YOLTDB

Administrator's Guide

Abstract

This books explains how to create and manage VoltDB databases and the clusters that run
them.

V9.1



Administrator's Guide

Vo.l
Copyright © 2014-2019 VoltDB Inc.

The text and illustrations in this document are licensed under the terms of the GNU Affero General Public License Version 3 as published by the
Free Software Foundation. See the GNU Affero General Public License (http://www.gnu.org/licenses/) for more details.

Many of the core VoltDB database features described herein are part of the VoltDB Community Edition, which islicensed under the GNU Affero
Public License 3 as published by the Free Software Foundation. Other features are specific to the VoltDB Enterprise Edition and VoltDB Pro,
which are distributed by VoltDB, Inc. under acommercial license. Y our rights to access and use VoltDB features described herein are defined by
the license you received when you acquired the software.

VoltDB is atrademark of VoltDB, Inc.

VoltDB softwareis protected by U.S. Patent Nos. 9,600,514 and 9,639,571. Other patents pending.

This document was generated on August 08, 2019.



http://www.gnu.org/licenses/

Table of Contents

PrE AR ..t e Vi
1. Structure of ThiS BOOK ......ccuuuuiiiiiiieiiii et e e e e e enees Vi

2. REIGLE DOCUMENES .....uueieetis ettt ettt ettt et e et et e e e et e e e ena s Vi

1. Managing VOItDB Dalaliases ........ccuuuuiiiiii ettt ettt ettt e e e e e e e e eees 1
1.1, GELLING SEAMEH ....eieiiete et e ettt e e e et e e et e e e e ene 1

1.2. Understanding the VOItDB ULHTIES ........oiiiiiiiiiii e 2

1.3, MANAGEMENT TASKS ..evvueiiiti ettt ettt ettt ettt et et e e e e e e e eni e e eenans 3

2. Preparing the SEIVEIS .. .ot et 4
2.1, SErVEr CRECKIISE «.oveeiieii ettt e e 4

2.2. Install ReqUIred SOfIWEIE ......ccuuniiiiiii e 4

2.3. Configure Memory ManagemMeNt ..........ooeeruuieiiiii et e e 5
2.3.1. DiSahle SWADPING - .ceeertneeeitieeetei ettt e et 5

2.3.2. Disable Transparent HUQE PagesS ..........ccoeuuiiiiiiiiieiiii e 5

2.3.3. Enable Virtual Memory Mapping and OVErcOmMmIt ...........ccoeveuireeeiinnneeeniineeennnn. 6

2.4. Turn off TCP SEgMENTALION ......uuniiiiiiiie et 6

2.5, CoNfigUIe TIME SEIVICES ....uiieiii ettt ettt e et e e 7

2.6. Configure the NEIWOIK .........ouuiiii e 7

2.7. ASSIGN NEIWOIK POITS ...ttt 8

2.8. Eliminating Server ProCESS LAENCY ......cceerruieiiiiieeiiiiie e e ettt e e 8

3. Starting and Stopping the Datalase .........cocuuuiiiiiii e 10
3.1. Configuring the Cluster and Database ............coeuuiiiiiiiiieeii e 10

3.2. Initializing the Database ROOt DIFECLOMY ........cccuuuieiiiiieeiiie e 11

3.3, Starting the Database ..........coeueiiiii e 12

3.4. Loading the Database Definition .............ooieiiiiiiiiiiiii e 12

3.5. StOPPIiNG the DALANASE ... .ceevtieeiiii et e 13

3.6. Restarting the Database ..........ueeiiiiiee e 13

3.7. Starting and Stopping INdividual SEIVEIS ........cooviiiiiiii e 14

4. MaintenanCe and UPGrates .........coeeuuieiiiii ettt ettt e et e et e e et e e eaa e eens 15
4.1. Backing Up the Database ..........ccoeuuuiiiiiiiieeee et 15

4.2. Updating the Datahase SChEME. ........uuiiiiiiieecii e 16
4.2.1. Performing Live SChema Updates ...........c.uuiiiiiiiiiiiii e 16

4.2.2. Performing Updates Using Save and RESIOre ............veeviviieeiiiiineecciieeeeiine 16

4.3. Upgrading the CIUSLEN .........uuiiiiiii ettt et e e e e e eees 17
4.3.1. Performing Server UPQrates .........oeeeeiiieiiiii ettt eens 18

4.3.2. Performing Rolling Hardware Upgrades on K-Safe Clusters ...........cccevevveeiinnnnen. 18

4.3.3. Adding Servers to a Running Cluster with Elastic Scaling .............ccocviveeiinnnnnn. 19

4.3.4. Removing Servers from a Running Cluster with Elastic Scaling .............cc.oeeeeee. 19

4.3.5. Reconfiguring the Cluster During a Maintenance Window ................ccoveveinen. 20

4.4. Upgrading VOItDB SOFtWEIE ........cieiiiieiiiii ettt ettt 21
4.4.1. Upgrading VoltDB Using Save and RESLOre ............ooevviviiieiiiiiieeeiiiieeceiieeee 21

4.4.2. Upgrading Older Versions of VoItDB Manually .............ocoevviiiiiiiiiniiiiiinieeenn, 21

4.4.3. Upgrading VoltDB With Reduced Downtime Using aDR Replica..................... 22

4.4.4. Performing an Online Upgrade Using Multiple XDCR Clusters ...........c..coeeeeeeen. 25

4.4.5. Performing an Online Upgrade With Limited Hardware ................ccccveiveeinnnnnen. 26

4.4.6. Downgrading, or Falling Back to a Previous VoItDB Version ..............ccccevveeen. 29

5. MoNitoring VOITDB DalahaSeS ..........uuieiieriieeiiiie ettt e e 30
5.1. Monitoring Overall Datalase ACHVILY ......cccuuuiiiiiiiiieiiiiie e 30
5.1.1. VOItDB Management CaNLES ........ccuuuiiiiiiiieiiii ettt eeeanns 30

5.1.2. SYStEM PrOCEAUIES .......eiiiiieeeeei ettt e e 30

B5.1.3. SNMP ALEITS .o 32

5.2. Setting the Database to Read-Only Mode When System Resources Run Low .................. 34




Administrator's Guide

5.2.1. Monitoring Memory USAJE .......ccvuuiiiiieiii e eeeeee e e e e e e e et e e e e sanes 35
5.2.2. MONItOring DisSK USBgE ....cvvvuiiiiiiiii e e e e e e e e e e aens 35

5.3. Integrating VoltDB with Other Monitoring SyStems ..........cooevieiiiiieiiii e, 36
5.3.1. Integrating With NagIOS ......ccouiiiiiiiiiicii e 37
5.3.2. Integrating With New REIIC .......ociviiiiii e 37

6. Logging and Analyzing Activity in aVoItDB Databhase ............ccooevvviiiiiiiiiecii e 38
6.1. INtroducCtion 10 LOGOING ... cvvniiiiieii e e e e e e e e e e e e e e e e e aanas 38
6.2. Creating the Logging Configuration File ...........ccuiiiiiiiiiii e 38
6.3. Enabling Logging for VOIIDB .........uiiiiiiii e e e e e 40
6.4. Changing the Timezone of LOg MESSAJES ........ccuuiiiiiieiiiieeiiieeeie et e e e e e et eeanaeens 40
6.5. Changing the Configuration onthe Fly ........ccoiiiii i, 41
7. What t0 DO When ProblEMS ATISE ...cuuuiiii et 42
7.1 Where t0 LOOK fOr ANSIWENS ...euuuniiiiiie ettt e et e et e e e eae s 42
7.2. Handling Errors When Restoring a Database ...........ovevviiiiiiiiiin e 42
7.2.1. Logging Constraint ViolationS ...........ooiviuiiiiiiieiiiiecie e e e e 43
7.2.2. SAE@ MOUE RECOVEIY ...ovniiiii it e e e e 43

7.3. Collecting the LOg FlES .....cvve e e e 44
A. Server Configuration OPLIONS .........cciuuiiiiieiiie e e e e e e e e e e et e e et eaaa e eanes 46
A.L Server Configuration OPLIONS .........eiuuieiiie e e e e e e e e e e e e e e aanas 46
A.L1 Network Configuration (DNS) ......ccuuiiiiiiiiiiiieiii e e 46

A. L2 Time ConfigUIalion .......ccuuiiiiiieiii e e e e e e e e e e e et eean s 47

A.2. Process Configuration OPLiONS .......c..uieiiiieiiiiieiii e e e e e e e e et e e e e eaaees 47
A2 1 MaXimum HEAPD SIZE ....couuiiiii it 47
A.2.2. Other Java Runtime Options (VOLTDB_OPTS) ......cccoviiiiiiiiicieecieee e, 47

A.3. Database Configuration OPLIONS .........cciuuieiiiiiiiii e e e e e e e e e e aanees 48
N T S 1 (=S o= [0 48
ALB.2 K-SafLY .ieiiiiiiiiie ettt a e e e e e aaaaan 48
A.3.3. Network Partition DELECHION .........veiiiiiieeiiiie e 48
A.3.4. Automated SNAPSNOLS ......cvvi i 49
A.3.5. IMPOrt and EXPOIt ......ueieieiieiie e e e e e e e e e 49
A.3.6. COMMANA LOGGING ovtuerrnneritieeiiee it e e e et e et e e e e st e e st e e s e e et eeeteeeaneeeens 49
ABT7. HEBMDEAL ... 49
A38. TEMP TaADIE SIZE ..o e 50
A.3.9. QUENY TIMEOUL ...ivtiiiiieeiii e e e e e e e e e e e e e e e e e et e e et e e et eeaneeaenns 50
A.3.10. Long-Running Process Warning .........c.cceeeiiiieiiineeiiieciii e e e e esaneeeenns 51

A.4. Path Configuration OPLIONS ........ccuuuiiiiiieiiii e e e e e e e e eaeas 51
AAL VOIDB ROO ...uuiiieiiiiieiiiis ettt e e e s e e e e e e et s e e e e e e e aeaana s 51
A.4.2. SNAPSNOLS Path ......coviiii e 52
A.4.3. Export Overflow Path ..........coooviiiiii e 52
A.44. Command Log Path ........couiiiii 52
A.4.5. Command Log Snapshots Path ...........ccoooiiiiiiii e, 52

AL NEEWOTK POMS vt e et e e e et e e e et e e e eata e eeeees 52
N 11 1= L o T P 53
A2 AAMIN PO Lo e e e 53
A.5.3. Web Interface Port (NtP) ......oevveierieei e e 54
A5A INtErNaAl SEIVEN POIT ...uiiiiiii et 54
YT == o [T o) 1 o o P 54
A.5.6. ZOOKEEPEr POIT ...eiiiiii i 55
A.5.7. TLSYSSL Encryption (Including HTTPS) .....oiiiiiiiiieeee e 55

S Tz o= o M ] (= 57
LS 401 10 (0 1Y/ o (P 58
LS 001 010 A= 1 PPN 59




List of Tables

1.1. Database ManagemMENt TaSKS .......ceeurueiiitie et e et e et e et e e e et e e et e e e e b e e eeaa s 3
3.1. Selecting Database Features in the Configuration File ...........ooooiiiiiiiiii e, 10
4.1. Overview of the Online Upgratde ProCESS .........uuiiiiiiiieeiei et 27
5.1. SNMP Configuration AttIDULES .........ccoeuuniiiiiiie e 32
5.2, SNIMP EVENES ...ttt ettt ettt 33
5.3, NAGIOS PIUGINS ...ttt ettt e e et ettt e e e ena e e eaans 37
6.1. VOItDB Components fOr LOGOING ....evuuueerruneteetiieeeiii e eeei e e et e e e e e et eeerea e eerea s 40
AL VOIDB POM USBOE ... ittt ettt ettt et et e e e e ennes 52




Preface

This book explains how to manage VoltDB databases and the clusters that host them. It is intended
for database administrators and operators, responsible for the ongoing management and maintenance of
database infrastructure.

1. Structure of This Book

Thisbook is divided into 7 chapters and 2 appendices:

Chapter 1, Managing VoltDB Databases

Chapter 2, Preparing the Servers

Chapter 3, Sarting and Stopping the Database

Chapter 4, Maintenance and Upgrades

Chapter 5, Monitoring VoltDB Databases

Chapter 6, Logging and Analyzing Activity in a VoltDB Database
Chapter 7, What to Do When Problems Arise

Appendix A, Server Configuration Options

Appendix B, Shapshot Utilities

2. Related Documents

This book does not describe how to design or develop VoltDB databases. For a complete description of
the development process for VoltDB and al of its features, please see the accompanying manual Using
VoltDB. For new users, see the VoltDB Tutorial. These and other books describing VoltDB are available
on the web from http://docs.voltdb.com/.

Vi


http://docs.voltdb.com/UsingVoltDB/
http://docs.voltdb.com/UsingVoltDB/
http://docs.voltdb.com/tutorial/
http://docs.voltdb.com/

Chapter 1. Managing VoltDB Databases

VoltDB is a distributed, in-memory database designed from the ground up to maximize throughput
performance on commodity servers. The VoltDB architecture provides many advantages over traditional
database products while avoiding the pitfalls of NoSQL solutions:

By partitioning the data and stored procedures, VoltDB can process multiple queriesin parallel without
sacrificing the consistency or durability of an ACID-compliant database.

» By managing all datain memory with a single thread for each partition, VoltDB avoids overhead such
as record locking, latching, and device-contention inherent in traditional disk-based databases.

» VoItDB databases can scale up to meet new capacity or performance requirements ssimply by adding
more hodes to the cluster.

* Partitioning is automated, based on the schema, so there is no need to manually shard or repartition the
data when scaling up as with many NoSQL solutions.

» Finally, VoltDB Enterprise Edition provides features to ensure durability and high availability through
command logging, locally replicating partitions (K-safety), and wide-area database replication.

Each of these featuresis described, in detail, in the Using VoltDB manual. This book explains how to use
these and other features to manage and maintain aVoltDB database cluster from a database administrator's
perspective.

1.1. Getting Started

Before you set up VoltDB for use in a production environment, you need to make four decisions:

» What database featuresto use — Which features you want to use are defined in the configuration file
and set with the voltdb init command.

e Physical structure of the cluster — The number and addresses of the nodes in the cluster, which you
specify when you start the cluster with the voltdb start command.

» Logical structure of the database — Thelogical structure of the database tables and views, otherwise
known as the schema, is defined in standard SQL statements and can be applied to the database using
the sglemd command line utility.

» Stored procedures — The schema declares stored procedures. The procedures themselves execute
transactions against the data and are written as Java classes. Y ou load the stored procedures as JAR files
using the sqlcmd command line utility.

ToinitializeaVoltDB database cluster, you need aconfigurationfile. The configuration fileletsyou enable
and configure various database options including availability, durability, and security. The configuration
file aso defines certain attributes of the database on the current server, in particular the paths for disk-
based files created by the database such as command logs and snapshots. All nodes in the cluster must
specify the same cluster configuration file when they initialize the database root directory with the voltdb
init command.

When you actually start the database cluster, using the voltdb start command, you declare the size the
cluster by specifying the number of nodes in the cluster and one or more of the nodes as potential hosts.
VoltDB selects one of the specified nodes as the "leader" to coordinate startup.



https://docs.voltdb.com/UsingVoltDB/

Managing VoltDB Databases

When using the VoltDB Enterprise Edition, you will also need alicensefile, oftencaled| i cense. xmi .
VoltDB automatically looksfor the licensefilein the user's current working directory, the home directory,
or thevol t db/ subfolder where VoltDB isinstalled. If you keep the license file in a different directory
or under adifferent name, you canuseto- - | i cense argument on the voltdb start command to specify
the licensefile location.

Finally, to prepare the database for a specific application, you will need the database schema, including
the DDL statements that describe the database's logical structure, and a JAR file containing the stored
procedure class files. In general, the database schema and stored procedures are produced as part of the
database devel opment process, which is described in the Using VoltDB manual.

This book assumes the schema and stored procedures have already been created. The configuration file,
on the other hand, defines the run-time configuration of the cluster. Establishing the correct settings for
the configuration file and physically managing the database cluster is the duty of the administrators who
are responsible for maintaining database operations. This book iswritten for those individuals and covers
the standard procedures associated with database administration.

1.2. Understanding the VoltDB Utilities

VoltDB provides several command line utilities, each with adifferent function. Familiarizing yourself with
these utilities and their uses can make managing VoltDB databases easier. The three primary command
line tools for creating, managing, and testing VoltDB databases are:

voltdb Starts the VVoltDB database process. The voltdb command can also collect log files
for analyzing possible system errors (see Section 7.3, “ Collecting the Log Files’ for
details).

The voltdb command runs locally and does not require a running database.

voltadmin Issues administrative commands to a running VoltDB database. You can use
voltadmin to save and restore snapshots, pause and resume admin mode, and to
shutdown the database, among other tasks.

The voltadmin command can be run remotely, performs cluster-wide operations
and requires a running database to connect to.

sglemd Letsyouissue SQL queries and invoke stored proceduresinteractively. The sglcmd
command is handy for testing database access without having to write a client
application.

The sglemd command can be run remotely and requires a running database to
connect to.

In addition to the preceding general -purpose tools, VoltDB provides several other tools for specific tasks:

csvloader, These utilities load data from external sources into an existing VoltDB database.
jdbcloader, and They let you load data from CSV or text-based data files, JDBC data sources, or
kafkal oader Apache K afka streams. These commands can be run remotely and require arunning

database to connect to.

snapshotconvert Converts native snapshot files to csv or tabbed text files. The snapshotconvert
command isuseful when exporting asnapshot in native format to text filesfor import
into another data utility. (This utility is provided for legacy purposes. It is now
possible to write snapshots directly to CSV format without post-processing, which
is the recommended approach.)



https://docs.voltdb.com/UsingVoltDB/

Managing VoltDB Databases

The snapshotconvert command runs locally and does not require a running
database.

snapshotverify Verifiesthat a set of native snapshot files are complete and valid.

The snapshotverify command runslocally and does not require arunning database.

Finally, VoltDB includes a browser-based management console — VoltDB Management Center — for
monitoring databasesin real time. See Section 5.1.1, “VoltDB Management Center” for more information
about using the Management Center.

