

A Concise Introduction to MATLAB

pal48185_fm_i-xii.qxd 9/30/07 3:34 PM Page i

pal48185_fm_i-xii.qxd 9/30/07 3:34 PM Page ii

A Concise Introduction
to MATLAB

William J. Palm III
University of Rhode Island

pal48185_fm_i-xii.qxd 9/30/07 3:34 PM Page iii

A CONCISE INTRODUCTION TO MATLAB

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, New York, NY 10020.
Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. No part of this publication may be reproduced or distributed in
any form or by any means, or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill Companies,
Inc., including, but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 0 9 8 7

ISBN 978–0–07–338583–9
MHID 0–07–338583–2

Global Publisher: Raghothaman Srinivasan
Executive Editor: Michael Hackett
Senior Sponsoring Editor: Bill Stenquist
Director of Development: Kristine Tibbetts
Developmental Editor: Lora Kalb
Executive Marketing Manager: Michael Weits
Project Manager: Joyce Watters
Senior Production Supervisor: Laura Fuller
Associate Media Producer: Christina Nelson
Associate Design Coordinator: Brenda A. Rolwes
Cover Designer: Studio Montage, St. Louis, Missouri
Compositor: Carlisle Publishing Services
Typeface: 10/12 Times Roman
Printer: R. R. Donnelley Crawfordsville, IN
(USE) Cover Image: Air plane lands at runway: © Ilene MacDonald/ Alamy RF; Cruise ship off the Antarctic coast: © McGraw-Hill
Companies/Ian Coles RF; Astoria Bridge and Train: © Royalty-Free/CORBIS

MATLAB® and Simulink® are trademarks of The MathWorks, Inc. and are used with permission. The MathWorks does not warrant
the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® and Simulink® software or related
products does not constitute endorsement or sponsorship byThe MathWorks of a particular pedagogical approach or particular use of
the MATLAB® and Simulink® software.

Library of Congress Cataloging-in-Publication Data

Palm, William J.
A concise introduction to MATLAB / William J. Palm, III. -- 1st ed.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-07-338583-9 — ISBN 0-07-338583-2 (hard copy : alk. paper) 1. MATLAB. 2. Numerical analysis--Data processing.

3. Signal processing--Data processing. I. Title.
QA297.P319 2008
620.001'51--dc22

2007036050
www.mhhe.com

pal48185_fm_i-xii.qxd 10/4/07 2:58 PM Page iv

http://www.mhhe.com

To my sisters, Linda and Chris, and to my parents, Lillian and William

pal48185_fm_i-xii.qxd 9/30/07 3:34 PM Page v

William J. Palm III is Professor of Mechanical Engineering and Applied
Mechanics at the University of Rhode Island. In 1966 he received a B.S. from
Loyola College in Baltimore, and in 1971 a Ph.D. in Mechanical Engineering and
Astronautical Sciences from Northwestern University in Evanston, Illinois.

During his 36 years as a faculty member, he has taught 19 courses. One of
these is a freshman MATLAB course, which he helped develop. He has authored
nine textbooks dealing with modeling and simulation, system dynamics, control
systems, vibration, and MATLAB. These include System Dynamics (McGraw-Hill,
2005) and Mechanical Vibration (Wiley, 2007). He wrote a chapter on control
systems in the Mechanical Engineers’Handbook (M. Kutz, ed., Wiley, 1999), and
was a special contributor to the fifth editions of Statics and Dynamics, both by
J. L. Meriam and L. G. Kraige (Wiley, 2002).

Professor Palm’s research and industrial experience are in control systems,
robotics, vibrations, and system modeling. He was the Director of the Robotics
Research Center at the University of Rhode Island from 1985 to 1993, and is the
coholder of a patent for a robot hand. He served as Acting Department Chair
from 2002 to 2003. His industrial experience is in automated manufacturing;
modeling and simulation of naval systems, including underwater vehicles and
tracking systems; and design of control systems for underwater-vehicle engine-
test facilities.

A B O U T T H E A U T H O R

pal48185_fm_i-xii.qxd 9/30/07 3:34 PM Page vi

Preface ix

C H A P T E R 1
An Overview of MATLAB® 1

1.1 MATLAB Interactive Sessions 2
1.2 Menus and the Toolbar 13
1.3 Arrays, Files, and Plots 16
1.4 Script Files and the Editor/Debugger 23
1.5 The MATLAB Help System 28
1.6 Summary 31
Key Terms with Page References 32
Problems 33

C H A P T E R 2
Numeric, Cell, and Structure Arrays 38

2.1 One- and Two-Dimensional Numeric
Arrays 39

2.2 Multidimensional Numeric Arrays 49
2.3 Element-by-Element Operations 49
2.4 Matrix Operations 57
2.5 Matrix Methods for Linear Equations 69
2.6 Polynomial Operations Using Arrays 85
2.7 Cell Arrays 88
2.8 Structure Arrays 91
2.9 Summary 95
Key Terms with Page References 96
Problems 96

C H A P T E R 3
Functions and Files 120

3.1 Elementary Mathematical Functions 120
3.2 User-Defined Functions 126

3.3 Additional Function Topics 137
3.4 Working with Data Files 145
3.5 Summary 147
Key Terms with Page References 147
Problems 147

C H A P T E R 4
Decision-Making Programs 153

4.1 Relational Operators and Logical
Variables 153

4.2 Logical Operators and Functions 156
4.3 Conditional Statements 163
4.4 Loops 170
4.5 The switch Structure 181
4.6 Debugging MATLAB Programs 184
4.7 Summary 187
Key Terms with Page References 188
Problems 188

C H A P T E R 5
Advanced Plotting and Model
Building 205

5.1 xy Plotting Functions 205
5.2 Additional Commands and Plot

Types 211
5.3 Interactive Plotting in MATLAB 224
5.4 Function Discovery 230
5.5 Regression 237
5.6 The Basic Fitting Interface 247
5.7 Three-Dimensional Plots 250
5.8 Summary 255
Key Terms with Page References 255
Problems 255

C O N T E N T S

pal48185_fm_i-xii.qxd 9/30/07 3:34 PM Page vii

C H A P T E R 6
Statistics, Probability, and
Interpolation 271

6.1 Statistics and Histograms 272
6.2 The Normal Distribution 277
6.3 Random Number Generation 283
6.4 Interpolation 289
6.5 Summary 298
Key Terms with Page References 299
Problems 300

C H A P T E R 7
Numerical Methods for Calculus and
Differential Equations 305

7.1 Numerical Integration 306
7.2 Numerical Differentiation 313
7.3 First-Order Differential Equations 318
7.4 Higher-Order Differential Equations 325
7.5 Special Methods for Linear

Equations 331
7.6 Summary 344
Key Terms with Page References 345
Problems 346

C H A P T E R 8
Symbolic Processing 354

8.1 Symbolic Expressions and Algebra 355
8.2 Algebraic and Transcendental

Equations 362
8.3 Calculus 365
8.4 Differential Equations 370
8.5 Laplace Transforms 374
8.6 Symbolic Linear Algebra 380
8.7 Summary 384
Key Terms with Page References 384
Problems 384

A P P E N D I X A

Guide to Commands and Functions
in This Text 396

A P P E N D I X B

References 408

Answers to Selected Problems 409

Index 413

viii Contents

pal48185_fm_i-xii.qxd 9/30/07 3:34 PM Page viii

Formerly used mainly by specialists in signal processing and numerical
analysis, MATLAB* in recent years has achieved widespread and enthusi-
astic acceptance throughout the engineering, mathematics, and scientific

communities. Many schools now require a course based entirely or in part on
MATLAB early in the curriculum. MATLAB is programmable and has the same
logical, relational, conditional, and loop structures as other programming
languages, such as Fortran, C, BASIC, and Pascal. Thus it can be used to teach
programming principles. In most schools a MATLAB course has replaced the
traditional Fortran course, and MATLAB is the principal computational tool used
throughout the curriculum.

The popularity of MATLAB is partly due to its long history, and thus it is well
developed and well tested. People trust its answers. Its popularity is also due to its
user interface, which provides an easy-to-use interactive environment that includes
extensive numerical computation and visualization capabilities. Its compactness is a
big advantage. For example, you can solve a set of many linear algebraic equations
with just three lines of code, a feat that is impossible with traditional programming
languages. MATLAB is also extensible; currently more than 20 “toolboxes” in vari-
ous application areas can be used with MATLAB to add new commands and
capabilities.

MATLAB is available for MS Windows and Macintosh personal computers
and for other operating systems. It is compatible across all these platforms, which
enables users to share their programs, insights, and ideas. This text is based on
MATLAB Version 7.4 (R 2007a). Some of the material in Chapter 7 is based on
the Control System Toolbox, Version 8.0. Chapter 8 is based on Version 3.2 of the
Symbolic Math Toolbox.

TEXT OBJECTIVES AND PREREQUISITES

This text is intended as a stand-alone introduction to MATLAB. It can be used in
an introductory course, as a self-study text, or as a supplementary text. The text’s
material is based on the author’s experience in teaching a required two-credit se-
mester course devoted to MATLAB for engineering freshmen. In addition, the
text can serve as a reference for later use. The text’s many tables, and its refer-
encing system in an appendix and a three-part index each, have been designed
with this purpose in mind.

The reader is assumed to have some knowledge of algebra and trigonometry;
knowledge of calculus is not required for the first six chapters. Some knowledge

P R E F A C E

*MATLAB is a registered trademark of The MathWorks, Inc.

pal48185_fm_i-xii.qxd 9/30/07 3:34 PM Page ix

of high school chemistry and physics, primarily simple electrical circuits and
basic statics and dynamics, is required to understand some of the examples.

This text is a condensed version of Introduction to MATLAB 7 for Engineers
(McGraw-Hill, 2005), using the same pedagogy and instructional style. For this
text, we have removed some of the lengthier examples and the background
material in mathematics that may not be needed for some readers or for some
courses. Introduction to MATLAB 7 for Engineers also contains a chapter on
Simulink,† which is a graphical interface for dynamic systems simulation.

TEXT ORGANIZATION

The text consists of eight chapters. The first chapter gives an overview of MATLAB
features, including its windows and menu structures. Chapter 2 introduces the
concept of an array, which is the fundamental data element in MATLAB, and de-
scribes how to use numeric arrays, cell arrays, and structure arrays for basic mathe-
matical operations. Chapter 2 also covers the solution of linear algebraic equations,
which arise in many applications.

Chapter 3 discusses the use of functions and files. MATLAB has an exten-
sive number of built-in math functions, and users can define their own functions
and save them as a file for reuse.

Chapter 4 shows how to create decision-making programs with MATLAB,
and it covers relational and logical operators, conditional statements, for and
while loops, and the switch structure.

Chapter 5 treats two-dimensional plots in greater detail, as well as three-
dimensional plots. Function discovery, which uses data plots to discover a mathe-
matical description of the data, is a common application of plotting, and a separate
section is devoted to this topic. The chapter also treats polynomial and multiple
linear regression as part of its modeling coverage.

Chapter 6 reviews basic statistics and probability and shows how to use
MATLAB to generate histograms, perform calculations with the normal distri-
bution, and create random number simulations. The chapter concludes with linear
and cubic-spline interpolation.

Chapter 7 covers numerical methods for calculus and differential equations.
Numerical integration and differentiation methods are treated. Ordinary differen-
tial equation solvers in the core MATLAB program are covered, as well as the
linear-system solvers in the Control System toolbox.

Chapter 8 covers symbolic methods for manipulating algebraic expressions
and for solving algebraic and transcendental equations, calculus, differential
equations, and matrix algebra problems. The calculus applications include inte-
gration and differentiation, optimization, Taylor series, series evaluation, and
limits. Laplace transform methods for solving differential equations are also in-
troduced. This chapter requires the use of the Symbolic Math toolbox or the Stu-
dent Edition of MATLAB.

x Preface

†Simulink is a registered trademark of The MathWorks, Inc.

pal48185_fm_i-xii.qxd 9/30/07 3:34 PM Page x

Appendix A contains a guide to the commands and functions introduced in
the text. Appendix B is a list of references. Answers to selected problems and a
three-part index appear at the end of the text.

All figures, tables, equations, and exercises have been numbered according
to their chapter and section. For example, Figure 3.4–2 is the second figure in
Chapter 3, Section 4. This system is designed to help the reader locate these items.
The end-of-chapter problems are the exception to this numbering system. They
are numbered 1, 2, 3, and so on to avoid confusion with the in-chapter exercises.
The problems are grouped according to the relevant chapter section.

The first four chapters constitute a course in the essentials of MATLAB. The
remaining four chapters are independent of each other, and may be covered in any
order, or may be omitted if necessary. These chapters provide additional cover-
age and examples of plotting and model building, probability and statistics, cal-
culus and differential equations, and symbolic processing, respectively.

SPECIAL REFERENCE FEATURES

The text has the following special features, which have been designed to enhance
its usefulness as a reference.

■ Throughout each of the chapters, numerous tables summarize the
commands and functions as they are introduced.

■ Appendix A is a complete summary of all the commands and functions
described in the text, grouped by category, along with the number of the
page on which they are introduced.

■ At the end of each chapter is a list of the key terms introduced in the
chapter, with the page number referenced.

■ Key terms have been placed in the margin or in section headings where
they are introduced.

■ The index has three sections: a listing of symbols, an alphabetical list of
MATLAB commands and functions, and an alphabetical list of topics.

PEDAGOGICAL AIDS

The following pedagogical aids have been included:

■ Each chapter begins with an overview.
■ Test Your Understanding exercises appear throughout the chapters near

the relevant text. These relatively straightforward exercises allow readers
to assess their grasp of the material as soon as it is covered. In most cases
the answer to the exercise is given with the exercise.

■ Each chapter ends with numerous problems, grouped according to the
relevant section.

■ Each chapter contains numerous practical examples. The major examples
are numbered. A guide to these examples appears on the inside front cover.

■ Each chapter has a summary section that reviews the chapter’s objectives.

Preface xi

pal48185_fm_i-xii.qxd 9/30/07 3:34 PM Page xi

■ Answers to many end-of-chapter problems appear at the end of the text.
These problems are denoted by an asterisk next to their number (for
example, 15*).

An Instructor’s Manual is available online for instructors who have adopted this
text for a course. This manual contains the complete solutions to all the Test Your
Understanding exercises and to all the chapter problems. The text website (at
http:// www.mhhe.com/palm) also has downloadable files containing PowerPoint
slides keyed to the text.

ACKNOWLEDGMENTS

Many individuals are due credit for this text. Working with faculty at the Uni-
versity of Rhode Island in developing and teaching a freshman course based on
MATLAB has greatly influenced this text. Email from many users contained
useful suggestions. The following people, as well as several anonymous review-
ers, suggested many helpful corrections and additions.

Spyros Andreou, Georgia Southern University
David Arnold, College of the Redwoods
Kirk Breitenbach, NASA-JPL
Steven Ciccarelli, Rochester Institute of Technology
Dwight Davy, Case Western Reserve University
Mike Ecker, Medtronic Inc.
Michael Gustafson, Duke University
Yueh-Jaw Lin, The University of Akron
Armando Rodriquez, Arizona State University
Don Smith, Texas A&M University
Thomas Sullivan, Carnegie Mellon University
Daniel Valentine, Clarkson University
Susan Vandiver, Southern Methodist University
Elizabeth Wyler, Thomas Nelson Community College
Richard Zaccone, Bucknell University

The MathWorks, Inc. has always been very supportive of educational
publishing. I especially want to thank Naomi Fernandes of The MathWorks, Inc.
for her help. Bill Stenquist, Lora Kalb, and Joyce Watters of McGraw-Hill effi-
ciently guided the text through production.

My sisters, Linda and Chris, and my mother Lillian, have always been there,
cheering my efforts. My father was always there for support before he passed
away. Finally, I want to thank my wife, Mary Louise, and my children, Aileene,
Bill, and Andy, for their understanding and support of this project.

William J. Palm III
Kingston, Rhode Island
May 2007

xii Preface

pal48185_fm_i-xii.qxd 10/4/07 2:58 PM Page xii

http://www.mhhe.com/palm

C H A P T E R 1
An Overview
of MATLAB®*

OUTLINE
1.1 MATLAB Interactive Sessions

1.2 Menus and the Toolbar

1.3 Arrays, Files, and Plots

1.4 Script Files and the Editor/Debugger

1.5 The MATLAB Help System

1.6 Summary

Problems

This is the most important chapter in the book. By the time you have finished this
chapter, you will be able to use MATLAB to solve many kinds of problems.
Section 1.1 provides an introduction to MATLAB as an interactive calculator.
Section 1.2 covers the main menus and toolbar. Section 1.3 introduces arrays,
files, and plots. Section 1.4 discusses how to create, edit, and save MATLAB pro-
grams. Section 1.5 introduces the extensive MATLAB Help System.

How to Use This Book

The book’s chapter organization is flexible enough to accommodate a variety of
users. However, it is important to cover at least the first four chapters, in that or-
der. Chapter 2 covers arrays, which are the basic building blocks in MATLAB.
Chapter 3 covers file usage, functions built into MATLAB, and user-defined
functions. Chapter 4 covers programming using relational and logical operators,
conditional statements, and loops.

Chapters 5 through 8 are independent chapters that can be covered in any or-
der. They contain in-depth discussions of how to use MATLAB to solve several

*MATLAB is a registered trademark of The MathWorks, Inc.

1

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 1

common types of problems. Chapter 5 covers two- and three-dimensional plots
in more detail, and shows how to use plots to build mathematical models from
data. Chapter 6 covers probability, statistics, and interpolation applications.
Chapter 7 introduces numerical methods for calculus and ordinary differential
equations. Chapter 8 covers symbolic processing in MATLAB, with applications
to algebra, calculus, differential equations, linear algebra, and transforms.

Reference and Learning Aids

The book has been designed as a reference as well as a learning tool. The special
features useful for these purposes are as follows.

■ Throughout each chapter margin notes identify where new terms are
introduced.

■ Throughout each chapter short Test Your Understanding exercises appear.
Where appropriate, answers immediately follow the exercise so you can
measure your mastery of the material.

■ Homework exercises conclude each chapter. These usually require more
effort than the Test Your Understanding exercises.

■ Each chapter contains tables summarizing the MATLAB commands
introduced in that chapter.

■ At the end of each chapter is:
■ A summary of what you should be able to do after completing that

chapter and
■ A list of key terms you should know.

■ Appendix A contains tables of MATLAB commands, grouped by category,
with the appropriate page references.

■ Two indexes are included. The first is an index of MATLAB commands
and symbols; the second is an index of topics.

1.1 MATLAB Interactive Sessions
We now show how to start MATLAB, how to make some basic calculations, and
how to exit MATLAB.

Conventions

In this text we use typewriter font to represent MATLAB commands, any
text that you type in the computer, and any MATLAB responses that appear on
the screen, for example, y = 6*x. Variables in normal mathematics text ap-
pear in italics; for example, y = 6x. We use boldface type for three purposes:
to represent vectors and matrices in normal mathematics text (for example, Ax �
b), to represent a key on the keyboard (for example, Enter), and to represent the
name of a screen menu or an item that appears in such a menu (for example, File).
It is assumed that you press the Enter key after you type a command. We do not
show this action with a separate symbol.

2 CHAPTER 1 An Overview of MATLAB®

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 2

Starting MATLAB

To start MATLAB on a MS Windows system, double-click on the MATLAB
icon. You will then see the MATLAB Desktop. The Desktop manages the
Command window and a Help Browser, as well as other tools. The default
appearance of the Desktop is shown in Figure 1.1–1. Three windows appear.
These are the Command window, the Command History window, and the Current
Directory window. Across the top of the Desktop are a row of menu names, and a
row of icons called the toolbar. To the right of the toolbar is a box showing the
directory where MATLAB looks for and saves files. We will describe the menus,
toolbar, and directories later in this chapter.

You use the Command window to communicate with the MATLAB pro-
gram, by typing instructions of various types called commands, functions, and
statements. Later we will discuss the differences between these types, but for
now, to simplify the discussion, we will call the instructions by the generic name
commands. MATLAB displays the prompt (>>) to indicate that it is ready to
receive instructions. Before giving MATLAB instructions, make sure the cursor
is located just after the prompt. If it is not, use the mouse to move the cursor.

1.1 MATLAB Interactive Sessions 3

DESKTOP

Figure 1.1–1 The default MATLAB Desktop.

COMMAND
WINDOW

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 3

The prompt in the Student Edition looks like EDU >>. We will use the normal
prompt symbol >> to illustrate commands in this text.

Three other windows appear in the default Desktop. The Current Directory
window is much like a file manager window; you can use it to access files.
Double-clicking on a file name with the extension .m will open that file in the
MATLAB Editor. The Editor is discussed in Section 1.4.

Underneath the Current Directory window is the Workspace window. To
activate it, click on its tab to the right of the Current Directory window. The
Workspace window displays the variables created in the Command window.
Double-click on a variable name to open the Array Editor, which is discussed in
Chapter 2.

The fourth window in the default Desktop is the Command History window.
This window shows all the previous keystrokes you entered in the Command
window. It is useful for keeping track of what you typed. You can click on a key-
stroke and drag it to the Command window or the Editor. Double-clicking on a
keystroke executes it in the Command window.

You can alter the appearance of the Desktop if you wish. For example, to
eliminate a window, just click on its Close-window button (�) in its upper right-
hand corner. To undock, or separate the window from the Desktop, click on the
button containing a curved arrow. You can manipulate other windows in the same
way. To restore the default configuration, click on the Desktop menu, then click
on Desktop Layout, and select Default.

Entering Commands and Expressions

To see how simple it is to use MATLAB, try entering a few commands on your
computer. If you make a typing mistake, just press the Enter key until you get
the prompt, and then retype the line. Or, because MATLAB retains your previous
keystrokes in a command file, you can use the up-arrow key () to scroll back
through the commands. Press the key once to see the previous entry, twice to see
the entry before that, and so on. Use the down-arrow key (↓) to scroll forward
through the commands. When you find the line you want, you can edit it using
the left- and right-arrow keys (← and →), and the Backspace key, and the Delete
key. Press the Enter key to execute the command. This technique enables you to
correct typing mistakes quickly.

Note that you can see your previous keystrokes displayed in the Command
History window. You can copy a line from this window to the Command window
by highlighting the line with the mouse, holding down the left mouse button, and
dragging the line to the Command window.

Make sure the cursor is at the prompt in the Command window. To divide
8 by 10, type 8/10 and press Enter (the symbol / is the MATLAB symbol for
division). Your entry and the MATLAB response looks like the following on
the screen (we call this interaction between you and MATLAB an interactive
session, or simply a session). Remember, the symbol >> automatically appears
on the screen; you do not type it.

↓

4 CHAPTER 1 An Overview of MATLAB®

SESSION

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 4

>> 8/10
ans =

0.8000

MATLAB indents the numerical result. MATLAB uses high precision for its
computations, but by default it usually displays its results using four decimal
places except when the result is an integer.

MATLAB assigns the most recent answer to a variable called ans, which is
an abbreviation for answer. A variable in MATLAB is a symbol used to contain
a value. You can use the variable ans for further calculations; for example, using
the MATLAB symbol for multiplication (*), we obtain

>> 5*ans
ans =

4

Note that the variable ans now has the value 4.
You can use variables to write mathematical expressions. Instead of using the

default variable ans, you can assign the result to a variable of your own choos-
ing, say r, as follows:

>> r=8/10
r =

0.8000

Spaces in the line improve its readability; for example, you can put a space
before and after the = sign if you want. MATLAB ignores these spaces when
making its calculations. It also ignores spaces surrounding � and � signs.

If you now type r at the prompt and press Enter, you will see

>> r
r =

0.8000

thus verifying that the variable r has the value 0.8. You can use this variable in
further calculations. For example,

>> s=20*r
s =

16

A common mistake is to forget the multiplication symbol * and type the ex-
pression as you would in algebra, as s � 20r. If you do this in MATLAB, you will
get an error message.

MATLAB has hundreds of functions available. One of these is the square
root function, sqrt. A pair of parentheses is used after the function’s name to
enclose the value—called the function’s argument—that is operated on by the
function. For example, to compute the square root of 9, and assign its value to

1.1 MATLAB Interactive Sessions 5

VARIABLE

ARGUMENT

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 5

the variable r, you type r = sqrt(9). Note that the previous value of r has
been replaced by 3.

Order of Precedence

A scalar is a single number. A scalar variable is a variable that contains a single
number. MATLAB uses the symbols �� * / ^ for addition, subtraction, multi-
plication, division, and exponentiation (power) of scalars. These are listed in
Table 1.1–1. For example, typing x = 8 + 3*5 returns the answer x = 23.
Typing 2^3-10 returns the answer ans = -2. The forward slash (/) repre-
sents right division, which is the normal division operator familiar to you.
Typing 15/3 returns the result ans = 5.

MATLAB has another division operator, called left division, which is de-
noted by the backslash (\). The left division operator is useful for solving sets of
linear algebraic equations, as we will see. A good way to remember the difference
between the right and left division operators is to note that the slash slants toward
the denominator. For example, 7/2 � 2\7 � 3.5.

The mathematical operations represented by the symbols � � * / \, and
^ follow a set of rules called precedence. Mathematical expressions are evaluated
starting from the left, with the exponentiation operation having the highest order of
precedence, followed by multiplication and division with equal precedence, fol-
lowed by addition and subtraction with equal precedence. Parentheses can be used
to alter this order. Evaluation begins with the innermost pair of parentheses, and
proceeds outward. Table 1.1–2 summarizes these rules. For example, note the ef-
fect of precedence on the following session.

6 CHAPTER 1 An Overview of MATLAB®

PRECEDENCE

SCALAR

Table 1.1–1 Scalar arithmetic operations

Symbol Operation MATLAB form

^ exponentiation: ab a^b
* multiplication: ab a*b
/ right division: a/b � a/b

\ left division: a\b � a\b

� addition: a � b a�b
� subtraction: a � b a�b

b
a

a
b

Table 1.1–2 Order of precedence

Precedence Operation

First Parentheses, evaluated starting with the innermost pair.
Second Exponentiation, evaluated from left to right.
Third Multiplication and division with equal precedence, evaluated from

left to right.
Fourth Addition and subtraction with equal precedence, evaluated from

left to right.

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 6

>>8 + 3*5
ans =

23
>>(8 + 3)*5
ans =

55
>>4^2-12- 8/4*2
ans =

0
>>4^2-12- 8/(4*2)
ans =

3
>>3*4^2 + 5
ans =

53
>>(3*4)^2 + 5
ans =

149
>>27^(1/3) + 32^(0.2)
ans =

5
>>27^(1/3) + 32^0.2
ans =

5
>>27^1/3 + 32^0.2
ans =

11

To avoid mistakes, feel free to insert parentheses wherever you are unsure of the
effect precedence will have on the calculation. Use of parentheses also improves
the readability of your MATLAB expressions. For example, parentheses are not
needed in the expression 8+(3*5), but they make clear our intention to multi-
ply 3 by 5 before adding 8 to the result.

Test Your Understanding

T1.1–1 Use MATLAB to compute the following expressions.

a.

b.

(Answers: a. 410.1297 b. 17.1123.)

6(351/4) + 140.35

6a10

13
b +

18

5(7)
+ 5(92)

1.1 MATLAB Interactive Sessions 7

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 7

The Assignment Operator

The = sign in MATLAB is called the assignment or replacement operator. It works
differently than the equals sign you know from mathematics. When you type
x = 3, you tell MATLAB to assign the value 3 to the variable x. This usage is no
different than in mathematics. However, in MATLAB we can also type something
like this: x = x + 2. This tells MATLAB to add 2 to the current value of x, and
to replace the current value of xwith this new value. If x originally had the value 3,
its new value would be 5. This usage of the � operator is different from its use in
mathematics. For example, the mathematics equation x � x � 2 is invalid because
it implies that 0 � 2.

In MATLAB the variable on the left-hand side of the = operator is replaced
by the value generated by the right-hand side. Therefore, one variable, and only
one variable, must be on the left-hand side of the = operator. Thus in MATLAB
you cannot type 6 = x. Another consequence of this restriction is that you can-
not write in MATLAB expressions like the following:

>>x+2=20

The corresponding equation x � 2 � 20 is acceptable in algebra, and has the so-
lution x � 18, but MATLAB cannot solve such an equation without additional
commands (these commands are available in the Symbolic Math toolbox, which
is described in Chapter 8).

Another restriction is that the right-hand side of the = operator must have a
computable value. For example, if the variable y has not been assigned a value,
then the following will generate an error message in MATLAB.

>>x = 5 + y

In addition to assigning known values to variables, the assignment operator
is very useful for assigning values that are not known ahead of time, or for chang-
ing the value of a variable by using a prescribed procedure. The following exam-
ple shows how this is done.

8 CHAPTER 1 An Overview of MATLAB®

EXAMPLE 1.1–1 Volume of a Circular Cylinder

The volume of a circular cylinder of height h and radius r is given by V � �r2h. A partic-
ular cylindrical tank is 15 m tall and has a radius of 8 m. We want to construct another
cylindrical tank with a volume 20 percent greater but having the same height. How large
must its radius be?

■ Solution
First solve the cylinder equation for the radius r. This gives

The session is shown below. First we assign values to the variables r and h representing
the radius and height. Then we compute the volume of the original cylinder, and increase

r =
V

ph

ASSIGNMENT
OPERATOR

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 8

the volume by 20 percent. Finally we solve for the required radius. For this problem we
can use the MATLAB built-in constant pi.

>>r = 8;

>>h = 15;

>>V = pi*r^2*h;

>>V = V + 0.2*V;

>>r = sqrt(V/(pi*h))

r =

8.7636

Thus the new cylinder must have a radius of 8.7636 m. Note that the original values of
the variables r and V are replaced with the new values. This is acceptable as long as we
do not wish to use the original values again. Note how precedence applies to the line V =
pi*r^2*h;. It is equivalent to V = pi*(r^2)*h;.

Variable Names

The term workspace refers to the names and values of any variables in use in the
current work session. Variable names must begin with a letter; the rest of the
name can contain letters, digits, and underscore characters. MATLAB is case-
sensitive. Thus the following names represent five different variables: speed,
Speed, SPEED, Speed_1, and Speed_2. In MATLAB 7, variable names
can be no longer than 63 characters.

Managing the Work Session

Table 1.1–3 summarizes some commands and special symbols for managing the
work session. A semicolon at the end of a line suppresses printing the results to
the screen. If a semicolon is not put at the end of a line, MATLAB displays the
results of the line on the screen. Even if you suppress the display with the semi-
colon, MATLAB still retains the variable’s value.

1.1 MATLAB Interactive Sessions 9

WORKSPACE

Table 1.1–3 Commands for managing the work session

Command Description

clc Clears the Command window.
clear Removes all variables from memory.
clear var1 var2 Removes the variables var1 and var2 from memory.
exist(‘name’) Determines if a file or variable exists having the name ‘name’.
quit Stops MATLAB.
who Lists the variables currently in memory.
whos Lists the current variables and sizes, and indicates if they have

imaginary parts.
: Colon; generates an array having regularly spaced elements.
, Comma; separates elements of an array.
; Semicolon; suppresses screen printing; also denotes a new row

in an array.
... Ellipsis; continues a line.

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 9

You can put several commands on the same line if you separate them with a
comma—if you want to see the results of the previous command—or semicolon
if you want to suppress the display. For example,

>>x=2;y=6+x,x=y+7
y =

8
x =

15

Note that the first value of x was not displayed. Note also that the value of x
changed from 2 to 15.

If you need to type a long line, you can use an ellipsis, by typing three
periods, to delay execution. For example,

>>NumberOfApples = 10; NumberOfOranges = 25;
>>NumberOfPears = 12;
>>FruitPurchased = NumberOfApples + NumberOfOranges ...
+NumberOfPears
FruitPurchased =

47

Use the arrow, tab, and control keys to recall, edit, and reuse functions and
variables you typed earlier. For example, suppose you mistakenly enter the line

>>volume = 1 + sqr(5)

MATLAB responds with an error message because you misspelled sqrt. In-
stead of retyping the entire line, press the up-arrow key () once to display the
previously typed line. Press the left-arrow key (←) several times to move the
cursor and add the missing t, then press Enter. Repeated use of the up-arrow
key recalls lines typed earlier.

Tab and Arrow Keys

You can use the smart recall feature to recall a previously typed function or vari-
able whose first few characters you specify. For example, after you have entered
the line starting with volume, typing vol and pressing the up-arrow key (↑)
once recalls the last-typed line that starts with the function or variable whose
name begins with vol. This feature is case-sensitive.

You can use the tab completion feature to reduce the amount of typing. MAT-
LAB automatically completes the name of a function, variable, or file if you type
the first few letters of the name and press the Tab key. If the name is unique, it is
automatically completed. For example, in the session listed earlier, if you type
Fruit and press Tab, MATLAB completes the name and displays FruitPur-
chased. Press Enter to display the value of the variable, or continue editing to
create a new executable line that uses the variable FruitPurchased.

↓

10 CHAPTER 1 An Overview of MATLAB®

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 10

If there is more than one name that starts with the letters you typed, MATLAB
displays these names when you press the Tab key. Use the mouse to select the de-
sired name from the pop-up list by double-clicking on its name.

The left-arrow (←) and right-arrow (→) keys move left and right through
a line one character at a time. To move through one word at a time, press Ctrl
and → simultaneously to move to the right; press Ctrl and ← simultaneously
to move to the left. Press Home to move to the beginning of a line; press End
to move to the end of a line.

Deleting and Clearing

Press Del to delete the character at the cursor; press Backspace to delete the char-
acter before the cursor. Press Esc to clear the entire line; press Ctrl and k simul-
taneously to delete (kill) to the end of the line.

MATLAB retains the last value of a variable until you quit MATLAB or clear
its value. Overlooking this fact commonly causes errors in MATLAB. For exam-
ple, you might prefer to use the variable x in a number of different calculations. If
you forget to enter the correct value for x, MATLAB uses the last value, and you
get an incorrect result. You can use the clear function to remove the values of
all variables from memory, or you can use the form clear var1 var2 to clear
the variables named var1 and var2. The effect of the clc command is differ-
ent; it clears the Command window of everything in the window display, but the
values of the variables remain.

You can type the name of a variable and press Enter to see its current value.
If the variable does not have a value (i.e., if it does not exist), you see an error
message. You can also use the exist function. Type exist (‘x’) to see if
the variable x is in use. If a 1 is returned, the variable exists; a 0 indicates that it
does not exist. The who function lists the names of all the variables in memory,
but does not give their values. The form who var1 var2 restricts the display
to the variables specified. The wildcard character * can be used to display vari-
ables that match a pattern. For instance, who A* finds all variables in the current
workspace that start with A. The whos function lists the variable names and their
sizes, and indicates whether or not they have nonzero imaginary parts.

