appli­
cability and in the depth of the concomitant abstract theories. A few, like that
of a group or of a topological space, have a fundanlental importance to the
whole of mathematics that can hardly be exaggerated. Others are more in the
nature of convenient, and often highly specialized, labels which serve
principally to pigeonhole ideas. As far as this book is concerned, the notions of
category and groupoid belong t.o the latter class.1 It is an interesting curiosity
that they provide a convenient systematization of the ideas involved in
developing the fundamental group.

A set C is a category if, for sonle pairs of elements (x, f3 in C, a product (X • {3
in C is defined which satisfies Axioms (i) and (ii) below. An element € in C
is an identity if, for any (X in C, whenever € . (X (or (X. €) is defined, then
E • (X = (X (or (X • € == (X).

(i) The product (X • (fJ • y) is defined if and only if ((X • (3) · Y is defined.
When either is defined the associative law holds:

(X • ({3 · y) == ((X • (3) · 'Y.

Furthermore, (X • fJ • 'Y is defined (parentheses are dropped by virtue of associa­
tivity) if and only if both products (X • (3 and f3 · yare defined.

(ii) For any element (X in C, there exist identities €1 and €2 in C such that
€1 • (X and (X • €2 are defined.

The reader will recognize that we have come across these properties
before. In fact a fair amount of the material in the beginning of Chapter II
can be summarized in the following: Both the set of all paths in a topological
space X and the fundamental groupoid f(X) are categories. The mapping of the
former category into the latter which assigns to each path a its equivalence class
[aJ is onto, product-preserving, and carries the identitie8 of one category onto
those of the other.

We may now observe how the constructions carried out in our development
of the fundamental group may be paralleled in abstracto. We prove first

(11.1) For each oc in the category C, the identities €1 and €2 such that €1 • oc
and (X • €2 are defined, are unique.

1 The idea of a category plays a basic role in the axiomatic developmont of honH)lo~y
theory. rn fa(~t. tho doHnibon and Lornrna (ILl) H.bOVf~ ar'o t.aknn dil"o(~t,ly {"I"oln Chnptol" lV
of H. EiJonhOl'g and N. t-;t.nollJ"od, F01.uulations of Alyf'l)ra':c 'l'Ol)()l()!I.'I (Pl'irH'ot.ou Univor"Hit.y
PrOHH; I )l'ill('(\f,OIl, N .fJ., I H!)2).
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I )'rooj. Suppose there exist identities €l and €/ in C such that €l • lJ.. and
t: I I • (X are defined. Then €l' • (€l • oc) is defined since €l • lJ.. == oc. Consequently,
t: I I • EI is defined, and hence €l' == €l' • €l == €l' Similarly €2 is unique.

For any category C and identity € in C, we denote by C
E

the set of all
(~Iements CI. in C such that € • CI. and oc • € are defined.

(11.2) C€ is a semi-group with identity €,

Proof. The product of any identity with itself is always defined. Hence,
E E CE' Consider next arbitrary elements oc and {J in CE' Since rx· € and €. {3
are defined, (CI.' €) . {J is defined, and (oc· €) , {J == oc • (J. Thus, the product
of any two elements of C

E
is defined. Since the associative law is known to

hold, the proof is complete.

The set of all p-based loops in X and the fundamental group 7T(X,p) are,
of course, both examples of sets CE in their respective categories.

An element (X-I in a category C is an inverse of an element oc if there exist
identities €l and €2 in C such that oc • oc-l == €l and (X-I • (X == €2'

(11.3) The products €l • OC, (X • €2' €2 • oc-1
, and oc-l • €1 are defined.

Proof. Since €l • €l is defined, the products €l • oc • (X-I and oc • oc-l • €l are
defined, It follows that €l • (X and oc-l • €l are defined. The analogous argument
holds for (X • €2 and €2 • (X-I.

(11.4) If an inverse exists, it is unique.

Proof. Suppose {3 and {J' are inverses of CI.. It follows from (11.3) and (11.1)
that the identities E1 and €2 whose existence follows from the assumption of
the existence of an inverse of rJ.. are uniquely determined by oc. Consequently,
we have

oc . {3 == (X • {J' == €l and {J · oc == {J' . oc == €2'

Since, by (11.3), €2 • {3' is defined, we have

f3' == €2 • {J' == {J • oc • {J' == f3 · €l == (3,
and we are done,

A groupoid is a category in which every element has an inverse. In view of
(2.4) of Chapter II, it is apparent that the set I-'(X) of equivalence classes of
paths in X does satisfy the requirements of being a groupoid.

(11.5) If C is a groupoid and € is any identity, then C
E

is a group.