1.3. Management Tasks

Database administration responsibilitiesfall into five main categories, asdescribedin Table 1.1, “ Database
Management Tasks”. The following chapters are organized by category and explain how to perform each
task for a VoltDB database.

Table 1.1. Database Management Tasks

Preparing the Servers Before starting the database, you must make sure that the server hardware and
software is properly configured. This chapter provides a checklist of tasks to
perform before starting VoltDB.

Basic Database The basic operations of initializing, starting, and stopping the database. This
Operations chapter describes the procedures needed to handle these fundamental tasks.

Maintenance and Over time, both the cluster and the database may require maintenance— either
Upgrades planned or emergency. This chapter explains the procedures for performing

hardware and software maintenance, as well as standard maintenance, such
as backing up the database and upgrading the hardware, the software, and the
database schema.

Performance Monitoring | Another important role for many database administrators is monitoring
database performance. Monitoring is important for several reasons:

¢ Performance Analysis
« Load Balancing
* Fault Detection

This chapter describes the tools available for monitoring VoltDB databases.

Problem Reporting & If an error does occur and part or all of the database cluster fails, it is not only
Anaysis important to get the database up and running again, but to diagnose the cause
of the problem and take corrective actions. VoltDB produces a number of log
filesthat can help with problem resolution. This chapter describesthe different
logs that are available and how to use them to diagnose database issues.




Chapter 2. Preparing the Servers

VoltDB is designed to run on commodity servers, greatly reducing the investment required to operate
a high performance database. However, out of the box, these machines are not necessarily configured
for optimal performance of a dedicated, clustered application like VoltDB. This is especially true when
using cloud-based services. This chapter provides best practices for configuring servers to maximize the
performance and stability of your VoltDB installation.

2.1. Server Checklist

Thevery first stepin configuring the serversis making sureyou have sufficient memory, computing power,
and system resources such as disk space to handle the expected workload. The VoltDB Planning Guide
provides detailed information on how to size your server requirements.

The next step isto configure the servers and assign appropriate resources for VoltDB tasks. Specific server
features that must be configured for VoltDB to perform optimally are:

¢ Install required software

» Configure memory management

* Turn off TCP Segmentation

 Configure the time synchronization services

* Define network addresses for al nodesin the cluster

» Assign network ports

2.2. Install Required Software

To start, VoltDB requires arecent rel ease of the Linux operating system. The supported operating systems
for running production VoltDB databases are:

* CentOS 7.0 and later

« Red Hat (RHEL) 7.0 and later

» Ubuntu 14.04, 16.04, and 18.04

It may be possible to run VoltDB on other versions of Linux and Macintosh OS X 10.9 and later is
supported for devel opment purposes. However, the preceding operating system versions are the only fully
tested and supported base platforms for running VVoltDB in production.

In addition to the base operating system, VVoltDB requires the following software at a minimum:

» Java8orJavall

» Time synchronization services, such as NTP or chrony

» Python 2.6 or later (2.7 is recommended)

Oracle Java SDK 8 or 11 is recommended, but OpenJDK 8 or 11 is also supported.



http://docs.voltdb.com/PlanningGuide/

Preparing the Servers

VoltDB works best when the system clocks on all cluster nodes are synchronized to within 100
milliseconds or less. However, the clocks are allowed to differ by up to 200 milliseconds before VoltDB
refusesto start. NTP, the Network Time Protocol, or chrony are recommended for achieving the necessary
synchronization. NTP is installed and enabled by default on many operating systems. However, the
configuration may need adjusting (see Section 2.5, “Configure Time Services’ for details) and in cloud
instances where hosted servers are run in a virtual environment, a time service may not be installed or
enabled by default. Therefore you need to do this manually.

Finally, VoltDB implements its command line interface through Python. Python 2.6 or later is required
to use the VoltDB shell commands.

2.3. Configure Memory Management

2.3.1.

2.3.2.

Because VoltDB isan in-memory database, proper memory management is vital to the effective operation
of VolItDB databases. Three important aspects of memory management are;

» Swapping
» Memory Mapping (Transparent Huge Pages)
 Virtual memory

The following sections explain how best to configure these features for optimal performance of VoltDB.

Disable Swapping

Swapping is an operating system feature that optimizes memory usage when running multiple processes
by swapping processesin and out of memory. However, any contention for memory, including swapping,
will have avery negative impact on VoltDB performance and functionality. Y ou should disable swapping
when using VoltDB.

To disable swapping on Linux systems, use the swapof f command. Alternately, you can set the kernel
parameter vim swappi ness to zero.

Disable Transparent Huge Pages

Transparent Huge Pages (THP) are another operating system feature that optimizes memory usage for
systems with large amounts of memory. THP changes the memory mapping to use larger physical pages.
This can be helpful for general-purpose computing running multiple processes. However, for memory-
intensive applications such as VoltDB, THP can actually negatively impact performance.

Therefore, it isimportant to disable Transparent Huge Pages on servers running VoltDB. The following
commands, run as root or from another privileged account, disable THP:

$ echo never >/sys/kernel/mmtransparent_hugepage/ enabl ed
$ echo never >/sys/kernel/mmtransparent_hugepage/ defrag

Or:

$ echo madvi se >/ sys/kernel /nm transparent_hugepage/ enabl ed
$ echo madvi se >/ sys/kernel /nmitransparent_hugepage/ defrag

For RHEL systems  (including  CentOS), replace  "transparent_hugepage" with
"redhat_transparent_hugepage”.




Preparing the Servers

2.3.3.

Note, however, that these commandsdisable THP only while the server isrunning. Oncethe server reboots,
the default setting will return. Therefore, we recommend you disable THP permanently as part of the
startup process. For example, you can add the following commands to a server startup script (such as/
etc/rc.local):

#!/ bi n/ bash

for f in /sys/kernel/mi*transparent hugepage/ enabl ed; do
if test -f $f; then echo never > $f; fi

done

for f in /sys/kernel/mi*transparent hugepage/ defrag; do
if test -f $f; then echo never > $f; fi

done

THP are enabled by default in Ubuntu 14.04 and later as well as RHEL 6.x and 7.x. To seeif they are
enabled on your current system, use either of the following pair of commands:

$ cat /sys/kernel/mmtransparent_hugepage/ enabl ed
$ cat /sys/kernel/mmtransparent_hugepage/ defrag

$ cat /sys/kernel/mmredhat _transparent _hugepage/ enabl ed
$ cat /sys/kernel/mmredhat _transparent _hugepage/ defrag

If THP is disabled, the output from the preceding commands should be either “always madvise [never]”
or “aways [madvise] never”.

Enable Virtual Memory Mapping and Overcommit

Although swapping is bad for memory-intensive applications like VoltDB, the server does make
use of virtual memory (VM) and there are settings that can help VoltDB make effective use of
that memory. First, it is a good idea to enable VM overcommit. This avoids VoltDB encountering
unnecessary limits when managing virtual memory. Thisisdone on Linux by setting the system parameter
vm over conmi t _menory toavalue of "1".

$ sysctl -w vm overconmit_nenory=1

Second, for large memory systems, it is also a good idea to increase the VM memory mapping limit. So
for servers with 64 Gigabytes or more of memory, the recommendation is to increase VM memory map
count to 1048576. Y ou do this on Linux with the system parameter max_rmap_count . For example:

$ sysctl -w vm max_map_count =1048576

Remember that for both overcommit and the memory map count, the parameters are only active while the

system is running and will be reset to the default on reboot. So be sure to add your new settingsto thefile
/ etcl/sysctl.conf toensurethey arein effect when the system is restarted.

2.4. Turn off TCP Segmentation

Under certain conditions, the use of TCP segmentation offload (TSO) and generic receive offload (GRO)
can cause nodes to randomly drop out of a cluster. These settings | et the system to batch network packets,
producing unnecessary latency and interfering with the necessary communication between VoltDB cluster
nodes. The symptoms of this problem are that nodes timeout — that is, the rest of the cluster thinks they
have failed — although the node is till running and no other network issues (such as a network partition)
are the cause.




Preparing the Servers

Disabling TSO and GRO is recommended for any VoltDB clusters that experience such instability. The
commands to disable offloading are the following, where N isreplaced by the number of the ethernet card:

ethtool -K ethN tso off
ethtool -K ethN gro off

Note that these commands disable offloading temporarily. Y ou must issue these commands every time the
node reboots or, preferably, put them in a startup configuration file.

Itisalso agood ideato check that TCP_RETRIES?2 has not been altered. Setting TCP_RETRIES2 too low
(below 8) can cause similar unpredictable timeouts. See the description of the VoltDB heartbeat timeout
setting in Section A.3.7, “Heartbeat” for details.

2.5. Configure Time Services

To orchestrate activities between the cluster nodes, V oltDB relieson the system clocks being synchronized.
Many functions within VoltDB — such as cluster start up, nodes rejoining, and schema updates among
others — are sengitive to variations in the time values between nodes in the cluster. Therefore, it is
important to keep the clocks synchronized within the cluster. Specifically:

» The server clocks in the cluster must be synchronized to within 200 milliseconds of each other when
the cluster starts. (Ideally, skew between nodes should be kept under 10 milliseconds.)

* Time must not move backwards

Theeasiest way to achievethesegoasistoinstall and configureatime servicesuch asNTP (Network Time
Protocol) or chrony to use acommon time host server for synchronizing the servers. NTPis often installed
by default but may require additional configuration to achieve acceptable synchronization. Specifically,
listing only one time server (and the same one for all nodes in the cluster) ensures minimal skew between
servers. You can even establish your own time server to facilitate this. All nodes in the cluster should
also list each other as peers. For example, the following NTP configuration file uses a local time server
(myntpsvr) and establishes all nodesin the cluster as peers:

server nyntpsvr burst iburst minpoll 4 maxpoll 4

peer voltsvrl burst iburst minpoll 4 maxpoll 4
peer voltsvr2 burst iburst minpoll 4 maxpoll 4
peer voltsvr3 burst iburst minpoll 4 maxpoll 4

server 127.127.0.1

See the chapter on Configuring NTP in the Guide to Performance and Customization for an example of
configuring atime service for optimal performance when running VoltDB.

2.6. Configure the Network

It is aso important to ensure that the network is configured correctly so all of the nodes in the VoltDB
cluster recognize each other. If the DNS server does not contain entriesfor all of the serversin the cluster,
an aternative isto add entries in the /etc/hosts file locally for each server in the cluster. For example:

12. 24.48. 101 vol tsvrl
12. 24.48. 102 vol tsvr2
12. 24. 48. 103 vol tsvr3
12.24.48.104 voltsvr4



https://docs.voltdb.com/PerfGuide/ChapNtp.php
https://docs.voltdb.com/PerfGuide/

Preparing the Servers

12. 24. 48. 105 vol tsvr5

2.7. Assign Network Ports

VoltDB uses anumber of network portsfor functions such asinternal communications, client connections,
rejoin, database replication, and so on. For these features to perform properly, the ports must be open and
available. Review the following list of ports to ensure they are open and available (that is, not currently

in use).

Function Default  Port
Number

Client Port 21212

Admin Port 21211

Web Interface Port (httpd) 8080

Internal Server Port 3021

Replication Port 5555

Zookeeper port 7181

Alternately, you can reassign the port numbers that VoltDB uses. See Section A.5, “Network Ports’ for
adescription of the ports and how to reassign them.

2.8. Eliminating Server Process Latency

The preceding sections explain how to configure your servers and network to maximize the performance of
VoltDB. Thegoal isto avoid server functions, such as swapping or Javagarbage collection, from disrupting
the proper operation of the VoltDB process.

Any latency in the scheduling of VoltDB threads can impact the performance of your database. These
delays result in corresponding latency in the database transactions themselves. But equally important,
prolonged latency can interrupt intra-cluster communication as well, to the point where the cluster may
incorrectly assume anode hasfailed and drop it asamember. If server latency causes anode not to respond
to network messages beyond the heartbeat timeout setting, the rest of the cluster will drop the node as a
"dead host".

Therefore, in addition to the configuration settings described earlier in this chapter, thefollowing are some
known causes of latency you should watch out for:

» Other applications — Clearly, running other applications on the same servers as VoltDB can result
in unpredictable resource conflicts for memory, CPU, and disk access. Running VoltDB on dedicated
serversis aways recommended for production environments.

» Frequent snapshots— Initiating snapshots consumes resources. Especially on adatabase under heavy
load, this can result in latency spikes. Although it is possible to run both automated snapshots and
command logging (which performs its own snapshots), they are redundant and can cause unnecessary
delays. Also, when using command logging on a busy database, consider increasing the size of the
command log segments if snapshots are occurring too frequently.

* 1/0O contention — Contention for disk resources can interfere with the effective processing of VoltDB
durability features. Thiscan be avoided by allocating separate devicesfor individual disk-based activity.
For example, wherever possible locate command logs and snapshots on separate devices.




Preparing the Servers

« JVM datisticscollection — Enabling JavaVirtual Machine (JV M) statistics can produce erratic latency
issues for memory-intensive applications like VoltDB. Disabling VM stats is strongly recommended
when running VoltDB servers. You can disable JVM stats by issuing the following command before
starting the VoltDB process:

export VOLTDB_OPTS='- XX: +Per f Di sabl eShar edMeni
Alternately, you can write the VM statsto an in-memory virtual disk, such as/ t npf s.

» Hardware power saving options — Beware of hardware options that attempt to conserve energy by
putting "idle" processes or resources into areduced or sleep state. Resuming quiesced resources takes
time and the requesting processis blocked for that period. Make sure power saving options are disabled
for the resources you need (such as CPUs and disks).

Although not specific to server resources, the following are some additional causes of latency due to
improper database and application design. When combined with the previous server issues, they can result
in erratic and troublesome performance and even node failures.

» Sequential scans of large tables — Perhaps the most common cause of latency is queries that require
a sequential scan of extremely large tables of data. Any query that must read through every record in
atable will perform badly in proportion to the size of the table. Be sure to review the execution plans
for key transactions to ensure indexes are used as expected and add indexes to avoid sequential scans
wherever possible.

e Large deletes — VoltDB retains and reuses memory whenever you delete tuples. If the amount of
deleted space reaches a certain percentage of overall memory usage, VoltDB compresses the memory
used. Transactions wait while this function is performed. To avoid latency caused by compaction, you
can perform deletesin smaller, ongoing transactions. The USING TTL feature of the CREATE TABLE
statement can assist in automating the incremental purging of old records.




Chapter 3. Starting and Stopping the
Database

The fundamental operations for database administration are starting and stopping the database. But before
you start the database, you need to decide what database features you want to enable and how they should
work. These features include attributes such as the amount of replication you want to use to increase
availability in case of server failure and what level of durability is required for those cases where the
database itself stops. These and other settings are defined in the configuration file, which you specify on
the command line when you initialize the root directory for the database on each server.

This chapter explains how to configure the cluster's physical structure and features in the configuration
file and how to initialize the root directory and start and stop the database.

3.1. Configuring the Cluster and Database

Y ou specify the cluster configuration and what features to use in the configuration file, which isan XML
file that you can create and edit manually. In the ssimplest case, the configuration file specifies how many
partitions to create on each server, and what level of availability (K-safety) to use. For example:

<?xm version="1.0"?>
<depl oynent >
<cl uster sitesperhost="12"
kfactor="1"
/>
</ depl oyment >

» Thesit esper host attribute specifies the number of partitions (or "sites") to create on each server.
Set to eight by default, it is possible to optimize the number of sites per host in relation to the number
of processors per machine. The optimal number is best determined by performance testing against the
expected workload. See the chapter on "Benchmarking” in the VoltDB Planning Guide for details.

» Thekf act or attribute specifies the K-safety value to use. The higher the K-safety value, the more
node failures the cluster can withstand without affecting database availability. However, increasing
the K-safety value increases the number of copies of each unique partition. High availability is a
tradeoff between replication to protect against node failure and the number of unique partitions,
therefore throughput performance. See the chapter on availability in the Using VoltDB manual for more
information on determining an optimal K-safety value.

In addition to the sites per host and K-safety, you can use the configuration file to enable and configure
specific database features such as export, command logging, and so on. The following table summarizes
some of the key features that are settable in the configuration file.

Table 3.1. Selecting Database Featuresin the Configuration File

Feature Example

Command Logging — Command logging|<conmandl og enabl ed="t rue"

provides durability by logging transactions to synchronous="f al se">
disk sothey canbereplayed during arecovery.| <frequency ti me="300"

You can configure the type of command transacti ons="1000"/>

logging (synchronous or asynchronous), the|</ conmandl og>

10


http://docs.voltdb.com/PlanningGuide/ChapBenchmark.php
http://docs.voltdb.com/PlanningGuide/
https://docs.voltdb.com/UsingVoltDB/ChapKSafety.php
https://docs.voltdb.com/UsingVoltDB/

Starting and Stopping the Database

Feature

Example

log file size, and the frequency of the logs
(in terms of milliseconds or number of
transactions).

Snapshots — Automatic snapshot provide
another form of durability by creating
snapshots of the database contents, that can
be restored later. You can configure the
frequency of the snapshots, the unique file
prefix, and how many snapshots are kept at
any given time.

<snapshot enabl ed="true"
frequency="30nt
prefix="mydb"
retain="3" />

Export — Export allowsyou to write sel ected
records from the database to one or more
external targets, which can be files, another
database, or another service. VoltDB provides
different export connectors for each protocol.
Y ou can configure the type of export for each
stream as well as other properties, which are
specific to the connector type. For example,
the file connector requires a specific type (or
format) for the files and a unique identifier
called a"nonce".

<export >
<configuration enabl ed="true" type="file">
<property name="type">csv</property>
<property nanme="nonce">nydb</ property>
</ configuration>
</ export >

Security & Accounts — Security lets you
protect your database agai nst unwanted access
by requiring al connections authenticate
against known usernames and passwords. In
the deployment file you can define the user
accounts and passwords and what role or
roles each user fulfills. Roles define what
permissionsthe account has. Rolesare defined
in the database schema.

<security enabl ed="true"/>
<users>

<user nanme="adm n"
passwor d="super nman"
rol es="dev, ops"/ >
nane="mtty"
passwor d="t hur ber"
rol es="user"/>
</ users>

<user

File Paths — Paths define where VoltDB
writes any files or other disc-based content.
Y ou can configure specific pathsfor each type
of service, such as snapshots, command logs,
export overflow, etc.