The difference between a function and a command or a statement is that func-
tions have their arguments enclosed in parentheses. Commands, such as clear,
need not have arguments, but if they do, they are not enclosed in parentheses; for ex-
ample, clear x. Statements cannot have arguments; for example, clc and quit
are statements.

Press Ctrl-C to cancel a long computation without terminating the session.
You can quit MATLAB by typing quit. You can also click on the File menu,
and then click on Exit MATLAB.

Predefined Constants

MATLAB has several predefined special constants, such as the built-in constant
pi we used in Example 1.1–1. Table 1.1–4 lists them. The symbol Inf stands

1.1 MATLAB Interactive Sessions 11

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 11

for �, which in practice means a number so large that MATLAB cannot repre-
sent it. For example, typing 5/0 generates the answer Inf. The symbol NaN
stands for “not a number.” It indicates an undefined numerical result such as that
obtained by typing 0/0. The symbol eps is the smallest number which, when
added to 1 by the computer, creates a number greater than 1.We use it as an indi-
cator of the accuracy of computations.

The symbols i and j denote the imaginary unit, where We use
them to create and represent complex numbers, such as x = 5 + 8i.

Try not to use the names of special constants as variable names. Although
MATLAB allows you to assign a different value to these constants, it is not good
practice to do so.

Complex Number Operations

MATLAB handles complex number algebra automatically. For example, the
number c1 � 1 � 2i is entered as follows: c1 = 1-2i. You can also type c1 =
Complex(1, -2).

Caution: Note that an asterisk is not needed between i or j and a number, although
it is required with a variable, such as c2 = 5 - i*c1. This convention can cause
errors if you are not careful. For example, the expressions y = 7/2*i and x =
7/2i give two different results: y � (7/2)i � 3.5i and x � 7/(2i) � �3.5i.

Addition, subtraction, multiplication, and division of complex numbers are
easily done. For example,

>>s = 3+7i;w = 5-9i;
>>w+s
ans =

8.0000 - 2.0000i
>>w*s
ans =

78.0000 + 8.0000i
>>w/s
ans =

-0.8276 - 1.0690i

i = j = 1-1.

12 CHAPTER 1 An Overview of MATLAB®

Table 1.1–4 Special variables and constants

Command Description

ans Temporary variable containing the most recent answer.
eps Specifies the accuracy of floating point precision.

i,j The imaginary unit
Inf Infinity.
NaN Indicates an undefined numerical result.
pi The number �.

1-1.

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 12

Test Your Understanding

T1.1–2 Given x � �5 � 9i and y � 6 � 2i, use MATLAB to show that x � y �
1 � 7i, xy � �12 � 64i, and x/y � �1.2 � 1.1i.

Formatting Commands

The format command controls how numbers appear on the screen. Table 1.1–5
gives the variants of this command. MATLAB uses many significant figures in its
calculations, but we rarely need to see all of them. The default MATLAB display
format is the short format, which uses four decimal digits. You can display more
by typing format long, which gives 16 digits. To return to the default mode,
type format short.

You can force the output to be in scientific notation by typing format short
e, or format long e, where e stands for the number 10. Thus the output
6.3792e+03 stands for the number 6.3792 � 103. The output 6.3792e-03
stands for the number 6.3792 � 10�3. Note that in this context e does not repre-
sent the number e, which is the base of the natural logarithm. Here e stands for
“exponent.” It is a poor choice of notation, but MATLAB follows conventional
computer programming standards that were established many years ago.

Use format bank only for monetary calculations; it does not recognize imag-
inary parts.

1.2 Menus and the Toolbar
The Desktop manages the Command window and other MATLAB tools. The
default appearance of the Desktop is shown in Figure 1.1–1 on page 3. Across
the top of the Desktop are a row of menu names, and a row of icons called the
toolbar. To the right of the toolbar is a box showing the current directory, where
MATLAB looks for files.

Other windows appear in a MATLAB session, depending on what you do.
For example, a graphics window containing a plot appears when you use the

1.2 Menus and the Toolbar 13

CURRENT
DIRECTORY

Table 1.1–5 Numeric display formats

Command Description and example

format short Four decimal digits (the default); 13.6745.
format long 16 digits; 17.27484029463547.
format short e Five digits (four decimals) plus exponent;

6.3792e�03.
format long e 16 digits (15 decimals) plus exponent;

6.379243784781294e�04.
format bank Two decimal digits; 126.73.
format � Positive, negative, or zero; �.
format rat Rational approximation; 43/7.
format compact Suppresses some blank lines.
format loose Resets to less compact display mode.

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 13

plotting functions; an editor window, called the Editor/Debugger, appears for use
in creating program files. Each window type has its own menu bar, with one or
more menus, at the top. Thus the menu bar will change as you change windows.
To activate, or select, a menu, click on it. Each menu has several items. Click on
an item to select it. Keep in mind that menus are context-sensitive. Thus their con-
tents change, depending on which features you are currently using.

The Desktop Menus

Most of your interaction will be in the Command window. When the Command
window is active, the default MATLAB 7 Desktop (shown in Figure 1.1–1) has
six menus: File, Edit, Debug, Desktop, Window, and Help. Note that these
menus change depending on what window is active. Every item on a menu can
be selected with the menu open either by clicking on the item or by typing its
underlined letter. Some items can be selected without the menu being open by
using the shortcut key listed to the right of the item. Those items followed by three
dots (. . .) open a submenu or another window containing a dialog box.

The three most useful menus are the File, Edit, and Help menus. The Help
menu is described in Section 1.5. The File menu in MATLAB 7 contains the fol-
lowing items, which perform the indicated actions when you select them.

The File Menu in MATLAB 7

New Opens a dialog box that allows you to create a new program file,
called an M-file, using a text editor called the Editor/Debugger, or a
new Figure or Model file (a file type used by Simulink).

Open. . . Opens a dialog box that allows you to select a file for editing.
Close Command Window Closes the Command window.
Import Data. . . Starts the Import Wizard which enables you to import data

easily.
Save Workspace As. . . Opens a dialog box that enables you to save a file.
Set Path. . . Opens a dialog box that enables you to set the MATLAB search

path.
Preferences. . . Opens a dialog box that enables you to set preferences for

such items as fonts, colors, tab spacing, and so forth.
Page Setup Opens a dialog box that enables you to format printed output.
Print. . . Opens a dialog box that enables you to print all of the Command

window.
Print Selection. . . Opens a dialog box that enables you to print selected

portions of the Command window.
File List Contains a list of previously used files, in order of most recently

used.
Exit MATLAB Closes MATLAB.

14 CHAPTER 1 An Overview of MATLAB®

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 14

The Edit menu contains the following items.

The Edit Menu in MATLAB 7

Undo Reverses the previous editing operation.
Redo Reverses the previous Undo operation.
Cut Removes the selected text and stores it for pasting later.
Copy Copies the selected text for pasting later, without removing it.
Paste Inserts any text on the clipboard at the current location of the cursor.
Paste to Workspace. . . Inserts the contents of the clipboard into the work-

space as one or more variables.
Select All Highlights all text in the Command window.
Delete Clears the variable highlighted in the Workspace Browser.
Find. . . Finds and replaces phrases.
Find Files. . . Finds files.
Clear Command Window Removes all text from the Command window.
Clear Command History Removes all text from the Command History

window.
Clear Workspace Removes the values of all variables from the workspace.

You can use the Copy and Paste selections to copy and paste commands appearing
on the Command window. However, an easier way is to use the up-arrow key to
scroll through the previous commands, and press Enter when you see the command
you want to retrieve.

Use the Debug menu to access the Debugger, which is discussed in Chapter
4. Use the Desktop menu to control the configuration of the Desktop and to dis-
play toolbars. The Window menu has one or more items, depending on what you
have done thus far in your session. Click on the name of a window that appears
on the menu to open it. For example, if you have created a plot and not closed its
window, the plot window will appear on this menu as Figure 1. However, there
are other ways to move between windows (such as pressing the Alt and Tab keys
simultaneously if the windows are not docked).

The toolbar, which is below the menu bar, provides buttons as shortcuts to
some of the features on the menus. Clicking on the button is equivalent to click-
ing on the menu, then clicking on the menu item; thus the button eliminates one
click of the mouse. The first seven buttons from the left correspond to the New
M-File, Open File, Cut, Copy, Paste, Undo, and Redo. The eighth button acti-
vates Simulink, which is a program built on top of MATLAB. The ninth button
activates the Profiler, which can be used to optimize program performance. The
tenth button activates the GUIDE Quick Start, which is used to create and edit
graphical user interfaces (GUIs). The eleventh button (the one with the question
mark) accesses the Help System.

Below the toolbar is a button that accesses help for adding shortcuts to the tool-
bar and a button that accesses a list of the features added since the previous release.

1.2 Menus and the Toolbar 15

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 15

1.3 Arrays, Files, and Plots
This section introduces arrays, which are the basic building blocks in MATLAB,
and shows how to handle files and generate plots.

Arrays

MATLAB has hundreds of functions, which we will discuss throughout the text. For
example, to compute sin x, where x has a value in radians, you type sin(x). To com-
pute cos x, type cos(x). The exponential function ex is computed from exp(x). The
natural logarithm, ln x, is computed by typing log(x). (Note the spelling differ-
ence between mathematics text, ln, and MATLAB syntax, log.) You compute the
base 10 logarithm by typing log10(x). The inverse sine, or arcsine, is obtained by
typing asin(x). It returns an answer in radians, not degrees.

One of the strengths of MATLAB is its ability to handle collections of num-
bers, called arrays, as if they were a single variable. A numerical array is an or-
dered collection of numbers (a set of numbers arranged in a specific order). An
example of an array variable is one that contains the numbers 0, 4, 3, and 6, in
that order. We can use square brackets to define the variable x to contain this col-
lection by typing x = [0, 4, 3, 6]. The elements of the array may also be
separated by spaces, but commas are preferred to improve readability and avoid
mistakes. Note that the variable y defined as y = [6, 3, 4, 0] is not the
same as x because the order is different.

We can add the two arrays x and y to produce another array z by typing the
single line z = x + y. To compute z, MATLAB adds all the corresponding num-
bers in x and y to produce z. The resulting array z contains the numbers 6, 7, 7, 6.

You need not type all the numbers in the array if they are regularly spaced.
Instead, you type the first number and the last number, with the spacing in the
middle, separated by colons. For example, the numbers 0, 0.1, 0.2, . . . , 10 can
be assigned to the variable u by typing u = [0:0.1:10].

To compute w � 5 sin u for u � 0, 0.1, 0.2 , . . . , 10, the session is:

>>u = [0:0.1:10];
>>w = 5*sin(u);

The single line w = 5*sin(u) computed the formula w � 5 sin u 101 times,
once for each value in the array u, to produce an array z that has 101 values.

You can see all the u values by typing u after the prompt or, for example, you
can see the seventh value by typing u(7). The number 7 is called an array
index, because it points to a particular element in the array.

>>u(7)
ans =

0.6000
>>w(7)
ans =

2.8232

16 CHAPTER 1 An Overview of MATLAB®

ARRAY INDEX

ARRAY

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 16

You can use the length function to determine how many values are in an
array. For example, continue the previous session as follows:

>>m = length(w)
m =

101

Arrays that display on the screen as a single row of numbers with more than
one column are called row arrays. You can create column arrays, which have
more than one row, by using a semicolon to separate the rows.

Polynomial Roots

We can describe a polynomial in MATLAB with an array whose elements are the
polynomial’s coefficients, starting with the coefficient of the highest power of x.
For example, the polynomial 4x3�8x2�7x�5 would be represented by the array
[4,-8,7,-5]. The roots of the polynomial f (x) are the values of x such that
f (x) � 0. Polynomial roots can be found with the roots(a) function, where a
is the polynomial’s coefficient array. The result is a column array that contains
the polynomial’s roots. For example, to find the roots of x3�7x2�40x�34 � 0,
the session is

>>a = [1,-7,40,-34];
>>roots(a)
ans =

3.0000 + 5.000i
3.0000 - 5.000i
1.0000

The roots are x � 1 and x � 3 � 5i. The two commands could have been com-
bined into the single command roots([1,-7,40,-34]).

Test Your Understanding

T1.3–1 Use MATLAB to determine how many elements are in the array
[cos(0):0.02:log10(100)]. Use MATLAB to determine the
25th element. (Answer: 51 elements and 1.48.)

T1.3–2 Use MATLAB to find the roots of the polynomial 290�11x�6x2�x3.
(Answer: x � �10, 2 � 5i.)

Built-in Functions

We have seen several of the functions built into MATLAB, such as the sqrt and
the sin functions. Table 1.3–1 lists some of the commonly used built-in functions.
Chapter 3 gives extensive coverage of the built-in functions. MATLAB users can
create their own functions for their special needs. Creation of user-defined functions
is covered in Chapter 3.

1.3 Arrays, Files, and Plots 17

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 17

Working with Files

MATLAB uses several types of files that enable you to save programs, data, and
session results. As we will see in Section 1.4, MATLAB function files and pro-
gram files are saved with the extension .m, and thus are called M-files. MAT-files
have the extension .mat and are used to save the names and values of variables
created during a MATLAB session.

Because they are ASCII files, M-files can be created using just about any
word processor. MAT-files are binary files that are generally readable only by
the software that created them. MAT-files contain a machine signature that
allows them to be transferred between machine types such as MS windows and
Macintosh machines.

The third type of file we will be using is a data file, specifically an ASCII
data file, that is, one created according to the ASCII format. You may need to
use MATLAB to analyze data stored in such a file created by a spreadsheet
program, a word processor, or a laboratory data acquisition system or in a file
you share with someone else.

Saving and Retrieving Your Workspace Variables

If you want to continue a MATLAB session at a later time, you must use the
save and load commands. Typing save causes MATLAB to save the work-
space variables, that is, the variable names, their sizes, and their values, in a bi-
nary file called matlab.mat, which MATLAB can read. To retrieve your
workspace variables, type load. You can then continue your session as before.
To save the workspace variables in another file named filename.mat, type
save filename. To load the workspace variables, type load filename.
If the saved MAT-file filename contains the variables A, B, and C, then
loading the file filename places these variables back into the workspace and
overwrites any existing variables having the same name.

18 CHAPTER 1 An Overview of MATLAB®

MAT-FILES

ASCII FILES

DATA FILE

Table 1.3–1 Some commonly used mathematical functions

Function MATLAB syntax*

ex exp(x)
sqrt(x)

ln x log(x)
log10 x log10(x)
cos x cos(x)
sin x sin(x)
tan x tan(x)
cos�1 x acos(x)
sin�1 x asin(x)
tan�1 x atan(x)

*The MATLAB trigonometric functions listed here use radian measure. Trigonometric functions ending
in d, such as sind(x) and cosd(x), take the argument x in degrees.

2 x

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 18

To save just some of your variables, say, var1 and var2, in the file
filename.mat, type save filename var1 var2. You need not type
the variable names to retrieve them; just type load filename.

Directories and Path It is important to know the location of the files you use
with MATLAB. File location frequently causes problems for beginners. Suppose
you use MATLAB on your home computer and save a file to a removable disk, as
discussed later in this section. If you bring that disk to use with MATLAB on an-
other computer, say, in a school’s computer lab, you must make sure that MATLAB
knows how to find your files. Files are stored in directories, called folders on some
computer systems. Directories can have subdirectories below them. For example,
suppose MATLAB was installed on drive c: in the directory c:\matlab. Then
the toolbox directory is a subdirectory under the directory c:\matlab, and
symbolic is a subdirectory under the toolbox directory. The path tells us and
MATLAB how to find a particular file. For example, the file solve.m is a
function in the Symbolic Math toolbox. The path to this file is c:\matlab\
toolbox\symbolic. The full name of a file consists of its path and its name,
for example, c:\matlab\toolbox\symbolic\solve.m.

Working with Removable Disks In Section 1.4 you will learn how to create
and save M-files. Suppose you have saved the file problem1.m in the directory
\homework on a disk, which you insert in drive a:. The path for this
file is a:\homework. As MATLAB is normally installed, when you type
problem1,

1. MATLAB first checks to see if problem1 is a variable and if so, displays
its value.

2. If not, MATLAB then checks to see if problem1 is one of its own
commands, and executes it if it is.

3. If not, MATLAB then looks in the current directory for a file named
problem1.m and executes problem1 if it finds it.

4. If not, MATLAB then searches the directories in its search path, in order,
for problem1.m and then executes it if found.

You can display the MATLAB search path by typing path. If problem1 is on
the disk only and if directory a: is not in the search path, MATLAB will not find
the file and will generate an error message, unless you tell it where to look. You
can do this by typing cd a:\homework, which stands for “change directory to
a:\homework.” This will change the current directory to a:\homework and
force MATLAB to look in that directory to find your file. The general syntax of
this command is cd dirname, where dirname is the full path to the directory.

An alternative to this procedure is to copy your file to a directory on the hard
drive that is in the search path. However, there are several pitfalls with this approach:
(1) if you change the file during your session, you might forget to copy the revised
file back to your disk; (2) the hard drive becomes cluttered (this is a problem in pub-
lic computer labs, and you might not be permitted to save your file on the hard drive);

1.3 Arrays, Files, and Plots 19

PATH

SEARCH PATH

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 19

(3) the file might be deleted or overwritten if MATLAB is reinstalled; and (4) some-
one else can access your work!

You can determine the current directory (the one where MATLAB looks for
your file) by typing pwd. To see a list of all the files in the current directory, type
dir. To see the files in the directory dirname, type dir dirname.

The what command displays a list of the MATLAB-specific files in the cur-
rent directory. The what dirname command does the same for the directory
dirname. Type which item to display the full pathname of the function
item or the file item (include the file extension). If item is a variable, then
MATLAB identifies it as such.

You can add a directory to the search path by using the addpath command.
To remove a directory from the search path, use the rmpath command. The Set
Path tool is a graphical interface for working with files and directories. Type
pathtool to start the browser. To save the path settings, click on Save in the
tool. To restore the default search path, click on Default in the browser.

These commands are summarized in Table 1.3–2.

Plotting with MATLAB

MATLAB contains many powerful functions for easily creating plots of several
different types, such as rectilinear, logarithmic, surface, and contour plots. As a
simple example, let us plot the function y � 5 sin x for 0 � x � 6. We choose to
use an increment of 0.02 to generate a large number of x values in order to
produce a smooth curve. The function plot(x,y) generates a plot with the x
values on the horizontal axis (the abscissa) and the y values on the vertical axis
(the ordinate). The session is:

>>x = [0:0.02:6];
>>y = 5*sin(x);
>>plot(x,y),xlabel(‘x’),ylabel(‘y’)

20 CHAPTER 1 An Overview of MATLAB®

Table 1.3–2 System, directory, and file commands

Command Description

addpath dirname Adds the directory dirname to the search path.
cd dirname Changes the current directory to dirname.
dir Lists all files in the current directory.
dir dirname Lists all the files in the directory dirname.
path Displays the MATLAB search path.
pathtool Starts the Set Path tool.
pwd Displays the current directory.
rmpath dirname Removes the directory dirname from the search path.
what Lists the MATLAB-specific files found in the current

working directory. Most data files and other non-MATLAB
files are not listed. Use dir to get a list of all files.

what dirname Lists the MATLAB-specific files in directory dirname.
which item Displays the pathname of item if item is a function or

file. Identifies item as a variable if so.

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 20

The plot appears on the screen in a graphics window, named Figure No. 1, as
shown in Figure 1.3–1. The xlabel function places the text in single quotes as
a label on the horizontal axis. The ylabel function performs a similar function
for the vertical axis. When the plot command is successfully executed, a graph-
ics window automatically appears. If a hard copy of the plot is desired, the plot
can be printed by selecting Print from the File menu on the graphics window.
The window can be closed by selecting Close on the File menu in the graphics
window. You will then be returned to the prompt in the Command window.

Other useful plotting functions are title and gtext. These functions
place text on the plot. Both accept text within parentheses and single quotes, as
with the xlabel function. The title function places the text at the top of the
plot; the gtext function places the text at the point on the plot where the cursor
is located when you click the left mouse button.

You can create multiple plots—called overlay plots—by including another
set or sets of values in the plot function. For example, to plot the functions

and z � 4 sin 3x for 0 	 x 	 5 on the same plot, the session is

>>x = [0:0.01:5];
>>y = 2*sqrt(x);
>>z = 4*sin(3*x);
>>plot(x,y,x,z),xlabel(‘x’),gtext(‘y’),gtext(‘z’)

y = 21x

1.3 Arrays, Files, and Plots 21

GRAPHICS
WINDOW

OVERPLAY PLOT

Figure 1.3–1 A graphics window showing a plot.

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 21

After the plot appears on the screen, the program waits for you to position the cur-
sor and click the mouse button, once for each gtext function used. Use the
gtext function to place the labels y and z next to the appropriate curves.

You can also distinguish curves from one another by using different line types
for each curve. For example, to plot the z curve using a dashed line, replace the
plot(x,y,x,z) function in the above session with plot(x,y,x,z, ‘� �’).
Other line types can be used. These are discussed in Chapter 5.

Sometimes it is useful or necessary to obtain the coordinates of a point on a
plotted curve. The function ginput can be used for this purpose. Place it at the
end of all the plot and plot formatting statements, so that the plot will be in its final
form. The command [x,y] = ginput(n) gets n points and returns the x and
y coordinates in the vectors x and y, which have a length n. Position the cursor us-
ing a mouse, and press the mouse button. The returned coordinates have the same
scale as the coordinates on the plot.

In cases where you are plotting data, as opposed to functions, you should use
data markers to plot each data point (unless there are very many data points). To
mark each point with a plus sign �, the required syntax for the plot function is
plot(x,y,’�’). You can connect the data points with lines if you wish. In
that case, you must plot the data twice, once with a data marker, and once with-
out a marker.

For example, suppose the data for the independent variable is x =
[15:2:23], and the dependent variable values are y = [20, 50, 60, 90,
70]. To plot the data with plus signs use the following session:

>>x = [15:2:23];
>>y = [20, 50, 60, 90, 70];
>>plot(x,y,’+’,x,y),xlabel(‘x’),ylabel(‘y’), grid

The grid command puts grid lines on the plot. Other data markers are available.
These are discussed in Chapter 5.

Table 1.3–3 summarizes these plotting commands. We will discuss other
plotting functions, and the Plot Editor, in Chapter 5.

22 CHAPTER 1 An Overview of MATLAB®

Table 1.3–3 Some MATLAB plotting commands

Command Description

[x,y] � ginput(n) Enables the mouse to get n points from a plot, and returns
the x and y coordinates in the vectors x and y, which have
a length n.

grid Puts grid lines on the plot.
gtext(‘text’) Enables placement of text with the mouse.
plot(x,y) Generates a plot of the array y versus the array x on

rectilinear axes.
title(‘text’) Puts text in a title at the top of the plot.
xlabel(‘text’) Adds a text label to the horizontal axis (the abscissa).
ylabel(‘text’) Adds a text label to the vertical axis (the ordinate).

DATA MARKER

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 22

Test Your Understanding

T1.3–3 Use MATLAB to plot the function over
the interval 0 	 t 	 5. Put a title on the plot, and properly label the axes.
The variable s represents speed in feet per second; the variable t repre-
sents time in seconds.

T1.3–4 Use MATLAB to plot the functions and z � 5e0.3x � 2x
over the interval 0 	 x 	 1.5. Properly label the plot and each curve. The
variables y and z represent force in newtons; the variable x represents
distance in meters.

1.4 Script Files and the Editor/Debugger
You can perform operations in MATLAB in two ways:

1. In the interactive mode, in which all commands are entered directly in the
Command window, or

2. By running a MATLAB program stored in script file. This type of file
contains MATLAB commands, so running it is equivalent to typing all the
commands—one at a time—at the Command window prompt. You can run
the file by typing its name at the Command window prompt.

When the problem to be solved requires many commands, a repeated set of com-
mands, or has arrays with many elements, the interactive mode is inconvenient.
Fortunately, MATLAB allows you to write your own programs to avoid this
difficulty. You write and save MATLAB programs in M-files, which have the
extension .m; for example, program1.m.

MATLAB uses two types of M-files: script files and function files. You can use
the Editor/Debugger built into MATLAB to create M-files. Because they contain
commands, script files are sometimes called command files. Function files are
discussed in Chapter 3.

Creating and Using a Script File

The symbol % designates a comment, which is not executed by MATLAB. Com-
ments are used mainly in script files for the purpose of documenting the file. The
comment symbol may be put anywhere in the line. MATLAB ignores everything
to the right of the % symbol. For example, consider the following session.

>>% This is a comment.
>>x = 2+3 % So is this.
x =

5

Note that the portion of the line before the % sign is executed to compute x.

1.4 Script Files and the Editor/Debugger 23

y = 416x + 1

s = 2 sin(3t + 2) + 15t + 1

COMMENT

EDITOR/
DEBUGGER

SCRIPT FILE

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 23

Here is a simple example that illustrates how to create, save, and run a script
file, using the Editor/Debugger built into MATLAB. However, you may use an-
other text editor to create the file. The sample file is shown below. It computes the
sine of the square root of several numbers and displays the results on the screen.

% Program example1.m
% This program computes the sine of
% the square root and displays the result.
x = sqrt([5:2:13]);
y = sin(x)

To create this new M-file in the Command window select New from the File
menu, then select M-file. You will then see a new edit window. This is the
Editor/Debugger window as shown in Figure 1.4–1. Type in the file as shown
above. You can use the keyboard and the Edit menu in the Editor/Debugger as
you would in most word processors to create and edit the file. When finished, se-
lect Save from the File menu in the Editor/Debugger. In the dialog box that ap-
pears, replace the default name provided (usually named Untitled) with the
name example1, and click on Save. The Editor/Debugger will automatically
provide the extension .m and save the file in the MATLAB current directory,
which for now we will assume to be on the hard drive.

Once the file has been saved, in the MATLAB Command window type the script
file’s name example1 to execute the program. You should see the result displayed

24 CHAPTER 1 An Overview of MATLAB®

Figure 1.4–1 The MATLAB Command window with the Editor/Debugger open.

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 24

in the Command window. Figure 1.4–1 shows a screen containing the resulting Com-
mand window display and the Editor/Debugger opened to display the script file.

Effective Use of Script Files

Create script files to avoid the need to retype lengthy and commonly used proce-
dures. Here are some other things to keep in mind when using script files:
1. The name of a script file must follow the MATLAB convention for naming

variables.
2. Recall that typing a variable’s name at the Command window prompt causes

MATLAB to display the value of that variable. Thus, do not give a script file
the same name as a variable it computes because MATLAB will not be able
to execute that script file more than once, unless you clear the variable.

3. Do not give a script file the same name as a MATLAB command or function.
You can check to see if a command, function or file name already exists by
using the exist command. For example, to see if a variable example1
already exists, type exist(‘example1’); this will return a 0 if the
variable does not exist, and a 1 if it does. To see if an M-file example1.m
already exists, type exist(‘example1.m’,’file’) before creating the
file; this will return a 0 if the file does not exist, and a 2 if it does. Finally, to
see if a built-in function example1 already exists, type exist
‘example1’, ‘builtin’) before creating the file; this will return
a 0 if the built-in function does not exist, and a 5 if it does.

Note that not all functions supplied with MATLAB are built-in functions. For
example, the function mean.m is supplied but is not a built-in function. The com-
mand exist(‘mean.m’, ‘file’) will return a 2, but the command exist
(‘mean’, ‘builtin’) will return a 0. You may think of built-in functions as
primitives that form the basis for other MATLAB functions. You cannot view the
entire file of a built-in function in a text editor, only the comments.

Debugging Script Files

Debugging a program is the process of finding and removing the “bugs,” or errors,
in a program. Such errors usually fall into one of the following categories.
1. Syntax errors such as omitting a parenthesis or comma, or spelling a com-

mand name incorrectly. MATLAB usually detects the more obvious errors
and displays a message describing the error and its location.

2. Errors due to an incorrect mathematical procedure, called runtime errors.
They do not necessarily occur every time the program is executed; their
occurrence often depends on the particular input data. A common example
is division by zero.

To locate an error, try the following:
1. Always test your program with a simple version of the problem, whose

answers can be checked by hand calculations.

1.4 Script Files and the Editor/Debugger 25

DEBUGGING

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 25

2. Display any intermediate calculations by removing semicolons at the end
of statements.

3. Use the debugging features of the Editor/Debugger, which are introduced in
Chapter 4. However, one advantage of MATLAB is that it requires relatively
simple programs to accomplish many types of tasks. Thus you probably will
not need to use the Debugger for the problems encountered in this text.

Programming Style

Comments may be put anywhere in the script file. However, because the first
comment line before any executable statement is the line searched by the
lookfor command, discussed later in this chapter, consider putting key
words that describe the script file in this first line (called the H1 line). A sug-
gested structure for a script file is the following.
1. Comments section In this section put comment statements to give:

a. The name of the program and any key words in the first line.
b. The date created, and the creators’ names in the second line.
c. The definitions of the variable names for every input and output

variable. Divide this section into at least two subsections, one for input
data, and one for output data. A third, optional section may include
definitions of variables used in the calculations. Be sure to include the
units of measurement for all input and all output variables!

d. The name of every user-defined function called by the program.
2. Input section In this section put the input data and/or the input functions

that enable data to be entered. Include comments where appropriate for
documentation.

3. Calculation section Put the calculations in this section. Include comments
where appropriate for documentation.

4. Output section In this section put the functions necessary to deliver the
output in whatever form required. For example, this section might contain
functions for displaying the output on the screen. Include comments where
appropriate for documentation.

The programs in this text often omit some of these elements to save space. Here the
text discussion associated with the program provides the required documentation.

Controlling Input and Output

MATLAB provides several useful commands for obtaining input from the user
and for formatting the output (the results obtained by executing the MATLAB
commands). Table 1.4–1 summarizes these commands.

The disp function (short for “display”) can be used to display the value of a
variable but not its name. Its syntax is disp(A), where A represents a MATLAB
variable name. The disp function can also display text such as a message to the
user. You enclose the text within single quotes. For example, the command
disp(‘The predicted speed is:’) causes the message to appear on

26 CHAPTER 1 An Overview of MATLAB®

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 26

the screen. This command can be used with the first form of the disp function
in a script file as follows (assuming the value of Speed is 63):

disp(‘The predicted speed is:’)
disp(Speed)

When the file is run, these lines produce the following on the screen:

The predicted speed is:
63

The input function displays text on the screen, waits for the user to enter
something from the keyboard, and then stores the input in the specified variable.
For example, the command x = input(‘Please enter the value of
x:’) causes the message to appear on the screen. If you type 5 and press Enter,
the variable x will have the value 5.

A string variable is composed of text (alphanumeric characters). If you want
to store a text input as a string variable, use the other form of the input command.
For example, the command Calendar = input(‘Enter the day of
the week:’,’s’) prompts you to enter the day of the week. If you type
Wednesday, this text will be stored in the string variable Calendar.

Use the menu function to generate a menu of choices for user input. Its
syntax is

k = menu(‘title’,’option1’,’option2’,...)

The function displays the menu whose title is in the string variable ‘title’, and
whose choices are string variables ‘option1’, ‘option2’, and so on. The
returned value of k is 1, 2, . . . depending on whether you click on the button for
option1, option2, and so forth. For example, the following script uses a menu
to select the data marker for a graph, assuming that the arrays x and y already exist.

k = menu(‘Choose a data marker’,’o’,’*’,’x’);
type = [‘o’,’*’,’x’];
plot(x,y,x,y,type(k))

1.4 Script Files and the Editor/Debugger 27

Table 1.4–1 Input/output commands

Command Description

disp(A) Displays the contents, but not the name, of the
array A.

disp(‘text’) Displays the text string enclosed within
single quotes.

format Controls the screen’s output display format (see
Table 1.1–5).

x = input(‘text’) Displays the text in quotes, waits for user input
from the keyboard, and stores the value in x.

x = input(‘text’,’s’) Displays the text in quotes, waits for user input from
the keyboard, and stores the input as a string in x.

k=menu(‘title’,’option1’, Displays a menu whose title is in the string
’option2’,... variable ‘title’ and whose choices are

‘option1’,‘option2’, and so on.

STRING VARIABLE

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 27

Test Your Understanding

T1.4–1 The surface area A of a sphere depends on its radius r as follows:
A � 4�r2. Write a script file that prompts the user to enter a radius, com-
putes the surface area, and displays the result.

Steps for Obtaining a Computer Solution

If you use a program such as MATLAB to solve a problem, follow the steps
shown in Table 1.4–2.

1.5 The MATLAB Help System
To explore the more advanced features of MATLAB not covered in this book, you
will need to know how to use effectively the MATLAB Help System. MATLAB
has these options to get help for using MathWorks products.
1. Help Browser This graphical user interface helps you find information and

view online documentation for your MathWorks products.
2. Help Functions The functions help, lookfor, and doc can be used to

display syntax information for a specified function.
3. Other Resources For additional help, you can run demos, contact technical

support, search documentation for other MathWorks products, view a list
of other books, and participate in a newsgroup.

The Help Browser

To open the Help Browser, select MATLAB Help from the Help menu, or click the
question mark button in the toolbar. The Help Browser contains two window
“panes”: the Help Navigator pane on the left and the Display pane on the right (see
Figure 1.5–1). The Help Navigator contains four tabs:

■ Contents: a contents listing tab,
■ Index: a global index tab,

28 CHAPTER 1 An Overview of MATLAB®

Table 1.4–2 Steps for developing a computer solution

1. State the problem concisely.
2. Specify the data to be used by the program. This is the “input.”
3. Specify the information to be generated by the program. This is the “output.”
4. Work through the solution steps by hand or with a calculator; use a simpler set of data if

necessary.
5. Write and run the program.
6. Check the output of the program with your hand solution.
7. Run the program with your input data and perform a “reality check” on the output. Does

it make sense? Estimate the range of the expected result and compare it with your
answer.

8. If you will use the program as a general tool in the future, test it by running it for a range
of reasonable data values; perform a reality check on the results.

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 28

■ Search: a search tab having a find function and full text search features,
and

■ Demos: a bookmarking tab to start built-in demonstrations.

Use the tabs in the Help Navigator to find documentation. You view documentation
in the Display pane. To open the Help Navigator pane from the display pane, click
on Help Navigator in the View menu.

Viewing Documentation

After finding documentation with the Help Navigator, view the documentation in
the Display pane. While viewing a page of documentation, you can:

■ Scroll to see contents not currently visible in the window.
■ View the previous or next page in the document by clicking the left or right

arrow at the top of the page.
■ View the previous or next item in the index by clicking the left or right

arrow at the bottom of the page.
■ Find a phrase in the currently displayed page by clicking on the binoculars

icon and typing it in the Find what: box in the Help Browser toolbar and
pressing the Enter key.