I)ro(~f. Consider any CI. in CE' Since C is a groupoid, rJ.. has an inverse oc-l ,

and Uu're ('X i~t identiti(~~ E 1 and E2 in (J sueh that

t l ,
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however, the products € • oc and oc · € are defined, and we may therefore con­
clude from (11.1) that € == El == E2. Consequently, oc-I E CE" This conclusion,
together with (11.2), completes the proof.

The abstract parallel of Theorem (3.1), Chapter II, also holds. The proof
is in all essentials identical:

(11.6) Suppose C is a groupoid, €I and €2 are any hoo identities in G, and
oc is an arbitrary element of C such that €I • oc and oc . E2 are defined. Then, for any
fJ in CE1' the product !X-I. f3 • rJ.. is defined, and the assignment f3 ~ oc-I • f3 . oc is
an isomorphism of GEl onto 0E

2
•
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Proof of the van Kampen theorem. This is stated in theorem (3.1) of
Chapter V. There are two things to be proved:

(111.1) The image groups W~Gi' i == 0, 1,2, generate G.

Proof. Consider an arbitrary non-trivial element rx E G and a p·based loop
a: [0, II a II] ---+ X representing oc. Since oc"* 1, we know that II a II > 0. We
construct a subdivision

°== to < tl < · · · < tn == II a II

such thatl each difference ti - ti- l is contained in at least one of the inverse
images a-lXi' i == 0, 1,2. We then choose an index function fl mapping the
integers 1, · · . , n onto 0, 1,2 such that

i == 1, · · · , n.

For each point ti , i == 0, · · · , n, of the subdivision we select a path bi in X
subject to the conditions:

(i) bi(O) == p and bA " bi II ) == a(t i ).

(ii) If a(ti) == p, then bi(t) == p for all t.

(iii) bl(t) E Xp(i) n X p(i+l)' °~ t ~ II bi II and i == 1, · · . , n - 1.

Notice that Condition (iii) may be satisfied becauseXJ.l(i) () X p(i+l) is one of
the subspaces Xo, Xl' and X 2 , and each of these is pathwise-connected. Next,
considerpathsai : [O,ti - ti- l ] ---+ X, i == 1, · · · ,n, defined byai(t) == a(t + ti- l ).

Clearly n

a == II a i ·
i=l

Since each product bi - 1 • ai • bi - 1 is defined and bo and bn are identity paths,

n
a r-J II bi - 1 · ai • bi - 1 .

i=l

Each path bi - l · ai • bi - l is a p.based loop whose image lies entirely in XJ.l(i} and
which, therefore, is a representative loop of wJ.l(i)(Xi for some (Xi E G J.l(i). Thus

n

rx == II Wp(i)OC i ,
i=l

and the proof of (111.1) is complete.

1 s. Lof:-whot,1;, Al[lcbraic TopoloflY (AIIHH'i('1t1l Mn,f,llOrllu,t,icll.l So('iot,y Colloquiurll Publi­
('ILt,iow~ Vol. '27; Now York, IH·1~), p. :~7_
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The second part of the van Kampen theorem is

(111.2) If H is an arbitrary group and "Pi: Gi -+ H, i == 0,1,2, are homo­
morphisms which satisfy VJo == 'tfJI (jl == 'tfJ2(j2' then there exists a unique homomor­
phism A: G -+ H such that "Pi == AWi, i == 0, 1, 2.

Proof. The uniqueness of A is no problem. If it exists, the relations
1J1i == AWi , i == 0, 1,2, together with the conclusion of (111.1) imply that it is
unique. The only question is of existence, and there is an obvious construction.
Let oc be an arbitrary element of G. We have shown that

n

oc == IT W p(i)(Xi'
i=l

So we define
n

AOC == IT'tfJP(i)OC i .
i=l

The hard problem is to prove that A is well-defined. If it is, we are finished;
for the preceding formula implies both that A is a homomorphism and that it
satisfies "Pi == AW i , i == 0, 1,2. The problem clearly amounts to proving that,
for any finite set of elelnents OC i E GJ.l(i)' where i == 1, ... , rand !t is any
mapping of the integers 1, · · · , r into 0, 1, 2, then

T T

IT Wp(i)OCi == 1 implies IT 'tfJJ.l(i)OCi == 1.
i=l i=l

Verification of this proposition is the objective of the remainder of the proof.
We select representative loops a i E oc i ' i == 1, . · · , r. Then the product

T

a == IT wp(i)a i
i=l

is equivalent to the identity path. (For siInplicity we shall denote an inclusion
mapping and its induced homomorphism of the fundamental groups by tho

same symbol.) The equivalence is effected by a fixed-endpoint family {h ..,}
or, what amounts to the same thing, a continuous mapping h: R -~ X,
where