<pat hs>
<exportoverflow path="/tnp/overflow' />
<snapshots path="/opt/archive" />

</ pat hs>

3.2. Initializing the Database Root Directory

Once you create the configuration file, you are ready to initialize the database root directory, using the
voltdb init command. Y ou issue this command on each node of the cluster, specifying the configuration

file and the location for the root directory. For example:

$ voltdb init

- -di r=~/ dat abase
--confi g=depl oynent . xm

(1]
(2]

On the command line, you specify two arguments:

© Thelocation where the root directory will be created
® The configuration file, which enables and sets attributes for specific VoltDB features

When you initialize the root directory, VoltDB:

11




Starting and Stopping the Database

1. Createstheroot directory (voltdbroot) as a subfolder of the specified parent directory
2. Savesthe configuration options in the new root directory

Note that you only need to initialize the root directory once. Once the root directory isinitialized, you can
start and stop the database as needed. VoltDB uses the root directory to manage the current configuration
options and backups of the data— if those features are selected — in command logs and snapshots.

If the root directory already exists or has been initialized before, you cannot re-initialize the directory
unless you include the --force argument. Thisis to protect you against accidentally deleting data from a
previous database session.

3.3. Starting the Database

Onceyou initialize the root directory, you are ready to start the database using the voltdb start command.
Y ou issue this command, specifying the location of theroot directory, the number of serversrequired, and
one or more server addresses to use as "host" to manage the initial formation of the cluster. Y ou issue the
same command on every node in the cluster. For example:

$ voltdb start --dir=~/database \ o
--count =5 \ (2]
--host =svr1, svr2 \ (3]
--license=~/license.xm O

On the command line, you specify four arguments:

© Thelocation of the root directory

®  The number of serversin the cluster

® Oneor morenodesfrom the cluster to use asthe "host", to coordinate the initial startup of the cluster
O Thelicense file (when using the VVoltDB Enterprise Edition)

Y ou must specify the same number of servers and hosts (listed in exactly the same order) on all nodes of
the cluster. Y ou can, optionally, specify all nodes of the cluster in the --host argument. In which case, you
can leave off the --count argument and V oltDB assumes the number of hostsisthetotal number of servers.

When you start the database, all nodes select one of the servers from the host list as the "host”. The host
then:

1. Waits until the necessary number of servers (as specified by the count) are connected
2. Creates the network mesh between the servers
3. Verifiesthat the configuration options match for all nodes

At this point, the cluster is fully initialized and the "host" ends its special role and becomes a peer to
all the other nodes. If the database was run before and command logs or automated snapshots exist, the
cluster now recoversthe datafrom the previous session. All nodesin the cluster then write an informational
message to the console verifying that the database is ready:

Server conpleted initialization.

3.4. Loading the Database Definition

Responsibility for loading the database schema and stored procedures varies from company to company.
In some cases, operators and administrators are only responsible for initiating the database; devel opers

12



Starting and Stopping the Database

may load and modify the schema themselves. In other cases, the administrators are responsible for both
starting the cluster and loading the correct database schema as well.

If you areresponsiblefor establishing the correct schema, the next step isto load the Java stored procedures
and the schema definition. Stored procedures are compiled into classes and then packaged into a JAR file,
as described in the section on installing stored procedures in the Using VoltDB manual. To fully load the
database definition you will need the JAR of stored procedure classes and a text file containing the data
definition language (DDL) statements that declare the database schema.

The following example assumes these two files are st or edpr ocs. j ar and dbschena. sql . Once
the database cluster has started, you can load the schema and stored procedures using the sglemd utility.
To load them at the sglcmd prompt, you can use the sglemd load classes and file directives:

$ sqlcmd
1> | oad cl asses storedprocs.jar;
2> file dbschenun. sql ;

Note that when loading the schema, you should always load the stored procedures first, so the class files
are available for any CREATE PROCEDURE statements within the schema.

3.5. Stopping the Database

How you choose to stop aVoltDB depends on what features you have enabled. If you are using command
logging (which is enabled by default in the VoltDB Enterprise Edition), it is a good idea to perform an
orderly shutdown when stopping the database to ensure that all active client queries have a chance to
complete and return their results (and no new queries start) before the shutdown occurs.

To perform an orderly shutdown you can use the voltadmin shutdown command:
$ vol tadmi n shut down

Aswith al voltadmin commands, you can use them remotely by specifying one of the cluster serverson
the command line:

$ voltadnm n shutdown --host=voltsvr2

If security is enabled, you will also need to specify a username and password for a user with admin
permissions:

$ vol tadm n shutdown --host=voltsvr2 -u root -p Suda5l

If you are not using command logging, you want to make sure you perform a snapshot before shutting
down. You can do this manually using the voltadmin save command. Or you can simply add the --save
argument to the voltadmin shutdown command:

$ vol tadm n shutdown --save

The most recent snapshot saved to the database snapshots directory (by the voltadmin save command to
the default location, automated snapshots, or voltadmin shutdown --save) will automatically be restored
by the next voltdb start command.

3.6. Restarting the Database

Restarting aVoltDB database is done the same way as starting the database for the first time, except there
isno need to initialize the root directory. Y ou simply issue the same voltdb start command you did when
you started it for the first time. For example:

13


http://docs.voltdb.com/UsingVoltDB/designappprocinstall.php
http://docs.voltdb.com/UsingVoltDB/

Starting and Stopping the Database

$ voltdb start --dir=~/database \
--count =5 \
--host=svr1l, svr2 \

--license=~/1icense. xni

If you are using command logging, or you created a snapshot in the default snapshots directory, VoltDB
automatically reinstates the data once the cluster is established. After the schemaisloaded and all datais
restored, the database enables client access.

3.7. Starting and Stopping Individual Servers

When using K-safety, it is possible for one or more nodesin a cluster to stop without stopping the database
itself. (Seethe chapter on availability in the Using VoltDB manual for acomplete description of K-safety.)
If aserver stops — either intentionally or accidentally — you can start the server and have it rejoin the
cluster using the same voltdb start command used to start the cluster. For example:

$ voltdb start --dir=~/database \
--count =5 \
--host=svr1l, svr2 \

--license=~/1icense. xn

The start command will check to see if the cluster is still running, based on the list of serversin the - -
host argument. If so, the server will rejoin the cluster.

Note that if there are multiple servers listed in the - - host argument, the server can rejoin even if it is
one of the listed hosts. If you only list one host and that is the server that stopped, you will need to list
a different server in the - - host argument — any server that is still an active member of the running
cluster. (Thisiswhy listing multiple nodesinthe- - host argument is beneficial: you can use exactly the
same start command in multiple situations.)

If you want to stop a single node in a K-safe cluster — for example, to perform maintenance on the
hardware — you can do this using the voltadmin stop command. The voltadmin stop command stops a
single node, as long as the cluster has enough K-safety to remain viable after the nodes stops. (If not, the
stop command is rejected.) For example to stop svr2, you can issue the following command:

$ voltadmin stop --host=svrl svr2

Note that the stop command does not have to issued on the server that is being stopped. You can issue
the command on any active server in the cluster. See Chapter 4, Maintenance and Upgrades for more
information about performing maintenance tasks.

14



Chapter 4. Maintenance and Upgrades

Once the database is running, it is the administrator's role to keep it running. This chapter explains how
to perform common maintenance and upgrade tasks, including:

 Database backups
» Schemaand stored procedure updates

 Software and hardware upgrades

4.1. Backing Up the Database

It isacommon safety precaution to backup all data associated with computer systems and store copi es off-
sitein case of system failure or other unexpected events. Backups are usually done on a scheduled basis
(every day, every week, or whatever period is deemed sufficient).

VoltDB provides severa options for backing up the database contents. The easiest option is to save a
native snapshot then backup the resulting snapshot filesto removable mediafor archiving. The advantage
of this approach is that native snapshots contain both a complete copy of the data and the schema. So
in case of failure the snapshot can be restored to the current or another cluster using a single voltadmin
restor e command.

The key thing to remember when using native snapshots for backup is that each server saves its portion
of the database locally. So you must fetch the snapshot files for al of the servers to ensure you have a
complete set of files. The following example performs amanual snapshot on afive node cluster then uses
scp to remotely copy the files from each server to asingle location for archiving.

$ voltadm n save --blocking --host=voltsvr3 \

/trp/vol tdb backup
scp -1 100 'voltsvrl:/tnp/voltdb/backup*' /tnp/archive/
scp -1 100 'voltsvr2:/tnp/vol tdb/backup*' /tnp/archive/
scp -1 100 'voltsvr3:/tnp/vol tdb/backup*' /tnp/archive/
scp -1 100 'voltsvr4:/tnp/voltdb/backup*' /tnp/archive/
scp -1 100 'voltsvr5:/tnp/vol tdb/backup*' /tnp/archive/

LR o

Note that if you are using automated snapshots or command logging (which also creates snapshots), you
can use the automated snapshots as the source of the backup. However, the automated snapshots use a
programmatically generated file prefix, so your backup script will need some additional intelligence to
identify the most recent snapshot and its prefix.

The preceding example also usesthe scp limit flag (-1  100) to constrain the bandwidth used by the copy
command to 100kbits/second. Use of the -| flag is recommended to avoid the copy operation blocking the
VoltDB server process and impacting database performance.

Finally, if you wish to backup the data in a non-proprietary format, you can use the voltadmin save
--format=csv command to create a snapshot of the data as comma-separated value (CSV) formatted
text files. The advantage is that the resulting files are usable by more systems than just VoltDB. The
disadvantage isthat the CSV files only contain the data, not the schema. These files cannot beread directly
into VoltDB, like a native snapshot can. Instead, you will need to initialize and start a new database, load
the schema, then use the csvloader utility to load individual files into each table to restore the database
completely.

15



Maintenance and Upgrades

4.2. Updating the Database Schema

4.2.1.

4.2.2.

As an application evolves, the database schema often needs changing. This is particularly true during
the early stages of development and testing but also happens periodically with established applications,
as the database is tuned for performance or adjusted to meet new requirements. In the case of VoltDB,
these updates may involve changesto the table definitions, to the indexes, or to the stored procedures. The
following sections explain how to:

» Perform live schema updates

» Change unique indexes and partitioning using save and restore

Performing Live Schema Updates

There are two ways to update the database schema for a VVoltDB database: live updates and save/restore
updates. For most updates, you can update the schema while the database is running. To perform this
type of live update, you use the DDL CREATE, ALTER, and DROP statements to modify the schema
interactively as described in the section on modifying the schemain the Using VoltDB manual .

Y ou can make any changes you want to the schema as long as the tables you are modifying do not contain
any data. The only limitations on performing live schema changes are that you cannot:

» Add or broaden unique constraints (such as indexes or primary keys) on tables with existing data

» Reduce the datatype size of columns on tables with existing data (for example, changing the datatype
from INTEGER to TINYINT)

These limitations are in place to guarantee that the schema change will succeed without any pre-existing
data violating the constraint. If you know that the data in the database does not violate the new constraints
you can make these changes using the save and r estor e commands, as described in the following section.

Performing Updates Using Save and Restore

If you need to add unique indexes or reduce columns to database tables with existing data, you must use
the voltadmin save and restore commands to perform the schema update. This requires shutting down
and restarting the database to allow VoltDB to validate the existing data against the new constraints.

To perform a schema update using save and restore, use the following steps:
1. Create anew schemafile containing the updated DDL statements.
2. Pause the database (voltadmin pause).

3. Save a snapshot of the database contents to an specific location (voltadmin save --blocking {path}
{file-prefix}).

4. Shutdown the database (voltadmin shutdown).

5. Re-initialize and restart the database starting in admin mode (voltdb init --force and voltdb start --
pause).

6. Load the stored procedures and new schema (using the sglcmd L OAD CLASSESand FIL E directives)

7. Restore the snapshot created in Step #3 (voltadmin restor e {path} {file-prefix}).

16


http://docs.voltdb.com/UsingVoltDB/SchemaModify.php
http://docs.voltdb.com/UsingVoltDB/

Maintenance and Upgrades

8. Return the database to normal operations (voltadmin resume).
For example:

# | ssue once

vol tadnm n pause

vol tadm n save --blocking /opt/archive/ nydb
vol tadm n shut down

voltdb init --dir=~/nydb --config=depl oyment.xm --force
voltdb start --dir=~/nydb --host=svrl,svr2 --count=5

# | ssue only once

sql cnd
1> | oad cl asses storedprocs.jar;
2> file newschenma. sql;

$
$
$
$
$ # | ssue next two conmands on all servers
$
$
$
$

3> exit
$ voltadnmin restore /opt/archive nydb
$ voltadnin resune

The key point to remember when adding new constraints is that there is the possibility that the restore

operation will fail if existing records violate the new constraint. Thisiswhy it isimportant to make sure
your database contents are compatible with the new schema before performing the update.

4.3. Upgrading the Cluster

Sometimes you need to update or reconfigure the server infrastructure on which the VoltDB database is
running. Server upgrades are one example. A server upgrade iswhen you need to fix or replace hardware,
update the operating system, or otherwise modify the underlying system.

Server upgrades usually require stopping the VoltDB database process on the specific server being
serviced. However, if your database cluster uses K-safety for enhanced availability, it is possible to
complete server upgrades without any database downtime by performing a rolling hardware upgrade,
where each server is upgraded in turn using the voltadmin stop and start commands.

Another type of upgrade iswhen you want to reconfigure the cluster asawhole. Reasonsfor reconfiguring
the cluster are because you want to add or remove servers from the cluster or you need to modify the
number of partitions per server that VoltDB uses.

Adding and removing servers from the cluster can happen without stopping the database. This is called
elastic scaling. Changing the K-Safety factor or number of sites per host requires restarting the cluster
during a maintenance window.

The following sections describe five methods of cluster upgrade:

 Performing server upgrades

» Performing rolling upgrades on K-safe clusters

» Adding serversto arunning cluster through elastic scaling

» Removing servers from arunning cluster through elastic scaling

17



Maintenance and Upgrades

 Reconfiguring the cluster with a maintenance window

4.3.1. Performing Server Upgrades

If you need to upgrade or replace the hardware or software (such as the operating system) of theindividual
servers, this can be done without taking down the database as a whole. As long as the server is running
with a K-safety value of one or more, it is possible to take a server out of the cluster without stopping the
database. Y ou can then fix the server hardware, upgrade software (other than VoltDB), even replace the
server entirely with a new server, then bring the server back into the cluster.

To perform a server upgrade:

1. StoptheVoltDB server processon the server using thevoltadmin stop command. Aslong asthe cluster
isK-safe, therest of the cluster will continue running.

2. Perform the necessary upgrades.
3. Havethe server rgjoin the cluster using the voltdb start command.

The start command starts the database process on the server, contacts the database cluster, then copies the
necessary partition content from other cluster nodes so the server can then participate as a full member of
the cluster, While the server isregjoining, the other database serversremain accessible and actively process
queries from client applications.

When rejoining acluster you can usethe same start command used when starting the cluster asawhole. If,
however, you need to replace the server (say, for example, in the case of adisk failure), you will also need
to initialize a root directory for the database process on the new machine. You do this using the current
configuration file for the cluster. For example:

$ voltdb init --dir=~/database --config=depl oynent. xm
$ voltdb start --dir=~/database --host=svril, svr2

If no changes have been made, you can use the same configuration file used to initialize the other servers.
If you have used voltadmin update to change the configuration or changed settings using the VoltDB
Management Center (VMC), you can download a copy of the latest configuration from VMC.

If the cluster is not K-safe — that is, the K-safety value is 0 — then you must follow the instructionsin
Section 4.3.5, “Reconfiguring the Cluster During a Maintenance Window” to upgrade the servers.

4.3.2. Performing Rolling Hardware Upgrades on K-Safe
Clusters

If you need to upgrade all of the serversin aK-safe cluster (for example, if you are upgrading the operating
system), you can perform arolling hardware upgrade by stopping, upgrading, then rejoining each server
one at atime. Using this process the entire cluster can be upgraded without suffering any downtime of
the database. Just be sure to wait until the rejoining server has become a full member of the cluster before
removing and upgrading the next server in the rotation. Specifically, wait until the following message
appearsin the log or on the console for the rejoining server:

Node rejoin conpl et ed.

Alternately, you can attempt to connect to the server remotely — for example, using the sglemd command
line utility. If your connection is rejected, the rejoin has not finished. If you successfully connect to the
client port of the rgjoining node, you know the rgjoin is complete:

18



Maintenance and Upgrades

$ sqlcmd --servers=nyserver
SQL Command :: nyserver: 21212
1>

Note

You cannot update the VoltDB software itself using the rolling hardware upgrade process,
only the operating system, hardware, or other software. See Section 4.4, “Upgrading VoltDB
Software” for information about minimizing downtime during a VoltDB software upgrade.

4.3.3. Adding Servers to a Running Cluster with Elastic
Scaling

If you want to add serversto a VoltDB cluster — usually to increase performance and/or capacity — you
can do this without having to restart the database. Y ou add servers to the cluster using the voltdb start
command with the - - add flag. Note, as always, you must initialize a root directory before issuing the
start command. For example:

$ voltdb init --dir=~/database --config=depl oynment. xmni
$ voltdb start --dir=~/database --host=svri,svr2 --add

The- - add flag specifiesthat if the cluster full —that is, all of the specified number of serversare currently
activein the cluster — the joining node can be added to el astically expand the cluster. Y ou must elastically
add a full complement of servers to match the K-safety value (K+1) before the servers can participate as
active members of the cluster. For example, if the K-safety valueis 2, you must add 3 servers before they
actually become part of the cluster and the cluster rebalances its partitions.

When you add serversto a VoltDB database, the cluster performs the following actions:

1. Thenew serversare added to the cluster configuration and sent copies of the schema, stored procedures,
and deployment file.

2. Once sufficient servers are added, copies of al replicated tables and their share of the partitioned tables
are sent to the new servers.

3. Asthe datais rebalanced, the new servers begin processing transactions for the partition content they
have received.

4. Once rebalancing is complete, the new servers are full members of the cluster.

If the cluster is not at its full complement of servers when you issue avoltdb start --add command, the
added server will join the cluster as a replacement for a missing node rather than extending the cluster.
Oncethe cluster isback toitsfull complement of nodes, the next voltdb start --add command will extend
the cluster.