Using the Contents Tab

Click the Contents tab in the Help Navigator to list the titles and table of con-
tents for all product documentation. To expand the listing for an item, click the

1.5 The MATLAB Help System 29

Figure 1.5–1 The MATLAB Help Browser.

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 29

� to the left of the item. To collapse the listings for an item, click the � to the
left of the item, or double-click the item. Click on an item to select it. The first
page of that document appears in the Display pane. Double-clicking an item in
the contents listing expands the listing for that item and shows the first page of
that document in the Display pane.

The Contents pane is synchronized with the Display pane. By default, the
item selected in the Contents pane always matches the documentation appearing
in the Display pane. Thus, the contents tree is synchronized with the displayed
document.

Using the Index Tab

Click the Index tab in the Help Navigator pane to find specific index entries
(keywords) from all of your MathWorks documentation. Type a word or words
in the “Search index for” box. As you type, the index highlights the matching
entries. Scroll down in the Help Navigator pane to see more matching entries.
Click on an entry to display the corresponding page. If you do not find a match-
ing index entry or if the corresponding page does not contain the information
you seek, try a less specific topic by using only part of the wording, or use the
Search tab.

Using the Search Tab

Click the Search tab in the Help Navigator pane to find all MATLAB documents
containing a specified phrase. Type the phrase in the “Search for” box. Then click
the Go button. The list of documents and the heading under which the phrase is
found in that document then appear in the Help Navigator pane. Select an entry
from the list of results to view that document in the Display pane.

Help Functions

Three MATLAB functions can be used for accessing online information about
MATLAB functions.

The help Function The help function is the most basic way to determine
the syntax and behavior of a particular function. For example, typing help
log10 in the Command window produces the following display:

LOG10 Common (base 10) logarithm.
LOG10(X) is the base 10 logarithm of the elements of X.
Complex results are produced if X is not positive.

See also LOG, LOG2, EXP, LOGM.

Note that the display describes what the function does, warns about any unexpected
results if nonstandard argument values are used, and directs the user to other related
functions.

30 CHAPTER 1 An Overview of MATLAB®

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 30

All the MATLAB functions are organized into logical groups, upon which the
MATLAB directory structure is based. For instance, all elementary mathematical
functions such as log10 reside in the elfun directory, and the polynomial func-
tions reside in the polyfun directory. To list the names of all the functions in that
directory, with a brief description of each, type help polyfun. If you are
unsure of what directory to search, type help to obtain a list of all the directories,
with a description of the function category each represents.

Typing helpwin topic displays the help text for the specified topic in-
side the Desktop Help Browser window. Links are created to functions refer-
enced in the “See Also” line of the help text. You can also access the Help window
by selecting the Help option under the Help menu, or by clicking the question
mark button on the toolbar.

The lookfor Function The lookfor function allows you to search for
functions on the basis of a key word. It searches through the first line of help text,
known as the H1 line, for each MATLAB function, and returns all the H1 lines
containing a specified key word. For example, MATLAB does not have a func-
tion named sine. So the response from help sine is

sine.m not found

However, typing lookfor sine produces over a dozen matches, depending on
which toolboxes you have installed. For example, you will, see among others,

ACOS Inverse cosine, result in radians
ACOSD Inverse cosine, result in degrees
ACOSH Inverse hyperbolic cosine
ASIN Inverse sine, result in radians
...
SIN Sine of argument in radians
...

From this list you can find the correct name for the sine function. Note that all
words containing sine are returned, such as cosine. Adding -all to the look-
for function searches the entire help entry, not just the H1 line.

The doc Function Typing doc function displays the documentation for
the MATLAB function function. Typing doc toolbox/function
displays the documentation for the specified toolbox function. Typing doc
toolbox displays the documentation road map page for the specified toolbox.

Table 1.5–1 summarizes the MATLAB Help functions.

1.6 Summary
You should now be familiar with basic operations in MATLAB. These include

■ Starting and exiting MATLAB,
■ Computing simple mathematical expressions, and
■ Managing variables.

1.6 Summary 31

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 31

You should also be familiar with the MATLAB menu and toolbar system.
The chapter gives an overview of the various types of problems MATLAB

can solve. These include

■ Using arrays and polynomials,
■ Creating plots, and
■ Creating script files

The following chapters give more details on these topics.

32 CHAPTER 1 An Overview of MATLAB®

Argument, 5
Array, 16
Array index, 16
ASCII files, 18
Assignment operator, 8
Command window, 3
Comment, 23
Current directory, 13
Data file, 18
Data marker, 22
Debugging, 25
Desktop, 3
Editor/Debugger, 23

Graphics window, 21
MAT-files, 18
Overlay plot, 21
Path, 19
Precedence, 6
Scalar, 6
Script file, 23
Search path, 19
Session, 4
String variable, 27
Variable, 5
Workspace, 9

Key Terms with Page References

Table 1.5–1 MATLAB Help functions

Function Use

doc Displays the start page of the documentation in the Help
Browser.

doc function Displays the documentation for the MATLAB function
function.

doc toolbox/ Displays the documentation for the specified toolbox
function function.
doc toolbox Displays the documentation road map page for the specified

toolbox.
help Displays a list of all the function directories, with a description

of the function category each represents.
help function Displays in the Command window a description of the

specified function function.
helpwin topic Displays the help text for the specified topic inside the

desktop Help Browser window.
lookfor topic Displays in the Command window a brief description for

all functions whose description includes the specified key
word topic.

type filename Displays the M-file filename without opening it with a
text editor.

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 32

Problems
Answers to problems marked with an asterisk are given at the end of the text.

Section 1.1

1. Make sure you know how to start and quit a MATLAB session. Use
MATLAB to make the following calculations, using the values: x � 10,
y � 3. Check the results using a calculator.
a. u � x � y b. v � xy c. w � x / y
d. z � sin x e. r � 8 sin y f. s � 5 sin (2y)

2.* Suppose that x � 2 and y � 5. Use MATLAB to compute the following.

a. b. c. d.

3. Suppose that x � 3 and y � 4. Use MATLAB to compute the following,
and check the results with a calculator.

a. b. 3�x2 c. d.

4. Evaluate the following expressions in MATLAB for the given value of x.
Check your answers by hand.

a. , x � 2 b. x � 8

c. , x � 10 d. , x � 2

e. y � 7(x1/3) � 4x 0.58, x � 20

5. Assuming that the variables a, b, c, d, and f are scalars, write MATLAB
statements to compute and display the following expressions. Test your
statements for the values a � 1.12, b � 2.34, c � 0.72, d � 0.81,
f � 19.83.

6. Use MATLAB to calculate

a. b.

c.

Check your answers with a calculator.

272

4
+

3194>5
5

+ 60(14)-3

48.2(55) - 93

53 + 142

3

4
 (6) (72) +

45

73
- 145

y = ab
1
c

f

2

2
r =

1
1
a +

1
b +

1
c +

1
d

s =

b - a

d - c
x = 1 +

a

b
+

c

f 2

y = 2
sin x

5
y =

(4x)2

25

y =

x

4
 3,y = 6x3

+

4
x

4(y - 5)

3x - 6

3y

4x - 8
a1 -

1

x5
b-1

x5

x5
- 1

3

2
xy

3x

2y

yx3

x - y

Problems 33

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 33

7. The volume of a sphere is given by V � 4�r3/3, where r is the radius. Use
MATLAB to compute the radius of a sphere having a volume 30 percent
greater than that of a sphere of radius 5 ft.

8.* Suppose that x � � 7 � 5i and y � 4 � 3i. Use MATLAB to compute
a. x � y b. xy c. x/y

9. Use MATLAB to compute the following. Check your answers by hand.

a. (3 � 6i)(� 7 � 9i) b.

c. d.

10. Evaluate the following expressions in MATLAB, for the values x � 5 �
8i, y � �6 � 7i. Check your answers by hand.
a. u � x � y b. v � xy c. w � x /y
d. z � ex e. f. s � xy2

11. The ideal gas law provides one way to estimate the pressure exerted by a
gas in a container. The law is

More accurate estimates can be made with the van der Waals equation:

where the term nb is a correction for the volume of the molecules, and the
term an2/V 2 is a correction for molecular attractions. The values of a and
b depend on the type of gas. The gas constant is R, the absolute tempera-
ture is T, the gas volume is V, and the number of gas molecules is indi-
cated by n. If n � 1 mol of an ideal gas were confined to a volume of V �
22.41 L at 0°C (273.2 K), it would exert a pressure of 1 atmosphere. In
these units, R � 0.08206.

For chlorine (Cl2), a � 6.49 and b � 0.0562. Compare the pressure es-
timates given by the ideal gas law and the van der Waals equation for 1 mol
of Cl2 in 22.41 L at 273.2 K. What is the main cause of the difference in the
two pressure estimates: the molecular volume or the molecular attractions?

12. The ideal gas law relates the pressure P, volume V, absolute temperature
T, and amount of gas n. The law is

where R is the gas constant.

P =

nRT

V

P =

nRT

V - nb
-

an2

V 2

P =

nRT

V

r = 1y

3

2i

3

2
i

5 + 4i

5 - 4i

34 CHAPTER 1 An Overview of MATLAB®

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 34

An engineer must design a large natural gas storage tank to be
expandable to maintain the pressure constant at 2.2 atmospheres. In
December when the temperature is 4°F (�15°C), the volume of gas in the
tank is 28,500 ft3. What will the volume of the same quantity of gas be in
July when the temperature is 88°F (31°C)? (Hint: Use the fact that n, R,
and P are constant in this problem. Note also that K � °C � 273.2.)

Section 1.3

13. Suppose x takes on the values x � 1, 1.2, 1.4, . . . , 5. Use MATLAB to
compute the array y that results from the function y � 7 sin(4x). Use
MATLAB to determine how many elements are in the array y, and the
value of the third element in the array y.

14. Use MATLAB to determine how many elements are in the array
[sin(-pi/2):0.05:cos(0)]. Use MATLAB to determine the
10th element.

15. Use MATLAB to calculate
a. b.

c. d.

Check your answers with a calculator.

16. Use MATLAB to calculate
a. 6� tan�1(12.5) � 4 b. 5 tan [3 sin�1(13/5)]
c. 5 ln(7) d. 5 log(7)
Check your answers with a calculator.

17. The Richter scale is a measure of the intensity of an earthquake. The
energy E (in joules) released by the quake is related to the magnitude M
on the Richter scale as follows.

How much more energy is released by a magnitude 7.3 quake than a 5.5
quake?

18.* Use MATLAB to find the roots of 13x3 � 182x2 � 184x � 2503 � 0.

19. Use MATLAB to find the roots of the polynomial 36x3 � 12x2 � 5x � 10.

20. Determine which search path MATLAB uses on your computer. If you use
a lab computer as well as a home computer, compare the two search paths.
Where will MATLAB look for a user-created M-file on each computer?

21. Use MATLAB to plot the function T � 6 ln t � 7e0.2t over the interval 1 	
t 	 3. Put a title on the plot and properly label the axes. The variable T
represents temperature in degrees Celsius; the variable t represents time in
minutes.

E = 104.4101.5M

cos a4.12p

6
b2

cos2 a4.12p

6
b

(3.4)7 log(14) +
41287e(-2.1)3

+ 3.47 log(14) +
4 1287

Problems 35

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 35

22. Use MATLAB to plot the functions u � 2 log10(60x � 1) and v � 3 cos(6x)
over the interval 0 	 x 	 2. Properly label the plot and each curve. The vari-
ables u and v represent speed in miles per hour; the variable x represents
distance in miles.

23. The Fourier series is a series representation of a periodic function in terms
of sines and cosines. The Fourier series representation of the function

is

Plot on the same graph the function f (x) and its series representation
using the four terms shown.

24. A cycloid is the curve described by a point P on the circumference of a
circular wheel of radius r rolling along the x axis. The curve is described
in parametric form by the equations

Use these equations to plot the cycloid for r � 10 inches and 0 	 � 	 4�.

Section 1.4

25. A fence around a field is shaped as shown in Figure P25. It consists of a
rectangle of length L and width W, and a right triangle that is symmetrical
about the central horizontal axis of the rectangle. Suppose the width W is
known (in meters), and the enclosed area A is known (in square meters).
Write a MATLAB script file in terms of the given variables W and A to
determine the length L required so that the enclosed area is A. Also
determine the total length of fence required. Test your script for the values
W � 6 m and A � 80 m2.

y = r (1 - cos f)

x = r (f - sin f)

4
p
a sin x

1
+

sin 3x

3
+

sin 5x

5
+

sin 7x

7
+

Áb

f (x) = e 1 0 < x < p

-1 -p < x < 0

36 CHAPTER 1 An Overview of MATLAB®

W

L

D

Figure P25

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 36

26. The four-sided figure shown in Figure P26 consists of two triangles hav-
ing a common side a. The law of cosines for the top triangle states that

and a similar equation can be written for the bottom triangle. Develop a
procedure for computing the length of side c2 if you are given the lengths
of sides b1, b2, and c1, and the angles A1 and A2 in degrees. Write a script
file to implement this procedure. Test your script using the following
values: b1 � 180 m, b2 � 165 m, c1 � 115 m, A1 � 120° and A2 � 100°.

a2
= b2

1 + c2
1 - 2b1c1 cos A1

Problems 37

A2

aC2

C1

A1

c2

c1

b1

b2 B2

B1

Figure P26

Section 1.5

27. Use the MATLAB help facilities to find information about the following
topics and symbols: plot, label, cos, cosine, :, and *.

28. Use the MATLAB help facilities to determine what happens if you use the
sqrt function with a negative argument.

29. Use the MATLAB help facilities to determine what happens if you use the
exp function with an imaginary argument.

pal48185_01_01-37.qxd 9/27/07 12:20 AM Page 37

2 C H A P T E R

Numeric, Cell, and
Structure Arrays
OUTLINE
2.1 One- and Two-Dimensional Numeric Arrays

2.2 Multidimensional Numeric Arrays

2.3 Element-by-Element Operations

2.4 Matrix Operations

2.5 Matrix Methods for Linear Equations

2.6 Polynomial Operations Using Arrays

2.7 Cell Arrays

2.8 Structure Arrays

2.9 Summary

Problems

One of the strengths of MATLAB is the capability to handle collections of items,
called arrays, as if they were a single entity. The array-handling feature means
that MATLAB programs can be very short.

The array is the basic building block in MATLAB. The following classes of
arrays are available in MATLAB 7:

Array
numeric character logical cell structure function handle Java

So far we have used only numeric arrays, which are arrays containing only
numeric values. Within the numeric class are the subclasses single (single preci-
sion), double (double precision), int8, int16, and int32 (signed 8-bit, 16-bit, and
32-bit integers), and uint8, uint16, and uint32 (unsigned 8-bit, 16-bit, and 32-bit

38

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 38

integers). A character array is an array containing strings. The elements of logical
arrays are “true” or “false,” which, although represented by the symbols 1 and 0,
are not numeric quantities. We will study the logical arrays in Chapter 4. Cell
arrays and structure arrays are covered in Sections 2.7 and 2.8 of this chapter.
Function handles are treated in Chapter 3. The Java class is not covered in this text.

The first four sections of this chapter treat concepts that are essential to un-
derstanding MATLAB and therefore must be covered. Sections 2.5 and 2.6 treat
specific applications that may not be of interest to all readers. Sections 2.7 and 2.8
introduce two types of arrays that are useful for some specialized applications.

2.1 One- and Two-Dimensional Numeric Arrays
We can represent the location of a point in three-dimensional space by three
Cartesian coordinates x, y, and z. These three coordinates specify a vector p. (In
mathematical text we often use boldface type to indicate vectors.) The set of unit
vectors i, j, k, whose lengths are 1 and whose directions coincide with the x, y,
and z axes, respectively, can be used to express the vector mathematically as fol-
lows: p � xi � yj � zk. The unit vectors enable us to associate the vector com-
ponents x, y, z with the proper coordinate axes; therefore, when we write p � 5i
� 7j � 2k, we know that the x, y, and z coordinates of the vector are 5, 7, and 2,
respectively. We can also write the components in a specific order, separate them
with a space, and identify the group with brackets, as follows: [5 7 2]. As long as
we agree that the vector components will be written in the order x, y, z, we can
use this notation instead of the unit-vector notation. In fact, MATLAB uses this
style for vector notation. MATLAB allows us to separate the components with
commas for improved readability if we desire so that the equivalent way of writ-
ing the preceding vector is [5, 7, 2]. This expression is a row vector, which is a
horizontal arrangement of the elements.

We can also express the vector as a column vector, which has a vertical
arrangement. A vector can have only one column, or only one row. Thus, a vec-
tor is a one dimensional array. In general, arrays can have more than one
column and more than one row.

Creating Vectors in MATLAB

The concept of a vector can be generalized to any number of components. In
MATLAB a vector is simply a list of scalars, whose order of appearance in the
list might be significant, as it is when specifying xyz coordinates. As another
example, suppose we measure the temperature of an object once every hour.
We can represent the measurements as a vector, and the 10th element in the list
is the temperature measured at the 10th hour.

To create a row vector in MATLAB, you simply type the elements inside a
pair of square brackets, separating the elements with a space or a comma. Brackets
are required for arrays in some cases, but not all. To improve readability, we will
always use them. The choice between a space or comma is a matter of personal

2.1 One- and Two-Dimensional Numeric Arrays 39

ROW VECTOR

COLUMN VECTOR

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 39

preference, although the chance of an error is less if you use a comma. (You can
also use a comma followed by a space for maximum readability.)

To create a column vector, you can separate the elements by semicolons;
alternatively, you can create a row vector and then use the transpose notation (’),
which converts a row vector into a column vector, or vice versa. For example:

>>g = [3;7;9]
g =

3
7
9

>>g = [3,7,9]’
g =

3
7
9

The third way to create a column vector is to type a left bracket ([) and the first
element, press Enter, type the second element, press Enter, and so on until you
type the last element followed by a right bracket (]) and Enter. On the screen
this sequence looks like

>>g = [3
7
9]
g =

3
7
9

Note that MATLAB displays row vectors horizontally and column vectors
vertically.

You can create vectors by “appending” one vector to another. For example,
to create the row vector u whose first three columns contain the values of r =
[2,4,20] and whose fourth, fifth, and sixth columns contain the values of
w = [9,-6,3], you type u = [r,w]. The result is the vector u =
[2,4,20,9,-6,3].

The colon operator (:) easily generates a large vector of regularly spaced el-
ements. Typing

>>x = [m:q:n]

creates a vector x of values with a spacing q. The first value is m. The last value
is n if m - n is an integer multiple of q. If not, the last value is less than n. For
example, typing x = [0:2:8] creates the vector x = [0,2,4,6,8],
whereas typing x = [0:2:7] creates the vector x = [0,2,4,6]. To cre-
ate a row vector z consisting of the values from 5 to 8 in steps of 0.1, you type
z = [5:0.1:8]. If the increment q is omitted, it is presumed to be 1. Thus y
= [-3:2] produces the vector y = [-3,-2,-1,0,1,2].

40 CHAPTER 2 Numeric, Cell, and Structure Arrays

TRANSPOSE

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 40

The increment q can be negative. In this case m should be greater than n. For
example, u = [10:-2:4] produces the vector [10,8,6,4].

The linspace command also creates a linearly spaced row vector, but in-
stead you specify the number of values rather than the increment. The syntax is
linspace(x1,x2,n), where x1 and x2 are the lower and upper limits and n
is the number of points. For example, linspace(5,8,31) is equivalent to
[5:0.1:8]. If n is omitted, the spacing is 1.

The logspace command creates an array of logarithmically spaced
elements. Its syntax is logspace(a,b,n), where n is the number of points
between 10a and 10b. For example, x = logspace(-1,1,4) produces the
vector x = [0.1000, 0.4642, 2.1544, 10.000]. If n is omitted, the
number of points defaults to 50.

Two-Dimensional Arrays

An array having rows and columns is a two-dimensional array that is sometimes
called a matrix. In mathematical text if possible, vectors are usually denoted by
boldface lowercase letters and matrices by boldface uppercase letters. An exam-
ple of a matrix having three rows and two columns is

We refer to the size of an array by the number of rows and the number of
columns. For example, an array with 3 rows and 2 columns is said to be a 3 � 2
array. The number of rows is always stated first! We sometimes represent a ma-
trix A as [aij] to indicate its elements aij. The subscripts i and j—called indices—
indicate the row and column location of the element aij. The row number must
always come first! For example, the element a32 is in row 3, column 2. Two ma-
trices A and B are equal if they have the same size and if all their corresponding
elements are equal; that is, aij � bij for every value of i and j.

Creating Matrices

The most direct way to create a matrix is to type the matrix row by row, separat-
ing the elements in a given row with spaces or commas and separating the rows
with semicolons. For example, typing

>>A = [2,4,10;16,3,7];

creates the following matrix:

If the matrix has many elements, you can press Enter and continue typing on
the next line. MATLAB knows you are finished entering the matrix when you
type the closing bracket (]).

A = c 2 4 10

16 3 7
d

M = J
2 5

-3 4

-7 1
K

2.1 One- and Two-Dimensional Numeric Arrays 41

ARRAY SIZE

MATRIX

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 41

You can append a row vector to another row vector to create either a third
row vector or a matrix (if both vectors have the same number of columns). Note
the difference between the results given by [a,b] and [a;b] in the following
session:

>>a = [1,3,5];
>>b = [7,9,11];
>>c = [a,b]
c =

1 3 5 7 9 11
>> D = [a;b]
D =

1 3 5
7 9 11

Matrices and the Transpose Operation

The transpose operation interchanges the rows and columns. In mathematics text
we denote this operation by the superscript T. For an m � n matrix A with m rows
and n columns, AT (read “A transpose”) is an n � m matrix.

If AT � A, the matrix A is symmetric. Note that the transpose operation converts
a row vector into a column vector, and vice versa.

If the array contains complex elements, the transpose operator (’) produces
the complex conjugate transpose; that is, the resulting elements are the complex
conjugates of the original array’s transposed elements. Alternatively, you can use
the dot transpose operator (.’) to transpose the array without producing com-
plex conjugate elements, for example, A.’. If all the elements are real, the oper-
ators ‘ and.’ give the same result.

Array Addressing

Array indices are the row and column numbers of an element in an array and are used
to keep track of the array’s elements. For example, the notation v(5) refers to the
fifth element in the vector v, and A(2,3) refers to the element in row 2, column 3
in the matrix A. The row number is always listed first! This notation enables you to
correct entries in an array without retyping the entire array. For example, to change
the element in row 1, column 3 of a matrix D to 6, you can type D(1,3) = 6.

The colon operator selects individual elements, rows, columns, or “subar-
rays” of arrays. Here are some examples:

■ v(:) represents all the row or column elements of the vector v.
■ v(2:5) represents the second through fifth elements; that is v(2), v(3),

v(4), v(5).

A = c -2 6

-3 5
d AT

= c -2 -3

6 5
d

42 CHAPTER 2 Numeric, Cell, and Structure Arrays

ARRAY
ADDRESSING

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 42

■ A(:,3) denotes all the elements in the third column of the matrix A.
■ A(3,:) denotes all the elements in the third row of A.
■ A(:,2:5) denotes all the elements in the second through fifth columns of A.
■ A(2:3,1:3) denotes all the elements in the second and third rows that

are also in the first through third columns.
■ v = A(:) creates a vector v consisting of all the columns of A stacked

from first to last.
■ A(end,:) denotes the last row in A. A(:,end) denotes the last column.

You can use array indices to extract a smaller array from another array. For ex-
ample, if you create the array B

(2.1–1)

by typing

>>B = [2,4,10,13;16,3,7,18;8,4,9,25;3,12,15,17];

and then type

>>C = B(2:3,1:3);

you can produce the following array:

The empty array contains no elements and is expressed as []. Rows and
columns can be deleted by setting the selected row or column equal to the empty
array. This step causes the original matrix to collapse to a smaller one. For example,
A(3,:) = [] deletes the third row in A, while A(:,2:4) = [] deletes the
second through fourth columns in A. Finally, A([1 4],:) = [] deletes the first
and fourth rows of A.

Suppose we type A = [6,9,4;1,5,7] to define the following matrix:

Typing A(1,5) = 3 changes the matrix to

Because A did not have five columns, its size is automatically expanded to ac-
cept the new element in column 5. MATLAB adds zeros to fill out the remaining
elements.

A = c6 9 4 0 3

1 5 7 0 0
d

A = c6 9 4

1 5 7
d

C = c16 3 7

8 4 9
d

B = ≥
2 4 10 13

16 3 7 18

8 4 9 25

3 12 15 17

¥

2.1 One- and Two-Dimensional Numeric Arrays 43

EMPTY ARRAY

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 43

MATLAB does not accept negative or zero indices, but you can use negative
increments with the colon operator. For example, typing B = A(:,5:-1:1)
reverses the order of the columns in A and produces

Suppose that C = [-4,12,3,5,8]. Then typing B(2,:) = C replaces row 2
of B with C. Thus B becomes

Suppose that D = [3,8,5;4,-6,9]. Then typing E = D([2,2,2],:)
repeats row 2 of D three times to obtain

Using clear to Avoid Errors

You can use the clear command to protect yourself from accidentally reusing an
array that has the wrong dimension. Even if you set new values for an array, some
previous values might still remain. For example, suppose you had previously cre-
ated the 2 � 2 array A = [2, 5; 6, 9], and you then create the 5 � 1 arrays
x = [1:5]’ and y = [2:6]’. Suppose you now redefine A so that its columns
will be x and y. If you then type A(:,1) = x to create the first column, MAT-
LAB displays an error message telling you that the number of rows in A and xmust
be the same. MATLAB thinks A should be a 2 � 2 matrix because Awas previously
defined to have only two rows and its values remain in memory. The clear com-
mand wipes A and all other variables from memory and avoids this error. To clear
A only, type clear A before typing A(:,1) = x.

Some Useful Array Functions

MATLAB has many functions for working with arrays (see Table 2.1–1). Here is
a summary of some of the more commonly used functions.

The max(A) function returns the algebraically greatest element in A if A is
a vector having all real elements. It returns a row vector containing the greatest
elements in each column if A is a matrix containing all real elements. If any of
the elements are complex, max(A) returns the element that has the largest mag-
nitude. The syntax [x,k] = max(A) is similar to max(A), but it stores the
maximum values in the row vector x and their indices in the row vector k.

If A and B have the same size, C = max(A,B) creates an array the same
size, having the maximum value from each corresponding location in A and B.
For example, the following A and B matrices give the C matrix shown.

E = J
4 -6 9

4 -6 9

4 -6 9
K

B = c 3 0 4 9 6

-4 12 3 5 8
d

B = c3 0 4 9 6

0 0 7 5 1
d

44 CHAPTER 2 Numeric, Cell, and Structure Arrays

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 44

The functions min(A) and [x,k] = min(A) are the same as max(A)
and [x,k] = max(A) except that they return minimum values.

The function size(A) returns a row vector [m n] containing the sizes of
the m � n array A. The length(A) function computes either the number of el-
ements of A if A is a vector or the largest value of m or n if A is an m � n matrix.

For example, if

then max(A) returns the vector [6,2]; min(A) returns the vector [-10,
-5]; size(A) returns [3,2]; and length(A) returns 3.

The sum(A) function sums the elements in each column of the array A and
returns a row vector containing the sums. The sort(A) function sorts each
column of the array A in ascending order and returns an array the same size as A.

If A has one or more complex elements, the max, min, and sort functions
act on the absolute values of the elements and return the element that has the largest
magnitude.

A = J
6 2

-10 -5

3 0 K

A = c1 6 4

3 7 2
d B = c3 4 7

1 5 8
d C = c3 6 7

3 7 8
d

2.1 One- and Two-Dimensional Numeric Arrays 45

Table 2.1–1 Basic syntax of array functions*

Command Description

find(x) Computes an array containing the indices of the nonzero elements of the array x.
[u,v,w] = find(A) Computes the arrays u and v, containing the row and column indices of the nonzero

elements of the matrix A, and the array w, containing the values of the nonzero
elements. The array w may be omitted.

length(A) Computes either the number of elements of A if A is a vector or the largest value of
m or n if A is an m � n matrix.

linspace(a,b,n) Creates a row vector of n regularly spaced values between a and b.
logspace(a,b,n) Creates a row vector of n logarithmically spaced values between a and b.
max(A) Returns the algebraically largest element in A if A is a vector. Returns a row vector

containing the largest elements in each column if A is a matrix. If any of the ele-
ments are complex, max(A) returns the elements that have the largest magnitudes.

[x,k] = max(A) Similar to max(A) but stores the maximum values in the row vector x and their
indices in the row vector k.

min(A) Same as max(A) but returns minimum values.
[x,k] = min(A) Same as [x,k] = max(A) but returns minimum values.
norm(x) Computes a vector’s geometric length
size(A) Returns a row vector [m n] containing the sizes of the m � n array A.
sort(A) Sorts each column of the array A in ascending order and returns an array the same

size as A.
sum(A) Sums the elements in each column of the array A and returns a row vector contain-

ing the sums.

*Many of these functions have extended syntax. See the text and MATLAB help for more discussion.

2x 2
1 + x 2

2 +
Á

+ x 2
n.

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 45

For example, if

then max(A) returns the vector [-10,-5] and min(A) returns the vector
[3+4i,0]. (The magnitude of 3 � 4i is 5.)

The sort will be done in descending order if the form sort(A,‘descend’)
is used. The min, max, and sort functions can be made to act on the rows in-
stead of the columns by transposing the array.

The complete syntax of the sort function is sort(A, dim, mode),
where dim selects a dimension along which to sort, and mode selects the direc-
tion of the sort, ‘ascend’ for ascending order and ‘descend’ for descend-
ing order. So, for example, sort(A,2, ‘descend’) would sort the
elements in each row of A in descending order.

The find(x) command computes an array containing the indices of the
nonzero elements of the vector x. The syntax [u,v,w] = find(A) computes
the arrays u and v, containing the row and column indices of the nonzero elements
of the matrix A, and the array w, containing the values of the nonzero elements.
The array w may be omitted.

For example, if

then the session

>>A = [6, 0, 3; 0, 4, 0; 2, 7, 0];
>>[u, v, w] = find(A)

returns the vectors

The vectors u and v give the (row, column) indices of the nonzero values,
which are listed in w. For example, the second entries in u and v give the indices
(3, 1), which specifies the element in row 3, column 1 of A, whose value is 2.

These functions are summarized in Table 2.1–1.

Magnitude, Length, and Absolute Value of a Vector

The terms magnitude, length, and absolute value are often loosely used in everyday
language, but you must keep their precise meaning in mind when using MATLAB.

w = ≥
6
2
4
7
3

¥v = ≥
1
1
2
2
3

¥u = ≥
1
3
2
3
1

¥

A = J
6 0 3

0 4 0

2 7 0
K

A = J
6 2

-10 -5

3 + 4i 0
K

46 CHAPTER 2 Numeric, Cell, and Structure Arrays

MAGNITUDE

ABSOLUTE VALUE

LENGTH

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 46

The MATLAB length command gives the number of elements in the vector. The
magnitude of a vector x having real elements x1, x2, . . . , xn is a
scalar, given by and is the same as the vector’s geomet-
ric length. The absolute value of a vector x is a vector whose elements are the
absolute values of the elements of x. For example, if x = [2,-4,5], its length
is 3; its magnitude is and its absolute value is
[2,4,5]. The length, magnitude, and absolute value of x are computed by
length(x), norm(x), and abs(x), respectively.

Test Your Understanding

T2.1–1 For the matrix B, find the array that results from the operation [B;B’]. Use
MATLAB to determine what number is in row 5, column 3 of the result.

T2.1–2 For the same matrix B, use MATLAB to (a) find the largest and small-
est element in B and their indices and (b) sort each column in B to
create a new matrix C.

The Array Editor

The MATLAB Workspace Browser provides a graphical interface for managing
the workspace. You can use it to view, save, and clear workspace variables. It in-
cludes the Array Editor, a graphical interface for working with arrays. To open
the Workspace Browser, type workspace at the Command window prompt.
The browser appears as shown in Figure 2.1–1.

B = ≥
2 4 10 13

16 3 7 18

8 4 9 25

3 12 15 17

¥

222
+ (-4)2

+ 52
= 6.7082;

2x2
1 + x2

2 +
Á

+ x2
n,

2.1 One- and Two-Dimensional Numeric Arrays 47

Figure 2.1–1 The Workspace Browser.

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 47

Keep in mind that the Desktop menus are context-sensitive. Thus their
contents will change depending on which features of the Browser and Array
Editor you are currently using. The Workspace Browser shows the name of
each variable, its value, array size, and class. The icon for each variable illus-
trates its class.

From the Workspace Browser you can open the Array Editor to view and
edit a visual representation of two-dimensional numeric arrays, with the rows
and columns numbered. To open the Array Editor from the Workspace Browser,
double-click on the variable you want to open. The Array Editor opens, display-
ing the values for the selected variable. The Array Editor appears as shown in
Figure 2.1–2.

To open a variable, you can also right-click it and use the Context menu. Re-
peat the steps to open additional variables into the Array Editor. In the Array
Editor, access each variable via its tab at the bottom of the window, or use the
Window menu. You can also open the Array Editor directly from the Command
window by typing open(‘var’), where var is the name of the variable to be
edited. Once an array is displayed in the Array Editor, you can change a value in
the array by clicking on its location, typing in the new value, and pressing Enter.

Right-clicking on a variable brings up the Context menu, which can be used
to edit, save, or clear the selected variable, or to plot the rows of the variable ver-
sus its columns (this type of plot is discussed in Chapter 5).

You can also clear a variable from theWorkspace Browser by first highlight-
ing it in the Browser, then clicking on Delete in the Edit menu.

48 CHAPTER 2 Numeric, Cell, and Structure Arrays

Figure 2.1–2 The Array Editor.

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 48

2.2 Multidimensional Numeric Arrays
MATLAB supports multidimensional arrays. For more information, type help
datatypes.

A three-dimensional array has the dimension m � n � q. A four-dimensional
array has the dimension m � n � q � r, and so forth. The first two dimensions are
the row and column, as with a matrix. The higher dimensions are called pages. You
can think of a three-dimensional array as layers of matrices. The first layer is page
1; the second layer is page 2, and so on. If A is a 3 � 3 � 2 array, you can access
the element in row 3, column 2 of page 2 by typing A(3,2,2). To access all of
page 1, type A(:,:,1). To access all of page 2, type A(:,:,2). The ndims
command returns the number of dimensions. For example, for the array A just de-
scribed, ndims(A) returns the value 3.