R == [0, II a II ] X [0, 11,
which satisfies

h(t,O) == a(t),

h(O,s) == h(t,I) == h( II a II, s) == p.

i

The vertical lines t == I II ak II, i == 1, . · . ,r, provide a decorn position of
k=l

the rectangle R, and we consider a refinernent

o S
III

I,
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into subrectangles R ij , so fine l that each R ij is contained in at least one of the
inverse inlages h-1X i, i == 0, 1, 2. Each subrectangle R ij consists of all pairs
(t,s) satisfying the inequalities ti- 1 ::s: t ::s: ti and Sj-l ::s: S ::s: Sj' i = 1, · . · , n
and j = 1, · · · , m. The subdivision has been chosen so fine that there exists
an index function v(i,j) such that

hRij C Xv(i,j), i == 1, · · · ,n and j == 1, .. · , m.

For each lattice point (ti,Sj)' we select a :path eij in X subject to the conditions:

(iv) The initial and terminal points of eij are P and h(ti,8j), respectively.

(v) If h(ti,sj) == p, then eij(t) == P for all t.

(vi) The image of the path eij is contained in

(Assume XV<i,i> = X if i == °or n + 1, or if j = °or m + 1.)
j-I j

(vii) If ! II ak II ::s: ti- 1 < ti ::s: ! II ak II, then the image of eiO is a
k=l k=l

subset of Xf-L(j).

Conditions (iv), (v), and (vi) are entirely analogous to (i), (ii), and (iii),

Figure 65

respectively; (vii) is an additional complexity. We next define paths, (cf.
Figure 65)

Cij(t) = h(t + ti-I' Sj),

dij(s) == h(ti, S + Sj-l)'
and set

aij == ei- 1,j · Cij · eij- 1
,

bii = Ci,i-l • dij . ezi-
I ,

o::s: ::s: ti - ti- 1 ,

° ::s: S :::;: Sj - Sj-l'

i == 1, · · . ,n and j == 0, ... , rn,

i = 0, ... , nand j = 1, • .. ,m.

It iH a ('OIH·wquellee of (vi) that the illlage pointH of ttl(' loopH ((/j' hij' al,j-I' and
hi l,j a II lin i 11 ."\' " ( I.) ). II P 11 ( ~(" t hn'y dP fi IH' g 1'0 11 P nip InpIt 1,:-4 rx IJ' I) Ii' rx I /' alld fJ1/ '

I'PHIH,(,t.iv('ly, in (/,,(,,). 'rhn pl'()(I1l<'t. (/",j I . h,) . fll) I. h, It'l iH ('ontl'a('tibl(~
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(Le., equivalent to the identity path) in X; moreover, since the image of Ri;
as well as the images of the four paths lies in Xv(i,i)' the product is also con­
tractible in ...."tv(i,j). We conclude that

(1)

The central idea in the proof of (111.2) is the fact that if group elements lJ.. E Gi

and {J E Gj , i,j == 0, 1,2, possess a common representative loop, then VJilJ.. == VJjfJ.
The proof is easy: Since Xi n Xi == X k for some k == 0,1, or 2, each of

the two inclusion mappings
X 111 X 112 X
i+- k---+ i

is either an identity mapping or one of £)1 and £)2. As a result, the induced
homomorphisms

G 111 G 112 G
i~ k -----+ i

must be consistent with the homomorphisms VJo, "PI' and "P2' i.e.,

"Pi1]l == "Pk == "Pi1]2·

The assertion that lJ.. and fJ possess a common representative loop states that
there exists a p-based loop c in X k such that 1]l c E CI. and 1]2C E {3. Thus, if c
defines Y E Gk , we have

1]lY == CI.,

Hence,
1]2Y == (3.

and the assertion is proved.
Applying this result, we obtain

(2)

Now apply the homomorphism VJ,,(i,j) to (1). The equation obtained says that
the result of reading counterclockwise around each Rij under "Pv(i,j) is the
identity. Equations (2) show that edges of adjacent rectangles will cancel.
It follows (by induction) that the result of reading around the circumference
of the large rectangle R is the identity. Furthermore, only the elements along
the bottom edge, s == 0, are nontrivial. We conclude, therefore, that

n

II "Pv(i,I)Cl.il' == 1.
i=l

j

Since each of the numbers.L II ak II,j == 1, · · . , r, is a rnember of {ti' · .. ,t,J,
k=-l

there exists an index funetion i(j) Huch that i(O) -----= 0 and

} I, ... , r.



j == 1, · · · , r.
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Then, as a result of Conditions (iv) and (v), we have

i(j)

II aiO ~ W J-l(j)a j ,

i =i(j -1)+ 1

By virtue of (vii), we may assume that the equivalence is in X~(j)' Thus, each
loop a iO ' i == i(j - 1 )+ 1, · · . , i(j), determines a group element tX/ E GJ-l(j)
and

i(j)

II tX/ = tX j •

i=i(j-l)+l

Since tX z1 ' and tX/ possess a common representative loop aiO' it follows from
our central assertion that

i == i(j - 1) + 1, · · · , i(j).