4.3.4. Removing Servers from a Running Cluster with Elastic
Scaling

Just asyou can add nodesto arunning cluster to add capacity, you can remove nodes from arunning cluster
to reduce capacity. Obviously, you want to make sure that the smaller cluster has sufficient resources, such
as memory, for your data and workload. If you are using K-safety, you also need to be sure the current
cluster islarge enough to remove nodes and still meet the requirements for your specific K-safety setting.

19



Maintenance and Upgrades

To remove nodesfrom arunning cluster, you use the voltadmin resize command. Thefirst step isto verify
that the cluster has enough nodesto reducein size. Y ou do thiswith the voltadmin resize --test command:

$ voltadmin resize --test

The voltadmin resize --test command checks the cluster to make sure there are enough nodes to still be
operational after the reduction and it reports which nodes will be removed as a result of the operation.
The number of nodes that will be removed is calculated as the smallest number that allows the cluster to
maintain K-safety. Without K-Safety, that is one node. With K-Safety, that is at least K+1, but possibly
more depending on the cluster configuration. The remaining node count and configuration must satisfy
the regquirement that the number of nodes and the total number of partitions are both divisible by K+1.

Once you are ready to start reducing the cluster size, issue the voltadmin resize command without any
arguments:

$ voltadnmin resize

This command verifies that the cluster can be resized, reports which nodes will be removed, asks you to
confirm that you want to begin, and then starts the resize operation. Because resizing the cluster involves
reorganizing and rebalancing the partitions, it can take a significant amount of time, depending on the
size of the database and the ongoing workload. Y ou can track the progress of the resize operation using
the voltadmin status command. Y ou can also adjust the priority between rebalancing the partitions and
ongoing client transactions by setting the duration and throughput of the rebalance operation. See the
section on "Configuring How VoltDB Rebalances Nodes During Elastic Scaling” in the Using VoltDB
manual for details.

Note that once resizing starts, you cannot cancel the operation. So be certain you want to reduce the size
of the cluster before beginning. If for any reason the resize operation fails unexpectedly, you can use the
voltadmin resize --retry command to restart the cluster reduction.

4.3.5. Reconfiguring the Cluster During a Maintenance
Window

If you want to modify the cluster configuration, such as the number of sites per host or K-Safety factor,
you need to restart the database cluster as awhole. Y ou can also choose to add or remove nodes from the
cluster during this operation. Stopping the database temporarily to reconfigure the cluster is known as a
maintenance window.

The steps for reconfiguring the cluster with a maintenance window are;

1. Place the database in admin mode (voltadmin pause).

2. Perform amanual snapshot of the database (voltadmin save --blocking).
3. Shutdown the database (voltadmin shutdown).

4. Make the necessary changes to the configuration file.

5. Reinitialize the database root directory on all nodes specifying the edited configuration file (voltdb
init --force).

6. Start the new database in admin mode ( voltdb start --pause)
7. Restore the snapshot created in Step #2 (voltadmin restor€).

8. Return the database to normal operations (voltadmin resume).

20


https://docs.voltdb.com/UsingVoltDB/UpdateHw.php#UpdateRebalance
https://docs.voltdb.com/UsingVoltDB/

Maintenance and Upgrades

4.4. Upgrading VoltDB Software

As new versions of VoltDB become available, you will want to upgrade the VoltDB software on your
database cluster. The simplest approach for upgrading recent versions of VoltDB — V6.8 or later — is
to perform an orderly shutdown saving afinal snapshot, upgrade the software on all servers, then re-start
the database. (If you are upgrading from earlier versions of the software, you can still upgrade using a
snapshot. But you will need to perform the save and restore operations manually.)

However, upgrading using snapshots involves downtime while the software is being updated. An
alternativeisto use databasereplication (DR) — either passive DR or crossdata center replication (XDCR)
— to upgrade with minimal or no downtime.

Using passive DR you can copy the active database contents to a new cluster, then switch the application
clients to point to the new server. The advantage of this process is that the only downtime the business
application seesis the time needed to promote the new cluster and redirect the clients.

Using cross data center replication (XDCR), it is possible to perform an online upgrade, where there is
no downtime and the database is accessible throughout the upgrade operation. If two or more clusters are
already active participants in an XDCR environment, you can shutdown and upgrade the clusters, one at
atime, to perform the upgrade leaving at least one cluster available at all times.

You can also use XDCR to upgrade a cluster, with limited extra hardware, by operationally splitting the
cluster into two. Although this approach does not require downtime, it does reduce the K-safety for the
duration of the upgrade.

The following sections describe the five approaches to upgrading VoltDB software:
» Upgrading VoltDB Using Save and Restore

» Upgrading Older Versions of VoltDB Manually

Upgrading VoltDB With Reduced Downtime Using a DR Replica
 Performing an Online Upgrade Using Multiple XDCR Clusters

 Performing an Online Upgrade With Limited Hardware

4.4.1. Upgrading VoltDB Using Save and Restore

Upgrading the VoltDB software on a single database cluster is easy. All you need to do is perform an
orderly shutdown saving afinal snapshot, upgrade the VoltDB software on all serversin the cluster, then
restart the database. The steps to perform this procedure are:

1. Shutdown the database and save afinal snapshot (voltadmin shutdown --save).
2. Upgrade VolItDB on al cluster nodes.
3. Restart the database (voltdb start).

This process works for any recent (V6.8 or later) release of VoltDB.

4.4.2. Upgrading Older Versions of VoltDB Manually

To upgrade older versions of VoltDB software (prior to V6.8), you must perform the save and restore
operations manually. The steps when upgrading from older versions of VoltDB are:

21



Maintenance and Upgrades

1. Place the database in admin mode (voltadmin pause).

2. Perform amanual snapshot of the database (voltadmin save --blocking).
3. Shutdown the database (voltadmin shutdown).

4. Upgrade VoltDB on all cluster nodes.

5. Re-initialize the root directory on all nodes (voltdb init --for ce).

6. Start a new database in admin mode (voltdb start --pause).

7. Restore the snapshot created in Step #2 (voltadmin restore).

8. Return the database to normal operations (voltadmin resume).

4.4.3. Upgrading VoltDB With Reduced Downtime Using a
DR Replica

When upgrading the VV oltDB softwarein aproduction environment, it i s possi bleto minimizethe disruption
to client applications by upgrading acrosstwo clusters using passive database replication (DR). To usethis
process you need a second database cluster to act as the DR replica and you must have a unique cluster
ID assigned to the current database.

The basic process for upgrading the VoltDB software using DR is to:
1. Install the new VoltDB software on the secondary cluster
2. Use passive DR to synchronize the database contents from the current cluster to the new cluster

3. Pause the current database and promote the new cluster, switching the application clients to the new
upgraded database

The following sections describe in detail the prerequisites for using this process, the steps to follow, and
— in case there are any issues with the updated database — the process for falling back to the previous
software version.

4.4.3.1. Prerequisites for Upgrading with Passive DR
The prerequisites for using DR to upgrade VVoltDB are:

» A second cluster with the same configuration (that is, the same number of servers and sites per host)
asthe current database cluster.

» The current database cluster must have a unique cluster ID assigned in its deployment file.

The cluster ID is assigned in the <dr > section of the deployment file and must be set when the cluster
starts. It cannot be added or altered while the database is running. So if you are considering using this
process for upgrading your production systems, be sure to add a<dr > tag to the deployment and assign a
unique cluster ID when starting the database, even if you do not plan on using DR for normal operations.

For example, you would add the following element to the deployment file when starting your primary
database cluster to assign it the unique ID of 3.

<dr id="3">

22



Maintenance and Upgrades

I mportant

An important constraint to be aware of when using this process is that you must not make any
schema changes during the upgrade process. Thisincludesthe period after the upgrade whileyou
verify the application's proper operation on the new software version. If any changes are madeto
the schema, you may not be able to readily fall back to the previous version.

4.4.3.2. The Passive DR Upgrade Process

The procedure for upgrading the V oltDB software on arunning database using DR isthe following. In the
exampl es, we assume the existing databaseisrunning on acluster withthenodesol dsvr 1 andol dsvr 2
and the new cluster includes servers newsvr 1 and newsvr 2. We will assign the clusters unique IDs 3
and 4, respectively.

1. Install the new VoltDB softwar e on the secondary cluster.

Follow the steps in the section "Installing VoltDB" in the Using VoltDB manual to install the latest
VoltDB software.

2. Start the second cluster asa replica of the current database cluster.

Oncethe new softwareisinstalled, create a new database on the secondary server using the voltdb init
--force and voltdb start commands and including the necessary DR configuration to create a replica
of the current database. For example, the configuration file on the new cluster might look like this:

<dr id="4" role="replica">
<connecti on source="ol dsvr1, ol dsvr2"/>
</ dr>

Once the second cluster starts, apply the schema from the current database to the second cluster. Once
the schema match on the two databases, replication will begin.

3. Wait for replication to stabilize.

During replication, the original database will send a snapshot of the current content to the new replica,
then send binary logs of all subsequent transactions. Y ou want to wait until the snapshot isfinished and
the ongoing DR is processing normally before proceeding.

* First monitor the DR statistics on the new cluster. The DR consumer state changes to "RECEIVE"
once the snapshot is complete. You can check this in the Monitor tab of the VoltDB Management
Center or from the command line by using sglcmd to call the @Statistics system procedure, like so:

$ sqglcmd --servers=newsvrl
1> exec @tatistics drconsuner O;

* Once the new cluster reports the consumer state as "RECEIVE", you can monitor the rate of
replication on the existing database cluster using the DR producer statistics. Again, you can view
these statistics in the Monitor tab of the VVoltDB Management Center or by calling @Statistics using
sglemd:

$ sqglcmd --servers=ol dsvril
1> exec @Btatistics drproducer O;

What you are looking for on the producer side is that the DR latency islow; ideally under a second.
Because the DR latency helps determine how long you will wait for the cluster to quiesce when you
pauseit and, subsequently, how long the client applicationswill be stalled waiting for the new cluster

23


https://docs.voltdb.com/UsingVoltDB/installDist.php
https://docs.voltdb.com/UsingVoltDB/

Maintenance and Upgrades

to be promoted. Y ou determine the latency by looking at the difference between the statistics for the
|ast queued timestamp and the last ACK ed timestamp. The difference between these values givesyou
the latency in microseconds. When the latency reaches a stable, low value you are ready to proceed.

4. Pausethe current database.
The next step isto pause the current database. Y ou do this using the voltadmin pause --wait command:
$ vol tadm n pause --host=oldsvrl --wait

The --wait flag tells voltadmin to wait until all DR and export queues are flushed to their downstream
targets before returning control to the shell prompt. This guarantees that all transactions have reached
the new replica cluster.

If DR or export are blocked for any reason — such as a network outage or the target server unavailable
— the voltadmin pause --wait command will continue to wait and periodically report on what queues
are till busy. If the queues do not progress, you will want to fix the underlying problem before
proceeding to ensure you do not lose any data.

5. Promote the new database.

Once the current database is fully paused, you can promote the new database, using the voltadmin
promote command:

$ voltadm n pronote --host=newsvrl
At this point, your database is up and running on the new VoltDB software version.
6. Redirect client applicationsto the new database.

To restore connectivity to your client applications, redirect them from the old cluster to the new cluster
by creating connections to the new cluster servers newsvrl, newsvr2, and so on.

7. Shutdown theoriginal cluster.
At this point you can shutdown the old database cluster.
8. Verify proper operation of the database and client applications.

Thelast step isto verify that your applications are operating properly against the new VoltDB software.
Use the VoltDB Management Center to monitor database transactions and performance and verify
transactions are completing at the expected rate and volume.

Y our upgrade is now complete. If, at any point, you decide there is an issue with your application or your
database, it is possible to fall back to the previous version of VoltDB as long as you have not made any
changes to the underlying database schema. The next section explains how to fall back when necessary.

4.4.3.3. Falling Back to a Previous Version

In extreme cases, you may find there is an issue with your application and the latest version of VoltDB. Of
course, you normally would discover this during testing prior to a production upgrade. However, if that
is not the case and an incompatibility or other conflict is discovered after the upgrade is completed, it is
possibleto fall back to apreviousversion of VoltDB. Thebasic processfor falling back isto the following:

« If any problems arise before Step #6 (redirecting the clients) is completed, simply shutdown the new
replica and resume the old database using the voltadmin resume command:

$ vol tadnmi n shutdown --host=newsvr1l

24



Maintenance and Upgrades

$ voltadm n resune --host=ol dsvrl

« If issues are found after Step #6, the fall back procedure is basically to repeat the upgrade procedure
described in Section 4.4.3.2, “The Passive DR Upgrade Process’ except reversing the roles of the
clusters and replicating the data from the new cluster to the old cluster. That is:

1. Updatetheconfiguration file onthe new cluster to enable DR asamaster, removing the <connection>
element:

<dr id="4" role="nmaster"/>

2. Shutdown the original database and edit the configuration file to enable DR as a replica of the new
cluster:

<dr id="3" role="replica">
<connecti on source="newsvr1l, newsvr2"/>
</ dr>

3. Re-initialize and start the old cluster using the voltdb init --for ce and voltdb start commands.

4. Follow steps 3 through 8 in Section 4.4.3.2, “The Passive DR Upgrade Process’ reversing the roles
of the new and old clusters.

4.4.4. Performing an Online Upgrade Using Multiple XDCR
Clusters

Itisalso possible to upgrade the VoltDB software using cross data center replication (XDCR), by simply
shutting down, upgrading, and then re-initalizing each cluster, one at a time. This process requires no
downtime, assuming your client applications are already designed to switch between the active clusters.

Use of XDCR for upgrading the VoltDB software is easiest if you are aready using XDCR because it
does not require any additional hardware or reconfiguration. The following instructions assume that isthe
case. Of course, you could also create a new cluster and establish XDCR replication between the old and
new clustersjust for the purpose of upgrading VoltDB. The steps for the upgrade outlined in the following
sections are the same. But first you must establish the cross data center replication between the two (or
more) clusters. See the chapter on Database Replication in the Using VoltDB manual for instructions on
completing thisinitial step.

Once you have two clusters actively replicating data with XCDCR (let's call them clusters A and B), the
steps for upgrading the VoltDB software on the clustersis as follows:

1. Pause and shutdown cluster A (voltadmin pause --wait and shutdown).
2. Clear the DR state on cluster B (voltadmin dr reset).
3. Update the VoltDB software on cluster A.

4. Start anew databaseinstance on A, making sureto usethe old deployment file so the XDCR connections
are configured properly (voltdb init --for ce and voltdb start).

5. Load the schema on Cluster A so replication starts.
6. Once the two clusters are synchronized, repeat steps 1 through 4 for cluster B.

Note that since you are upgrading the software, you must create a new instance after the upgrade (step
#3). When upgrading the software, you cannot recover the database using just the voltdb start command;

25


https://docs.voltdb.com/UsingVoltDB/ChapReplication.php
https://docs.voltdb.com/UsingVoltDB/

Maintenance and Upgrades

you must use voltdb init --for ce first to create a new instance and then reload the existing data from the
running cluster B.

Also, be sure all data has been copied to the upgraded cluster A after step #4 and before proceeding
to upgrade the second cluster. You can do this by checking the @Statistics system procedure
selector DRCONSUMER on cluster A. Once the DRCONSUMER statistics St at e column changes to
"RECEIVE", you know the two clusters are properly synchronized and you can proceed to step #5.

4.4.4.1. Falling Back to a Previous Version

4.4.5.

In extreme cases, you may decide after performing the upgrade that you do not want to use the latest
version of VolItDB. If this happens, it is possible to fall back to the previous version of VoltDB.

To"downgrade" from anew version back to the previousversion, follow the stepsoutlined in Section 4.4.4,
“Performing an Online Upgrade Using Multiple XDCR Clusters’ except rather than upgrading to the new
version in Step #2, reinstall the older version of VolItDB. This process is valid as long as you have not
modified the schema or deployment to use any new or changed features introduced in the new version.

Performing an Online Upgrade With Limited Hardware

It is possible to use XDCR and K-safety to perform an online upgrade, where the database remains
accessible throughout the upgrade process, without requiring an additional cluster. As opposed to
upgrading two separate XDCR clusters, this process enables an online upgrade with little or no extra
hardware requirements.

On the other hand, this upgrade process is quite complex and during the upgrade, the K-safety of the
database is reduced. In other words, this process trades off the need for extra hardware against a more
complicated upgrade process and increased risk to availability if any nodes crash unexpectedly during the
upgrade.

Essentially, the process for upgrading a cluster with limited additional hardware is to split the existing
cluster hardware into two separate clusters, upgrading the software along the way. To make this possible,
there are a several prerequisites:

» Thecluster must be configured asa XDCR cluster.

The cluster configuration must contain a<dr > element that identifies the cluster ID and specifies the
role as"xdcr". For example:

<dr id="1" rol e="xdcr"/>

Note that the replication itself can be disabled (that is, | i st en="f al se"), but the cluster must have
the XDCR configuration in place before the online upgrade begins.

» All of thetablesin the database must beidentified as DR tables.

This means that the schema must specify DR TABLE {t abl e- nane} for al of the tables, or else
datafor the non-DR tables will be lost.

» K-Safety must be enabled.

The K-safety value (set using the kf act or attribute of the <cl ust er > element in the configuration
file) must be set to one or higher.

Additionally, if the K-safety value is 1 and the cluster has an odd number of nodes, you will need one
additional server to complete the upgrade. (The additional server is no longer needed after the upgrade
iscompleted.)

26



Maintenance and Upgrades

Table 4.1, “Overview of the Online Upgrade Process’ summarizesthe overall process for online upgrade.

Because the processis complicated and requires shutting down and restarting database serversin aspecific
order, it isimportant to create an upgrade plan before you begin. The voltadmin plan_upgrade command
generates such aplan, listing the detailed steps for each phase based on your current cluster configuration.
Before you attempt the online upgrade process, use voltadmin plan_upgrade to generate the plan and
thoroughly review it to make sure you understand what is required.