You can create a multidimensional array by first creating a two-dimensional
array and then extending it. For example, suppose you want to create a three-
dimensional array whose first two pages are

To do so, first create page 1 as a 3 � 3 matrix and then add page 2, as follows:

>>A = [4,6,1;5,8,0;3,9,2];
>>A(:,:,2) = [6,2,9;0,3,1;4,7,5];

Another way to produce such an array is with the cat command. Typing
cat(n,A,B,C,...) creates a new array by concatenating the arrays A, B,
C, and so on along the dimension n. Note that cat(1,A,B) is the same as
[A;B] and that cat(2,A,B) is the same as [A,B]. For example, suppose we
have the 2 � 2 arrays A and B:

Then C = cat(3,A,B) produces a three-dimensional array composed of two
layers; the first layer is the matrix A, and the second layer is the matrix B. The el-
ement C(m,n,p) is located in row m, column n, and layer p. Thus the element
C(2,1,1) is 9, and the element C(2,2,2) is 3.

Multidimensional arrays are useful for problems that involve several parame-
ters. For example, if we have data on the temperature distribution in a rectangular
object, we could represent the temperatures as an array T with three dimensions.

2.3 Element-by-Element Operations
To increase the magnitude of a vector, multiply it by a scalar. For example, to
double the magnitude of the vector r = [3,5,2], multiply each component by
two to obtain [6,10,4]. In MATLAB you type v = 2*r.

B = c4 6

7 3
dA = c8 2

9 5
d

J
4 6 1

5 8 0

3 9 2
K J

6 2 9

0 3 1

4 7 5
K

2.3 Element-by-Element Operations 49

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 49

Multiplying a matrix A by a scalar w produces a matrix whose elements are
the elements of A multiplied by w. For example:

This multiplication is performed in MATLAB as follows:

>>A = [2,9;5,-7];
>>3*A

Thus multiplication of an array by a scalar is easily defined and easily car-
ried out. However, multiplication of two arrays is not so straightforward. In fact,
MATLAB uses two definitions of multiplication: (1) array multiplication and (2)
matrix multiplication. Division and exponentiation must also be carefully defined
when you are dealing with operations between two arrays. MATLAB has two
forms of arithmetic operations on arrays. In this section we introduce one form,
called array operations, which are also called element-by-element operations. In
the next section we introduce matrix operations. Each form has its own applica-
tions, which we illustrate by examples.

Array Addition and Subtraction

Array addition can be done by adding the corresponding components. To add the
arrays r = [3,5,2] and v = [2,-3,1] to create w in MATLAB, you type
w = r + v. The result is w = [5,2,3].

When two arrays have identical size, their sum or difference has the same
size and is obtained by adding or subtracting their corresponding elements. Thus
C � A � B implies that cij � aij � bij if the arrays are matrices. The array C has
the same size as A and B. For example:

(2.3–1)

Array subtraction is performed in a similar way.
The addition shown in equation 2.3–1 is performed in MATLAB as follows:

>>A = [6,-2;10,3];
>>B = [9,8;-12,14]
>>A+B
ans =

15 6
-2 17

Array addition and subtraction are associative and commutative. For addi-
tion these properties mean that

(2.3–2)

(2.3–3)A + B + C = B + C + A = A + C + B

(A + B) + C = A + (B + C)

c 6 -2

10 3
d + c 9 8

-12 14
d = c 15 6

-2 17
d

3 c2 9

5 -7
d = c 6 27

15 -21
d

50 CHAPTER 2 Numeric, Cell, and Structure Arrays

ARRAY
OPERATIONS

ELEMENT-
BY-ELEMENT
OPERATIONS

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 50

2.3 Element-by-Element Operations 51

Array addition and subtraction require that both arrays have the same size. The
only exception to this rule in MATLAB occurs when we add or subtract a scalar
to or from an array. In this case the scalar is added or subtracted from each ele-
ment in the array. Table 2.3–1 gives examples.

Element-by-Element Multiplication

MATLAB defines element-by-element multiplication only for arrays that have the
same size. The definition of the product x.*y, where x and y each have n
elements, is

x.*y. = [x(1)y(1), x(2)y(2) . . . , x(n)y(n)]

if x and y are row vectors. For example, if

(2.3–4)

then z = x.*y gives

This type of multiplication is sometimes called array multiplication.
If u and v are column vectors, the result of u.*v is a column vector.
Note that x’ is a column vector with size 3 � 1 and thus does not have the

same size as y, whose size is 1 � 3. Thus for the vectors x and y the operations
x’.*y and y.*x’ are not defined in MATLAB and will generate an error mes-
sage. With element-by-element multiplication, it is important to remember that
the dot (.) and the asterisk (*) form one symbol (.*). It might have been better
to have defined a single symbol for this operation, but the developers of MAT-
LAB were limited by the selection of symbols on the keyboard.

The generalization of array multiplication to arrays with more than one row or
column is straightforward. Both arrays must have the same size. The array opera-
tions are performed between the elements in corresponding locations in the arrays.
For example, the array multiplication operation A.*B results in a matrix C that has
the same size as A and B and has the elements cij � aij bij. For example, if

z = [2(-7), 4(3), -5(-8)] = [-14, 12, 40]

y = [-7, 3, -8]x = [2, 4, -5]

Table 2.3–1 Element-by-element operations

Symbol Operation Form Example

� Scalar-array addition A � b [6,3]�2�[8,5]
� Scalar-array subtraction A � b [8,3]�5�[3,�2]
� Array addition A � B [6,5]�[4,8]�[10,13]
� Array subtraction A � B [6,5]�[4,8]�[2,�3]
.* Array multiplication A.*B [3,5].*[4,8]�[12,40]
./ Array right division A./B [2,5]./[4,8]�[2/4,5/8]
.\ Array left division A.\B [2,5].\[4,8]�[2\4,5\8]
.^ Array exponentiation A.^B [3,5].^2�[3^2,5^2]

2.^[3,5]�[2^3,2^5]
[3,5].^[2,4]�[3^2,5^4]

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 51

then C = A.*B gives this result:

C = c11(-7) 5(8)

-9(6) 4(2)
d = c -77 40

-54 8
d

B = c -7 8

6 2
dA = c 11 5

-9 4
d

52 CHAPTER 2 Numeric, Cell, and Structure Arrays

EXAMPLE 2.3–1 Vectors and Displacement

Suppose two divers start at the surface and establish the following coordinate system: x is
to the west, y is to the north, and z is down. Diver 1 swims 55 ft west, 36 ft north, and then
dives 25 ft. Diver 2 dives 15 ft, then swims east 20 ft and then north 59 ft. (a) Find the dis-
tance between diver 1 and the starting point. (b) How far in each direction must diver 1
swim to reach diver 2? How far in a straight line must diver 1 swim to reach diver 2?

■ Solution
(a) Using the xyz coordinates selected, the position of diver 1 is r � 55i � 36j � 25k, and
the position of diver 2 is r � �20i � 59j � 15k. (Note that diver 2 swam east, which is
in the negative x direction.) The distance from the origin of a point xyz is given by

that is, by the magnitude of the vector pointing from the origin to the
point xyz. This distance is computed in the following session.

>>r = [55,36,25];w = [-20,59,15];

>>dist1 = sqrt(sum(r.*r))

dist1 =

70.3278

The distance is approximately 70 ft. The distance could also have been computed from
norm(r).

(b) The location of diver 2 relative to diver 1 is given by the vector v pointing from
diver 1 to diver 2. We can find this vector using vector subtraction: v � w � r. Continue
the above MATLAB session as follows:

>>v = w-r

v =

-75 23 -10

>>dist2 = sqrt(sum(v.*v))

dist2 =

79.0822

Thus to reach diver 2 by swimming along the coordinate directions, diver 1 must swim
75 ft east, 23 ft north, and 10 ft up. The straight-line distance between them is approxi-
mately 79 feet.

1x2
+ y2

+ z2,

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 52

Vectorized Functions

The built-in MATLAB functions such as sqrt(x) and exp(x) automatically
operate on array arguments to produce an array result the same size as the array ar-
gument x. Thus these functions are said to be vectorized functions.

Thus, when multiplying or dividing these functions, or when raising them to a
power, you must use element-by-element operations if the arguments are arrays. For
example, to compute z � (ey sin x) cos2 x, you must type z = exp(y).*
sin(x).*(cos(x)).^2. Obviously, you will get an error message if the size of
x is not the same as the size of y. The result z will have the same size as x and y.

2.3 Element-by-Element Operations 53

EXAMPLE 2.3–2 Aortic Pressure Model

The following equation is a specific case of one model used to describe the blood pres-
sure in the aorta during systole (the period following the closure of the heart’s aortic
valve). The variable t represents time in seconds, and the dimensionless variable y
represents the pressure difference across the aortic valve, normalized by a constant refer-
ence pressure.

Plot this function for t � 0.

■ Solution
Note that if t is a vector, the MATLAB functions exp(-8*t) and
sin(9.7*t+pi/2) will also be vectors the same size as t. Thus we must use
element-by-element multiplication to compute y(t).

We must decide on the proper spacing to use for the vector t and its upper limit. The
sine function sin(9.7t � �/2) oscillates with a frequency of 9.7 rad/sec, which is 9.7/(2�)
� 1.5 Hz. Thus its period is 1/1.5 � 2/3 sec. The spacing of t should be a small fraction
of the period in order to generate enough points to plot the curve. Thus we select a spac-
ing of 0.003 to give approximately 200 points per period.

The amplitude of the sine wave decays with time because the sine is multiplied by the
decaying exponential e�8t. The exponential’s initial value is e0 � 1, and it will be 2 per-
cent of its initial value at t � 0.5 (because e�8 (0.5) � 0.02). Thus we select the upper limit
of t to be 0.5. The session is:

>>t = [0:0.003:0.5];

>>y = exp(-8*t).*sin(9.7*t+pi/2);

>>plot(t,y),xlabel(‘t (sec)’), . . .

ylabel(‘Normalized Pressure Difference y(t)’)

The plot is shown in Figure 2.3–1. Note that we do not see much of an oscillation despite
the presence of a sine wave. This is because the period of the sine wave is greater than
the time it takes for the exponential e�8t to become essentially zero.

y(t) = e-8t sina9.7t +

p

2
b

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 53

54 CHAPTER 2 Numeric, Cell, and Structure Arrays

Element-by-Element Division

The definition of element-by-element division, also called array division, is sim-
ilar to the definition of array multiplication except, of course, that the elements
of one array are divided by the elements of the other array. Both arrays must have
the same size. The symbol for array right division is . /. For example, if

then z = x./y gives

Also, if

then C = A./B gives

The array left division operator (.\) is defined to perform element-by-element di-
vision using left division. Refer to Table 2.3–1 for examples. Note that A.\B is
not equivalent to A./B.

C = c24>(-4) 20>5
-9>3 4>2 d = c -6 4

-3 2
d

B = c -4 5

3 2
dA = c 24 20

-9 4
d

z = [8>(-2), 12>6, 15>5] = [-4, 2, 3]

y = [-2, 6, 5]x = [8, 12, 15]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
–0.2

0

0.2

0.4

0.6

0.8

1

1.2

t (sec)

N
or

m
al

iz
ed

 P
re

ss
ur

e
D

iff
er

en
ce

 y
(t

)

Figure 2.3–1 Aortic pressure response for Example 2.3–2.

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 54

Transportation Route Analysis

The following table gives data for the distance traveled along five truck routes and the cor-
responding time required to traverse each route. Use the data to compute the average speed
required to drive each route. Find the route that has the highest average speed.

2.3 Element-by-Element Operations 55

■ Solution
For example, the average speed on the first route is 560/10.3 � 54.4 mi/hr. First we de-
fine the row vectors d and t from the distance and time data. Then, to find the average
speed on each route using MATLAB, we use array division. The session is

>>d = [560, 440, 490, 530, 370]

>>t = [10.3, 8.2, 9.1, 10.1, 7.5]

>>speed = d./t

speed =

54.3689 53.6585 53.8462 52.4752 49.3333

The results are in miles per hour. Note that MATLAB displays more significant figures
than is justified by the three-significant-figure accuracy of the given data, so we should
round the results to three significant figures before using them.

To find the highest average speed and the corresponding route, continue the session
as follows:

>>[highest_speed, route] = max(speed)

highest_speed =

54.3689

route =

1

The first route has the highest speed.
If we did not need the speeds for every route, we could have solved this problem by

combining two lines as follows: [highest_speed, route] = max(d./t).

EXAMPLE 2.3–3

1 2 3 4 5

Distance (mi) 560 440 490 530 370
Time (hr) 10.3 8.2 9.1 10.1 7.5

Element-by-Element Exponentiation

MATLAB enables us not only to raise arrays to powers but also to raise scalars
and arrays to array powers. To perform exponentiation on an element-by-
element basis, we must use the .^ symbol. For example, if x = [3, 5, 8],
then typing x.^3 produces the array [33, 53, 83] � [27, 125, 512]. If x =
[0:2:6], then typing x.^2 returns the array [02, 22, 42, 62] � [0, 4, 16, 36]. If

A = c4 -5

2 3
d

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 55

then B = A.^3 gives this result:

We can raise a scalar to an array power. For example, if p = [2, 4, 5],
then typing 3.^p produces the array [32, 34, 35] � [9, 81, 243]. This example
illustrates a common situation in which it helps to remember that .^ is a single
symbol; the dot in 3.^p is not a decimal point associated with the number 3.
The following operations, with the value of p given here, are equivalent and give
the correct answer:

3.^p
3.0.^p
3..^p
(3).^p
3.^[2,4,5]

With array exponentiation, the power may be an array if the base is a scalar or if the
power’s dimensions are the same as the base dimensions. For example if, x =
[1,2,3] and y = [2,3,4], then y.^x gives the answer 2964. If A =
[1,2; 3,4], then 2.^A gives the array [2,4;8,16].

Test Your Understanding

T2.3–1 Given the matrices

find their (a) array product, (b) array right division (A divided by B),
and (c) B raised to the third power element by element.
(Answers: (a) [�147, �81; �162, 32], (b) [�3, �9; �2,
2], and (c) [�343, �27; 729, 64].)

B = c–7 –3

9 4
dA = c 21 27

-18 8
d

B = c43 (-5)3

23 33 d = c64 -125

8 27
d

A Batch Distillation Process

Consider a system for heating a liquid benzene/toluene solution to distill a pure benzene
vapor. A particular batch distillation unit is charged initially with 100 mol of a 60 percent
mol benzene/40 percent mol toluene mixture. Let L (mol) be the amount of liquid remain-
ing in the still, and let x (mol B/mol) be the benzene mole fraction in the remaining
liquid. Conservation of mass for benzene and toluene can be applied to derive the follow-
ing relation [Felder, 1986].

Determine what mole fraction of benzene remains when L � 70. Note that it is difficult
to solve this equation directly for x. Use a plot of x versus L to solve the problem.

L = 100 a x

0.6
b0.625

 a1 - x

0.4
b-1.625

56 CHAPTER 2 Numeric, Cell, and Structure Arrays

EXAMPLE 2.3–4

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 56

■ Solution
This equation involves both array multiplication and array exponentiation. Note that
MATLAB enables us to use decimal exponents to evaluate L. It is clear that L must
be in the range 0 � L � 100; however, we do not know the range of x, except that
x � 0. Therefore, we must make a few guesses for the range of x, using a session
like the following. We find that L > 100 if x > 0.6, so we choose x =
[0:0.001:0.6]. We use the ginput function to find the value of x corre-
sponding to L � 70.

>>x = [0:0.001:0.6];
>>L = 100*(x/0.6).^(0.625).*((1-x)/0.4).^(-1.625);
>>plot(L,x),grid,xlabel(‘L(mol)’),ylabel(‘x (mol B/mol)’),
...
[L,x] = ginput(1)

The plot is shown in Figure 2.3–2. The answer is x � 0. 52 if L � 70. The plot
shows that the remaining liquid becomes leaner in benzene as the liquid amount
becomes smaller. Just before the still is empty (L � 0), the liquid is pure toluene.

2.4 Matrix Operations 57

2.4 Matrix Operations
Matrix addition and subtraction are identical to element-by-element addition and
subtraction. The corresponding matrix elements are summed or subtracted.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L (mol)

x
(m

ol
 B

/m
ol

)

Figure 2.3–2 Plot for Example 2.3–4.

MATRIX
OPERATIONS

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 57

However, matrix multiplication and division are not the same as element-by-
element multiplication and division.

Multiplication of Vectors

Recall that vectors are simply matrices with one row or one column. Thus matrix
multiplication and division procedures apply to vectors as well, and we will in-
troduce matrix multiplication by considering the vector case first.

The vector dot product u � w of the vectors u and w is a scalar and can be thought
of as the perpendicular projection of u onto w. It can be computed from |u||w| cos �,
where � is the angle between the two vectors and |u|, |w| are the magnitudes of the
vectors. Thus if the vectors are parallel and in the same direction, � � 0 and u � w
� |u||w|. If the vectors are perpendicular, � � 90º and thus u � w � 0. Because the
unit vectors i, j, and k have unit length:

(2.4–1)

Because the unit vectors are perpendicular:

(2.4–2)

Thus the vector dot product can be expressed in terms of unit vectors as

Carrying out the multiplication algebraically and using the properties given by
(2.4–1) and (2.4–2), we obtain

The matrix product of a row vector u with a column vector w is defined in
the same way as the vector dot product; the result is a scalar that is the sum of the
products of the corresponding vector elements; that is,

if each vector has three elements. Thus the result of multiplying a 1 � 3 vec-
tor times a 3 � 1 vector is a 1 � 1 array; that is, a scalar. This definition
applies to vectors having any number of elements, as long as both vectors have
the same number of elements.

Thus the result of multiplying a 1 � n vector times an n � 1 vector is a 1 � 1
array, that is, a scalar.

3u1 u2 u34 J
w1

w2

w3
K = u1w1 + u2w2 + u3w3

u # w = u1w1 + u2w2 + u3w3

u # w = (u1i + u2 j + u3k) # (w1i + w2 j + w3k)

i # j � i # k � j # k � 0

i # i � j # j � k # k � 1

58 CHAPTER 2 Numeric, Cell, and Structure Arrays

Miles Traveled

Table 2.4–1 gives the speed of an aircraft on each leg of a certain trip and the time spent
on each leg. Compute the miles traveled on each leg and the total miles traveled.

EXAMPLE 2.4–1

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 58

■ Solution
We can define a row vector s containing the speeds and a row vector t containing the
times for each leg. Thus s = [200, 250, 400, 300] and t = [2, 5, 3, 4].
To find the miles traveled on each leg, we multiply the speed by the time. To do so, we
use the MATLAB symbol .*, which specifies the multiplication s.*t to produce the
row vector whose elements are the products of the corresponding elements in s and t:

s.*t

This vector contains the miles traveled by the aircraft on each leg of the trip.
To find the total miles traveled, we use the matrix product, denoted by s*t’. In this

definition the product is the sum of the individual element products; that is,

s*t’

These two examples illustrate the difference between array multiplication s.*t and
matrix multiplication s*t’.

Vector-Matrix Multiplication

Not all matrix products are scalars. To generalize the preceding multiplication to
a column vector multiplied by a matrix, think of the matrix as being composed of
row vectors. The scalar result of each row-column multiplication forms an ele-
ment in the result, which is a column vector. For example:

(2.4–3)

Thus the result of multiplying a 2 � 2 matrix times a 2 � 1 vector is a 2 � 1 ar-
ray; that is, a column vector. Note that the definition of multiplication requires
that the number of columns in the matrix be equal to the number of rows in the
vector. In general, the product Ax, where A has p columns, is defined only if x
has p rows. If A has m rows and x is a column vector, the result of Ax is a
column vector with m rows.

Matrix-Matrix Multiplication

We can expand this definition of multiplication to include the product of two
matrices AB. The number of columns in A must equal the number of rows in B. The
row-column multiplications form column vectors, and these column vectors form the

c2 7

6 -5
d c3

9
d = c2(3) + 7(9)

6(3) - 5(9)
d = c 69

-27
d

= [200(2) + 250(5) + 400(3) + 300(4)] = 4050

= [200(2), 250(5), 400(3), 300(4)] = [400, 1250, 1200, 1200]

2.4 Matrix Operations 59

Table 2.4–1 Aircraft speeds and times per leg

Leg

1 2 3 4

Speed (mi/hr) 200 250 400 300
Time (hr) 2 5 3 4

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 59

matrix result. The product AB has the same number of rows as A and the same num-
ber of columns as B. For example,

(2.4–4)

Use the operator * to perform matrix multiplication in MATLAB. The fol-
lowing MATLAB session shows how to perform the matrix multiplication shown
in (2.4–4).

>>A = [6,-2;10,3;4,7];
>>B = [9,8;-5,12];
>>A*B

Element-by-element multiplication is defined for the following product:

However, this product is not defined for matrix multiplication, because the first
matrix has three columns, but the second matrix does not have three rows. Thus
if we were to type [3, 1, 7]*[4, 6, 5] in MATLAB, we would receive
an error message.

The following product is defined in matrix multiplication and gives the re-
sult shown:

The following product is also defined:

Evaluating Multivariable Functions

To evaluate a function of two variables, say, z � f (x, y), for the values x � x1, x2,
. . . , xm and y � y1, y2, . . . , yn, define the m � n matrices:

y = ≥
y1 y2

Á yn

y1 y2
Á yn

o o o o

y1 y2
Á yn

¥x = ≥
x1 x1

Á x1

x2 x2
Á x2

o o o o

xm xm
Á xm

¥

[10 6] c7 4

5 2
d = [10(7) + 6(5) 10(4) + 6(2)] = [100 52]

J
x1

x2

x3
K 3y1 y2 y34 = J

x1y1 x1y2 x1y3

x2y1 x2y2 x2y3

x3y1 x3y2 x3y3
K

33 1 7434 6 54 = 312 6 354

 = J
64 24

75 116

1 116 K
 J

6 -2

10 3

4 7
K c 9 8

-5 12
d = J

(6)(9) + (-2)(-5) (6)(8) + (-2)(12)

(10)(9) + (3)(-5) (10)(8) + (3)(12)

(4)(9) + (7)(-5) (4)(8) + (7)(12) K

60 CHAPTER 2 Numeric, Cell, and Structure Arrays

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 60

Height versus Velocity

The maximum height h achieved by an object thrown with a speed at an angle � to the
horizontal, neglecting drag, is

Create a table showing the maximum height for the following values of and �:

The rows in the table should correspond to the speed values, and the columns should cor-
respond to the angles.

■ Solution
The program is shown below.

g = 9.8; v = [10:2:20];

theta = [50:10:80];

h = (v’.ˆ2)*(sind(theta).ˆ2)/(2*g);
table = [0, theta; v’, h]

The arrays v and theta contain the given velocities and angles. The array v is 1 �
6 and the array theta is 1 � 4. Thus the term v’.ˆ2 is a 6 � 1 array, and the term
sind(theta). ˆ2 is a 1 � 4 array. The product of these two arrays, h, is a matrix prod-
uct and is a (6 � 1)(1 � 4) � (6 � 4) matrix.

The array [0, theta] is 1 � 5 and the array [v’, h] is 6 � 5, so the matrix
table is 7 � 5. The following table shows the matrix table rounded to one decimal place.
From this table we can see that the maximum height is 8.8 m if 	 � 14 m/s and � � 70º.

u = 50°, 60°, 70°, 80°y = 10, 12, 14, 16, 18, 20 m/s

y

h =

y2 sin2u

2g

y

2.4 Matrix Operations 61

When the function z � f (x, y) is evaluated in MATLAB using array operations, the
resulting m � n matrix z has the elements zij � f (xi , yj). We can extend this tech-
nique to functions of more than two variables by using multidimensional arrays.

EXAMPLE 2.4–2

0 50 60 70 80

10 3.0 3.8 4.5 4.9
12 4.3 5.5 6.5 7.1
14 5.9 7.5 8.8 9.7
16 7.7 9.8 11.5 12.7
18 9.7 12.4 14.6 16.0
20 12.0 15.3 18.0 19.8

Test Your Understanding

T2.4–1 Use MATLAB to compute the dot product of the following vectors:

Check your answer by hand. (Answer: �6.)

w = 5i + 3j - 4k
u = 6i - 8j + 3k

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 61

T2.4–2 Use MATLAB to show that

J
7 4

-3 2

5 9
K c1 8

7 6
d = J

35 80

11 -12

68 94
K

62 CHAPTER 2 Numeric, Cell, and Structure Arrays

Table 2.4–2 Cost and time data for manufacturing processes

Hours required to produce one unit

Process Hourly cost ($) Product 1 Product 2 Product 3

Lathe 10 6 5 4
Grinding 12 2 3 1
Milling 14 3 2 5
Welding 9 4 0 3

Manufacturing Cost Analysis

Table 2.4–2 shows the hourly cost of four types of manufacturing processes. It also shows
the number of hours required of each process to produce three different products. Use ma-
trices and MATLAB to solve the following. (a) Determine the cost of each process to pro-
duce one unit of product 1. (b) Determine the cost to make one unit of each product. (c)
Suppose we produce 10 units of product 1, 5 units of product 2, and 7 units of product 3.
Compute the total cost.

■ Solution
(a) The basic principle we can use here is that cost equals the hourly cost times the num-
ber of hours required. For example, the cost of using the lathe for product 1 is ($10/h)(6
h) � $60, and so forth for the other three processes. If we define the row vector of hourly
costs to be hourly_costs and define the row vector of hours required for product 1 to
be hours_1, then we can compute the costs of each process for product 1 using element-
by-element multiplication. In MATLAB the session is

>>hourly_cost = [10, 12, 14, 9];

>>hours_1 = [6, 2, 3, 4];

>>process_cost_1 = hourly_cost.*hours_1

process_cost_1 =

60 24 42 36

These are the costs of each of the four processes to produce one unit of product 1.
(b) To compute the total cost of one unit of product 1, we can use the vectors

hourly_costs and hours_1 but apply matrix multiplication instead of element-by-
element multiplication, because matrix multiplication sums the individual products. The
matrix multiplication gives

EXAMPLE 2.4–3

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 62

We can perform similar multiplication for products 2 and 3, using the data in the table.
For product 2:

For product 3:

These three operations could have been accomplished in one operation by defining a
matrix whose columns are formed by the data in the last three columns of the table:

In MATLAB the session continues as follows. Remember that we must use the transpose
operation to convert the row vectors into column vectors.

>>hours_2 = [5, 3, 2, 0];

>>hours_3 = [4, 1, 5, 3];

>>unit_cost = hourly_cost*[hours_1’, hours_2’, hours_3’]

unit_cost =

162 114 149

Thus the costs to produce one unit each of products 1, 2, and 3 is $162, $114, and $149,
respectively.

(c) To find the total cost to produce 10, 5, and 7 units, respectively, we can use ma-
trix multiplication:

[10 5 7] J
162

114

149
K = 1620 + 570 + 1043 = 3233

[10 12 14 9] ≥
6 5 4

2 3 1

3 2 5

4 0 3

¥ = J
60 + 24 + 42 + 36

50 + 36 + 28 + 0

40 + 12 + 70 + 27 K = [162 114 149]

[10 12 14 9] ≥
4

1

5

3

¥ = 10(4) + 12(1) + 14(5) + 9(3) = 149

[10 12 14 9] ≥
5

3

2

0

¥ = 10(5) + 12(2) + 14(3) + 9(0) = 114

[10 12 14 9] ≥
6

2

3

4

¥ = 10(6) + 12(2) + 14(3) + 9(4) = 162

2.4 Matrix Operations 63

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 63

In MATLAB the session continues as follows. Note the use of the transpose operator on
the vector unit_cost.

>>units = [10, 5, 7];

>>total_cost = units*unit_cost’

total_cost =

3233

The total cost is $3233.

The General Matrix Multiplication Case

We can state the general result for matrix multiplication as follows: Suppose A
has dimension m � p and B has dimension p � q. If C is the product AB, then C
has dimension m � q and its elements are given by

(2.4–5)

for all i � 1, 2, . . . , m and j � 1, 2, . . . , q. For the product to be defined, the ma-
trices A and B must be conformable; that is, the number of rows in B must equal
the number of columns in A. The product has the same number of rows as A and
the same number of columns as B.

Matrix multiplication does not have the commutative property; that is, in
general, AB BA. Reversing the order of matrix multiplication is a common and
easily made mistake.

The associative and distributive properties hold for matrix multiplication.
The associative property states that

(2.4–6)

The distributive property states that

(2.4–7)

Applications to Cost Analysis

Project cost data stored in tables must often be analyzed in several ways. The ele-
ments in MATLAB matrices are similar to the cells in a spreadsheet, and MATLAB
can perform many spreadsheet-type calculations for analyzing such tables.

(AB)C � A(BC)

A(B + C) � AB + AC

Z

cij = a
p

k=1
aik bkj

64 CHAPTER 2 Numeric, Cell, and Structure Arrays

Product Cost Analysis
Table 2.4–3 shows the costs associated with a certain product, and Table 2.4–4 shows the
production volume for the four quarters of the business year. Use MATLAB to find the
quarterly costs for materials, labor, and transportation; the total material, labor, and trans-
portation costs for the year; and the total quarterly costs.

EXAMPLE 2.4–4

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 64

■ Solution
The costs are the product of the unit cost times the production volume. Thus we define
two matrices: U contains the unit costs in Table 2.4–3 in thousands of dollars, and P con-
tains the quarterly production data in Table 2.4–4.

>>U = [6, 2, 1;2, 5, 4;4, 3, 2;9, 7, 3];

>>P = [10, 12, 13, 15;8, 7, 6, 4;12, 10, 13, 9;6, 4, 11, 5];

Note that if we multiply the first column in U times the first column in P, we obtain
the total materials cost for the first quarter. Similarly, multiplying the first column in U
times the second column in P gives the total materials cost for the second quarter. Also,
multiplying the second column in U times the first column in P gives the total labor cost
for the first quarter, and so on. Extending this pattern, we can see that we must multiply
the transpose of U times P. This multiplication gives the cost matrix C.

>>C = U’*P

The result is

Each column in C represents one quarter. The total first-quarter cost is the sum of the ele-
ments in the first column, the second-quarter cost is the sum of the second column, and so
on. Thus because the sum command sums the columns of a matrix, the quarterly costs are
obtained by typing:

>>Quarterly_Costs = sum(C)

The resulting vector, containing the quarterly costs in thousands of dollars, is [400 351 509
355]. Thus the total costs in each quarter are $400,000; $351,000; $509,000; and $355,000.

C = J
178 162 241 179

138 117 172 112

84 72 96 64
K

2.4 Matrix Operations 65

Table 2.4–3 Product costs

Unit costs ($ � 103)

Product Materials Labor Transportation

1 6 2 1
2 2 5 4
3 4 3 2
4 9 7 3

Table 2.4–4 Quarterly production volume

Product Quarter 1 Quarter 2 Quarter 3 Quarter 4

1 10 12 13 15
2 8 7 6 4
3 12 10 13 9
4 6 4 11 5

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 65

The elements in the first row of C are the material costs for each quarter; the elements
in the second row are the labor costs, and those in the third row are the transportation
costs. Thus to find the total material costs, we must sum across the first row of C. Simi-
larly, the total labor and total transportation costs are the sums across the second and third
rows of C. Because the sum command sums columns, we must use the transpose of C.
Thus we type the following:

>>Category_Costs � sum(C’)

The resulting vector, containing the category costs in thousands of dollars, is [760 539
316]. Thus the total material costs for the year are $760,000; the labor costs are $539,000;
and the transportation costs are $316,000.

We displayed the matrix C only to interpret its structure. If we need not display C,
the entire analysis would consist of only four command lines.

>>U = [6, 2, 1;2, 5, 4;4, 3, 2;9, 7, 3];

>>P = [10, 12, 13, 15;8, 7, 6, 4;12, 10, 13, 9;6, 4, 11, 5];

>>Quarterly_Costs = sum(U’*P)

Quarterly_Costs =

400 351 509 355

>>Category_Costs = sum((U’*P)’)

Category_Costs =

760 539 316

This example illustrates the compactness of MATLAB commands.

66 CHAPTER 2 Numeric, Cell, and Structure Arrays

Special Matrices

Two exceptions to the noncommutative property are the null matrix, denoted by
0, and the identity, or unity, matrix, denoted by I. The null matrix contains all ze-
ros and is not the same as the empty matrix [], which has no elements. The iden-
tity matrix is a square matrix whose diagonal elements are all equal to one, with
the remaining elements equal to zero. For example, the 2 � 2 identity matrix is

These matrices have the following properties:

MATLAB has specific commands to create several special matrices. Type
help specmat to see the list of special matrix commands; also check Table 2.4–5.
The identity matrix I can be created with the eye(n) command, where n is the de-
sired dimension of the matrix. To create the 2 � 2 identity matrix, you type
eye(2). Typing eye(size(A)) creates an identity matrix having the same
dimension as the matrix A.

IA � AI � A

0A � A0 � 0

I = c1 0

0 1
d

NULL MATRIX

IDENTITY MATRIX

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 66

Sometimes we want to initialize a matrix to have all zero elements. The
zeros command creates a matrix of all zeros. Typing zeros(n) creates an
n � n matrix of zeros, whereas typing zeros(m,n) creates an m � n matrix of
zeros, as will typing A(m,n) = 0. Typing zeros(size(A)) creates a
matrix of all zeros having the same dimension as the matrix A. This type of
matrix can be useful for applications in which we do not know the required
dimension ahead of time. The syntax of the ones command is the same, except
that it creates arrays filled with ones.

For example, to create and plot the function

the script file is

x1 = [0:0.01:2];
f1 = 10*ones(size(x1));
x2 = [2.01:0.01:4.99];
f2 = zeros(size(x2));
x3 = [5:0.01:7];
f3 = -3*ones(size(x3));
f = [f1, f2, f3];
x = [x1, x2, x3];
plot(x,f),xlabel(‘x’),ylabel(‘y’)

(Consider what the plot would look like if the command plot(x,f) were re-
placed with the command plot(x1,f1,x2,f2,x3,f3).)

Matrix Division and Linear Algebraic Equations

Matrix division uses both the right and left division operators, / and \, for various
applications, a principal one being the solution of sets of linear algebraic equa-
tions. Section 2.6 covers a related topic, the matrix inverse.

f (x) = L
10 0 … x … 2

0 2 6 x 6 5

-3 5 … x … 7

2.4 Matrix Operations 67

Table 2.4–5 Special matrices

Command Description

eye(n) Creates an n � n identity matrix.
eye(size(A)) Creates an identity matrix the same size as the matrix A.
ones(n) Creates an n � n matrix of ones.
ones(m,n) Creates an m � n array of ones.
ones(size(A)) Creates an array of ones the same size as the array A.
zeros(n) Creates an n � n matrix of zeros.
zeros(m,n) Creates an m � n array of zeros.
zeros(size(A)) Creates an array of zeros the same size as the array A.