Finally, therefore,

r ( i(j) ) r (i(j) )
1 == II II vYv(i,l) tXil' == II II vY~(j)tX/

j=l i=i(j-l)+l j=l i=i(j-l)+l

r (i<J) ) r
== II "P~(j) II tX/ == II vY~(j)tXj'

j=l i=i(j-l)+l J=1

and the proof of (III.2) is complete.

The above proof of the van Kampen theorem can be used to prove a more
general theorem,2 from which the present proof is virtually copied. Instead of
regarding X as the union of just two subspaces Xl and X 2 , we consider an
arbitrary collection of pathwise-connected, open subsets Xi (i may range
over any index set whatever) which is closed under finite intersections and
which satisfies

x == UX i

P E nXi' for some p.

Let Gi == 1T(X i ,p) and G == 1T(X,p} and consider all homomorphisms
()ij: Gi ~ Gj and Wi: Gi ~ G induced by inclusion (the existence of (Jij

presupposes that Xi c Xj)' Then, the conclusions of the van Kampen
theorem hold: The groups WiGi generate G, and,Jor any group H and homomor­
phisms lJli: Gi ~ H which satisfy "Pi == "Pj(}ii' there exists a unique homomor­
phism A: G~ H such that "Pi == AWio

This generalization may be used to calculate the fundamental group of the
union of an increasing nest of open sets each of whose groups is known. This
result can be used to obtain presentations of the groups of wild knots and
other wild imbeddings.3

2 It. II. CrowulJ, "On tho van }(u1l1p0n Ulnnl'OIIl," !'(l.c·ljic J. /\10111,. Vol. B, No.1 (1959),
pp. '1:~ [)O.

:J It. II. Fox arad 14~. Art-in. "Sorno Wild Cedis ILlld NpllOr'OS ill Thr'elll-dirllnll,yjollal SPI1<:o."

A"". (JIIl/",It. Vol. ·IH (HHH). PI'. B7B ~.HO.



Guide to the Literature

The literature of knot theory is scattered, and some of it is difficult reading.
The only comprehensive book on the subject is [Reidemeister 1932], and the
literature has more than tripled since then. The following notes are intended
to help the student find some of the more easily accessible papers and to
orient him in the field. For the most part, the papers quoted are recent ones.
The references are to the subsequent Bibliography, which is a chronological
listing. Such references as [Fox 1954], [Brody 1960'], and [Murasugi 1958"]
refer respectively to the first, second, and third paper of the author within
the year indicated. Many important earlier papers that are not quoted
in the Guide can be found in the Bibliography and in the bibliographies
of the quoted papers.

The problem with which we have been concerned in this book is a special
case of the problem of placement: Given topological spaces X and Y, what
are the different ways of imbedding X in Y? The case that we have studied
is X == 8 1 , Y == R3. Its significance is that it is the simplest interesting case
and that the methods used to study it have, mutatis mutandis, general
validity.

Thus we may always consider the group G == 1T( Y - X) of a placement
X c Y. If this group is finitely presented it has Alexander matrices and
elementary ideals [Fox 1954], but if the group cannot be finitely presented
its Alexander matrices are infinite matrices and things get more complicated
[Brody 1960'].

If X is a link of f-l components, i.e., the union of f-l mutually disjoint simple
closed curves in Y == R3, the commutator quotient group GIG' is free
abelian of rank f-l, so that we must deal with L-polynomials in f-l variables.
If the link is tame, a polynomial a(t1 ' • •• ,til} can be defined even when
f-l ~ 2, and it has properties analogous to the Alexander polynomial in one
variable [Reidemeister and Schumann 1934, Fox 1954, Torres and Fox 1954,
Hosokawa 1958, Fox 1960']. If X is just anyone-dimensional complex in
}' == R3, then the group GIG', though free abelian, may no longer have a

preferred basis, and this causes special difficulties [Kinoshita 195H', IBfi9].
A natural generalization of knot theory is the case X an m-Rphel'e, or

union of fl ('> 2) Inutually disjoint m-Hphcres, and Y ~:=- Rn (n -~ rn). It iA

rea.sonahly \\-'plI-eHtahliHIH'd that tJH~ eaH(~ of a Hinglp rn-Hph('n~ (knotting) is

really int,el'("Hting only if,n n ~,whilp the ('H,HP of HPveral u',-Hpht,,,ps

IHI
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n-l
(linking) is not interesting unless 2 ~ m ~ n - 2 [M. Brown 1960,