Table 4.1. Overview of the Online Upgrade Process

Phase #1 Ensure the cluster meets all the necessary prerequisites (XDCR and K-safety configured,

all tables DR-enabled).
Install the new VoltDB software version in the same location on all cluster nodes.
If not already set, be sureto enable DR for the cluster by setting the listen attribute to true
in the cluster configuration.
For the purposes of demonstration, the following illustrations assume afour-node database
configured with acluster ID set to 1.

Cluster ig=1 [Wersion n)

Phase #2 Stop half the cluster nodes. Because of K-safety, it is possible for half the serversto be
removed from the cluster without stopping the database. The plan generated by voltadmin
plan_upgrade will tell you exactly which nodes to stop.

If the cluster has an odd number of nodes and the K-safety is set to one, you can stop the
smaller "half" of the cluster and then add another server to create two equal halves.
Cluster ig=1 [Wersion n)

Phase #3 Create a new cluster on the stopped nodes, using the new VoltDB software version. Be
sureto configure the cluster with anew cluster ID, XDCR enabled, and listing the original
cluster asthe DR connection source. Y ou can also start the new cluster using the --missing
argument so although it starts with only half the nodes, it expects the full complement of
nodes for full k-safety. In the example, the start command would specify --count=2 and
--missing=2.

After loading the schemaand proceduresfromtheoriginal cluster, XDCR will synchronize
the two clusters.

27



Maintenance and Upgrades

Cluster =1 [Wersion n) Clusterio=2 [Wersion n+1]

CEE | | OE] NI | 0
CIEIE | COEIK xocr 3 LI
000 | B [

H
[]
[]
[]

Phase #4 Once the clusters are synchronized, redirect all client applicationsto the new cluster.

Stop the original cluster and reset DR on the new cluster using the voltadmin dr reset
command.

Cluster ic=2 (Version n=1)

[ ] | LI
[ ][] L]
| LI

Phase #5 Reinitialize and rejoin the remaining nodes to the new cluster, using the new software
version. Because the new cluster was started with the --missing option, the remaining
nodes can join the cluster and bring it back to full K-safety.

If you started with an odd number of servers and K=1 (and therefore added a server to
create the second cluster) you can either rejoin al but one of the remaining nodes, or if you
want to remove the specific server you added, remove it before rejoining the last node.

Cluster io=2 [Wersion n+1)

Iy ey L
u (0l 00

Complete At this point the cluster is fully upgraded.

Cluster io=2 [Wersion n+1)

0 O | LI
10 O |I L
00 o |I Lt

4.4.5.1. Falling Back to the Original Software Version

In extreme cases, you may decide during or after performing the upgrade that you do not want to use the
latest version of VoltDB. If this happens, it is possible to fall back to the previous version of VVoltDB.

28



Maintenance and Upgrades

During the phases identified as #1 and #2 in Table 4.1, “Overview of the Online Upgrade Process’, you
can always rejoin the stopped nodes to the original cluster to return to your original configuration.

During or after you complete phase #3, you can return to your original configuration by:

1. Stopping the new cluster.

2. Resetting DR on the original cluster (voltadmin dr reset).

3. Reinitializing and rejoining the stopped nodesto the original cluster using the original software version.

Oncetheoriginal cluster is stopped as part of phase #4, theway to revert to the original software versionis
to repeat the entire procedure starting at phase #1 and reversing the direction — "downgrading” from the
new software version to the old software version. This processis valid as long as you have not modified
the schema or deployment to use any new or changed features introduced in the new version.

4.4.6. Downgrading, or Falling Back to a Previous VoltDB
Version

The sections describing the upgrade process for passive DR, active XDCR, and XDCR with limited
hardware all explain how to fall back to the previous version of VVoltDB in case of emergency. Thissection
explains how to fall back, or downgrade, when using the standard save and restore process described in
Section 4.4.1, “Upgrading VoltDB Using Save and Restore”.

First, it is always a good idea to perform a backup, or snapshot, of the database before performing
any maintenance on production systems. Although the voltadmin shutdown --save command creates a
snapshot in the upgrade process, which can be used to fall back in an emergency, it isalways safest to have
a separate snapshot with awell-known ID and location outside the database root directory.

Second, the following process works if you are reverting between two recent versions of VoltDB and you
do not use any new features between the upgrade and the downgrade. There are no guarantees an attempt
to downgrade will succeed if the two software versions are more than one major version apart or if you
utilize a new feature from the higher version software prior to downgrading.

With those caveats, the easiest way to fall back to a previous VoltDB version, if no changes have been
madeto the databaseitself, isreinstall the older version of VoltDB, re-initialize the database root directory,
then restart an empty database and restore a snapshot taken prior to the upgrade.

If changes were made to the contents of the database, you will need to take a new snapshot prior to
downgrading. Y ou can use the same process to downgrade that you used to upgrade:

1. Shutdown the database with voltadmin shutdown --save.
2. Re-ingtall the previous version of VoltDB.

3. Restart the database.

29



Chapter 5. Monitoring VoltDB Databases

Monitoring is an important aspect of systems administration. This is true of both databases and the
infrastructure they run on. The goals for database monitoring include ensuring the database meets its
expected performance target aswell asidentifying and resolving any unexpected changes or infrastructure
events (such as server failure or network outage) that can impact the database. This chapter explains:

» How to monitor overall database health and performance using VoltDB
» How to automatically pause the database when resource limits are exceeded

» How to integrate VoltDB monitoring with other enterprise monitoring infrastructures

5.1. Monitoring Overall Database Activity

VoltDB provides severa tools for monitoring overall database activity. The following sections describe
the three primary monitoring tools within VVoltDB:

* VoltDB Management Center
» System Procedures

* SNMP Alerts

5.1.1. VoltDB Management Center

http://vol tserver: 8080/

The VoltDB Management Center provides a graphical display of key aspects of database performance,
including throughput, memory usage, query latency, and partition usage. To use the Management Center,
connect to one of the cluster nodes using a web browser, specifying the HTTP port (8080 by default)
as shown in the example URL above. The Management Center shows graphs for cluster throughput and
latency aswell as CPU and memory usage for the current server. Y ou can a so use the Management Center
to examine the database schema and to issue ad hoc SQL queries.

5.1.2. System Procedures

VoltDB provides callable system procedures that return detailed information about the usage and
performance of the database. In particular, the @Statistics system procedure provides a wide variety of
information depending on the selector keyword you giveit. Some selectors that are particularly useful for
monitoring include the following:

* MEMORY — Provides statistics about memory usage for each nodeinthe cluster. Information includes
theresident set size (RSS) for the server process, the Java heap size, heap usage, available heap memory,
and more. This selector provides the type of information displayed by the Process Memory Report,
except that it returns information for al nodes of the cluster in asingle call.

e PROCEDUREPROFILE — Summarizes the performance of individual stored procedures.
Information includes the minimum, maximum, and average execution time as well as the number of
invocations, failures, and so on. The information is summarized from across the cluster aswhole. This
selector returns information similar to the latency graph in VoltDB Management Center.

e TABLE — Providesinformation about the size, in number of tuples and amount of memory consumed,
for each table in the database. The information is segmented by server and partition, so you can use

30



Monitoring VoltDB Databases

it to report the total size of the database contents or to evaluate the relative distribution of data across
the serversin the cluster.

When using the @Statistics system procedure with the PROCEDUREPROFILE selector for monitoring,
it isagood idea to set the second parameter of the call to "1" so each call returns information since the
last call. In other words, statistics for the interval sincethe last call. Otherwise, if the second parameter is
"0", the procedure returns information since the database started and the aggregate results for minimum,
maximum, and average execution time will have little meaning.

When calling @Statistics with the MEMORY or TABLE selectors, you can set the second parameter to
"0" sincetheresultsare aways a snapshot of the memory usage and table volume at thetime of thecall. For
example, the following Python script uses @Statistics with the MEMORY and PROCEDUREPROFILE
selectorsto check for memory usage and latency exceeding certain limits. Note that the call to @Statistics
uses a second parameter of 1 for the PROCEDUREPROFILE call and a parameter value of O for the
MEMORY call.

i mport sys

fromvol tdbclient inport *

nano = 1000000000. 0

menorytrigger = 4 * (1024*1024) # 4gbytes

avgl atencytrigger = .01 * nano # 10 m | liseconds
max| at encytrigger = 2 * nano # 2 seconds
server = "local host"

if (len(sys.argv) > 1): server = sys.argv[1]

client = FastSerializer(server, 21212)
stats = Vol tProcedure( client, "@statistics",
[ FastSerializer. VOLTTYPE_STRI NG,
Fast Seri al i zer. VOLTTYPE_I NTEGER | )

# Check nenory
response = stats.call ([ "nmenory", 0 ])
for t in response.tables:
for rowin t.tuples:
print 'RSS for node ' + rowf2] + "=" + str(row 3])
if (row 3] > nenorytrigger):
print "WARNI NG menory usage exceeds limt."

# Check | atency
response = stats.call ([ "procedureprofile”, 11])
avglatency = 0
max| atency = 0
for t in response.tables:
for rowin t.tuples:

if (avglatency < row 4]): avglatency = row 4]
if (maxlatency < row 6]): naxlatency = row 6]
print 'Average |atency=" + str(avgl atency)
print ' Maximum | atency=" + str(maxl atency)

if (avglatency > avgl atencytrigger):

print "WARNI NG Average |atency exceeds limt."
i f (maxl atency > maxl atencytrigger):

print "WARNI NG Maxi num | atency exceeds limt."

31



Monitoring VoltDB Databases

client.close()

The @Statistics system procedure is the the source for many of the monitoring options discussed in
this chapter. Two other system procedures, @SystemCatalog and @Systemlnformation, provide general
information about the database schema and cluster configuration respectively and can be used in
monitoring as well.

The system procedures are useful for monitoring becausethey let you customize your reporting to whatever
level of detail you wish. The other advantage is that you can automate the monitoring through scripts
or client applications that call the system procedures. The downside, of course, is that you must design
and create such scripts yourself. As an aternative for custom monitoring, you can consider integrating
VoltDB with existing third party monitoring applications, asdescribedin Section 5.3, “Integrating VoltDB
with Other Monitoring Systems’. Y ou can aso set the database to automatically pause if certain system
resources run low, as described in the next section.

5.1.3. SNMP Alerts

In addition to monitoring database activity on a"as needed" basis, you can enable VoltDB to proactively
send Simple Network Management Protocol (SNMP) aerts whenever important events occur within the
cluster. SNMP is a standard for how SNMP agents send messages (known as "traps') to management
servers or "management stations”.

SNMPisalightweight protocol. SNM P traps are sent as UDP broadcast messagesin astandard format that
isreadable by SNM P management stations. Since they are broadcast messages, the sending agent does not
wait for aconfirmation or response. And it does not matter, to the sender, whether there is a management
server listening to receive the message or not. You can use any SNMP-compliant management server to
receive and take action based on the traps.

When you enable SNMP in the deployment file, VoltDB operates as an SNMP agent sending traps
whenever management changes occur in the cluster. You enable SNMP with the <snnp> element in
the deployment file. You configure how and where VoltDB sends SNMP traps using one or more of the
attributes listed in Table 5.1, “SNMP Configuration Attributes”.

Table5.1. SNMP Configuration Attributes

Attribute Default Value Description

target (none) Specifies the IP address or host name of the SNMP
management station where traps will be sent in the form {IP-
or-hostname}[ : port-number]. If you do not specify a port
number, the default is 162. Thet ar get attributeisrequired.

community public Specifies the name of the "community" the VoltDB agent
belongsto.
username (none) Specifies the username for SNMP V3 authentication. If you

do not specify a username, VoltDB sendstrapsin SNMP V2c
format. If you specify ausername, VoltDB uses SNMPV 3 and
the following attributes let you configure the authentication
mechanisms used.

authprotocol SHA Specifiesthe authentication protocol for SNMPV 3. Allowable
(SNMPV3only) |optionsare:

* SHA
» MD5
* NoOAuth

32



Monitoring VoltDB Databases

Attribute Default Value Description
authkey voltdbauthkey Specifies the authentication key for SNMP V3 when the
(SNMPV3only) |protocol isother than NoAuth.
privacyprotocol AES Specifies the privacy protocol for SNMP V3. Allowable
(SNMPV3only) |optionsare:
« AES
« DES
* NoPriv
« 3DES
« AES192'
» AES256
privacykey voltdbprivacykey | Specifies the privacy key for SNMP V3 when the privacy
(SNMPV3only) |protocol isother than NoPriv.

"Use of 3DES, AES192, or AES256 privacy requires the Java Cryptography Extension (JCE) be installed on the system. The JCE
is specific to the version of Javayou are running. See the the Javaweb site for details.

SNMP is enabled by default when you include the <snnp> element in the deployment file. Alternately,
you can explicitly enable and disable SNMP using the enabl ed={true| f al se} attribute to the
element. For example, the following deployment file entry enables SNMP alerts, sending traps to
mgtsvr.mycompany.com using SNMP V 3 with the username "voltdb":

<snnmp enabl ed="t rue"
target ="ngt svr. nyconpany. conf
user name="vol t db"

/>

Once SNMP is enabled, VoltDB sends alerts for the events listed in Table 5.2, “SNMP Events’.

Table5.2. SNMP Events

Name Severity Description

crash FATAL When a server or cluster crashes.

clusterPaused INFO When the cluster pauses and enters admin maode.

clusterResume INFO When the cluster exits admin mode and resumes normal
operation.

hostDown ERROR When a server shuts down or is recognized as having left the
cluster.

hostUp INFO When a server joins the cluster.

streamBlocked WARN When an export stream is blocked due to datamissing from the
export queue and all cluster nodes are running.

statisticsTrigger WARN When certain operationa states are compromised.
Specifically:
* When aK-safe cluster loses one or more nodes
* When using database replication, the connection to the

remote cluster is broken
resourceTrigger WARN When certain resource limits are exceeded. Specifically

¢ Memory usage
» Disk usage

33


http://www.oracle.com/technetwork/java/index.html

Monitoring VoltDB Databases

Name Severity Description

See Section 5.2, “Setting the Database to Read-Only Mode
When System Resources Run Low” for more information
about configuring SNMP alerts for resources.

resourceClear INFO When resource limits return to levels below the trigger value.

For the latest details about each event trap, see the VoltDB SNMP Management Information Base (MIB),
which is installed with the VoltDB server software in the file / t ool s/ snnp/ VOLTDB- M B in the
installation directory.

5.2. Setting the Database to Read-Only Mode
When System Resources Run Low

VoltDB, like al software, uses system resourcesto perform itstasks. First and foremost, as an in-memory
database, VoltDB relies on having sufficient memory available for storing the dataand processing queries.
However, it also makes use of disk resources for snapshots and caching data for other features, such as
export and database replication.

If system resources run low, one or more nodes may fail impacting availability, or worse, causing aservice
interruption. The best solution for this situation isto plan ahead and provision sufficient resourcesfor your
needs. The goal of the VoltDB Planning Guideis to help you do this.

However, even with the best planning, unexpected conditions can result in resource shortages or overuse.
In these situations, you want the database to protect itself against all-out failure.

Y ou can do this by setting resource limits in the VoltDB deployment file. System resource limits are set
withinthe<syst enset t i ngs> and <r esour cenoni t or > elements. For example:

<systensettings>
<resour cenoni tor frequency="30">
<nmenorylimt size="70% alert="60%/>
<di sklimt>
<f eat ure name="snapshots" size="75% alert="60%/>
<f eature name="droverfl ow' size="60%/>
</disklimt>
</ resour cenoni t or >
</ systensettings>

The deployment file lets you set limits on two types of system resources.
* Memory Usage
» Disk Usage

For each resource type you can set the maximum size and, optionally, the level at which an dlert is sent if
SNMPisenabled. In all cases, the allowable amount of the resource to be used can be specified aseither a
valuerepresenting anumber of gigabytes or apercentage of thetotal available. If thelimit set by theal ert
attribute is exceeded and SNMP is enabled, an SNMP alert is sent. If the limit set by thesi ze attributeis
exceeded, thedatabase will be"paused", putting it into read-only modeto avoid using any further resources
or possibly failing when the resource becomes exhausted. When the database pauses, an error message is
written to the log file (and the console) reporting the event. This allows you as the system administrator
to correct the situation by reducing memory usage or del eting unnecessary files. Once sufficient resources
are freed up, you can return the database to normal operation using the voltadmin resume command.

34


http://docs.voltdb.com/PlanningGuide/

Monitoring VoltDB Databases

5.2.1.

5.2.2.

The resource limits are checked every 60 seconds by default. However, you can adjust how frequently
they are checked — to accommaodate the relative stability or volatility of your resource usage — using
the f r equency attribute of the <r esour cenoni t or > tag. In the preceding example, the frequency
has been reduced to 30 seconds.

Of course, the ideal is to catch excessive resource use before the database is forced into read-only mode.
Use of SNMP and system monitors such as Nagios and New Relic to generate aerts at limits lower than
the V oltDB resource monitor are strongly recommended. And you can integrate other VoltDB monitoring
with these monitoring utilities as described in Section 5.3, “Integrating VoltDB with Other Monitoring
Systems”. But the resource monitor si ze limit is provided as alast resort to ensure the database does not
completely exhaust resources and crash before the issue can be addressed.

The following sections describe how to set limits for the individual resource types.

Monitoring Memory Usage

Y ou specify amemory limit in the deployment file using the <menor yl i m t > element and specifying
the maximum allowable resident set size (RSS) for the VoltDB process in the si ze attribute. You can
expressthelimit asafixed number of gigabytesor asapercentage of total available memory. Useapercent
sign to specify a percentage. For example, the following setting will cause the VoltDB database to go into
read-only mode if the RSS size exceeds 10 gigabytes on any of the cluster nodes.

<systensettings>
<r esourcenoni t or>
<menorylimt size="10"/>
</ resour cenonitor>
</ systensettings>

Whereas the following exampl e sets the limit at 70% of total available memory.

<systensettings>
<resourcenoni t or>
<nenorylimt size="70%/>
</ resour cenonitor>
</ systensettings>

You can aso set atrigger value for SNMP aerts — assuming SNMP is enabled — using the al ert
attribute. For instance, the following exampl e sets the SNMP trigger value to 60%.