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 67

You can use the left division operator (\) in MATLAB to solve sets of linear
algebraic equations. For example, consider the set

To solve such sets in MATLAB you must create two arrays; we will call them
A and B. The array A has as many rows as there are equations, and as many
columns as there are variables. The rows of A must contain the coefficients of
x, y, and z in that order. In this example, the first row of A must be 6, 12, 4; the
second row must be 7, �2, 3, and the third row must be 2, 8, �9. The array B
contains the constants on the right-hand side of the equation; it has one column
and as many rows as there are equations. In this example, the first row of B is
70, the second is 5, and the third is 64. The solution is obtained by typing A\B.
The session is

>>A = [6,12,4;7,-2,3;2,8,-9];
>>B = [70;5;64];
>>Solution = A\B
Solution =

3
5
-2

The solution is x = 3, y = 5, and z = �2.
This method works fine when the equation set has a unique solution. To learn

how to deal with problems having a nonunique solution (or perhaps no solution
at all!), see Section 2.5.

Test Your Understanding

T2.4–3 Use MATLAB to solve the following set of equations.

(Answer: x � 2, y � �5, z � 10.)

Matrix Exponentiation

Raising a matrix to a power is equivalent to repeatedly multiplying the matrix by
itself, for example, A2 � AA. This process requires the matrix to have the same
number of rows as columns; that is, it must be a square matrix. MATLAB uses
the symbol ^ for matrix exponentiation. To find A2, type A^2.

14x + 9y - 5z = -67

-5x - 3y + 7z = 75

6x - 4y + 8z = 112

2x + 8y - 9z = 64

7x - 2y + 3z = 05

6x + 12y + 4z = 70

68 CHAPTER 2 Numeric, Cell, and Structure Arrays

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 68

2.5 Matrix Methods for Linear Equations 69

We can raise a scalar n to a matrix power A, if A is square, by typing n^A,
but the applications for such a procedure are in advanced courses. However,
raising a matrix to a matrix power—that is, AB—is not defined, even if A and B
are square.

Special Products

Many applications in physics and engineering use the cross product and dot
product—for example, calculations to compute moments and force compo-
nents use these special products. If A and B are vectors with three elements,
the cross product command cross(A,B) computes the three-element vector
that is the cross product A � B. If A and B are 3 � n matrices, cross(A,B)
returns a 3 � n array whose columns are the cross products of the correspon-
ding columns in the 3 � n arrays A and B. For example, the moment M with
respect to a reference point O due to the force F is given by M � r � F, where
r is the position vector from the point O to the point where the force F is ap-
plied. To find the moment in MATLAB, you type M = cross(r,F).

The dot product command dot(A,B) computes a row vector of length n
whose elements are the dot products of the corresponding columns of the m � n
arrays A and B. To compute the component of the force F along the direction
given by the vector r, you type dot(F,r).

2.5 Matrix Methods for Linear Equations
Sets of linear algebraic equations can be expressed as a single equation, using ma-
trix notation. This standard and compact form is useful for expressing solutions
and for developing software applications with an arbitrary number of variables. In
this application, a vector is taken to be a column vector unless otherwise specified.

Matrix notation enables us to represent multiple equations as a single matrix
equation. For example, consider the following set.

This set can be expressed in vector-matrix form as

which can be represented in the following compact form

(2.5–1)

where we have defined the following matrices and vectors:

A = c2 9

3 -4
d x = cx1

x2
d b = c5

7
d

Ax � b

c2 9

3 -4
d cx1

x2
d = c5

7
d

3x1 - 4x2 = 7

2x1 + 9x2 = 5

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 69

In general, the set of m equations in n unknowns can be expressed in the form
of (2.5–1), where A has m rows and n columns and b and x have one column and
m rows.

Matrix Inverse

The solution of the scalar equation ax � b is x � b/a if a
 0. The division op-
eration of scalar algebra has an analogous operation in matrix algebra. For exam-
ple, to solve the matrix equation (2.5–1) for x, we must somehow “divide” b by
A. The procedure for doing this is developed from the concept of a matrix inverse.
The inverse of a matrix A is denoted by A�1 and has the property that

where I is the identity matrix. Using this property, we multiply both sides of (2.5–1)
from the left by A�1 to obtain A�1Ax � A�1b. Because A�1Ax � Ix � x, we obtain
the solution

(2.5–2)

The inverse of a matrix A is defined only if A is square and nonsingular. A
matrix is singular if its determinant |A| is zero. If A is singular, then a unique so-
lution to (2.5–1) does not exist. The MATLAB functions inv(A) and det(A)
compute the inverse and the determinant of the matrix A. If the inv(A) func-
tion is applied to a singular matrix, MATLAB will issue a warning to that effect.

An ill-conditioned set of equations is a set that is close to being singular. The
ill-conditioned status depends on the accuracy with which the solution calcula-
tions are made. When internal numerical accuracy used by MATLAB is insuffi-
cient to obtain a solution, it prints the message warning that the matrix is close to
singular, and that the results might be inaccurate.

For a 2 � 2 matrix A,

where det(A) � ad � bc. Thus A is singular if ad � bc � 0.

A = ca b

c d
d A-1

=

1

ad - bc
 c d -b

-c a
d

x = A-1b

A-1A = AA-1
= I

70 CHAPTER 2 Numeric, Cell, and Structure Arrays

The Matrix Inverse Method

Solve the following equations, using the matrix inverse.

■ Solution
The matrix A and the vector b are

A = c2 9

3 -4
d b = c5

7
d

3x1 - 4x2 = 7

2x1 + 9x2 = 5

EXAMPLE 2.5–1

MATRIX INVERSE

SINGULAR
MATRIX

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 70

The session is

>>A = [2,9;3,-4]; b = [5;7]

>>x = inv(A)*b

x =

2.3714

0.0286

The solution is x1 � 2.3714 and x2 � 0.0286. MATLAB did not issue a warning, so the
solution is unique.

The solution form x � A�1b is rarely applied in practice to obtain numerical
solutions to sets of many equations, because calculation of the matrix inverse is
likely to introduce greater numerical inaccuracy than the left division method to be
introduced.

Test Your Understanding

T2.5–1 For what values of c will the following set (a) have a unique solution and
(b) have an infinite number of solutions? Find the relation between x1
and x2 for these solutions.

(Answers: (a) c 12, x1 � x2 � 0; (b) c � 12, x1 � �2x2)

T2.5–2 Use the matrix inverse method to solve the following set.

(Answer: x1 � 7, x2 � 4)

T2.5–3 Use the matrix inverse method to solve the following set.

(Answer: No solution.)

Existence and Uniqueness of Solutions

The matrix inverse method will warn us if a unique solution does not exist, but
it does not tell us whether there is no solution or an infinite number of solutions.
In addition, the method is limited to cases where the matrix A is square, that is,
cases where the number of equations equals the number of unknowns. For this
reason we now introduce a method that allows us to determine easily whether
an equation set has a solution and whether it is unique. The method requires the
concept of the rank of a matrix.

6x1 - 8x2 = 2

3x1 - 4x2 = 5

6x1 - 10x2 = 2

3x1 - 4x2 = 5

Z

2x1 + 4x2 = 0

6x1 + cx2 = 0

2.5 Matrix Methods for Linear Equations 71

MATRIX RANK

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 71

Consider the 3 � 3 determinant

(2.5–3)

If we eliminate one row and one column in the determinant, we are left with a
2 � 2 determinant. Depending on which row and column we choose to elimi-
nate, there are nine possible 2 � 2 determinants we can obtain. These are called
subdeterminants. For example, if we eliminate the second row and third col-
umn, we obtain

Subdeterminants are used to define the rank of a matrix. The definition of
matrix rank is as follows.

Definition of Matrix Rank. An m � n matrix A has a rank r � 1 if and only if
|A| contains a nonzero r � r determinant and every square subdeterminant with
r � 1 or more rows is zero.

For example, the rank of A in (2.5–3) is 2 because |A| � 0 while |A| contains
at least one nonzero 2 � 2 subdeterminant. To determine the rank of a matrix A
in MATLAB, type rank(A). If A is (n � n), its rank is n if det(A)
 0.

We can use the following test to determine if a solution exists to Ax � b
and whether it is unique. The test requires that we first form the augmented
matrix [A b].

Existence and Uniqueness of Solutions. The set Ax � b with m equations and
n unknowns has solutions if and only if rank(A) � rank([A b]) (1). Let r �
rank(A). If condition (1) is satisfied and if r � n, then the solution is unique. If
condition (1) is satisfied but r < n, there are an infinite number of solutions, and
r unknown variables can be expressed as linear combinations of the other n � r
unknown variables, whose values are arbitrary.

Homogeneous case. The homogeneous set Ax � 0 is a special case in which
b � 0. For this case, rank(A) � rank([A b]) always, and thus the set always
has the trivial solution x � 0. A nonzero solution, in which at least one
unknown is nonzero, exists if and only if rank(A) < n. If m < n, the homoge-
neous set always has a nonzero solution.

This test implies that if A is square and of dimension n � n, then rank
([A b]) � rank(A), and a unique solution exists for any b if rank(A) � n.

The Left Division Method

MATLAB provides the left division method for solving the equation set Ax � b.
This method is based on Gauss elimination. To use the left division method to

` 3 -4

9 -7
` = 3(-7) - 9(-4) = 15

ƒA ƒ = †
3 -4 1

6 10 2

9 -7 3
† = 0

72 CHAPTER 2 Numeric, Cell, and Structure Arrays

SUBDETER-
MINANT

AUGMENTED
MATRIX

LEFT DIVISION
METHOD

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 72

solve for x, you type x = A\b. If |A| � 0 or if the number of equations does not
equal the number of unknowns, then you need to use the other methods to be
presented later.

2.5 Matrix Methods for Linear Equations 73

EXAMPLE 2.5–2 Left Division Method with Three Unknowns

Use the left division method to solve the following set.

■ Solution
The matrices A and b are

The session is

>>A = [3,2,-9;-9,-5,2;6,7,3];

>>rank(A)

ans =

3

Because A is 3 � 3 and rank(A) �3, which is the number of unknowns, a unique solution
exists. It is obtained by continuing the session as follows.

>>b = [-65;16;5];

>>x = A\b

x =

2.0000

-4.0000

7.0000

This answer gives the vector x, which corresponds to the solution x1 � 2, x2 � �4, x3 � 7.

A = J
3 2 -9

-9 -5 2

6 7 3
K b = J

-65

16

5
K

 6x1 + 7x2 + 3x3 = 5

 -9x1 - 5x2 + 2x3 = 16

 3x1 + 2x2 - 9x3 = -65

For the solution x � A�1b, x is proportional to the vector b. We can use this
linearity property to obtain a more generally useful algebraic solution in cases
where the right-hand sides are all multiplied by the same scalar. For example,
suppose the matrix equation is Ay � bc, where c is a scalar. The solution is y �
A�1bc � xc. Thus if we obtain the solution to Ax � b, the solution to Ay � bc
is given by y � xc.

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 73

Calculation of Cable Tension

A mass m is suspended by three cables attached at three points B, C, and D, as shown in
Figure 2.5–1. Let T1, T2, and T3 be the tensions in the three cables AB, AC, and AD, re-
spectively. If the mass m is stationary, the sum of the tension components in the x, in the
y, and in the z directions must each be zero. This gives the following three equations:

Determine T1, T2, and T3 in terms of an unspecified value of the weight mg.

■ Solution
If we set mg � 1, the equations have the form AT � b where

A = ≥
1
35

-
3

34
1
42

3
35

0 -
4
42

5
35

5

34
5
42

¥ T = J
T1

T2

T3
K b = J

0

0

1
K

5T1

235
+

5T2

234
+

5T3

242
- mg = 0

3T1

235
-

4T3

242
= 0

T1

235
-

3T2

234
+

T3

242
= 0

74 CHAPTER 2 Numeric, Cell, and Structure Arrays

3 m
3 m

4 m

5 m

1 m

B

D

z

C

y x

A

m

1 m

Figure 2.5–1 A mass suspended by three cables.

EXAMPLE 2.5–3

2

2

2

2

2

2

2

2

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 74

The script file to solve this system is

% File cable.m

s34 = sqrt(34); s35 = sqrt(35); s42 = sqrt(42);

A1 = [1/s35, -3/s34, 1/s42];

A2 = [3/s35, 0, -4/s42];

A3 = [5/s35, 5/s34, 5/s42];

A = [A1; A2; A3];

b = [0; 0; 1];

rank(A)

rank([A, b])

T = A\b

When this file is executed by typing cable, we find that rank(A) � rank ([A b]) � 3 and
obtain the values T1 � 0.5071, T2 � 0.2915, and T3 � 0.4166. Because A is 3 � 3 and
rank(A) � 3, which is the number of unknowns, the solution is unique. Using the linearity
property, we multiply these results by mg and obtain the general solution T1 � 0.5071mg,
T2 � 0.2915mg, and T3 � 0.4166mg.

Underdetermined Systems

An underdetermined system does not contain enough information to determine
all the unknown variables, usually but not always because it has fewer equations
than unknowns. Thus an infinite number of solutions can exist, with one or more
of the unknowns dependent on the remaining unknowns. The left division
method works for square and nonsquare A matrices. However, if A is not square,
the left division method can give answers that might be misinterpreted. We will
show how to interpret MATLAB results correctly.

When there are more equations than unknowns, the left division method will
give a solution with some of the unknowns set equal to zero, but this is not the gen-
eral solution. An infinite number of solutions might exist even when the number of
equations equals the number of unknowns. This can occur when |A| � 0. For such
systems the left division method generates an error message warning us that the ma-
trix A is singular. In such cases the pseudoinverse method x = pinv(A)*b gives
one solution, the minimum norm solution. In cases where there are an infinite num-
ber of solutions, the rref function can be used to express some of the unknowns
in terms of the remaining unknowns, whose values are arbitrary.

An equation set can be underdetermined even though it has as many equa-
tions as unknowns. This can happen if some of the equations are not independ-
ent. Determining by hand whether all the equations are independent might not be
easy, especially if the set has many equations, but it is easily done in MATLAB.

2.5 Matrix Methods for Linear Equations 75

An Underdetermined Set with Three Equations and Three Unknowns

Show that the following set does not have a unique solution. How many of the unknowns
will be undetermined? Interpret the results given by the left division method.

EXAMPLE 2.5–4

PSEUDOINVERSE
METHOD

UNDERDETER-
MINED SYSTEM

MINIMUM NORM
SOLUTION

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 75

■ Solution
A MATLAB session to check the ranks is

>>A = [2,-4,5;-4,-2,3;2,6,-8];

>>b = [-4;4;0];

>>rank(A)

ans =

2

>>rank([A, b])

ans =

2

>>x = A\b

Warning: Matrix is singular to working precision.

ans =

NaN

NaN

NaN

Because the ranks of A and [A b] are equal, a solution exists. However, because the num-
ber of unknowns is three, and is one greater than the rank of A, one of the unknowns will
be undetermined. An infinite number of solutions exist, and we can solve for only two of
the unknowns in terms of the third unknown. The set is underdetermined because there
are fewer than three independent equations; the third equation can be obtained from the
first two. To see this, add the first and second equations, to obtain �2x1 � 6x2 � 8x3 � 0,
which is equivalent to the third equation.

Note that we could also tell that the matrix A is singular because its rank is less than 3.
If we use the left division method, MATLAB returns a message warning that the problem
is singular, and it does not produce an answer.

 2x1 + 6x2 - 8x3 = 0

 -4x1 - 2x2 + 3x3 = 4

 2x1 - 4x2 + 5x3 = -4

76 CHAPTER 2 Numeric, Cell, and Structure Arrays

The pinv Function and the Euclidean Norm

The pinv function (which stands for “pseudoinverse”) can be used to obtain a
solution of an underdetermined set. To solve the equation set Ax � b using the
pinv function, you type x = pinv(A)*b. The pinv function gives a solution
that gives the minimum value of the Euclidean norm, which is the magnitude of
the solution vector x. The magnitude of a vector v in three-dimensional space,

having components x, y, z, is . It can be computed using matrix
multiplication and the transpose as follows.

2x2
+ y2

+ z2

EUCLIDEAN
NORM

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 76

The generalization of this formula to an n-dimensional vector v gives the magni-
tude of the vector and is the Euclidean norm N. Thus

(2.5–4)

The MATLAB function norm(v) computes the Euclidean norm.

N = 2vTv

2.5 Matrix Methods for Linear Equations 77

2vTv = [x y z]T J
x

y

z K = 2x2
+ y2

+ z2

An Underdetermined Set with Two Equations and Three Unknowns

Obtain the solution to the following set, using the left division method and the pseudoin-
verse method.

(2.5–5)

(2.5–6)

■ Solution
These equations can be written in the matrix form Ax � b as follows.

The MATLAB session is

>>A = [1,1,1;10,5,0];

>>b = [400;1600];

>>rank(A)

ans =

2

>>rank([A, b])

ans =

2

>>x = A\b

x =

160.0000

0

240.0000

>>x = pinv(A)*b

x =

c 1 1 1

10 5 0
d J

x1

x2

x3
K = c 400

1600
d

 10x1 + 5x2 = 1600

 x1 + x2 + x3 = 400

EXAMPLE 2.5–5

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 77

93.3333

133.3333

173.3333

The left division answer corresponds to x1 � 160, x2 � 0, and x3 � 240. This illustrates
how the MATLAB left division operator produces a solution with one or more variables
set to zero, for underdetermined sets having more unknowns than equations.

Because the ranks of A and [A b] are both 2, a solution exists but it is not unique. Be-
cause the number of unknowns is three, and is one greater than the rank of A, an infinite num-
ber of solutions exist, and we can solve for only two of the unknowns in terms of the third.

The pseudoinverse solution gives x1 � 93.3333, x2 � 133.3333, and x3 � 173.3333.
This is the minimum norm solution for real values of the variables. The minimum norm
solution consists of the real values of x1, x2, and x3 that minimize

To understand what MATLAB is doing, note that we can solve (2.5–5) and (2.5–6) to ob-
tain x1 and x2 in terms of x3 as x1 � x3 � 80 and x2 � 480 � 2x3. Then the Euclidean norm
can be expressed as

The real value of x3 that minimizes N can be found by plotting N versus x3, or by using
calculus. The answer is x3 � 173.3333, the same as the minimum norm solution given by
the pseudoinverse method.

N = 2(x3 - 80)2
+ (480 - 2x3)

2
+ x2

3 = 26x2
3 - 2080x3 + 236,800

N = 2x2
1 + x2

2 + x2
3

78 CHAPTER 2 Numeric, Cell, and Structure Arrays

Where there are an infinite number of solutions, we must decide whether the
solutions given by the left division and the pseudoinverse methods are useful for
applications. This must be done in the context of the specific application.

Test Your Understanding

T2.5–4 Find two solutions to the following set.

(Answer: Minimum norm solution: x1 � 4.33, x2 � �1.67, x3 � 1.34.
Left division solution: x1 � 5, x2 � �1, x3 � 0.)

The Reduced Row Echelon Form

We can express some of the unknowns in an underdetermined set as functions of the
remaining unknowns. In Example 2.5–5, we wrote the solutions for two of the un-
knowns in terms of the third: x1 � x3 � 80 and x2 � 480 � 2x3. These two equations
are equivalent to

x1 - x3 = -80 x2 + 2x3 = 480

 x1 + x2 + x3 = 4

 x1 + 3x2 + 2x3 = 2

REDUCED ROW
ECHELON FORM

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 78

In matrix form these are

The augmented matrix [A b] for the above set is

Note that the first two columns form a 2 � 2 identity matrix. This indicates that
the corresponding equations can be solved directly for x1 and x2 in terms of x3.

We can always reduce an underdetermined set to such a form by multiplying
the set’s equations by suitable factors and adding the resulting equations to elimi-
nate an unknown variable. The MATLAB rref function provides a procedure for
reducing an equation set to this form, which is called the reduced row echelon
form. Its syntax is rref([A b]). Its output is the augmented matrix [C d] that
corresponds to the equation set Cx � d. This set is in reduced row echelon form.

c1 0 -1 -80

0 1 2 480
d

c1 0 -1

0 1 2
d J

x1

x2

x3
K = c -80

480
d

2.5 Matrix Methods for Linear Equations 79

Three Equations in Three Unknowns, Continued

The following underdetermined equation set was analyzed in Example 2.5–4. There it was
shown that an infinite number of solutions exist. Use the rref function to obtain the
solutions.

■ Solution
The MATLAB session is

>>A = [2,-4,5;-4,-2,3;2,6,-8];

>>b = [-4;4;0];

>>rref([A, b])

ans =

1 0 -0.1 -1.2000

0 1 -1.3 0.4000

0 0 0 0

The answer corresponds to the augmented matrix [C d], where

[C d] = J
1 0 -0.1 -1.2

0 1 -1.3 0.4

0 0 0 0
K

2x1 + 6x2 - 8x3 = 0

 -4x1 - 2x2 + 3x3 = 4

 2x1 - 4x2 + 5x3 = -4

EXAMPLE 2.5–6

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 79

This matrix corresponds to the matrix equation Cx � d, or

x1 � 0x2 � 0.1x3 � �1.2

0x1 � x2 � 1.3x3 � 0.4

0x1 � 0x2 � 0x3 � 0

These can be easily solved for x1 and x2 in terms of x3 as follows: x1 � 0.1x3 � 1.2, x2 � 1.3x3

� 0.4. This is the general solution to the problem, where x3 is taken to be the arbitary variable.

Supplementing Underdetermined Systems

In underdetermined cases we might be able to include additional information, ob-
jectives, or constraints to find a unique solution.

80 CHAPTER 2 Numeric, Cell, and Structure Arrays

Traffic Engineering

A traffic engineer wants to know if measurements of traffic flow entering and leaving a
road network are sufficient to predict the traffic flow on each street in the network. For
example, consider the network of one-way streets shown in Figure 2.5–2. The numbers
shown are the measured traffic flows in vehicles per hour. Assume that no vehicles park
anywhere within the network. If possible, calculate the traffic flows f1, f2, f3, and f4. If this
is not possible, suggest how to obtain the necessary information.

■ Solution
The flow into intersection 1 must equal the flow out of the intersection. Thus gives

Similarly, for the other three intersections, we have

f3 + f4 = 300 + 500

600 + 400 = f2 + f3

f1 + f2 = 300 + 200

100 + 200 = f1 + f4

EXAMPLE 2.5–7

1 2

34

f1

f2f4

f3

200 300

200

400

600500

300

100

Figure 2.5–2 A network of one-way streets.

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 80

Putting these in the matrix form Ax � b, we obtain

First, check the ranks of A and [A b], using the MATLAB rank function. Both
have a rank of 3, which is one less than the number of unknowns, so we can determine
three of the unknowns in terms of the fourth. Thus we cannot determine all the traffic
flows based on the given measurements.

Using the rref([A b]) function produces the reduced augmented matrix

which corresponds to the reduced system

These can be solved easily as follows: f1 � 300 � f4, f2 � 200 � f4, and f3 � 800 � f4. If
we could measure the flow on one of the internal roads, say f4, then we could compute the
other flows. So we recommend that the engineer arrange to have this additional measure-
ment made.

Test Your Understanding

T2.5–5 Use the rref, pinv, and the left division methods to solve the follow-
ing set.

(Answer: There are an infinite number of solutions. The result obtained
with the rref function is x1 � 0.2558 � 0.3721x3, x2 � 1.0465 �
0.9767x3, x3 arbitrary. The pinv function gives x1 � 0.0571, x2 =
0.5249, x3 � 0.5340. The left division method generates an error
message.)

5x1 - 6x2 - 4x3 = -5

8x1 - x2 + 2x3 = 1

3x1 + 5x2 + 6x3 = 6

f3 + f4 = 800

f2 - f4 = 200

f1 + f4 = 300

≥
1 0 0 1 300

0 1 0 -1 200

0 0 1 1 800

0 0 0 0 0

¥

A = ≥
1 0 0 1

1 1 0 0

0 1 1 0

0 0 1 1

¥ b = ≥
300

500

1000

800

¥ x = ≥
f1

f2

f3

f4

¥

2.5 Matrix Methods for Linear Equations 81

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 81

T2.5–6 Use the rref, pinv, and the left division methods to solve the
following set.

(Answer: There are an infinite number of solutions. The result obtained
with the rref function is x1 � 0.2727x3 � 5.2727, x2 � �1.3636x3 �
2.2626, x3 arbitrary. The solution obtained with left division is x1 �
4.8000, x2 � 0, x3� �1.7333. The one obtained with the pseudoinverse
method is x1 � 4.8394, x2 � �0.1972, x3 � �1.5887.)

Overdetermined Systems

An overdetermined system is a set of equations that has more independent equa-
tions than unknowns. Some overdetermined systems have exact solutions, and
they can be obtained with the left division method x = A\b. For other overde-
termined systems, no exact solution exists; in some of these cases, the left divi-
sion method does not yield an answer, while in other cases the left division
method gives an answer that satisfies the equation set only in a “least squares”
sense. We will show what this means in the next example. When MATLAB gives
an answer to an overdetermined set, it does not tell us whether the answer is the
exact solution. We must determine this information ourselves, and we will now
show how to do this.

x1 - 2x2 - 3x3 = 10

3x1 + 5x2 + 6x3 = 4

82 CHAPTER 2 Numeric, Cell, and Structure Arrays

The Least Squares Method

Suppose we have the following three data points, and we want to find the straight line
y � c1x � c2 that best fits the data in some sense.

x y

0 2
5 6

10 11

(a) Find the coefficients c1 and c2 using the least squares criterion. (b) Find the coefficients
by using the left division method to solve the three equations (one for each data point) for
the two unknowns c1 and c2. Compare with the answer from part (a).

■ Solution
(a) Because two points define a straight line, unless we are extremely lucky, our three data
points will not lie on the same straight line. A common criterion for obtaining the straight
line that best fits the data is the least squares criterion. According to this criterion, the line
that minimizes J, the sum of the squares of the vertical differences between the line and
the data points, is the “best” fit. Here J is

J = a
i = 3

i = 1
(c1xi + c2 - yi)

2
= (0c1 + c2 - 2)2

+ (5c1 + c2 - 6)2
+ (10c1 + c2 - 11)2

EXAMPLE 2.5–8

OVERDETER-
MINED SYSTEM

LEAST SQUARES
METHOD

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 82

If you are familiar with calculus, you know that the values of c1 and c2 that minimize J
are found by setting the partial derivatives �J/�c1 and �J/�c2 equal to zero.

The solution is c1 � 0.9 and c2 � 11/6. The best straight line in the least squares sense is
y � 0.9x � 11/6.

(b) Evaluating the equation y � c1x � c2 at each data point gives the following
three equations, which are overdetermined, because there are more equations than
unknowns.

(2.5–7)

(2.5–8)

(2.5–9)

These equations can be written in the matrix form Ax � b as follows.

where

To use left division, the MATLAB session is

>>A = [0,1;5,1;10,1];

>>b = [2;6;11];

>>rank(A)

ans =

2

>>rank([A, b])

ans =

3

>>x = A\b

x =

0.9000

1.8333

>>A*x

[A b] = J
0 1 2

5 1 6

10 1 11
K

Ax = J
0 1

5 0

10 1 K c
c1

c2
d = J

2

6

11
K = b

 10c1 + c2 = 11

 5c1 + c2 = 6

 0c1 + c2 = 2

0J

0c2
= 30c1 + 6c2 - 38 = 0

0J

0c1
= 250c1 + 30c2 - 280 = 0

2.5 Matrix Methods for Linear Equations 83

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 83

ans =

1.833

6.333

10.8333

This result for x agrees with the least squares solution obtained previously: c1 � 0.9,
c2 � 11/6 � 1.8333. The rank of A is 2, but the rank of [A b] is 3, so no exact solution ex-
ists for c1 and c2. Note that A*x gives the y values generated by the line y � 0.9x � 1.8333
at the x data values: x � 0, 5, 10. These are different from the right-hand sides of the orig-
inal three equations (2.5–7) through (2.5–9). This is not unexpected, because the least
squares solution is not an exact solution of the equations.

Some overdetermined systems have an exact solution. The left division
method sometimes gives an answer for overdetermined systems, but it does not
indicate whether the answer is the exact solution. We need to check the ranks of
A and [A b] to know if the answer is the exact solution. The next example illus-
trates this situation.

84 CHAPTER 2 Numeric, Cell, and Structure Arrays

An Overdetermined Set

Solve the following equations and discuss the solution for two cases: c � 9 and c � 10.

■ Solution
The coefficient matrix and the augmented matrix for this problem are

Making the computations in MATLAB, we find that for c � 9, rank (A) � rank([A b]) � 2.
Thus the system has a solution, and because the number of unknowns (two) equals the rank
of A, there is a unique solution. The left division method A\b gives this solution, which is
x1 � �1 and x2 � 2.

For c � 10 we find that rank(A) � 2, but rank([A b]) � 3. Because rank(A)
 rank([A
b]), there is no solution. However, the left division method A\b gives x1 � �1.3846 and x2

� 2.2692, which is not an exact solution! This can be verified by substituting these values
into the original equation set. This answer is the solution to the equation set in a least
squares sense. That is, these values are the values of x1 and x2 that minimize J, the sum of
the squares of the differences between the equations’ left- and right-hand sides.

J = (x1 + x2 - 1)2
+ (x1 + 2x2 - 3)2

+ (x1 + 5x2 - 10)2

A = J
1 1

1 2

1 5 K [A b] = J
1 1 1

1 2 3

1 5 c K

 x1 + 5x2 = c

 x1 + 2x2 = 3

 x1 + x2 = 1

EXAMPLE 2.5–9

pal48185_02_38-119.qxd 10/4/07 3:24 PM Page 84

2.6 Polynomial Operations Using Arrays 85

To interpret MATLAB answers correctly for an overdetermined system, first
check the ranks of A and [A b] to see if an exact solution exists; if one does not ex-
ist, then we know that the left division answer is a least squares solution. In Chapter 4
we develop a general-purpose program that checks the ranks and solves a general set
of linear equations.

Table 2.5–1 summarizes this section’s functions and commands.

Test Your Understanding

T2.5–7 Solve the following set.

(Answer: There is a unique solution: x1 � 2.2143, x2 � 0.0714, which is
given by the left division method.)

T2.5–8 Show why there is no solution to the following set.

2.6 Polynomial Operations Using Arrays
MATLAB has some convenient tools for working with polynomials. Type help
polyfun for more information on this category of commands. We will use the
following notation to describe a polynomial:

f(x) = a1x
n

+ a2x
n - 1

+ a3x
n - 2

+
Á

+ an - 1x
2

+ anx + an + 1

 5x1 - 2x2 = -4

 3x1 + 5x2 = 7

 x1 - 3x2 = 2

 70x1 - 28x2 = 153

 3x1 + 5x2 = 7

 x1 - 3x2 = 2

Table 2.5–1 Matrix functions and commands for solving linear equations

Function Description

det(A) Computes the determinant of the array A.
inv(A) Computes the inverse of the matrix A.
pinv(A) Computes the pseudoinverse of the matrix A.
rank(A) Computes the rank of the matrix A.
rref([A b]) Computes the reduced row echelon form corresponding to the

augmented matrix [A b].
x � inv(A)*b Solves the matrix equation Ax � b using the matrix inverse.
x � A\b Solves the matrix equation Ax = b using left division.

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 85

We can describe a polynomial in MATLAB with a row vector whose elements
are the polynomial’s coefficients, starting with the coefficient of the highest
power of x. This vector is [a1, a2, a3, . . . , an�1, an, an�1]. For example, the vector
[4,-8,7,-5] represents the polynomial 4x3 � 8x2 � 7x � 5.

Polynomial roots can be found with the roots(a) function, where a is the
array containing the polynomial coefficients. For example, to obtain the roots of
x3 � 12x2 � 45x � 50 � 0, you type y = roots([1,12,45,50]). The an-
swer (y) is a column array containing the values �2, �5, �5.

The poly(r) function computes the coefficients of the polynomial whose
roots are specified by the array r. The result is a row array that contains the poly-
nomial’s coefficients. For example, to find the polynomial whose roots are 1 and
3 � 5i, the session is

>>p = poly([1,3+5i, 3-5i])
p =

1 -7 40 -34

Thus the polynomial is x3 � 7x2 � 40x � 34.

Polynomial Addition and Subtraction

To add two polynomials, add the arrays that describe their coefficients. If the
polynomials are of different degrees, add zeros to the coefficient array of the
lower-degree polynomial. For example, consider

f (x) � 9x3 � 5x2 � 3x � 7

whose coefficient array is f � [9,�5,3,7] and

g(x) � 6x2 � x � 2

whose coefficient array is g = [6,-1,2]. The degree of g(x) is one less that
of f (x). Therefore, to add f (x) and g(x), we append one zero to g to “fool”
MATLAB into thinking g(x) is a third-degree polynomial. That is, we type
g = [0 g] to obtain [0,6,-1,2] for g. This vector represents g(x) � 0x3

� 6x2 � x � 2. To add the polynomials, type h = f+g. The result is
h = [9,1,2,9], which corresponds to h(x) � 9x3 � x2 � 2x � 9. Subtrac-
tion is done in a similar way.

Polynomial Multiplication and Division

To multiply a polynomial by a scalar, simply multiply the coefficient array by that
scalar. For example, 5h(x) is represented by [45,5,10,45].

Multiplication and division of polynomials are easily done with MAT-
LAB. Use the conv function (it stands for “convolve”) to multiply polynomi-
als and use the deconv function (deconv stands for “deconvolve”) to
perform synthetic division. Table 2.6–1 summarizes these functions, as well as
the poly, polyval, and roots functions.

86 CHAPTER 2 Numeric, Cell, and Structure Arrays

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 86

The product of the polynomials f(x) and g(x) is

f (x)g(x) � (9x 3 � 5x2 � 3x � 7)(6x2 � x � 2)

� 54x5 � 39x4 � 41x3 � 29x2 � x � 14

Dividing f(x) by g(x) using synthetic division gives a quotient of

with a remainder of �0.5833x �8.1667. Here is the MATLAB session to perform
these operations.

>>f = [9,-5,3,7];
>>g = [6,-1,2];
>>product = conv(f,g)
product =

54 -39 41 29 -1 14
>>[quotient, remainder] = deconv(f,g)
quotient =

1.5 -0.5833
remainder =

0 0 -0.5833 8.1667

The conv and deconv functions do not require that the polynomials have the
same degree, so we did not have to fool MATLAB as we did when adding the
polynomials.