Stallings 1961, Zeeman 1960]. If m == n - 2, G/G' is free abelian of rank 11-,
and the theory is very similar to that of knots and links in R3 [Artin 1925',
van Kampen 1928, Andrews and Curtis 1959, Fox and Milnor 1957, Terasaka
1959, Zeeman 1960, Kinoshita 1961], however for n > 3 the reciprocal
character of the polynomial Ll no longer holds in general. Naturally the case
n == 4 has received the most attention. If X is a surface other than 8 2 in
R4, G/G' may have elements of finite order, and this causes new difficulties
[Fox 1960', Kinoshita 1961']. Knots and links in arbitrary 3-dimensional
manifolds have been considered [Blanchfield 1957, Brody 1960] although
much remains to be done. This is an especially interesting case because of
the possibility of applying it to the yet unsolved problem of classifying the
3-manifolds. The group itself is a more powerful invariant than the poly­
nomial, so naturally less is known about its properties [Fox 1948, Torres and
Fox 1954, Rapport 1960, Neuwirth 1959].

Placement of surfaces, with or without boundary, in R3 has some inter­
esting and difficult problems that are relevant to knot theory [Alexander
1924, Fox 1948, Kyle 1955]. Especial attention should be paid to the Dehn
lemma, whose solution was one of topology's recent important breakthroughs
[Papakyriakopoulos 1957, Shapiro and Whitehead 1958, Papakyriakopoulos
1958]. An immediate consequence of Dehn's lemma is the fact that a tame
knot (in R3) is trivial if and only if its group is cyclic [Dehn 1910].

A simple and elegant construction shows that a tame knot can always be
spanned by an orientable surface, and this fact can be used to give an es­
pecially practical form of the Alexander matrix [Seifert 1934, Wendt 1937,
Fox 1960].

One of the most important chapters of knot theory has to do with covering
spaces. Unbranched cQvering spaces are described, for example, in the book
of Seifert and Threlfall 1934, and the description of branched ones has been
recently formalized [Fox 1957]. Every closed orientable 3-manifold is a
branched covering space of 8 3 [Alexander 1919 together with Clifford 1877].
By means of the branched cyclic covering spaces of a knot (or link) new
geometric meaning can be attached to the various aspects of the Alexander
matrix, and even more powerful invariants can be defined [Seifert 1933',
1935, Blanchfield and Fox 1951, Kyle 1954, 1959, Fox 1956, 1960].

The theory of companionship of knots includes the multiplication (com­
position), doubling, and cabling of knots [Schubert 1953, 1954, Whitehead
1937, Seifert 1949]. To multiply two knots you simply tie one after the other
in the same piece of Htring. Under this operation the tame knot types form a
comrnutat.iv(~ H(~rnigl'oup A\{ in whieh faetol'ization is l1niqlJ(~ ISchuhert IB49].

I n this ~4('rnigrollp only Uu' trivial LYI)(' has an inv('rs('~ this prov('s t,hat it iH
irupoHNiI.lc' t,o t.ic' L\vo knoLN in a pi('('c' of~.d,l'ing in :--111('1. a \Vll.Y Lhat. UH'y '('aru'('l'.

'I'll<' pl'ol.lc'", "Which IUloL LYIH'H c'all Hppc'ar wh.'" a (Ioc'ally flat,) 8'1. in /(,1
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is cut by a hyperplane R3?" leads to a classification of knot tyP('~ ~t1(~h thu,e,
these classes of types, with multiplication induced from 8, forln n grou p
[Fox and Milnor 1957, Terasaka 1959]. Not much is known, as yet, ahout
this group.

There are interesting problems of knot theory centered about knot­
diagrams, i.e., regular projections of knots. Thus alternating knots, i.p., those
that have projections whose crossings are alternately under and over around
the knot, have some surprising properties [Murasugi 1958, 1958', IH5R",
1960, Crowell 1959, 1959'], one of which virtually amounts to a pun: the
Alexander polynomial of an alternating knot is alternating. The problem of
recognizing from their diagrams whether two knots are equivalent is In
general unsolved, but a method has recently been given for deciding from a
diagram whether a knot is trivial [Haken 1961]. and the solutions of similar
problems for alternating knots and links were already known [Crowell 1959].
If a knot has a diagram in which there is only one overpass it ~s obviously
trivial; those knots that have diagrams containing just two overpasses have
been completely classified [Schubert 1956]. It is known that any tame knot
has a certain kind of diagram called a plat [Reidemeister 1960J; the simplest
case is that of a plat with four strings (Viergeflechte) and this has received
some attention [Bankwitz and Schumann 1934].