<systensettings>
<r esour cenoni tor >
<nmenorylimt size="70% alert="60%/>
</ resour cenoni t or >
</ systensettings>

If you do not specify alimit in the deployment file, VoltDB automatically sets a maximum size limit of
80% and an SNMP aert level of 70% by default.

Monitoring Disk Usage

You specify disk usage limits in the deployment file using the <di skl i m t > element. Within the
<di skl i m t > element, you usethe <f eat ur e> element to identify the limit for adevice based on the
VoltDB featurethat utilizesit. For example, to set alimit on the amount of space used on the device where
automatic snapshots are stored, you identify the feature as "snapshots' and specify the limit as a number

35



Monitoring VoltDB Databases

of gigabytes or as a percentage of total space on the disk. Thefollowing deployment file entry setsthe disk
limit for snapshots at 200 gigabytes and the limit for command logs at 70% of the total available space:

<systensettings>
<resour cenoni t or >
<disklimt>
<f eat ure name="snapshots" size="200"/>
<f eat ure name="conmmandl og" size="70% />
</disklimt>
</ resourcenoni t or >
</ systensettings>

You can aso set atrigger value for SNMP aerts — assuming SNMP is enabled — using the al ert
attribute. For instance, the following example sets the SNMP trigger value to 150 gigabytes for the
snapshots disk and 60% for the commandlog disk.

<systensettings>
<resour cenoni t or >
<disklimt>
<f eat ure name="snapshots" size="200" al ert="150"/>
<f eat ure name="commandl og" size="70% alert="60%/>
</disklimt>
</ resour cenoni t or >
</ systensettings>

Note that you specify the device based on the feature that usesit. However, the limits appliesto all dataon
that device, not just the space used by that feature. If you specify limits for two features that use the same
device, thelower of thetwo limitswill be applied. So, in the previous example, if snapshots and command
logs both use a device with 250 gigabytes of total space, the database will be set to read-only mode if the
total amount of used space exceeds the command logs limit of 70%, or 175 gigabytes.

Itisalsoimportant to note that there are no default resourcelimitsor aertsfor disks. If you do not explicitly
specify adisk limit, thereisno protection against running out of disk space. Similarly, unlessyou explicitly
set an SNMP dlert level, no alertswill be sent for the associated device.

You can identify disk limits and alerts for any of the following VoltDB features, using the specified
keywords:

» Automated snapshots (snapshots)

Command logs (commandlog)
» Command log snapshots (commandl ogsnapshot)
 Database replication overflow (droverflow)

» Export overflow (exportoverflow)

5.3. Integrating VoltDB with Other Monitoring
Systems

In addition to the tools and system procedures that VoltDB provides for monitoring the health of your
database, you can a so integrate this datainto third-party monitoring solutions so they become part of your
overall enterprise monitoring architecture. VoltDB supports integrating VoltDB statistics and status with
the following monitoring systems:

36



Monitoring VoltDB Databases

5.3.1.

5.3.2.

* Nagios

* New Relic

Integrating with Nagios

If you use Nagios to monitor your systems and services, you can include VoltDB in your monitoring
infrastructure. VoltDB Enterprise Edition provides Nagios pluginsthat let you monitor four key aspects of
VoltDB. Thepluginsareincluded in asubfolder of thetoolsdirectory whereVoltDB isinstalled. Table 5.3,
“Nagios Plugins’ lists each plugin and what it monitors.

Table 5.3. Nagios Plugins

Plugin Monitors |Scope Description
check_voltdb_ports Availability | Server Reports whether the specified server isreachable
or not.
check_voltdb_memory |Memory |Server Reports on the amount of memory in use by
usage VoltDB for aindividual node. Y ou can specify the

severity criteria as a percentage of total memory.
check voltdb cluster K-safety  |Cluster- Reports on whether a K-safe cluster is complete

wide or not. That is, whether the cluster has the full
complement of nodes or if any have failed and not
rejoined yet.
check voltdb _replication| Database | Cluster- Reports the status of database replication. Connect
replication |wide the plugin to one or more nodes on the master
database.

Note that the httpd and JSON options must be enabled in the deployment file for the VoltDB database for
the Nagios plugins to query the database status.

Integrating with New Relic

If you use New Relic as your monitoring tool, thereis aVoltDB plugin to include monitoring of VoltDB
databases to your New Relic dashboard. To use the New Relic plugin, you must:

 Define the appropriate configuration for your server.
« Start the voltdb-newrelic process that gathers and sends data to New Relic.

Y ou define the configuration by editing and renaming the template files that can befoundinthe/ t ool s
/ moni tori ng/ new el i ¢/ confi g folder where VoltDB isinstalled. The configuration fileslet you
specify your New Relic license and which databases are monitored. A README fileinthe / newrel i ¢
folder provides details on what changes to make to the configuration files.

You start the monitoring process by running the script vol t db- newr el i ¢ that also can be found in
the/ newr el i ¢ folder. The script must be running for New Relic to monitor your databases.

37



Chapter 6. Logging and Analyzing Activity
in a VoltDB Database

VoltDB uses Log4J, an open source logging service available from the Apache Software Foundation, to
provide access to information about database events. By default, when using the VVoltDB shell commands,
the console display islimited to warnings, errors, and messages concerning the status of the current process.
A more complete listing of messages (of severity INFO and above) iswritten to log filesin the subfolder
/1 og, relative to the database root directory.

The advantages of using Log4J are:
» Logging is compiled into the code and can be enabled and configured at run-time.
» Log4J provides flexibility in configuring what events are logged, where, and the format of the output.

* By using an open source logging service with standardized output, there are a number of different
applications, such as Chainsaw, available for filtering and presenting the results.

Logging is important because it can help you understand the performance characteristics of your
application, check for abnormal events, and ensure that the application is working as expected.

Of course, any additional processing and 1/0 will have an incremental impact on the overall database
performance. To counteract any negative impact, Log4J gives you the ability to customize the logging to
support only those events and serversyou are interested in. In addition, when logging is not enabled, there
is no impact to VoltDB performance. With VoltDB, you can even change the logging profile on the fly
without having to shutdown or restart the database.

The following sections describe how to enable and customize logging of VoltDB using Log4J. This
chapter is not intended as atutorial or complete documentation of the Log4J logging service. For general
information about Log4J, see the Log4J web site at http://wiki.apache.org/logging-log4j/.

6.1. Introduction to Logging

Logging is the process of writing information about application events to a log file, console, or other
destination. Log4J uses XML files to define the configuration of logging, including three key attributes:

» Where events are logged. The destinations are referred to as appenders in Log4J (because events are
appended to the destinations in sequentia order).

» What events are logged. VoltDB defines named classes of events (referred to as loggers) that can be
enabled as well as the severity of the events to report.

» How the logging messages are formatted (known as the layout),

6.2. Creating the Logging Configuration File

VoltDB ships with a default Log4J configuration file, voltdb/logdj.xml, in the installation directory.
The sample applications and the VoltDB shell commands use this file to configure logging and it is
recommended for new application development. This default Log4J file lists all of the VoltDB-specific
logging categories and can be used as a template for any modifications you wish to make. Or you can
create anew file from scratch.

38


http://wiki.apache.org/logging-log4j/

Logging and Analyzing
Activity in aVoltDB Database

The following is an example of a Log4J configuration file:

<?xm version="1.0" encodi ng="UTF-8" 7>
<! DOCTYPE | 0g4j : confi gurati on SYSTEM "I og4j . dtd">

<l og4j : configuration xmns:log4j="http://jakarta. apache.org/log4j/">

<appender name="Async" cl ass="org. apache.| o0g4j. AsyncAppender" >
<par am nane="Bl ocki ng" val ue="true" />
<appender-ref ref="Console" />
<appender-ref ref="File" />

</ appender >

<appender name="Consol e" cl ass="org. apache. | og4j. Consol eAppender" >
<param nane="Target" val ue="Systemout" />
<l ayout cl ass="org. apache. | og4j.TTCCLayout" />

</ appender >

<appender name="File" class="org. apache. | o0g4j. Fil eAppender">
<param nane="Fi |l e" value="/tnp/voltdb.log" />
<par am nanme="Append" val ue="true" />
<l ayout cl ass="org. apache. | og4j.TTCCLayout" />

</ appender >

<l ogger nanme="AUTH'>

<l-- Print all VoltDB authentication nmessages -->
<l evel value="trace" />

</ | ogger >

<r oot >

<priority val ue="debug" />
<appender-ref ref="Async" />
</root >
</ 1 og4j :configuration>

The preceding configuration file defines three destinations, or appenders, called Async, Console, and
File. The appenders define the type of output (whether to the console, to afile, or somewhere else), the
location (such as the file name), as well as the layout of the messages sent to the appender. See the log4J
documentation for more information about layout.

Note that the appender Async is asuperset of Console and File. So any messages sent to Async are routed
to both Console and File. This is important because for logging of VoltDB, you should always use an
asynchronous appender asthe primary target to avoid the processing of thelogging messagesfrom blocking
other execution threads.

More importantly, you should not use any appenders that are susceptible to extended delays, blockages,
or slow throughput, This is particularly true for network-based appenders such as SocketAppender and
third-party log infrastructuresincluding logstash and IMS. If there isany prolonged delay in writing to the
appenders, messages can end up being held in memory causing performance degradation and, ultimately,
generating out of memory errors or forcing the database into read-only mode.

Theconfigurationfilealso definesaroot class. Theroot classisthedefault logger and al loggersinherit the
root definition. So, in this case, any messages of severity "debug” or higher are sent to the Async appender.

Finally, the configuration file defines alogger specifically for VoltDB authentication messages. Thelogger
identifies the class of messages to log (in this case "TAUTH"), as well as the severity ("trace"). VoltDB

39



Logging and Analyzing
Activity in aVoltDB Database

defines several different classes of messages you can log. Table 6.1, “VoltDB Components for Logging”
lists the loggers you can invoke.

Table6.1. VoltDB Componentsfor Logging

L ogger Description
ADHOC Execution of ad hoc queries
AUTH Authentication and authorization of clients
COMPILER Interpretation of SQL in ad hoc queries
CONSOLE Informational messages intended for display on the
console
DR Database replication sending data
DRAGENT Database replication receiving data
EXPORT Exporting data
GC Java garbage collection
HOST Host specific events
IMPORT Importing data
ELASTIC Elastic addition of nodes to the cluster
LOADER Bulk loading of data (including as part of import)
NETWORK Network eventsrelated to the database cluster
REJOIN Node recovery and rejoin
SNAPSHOT Snapshot activity
SQL Execution of SQL statements
™ Transaction management

6.3. Enabling Logging for VoltDB

Onceyou create your Log4J configuration file, you specify which configuration file to use by defining the
variable LOG4J CONFIG_PATH before starting the VoltDB database. For example:

$ LOAAJ _CONFI G_PATH="$HOVE/ MyLog4j Confi g. xm "
$ voltdb start -H svri, svr2

6.4. Changing the Timezone of Log Messages

By default all VoltDB logging isreported in GMT (Greenwich Mean Time). If you want the logging to be
reported using a different timezone, you can use extensions to the Log4J service to achieve this.

To change the timezone of log messages.

1. Download the extras kit from the Apache Extras for Apache Log4J website, http://logging.apache.org/
logdj/extrag/.

2. Unpack the kit and place the included JAR file in the / | i b/ ext ensi on folder of the VoltDB
installation directory.

3. Update your Log4J configuration file to enable the Log4J extras and specify the desired timezone for
logging for each appender.

40


http://logging.apache.org/log4j/extras/
http://logging.apache.org/log4j/extras/

Logging and Analyzing
Activity in aVoltDB Database

You enable the Log4J extras by specifying EnhancedPat t er nLayout as the layout class for the
appenders you wish to change. Y ou then identify the desired timezone as part of the layout pattern. For
example, the following XML fragment changes the timezone of messages written to the file appender to
GMT minus four hours:

<appender nane="file" class="org. apache. | og4j.Dail yRol|ingFil eAppender">
<param nane="file" value="log/volt.log"/>
<par am nane="Dat ePattern" val ue="'."'yyyy-Mtdd" />
<l ayout cl ass="org. apache. | og4j. EnhancedPatternLayout" >
<par am nane="Conver si onPat t er n"
val ue="%d{| SO8601} { GVIT- 4} %5p [%] %: Y%dm"/>
</l ayout >
</ appender >

Y ou can use any valid | SO-8601 timezone specification, including named timezones, such as EST.

6.5. Changing the Configuration on the Fly

Once the database has started, you can still start or reconfigure the logging without having to stop and
restart the database. By calling the system procedure @Updatel ogging you can pass the configuration
XML to the servers as a text string. For any appenders defined in the new updated configuration, the
existing appender is removed and the new configuration applied. Other existing appenders (those not
mentioned in the updated configuration XML) remain unchanged.

41



Chapter 7. What to Do When Problems
Arise

Aswith any high performance application, eventsrelated to the database process, the operating system, and
the network environment can impact how well or poorly VoltDB performs. When faced with performance
issues, or outright failures, the most important task is identifying and resolving the root cause. VoltDB
and the server produce a number of log files and other artifacts that can help you in the diagnosis. This
chapter explains:

* Whereto look for log files and other information about the VVoltDB server process
» What to do when recovery fails

» How to collect the log files and other system information when reporting a problem to VoltDB

7.1. Where to Look for Answers

The first place to look when an unrecognized problem occurs with your VoltDB database is the console
where the database process was started. VoltDB echoes key messages and errors to the console. For
example, if a server becomes unreachable, the other servers in the cluster will report an error indicating
which node hasfailed. Assuming the cluster is K-safe, the remaining nodeswill then re-establish aquorum
and continue, logging this event to the console as well.

However, not all messages are echoed on the console! A more complete record of errors, warnings,
and informational messages is written to a log file, | og/ vol t . | og, inside the voltdbroot directory.
So, for example, if you start the database using the command voltdb start --dir=~/db, the log file is
~/ db/ vol t dbroot/1 og/vol t. 1 0g.) Thevol t. | og file can be extremely helpful for identifying
unexpected but non-fatal events that occurred earlier and may identify the cause of the current issue.

If VoltDB encounters afatal error and exits, shutting down the database process, it also attempts to write
out acrash fileinthe current working directory. The crash file name hasthe prefix "voltdb_crash™ followed
by a timestamp identifying when the file is created. Again, this file can be useful in diagnosing exactly
what caused the crash, since it includes the last error message, a brief profile of the server and a dump of
the Java threads running in the server process before it crashed.

To summarize, when looking for information to help analyze system problems, three placesto look are;
1. The console where the server process was started.

2. Thelogfileinl og/ vol t. | og

3. Thecrashfilenamedvol t db_crash{ti nest anp}. t xt intheserver processsworking directory

7.2. Handling Errors When Restoring a Database

After determining what caused the problem, the next step is often to get the database up and running again
as soon as possible. When using snapshots or command logs, thisis done using the voltdb start command
described in Section 3.6, “Restarting the Database”. However, in unusual cases, the restart itself may fail.

INote that you can change which messages are echoed to the console and which are logged by modifying the Log4j configuration file. See the
chapter on logging in the Using VoltDB manual for details.

42


https://docs.voltdb.com/UsingVoltDB/ChapLogging.php
https://docs.voltdb.com/UsingVoltDB/

What to Do When Problems Arise

7.2.1.

There are several situationswhere an attempt to recover a database — either from a snapshot or command
logs— may fail. For example, restoring data from a snapshot to a schemawhere a unique index has been
added can result in aconstraint violation. In this case, the restore operation continues but any records that
caused a constraint violation are saved to aCSV file.

Or when recovering command logs, the log may contain a transaction that originally succeeded but fails
and raises an exception during playback. Inthissituation, VoltDB issuesafatal error and stopsthe database
to avoid corrupting the contents.

Although protecting you from an incomplete recovery is the appropriate default behavior, there may be
cases where you want to recover as much data as possible, with full knowledge that the resulting data
set does not match the original. VoltDB provides two processes for performing partial recoveriesin case
of failure:

* Logging constraint violations during snapshot restore
 Performing command log recovery in safe mode

The following sections describe these procedures.
Warning

Itiscritically important to recognize that the techniques described in this section do not produce
acomplete copy of the original database or resolve the underlying problem that caused theinitial
recovery to fail. These techniques should never be attempted without careful consideration and
full knowledge and acceptance of the risks associated with partial data recovery.

Logging Constraint Violations

Thereare severa situationsthat can cause asnapshot restoreto fail because of constraint violations. Rather
than have the operation fail asawhole, VoltDB continues with the restore process and logs the constraint
violations to afile instead. Thisway you can review the tuples that were excluded and decide whether to
ignore or replace their content manually after the restore compl etes.

By default, the constraint violations are logged to one or more files (one per table) in the same directory
as the snapshot files. In a cluster, each node logs the violations that occur on that node. If you know there
are going to constraint violations and want to save the logged constraints to a different location, you can
use a special JSON form of the @SnapshotRestore system procedure. You specify the path of the log
filesin aJSON attribute, dupl i cat ePat hs. For example, the following commands perform a restore
of snapshot filesin the directory / var / vol t db/ snapshot s/ with the unique identifier myDB. The
restore operation logs constraint violations to the directory / var / vol t db/ | ogs.

$ sqlcnd

1> exec @napshot Restore '{ "path":"/var/vol tdb/snapshots/",
"nonce": "nmyDB",
"duplicatesPath":"/var/vol tdb/logs/" }';

2> exit

Constraint violations are logged as needed, one file per table, to CSV files with the name { t abl e} -
dupl i cat es-{ti nestanp}.csv.

7.2.2. Safe Mode Recovery

On rare occasions, recovering a database from command logs may fail. This can happen, for example, if
a stored procedure introduces non-deterministic content. If a recovery fails, the specific error is known.

43



What to Do When Problems Arise

However, there is no way for VoltDB to know the root cause or how to continue. Therefore, the recovery
fails and the database stops.

When this happens, VoltDB logs the last successful transaction before the recovery failed. Y ou can then
ask VoltDB to restart up to but not including the failing transaction by performing arecovery in safe mode.