Plotting Polynomials

The polyval(a,x) function evaluates a polynomial at specified values of its
independent variable x, which can be a matrix or a vector. The polynomial’s

f(x)

g(x)
=

9x3
- 5x2

+ 3x + 7

6x2
- x + 2

= 1.5x - 0.5833

2.6 Polynomial Operations Using Arrays 87

Table 2.6–1 Polynomial functions

Command Description

conv(a,b) Computes the product of the two polynomials described by the coefficient arrays a and b.
The two polynomials need not be the same degree. The result is the coefficient array of the
product polynomial.

[q,r] � Computes the result of dividing a numerator polynomial, whose coefficient array is num,
deconv (num,den) by a denominator polynomial represented by the coefficient array den. The quotient

polynomial is given by the coefficient array q, and the remainder polynomial is given by
the coefficient array r.

poly(r) Computes the coefficients of the polynomial whose roots are specified by the vector r. The
result is a row vector that contains the polynomial’s coefficients arranged in descending
order of power.

polyval(a,x) Evaluates a polynomial at specified values of its independent variable x, which can be a
matrix or a vector. The polynomial’s coefficients of descending powers are stored in the
array a. The result is the same size as x.

roots(a) Computes the roots of a polynomial specified by the coefficient array a. The result is a
column vector that contains the polynomial’s roots.

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 87

coefficient array is a. The result is the same size as x. For example, to evaluate
the polynomial f(x) � 9x3 � 5x2 � 3x � 7 at the points x � 0, 2, 4, . . ., 10, type

>>f = polyval([9,-5,3,7],[0:2:10]);

The resulting vector f contains six values that correspond to f(0), f(2), f(4), . . . , f(10).
The polyval function is very useful for plotting polynomials. To do this

you should define an array that contains many values of the independent variable
x in order to obtain a smooth plot. For example, to plot the polynomial f(x) � 9x3

� 5x2 � 3x � 7 for �2 � x � 5, you type

>>polyval([9,-5,3,7], [-2:0.01:5]);
>>plot (x,f),xlabel(
x
),ylabel(
f(x)
),grid

Polynomial derivatives and integrals are covered in Chapter 7.

Test Your Understanding

T2.6–1 Use MATLAB to obtain the roots of

x3 � 13x2 � 52x � 6 � 0

Use the poly function to confirm your answer.

T2.6–2 Use MATLAB to confirm that

(20x3 � 7x2 � 5x � 10)(4x2 � 12x � 3)

� 80x5 � 212x4 � 124x3 � 121x2 � 105x � 30

T2.6–3 Use MATLAB to confirm that

with a remainder of 59x � 41.

T2.6–4 Use MATLAB to confirm that

when x � 2.

T2.6–5 Plot the polynomial

y � x3 � 13x2 � 52x � 6

over the range �7 � x � 1.

2.7 Cell Arrays
The cell array is an array in which each element is a bin, or cell, which can con-
tain an array. You can store different classes of arrays in a cell array, and you can

6x3
+ 4x2

- 5

12x3
- 7x2

+ 3x + 9
= 0.7108

12x3
+ 5x2

- 2x + 3

3x2
- 7x + 4

= 4x + 11

88 CHAPTER 2 Numeric, Cell, and Structure Arrays

CELL ARRAY

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 88

group data sets that are related but have different dimensions. You access cell
arrays using the same indexing operations used with ordinary arrays.

This is the only section in the text that uses cell arrays. Coverage of this sec-
tion is therefore optional. Some more advanced MATLAB applications, such as
those found in some of the toolboxes, do use cell arrays.

Creating Cell Arrays

You can create a cell array by using assignment statements or by using the cell
function. You can assign data to the cells by using either cell indexing or content
indexing. To use cell indexing, enclose in parentheses the cell subscripts on the
left side of the assignment statement and use the standard array notation. Enclose
the cell contents on the right side of the assignment statement in braces {}.

2.7 Cell Arrays 89

CELL INDEXING

CONTENT
INDEXING

An Environmental Database

Suppose you want to create a 2 � 2 cell array A, whose cells contain the location, the
date, the air temperature (measured at 8 A.M., 12 noon, and 5 P.M.), and the water tem-
peratures measured at the same time in three different points in a pond. The cell array
looks like the following.

Walden Pond June 13, 1997

■ Solution
You can create this array by typing the following either in interactive mode or in a script
file and running it.

A(1,1) = {‘Walden Pond’};

A(1,2) = {‘June 13, 1997’};

A(2,1) = {[60,72,65]};

A(2,2) = {[55,57,56;54,56,55;52,55,53]};

If you do not yet have contents for a particular cell, you can type a pair of empty
braces { } to denote an empty cell, just as a pair of empty brackets [] denotes an empty
numeric array. This notation creates the cell but does not store any contents in it.

To use content indexing, enclose in braces the cell subscripts on the left side using
the standard array notation. Then specify the cell contents on the right side of the assign-
ment operator. For example:

A{1,1} = ‘Walden Pond’;

A{1,2} = ‘June 13, 1997’;

A{2,1} = [60,72,65];

A{2,2} = [55,57,56;54,56,55;52,55,53];

J
55 57 56

54 56 55

52 55 53 K[60 72 65]

EXAMPLE 2.7–1

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 89

Type A at the command line. You will see

A �

‘Walden Pond’ ‘June 13, 1997’

[1x3 double] [3x3 double]

You can use the celldisp function to display the full contents. For example, typing
celldisp(A) displays
A{1,1} =

Walden Pond

A{2,1} =

60 72 65

.

.

.

etc.

The cellplot function produces a graphical display of the cell array’s
contents in the form of a grid. Type cellplot(A) to see this display for the
cell array A. Use commas or spaces with braces to indicate columns of cells and
use semicolons to indicate rows of cells (just as with numeric arrays). For exam-
ple, typing

B = {[2,4], [6,-9;3,5]; [7;2], 10};

creates the following 2 � 2 cell array:

10

You can preallocate empty cell arrays of a specified size by using the cell func-
tion. For example, type C = cell(3,5) to create the 3 � 5 cell array C and fill
it with empty matrices. Once the array has been defined in this way, you can use as-
signment statements to enter the contents of the cells. For example, type C(2,4)
= {[6,-3,7]} to put the 1 � 3 array in cell (2,4) and type C(1,5) = {1:10}
to put the numbers from 1 to 10 in cell (1,5). Type C(3,4) = {‘30 mph’} to
put the string in cell (3,4).

Accessing Cell Arrays

You can access the contents of a cell array by using either cell indexing or con-
tent indexing. To use cell indexing to place the contents of cell (3,4) of the array
C in the new variable Speed, type Speed = C(3,4). To place the contents of
the cells in rows 1 to 3, columns 2 to 5 in the new cell array D, type D =
C(1:3,2:5). The new cell array D will have three rows, four columns, and 12
arrays. To use content indexing to access some or all of the contents in a single

[7 2]

c6 -9

3 5
d[2 4]

90 CHAPTER 2 Numeric, Cell, and Structure Arrays

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 90

cell, enclose the cell index expression in braces to indicate that you are assigning
the contents, not the cells themselves, to a new variable. For example, typing
Speed = C{3,4} assigns the contents ‘30 mph’ in cell (3,4) to the variable
Speed. You cannot use content indexing to retrieve the contents of more than
one cell at a time. For example, the statements G = C{1,:} and C{1,:} =
var, where var is some variable, are both invalid.

You can access subsets of a cell’s contents. For example, to obtain the sec-
ond element in the 1 � 3-row vector in the (2,4) cell of array C and assign it to the
variable r, you type r = C{2,4}(1,2). The result is r = -3.

2.8 Structure Arrays
Structure arrays are composed of structures. This class of arrays enables you to
store dissimilar arrays together. The elements in structures are accessed using
named fields. This feature distinguishes them from cell arrays, which are
accessed using the standard array indexing operations.

Structure arrays are used in this text only in this section and in Chapter 9.
Some MATLAB toolboxes do use structure arrays.

A specific example is the best way to introduce the terminology of structures.
Suppose you want to create a database of students in a course, and you want to in-
clude each student’s name, Social Security number, email address, and test scores.
Figure 2.8–1 shows a diagram of this data structure. Each type of data (name, So-
cial Security number, and so on) is a field, and its name is the field name. Thus our
database has four fields. The first three fields each contain a text string, while the
last field (the test scores) contains a vector having numerical elements. A structure
consists of all this information for a single student. A structure array is an array of
such structures for different students. The array shown in Figure 2.8–1 has two
structures arranged in one row and two columns.

2.8 Structure Arrays 91

FIELD

STRUCTURE
ARRAYS

Structure array “student”

Student(1) Student(2)

Name: John Smith

SSN: 392-77-1786

Email: smithj@myschool.edu

Tests: 67, 75, 84

Name: Mary Jones

SSN: 431-56-9832

Email: jonesm@myschool.edu

Tests: 84, 78, 93

Figure 2.8–1 Arrangement of data in the structure array student.

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 91

Creating Structures

You can create a structure array by using assignment statements or by using the
struct function. The following example uses assignment statements to build a
structure. Structure arrays use the dot notation (.) to specify and to access the
fields. You can type the commands either in the interactive mode or in a script file.

92 CHAPTER 2 Numeric, Cell, and Structure Arrays

A Student Database

Create a structure array to contain the following types of student data:

■ Student name.
■ Social Security number.
■ Email address.
■ Test scores.

Enter the data shown in Figure 2.8–1 into the database.

■ Solution
You can create the structure array by typing the following either in the interactive mode
or in a script file. Start with the data for the first student.

student.name = ‘John Smith’;

student.SSN = ‘392-77-1786’;

student.email = ‘smithj@myschool.edu’;

student.tests = [67,75,84];

If you then type

>>student

at the command line, you will see the following response:

name: ‘John Smith’

SSN: = ‘392-77-1786’

email: = ‘smithj@myschool.edu’

tests: = [67 75 84]

To determine the size of the array, type size(student). The result is ans � 1 1,
which indicates that it is a 1 � 1 structure array.

To add a second student to the database, use a subscript 2 enclosed in parentheses af-
ter the structure array’s name and enter the new information. For example, type

student(2).name = ‘Mary Jones’;

student(2).SSN = ‘431-56-9832’;

student(2).email = ‘jonesm@myschool.edu’;

student(2).tests = [84,78,93];

This process “expands” the array. Before we entered the data for the second student, the
dimension of the structure array was 1 � 1 (it was a single structure). Now it is a 1 � 2 array
consisting of two structures, arranged in one row and two columns. You can confirm this

EXAMPLE 2.8–1

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 92

information by typing size(student), which returns ans � 1 2. If you now type
length(student), you will get the result ans = 2, which indicates that the array has
two elements (two structures). When a structure array has more than one structure, MATLAB
does not display the individual field contents when you type the structure array’s name. For
example, if you now type student, MATLAB displays

>>student =

1x2 struct array with fields:

name

SSN

email

tests

You can also obtain information about the fields by using the fieldnames function (see
Table 2.8–1). For example:

>>fieldnames(student)

ans =

‘name’

‘SSN’

‘email’

‘tests’

As you fill in more student information, MATLAB assigns the same number of fields and
the same field names to each element. If you do not enter some information—for
example, suppose you do not know someone’s email address—MATLAB assigns an
empty matrix to that field for that student.

The fields can have different sizes. For example, each name field can contain a dif-
ferent number of characters, and the arrays containing the test scores can be different
sizes, as would be the case if a certain student did not take the second test.

2.8 Structure Arrays 93

Table 2.8–1 Structure functions

Function Description

names = fieldnames(S) Returns the field names associated
with the structure array S as
names, a cell array of strings.

isfield(S,’field’) Returns 1 if ‘field’ is the
name of a field in the structure
array S, and 0 otherwise.

isstruct(S) Returns 1 if the array S is a
structure array, and 0 otherwise.

S = rmfield(S,’field’) Removes the field ‘field’
from the structure array S.

S = struct(‘f1’,’v1’,’f2’, Creates a structure array with the
’v2’, ...) fields ‘f1’, ‘f2’, . . . having

the values ‘v1’, ‘v2’,

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 93

In addition to the assignment statement, you can also build structures using
the struct function, which lets you “preallocate” a structure array. To build a
structure array named sa_1, the syntax is

sa_1 = struct(‘field1’,’values1’,’field2’,values2’, . . .)

where the arguments are the field names and their values. The values arrays
values1, values2, . . . must all be arrays of the same size, scalar cells, or
single values. The elements of the values arrays are inserted into the correspon-
ding elements of the structure array. The resulting structure array has the same
size as the values arrays, or is 1 � 1 if none of the values arrays is a cell. For ex-
ample, to preallocate a 1 � 1 structure array for the student database, you type

student = struct(‘name’,’John Smith’, ‘SSN’, . . .
‘392-77-1786’,’email’,’smithj@myschool.edu’, . . .
‘tests’,[67,75,84])

Accessing Structure Arrays

To access the contents of a particular field, type a period after the structure array
name, followed by the field name. For example, typing student(2).name
displays the value ‘Mary Jones’. Of course, we can assign the result to a vari-
able in the usual way. For example, typing name2 = student(2).name as-
signs the value ‘Mary Jones’ to the variable name2. To access elements
within a field, for example, John Smith’s second test score, type student(1).
tests(2). This entry returns the value 75. In general, if a field contains an array,
you use the array’s subscripts to access its elements. In this example the statement
student(1).tests(2) is equivalent to student(1,1).tests(2)
because student has one row.

To store all the information for a particular structure—say, all the informa-
tion about Mary Jones—in another structure array named M, you type M =
student(2). You can also assign or change values of field elements. For ex-
ample, typing student(2).tests(2) = 81 changes Mary Jones’s sec-
ond test score from 78 to 81.

Modifying Structures

Suppose you want to add phone numbers to the database. You can do this by typ-
ing the first student’s phone number as follows:

student(1).phone = ‘555-1653’

All the other structures in the array will now have a phone field, but these fields
will contain the empty array until you give them values.

To delete a field from every structure in the array, use the rmfield func-
tion. Its basic syntax is

new_struc = rmfield(array,’field’);

94 CHAPTER 2 Numeric, Cell, and Structure Arrays

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 94

where array is the structure array to be modified, ‘field’ is the field to be
removed, and new_struc is the name of the new structure array so created by
the removal of the field. For example, to remove the Social Security field and call
the new structure array new_student, type

new_student = rmfield(student,’SSN’);

Using Operators and Functions with Structures

You can apply the MATLAB operators to structures in the usual way. For
example, to find the maximum test score of the second student, you type
max(student(2).tests). The answer is 93.

The isfield function determines whether or not a structure array contains
a particular field. Its syntax is isfield(S, ‘field’). It returns a value of
1 (which means “true”) if ‘field’ is the name of a field in the structure array
S. For example, typing isfield(student, ‘name’) returns the result
ans = 1.

The isstruct function determines whether or not an array is a structure
array. Its syntax is isstruct(S). It returns a value of 1 if S is a structure ar-
ray, and 0 otherwise. For example, typing isstruct(student) returns the
result ans = 1, which is equivalent to “true.”

Test Your Understanding

T2.8–1 Create the structure array student shown in Figure 2.7–1 and add the
following information about a third student: name: Alfred E. Newman;
SSN: 555-12-3456; e-mail: newmana@myschool.edu; tests: 55, 45, 58.

T2.8–2 Edit your structure array to change Mr. Newman’s second test score from
45 to 53.

T2.8–3 Edit your structure array to remove the SSN field.

2.9 Summary
You should now be able to perform basic operations and use arrays in MATLAB.
For example, you should be able to

■ Create, address, and edit arrays.
■ Perform array operations including addition, subtraction, multiplication,

division, and exponentiation.
■ Perform matrix operations including addition, subtraction, multiplication,

division, and exponentiation.
■ Solve linear algebraic equations.
■ Perform polynomial algebra.
■ Create databases using cell and structure arrays.

2.9 Summary 95

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 95

Key Terms with Page References

96 CHAPTER 2 Numeric, Cell, and Structure Arrays

Problems
You can find the answers to problems marked with an asterisk at the end of the
text.

Section 2.1

1. a. Use two methods to create the vector x having 100 regularly spaced
values starting at 5 and ending at 28.

b. Use two methods to create the vector x having a regular spacing of 0.2
starting at 2 and ending at 14.

c. Use two methods to create the vector x having 50 regularly spaced val-
ues starting at �2 and ending at 5.

2. a. Create the vector x having 50 logarithmically spaced values starting at
10 and ending at 1000.

b. Create the vector x having 20 logarithmically spaced values starting at
10 and ending at 1000.

3.* Use MATLAB to create a vector x having six values between 0 and 10
(including the endpoints 0 and 10). Create an array A whose first row
contains the values 3x and whose second row contains the values
5x � 20.

4. Repeat Problem 3 but make the first column of A contain the values 3x
and the second column contain the values 5x � 20.

Absolute value, 46
Array addressing, 42
Array operations, 50
Array size, 41
Augmented matrix, 72
Cell array, 88
Cell indexing, 89
Column vector, 39
Content indexing, 89
Element-by-element operations, 50
Empty array, 43
Euclidean norm, 76
Field, 91
Identity matrix, 66
Least squares method, 82
Left division method, 72
Length, 46

Magnitude, 46
Matrix, 41
Matrix inverse, 70
Matrix operations, 57
Matrix rank, 71
Minimum norm solution, 75
Null matrix, 66
Overdetermined system, 82
Pseudoinverse method, 75
Reduced row echelon form, 78
Row vector, 39
Singular matrix, 70
Structure arrays, 91
Subdeterminant, 72
Transpose, 40
Underdetermined system, 75

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 96

5. Type this matrix in MATLAB and use MATLAB to answer the following
questions:

a. Create a vector v consisting of the elements in the second column of A.
b. Create a vector w consisting of the elements in the second row of A.

6. Type this matrix in MATLAB and use MATLAB to answer the following
questions:

a. Create a 4 � 3 array B consisting of all elements in the second
through fourth columns of A.

b. Create a 3 � 4 array C consisting of all elements in the second
through fourth rows of A.

c. Create a 2 � 3 array D consisting of all elements in the first two rows
and the last three columns of A.

7.* Compute the length and absolute value of the following vectors:
a. x � [2, 4, 7]
b. y � [2, �4, 7]
c. z � [5 � 3i, �3 � 4i, 2 � 7i]

8. Given the matrix

a. Find the maximum and minimum values in each column.
b. Find the maximum and minimum values in each row.

9. Given the matrix

A = ≥
3 7 -4 12

-5 9 10 2

6 13 8 11

15 5 4 1

¥

A = ≥
3 7 -4 12

-5 9 10 2

6 13 8 11

15 5 4 1

¥

A = ≥
3 7 -4 12

-5 9 10 2

6 13 8 11

15 5 4 1

¥

A = ≥
3 7 -4 12

-5 9 10 2

6 13 8 11

15 5 4 1

¥

Problems 97

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 97

a. Sort each column and store the result in an array B.
b. Sort each row and store the result in an array C.
c. Add each column and store the result in an array D.
d. Add each row and store the result in an array E.

10. Consider the following arrays.

Write MATLAB expressions to do the following.
a. Select just the second row of B.
b. Evaluate the sum of the second row of B.
c. Multiply the second column of B and the first column of A element-by-
element.
d. Evaluate the maximum value in the vector resulting from element-by-

element multiplication of the second column of B with the first column
of A.

e. Use element-by-element division to divide the first row of A by the
first three elements of the third column of B. Evaluate the sum of the
elements of the resulting vector.

Section 2.2

11.* a. Create a three-dimensional array D whose three “layers” are these ma-
trices:

b. Use MATLAB to find the largest element in each layer of D and the
largest element in D.

Section 2.3

12.* Given the matrices

Use MATLAB to:
a. Find A � B � C.
b. Find A � B � C.
c. Verify the associative law

(A + B) + C � A + (B + C)

C = c -3 -9

6 8
dB = c 6 -5

12 -2
dA = c -7 16

4 9
d

C = J
-7 -5 2

10 6 1

3 -9 8 KB = J
6 9 -4

7 5 3

-8 2 1 KA = J
3 -2 1

6 8 -5

7 9 10
K

B = ln(A)A = ≥
1 4 2

2 4 100

7 9 7

3 p 42

¥

98 CHAPTER 2 Numeric, Cell, and Structure Arrays

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 98

d. Verify the commutative law

13.* Given the matrices

Use MATLAB to:
a. Find the result of A times B using the array product.
b. Find the result of A divided by B using array right division.
c. Find B raised to the third power element-by-element.

14.* The mechanical work W done in using a force F to push a block through a
distance D is W � FD. The following table gives data on the amount of
force used to push a block through the given distance over five segments
of a certain path. The force varies because of the differing friction proper-
ties of the surface.

B = c16 -4

6 -2
dA = c64 32

24 -16
d

A + B + C � B + C + A � A + C + B

Problems 99

Path segment

1 2 3 4 5

Force (N) 400 550 700 500 600
Distance (m) 2 0.5 0.75 1.5 3

Use MATLAB to find (a) the work done on each segment of the path and
(b) the total work done over the entire path.

15. Plane A is heading southwest at 200 mi/hr, while plane B is heading west
at 150 mi/hr. What is the velocity and the speed of plane A relative to
plane B?

16. The following table shows the hourly wages, hours worked, and output
(number of widgets produced) in one week for five widget makers.

Worker

1 2 3 4 5

Hourly wage ($) 5 5.50 6.50 6 6.25
Hours worked 40 43 37 50 45
Output (widgets) 1000 1100 1000 1200 1100

Use MATLAB to answer these questions:
a. How much did each worker earn in the week?
b. What is the total salary amount paid out?
c. How many widgets were made?

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 99

d. What is the average cost to produce one widget?
e. How many hours does it take to produce one widget on average?
f. Assuming that the output of each worker has the same quality, which

worker is the most efficient? Which is the least efficient?

17. Two divers start at the surface and establish the following coordinate sys-
tem: x is to the west, y is to the north, and z is down. Diver 1 swims 60 ft
east, then 25 ft south, and then dives 30 ft. At the same time, diver 2 dives
20 ft, swims east 30 ft, and then south 55 ft.
a. Compute the distance between diver 1 and the starting point.
b. How far in each direction must diver 1 swim to reach diver 2?
c. How far in a straight line must diver 1 swim to reach diver 2?

18. The potential energy stored in a spring is kx2 /2, where k is the spring con-
stant and x is the compression in the spring. The force required to com-
press the spring is kx. The following table gives the data for five springs:

100 CHAPTER 2 Numeric, Cell, and Structure Arrays

Spring

1 2 3 4 5

Force (N) 11 7 8 10 9
Spring constant k (N/m) 1000 800 900 1200 700

Quantity purchased (tons)

Material Price ($/ton) May June July

1 300 5 4 6
2 550 3 2 4
3 400 6 5 3
4 250 3 5 4
5 500 2 4 3

Use MATLAB to find (a) the compression x in each spring and (b) the po-
tential energy stored in each spring.

19. A company must purchase five kinds of material. The following table
gives the price the company pays per ton for each material, along with the
number of tons purchased in the months of May, June, and July:

Use MATLAB to answer these questions:
a. Create a 5�3 matrix containing the amounts spent on each item for

each month.
b. What is the total spent in May? in June? in July?
c. What is the total spent on each material in the three-month period?
d. What is the total spent on all materials in the three-month period?

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 100

20. A fenced enclosure consists of a rectangle of length L and width 2R, and a
semicircle of radius R, as shown in Figure P20. The enclosure is to be
built to have an area A of 1600 ft2. The cost of the fence is $40/ft for the
curved portion, and $30/ft for the straight sides. Use the min function to
determine with a resolution of 0.01 foot the values of R and L required to
minimize the total cost of the fence. Also compute the minimum cost.

Problems 101

L

2R R

Figure P20

21. A water tank consists of a cylindrical part of radius r and height h, and a
hemispherical top. The tank is to be constructed to hold 500 m3 of fluid
when filled. The surface area of the cylindrical part is 2�rh, and its vol-
ume is �r2h. The surface area of the hemispherical top is given by 2�r2,
and its volume is given by 2�r3/3. The cost to construct the cylindrical
part of the tank is $300/m2 of surface area; the hemispherical part costs
$400/m2. Plot the cost versus r for 2 � r � 10 m, and determine the ra-
dius that results in the least cost. Compute the corresponding height h.

22. Write a MATLAB assignment statement for each of the following func-
tions, assuming that w, x, y, and z are row vectors of equal length, and that
c and d are scalars.

23. a. After a dose, the concentration of medication in the blood declines due
to metabolic processes. The half-life of a medication is the time re-
quired after an initial dosage for the concentration to be reduced by
one-half. A common model for this process is

where C(0) is the initial concentration, t is time (in hours), and k is
called the elimination rate constant, which varies among individuals.

C(t) = C(0)e-kt

S =

x(2.15 + 0.35y)1.8

z(1 - x)yA =

e-c>(2x)

(ln y)2dz

E =

x +

w

y + z

x +

w
y - z

f =

1

2pc
x

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 101

For a particular bronchodilator, k has been estimated to be in the range
0.047 � k � 0.107 per hour. Find an expression for the half-life in
terms of k, and obtain a plot of the half-life versus k for the indicated
range.

b. If the concentration is initially zero, and a constant delivery rate is
started and maintained, the concentration as a function of time is
described by:

where a is a constant that depends on the delivery rate. Plot the con-
centration after one hour, C (1), versus k for the case where a � 1 and
k is in the range 0.047 � k � 0.107 per hour.

24. A cable of length Lc supports a beam of length Lb, so that it is horizontal
when the weight W is attached at the beam end. The principles of statics
can be used to show that the tension force T in the cable is given by

where D is the distance of the cable attachment point to the beam pivot.
See Figure P24.

T =

LbLcW

D2L2
b - D2

C(t) =

a

k
 (1 - e-kt)

102 CHAPTER 2 Numeric, Cell, and Structure Arrays

Lb

Lc

D W

Figure P24

a. For the case where W � 400 N, Lb � 3 m, and Lc � 5 m, use element-by-
element operations and the min function to compute the value of D that
minimizes the tension T. Compute the minimum tension value.

b. Check the sensitivity of the solution by plotting T versus D. How
much can D vary from its optimal value before the tension T increases
10 percent above its minimum value?

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 102

Problems 103

Section 2.4

25.* Use MATLAB to find the products AB and BA for the following
matrices:

26. Given the matrices

Use MATLAB to:
a. Verify the associative property

b. Verify the distributive property

27. The following tables show the costs associated with a certain product and
the production volume for the four quarters of the business year. Use MAT-
LAB to find (a) the quarterly costs for materials, labor, and transportation;
(b) the total material, labor, and transportation costs for the year; and (c) the
total quarterly costs.

(AB)C � A(BC)

A(B + C) � AB + AC

C = J
-7 -5 2

10 6 1

3 -9 8
KB = J

6 9 -4

7 5 3

-8 2 1 KA = J
3 -2 1

6 8 -5

7 9 10 K

B = c -7 -8

6 2
dA = c 11 5

-9 -4
d

Unit product costs ($ � 103)

Product Materials Labor Transportation

1 7 3 2
2 3 1 3
3 9 4 5
4 2 5 4
5 6 2 1

Quarterly production volume

Product Quarter 1 Quarter 2 Quarter 3 Quarter 4

1 16 14 10 12
2 12 15 11 13
3 8 9 7 11
4 14 13 15 17
5 13 16 12 18

28.* Aluminum alloys are made by adding other elements to aluminum to im-
prove its properties, such as hardness or tensile strength. The following

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 103

table shows the composition of five commonly used alloys, which are
known by their alloy numbers (2024, 6061, and so on) [Kutz, 1999]. Obtain
a matrix algorithm to compute the amounts of raw materials needed to pro-
duce a given amount of each alloy. Use MATLAB to determine how much
raw material of each type is needed to produce 1000 tons of each alloy.

104 CHAPTER 2 Numeric, Cell, and Structure Arrays

29. Redo Example 2.4–3 as a script file to allow the user to examine the ef-
fects of labor costs. Allow the user to input the four labor costs in the fol-
lowing table. When you run the file, it should display the quarterly costs
and the category costs. Run the file for the case where the unit labor costs
are $3000, $7000, $4000, and $8000, respectively.

Composition of aluminum alloys

Alloy %Cu %Mg %Mn %Si %Zn

2024 4.4 1.5 0.6 0 0
6061 0 1 0 0.6 0
7005 0 1.4 0 0 4.5
7075 1.6 2.5 0 0 5.6
356.0 0 0.3 0 7 0

Product costs

Unit costs ($ � 103)

Product Materials Labor Transportation

1 6 2 1
2 2 5 4
3 4 3 2
4 9 7 3

Quarterly production volume

Product Quarter 1 Quarter 2 Quarter 3 Quarter 4

1 10 12 13 15
2 8 7 6 4
3 12 10 13 9
4 6 4 11 5

30. Vectors with three elements can represent position, velocity, and accel-
eration. A mass of 5 kg, which is 3 m away from the x -axis, starts at
x � 2 m and moves with a speed of 10 m/s parallel to the y-axis. Its
velocity is thus described by v � [0, 10, 0], and its position is described

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 104

by r � [2, 10t � 3, 0]. Its angular momentum vector L is found from L �
m(r � v), where m is the mass. Use MATLAB to:
a. Compute a matrix P whose 11 rows are the values of the position vec-

tor r evaluated at the times t � 0, 0.5, 1, 1.5, . . . 5 s.
b. What is the location of the mass when t � 5 s?
c. Compute the angular momentum vector L. What is its direction?

31.* The scalar triple product computes the magnitude M of the moment of a
force vector F about a specified line. It is M � (r � F) . n, where r is the
position vector from the line to the point of application of the force and n
is a unit vector in the direction of the line.

Use MATLAB to compute the magnitude M for the case where
F � [10, �5, 4] N, r � [�3, 7, 2] m, and n � [6, 8, �7].

32. Verify the identity

for the vectors A � 5i � 3j � 7k, B � �6i � 4j � 3k, and
C � 2i � 8j � 9k.

33. The area of a parallelogram can be computed from |A � B|, where A and
B define two sides of the parallelogram (see Figure P33). Compute the
area of a parallelogram defined by A � 7i and B � i � 3j.

A : (B : C) � B (A # C) � C(A # B)

Problems 105

34. The volume of a parallelepiped can be computed from |A � (B �C)|,
where A, B, and C define three sides of the parallelepiped (see Figure
P34). Compute the volume of a parallelepiped defined by A � 6i, B � 2i
� 4j, and C � 3i � 2k.

A

B

x

y

Figure P33

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 105

Section 2.5

35. Solve the following problems using matrix inversion. Check your solu-
tions by computing A�1A.
a.

b.

c.

d.

36.* a. Solve the following matrix equation for the matrix C.

b. Evaluate the solution obtained in part a for the case

37. Use MATLAB to solve the following problems.
a.

b.

c.

�2x � y � �5.00001

 -2x + y = -5
 -8x + 4y = 12

 -2x + y = 3
 -2x + y = 3
 -2x + y = -5

A = c 3 9

-2 4
d B = c2 -3

7 6
d

A(BC + A) � B

 -5x + 2y + 6x3 = 14
 12x + 5y - 7x3 = -26

 6x - 3y + 4x3 = 41
6x + 2y + 3x3 = 22

 -3x + 4y + 7x3 = -3
12x - 5y = 11

- 2x + 7y = 10
- 8x - 5y = 4

3x - 9y = 2
2x + y = 5

106 CHAPTER 2 Numeric, Cell, and Structure Arrays

A

B

C

x

y

z

Figure P34

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 106

d.

38. The circuit shown in Figure P38 has five resistances and one applied volt-
age. Kirchhoff’s voltage law applied to each loop in the circuit
shown gives

Conservation of charge applied at each node in the circuit gives

a. Write a MATLAB script file that uses given values of the applied voltage
and the values of the five resistances, and solves for the six currents.

b. Use the program developed in part a to find the currents for the case
where R1 � 1, R2 � 5, R3 � 2, R4 � 10, R5 � 5 k�, and � 100 V.
(1 k� � 1000 �.)

v

 i4 + i5 = i6

 i1 = i3 + i5

 i2 + i3 = i4

 i6 = i1 + i2

 -R4i4 - R3i3 + R5i5 = 0

 -R2i2 + R1i1 + R3i3 = 0

 v - R2i2 - R4i4 = 0

 3x1 - 7x2 - 2x3 + x4 = -75
 -x1 + 4x2 - x3 + 3x4 = 20

 2x1 - x2 + x3 - 2x4 = 7
 x1 + 5x2 - x3 + 6x4 = 19

Problems 107

+

–

v

R1R 2

R 3

R5

R 4

i 1

i
2

i 3i 4

i
5

i 6

Figure P38

y

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 107

39.* a. Use MATLAB to solve the following equations for x, y, and z as
functions of the parameter c.

b. Plot the solutions for x, y, and z versus c on the same plot, for �10
� c � 10.

40. Fluid flows in pipe networks can be analyzed in a manner similar to that
used for electric resistance networks. Figure P40 shows a network with
three pipes. The volume flow rates in the pipes are q1, q2, and q3. The
pressures at the pipe ends are pa, pb, and pc. The pressure at the junction is
p1. Under certain conditions, the pressure-flow rate relation in a pipe has
the same form as the voltage-current relation in a resistor. Thus, for the
three pipes, we have

where the Ri are the pipe resistances. From conservation of mass,
q1 � q2 � q3.
a. Set up these equations in a matrix form Ax � b suitable for solving for

the three flow rates q1, q2, and q3, and the pressure p1, given the values
of pressures pa, pb, and pc and the values of resistances R1, R2, and R3.
Find the expressions for A and b.

b. Use MATLAB to solve the matrix equations obtained in part a for the
case where pa � 4320 lb/ft2, pb � 3600 lb/ft2, and pc � 2880 lb/ft2.
These correspond to 30, 25, and 20 psi, respectively (1 psi � 1 lb/in2,
and atmospheric pressure is 14.7 psi). Use the resistance values R1 �
10,000, R2 � 14,000 lb sec/ft5. These values correspond to fuel oil
flowing through pipes 2 ft long, with 2- and 1.4-in diameters, respec-
tively. The units of the answers are ft3/sec for the flow rates and lb/ft2

for pressure.

 q3 =

1

R3
(p1 - pc)

 q2 =

1

R2
(p1 - pb)

 q1 =

1

R1
(pa - p1)

7x + 3y - 5z = 10c

 6x + 3y + z = 13c

 x - 5y - 2z = 11c

108 CHAPTER 2 Numeric, Cell, and Structure Arrays

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 108

Problems 109

41. Figure P41 illustrates a robot arm that has two “links” connected by two
“joints”—a shoulder or base joint and an elbow joint. There is a motor at
each joint. The joint angles are �1 and �2. The (x, y) coordinates of the
hand at the end of the arm are given by

where L1 and L2 are the lengths of the links.

 y = L1 sinu1 + L2 sin(u1 + u2)

 x = L1 cosu1 + L2 cos(u1 + u2)

pa

pb

pc

p1

R 1

R 2

R 3

q1

q3

q2

(a)

R 1

R 3

R 2

pa

pb

pc

(b)

p1

Figure P40

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 109

Polynomials are used for controlling the motion of robots. If we start the
arm from rest with zero velocity and acceleration, the following
polynomials are used to generate commands to be sent to the joint
motor controllers.

where �1(0) and �2(0) are the starting values at time t � 0. The angles
�1(tf) and �2(tf) are the joint angles corresponding to the desired destina-
tion of the arm at time tf . The values of �1(0), �2(0), �1(tf), and �2(tf) can
be found from trigonometry, if the starting and ending (x, y) coordinates
of the hand are specified.
a. Set up a matrix equation to be solved for the coefficients a1, a2, and a3,

given values for �1(0), �1(tf), and tf
. Obtain a similar equation for the

coefficients b1, b2, and b3.

u2(t) = u2(0) + b1t
3

+ b2t
4

+ b3t
5

 u1(t) = u1(0) + a1t
3

+ a2t
4

+ a3t
5

110 CHAPTER 2 Numeric, Cell, and Structure Arrays

(a)

x

y

B ase Motor

Elbow Motor

Hand

L2

L1

θ2

θ1

Start

iF nish
Path of
Hand

(b)

Figure P41

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 110

b. Use MATLAB to solve for the polynomial coefficients given the
values tf � 2 secs, �1(0) � �19º, �2(0) � 44º, �1(tf) � 43º, and �2(tf)
� 151º. (These values correspond to a starting hand location of x �
6.5, y � 0 ft, and a destination location of x � 0, y � 2 ft, for L1 � 4
and L2 � 3 ft.)

c. Use the results of part b to plot the path of the hand.