The homotopy groups 'TTk (k == I, 2, ... ) generalize the fundamental group
'TT == 'TTl, so it is natural to examine the homotopy groups of Y - X for a
placement of X in Y. It is now known [Papakyriakopoulos 1957] that

'TT k (S3 - X) is trivial for k 2 2 for any tame knot X, and that if X is a link
7T2(S3 - X) is trivial if and only if X cannot be "pulled apart into t \\'0

pieces". An earlier investigation into this problem led to some highly int('r­
esting algebraic problems but no general solution [\\Thitehead 1939, H igHlan
194R]. If X is an (n - 2)-sphere in sn or a union of mutually diRjoint
(n - 2)-spheres in sn, then 'TT2u~;n - X) mayor may not be trivial and s()n}(~

interesting problems arise [Andre\\"s and Curtis 1959, Epstein 1960].
The most venerable invariant of knot theory is the linking number of a

link of two components; this was first considered over a hundred years ago
[Gauss 1833]. Its value can be read from a diagram [Brunn 1892J or from its
polynomial [Reidemeister and Schumann 1934, Torres and Fox 1954]. It has
been generalized in various ways that deserve further study [Pannwitz 1Ha:l,
Eilenberg 1937, Milnor 1954, 1957, Plans 1957].

Can the set of fixed points of a transformation of R3 of finite period p I)(~

a (tame) knot? This problem is unsolved, although some results on it hav(~

been obtained [Montgomery and Samelson 1955, Kinoshita 195~/, Fox 19!)H I.
A related problem concerns the knots that can be mapped on thprn~elv('H hy
transforrnations of period p [Trotter 1961], and it is also only slightly solvpd.

Thp ('onn('ctions lH't\\'PPI1 knot tlH'ory and diffen'ntial g('OuH·t,ry IF{u'y

IB4B, Milnor I~~[)O, I~~[):L Fox In!)OI a.nd IH't\\"('('1l knot th('ory and alg(·hraic

gt'OIlH't ry IZIlI'l~I{ I I ~~:lr), H,(,(,v(' I n[)[) I d('s('rvp fu rt h('r (' x plorat ion.
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There is a bewildering array of papers on wild knots and on wildness, of
which we can indicate only a sampling [Borsuk 1947, Fox and Artin 1948,
Fox 1949, Blankinship and Fox 1950, Kirkor 1958, 1958', Bing 1958,
Debrunner and Fox 19~0, Brody 1960'].

Finally \\'e must mention the closely related theory of braids [Artin 1925,
1947, 1947', 1950, Newman 1942, Markoff 1935, Weinberg 1939, Fox and
Neu\virth 1962] and several provocative papers of mysterious significance
[Fox 1958', Kinoshita and Terasaka 1957, Hashizume and Hosokawa 1958,
Curtis 1959].

The standard table of (prime) knots of 9 or fewer crossings may be found
in the book of Reidemeister, 1932, pp. 25, 31, 41, 70-72. The tables on pp.
70-72 were extended by various workers in the 19th century up through 10
crossings and through the alternating 11 crossings. The corresponding ex­
tension of the table on p. 41 of ~(t) has been made by machine but has not
yet been published. No corresponding tables of links have ever been made.

The Ashley book of knots [Ashley 1944] is an immense compendium of
knots, as the term is understood by sailors, weavers, etc. With a little
patience one can find in it all sorts of provocative examples of knots and
links.
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dual group presentations 134, 138,

143

edge 5, 7
elementary contractions 32
elementary expansions 32
elementary ideals
empty word 31
endomorphism 47
equality of paths 14
equation, defining, 38
equivalent knots 4, 8, 24, 163
equivalent matrices 101
equivale~t paths 16
equivalent presentations 42, 104, 120
equivalent words 32
Euclidean plano 5, 6
Euclidoun :'-Hlu1eo 4
oxpullHion :,~

oxponollt, Htll" I I I

I'u.C't.OI'l:t.",f,ICHI, uniqtl4~, II r., I n~
1'",IHn IOVnl"H knot
f"'''lily. ('ont.illtiOUH, 10, IH, :'0
fi~lIl'n night knot
fill Jt,nly gnnol'u,t.od 4 I, HH
fillil,oly IH'oHollt.nd 41, I f) I
finif,(lly I'nlu,t.od 41
fixnd-ondpoint fu.rnily iH, :JO
Ii xod point Hot of a transforrnation I ():~

flltt., IO('ally, 1()2
FlorniHh knot
foul' knot
fl'oo u.uulian group
fl'( ~(~ ba8'is
froo calculus 96ff
freo group
f roe homotopy
free polynomial 98
fully normal 47
fundamental formula 100
fundamental group 20, 52
fundamental groupoid 17ff, 153

generating set 35
generator 37, 38, 40, 82, 112
granny knot
greatest common divisor 114
greatest common divisor domain 114,