Y ou request safe mode by adding the --safemode switch to the voltdb start command, like so:
$ voltdb start --safenode --dir=~/nydb

When VoltDB recovers from command logs in safe mode it enables two distinct behaviors:
 Snapshots are restored, logging any constraint violations

» Command logs are replayed up to the last valid transaction

This means that if you are recovering using an automated snapshot (rather than command logs), you can
recover somedataeven if there are constraint violations during the snapshot restore. Also, when recovering
from command logs, VoltDB will ignore constraint violations in the command log snapshot and replay all
transactions that succeeded in the previous attempt.

It isimportant to note that to successfully use safe mode with command logs, you must perform aregular
recovery operation first — and haveit fail — so that VoltDB can determinethelast valid transaction. Also,
if the snapshot and the command logs contain both constraint violations and failed transactions, you may
need to run recovery in safe mode twice to recover as much data as possible. Once to compl ete restoration
of the snapshot, then asecond time to recover the command logs up to apoint before the failed transaction.

7.3. Collecting the Log Files

VoltDB includesadutility that collectsall of the pertinent logsfor agiven server. Thelog collector retrieves
the necessary system and process files from the server, creates a compressed archive file and, optionaly,
uploadsit via SFTPto asupport site. For customers requesting support from VoltDB, your support contact
will often provide instructions on how and when to use the log collector and where to submit the files.

Note that the database does not need to be running to use the log collector. It can find and collect the log
files based solely on the location of the VoltDB root directory where the database was run.

To collect the log files, use the voltdb collect command with the same directory specification you would
useto initialize or start the database:

$ voltdb collect --prefix=nylogs -D /home/db

When you run the command you must specify the location of the root directory for the database with the
- - di r or- Dflag. Otherwise, the default is the current working directory. The archivefile that the collect
command generatesis also created in your current working directory unless you use the - - out put flag
to specify an alternate location and filename.

The collect command has optional arguments that let you control what data is collected, the name of the
resulting archive file, as well as whether to upload the file to an FTP server. In the preceding example
the- - pr ef i x flag specifiesthe prefix for the archive file name. If you are submitting the log filesto an
FTP server via SFTP, you can use the - - upl oad, - - user nane, and - - passwor d flags to identify
the target server and account. For example:

$ voltdb collect --dir=/home/db \
--prefix=nyl ogs \
- - upl oad=ft p. myconpany. com\

44



What to Do When Problems Arise

- - user name=babbage
- - passwor d=charl es

Note that the voltdb collect command collectslog files for the current system only. To collect logsfor all
serversin acluster, you will need to issue the voltdb collect command locally on each server separately.
See the voltdb collect documentation in the Using VoltDB manual for details.

45


https://docs.voltdb.com/UsingVoltDB/clivoltdb.php
https://docs.voltdb.com/UsingVoltDB/

Appendix A. Server Configuration Options

There are a number of system, process, and application options that can impact the performance or
behavior of your VoltDB database. Y ou control these options when initializing and/or starting VoltDB.
The configuration options fall into five main categories:

» Server configuration

* Process configuration

» Database configuration

Path configuration
» Network ports used by the database cluster

This appendix describes each of the configuration options, how to set them, and their impact on the
resulting VoltDB database and application environment.

A.1. Server Configuration Options

A.1.1.

VoltDB provides mechanismsfor setting anumber of options. However, it also relies on the base operating
system and network infrastructure for many of its core functions. There are operating system configuration
options that you can adjust to to maximize your performance and reliability, including:

* Network configuration

» Timeconfiguration

Network Configuration (DNS)

VoltDB creates a network mesh among the database cluster nodes. To do that, all nodes must be able to
resolve the |P address and hostnames of the other server nodes. Make sure al nodes of the cluster have
valid DNS entries or entriesin the local hosts files.

For servers that have two or more network interfaces — and consequently two or more IP addresses — it
is possible to assign different functions to each interface. VVoltDB defines two sets of ports:

» External ports, including the client and admin ports. These are the ports used by external applications
to connect to and communicate with the database.

* Internal ports, including all other ports. These are the ports used by the database nodes to communicate
among themselves. These include the internal port, the zookeeper port, and so on. (See Section A.5,
“Network Ports’ for a complete listing of ports.)

Y ou can specify which network interface the server expects to use for each set of ports by specifying the
internal and external interface when starting the database. For example:

$ voltdb start --dir=~/nmydb \
-H serverA -1 license.xnl \
--externalinterface=10.11.169.10 \
--internalinterface=10.12.171.14

46



Server Configuration Options

Note that the default setting for the internal and external interface can be overridden for a specific port by
including the interface and a colon before the port number when specifying a port on the command line.
See Section A.5, “Network Ports’ for details on setting specific ports.

A.1.2. Time Configuration

Keeping VoltDB cluster nodesin close synchronization isimportant for the ongoing performance of your
database. At aminimum, use of atime service such asNTP or chrony to synchronizetime acrossthe cluster
isrecommended. If the time difference between nodesistoo large (greater than 200 milliseconds) VoltDB
refuses to start. It is also important to avoid having nodes adjust time backwards, or VoltDB will pause
while it waits for time to "catch up" to its previous setting.

A.2. Process Configuration Options

A.21

A.2.2

In addition to system settings, there are configuration options pertaining to the VoltDB server process
itself that can impact performance. Runtime configuration options are set as command line options when
starting the VVoltDB server process.

The key process configuration for VoltDB is the Java maximum heap size. It isalso possible to pass other
arguments to the Java Virtual Machine directly.

Maximum Heap Size

Theheap sizeis aparameter associated with the Javaruntime environment. Certain portions of the VoltDB
server software use the Java heap. In particular, the part of the server that receives and responds to stored
procedure requests uses the Java heap.

Depending upon how many transactions your application executes asecond, you may need additional heap
space. The higher the throughput, the larger the maximum heap needed to avoid running out of memory.

In general, a maximum heap size of two gigabytes (2048) is recommended. For production use, a more
accurate measurement of the needed heap size can be calculated from the size of the schema (number of
tables), number of sites per host, and what durability and availability features are in use. See the VoltDB
Planning Guide for details.

It isimportant to remember that the heap sizeis not directly related to data storage capacity. Increasing the
maximum heap size does not provide additional data storage space. In fact, quite the opposite. Needlessly
increasing the maximum heap size reduces the amount of memory available for storage.

To set the maximum heap size when stating VoltDB, define the environment variable
VOLTDB_HEAPMAX as an integer value (in megabytes) before issuing the voltdb start command. For
example, the following commands start VoltDB with a 3 gigabyte heap size (the default is 2 gigabytes):

$ export VOLTDB_HEAPMAX="3072"
$ voltdb start --dir=~/nydb -H serverA

Other Java Runtime Options (VOLTDB_OPTS)

VoltDB sets the Java options— such as heap size and classpath — that directly impact VoltDB. There are
anumber of other configuration options available in the Java Virtual machine (JVM).

VoltDB provides a mechanism for passing arbitrary options directly to the VM. If the environment
variable VOLTDB_OPTS isdefined, its value is passed as arguments to the Java command line. Note that
the contents of VOLTDB_OPTS are added to the Java command line on the current server only. In other
words, you must define VOLTDB_OPTS on each server to have it take effect for all servers.

47


http://docs.voltdb.com/PlanningGuide/
http://docs.voltdb.com/PlanningGuide/

Server Configuration Options

Warning

VoltDB does not validate the correctness of the arguments you specify using VOLTDB_OPTS
or their appropriateness for use with VVoltDB. Thisfeature isintended for experienced users only
and should be used with extreme caution.

A.3. Database Configuration Options

A3.1

A.3.2

A.3.3

Runtime configuration options are set either as part of the configuration file or as command line options
when starting the VVoltDB server process. These database configuration options are only summarized here.
See the Using VoltDB manual for a more detailed explanation. The configuration options include:

* Sites per host

o K-Sefety

» Network partition detection
» Automated snapshots
 Import and export

e Command logging

* Heartbeat

e Temptablesize

* Query timeout

* Long-running process warning

Sites per Host

Sites per host specifies the number of unique VoltDB "sites' that are created on each physical database
server. The section on "Determining How Many Sites per Host" in the Using VoltDB manual explains how
to choose a value for sites per host.

You set the value of sites per host using the si t esper host attribute of the <cl ust er > tag in the
configuration file.

K-Safety

K-safety definesthelevel of availability or durability that the database can sustain, by replicating individual
partitions to multiple servers. K-safety is described in detail in the "Availability" chapter of the Using
VoltDB manual.

Y ou specify the level of K-safety that you want in the configuration file using the kf act or attribute of
the<cl ust er > tag.

Network Partition Detection

Network partition detection protects a VoltDB cluster in environments where the network is susceptible
to partial or intermittent failure among the server nodes. Partition detection is described in detail in the
"Availability" chapter of the Using VoltDB manual.

48


http://docs.voltdb.com/UsingVoltDB/
https://docs.voltdb.com/UsingVoltDB/RunClusterConfig.php#RunCalculateSites
http://docs.voltdb.com/UsingVoltDB/
http://docs.voltdb.com/UsingVoltDB/ChapKSafety.php
http://docs.voltdb.com/UsingVoltDB/
http://docs.voltdb.com/UsingVoltDB/
http://docs.voltdb.com/UsingVoltDB/ChapKSafety.php
http://docs.voltdb.com/UsingVoltDB/

Server Configuration Options

A3.4

A.3.5

A.3.6

A.3.7

Use of network partition detection is strongly recommended for production systems and therefore is
enabled by default. You can enable or disable network partition detection in the configuration file using
the<parti tion-detecti on>tag.

Automated Snapshots

Automated snapshots provide ongoing protection against possible database failure (due to hardware
or software issues) by taking periodic snapshots of the database's contents. Automated snapshots are
described in detail in the section on " Scheduling Automated Snapshots” in the Using VoltDB manual.

Y ou enable and configure automated snapshots with the <snapshot > tag in the configuration file.

Snapshot activity involves both processing and disk I/O and so may have a noticeable impact on
performance (in terms of throughput and/or latency) on avery busy database. Y ou can control the priority
of snapshots activity using the <snapshot > tag within the <syst enset ti ngs> element of the
deployment file. The snapshot priority is an integer value between 0 and 10, with O being the highest
priority and 10 being the lowest. The closer to 10, the longer snapshots take to compl ete, but the less they
can affect ongoing database work.

Note that snapshot priority affectsall snapshot activity, including automated snapshots, manual snapshots,
and command logging snapshots.

Import and Export

The import and export functions let you automatically import and/or export selected data between your
VoltDB database and another database or distributed service at runtime. These features are described in
detail in the chapter on "Importing and Exporting Live Data" in the Using VoltDB manual .

Y ou enable and disable import and export using the <i npor t > and <expor t > tagsin the configuration
file

Command Logging

The command logging function saves arecord of each transaction asit isinitiated. These logs can then be
"replayed"” to recreate the database's last known state in case of intentional or accidental shutdown. This
feature is described in detail in the chapter on "Command Logging and Recovery" in the Using VoltDB
manual.

To enable and disable command logging, use the <conmmandl| og> tag in the configuration file.

Heartbeat

The database servers use a "heartbeat" to verify the presence of other nodesin the cluster. If aheartbeat is
not received within a specified time limit, that server is assumed to be down and the cluster reconfigures
itself with the remaining nodes (assuming it is running with K-safety). This time limit is caled the
"heartbeat timeout” and is specified as ainteger number of seconds.

For most situations, the default value for the timeout (90 seconds) is appropriate. However, if your cluster
is operating in an environment that is susceptible to network fluctuations or unpredictable latency, you
may want to increase the heartbeat timeout period.

Y ou can set an alternate heartbeat timeout using the <hear t beat > tag in the configuration file.

49


http://docs.voltdb.com/UsingVoltDB/SaveSnapshotAuto.php
http://docs.voltdb.com/UsingVoltDB/
http://docs.voltdb.com/UsingVoltDB/ChapExport.php
http://docs.voltdb.com/UsingVoltDB/
http://docs.voltdb.com/UsingVoltDB/

Server Configuration Options

A.3.8.

A.3.9.

Note

Be aware that certain Linux system settings can override the VoltDB heartbeat messages. In
particular, lowering the setting for TCP_RETRIES2 may result in the system network timeout
interrupting VoltDB's heartbeat mechanism and causing timeouts sooner than expected. Values
lower than 8 for TCP_RETRIES2 are not recommended.

Temp Table Size

VoltDB uses temporary tables to store intermediate table data while processing transactions. The default
temp table size is 100 megabytes. This setting is appropriate for most applications. However, extremely
complex queries or many updatesto large records could cause the temporary spaceto exceed the maximum
size, resulting in the transaction failing with an error.

In these unusual cases, you may need to increase the temp table size. Y ou can specify a different size for
the temp tables using the <syst enset t i ngs> and <t enpt abl es> tag in the configuration file and
specifying the maxsi ze attribute as awhole number of megabytes. For example:

<systensettings>
<t enpt abl es naxsi ze="200"/>
</ systensettings>

Note: since the temp tables are alocated as needed, increasing the maximum size can result in a Java out-
of-memory error at runtime if the system is memory-constrained. Modifying the temp table size should
be done with caution.

Query Timeout

In general, SQL queries execute extremely quickly. But it is possible, usualy by accident, to construct
a query that takes an unexpectedly long time to execute. This usually happens when the query is overly
complex or accesses extremely large tables without the benefit of an appropriate filter or index.

Y ou have the option to set aquery timeout limit cluster-wide, for an interactive session, or per transaction.
The query limit sets alimit on the length of time any read-only query (or batch of queriesin the case of
the voltExecuteSQL () method in a stored procedure) is allowed to run. Y ou specify the timeout limit in
milliseconds.

To set a cluster-wide query limit you use the <systensettings> and <query
timeout="{Iimt}"> tagsin the configuration file. To set a limit for an interactive session in the
sglemd utility, you use the - - quer y-t i meout flag when invoking sglcmd. To specify a limit when
invoking a specific stored procedure, you use the callProcedureWithTimeout method in place of the
callProcedure method.

The cluster-wide limit is set when you initialize the database root directory. By default, the system-wide
limit is 10 seconds. You can set a different timeout in the configuration file. Or It can be adjusted using
the voltadmin update command to modify the configuration settings while the database is running. If
security isenabled, any user can set alower query limit on aper session or per transaction basis. However,
the user must have the ADMIN privilege to set aquery limit longer than the cluster-wide setting.

The following example configuration file sets a cluster-wide query timeout value of three seconds:
<systemnsettings>

<query ti neout ="3000"/>
</ systensettings>

50



Server Configuration Options

If any query or batch of queries exceeds the query timeout, the query isinterrupted and an error returned
to the calling application. Note that the limit is applied to read-only ad hoc queries or queries in read-
only stored procedures only. In a K-Safe cluster, queries on different copies of a partition may execute at
different rates. Consequently the same query may timeout in one copy of the partition but not in another.
To avoid possible non-deterministic changes, VoltDB does not apply the time out limit to any queries or
procedures that may modify the database contents.

A.3.10. Long-Running Process Warning

You can avoid runaway read-only queries using the query timeout setting. But you cannot stop read-
write procedures or other computational tasks, such as automated snapshots. These processes must run to
completion. However, you may want to be notified when a processis blocking an execution queue for an
extended period of time.

By default, VoltDB writes an informational message into the log file whenever atask runs for more than
ten seconds in any of the execution sites. These tasks may be stored procedures, procedure fragments (in
the case of multi-partitioned procedures), or operational tasks such as snapshot creation. Y ou can adjust
the limit when these messages are written by specifying avalue, in millisecondsinthel ogi nf o attribute
of the <pr ocedur e> tag in the configuration file. For example, the following configuration file entry
changes the threshold after which a message is written to the log to three seconds:

<systensettings>
<procedure | ogi nfo="3000"/>
</ systensettings>

Note that in a cluster, the informational message is written only to the log of the server that is hosting the
affected queue, not to all server logs.

A.4. Path Configuration Options

AA4.1.

Therunning database uses anumber of disk locationsto store information associated with runtime features,
such as export, network partition detection, and snapshots. Y ou can control which paths are used for these
disk-based activities. The path configuration options include:

* VoltDB root

 Snapshots path

Export overflow path
» Command log path

e Command log snapshots path

VoltDB Root

VoltDB defines aroot directory for any disk-based activity which is required at runtime. This directory
also serves as aroot for al other path definitions that take the default or use arelative path specification.

If you do not specify alocation for theroot directory onthe command line, VoltDB usesthe current working
directory asadefault. Normally, you specify the location of theroot directory using the- - di r flagonthe
voltdb init and voltdb start commands. Theroot directory isthen the subdirectory vol t dbr oot within
the specified location. (If the subfolder does not exist, VoltDB createsit.) See the section on "Configuring
Paths for Runtime Features' in the Using VoltDB manual for details.

51


https://docs.voltdb.com/UsingVoltDB/RunClusterConfig.php#RunConfigPaths
https://docs.voltdb.com/UsingVoltDB/RunClusterConfig.php#RunConfigPaths
http://docs.voltdb.com/UsingVoltDB/

Server Configuration Options

A4.2.

AA4.3.

A4.A4.

AA4.5.

Snapshots Path

The snapshots path specifies where automated and network partition snapshots are stored. The default
snapshots path isthe "snapshot s" subfolder of the VoltDB root directory. Y ou can specify an alternate
path for snapshots using the <snapshot s> child element of the <pat hs> tag in the configuration file.

Export Overflow Path

The export overflow path specifieswhere overflow datais stored for the export streams. The default export
overflow path isthe"export _over f | ow" subfolder of the VoltDB root directory. Y ou can specify an
alternate path using the <export over f | ow> child element of the <pat hs> tag in the configuration
file.

See the chapter on "Exporting Live Data" in the Using VoltDB manual for more information on export
overflow.

Command Log Path

The command log path specifies where the command logs are stored when command logging is enabl ed.
The default command log path isthe"comrand_I| og" subfolder of the VVoltDB root directory. However,
for production use, it is strongly recommended that the command logs be written to a dedicated device,
not the same device used for snapshotting or export overflow. Y ou can specify an alternate path using the
<conmand!| og> child element of the <pat hs> tag in the configuration file.

See the chapter on "Command Logging and Recovery" in the Using VoltDB manual for more information
on command logging.