42.* Engineers must be able to predict the rate of heat loss through a building
wall to determine the heating system requirements. They do this by using
the concept of thermal resistance R, which relates the heat flow rate q
through a material to the temperature difference �T across the material: q
� �T/R. This relation is like the voltage-current relation for an electrical
resistor: i � v/R. So the heat flow rate plays the role of electric current,
and the temperature difference plays the role of the voltage difference .
The SI unit for q is the watt (W), which is 1 Joule/s.
The wall shown in Figure P42 consists of four layers: an inner layer of
plaster/lathe 10 mm thick, a layer of fiberglass insulation 125 mm thick, a
layer of wood 60 mm thick, and an outer layer of brick 50 mm thick. If
we assume that the inner and outer temperatures Ti and To have remained
constant for some time, then the heat energy stored in the layers is con-
stant, and thus the heat flow rate through each layer is the same. Applying
conservation of energy gives the following equations.

Problems 111

R1
R3R2

Ti

(a)

(b)

R4

T1 T2 T3 To
Ti

T1 T2 T3 To

Inside
Air

Lathe Insulation Wood Brick

Outside
Air

Figure P42

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 111

The thermal resistance of a solid material is given by R � D/k, where D is
the material thickness and k is the material’s thermal conductivity. For the
given materials, the resistances for a wall area of 1 m2 are R1 � 0.036, R2
� 4.01, R3 � 0.408, and R4 � 0.038 K/W.
Suppose that Ti � 20ºC and To � �10ºC. Find the other three temperatures
and the heat loss rate q in watts. Compute the heat loss rate if the wall’s area
is 10 m2.

43. The concept of thermal resistance described in the previous problem can
be used to find the temperature distribution in the flat square plate shown
in Figure P43(a). The plate’s edges are insulated so that no heat can
escape, except at two points where the edge temperature is heated to Ta

q =

1

R1
 (Ti - T1) =

1

R2
 (T1 - T2) =

1

R3
 (T2 - T3) =

1

R4
 (T3 - To)

112 CHAPTER 2 Numeric, Cell, and Structure Arrays

R

(a)

(b)

T3 Tb

T3 Tb

Ta

R

R

R R

T 1

R

T a

T2T1

T4

T4

T2

Figure P43

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 112

and Tb, respectively. The temperature varies through the plate, so no
single point can describe the plate’s temperature. One way to estimate
the temperature distribution is to imagine that the plate consists of four
subsquares and to compute the temperature in each subsquare. Let R be
the thermal resistance of the material between the centers of adjacent
subsquares. Then we can think of the problem as a network of electrical
resistors, as shown in part (b) of the figure. Let qij be the heat flow rate
between the points whose temperatures are Ti and Tj. If Ta and Tb remain
constant for some time, then the heat energy stored in each subsquare is
constant also, and the heat flow rate between each subsquare is constant.
Under these conditions, conservation of energy says that the heat flow
into a subsquare equals the heat flow out. Applying this principle to each
subsquare gives the following equations.

Substituting q � (Ti � Tj)/R, we find that R can be canceled out of every
equation, and they can be rearranged as follows:

These equations tell us that the temperature of each subsquare is the aver-
age of the temperatures in the adjacent subsquares!

Solve these equations for the case where Ta � 150ºC and Tb � 20ºC.

44. Use the averaging principle developed in Problem 43 to find the tempera-
ture distribution of the plate shown in Figure P44, using the 3 � 3 grid,
and the given values Ta � 150ºC and Tb � 20ºC.

T4 =

1

3
 (T2 + T3 + T5)

T3 =

1

2
 (T1 + T4)

T2 =

1

2
 (T1 + T4)

T1 =

1

3
 (Ta + T2 + T3)

 q34 + q24 = q4b

 q13 = q34

 q12 = q24

 qa1 = q12 + q13

Problems 113

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 113

45.* Solve the following equations:

x � 5y � z � �2

46. The following table shows how many hours in process reactors A and B
are required to produce 1 ton each of chemical products 1, 2, and 3. The
two reactors are available for 35 and 40 hours per week, respectively.

3x + 2y - 4z = 12

7x + 9y - 9z = 22

114 CHAPTER 2 Numeric, Cell, and Structure Arrays

T 4 T 6

T a T 2T 1

T 8

T 3

T 5

T 9T 7 T b

Figure P44

Hours Product 1 Product 2 Product 3

Reactor A 6 2 10
Reactor B 3 5 2

Let x, y, and z be the number of tons each of products 1, 2, and 3 that can
be produced in one week.
a. Use the data in the table to write two equations in terms of x, y, and z.

Determine whether a unique solution exists. If not, use MATLAB to
find the relations between x, y, and z.

b. Note that negative values x, y, and z have no meaning here. Find the
allowable ranges for x, y, and z.

c. Suppose the profits for each product are $200, $300, and $100 for
products 1, 2, and 3, respectively. Find the values of x, y, and z to
maximize the profit.

d. Suppose the profits for each product are $200, $500, and $100 for
products 1, 2, and 3, respectively. Find the values of x, y, and z to
maximize the profit.

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 114

47. See Figure P47. Assume that no vehicles stop within the network. A
traffic engineer wants to know if the traffic flows f1, f2, . . . , f7 (in vehicles
per hour) can be computed given the measured flows shown in the figure.
If not, then determine how many more traffic sensors need to be installed,
and obtain the expressions for the other traffic flows in terms of the meas-
ured quantities.

Problems 115

100

300

100 200 400

200

500

100300200

1 2 3

654

f 1 f 2

f 5f 4f 3

f 6 f 7

Figure P47

48.* Use MATLAB to solve the following problem:

49.* Use MATLAB to solve the following problem:

50. a. Use MATLAB to find the coefficients of the quadratic polynomial
y � ax2 � bx � c that passes through the three points: (x, y) � (1, 4),
(4, 73), (5, 120).

b. Use MATLAB to find the coefficients of the cubic polynomial y � ax3

� bx2 � cx � d that passes through the three points given in part a.

4x - 6y = 10

x + 5y = 18

x - 3y = 2

4x - 6y = 20

x + 5y = 18

x - 3y = 2

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 115

Section 2.6

51. Use MATLAB to plot the polynomials y � 3x4 � 6x3 � 8x2 � 4x � 90
and z � 3x3 � 5x2 � 8x � 70 over the interval �3 � x � 3. Properly la-
bel the plot and each curve. The variables y and z represent current in mil-
liamps; the variable x represents voltage in volts.

52. Use MATLAB to plot the polynomial y � 3x4 � 5x3 � 28x2 � 5x � 200
on the interval �1 � x � 1. Put a grid on the plot and use the ginput
function to determine the coordinates of the peak of the curve.

53. Use MATLAB to find the following product:

54.* Use MATLAB to find the quotient and remainder of

55.* Use MATLAB to evaluate

at x � 5.

56. The ideal gas law provides one way to estimate the pressures and vol-
umes of a gas in a container. The law is

More accurate estimates can be made with the van der Waals equation

where the term b is a correction for the volume of the molecules and the
term a/v̂2 is a correction for molecular attractions. The values of a and b
depend on the type of gas. The gas constant is R, the absolute temperature
is T, and the gas specific volume is V̂ . If 1 mol of an ideal gas were con-
fined to a volume of 22.41 L at 0ºC (273.2 K), it would exert a pressure of
1 atm. In these units, R � 0.08206.
For chlorine (Cl2), a � 6.49 and b � 0.0562. Compare the specific
volume estimates V̂ given by the ideal gas law and the van der Waals
equation for 1 mol of Cl2 at 300 K and a pressure of 0.95 atm.

P =

RT

VN - b
-

a

VN 2

P =

RT

VN

8x3
- 9x2

- 7

10x3
+ 5x2

- 3x - 7

14x3
- 6x2

+ 3x + 9

5x2
+ 7x - 4

(10x3
- 9x2

- 6x + 12)(5x3
- 4x2

- 12x + 8)

116 CHAPTER 2 Numeric, Cell, and Structure Arrays

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 116

57. Aircraft A is flying east at 320 mi/hr, while aircraft B is flying south at
160 mi/hr. At 1:00 P.M. the aircraft are located as shown in Figure P57.

Problems 117

800 mi

320 mi/h

410 mi

160 mi/h

A

B

Figure P57

a. Obtain the expression for the distance D between the aircraft as a func-
tion of time. Plot D versus time until D reaches its minimum value.

b. Use the roots function to compute the time when the aircraft are first
within 30 mi of each other.

58. The function

approaches � as x → 2 and as x → 5. Plot this function over the range 0 �
x � 7. Choose an appropriate range for the y-axis.

59. The following formulas are commonly used by engineers to predict the
lift and drag of an airfoil:

where L and D are the lift and drag forces, V is the airspeed, S is the wing
span, � is the air density, and CL and CD are the lift and drag coefficients.
Both CL and CD depend on �, the angle of attack, the angle between the
relative air velocity and the airfoil’s chord line.

Wind tunnel experiments for a particular airfoil have resulted in the
following formulas.

D =

1

2
rCDSV2

L =

1

2
rCLSV2

y =

3x2
- 12x + 20

x2
- 7x + 10

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 117

where � is in degrees.
Plot the lift and drag of this airfoil versus V for 0 � V � 150 mi/hr

(you must convert V to ft /sec; there is 5280 ft/mi). Use the values � �
0.002378 slug/ft3 (air density at sea level), � � 10º, and S � 36 ft. The re-
sulting values of L and D will be in pounds.

60. The lift-to-drag ratio is an indication of the effectiveness of an airfoil. Re-
ferring to Problem 59, the equations for lift and drag are

where, for a particular airfoil, the lift and drag coefficients versus angle of
attack � are given by

Using the first two equations, we see that the lift-to-drag ratio is given
simply by the ratio CL/CD.

Plot L/D versus � for �2º � � � 22º. Determine the angle of attack that
maximizes L/D.

Section 2.7

61. a. Use both cell indexing and content indexing to create the following 2
� 2 cell array.

L

D
=

1
2rCLSV2

1
2rCDSV2

=

CL

CD

CD = 5.75 * 10-6a3
+ 5.09 * 10-4a2

+ 1.81 * 10-4a + 1.25 * 10-2

CL = 4.47 * 10-5a3
+ 1.15 * 10-3a2

+ 6.66 * 10-2a + 1.02 * 10-1

D =

1

2
 rCDSV 2

L =

1

2
 rCLSV 2

CD = 5.75 * 10-6 a3
+ 5.09 * 10-4a2

+ 1.81 * 10-4a + 1.25 * 10-2

CL = 4.47 * 10-5 a3
+ 1.15 * 10-3a2

+ 6.66 * 10-2a + 1.02 * 10-1

118 CHAPTER 2 Numeric, Cell, and Structure Arrays

Motor 28C Test ID 6

[6 5 1]c3 9

7 2
d

b. What are the contents of the (1,1) element in the (2,1) cell in this array?

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 118

62. The capacitance of two parallel conductors of length L and radius r, sepa-
rated by a distance d in air, is given by

where � is the permittitivity of air (� � 8.854 � 10�12 F/m). Create a cell
array of capacitance values versus d, L, and r for d � 0.003, 0.004, 0.005,
and 0.01 m; L � 1, 2, 3 m; and r � 0.001, 0.002, 0.003 m. Use MATLAB
to determine the capacitance value for d � 0.005, L � 2, and r � 0.001.

Section 2.8

63. a. Create a structure array that contains the conversion factors for con-
verting units of mass, force, and distance between the metric SI system
and the British Engineering System.

b. Use your array to compute the following:

■ The number of meters in 24 ft.
■ The number of feet in 65 m.
■ The number of pounds equivalent to 18 N.
■ The number of newtons equivalent to 5 lb.
■ The number of kilograms in 6 slugs.
■ The number of slugs in 15 kg.

64. Create a structure array that contains the following information fields
concerning the road bridges in a town: bridge location, maximum load
(tons), year built, year due for maintenance. Then enter the following data
into the array:

C =

pPL

lnad - r
r
b

Problems 119

Location Max. load Year built Due for maintenance

Smith St. 80 1928 1997
Hope Ave. 90 1950 1999
Clark St. 85 1933 1998
North Rd. 100 1960 1998

Location Max. load Year built Due for maintenance

Shore Rd. 85 1997 2002

65. Edit the structure array created in Problem 64 to change the maintenance
data for the Clark St. bridge from 1998 to 2000.

66. Add the following bridge to the structure array created in Problem 64.

pal48185_02_38-119.qxd 9/28/07 8:05 PM Page 119

Functions and Files
OUTLINE
3.1 Elementary Mathematical Functions

3.2 User-Defined Functions

3.3 Additional Function Topics

3.4 Working with Data Files

3.5 Summary

Problems

MATLAB has many built-in functions, including trigonometric, logarithmic, and
hyperbolic functions, as well as functions for processing arrays. These functions
are summarized in Section 3.1. In addition, you can define your own functions
with a function file, and you can use them just as conveniently as the built-in func-
tions. We explain this technique in Section 3.2. Section 3.3 covers additional top-
ics in function programming, including function handles, anonymous functions,
subfunctions, and nested functions. Another type of file that is useful in MATLAB
is the data file. Importing and exporting such files is covered in Section 3.4.

Sections 3.1 and 3.2 contain essential topics and must be covered. The mate-
rial in Section 3.3 is useful for creating large programs. The material in Section
3.4 is useful for readers who must work with large data sets.

3.1 Elementary Mathematical Functions
You can use the lookfor command to find functions that are relevant to your
application. For example, type lookfor imaginary to get a list of the func-
tions that deal with imaginary numbers. You will see listed:

imag Complex imaginary part
i Imaginary unit
j Imaginary unit

Note that imaginary is not a MATLAB function, but the word is found in the
help descriptions of the MATLAB function imag and the special symbols i and j.

3 C H A P T E R

120

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 120

Their names and brief descriptions are displayed when you type lookfor
imaginary. If you know the correct spelling of a MATLAB function—for ex-
ample, disp—you can type help disp to obtain a description of the function.

Some of the functions, like sqrt and sin, are built-in. These are stored as
image files and are not M-files. They are part of the MATLAB core so they are
very efficient, but the computational details are not readily accessible. Other
functions, like sind, are implemented in M-files. You can see the code and even
modify it, although this is not recommended.

Exponential and Logarithmic Functions

Table 3.1–1 summarizes some of the common elementary functions. An example
is the square root function sqrt. To compute , you type sqrt(9) at the
command line. When you press Enter, you see the result ans = 3. You can use
functions with variables. For example, consider the session:

>>x = -9; y = sqrt(x)
y =

0 + 3.0000i

Note that the sqrt function returns the positive root only.
One of the strengths of MATLAB is that it will treat a variable as an array

automatically. For example, to compute the square roots of 5, 7, and 15, type

>>x = [5,7,15]; y = sqrt(x)
y =

2.2361 2.6358 3.8730

19

3.1 Elementary Mathematical Functions 121

Table 3.1–1 Some common mathematical functions

Exponential
exp(x) Exponential; ex.
sqrt(x) Square root; .

Logarithmic
log(x) Natural logarithm; ln x.
log10(x) Common (base 10) logarithm; log x � log10 x.

Complex
abs(x) Absolute value; x.
angle(x) Angle of a complex number x.
conj(x) Complex conjugate.
imag(x) Imaginary part of a complex number x.
real(x) Real part of a complex number x.

Numeric
ceil(x) Round to the nearest integer toward .
fix(x) Round to the nearest integer toward zero.
floor(x) Round to the nearest integer toward .
round(x) Round toward the nearest integer.
sign(x) Signum function:

�1 if x � 0; 0 if x � 0; �1 if x � 0.

- q

q

1x

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 121

The square root function operates on every element in the array x.
Similarly, we can type exp(2) to obtain e2 � 7.3891, where e is the base of

the natural logarithms. Typing exp(1) gives 2.7183, which is e. Note that in
mathematics text, ln x denotes the natural logarithm, where x � ey implies that

because ln e � 1. However, this notation has not been carried over into MAT-
LAB, which uses log(x) to represent ln x.

The common (base 10) logarithm is denoted in text by log x or log10 x. It is
defined by the relation x � 10y; that is,

because log1010 � 1. The MATLAB common logarithm function is log10(x).
A common mistake is to type log(x), instead of log10(x).

Another common error is to forget to use the array multiplication operator
.*. Note that in the MATLAB expression y = exp (x).*log(x), we need
to use the operator .* if x is an array because both exp(x) and log(x) will
be arrays.

Complex Number Functions

Chapter 1 explained how MATLAB easily handles complex number arithmetic.
In the rectangular representation the number a � ib represents a point in the xy
plane. The number’s real part a is the x coordinate of the point, and the imaginary
part b is the y coordinate. The polar representation uses the distance M of the
point from the origin, which is the length of the hypotenuse, and the angle � the
hypotenuse makes with the positive real axis. The pair (M, �) is simply the polar
coordinates of the point. From the Pythagorean theorem, the length of the

hypotenuse is given by which is called the magnitude of the
number. The angle � can be found from the trigonometry of the right triangle. It
is � � arctan (b/a).

Adding and subtracting complex numbers by hand is easy when they are in
the rectangular representation. However, the polar representation facilitates mul-
tiplication and division of complex numbers by hand. We must enter complex
numbers in MATLAB using the rectangular form, and its answers will be given
in that form. We can obtain the rectangular representation from the polar repre-
sentation as follows:

The MATLAB abs(x) and angle(x) functions calculate the magnitude M and
angle � of the complex number x. The functions real(x) and imag(x) return
the real and imaginary parts of x. The function conj(x) computes the complex
conjugate of x.

a = M cos u b = M sin u

M = 2a2
+ b2

log10 x = log10 10y
= y log10 10 = y

ln x = ln(ey) = y ln e = y

122 CHAPTER 3 Functions and Files

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 122

The magnitude of the product z of two complex numbers x and y is equal to
the product of their magnitudes: The angle of the product is equal to
the sum of the angles: These facts are demonstrated below.

>>x = -3 + 4i; y = 6 - 8i;
>>mag_x = abs(x)
mag_x =

5.0000
>>mag_y = abs(y)
mag_y =

10.0000
>>mag_product = abs(x*y)

50.0000
>>angle_x = angle(x)
angle_x =

2.2143
>>angle_y = angle(y)
angle_y =

-0.9273
>>sum_angles = angle_x + angle_y
sum_angles =

1.2870
>>angle_product = angle(x*y)
angle_product =

1.2870

Similarly, for division, if , then and
Note that when x is a vector of real values, abs(x) does not give the geo-

metric length of the vector. This length is given by norm(x). If x is a complex
number representing a geometric vector, then abs(x) gives its geometric length.

Numeric Functions

The round function rounds to the nearest integer. If y=[2.3,2.6,3.9],
typing round(y) gives the results 2, 3, 4. The fix function truncates to the
nearest integer toward zero. Typing fix(y) gives the results 2, 2, 3. The ceil
function (which stands for “ceiling”) rounds to the nearest integer toward .
Typing ceil(y) produces the answers 3, 3, 4.

Suppose z = [-2.6,-2.3,5.7]. The floor function rounds to the
nearest integer toward . Typing floor(z) produces the result �3, �3, 5.
Typing fix(z) produces the answer �2, �2, 5. The abs function computes the
absolute value. Thus abs(z) produces 2.6, 2.3, 5.7.

Test Your Understanding

T3.1–1 For several values of x and y, confirm that ln (xy) � ln x � ln y.

q

∠z = ∠x - ∠y.ƒz ƒ = ƒx ƒ> ƒy ƒz = x>y

∠z = ∠x + ∠y.
ƒz ƒ = ƒx ƒ ƒy ƒ .

3.1 Elementary Mathematical Functions 123

- q

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 123

T3.1–2 Find the magnitude, angle, real part, and imaginary part of the number
.

Function Arguments

When writing mathematics in text, we use parentheses (), brackets [], and
braces { } to improve the readability of expressions, and we have much lati-
tude over their use. For example, we can write sin 2 in text, but MATLAB re-
quires parentheses surrounding the 2 (which is called the function argument or
parameter). Thus to evaluate sin 2 in MATLAB, we type sin(2). The MAT-
LAB function name must be followed by a pair of parentheses that surround
the argument. To express in text the sine of the second element of the array x,
we would type sin[x(2)]. However, in MATLAB you cannot use brackets
or braces in this way, and you must type sin(x(2)).

You can include expressions and other functions as arguments. For example,
to evaluate sin(x2 � 5), you type sin(x.^2 + 5). To evaluate ,
you type sin(sqrt(x)+1). Be sure to check the order of precedence and the
number and placement of parentheses when typing such expressions. Every left-
facing parenthesis requires a right-facing mate. However, this condition does not
guarantee that the expression is correct!

Another common mistake involves expressions like sin2 x, which means
(sin x)2. In MATLAB we write this expression as (sin(x))^2, not as sin^2(x),
sin^2x, or sin(x^2)!

Trigonometric Functions

Other commonly used functions are cos(x), tan(x), sec(x), and csc(x),
which return cos x, tan x, sec x, and csc x, respectively. Table 3.1–2 lists the

sin(1x + 1)

12 + 6i

124 CHAPTER 3 Functions and Files

Table 3.1–2 Trigonometric functions

Trigonometric*
cos(x) Cosine; cos x.
cot(x) Cotangent; cot x.
csc(x) Cosecant; csc x.
sec(x) Secant; sec x.
sin(x) Sine; sin x.
tan(x) Tangent; tan x.

Inverse trigonometric†

acos(x) Inverse cosine; arccos x � cos�1 x.
acot(x) Inverse cotangent; arccot x � cot�1 x.
acsc(x) Inverse cosecant; arccsc x � csc�1 x.
asec(x) Inverse secant; arcsec x � sec�1 x.
asin(x) Inverse sine; arcsin x � sin�1 x.
atan(x) Inverse tangent; arctan x � tan�1 x.
atan2(y,x) Four-quadrant inverse tangent.

*These functions accept x in radians.
†These functions return a value in radians.

FUNCTION
ARGUMENT

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 124

MATLAB trigonometric functions that operate in radian mode. Thus sin(5)
computes the sine of 5 rad, not the sine of 5�. Similarly, the inverse trigonomet-
ric functions return an answer in radians. The functions that operate in degree
mode have the letter d appended to their names. To compute the inverse sine, type
asin(x). For example, asin(0.5) returns the answer: 0.5236 rad. Note: In
MATLAB sin(x)^(-1) does not give ; it gives !

MATLAB has two inverse tangent functions. The function atan(x) com-
putes arctan x—the arctangent or inverse tangent—and returns an angle between

and Another correct answer is the angle that lies in the opposite quad-
rant. The user must be able to choose the correct answer. For example, atan(1)
returns the answer 0.7854 rad, which corresponds to 45�. Thus tan 45� � 1. How-
ever, tan(45� � 180�) � tan 225� � 1 also. Thus arctan(1) � 225� is also correct.

MATLAB provides the atan2 (y,x) function to determine the arctangent
unambiguously, where x and y are the coordinates of a point. The angle computed
by atan2(y,x) is the angle between the positive real axis and line from the ori-
gin (0, 0) to the point (x, y). For example, the point x � 1, y � �1 corresponds to
�45� or �0.7854 rad, and the point x � �1, y � 1 corresponds to 135� or 2.3562
rad. Typing atan2 (-1,1) returns �0.7854, while typing atan2 (1,-1) re-
turns 2.3562. The atan2 (y,x) function is an example of a function that has
two arguments. The order of the arguments is important for such functions. At
present there is no atan2d function.

Test Your Understanding

T3.1–3 For several values of x, confirm that eix � cos x � i sin x.

T3.1–4 For several values of x in the range 0 � x � 2�, confirm that sin�1 x �
cos�1 x � �/2.

T3.1–5 For several values of x in the range 0 � x � 2�, confirm that tan(2x) �
2 tan x/(1 � tan2 x).

Hyperbolic Functions

The hyperbolic functions are the solutions of some common problems in engi-
neering analysis. For example, the catenary curve, which describes the shape of
a hanging cable supported at both ends, can be expressed in terms of the hyper-
bolic cosine, cosh x, which is defined as

The hyperbolic sine, sinh x, is defined as

The inverse hyperbolic sine, sinh�1 x, is the value y that satisfies sinh y � x.

sinh x =

ex
- e- x

2

cosh x =

ex
+ e-x

2

p>2.-p>2

1/sin (x)sin- 1(x)

3.1 Elementary Mathematical Functions 125

pal48185_03_120-152.qxd 10/4/07 3:06 PM Page 125

Several other hyperbolic functions have been defined. Table 3.1–3 lists these
hyperbolic functions and the MATLAB commands to obtain them.

Test Your Understanding

T3.1–6 For several values of x in the range 0 � x � 5, confirm that sin(ix) �
i sinh x.

T3.1–7 For several values of x in the range �10 � x � 10, confirm that

3.2 User-Defined Functions
Another type of M-file is a function file. Unlike a script file, all the variables in a
function file are local, which means their values are available only within the
function. Function files are useful when you need to repeat a set of commands
several times. They are the building blocks of larger programs.

To create a function file, open the Editor /Debugger as described in Chapter
1. The first line in a function file must begin with a function definition line that
has a list of inputs and outputs. This line distinguishes a function M-file from a
script M-file. Its syntax is as follows:

function [output variables] = function_name(input variables)

The output variables are those variables whose values are computed by the
function, using the given values of the input variables. Note that the output
variables are enclosed in square brackets (which are optional if there is only
one output), while the input variables must be enclosed with parentheses. The
function_name should be the same as the file name in which it is saved

sinh- 1 x = ln x + 2x2
+ 1

126 CHAPTER 3 Functions and Files

Table 3.1–3 Hyperbolic functions

Hyperbolic
cosh(x) Hyperbolic cosine; cosh x � (ex � e�x)/2.
coth(x) Hyperbolic cotangent; cosh x /sinh x.
csch(x) Hyperbolic cosecant; 1/sinh x.
sech(x) Hyperbolic secant; 1/cosh x.
sinh(x) Hyperbolic sine; sinh x � (ex � e�x)/2.
tanh(x) Hyperbolic tangent; sinh x/cosh x.

Inverse hyperbolic
acosh(x) Inverse hyperbolic cosine;
acoth(x) Inverse hyperbolic cotangent;
acsch(x) Inverse hyperbolic cosecant;
asech(x) Inverse hyperbolic secant;
asinh(x) Inverse hyperbolic sine;
atanh(x) Inverse hyperbolic tangent;

FUNCTION FILE

FUNCTION
DEFINITION LINE

().

LOCAL VARIABLE

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 126

(with the .m extension). That is, if we name a function drop, it should be
saved in the file drop.m. The function is “called” by typing its name (for ex-
ample, drop) at the command line. The word function in the function def-
inition line must be lowercase. Before naming a function, you can use the
exist function to see if another function has the same name.

Some Simple Function Examples

Functions operate on variables within their own workspace (called local vari-
ables), which is separate from the workspace you access at the MATLAB com-
mand prompt. Consider the following user-defined function fun.

function z = fun(x,y)
u = 3*x;
z = u + 6*y.^2;

Note the use of the array exponentiation operator (.^). This enables the func-
tion to accept y as an array. Now consider what happens when you call this
function in various ways in the Command window. Call the function with its out-
put argument:

>>x = 3; y = 7;
>>z = fun (x,y)
z =

303

or

>>z = fun(3,7)
z =

303

The function uses x � 3 and y � 7 to compute z.
Call the function without its output argument and try to access its value. You

see an error message.

>>fun(3,7)
ans =

303
>>z
??? Undefined function or variable ‘z’.

Assign the output argument to another variable:

>>q = fun(3,7)
q =

303

You can suppress the output by putting a semicolon after the function call. For exam-
ple, if you type q = fun(3,7); the value of qwill be computed but not displayed.

3.2 User-Defined Functions 127

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 127

The variables x and y are local to the function fun, so unless you pass their
values by naming them x and y, their values will not be available in the workspace
outside the function. The variable u is also local to the function. For example,

>>x = 3; y = 7; q = fun(x,y);
>>u
??? Undefined function or variable ‘u’.

Compare this to

>>q = fun(3,7);
>>x
??? Undefined function or variable ‘x’.
>>y
??? Undefined function or variable ‘y’.

Only the order of the arguments is important, not the names of the arguments:

>>a = 7;b = 3;
>>z = fun(b,a) % This is equivalent to z = fun(3,7)
z =

303

You can use arrays as input arguments:

>>r = fun([2:4],[7:9])
r =

300 393 498

A function may have more than one output. These are enclosed in square
brackets. For example, the function circle computes the area A and circumfer-
ence C of a circle, given its radius as an input argument.

function [A, C] = circle(r)
A = pi*r.^2;
C = 2*pi*r;

The function is called as follows, if r � 4.

>>[A, C] = circle(4)
A =

50.2655
C =

25.1327

A function may have no input arguments and no output list. For example, the
following user-defined function show_date computes and stores the date in the
variable today, and displays the value of today.

function show_date
today = date

128 CHAPTER 3 Functions and Files

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 128

Example 1 is a function with one input and one output. The square brackets are
optional when there is only one output (see example 2). Example 3 has one output
and three inputs. Example 4 has two outputs and one input. Example 5 has no output
variable (for example, a function that generates a plot). In such cases the equal sign
may be omitted.

Comment lines starting with the % sign can be placed anywhere in the func-
tion file. However, if you use help to obtain information about the function,
MATLAB displays all comment lines immediately following the function defini-
tion line up to the first blank line or first executable line. The first comment line
can be accessed by the lookfor command.

We can call both built-in and user-defined functions either with the output
variables explicitly specified, as in examples 1 through 4, or without any output
variables specified. For example, we can call the function square as square
(side) if we are not interested in its output variable area_square. (The
function might perform some other operation that we want to occur, such as
producing a plot.) Note that if we omit the semicolon at the end of the function
call statement, the first variable in the output variable list will be displayed using
the default variable name ans.

Variations in Function Calls

The following function, called drop, computes a falling object’s velocity and
distance dropped. The input variables are the acceleration g, the initial veloc-
ity 0, and the elapsed time t. Note that we must use the element-by-element
operations for any operations involving function inputs that are arrays. Here
we anticipate that t will be an array, so we use the element-by-element
operator (.^).

function [dist,vel] = drop(g,vO,t);
% Computes the distance traveled and the
% velocity of a dropped object, as functions
% of g, the initial velocity vO, and the time t.

y

3.2 User-Defined Functions 129

Function definition line File name

1. function [area_square] � square(side); square.m
2. function area_square � square(side); square.m
3. function [volume_box] � box(height,width,length); box.m
4. function [area_circle,circumf] � circle(radius); circle.m
5. function sqplot(side); sqplot.m

Variations in the Function Line

The following examples show permissible variations in the format of the func-
tion line. The differences depend on whether there is no output, a single output,
or multiple outputs.

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 129

vel = g*t + vO;
dist = 0.5*g*t.^2 + vO*t;

The following examples show various ways to call the function drop:

1. The variable names used in the function definition may, but need not, be
used when the function is called:

a = 32.2;
initial_speed = 10;
time = 5;
[feet_dropped,speed] = drop(a,initial_speed,time)

2. The input variables need not be assigned values outside the function prior
to the function call:

[feet_dropped,speed] = drop(32.2,10,5)

3. The inputs and outputs may be arrays:

[feet_dropped,speed]=drop(32.2,10,[0:1:5])

This function call produces the arrays feet_dropped and speed, each with
six values corresponding to the six values of time in the array [0:1:5].

Local Variables

The names of the input variables given in the function definition line are local to
that function. This means that other variable names can be used when you call the
function. All variables inside a function are erased after the function finishes exe-
cuting, except when the same variable names appear in the output variable list
used in the function call.

For example, when using the drop function in a program, we can assign a
value to the variable dist before the function call, and its value will be un-
changed after the call because its name was not used in the output list of the call
statement (the variable feet_dropped was used in the place of dist). This
is what is meant by the function’s variables being “local” to the function. This
feature allows us to write generally useful functions using variables of our choice,
without being concerned that the calling program uses the same variable names
for other calculations. This means that our function files are “portable,” and need
not be rewritten every time they are used in a different program.

You might find the M-file Debugger to be useful for locating errors in func-
tion files. Runtime errors in functions are more difficult to locate because the
function’s local workspace is lost when the error forces a return to the MATLAB
base workspace. The Debugger provides access to the function workspace, and
allows you to change values. It also enables you to execute lines one at a time and
to set breakpoints, which are specific locations in the file where execution is tem-
porarily halted. The applications in this text will probably not require use of the
Debugger, which is useful mainly for very large programs. For more information,
see Chapter 4 of this text and also Chapter 4 of [Palm, 2005].

130 CHAPTER 3 Functions and Files

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 130

Global Variables

The global command declares certain variables global, and therefore their values
are available to the basic workspace and to other functions that declare these vari-
ables global. The syntax to declare the variables A, X, and Q is global A X Q.
Use a space, not a comma, to separate the variables. Any assignment to those vari-
ables, in any function or in the base workspace, is available to all the other func-
tions declaring them global. If the global variable doesn’t exist the first time you
issue the global statement, it will be initialized to the empty matrix. If a variable
with the same name as the global variable already exists in the current workspace,
MATLAB issues a warning and changes the value of that variable to match the
global. In a user-defined function, make the global command the first executable
line. Place the same command in the calling program. It is customary, but not re-
quired, to capitalize the names of global variables and to use long names, to make
them easily recognizable.