118
group 1, 163
-, abelianized, 47, 49,111-113, 144
-, alternating, 93
-, braid, 109
-, commutator quotient, 47, 48, 49,

161
-, cyclic, 50, 112, 162
-, free, 31,32,35,36,50,64,81,84"

107, 108, 109, III
-, free abelian, 50, 69, 108, 161, 1fi2
-, fundamental, 20, 52
-, knot, 72, III
-, infinite cyclic, 29, 56, 87, III-liS
-, metacyclic, 108
-, power of a, 47
-, symmetric, 51, 90, 92, 93
group of a placement 161
group presentation 40, 50, 51, HH- 71
group ring 94, ] t:J--II8
group table :l7
groupoid 1[)4, lr,[)

A f/roupo'id iH u, (~ut,ogol''y in wh i(~h

ovory ol(Hnnuf, hUH nu iUVOI'HO.

, fUIHIHrrlOIlf,u,I, 171'1', I r):~
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homotopy 42
-, free, 30

Two loops are called freely homotopic
if they belong to a continuous family
of loops (not necessarily having a
common basepoint).

homotopy group 20, 42, 163
homotopy type 54, 62, 71
hyperplane 163

ideal 1, 118
-, elementary, 5, 94, 10 Iff, 103, 104,

108,109, 110,119,122,123, 131-132,
135, 137, 144, 161

-, principal, 118, 130
identification topology 25
identity 19, 31, 153
identity path 14
imbedding 161
inclusion I
induced homomorphism 23, 30
infinite matrices 161
initial point 14, 18
integral domain 113
inverse 20, 31, 32, 154, 162
inverse path 15
invertible 10, II, 144
isomorphism problem 41, 110
isotopic deformation 8, 10, 152
isotopy type 8

Jacobian 9

Klein bottle 71, 93, 108
knot 4, 61, 62, 162
-, alternating, 12, 163, 164
-, amphicheiral, 9
-, bowline, 132
-, Chinese button, 132
-, clover leaf, 3, 4, 6, 9, 10, 72, 80, 88,

90,91,92,93, 124, 127, 132, 144
- diagram, 163
-, differentiable, 5, 6, 147-152
- equivalence, 4, 8, 24, 163
-, false lover's, 132
-, figure eight, 3, 4, 6, 9, 11, 89, 91,

125, 127, 132
-, four figure eight
--, F]nrni~h figure t'ight
- ,granny, I:~I

gJ'(lIlp, 7"2, III

, 11I\'c'I'I.II)lo, 10, II, I·t·t

-, Listing's = figure eight
-, noninvertible, 11
-, overhand = clover leaf
-, polygonal, 5
- polynomial
-, prime, 164

A knot type is prime if it is not the
composition of two nontrivial knot
types.

- projection, 6
-, simple = clover leaf
-, single = clover leaf
-, square, 131
-, stevedore's, 127
- table, 11
-, tame
-, torus, 134
-, trefoil = clover leaf
-, trivial, 5, 11, 87, 90, 91, 124, 132,

162, 163
-, true lover's, 132
-, Turk's head, 90, 126
- type, 5, 24, 110
-, wild, 5, 86, 160, 164
knotted sphere 161-163
knotted torus 61

length, arc
letter 31
link 161, 162, 163
-, tame, 161
linked spheres 162
linking invariant 130, 162
linking number 163
link polynomial 161, 163
link table 164
Listing's knot
locally flat 162
loop 15
L-polynomial 119, 134, 161

machine calculation of knot poly-
nomials 164

manifold 162
mapping of presentations 41
matrices, equivalent
matrix 1
-, Alexander, 100, 108, 123, 131-132,

135, luI, ]()2
- ,infinit,(·, 1r.1
rJlc'f,a('Y('li(~ gf'OIIP IOH
IJlil'l'ol' illlagn H

lI11rlt,iplc' pOlld, fi, 7, 1"2



multiplication of knots = composition
of knots

Nielsen theorem 36
noninvertible 11
norm of a vector 147
normal, fully, 47
normalized knot polynomial 121
nowhere dense
number of crossings 132

open cover(ing)
order of a point 6
orientation preserving 8, 9, 10
orientation reversing 8, 9, 10
overcrossing 7, 12, 73, 78ff
overhand knot
overpass 72, 73, 133, 163
overpresentation 72, 76ff, 83, Ill, 134,