Command Log Snapshots Path

The command log snapshots path specifies where the snapshots created by command logging are stored.
The default path isthe"comand_| og_snapshot " subfolder of the VoltDB root directory. (Note that
command log snapshots are stored separately from automated snapshots.) Y ou can specify an alternate
path using the <comand| ogsnapshot > child element of the <pat hs> tag in the configuration file.

See the chapter on "Command Logging and Recovery" in the Using VoltDB manual for more information
on command logging.

A.5. Network Ports

A VoltDB cluster opens network ports to manage its own operation and to provide services to client
applications. The network ports are configurable as part of the command that starts the VoltDB database
process. Y ou can specify just a port number or the network interface and the port number, separated by
acolon.

Table A.1, “VoltDB Port Usage” summarizes the ports that VoltDB uses and their default value. The
following sections describe each port in more detail and how to set them. Section A.5.7, “TLS/SSL
Encryption (Including HTTPS)” explains how to enable TL S encryption for the web and the programming
interface ports, client and admin.

TableA.1. VoltDB Port Usage

Port Default Value

Client Port 21212

52


http://docs.voltdb.com/UsingVoltDB/ChapExport.php
http://docs.voltdb.com/UsingVoltDB/
http://docs.voltdb.com/UsingVoltDB/
http://docs.voltdb.com/UsingVoltDB/

Server Configuration Options

Port Default Value
Admin Port 21211

Web Interface Port (httpd) 8080

Web Interface Port (with TSL/SSL enabled) 8443

Internal Server Port 3021
Replication Port 5555
Zookeeper port 7181

A.5.1. Client Port

The client port isthe port VVoltDB client applications use to communicate with the database cluster nodes.
By default, VVoltDB uses port 21212 asthe client port. Y ou can change the client port. However, al client
applications must then use the specified port when creating connections to the cluster nodes.

To specify adifferent client port on the command line, usethe- - cl i ent flag when starting the VoltDB
database. For example, the following command starts the database using port 12345 as the client port:

$ voltdb start -1 ~/license.xm \
--dir=~/nmydb -H serverA\
--client=12345

If you change the default client port, all client applications must also connect to the new port. The client
interfaces for Java and C++ accept an additional, optional argument to the createConnection method for
this purpose. The following examples demonstrate how to connect to an aternate port using the Java and
C++ client interfaces.

Java
org.voltdb.client.Client voltclient;
voltclient = dientFactory.createdient();
vol tclient.createConnection("nyserver", 12345);
C++

boost::shared ptr<voltdb::Client> client = voltdb::Cient::create();
client->createConnection("myserver", 12345);

A.5.2. Admin Port

The admin port is similar to the client port, it accepts and processes requests from applications. However,
the admin port has the special feature that it continues to accept write requests when the database enters
admin, or read-only, mode.

By default, VoltDB uses port 21211 on the default external network interface as the admin port. Y ou can
change the port assignment on the command line using the - - admi n flag. For example, the following
command sets the admin port to 2222:

$ voltdb start -1 ~/license.xm \
--dir=~/nydb -H serverA\
--adm n=2222

53



Server Configuration Options

A.5.3. Web Interface Port (http)

The web interface port is the port that VoltDB listens to for web-based connections. This port is used for
both the JISON programming interface and access to the VoltDB Management Center.

By default, VoltDB uses port 8080 on the default external network interface as the web port. You can
change the port assignment on the command line using the - - ht t p flag. For example, the following
command sets the port to 8888:

$ voltdb start -1 ~/license.xm \
--dir=~/nmydb -H serverA\
--http=8888

If you change the port number, be sure to use the new port number when connecting to the cluster using
either the VoltDB Management Center or the JSON interface. For example, the following URL connects
to the JSON interface using the reassigned port 8388:

http://at hena. myconpany. com 8888/ api / 1. 0/ ?Pr ocedur e=@dyst enl nf or mat i on

If you do not want to use the http port of the featuresit supports (the JSON API and VoltDB Management
Center) you can disable the port in the configuration file. For example, for following configuration option
disables the default http port:

<htt pd enabl ed="fal se"/>

If the port is not enabled, neither the JISON interface nor the Management Center are available from the
cluster. By default, the web interface is enabled.

Another aspect of the http port, when it is enabled, is whether the port transmits using http or https. You
can enable TLS (Transport Layer Security) encryption on the web interface so that all interaction uses the
HTTPS protocol. When TLS is enabled, the default port changes to 8443. See Section A.5.7, “TLS/SSL
Encryption (Including HTTPS)” for information on enabling encryption in the configuration file.

A.5.4. Internal Server Port

A VolItDB cluster uses ports to communicate among the cluster nodes. This port isinternal to VoltDB and
should not be used by other applications.

By default, the internal server port is port 3021 for al nodesin tlhecl uster’. You can specify an aternate
portusingthe- - i nt er nal flagwhen starting the VoltDB process. For example, thefollowing command
starts the VoltDB process using an internal port of 4000:

$ voltdb start -1 ~/license.xm \
--dir=~/nmydb -H serverA\
--internal =4000

A.5.5. Replication Port

During database replication, producer databases (that is, the master database in passive DR and all clusters
in XDCR) use a dedicated port to share data to their consumers. By defaullt, the replication port is port
5555. Y ou can use adifferent port by specifying adifferent port number on the voltdb command lineusing
the- -repl i cati on flag. For example, the following command changes the replication port:

4n the special circumstance where multiple VoltDB processes are started for one database, al on the same server, the internal server port is
incremented from the initial value for each process.




Server Configuration Options

A.5.6

A.5.7.

$ voltdb start -1 ~/license.xm \
--dir=~/nmydb -H serverA\
--replicati on=6666

Notethat if you set the replication port on the producer to something other than the default, you must notify
the consumers of this change. The replica or other XDCR clusters must specify the port along with the
network address or hostname in the sr ¢ attribute of the <connect i on> element when configuring the
DR relationship. For example, if the server nyc2 has changed its replication port to 3333, another cluster
in the XDCR relationship might have the following configuration:

<dr id="1" role="xdcr" >
<connection source="nycl, nyc2: 3333" />
</dr>

Finally, in some cloud environments, such as Kubernetes, remote clusters may not be able to access the
producer cluster by itsinternal network interface. Consumers can specify the location of the producer in
the DR configuration using a remapped |P address. But once they initialize contact with the producer,
the producer sends a list of 1P addresses to use for ongoing replication. By default, these are the internal
addresses the producer cluster knows about.

Y ou can tell the producer to advertiseadifferent interface (and port) for this second phase by specifying the
aternate interface using the - - dr publ i ¢ argument in the voltdb start command. If you do not specify
aport onthe- - dr publ i ¢ argument, the internal replication port is used. For example:

$ voltdb start --drpublic=sone. external.addr

Zookeeper Port

VoltDB uses a version of Apache Zookeeper to communicate among supplementary functions that
require coordination but are not directly tied to database transactions. Zookeeper provides reliable
synchronization for functions such as command logging without interfering with the database's own
internal communications.

VoltDB usesanetwork port bound to thelocal interface (127.0.0.1) to interact with Zookeeper. By defaullt,
7181 is assigned as the Zookeeper port for VoltDB. You can specify a different port number using the
- - zookeeper flag when starting the VoltDB process. It is also possible to specify a different network
interface, like with other ports. However, accepting the default for the zookeeper network interface is
recommended where possible. For example:

$ voltdb start -1 ~/license.xm \
--dir=~/nmydb -H serverA\
--zookeeper =2288

TLS/SSL Encryption (Including HTTPS)

VolItDB letsyou enable Transport Layer Security (TLS) — the recommended upgrade from Secure Socket
Layer (SSL) encryption — for al of its externally-facing interfaces. the web port, client port, admin port,
and replication (DR) port. When you enable TLS, you automatically enable encryption for the web port.
Y ou can then optionally enable encryption for the external ports (client and admin) and/or the replication
port.

Toenable TL Sencryption you need an appropriate certificate. How you configure TL S depends on whether
you create a local certificate or receive one from an authorized certificate provider, such as VeriSign,
GeoTrust and others. If you useacommercial certificate, you only need to identify the certificate asthe key

55



Server Configuration Options

store. If you create your own, you must specify both the key store and the trust store. (See the section on
using TLS/SSL for security inthe Using VoltDB manual for an example of creating your own certificate.)

Y ou enable TLS encryption in the deployment file using the <ssl> element. Within <ssl> you specify the
location and password for the key store and, for locally generated certificates, the trust store in separate
elements like so:

<ssl >
<keyst ore pat h="/etc/ mydb/ keystore" password="tw ddl edee"/ >
<truststore path="/etc/ mydb/truststore" password="tw ddl eduni/>
</ssl >

When you enable the <ssl> element in the configuration file, TLS encryption is enabled for the web port
and all accessto the httpd port and JSON interface must use the HTTPS protocol. When you enable TLS,
the default web port changes from 8080 to 8443.

Y ou can explicitly enable or disable TLS encryption by including the enabl e attribute. (For example, if
you want to include the key store and trust store in the configuration but not turn on TLS during testing,
you can include enabl ed="f al se".) You can specify that the client and admin APl ports are also
TLSencrypted by adding the ext er nal attribute and setting ittot r ue. Similarly, you can enable TLS
encryption for the DR port by adding the dr attribute. For example, the following configuration sample,
explicitly enables TLSfor all externally-facing ports:

<ssl enabl ed="true" external ="true" dr="true">
<keyst ore pat h="/etc/ mydb/ keystore" password="tw ddl edee"/ >
<truststore path="/etc/mydb/truststore"” password="tw ddl eduni/>
</ssl >

Note that you cannot disable TLS encryption for the web port separately. TLS is aways enabled for the
web port if you enable encryption for any ports.

56


https://docs.voltdb.com/UsingVoltDB/SecuritySSL.php
https://docs.voltdb.com/UsingVoltDB/

Appendix B. Snapshot Utilities

VoltDB provides two utilities for managing snapshot files. These utilities verify that a native snapshot
is complete and usable and convert the snapshot contents to a text representation that can be useful for
uploading or reloading datain case of severe errors.

It is possible, as the result of adesign flaw or failed program logic, for a database application to become
unusable. However, the datais till of value. In such emergency cases, it is desirable to extract the data
from the database and possibly reload it. Thisisthe function that save and restore perform within VoltDB.

But there may be cases when you want to use the data created by a VoltDB snapshot elsewhere. The goal
of the utilitiesisto assist in that process. The snapshot utilities are:

« snapshotconvert converts a snapshot (or part of a snapshot) into text files, creating one file for each
table in the snapshot.

 snapshotverifier verifiesthat aVoltDB snapshot is complete and usable.

To use the snapshot convert and snapshot veri fi er commands, be sure that the voltdb /bin
directory isin your PATH, as described in the section on "Setting Up Y our Environment" in the Using
VoltDB manual. The following sections describe how to use these two commands.

57


http://docs.voltdb.com/UsingVoltDB/SetUpEnv.php
http://docs.voltdb.com/UsingVoltDB/
http://docs.voltdb.com/UsingVoltDB/

Snapshot Utilities

snapshotconvert

snapshotconvert — Converts the tablesin a VoltDB snapshot into text files.

Syntax

shapshotconvert {snapshot-id} --type {csv|tsv}\
--table {table} [...] [--dir {directory}]... \
[--outdir {directory}]

shapshotconvert --help

Description

SnapshotConverter converts one or more tables in a valid snapshot into either comma-separated (csv) or
tab-separated (tsv) text files, creating one file per table.

Where:

{ snapshot-id}
{csvitsv}

{table}

{ directory}

Example

isthe unique identifier specified when the snapshot was created. (It is also the name
of the .digest file that is part of the snapshot.) Y ou must specify a snapshot ID.

iseither "csv" or "tsv" and specifies whether the output file is comma-separated or
tab-separated. This argument is also used as the filetype of the output files.

isthe name of the database table that you want to export to text file. Y ou can specify
the - - t abl e argument multiple times to convert multiple tables with a single
command.

isthe directory to search for the snapshot (- - di r ) or where to create the resulting
output files (- - out di r). You can specify the - - di r argument multiple times to
search multiple directories for the snapshot files. Both- - di r and - - out di r are
optional; they default to the current directory path.

The following command exports two tables from a snapshot of the flight reservation example used in the
Using VoltDB manual. The utility searches for the snapshot files in the current directory (the default) and
creates one file per table in the user's home directory:

$ snapshotconvert flightsnap --table CUSTOVER --tabl e RESERVATI ON \

--type csv -- outdir ~/

58



http://docs.voltdb.com/UsingVoltDB/

Snapshot Utilities

snapshotverifier

snapshotverifier — Verifies that the contents of one or more snapshot files are complete and usable.

Syntax

snapshotverifier [snapshot-id] [--dir {directory}] ...

shapshotverifier --help

Description

SnapshotVerifier verifies one or more snapshots in the specified directories.

Where:

[snapshot-id] isthe unique identifier specified when the snapshot was created. (It is also the name
of the .digest file that is part of the snapshot.) If you specify a snapshot ID, only
snapshots matching that ID are verified. If you do not specify an ID, all snapshots
found will be verified.

{ directory} is the directory to search for the snapshot. You can specify the - - di r argument
multiple times to search multiple directories for snapshot files. If you do not specify
adirectory, the default is to search the current directory.

Examples

The following command verifies al of the snapshotsin the current directory:
$ snapshotverifier

Thisexampleverifiesasnapshot with theuniqueidentifier "flight" in either thedirectory / et ¢/ vol t db/
save or ~/ mysaves:

$ snapshotverifier flight --dir /etc/voltdb/save/ --dir ~/mysaves

59



	Administrator's Guide
	Table of Contents
	Preface
	1. Structure of This Book
	2. Related Documents

	Chapter 1. Managing VoltDB Databases
	1.1. Getting Started
	1.2. Understanding the VoltDB Utilities
	1.3. Management Tasks

	Chapter 2. Preparing the Servers
	2.1. Server Checklist
	2.2. Install Required Software
	2.3. Configure Memory Management
	2.3.1. Disable Swapping
	2.3.2. Disable Transparent Huge Pages
	2.3.3. Enable Virtual Memory Mapping and Overcommit

	2.4. Turn off TCP Segmentation
	2.5. Configure Time Services
	2.6. Configure the Network
	2.7. Assign Network Ports
	2.8. Eliminating Server Process Latency

	Chapter 3. Starting and Stopping the Database
	3.1. Configuring the Cluster and Database
	3.2. Initializing the Database Root Directory
	3.3. Starting the Database
	3.4. Loading the Database Definition
	3.5. Stopping the Database
	3.6. Restarting the Database
	3.7. Starting and Stopping Individual Servers

	Chapter 4. Maintenance and Upgrades
	4.1. Backing Up the Database
	4.2. Updating the Database Schema
	4.2.1. Performing Live Schema Updates
	4.2.2. Performing Updates Using Save and Restore

	4.3. Upgrading the Cluster
	4.3.1. Performing Server Upgrades
	4.3.2. Performing Rolling Hardware Upgrades on K-Safe Clusters
	4.3.3. Adding Servers to a Running Cluster with Elastic Scaling
	4.3.4. Removing Servers from a Running Cluster with Elastic Scaling
	4.3.5. Reconfiguring the Cluster During a Maintenance Window

	4.4. Upgrading VoltDB Software
	4.4.1. Upgrading VoltDB Using Save and Restore
	4.4.2. Upgrading Older Versions of VoltDB Manually
	4.4.3. Upgrading VoltDB With Reduced Downtime Using a DR Replica
	4.4.3.1. Prerequisites for Upgrading with Passive DR
	4.4.3.2. The Passive DR Upgrade Process
	4.4.3.3. Falling Back to a Previous Version

	4.4.4. Performing an Online Upgrade Using Multiple XDCR Clusters
	4.4.4.1. Falling Back to a Previous Version

	4.4.5. Performing an Online Upgrade With Limited Hardware
	4.4.5.1. Falling Back to the Original Software Version

	4.4.6. Downgrading, or Falling Back to a Previous VoltDB Version


	Chapter 5. Monitoring VoltDB Databases
	5.1. Monitoring Overall Database Activity
	5.1.1. VoltDB Management Center
	5.1.2. System Procedures
	5.1.3. SNMP Alerts

	5.2. Setting the Database to Read-Only Mode When System Resources Run Low
	5.2.1. Monitoring Memory Usage
	5.2.2. Monitoring Disk Usage

	5.3. Integrating VoltDB with Other Monitoring Systems
	5.3.1. Integrating with Nagios
	5.3.2. Integrating with New Relic


	Chapter 6. Logging and Analyzing Activity in a VoltDB Database
	6.1. Introduction to Logging
	6.2. Creating the Logging Configuration File
	6.3. Enabling Logging for VoltDB
	6.4. Changing the Timezone of Log Messages
	6.5. Changing the Configuration on the Fly

	Chapter 7. What to Do When Problems Arise
	7.1. Where to Look for Answers
	7.2. Handling Errors When Restoring a Database
	7.2.1. Logging Constraint Violations
	7.2.2. Safe Mode Recovery

	7.3. Collecting the Log Files

	Appendix A. Server Configuration Options
	A.1. Server Configuration Options
	A.1.1. Network Configuration (DNS)
	A.1.2. Time Configuration

	A.2. Process Configuration Options
	A.2.1. Maximum Heap Size
	A.2.2. Other Java Runtime Options (VOLTDB_OPTS)

	A.3. Database Configuration Options
	A.3.1. Sites per Host
	A.3.2. K-Safety
	A.3.3. Network Partition Detection
	A.3.4. Automated Snapshots
	A.3.5. Import and Export
	A.3.6. Command Logging
	A.3.7. Heartbeat
	A.3.8. Temp Table Size
	A.3.9. Query Timeout
	A.3.10. Long-Running Process Warning

	A.4. Path Configuration Options
	A.4.1. VoltDB Root
	A.4.2. Snapshots Path
	A.4.3. Export Overflow Path
	A.4.4. Command Log Path
	A.4.5. Command Log Snapshots Path

	A.5. Network Ports
	A.5.1. Client Port
	A.5.2. Admin Port
	A.5.3. Web Interface Port (http)
	A.5.4. Internal Server Port
	A.5.5. Replication Port
	A.5.6. Zookeeper Port
	A.5.7. TLS/SSL Encryption (Including HTTPS)


	Appendix B. Snapshot Utilities
	snapshotconvert
	snapshotverifier