143

paths 14
-, constant, 15
-, continuous family of, 15
-, equality of, 14
-, equivalence of, 16
-, fixed-endpoint family of, 16
-, identity, 14
-, inyerse, 15
-, product of, 14
-, simple, 73
pathwise connected
placement 161, 162, 163
plane 5
plat 163
point
-, base, 15, 21, 22
-, double, 6, 7
-, initial, 14, 18
-, multiple, 6
-, terminal, 14, 18
-, triple, 6
polygonal knot 5, 7, 86
polynomial
-, alternating, 12, 163, 164
-, Alexander, 123, 131-133, 134,

144-145, 161, 163
-, free, 98
-, knot, 5, 94, 110, 119, 122, 12:l,

1:11-1 :J:l, l:l4-145, IH2
--, L-, liB, 1:14, lfil
- , roeipr()(~.t1, I :~,i, I ()~

pOHi t.iou, I'''KU In... , H, 7, 72

INDEX 181

power of a group 47
presentation equivalence 42, 104, 120
presentations 31, 40, 50, 51, 69-71.,

107, 160
-, dual group, 134, 138, 143
-, mapping of, 41
presentation type 42, 110
prime 115
-knot
primitive root 108

An integer k is a primitive root
modulo a prime p if k generates the
multiplicative group of residue classes
1, 2, ... ,p - 1.

principal ideal
product of knots = composition of

knots
product of paths 14
product of words 31
projection of a knot 6, 72, 163
projective plane 7
projective space 7

quadric surface 7

rank 36,48,50, 108, 161
real projective space 7
reciprocal polynomial 134, 162
reduced word 32,33,34,35
reduction 33, 34
reflection 9, 75
region 12
regular position 6, 7, 12, 72
relation 37, 40
-, defining, 31, 38, 39
relator 38, 40
representation 40
retract 54, 57
-, deformation, 54, 60, 61, 62, 71
retraction 43, 54, 61
ring 1
-, group, 94, 113-118
rose 65, 84

Schlauchknoten = cable knots
Schlingknoten = doubled knots
scmigroup 15, 31, 108, If>4, I ()2

A semigroup is a catogory !,lln.t hU.H

only ono id(~nt.ity.

Hornilinpu,r 7:1
Hirnpln put.h 7:~. 140
Hirllplo knot
Hilll} )Jy -l'O/U""('/t't!
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single knot
skew lines 7
solid torus 55, 61
space
-, covering
-, Euclidean, 1, 8
-, projective, 7
sphere 55, 66, 161-163
splice 4
splittable link 163
square knot
standard reduction 33
stopping time 14
stevedore's knot
subgroup 1
-, commutator, 47, 108
-, fully normal, 47
-, word, 37, 47
sum, exponent, III
surface 109, 162
syllable 31
symmetric group 51, 90, 92, 93

table
-, group, 37
-, knot, 11, 164
-, link, 164
tame knot 5, 11, 62, Ill, 147-152, 162,

163
tame link 161
terminal point 14, 18
time, stopping, 14
Tietze equivalence 43,91,105, 106,123
Tietze theorem 37, 43ff, 44, 104, 113
toroidal neighborhood 62
torus 55, 61, 67, 132
-, double, 71
torus knot 92
total curvature
transformation of finite period 163
transpose of a matrix 144
trefoil = clover leaf knot
triple point 6, 7
trivial knot
trivial unit 117

triviality problem 41
trivializer 96, 134-136
true lover's knot
Turk's head knot
tying 3
type
-, alternating, 12
-, homotopy
-, isotopy, 8
-, knot
-, presentation
-, tame, 5, 11
-, trivial, 5, 11
-, wild, 5

unbranched covering space 162
undercrossing 7, 12, 73
underlying set of generators 40
underpass 72, 73
underpresentation 72, 76ff, 134, 143
unique factorization domain 115, 162
unit 113
-, trivial, 117
untying 3,6

van Kampen theorem 54,63,65,69-71
80, 156-160

Verkettung = link
Verschlingung = link
vertex of a knot 5, 6, 7
V iergefiechte 163

wild knot
wildness 164
winding number 28
Wirtinger presentation 72, 86, 113
words 31
-, empty, 31
-, equivalent, 32
-, product of, 31
-, reduced, 32,33,34,35
word probleln 32,41,47
word subgroup 47,51

Zopf = braid