The decision to declare a variable global is not always clear-cut. It is rec-
ommended to avoid using global variables. This can often be done by using
anonymous and nested functions, as discussed in Section 3.3.

Function Handles

A function handle is a way to reference a given function. First introduced in
MATLAB 6.0, function handles have become widely used and frequently appear in
examples throughout the MATLAB documentation. You can create a function han-
dle to any function by using the @ sign before the function name. You can then give
the handle a name, if you wish, and you can use the handle to reference the function.

For example, consider the following user-defined function, which computes
y � x � 2e�x � 3.

function y = f1(x)
y = x + 2*exp(-x) - 3;

To create a handle to this function and name the handle fh1, you type fh1 = @f1.

Function Functions

Some MATLAB functions act on functions. These commands are called function
functions. If the function acted upon is not a simple function, it is more conven-
ient to define the function in an M-file. You can pass the function to the calling
function by using a function handle.

Finding the Zeros of a Function You can use the fzero function to find the
zero of a function of a single variable, which is denoted by x. Its basic syntax is

fzero(@function, x0)

where @function is a function handle and x0 is a user-supplied guess for the
zero. The fzero function returns a value of x that is near x0. It identifies only

3.2 User-Defined Functions 131

GLOBAL
VARIABLES

FUNCTION
HANDLE

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 131

points where the function crosses the x-axis, not points where the function just
touches the axis. For example, fzero (@cos,2) returns the value x � 1.5708.
As another example, y � x2 is a parabola that touches the x-axis at x � 0. Because
the function never crosses the x-axis, however, no zero will be found.

The function fzero(@function,x0) tries to find a zero of function
near x0, if x0 is a scalar. The value returned by fzero is near a point where func-
tion changes sign, or NaN if the search fails. In this case, the search terminates
when the search interval is expanded until an Inf, NaN, or a complex value is
found (fzero cannot find complex zeros). If x0 is a vector of length two, fzero
assumes that x0 is an interval where the sign of function(x0(1)) differs from
the sign of function(x0(2)). An error occurs if this is not true. Calling fzero
with such an interval guarantees that fzero will return a value near a point where
function changes sign. Plotting the function first is a good way to get a value for
the vector x0. If the function is not continuous, fzeromight return values that are
discontinuous points instead of zeros. For example, x = fzero(@tan,1) re-
turns x = 1.5708, a discontinuous point in tan(x).

Functions can have more than one zero, so it helps to plot the function first
and then use fzero to obtain an answer that is more accurate than the answer read
off the plot. Figure 3.2–1 shows the plot of the function, y � x � 2e�x � 3, which
has two zeros, one near x � �0.5 and one near x � 3. Using the function file f1
created earlier, to find the zero near x � �0.5, type x = fzero(@f1,-0.5).

132 CHAPTER 3 Functions and Files

0 1 2 3 4 5

0.5

1

1.5

2

2.5

x

y

–1
–1.5

–1

–0.5

0

Figure 3.2–1 Plot of the function y � x � 2e�x � 3.

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 132

3.2 User-Defined Functions 133

The answer is x � �0.5831. To find the zero near x � 3, type x = fzero
(@f1,3). The answer is x � 2.8887.

The syntax fzero (@f1, -0.5) is preferred to the older syntax fzero
(‘f1’, -0.5).

Minimizing a Function of One Variable The fminbnd function finds the
minimum of a function of a single variable, which is denoted by x. Its basic syn-
tax is

fminbnd(@function, x1, x2)

where @function is a function handle. The fminbnd function returns a value
of x that minimizes the function in the interval x1 � x � x2. For example,
fminbnd(@cos,0,4) returns the value x � 3.1416.

However, to use this function to find the minimum of more-complicated
functions, it is more convenient to define the function in a function file. For ex-
ample, if y � 1 � xe�x, define the following function file:

function y = f2(x)
y = 1-x.*exp(-x);

To find the value of x that gives a minimum of y for 0 � x � 5, type x =
fminbnd(@f2,0,5). The answer is x � 1. To find the minimum value of y,
type y = f2(x). The result is y = 0.6321.

Whenever we use a minimization technique, we should check to make sure that
the solution is a true minimum. For example, consider the following polynomial:

Its plot is shown in Figure 3.2–2. The function has two minimum points in
the interval �1 � x � 4. The minimum near x � 3 is called a relative or local
minimum because it forms a valley whose lowest point is higher than the mini-
mum at x � 0. The minimum at x � 0 is the true minimum and is also called the
global minimum. First create the function file

function y = f3(x)
y = polyva1 ([0.025, -0.0625, -0.333, 1, 0, 0], x);

To specify the interval �1 � x � 4, type x = fminbnd (@f3, -1, 4).
MATLAB gives the answer x = 2.0438e-006, which is essentially 0, the true
minimum point. If we specify the interval 0.1 � x � 2.5, MATLAB gives the an-
swer x = 0.1001, which corresponds to the minimum value of y on the inter-
val 0.1 � x � 2.5. Thus we will miss the true minimum point if our specified
interval does not include it.

Also, fminbnd can give misleading answers. If we specify the interval 1 �
x � 4, MATLAB (R 2007 a) gives the answer x = 2.8236, which corresponds
to the “valley” shown in the plot, but which is not the minimum point on the in-
terval 1 � x � 4. On this interval the minimum point is at the boundary x � 1. The
fminbnd procedure looks for a minimum point corresponding to a zero slope. In
practice, the best use of the fminbnd function is to determine precisely the

y = 0.025x5
- 0.0625x4

- 0.333x3
+ x2

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 133

location of a minimum point whose approximate location was found by other
means, such as by plotting the function.

Minimizing a Function of Several Variables To find the minimum of a func-
tion of more than one variable, use the fminsearch function. Its basic syntax is

fminsearch(@function, x0)

where @function is a function handle. The vector x0 is a guess that must be

supplied by the user. For example, to use the function , first define it
in an M-file, using the vector x whose elements are x(1) = x and x(2) = y.

function f = f4(x)
f = x(1).*exp(-x(1).^2-x(2).^2);

Suppose we guess that the minimum is near x � y � 0. The session is

>>fminsearch(@f4, [0, 0])
ans =

-0.7071 0.000

Thus the minimum occurs at x � �0.7071, y � 0.
The fminsearch function can often handle discontinuities, particularly

if they do not occur near the solution. The fminsearch function might give
local solutions only, and it minimizes over the real numbers only; that is, x

f = xe-x2
- y2

134 CHAPTER 3 Functions and Files

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

y

–1 –0.5

Figure 3.2–2 Plot of the function y � 0.025x5 � 0.0625x4 � 0.333x3 � x2.

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 134

must consist of real variables only and the function must return real
numbers only. When x has complex variables, they must be split into real and
imaginary parts.

Table 3.2–1 summarizes the basic syntax of the fminbnd, fminsearch,
and fzero commands.

These functions have extended syntax not described here. With these forms you
can specify the accuracy required for the solution, as well as the number of steps to
use before stopping. Use the help facility to find out more about these functions.

3.2 User-Defined Functions 135

Table 3.2–1 Minimization and root-finding functions

Function Description

fminbnd(@function,x1,x2) Returns a value of x in the interval x1 � x
� x2 that corresponds to a minimum of the
single-variable function described by the han-
dle @function.

fminsearch(@function,x0) Uses the starting vector x0 to find a mini-
mum of the multivariable function described
by the handle @function.

fzero(@function,x0) Uses the starting value x0 to find a zero of
the single-variable function described by the
handle @function.

EXAMPLE 3.2–1

θ θ

b

d

Figure 3.2–3 Cross section of an irrigation channel.

Optimization of an Irrigation Channel

Figure 3.2–3 shows the cross section of an irrigation channel. A preliminary analysis has
shown that the cross-sectional area of the channel should be 100 ft2 to carry the desired
water-flow rate. To minimize the cost of concrete used to line the channel, we want to min-
imize the length of the channel’s perimeter. Find the values of d, b, and � that minimize
this length.

■ Solution
The perimeter length L can be written in terms of the base b, depth d, and angle � as follows:

The area of the trapezoidal cross section is

100 = db +

d2

tan u

L = b +

2d

sin u

pal48185_03_120-152.qxd 10/4/07 3:06 PM Page 135

The variables to be selected are b, d, and �. We can reduce the number of variables by
solving the latter equation for b to obtain

Substitute this expression into the equation for L. The result is

We must now find the values of d and � to minimize L.
First define the function file for the perimeter length. Let the vector x be [d �].

function L = channel(x)

L = 100./x(1) - x(1)./tan(x(2)) + 2*x(1)./sin(x(2));

Then use the fminsearch function. Using a guess of d � 20 and � � 1 rad, the session is

>>x = fminsearch (@channel,[20,1])

x =

7.5984 1.0472

Thus the minimum perimeter length is obtained with d � 7.5984 ft and � � 1.0472 rad,
or � � 60�. Using a different guess, d � 1, � � 0.1, produces the same answer. The value
of the base b corresponding to these values is b � 8.7738.

However, using the guess d � 20, � � 0.1 produces the physically meaningless re-
sult d � �781, � � 3.1416. The guess d � 1, � � 1.5 produces the physically meaning-
less result d � 3.6058, � � �3.1416.

The equation for L is a function of the two variables d and �, and it forms a surface
when L is plotted versus d and � on a three-dimensional coordinate system. This surface
might have multiple peaks, multiple valleys, and “mountain passes” called saddle points
that can fool a minimization technique. Different initial guesses for the solution vector can
cause the minimization technique to find different valleys and thus report different results.
We can use the surface-plotting functions covered in Chapter 5 to look for multiple val-
leys, or we can use a large number of initial values for d and �, say, over the physically
realistic ranges 0 � d � 30 and 0 � � � � /2. If all the physically meaningful answers
are identical, then we can be reasonably sure that we have found the minimum.

Test Your Understanding

T3.2–1 The equation e�0.2x sin(x � 2) � 0.1 has three solutions in the interval
0 � x � 10. Find these three solutions.

T3.2–2 The function y � 1 � e�0.2x sin(x � 2) has two minimum points in the
interval 0 � x � 10. Find the values of x and y at each minimum.

T3.2–3 Find the depth d and angle � to minimize the perimeter length of the
channel shown in Figure 3.2–3 to provide an area of 200 ft2. (Answer: d
� 10.7457 ft, � � 60�.)

L =

100

d
-

d

tan u
+

2d

sin u

b =

1

d
a100 -

d2

tan u
b

136 CHAPTER 3 Functions and Files

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 136

3.3 Additional Function Topics
In addition to function handles, anonymous functions, subfunctions, and nested
functions are some of the newer features of MATLAB. This section covers the
basic features of these new types of functions.

Methods for Calling Functions

There are four ways to invoke, or “call,” a function into action. These are:

1. As a character string identifying the appropriate function M-file,
2. As a function handle,
3. As an “inline” function object, or
4. As a string expression.

Examples of these ways follow for the fzero function used with the user-de-
fined function fun1, which computes y � x2 � 4.
1. As a character string identifying the appropriate function M-file, which is

function y = fun1(x)
y = x.^2-4;

The function may be called as follows, to compute the zero over the range
0 � x � 3:

>>x = fzero(‘fun1’,[0, 3])

2. As a function handle to an existing function M-file:

>>x = fzero(@fun1,[0, 3])

3. As an “inline” function object:

>>fun1 = ‘x.^2-4’;
>>fun_inline = inline(fun1);
>>x = fzero(fun_inline,[0, 3])

4. As a string expression:

>>fun1 = ‘x.^2-4’;
>>x = fzero(fun1,[0, 3])

or as

>>x = fzero(‘x.^2-4’,[0, 3])

Method 2 was not available prior to MATLAB 6.0, and it is now preferred
over method 1. The third method is not discussed in this text because it is a slower
method than the first two. The third and fourth methods are equivalent because
they both utilize the inline function; the only difference is that with the fourth
method MATLAB determines that the first argument of fzero is a string

3.3 Additional Function Topics 137

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 137

variable and calls inline to convert the string variable to an inline function ob-
ject. The function handle method (method 2) is the fastest method, followed by
method 1.

In addition to speed improvement, another advantage of using a function
handle is that it provides access to subfunctions, which are normally not visible
outside of their defining M-file. This is discussed later in this section.

Types of Functions

At this point it is helpful to review the types of functions provided for in MAT-
LAB. MATLAB provides built-in functions, such as clear, sin, and plot,
which are not M-files, and also some functions that are M-files, such as the func-
tion mean. In addition, the following types of user-defined functions can be
created in MATLAB.

■ The primary function is the first function in an M-file and typically con-
tains the main program. Following the primary function in the same file
can be any number of subfunctions, which can serve as subroutines to the
primary function. Usually the primary function is the only function in an
M-file that you can call from the MATLAB command line or from another
M-file function. You invoke this function using the name of the M-file in
which it is defined. We normally use the same name for the function and its
file, but if the function name differs from the file name, you must use the
file name to invoke the function.

■ Anonymous functions enable you to create a simple function without need-
ing to create an M-file for it. You can construct an anonymous function
either at the MATLAB command line or from within another function or
script. Thus, anonymous functions provide a quick way of making a func-
tion from any MATLAB expression without the need to create, name, and
save a file.

■ Subfunctions are placed in the primary function and are called by the pri-
mary function. You can use multiple functions within a single primary
function M-file.

■ Nested functions are functions defined within another function. They can
help to improve the readability of your program and also give you more
flexible access to variables in the M-file. The difference between nested
functions and subfunctions is that subfunctions normally cannot be
accessed outside of their primary function file.

■ Overloaded functions are functions that respond differently to different
types of input arguments. They are similar to overloaded functions in any
object-oriented language. For example, an overloaded function can be
created to treat integer inputs differently than inputs of class double.

■ Private functions enable you to restrict access to a function. They can be
called only from an M-file function in the parent directory.

138 CHAPTER 3 Functions and Files

PRIVATE
FUNCTION

PRIMARY
FUNCTION

ANONYMOUS
FUNCTIONS

SUBFUNCTIONS

NESTED
FUNCTIONS

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 138

Anonymous Functions

Anonymous functions enable you to create a simple function without needing to
create an M-file for it. You can construct an anonymous function either at the
MATLAB command line or from within another function or script. The syntax
for creating an anonymous function from an expression is

fhandle = @ (arglist) expr

where arglist is a comma-separated list of input arguments to be passed to the
function, and expr is any single, valid MATLAB expression. This syntax creates
the function handle fhandle, which enables you to invoke the function. Note that
this syntax is different from that used to create other function handles, fhandle
= @functionname. The handle is also useful for passing the anonymous func-
tion in a call to some other function in the same way as any other function handle.

For example, to create a simple function called sq to calculate the square of
a number, type

sq = @(x) x.^2;

To improve readability, you may enclose the expression in parentheses, as sq =
@(x) (x.^2);. To execute the function, type the name of the function handle,
followed by any input arguments enclosed in parentheses. For example,

>>sq(5)
ans =

25
>>sq([5,7])
ans =

25 49

You might think that this particular anonymous function will not save you any
work because typing sq([5,7]) requires nine keystrokes, one more than is re-
quired to type [5,7].^2. Here, however, the anonymous function protects you
from forgetting to type the period (.) required for array exponentiation. Anony-
mous functions are useful, however, for more complicated functions involving
numerous keystrokes.

You can pass the handle of an anonymous function to other functions. For
example, to find the minimum of the polynomial 4x2 � 50x � 5 over the inter-
val [�10, 10], you type

>>poly1 = @(x) 4*x.^2 - 50*x + 5;
>>fminbnd(poly1, -10, 10)
ans =

6.2500

If you are not going to use that polynomial again, you can omit the handle defi-
nition line and type instead

>>fminbnd(@(x) 4*x.^2 - 50*x + 5, -10, 10)

3.3 Additional Function Topics 139

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 139

Multiple-Input Arguments You can create anonymous functions having more

than one input. For example, to define the function , type

>>sqrtsum = @(x,y) sqrt(x.^2 + y.^2);

Then

>>sqrtsum(3, 4)
ans =

5

As another example, consider the function defining a plane, z � Ax � By.
The scalar variables A and B must be assigned values before you create the func-
tion handle. For example,

>>A = 6; B = 4:
>>plane = @(x,y) A*x + B*y;
>>z = plane(2,8)
z =

44

No-Input Arguments To construct a handle for an anonymous function that
has no input arguments, use empty parentheses for the input argument list, as
shown by the following: d = @() date;.

Use empty parentheses when invoking the function, as follows:

>>d()
ans =

01-Mar-2007

You must include the parentheses. If you do not, MATLAB just identifies the han-
dle; it does not execute the function.

Calling One Function within Another One anonymous function can call an-
other to implement function composition. Consider the function 5 sin(x3). It is
composed of the functions g(y) � 5 sin(y) and f(x) � x3. In the following session
the function whose handle is h calls the functions whose handles are f and g to
compute 5 sin (23).

>>f = @(x) x.^3;
>>g = @(x) 5*sin(x);
>>h = @(x) g(f(x));
>>h(2)
ans =

4.9468

To preserve an anonymous function from one MATLAB session to the next,
save the function handle to a MAT-file. For example, to save the function

2x2
+ y2

140 CHAPTER 3 Functions and Files

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 140

associated with the handle h, type save anon.mat h. To recover it in a later
session, type load anon.mat h.

Variables and Anonymous Functions Variables can appear in anonymous
functions in two ways:

■ As variables specified in the argument list, as for example f = @(x)
x.^3;, and

■ As variables specified in the body of the expression, as for example with
the variables A and B in plane = @(x,y) A*x + B*y. In this case,
when the function is created MATLAB captures the values of these vari-
ables and retains those values for the lifetime of the function handle. In this
example, if the values of A or B are changed after the handle is created,
their values associated with the handle do not change. This feature has both
advantages and disadvantages, so you must keep it in mind.

Subfunctions

A function M-file may contain more than one user-defined function. The first
defined function in the file is called the primary function, whose name is the same
as the M-file name. All other functions in the file are called subfunctions.
Subfunctions are normally “visible” only to the primary function and other sub-
functions in the same file; that is, they normally cannot be called by programs or
functions outside the file. However, this limitation can be removed with the use
of function handles, as we will see later in this section.

Create the primary function first with a function definition line and its defin-
ing code, and name the file with this function name as usual. Then create each sub-
function with its own function definition line and defining code. The order of the
subfunctions does not matter, but function names must be unique within the M-file.

The order in which MATLAB checks for functions is very important. When
a function is called from within an M-file, MATLAB first checks to see if the
function is a built-in function such as sin. If not, it checks to see if it is a sub-
function in the file, then checks to see if it is a private function (which is a func-
tion M-file residing in the private subdirectory of the calling function). Then
MATLAB checks for a standard M-file on your search path. Thus, because MAT-
LAB checks for a subfunction before checking for private and standard M-file
functions, you may use subfunctions with the same name as another existing M-
file. This feature allows you to name subfunctions without being concerned about
whether another function exists with the same name, so you need not choose long
function names to avoid conflict. This feature also protects you from using an-
other function unintentionally.

Note that you may even supercede a MATLAB M-function in this way. The
following example shows how the MATLAB M-function mean can be superceded
by our own definition of the mean, one which gives the root-mean-square value.
The function mean is a subfunction. The function subfun_demo is the primary
function.

3.3 Additional Function Topics 141

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 141

function y = subfun_demo(a)
y = a - mean(a);
%
function w = mean(x)
w = sqrt(sum(x.^2))/length(x);

A sample session follows.

>>y = subfn_demo([4, -4])
y =

1.1716 -6.8284

If we had used the MATLAB M-function mean, we would have obtained a
different answer; that is,

>>a=[4,-4];
>>b = a - mean(a)
b =

4 -4

Thus the use of subfunctions enables you to reduce the number of files that
define your functions. For example, if it were not for the subfunction mean in the
previous example, we would have had to define a separate M-file for our mean
function and give it a different name so as not to confuse it with the MATLAB
function of the same name.

Subfunctions are normally visible only to the primary function and other sub-
functions in the same file. However, we can use a function handle to allow access
to the subfunction from outside the M-file, as the following example shows. Cre-
ate the following M-file with the primary function fn_demo1(range) and the
subfunction testfun(x) to compute the zeros of the function (x2 � 4) cos x
over the range specified in the input variable range. Note the use of a function
handle in the second line.

function yzero = fn_demo1(range)
fun = @testfun;
[yzero,value] = fzero(fun,range);
%
function y = testfun(x)
y = (x.^2-4).*cos(x);

A test session gives the following results.

>>yzero = fn_demo1([3, 6])
yzero =

4.7124

So the zero of (x2 � 4) cos x over 3 � x � 6 occurs at x � 4.7124.

142 CHAPTER 3 Functions and Files

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 142

Nested Functions

With MATLAB 7 you can now place the definitions of one or more functions
within another function. Functions so defined are said to be nested within the
main function. You can also nest functions within other nested functions. Like
any M-file function, a nested function contains the usual components of an M-file
function. You must, however, always terminate a nested function with an end state-
ment. In fact, if an M-file contains at least one nested function, you must terminate
all functions, including subfunctions, in the file with an end statement, whether or
not they contain nested functions.

The following example constructs a function handle for a nested function
p(x) and then passes the handle to the MATLAB function fminbnd to find
the minimum point on the parabola. The parabola function constructs and re-
turns a function handle f for the nested function p that evaluates the parabola
ax2 � bx � c. This handle gets passed to fminbnd.

function f = parabola(a, b, c)
f = @p;

% Nested function
function y = p(x)
y = polyval ([a,b,c],x);

end
end

In the Command window type

>>f = parabola(4, -50, 5);
>>fminbnd(f, -10, 10)
ans =

6.2500

Note than the function p(x) can see the variables a, b, and c in the calling func-
tion’s workspace.

Contrast this approach to that required using global variables. First create the
function p(x).

function y = p(x)
global a b c
y = polyval ([a, b, c], x);

Then, in the command window, type

>>global a b c
>>a = 4; b = -50; c = 5;
>> fminbnd (@p, -10, 10)

Nested functions might seem to be the same as subfunctions, but they are not.
Nested functions have two unique properties:

1. A nested function can access the workspaces of all functions inside of
which it is nested. So for example, a variable that has a value assigned to it

3.3 Additional Function Topics 143

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 143

by the primary function can be read or overwritten by a function nested at
any level within the main function. In addition, a variable assigned in a
nested function can be read or overwritten by any of the functions contain-
ing that function.

2. If you construct a function handle for a nested function, the handle not only
stores the information needed to access the nested function; it also stores
the values of all variables shared between the nested function and those
functions that contain it. This means that these variables persist in memory
between calls made by means of the function handle.

Consider the following representation of some functions named A, B, ..., E.

function A(x, y) % The primary function
B(x, y);
D(y);

function B(x, y) % Nested in A
C(x);
D(y);

function C(x) % Nested in B
D(x);
end % This terminates C

end % This terminates B

function D(x) % Nested in A
E(x);

function E % Nested in D
. . .
end % This terminates E

end % This terminates D
end % This terminates A

You call a nested function in several ways.

1. You can call it from the level immediately above it. (In the previous code,
function A can call B or D, but not C or E.)

2. You can call it from a function nested at the same level within the same
parent function. (Function B can call D, and D can call B.)

3. You can call it from a function at any lower level. (Function C can call
B or D, but not E.)

4. If you construct a function handle for a nested function, you can call the
nested function from any MATLAB function that has access to the handle.

You can call a subfunction from any nested function in the same M-file.

144 CHAPTER 3 Functions and Files

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 144

Private Functions

Private functions reside in subdirectories with the special name private, and
they are visible only to functions in the parent directory. Assume the directory
rsmith is on the MATLAB search path. A subdirectory of rsmith called
privatemay contain functions that only the functions in rsmith can call. Be-
cause private functions are invisible outside the parent directory rsmith, they
can use the same names as functions in other directories. This is useful if the
main directory used by several individuals including R. Smith, but R. Smith wants
to create a personal version of a particular function while retaining the original in
the main directory. Because MATLAB looks for private functions before standard
M-file functions, it will find a private function named, say cylinder.m, before
a nonprivate M-file named cylinder.m.

Primary functions and subfunctions can be implemented as private func-
tions. Create a private directory by creating a subdirectory called private us-
ing the standard procedure for creating a directory or a folder on your computer,
but do not place the private directory on your path.

3.4 Working with Data Files
An ASCII data file may have one or more lines of text, called the header, at the
beginning. These might be comments that describe what the data represents, the
date it was created, and who created the data, for example. One or more lines of
data, arranged in rows and columns, follow the header. The numbers in each row
might be separated by spaces or by commas.

If it is inconvenient to edit the data file, the MATLAB environment provides
many ways to bring data created by other applications into the MATLAB work-
space, a process called importing data, and to package workspace variables so
that they can be exported to other applications.

If the file has a header or the data is separated by commas, MATLAB will
produce an error message. To correct this situation, first load the data file into a
text editor, remove the header, and replace the commas with spaces. To retrieve
this data into MATLAB, type load filename. If the file has m lines with n
values in each line, the data will be assigned to an m 	 n matrix having the same
name as the file with the extension stripped off. Your data file can have any ex-
tension except .mat, so that MATLAB will not try to load the file as a work-
space file.

Importing Spreadsheet Files

Some spreadsheet programs store data in the .wk1 format. You can use the com-
mand M = wk1read(‘filename’) to import this data into MATLAB and
store it in the matrix M. The command A = xlsread(‘filename’) im-
ports the Microsoft Excel workbook file filename.xls into the array A. The
command [A, B] = xlsread(‘filename’) imports all numeric data into
the array A and all text data into the cell array B.

3.4 Working with Data Files 145

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 145

146 CHAPTER 3 Functions and Files

The Import Wizard

You can use the Import Wizard to import many types of ASCII data formats, in-
cluding data on the clipboard. The Import Wizard presents a series of dialog
boxes in which you specify the name of the file, the delimiter used in the file, and
the variables that you want to import.

Do the following to import this sample tab-delimited, ASCII data file,
testdata.txt:

1 2 3 4 5;
17 12 8 15 25;

1. Activate the Import Wizard either by typing uiimport or by selecting the
Import Data option on the MATLAB Desktop File menu. The Import
Wizard displays a dialog box that asks you to specify the name of the file
you want to import.

2. The Import Wizard processes the contents of the file and displays tabs
identifying the variables it recognizes in the file, and displays a portion of
the data in a grid, similar to a spreadsheet. The Import Wizard uses the
space character as the default delimiter. After you click Next, the Import
Wizard attempts to identify the delimiter (see Figure 3.4–1).

3. In the next dialog box, the Import Wizard displays a list of the variables it
found in the file. It also displays the contents of the first variable in the list.
In this example there is only one variable, named testdata.

4. Choose the variables you want to import by clicking the check box next to
their names. By default, all variables are checked for import. After select-
ing the variables you want to import, click the Finish button to import the
data into the MATLAB workspace.

To import data from the clipboard, select Paste Special from the Edit menu.
Then proceed with step 2. The default variable name is A_pastespecial.

Figure 3.4–1 The first screen in the Import Wizard.

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 146

Exporting ASCII Data Files

You might want to export a MATLAB matrix as an ASCII data file where the
rows and columns are represented as space-delimited, numeric values. To export
a MATLAB matrix as a delimited ASCII data file, you can use either the save
command, specifying the -ASCII qualifier, or the dlmwrite function. The
save command is easy to use; however, the dlmwrite function provides more
flexibility, allowing you to specify any character as a delimiter and to export sub-
sets of an array by specifying a range of values.

Suppose you have created the array A = [1 2 3 4; 5 6 7 8] in MAT-
LAB. To export the array using the save command, type the following in the
Command window.

>>save my_data.out A -ASCII

By default, save uses spaces as delimiters, but you can use tabs instead of spaces
by specifying the -tab qualifier.

3.5 Summary
In Section 3.1 we introduced just some of the most commonly used mathemati-
cal functions. You should now be able to use the MATLAB help to find other
functions you need. If necessary, you can create your own functions, using the
methods of Section 3.2. This section also covered function handles and their use
with function functions.

Anonymous functions, subfunctions, and nested functions extend the capa-
bilities of MATLAB. These topics were treated in Section 3.3. In addition to
function files, data files are useful for many applications. Section 3.4 shows how
to import and export such files in MATLAB.

Key Terms with Page References

Problems 147

Anonymous functions, 138
Function argument, 124
Function definition line, 126
Function file, 126
Function handle, 131
Global variables, 131

Local variable, 126
Nested functions, 138
Primary function, 138
Private function, 138
Subfunctions, 138

Problems
You can find the answers to problems marked with an asterisk at the end of the text.

Section 3.1

1.* Suppose that y � �3 � ix. For x � 0, 1, and 2, use MATLAB to compute
the following expressions. Hand check the answers.
a. b.

c. (�5�7i)y d.
y

6 - 3i

2yƒy ƒ

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 147

2.* Let x � �5 � 8i and y � 10 � 5i. Use MATLAB to compute the following
expressions. Hand check the answers.
a. The magnitude and angle of xy.
b. The magnitude and angle of .

3.* Use MATLAB to find the angles corresponding to the following coordi-
nates. Hand check the answers.
a. (x, y) � (5, 8) b. (x, y) � (�5, 8)
c. (x, y) � (5,�8) d. (x, y) � (�5,�8)

4. For several values of x, use MATLAB to confirm that sinh x � (ex � e�x)/2.

5. For several values of x, use MATLAB to confirm that

6. The capacitance of two parallel conductors of length L and radius r, sepa-
rated by a distance d in air, is given by

where � is the permittivity of air (� � 8.854 	 10�12 F/m).
Write a script file that accepts user input for d, L, and r, and computes

and displays C. Test the file with the values: L � 1 m, r � 0.001 m, and
d � 0.004 m.

7.* When a belt is wrapped around a cylinder, the relation between the belt
forces on each side of the cylinder is

where � is the angle of wrap of the belt and � is the friction coefficient.
Write a script file that first prompts a user to specify �, �, and F2 and
then computes the force F1. Test your program with the values � � 130�,
� � 0.3, and F2 � 100 N. (Hint: Be careful with �!)

Section 3.2

8. The output of the MATLAB atan2 function is in radians. Write a func-
tion called atan2d that produces an output in degrees.

9. Write a function that accepts temperature in degrees F and computes the
corresponding value in degrees C. The relation between the two is

Be sure to test your function.

T °C =

5

9
 (T °F - 32)

F1 = F2 emb

C =

pPL

ln ad - r
r
b

ln (x + 1x2
Ú 1), - q 6 x 6 q .

cosh-1 x =

x
y

148 CHAPTER 3 Functions and Files

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 148

10.* An object thrown vertically with a speed reaches a height h at time t,
where

Write and test a function that computes the time t required to reach a
specified height h, for a given value of . The function’s inputs should be
h, , and g. Test your function for the case where h � 100 m, � 50 m/s,
and g � 9.81 m/s2. Interpret both answers.

11. A water tank consists of a cylindrical part of radius r and height h, and a
hemispherical top. The tank is to be constructed to hold 500 m3 when
filled. The surface area of the cylindrical part is 2�rh, and its volume is
�r2h. The surface area of the hemispherical top is given by 2�r2, and its
volume is given by 2�r3/3. The cost to construct the cylindrical part of
the tank is $300 per square meter of surface area; the hemispherical part
costs $400 per square meter. Use the fminbnd function to compute the
radius that results in the least cost. Compute the corresponding height h.

12. A fence around a field is shaped as shown in Figure P12. It consists of a
rectangle of length L and width W, and a right triangle that is
symmetrical about the central horizontal axis of the rectangle. Suppose
the width W is known (in meters), and the enclosed area A is known
(in square meters). Write a user-defined function file with W and A as
inputs. The outputs are the length L required so that the enclosed area is
A, and the total length of fence required. Test your function for the
values W � 6 m and A � 80 m2.

h = v0t -
1

2
 gt2

v0

Problems 149

13. A fenced enclosure consists of a rectangle of length L and width 2R, and a
semicircle of radius R, as shown in Figure P13. The enclosure is to be
built to have an area A of 1600 ft2. The cost of the fence is $40 per foot
for the curved portion, and $30 per foot for the straight sides. Use the
fminbnd function to determine with a resolution of 0.01 ft the values of
R and L required to minimize the total cost of the fence. Also compute the
minimum cost.

W

L

D

Figure P12

0y
y0 0y

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 149

14. Using estimates of rainfall, evaporation, and water consumption, the town
engineer developed the following model of the water volume in the reser-
voir as a function of time.

where V is the water volume in liters, t is time in days, and r is the town’s
consumption rate in liters/day. Write two user-defined functions. The first
function should define the function V(t) for use with the fzero function.
The second function should use fzero to compute how long it will take
for the water volume to decrease to x percent of its initial value of 109 L.
The inputs to the second function should be x and r. Test your functions
for the case where x � 50 percent and r � 107 L/day.

15. The volume V and paper surface area A of a conical paper cup are given by

where r is the radius of the base of the cone and h is the height of the
cone.
a. By eliminating h, obtain the expression for A as a function of r and V.
b. Create a user-defined function that accepts R as the only argument and

computes A for a given value of V. Declare V to be global within the
function.

c. For V � 10 in.3, use the function with the fminbnd function to com-
pute the value of r that minimizes the area A. What is the correspon-
ding value of the height h? Investigate the sensitivity of the solution by
plotting V versus r. How much can R vary about its optimal value be-
fore the area increases 10 percent above its minimum value?

16. A torus is shaped like a doughnut. If its inner radius is a and its outer radius
is b, its volume and surface area are given by

V =

1

4
 p2(a + b)(b - a)2 A = p2(b2

- a2)

V =

1

3
 pr2h A = pr2r2

+ h2

V(t) = 109
+ 108(1 - e-t>100) - rt

150 CHAPTER 3 Functions and Files

L

2R R

Figure P13

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 150

a. Create a user-defined function that computes V and A from the argu-
ments a and b.

b. Suppose that the outer radius is constrained to be 2 in. greater than the
inner radius. Write a script file that uses your function to plot A and V
versus a for 0.25 � a � 4 in.

17. Suppose it is known that the graph of the function y �ax3 � bx2 � cx � d
passes through four given points (xi, yi), i �1, 2, 3, 4. Write a user-
defined function that accepts these four points as input and computes the
coefficients a, b, c, and d. The function should solve four linear equations
in terms of the four unknowns a, b, c, and d. Test your function for the
case where (xi , yi) � (�2,�20), (0, 4), (2, 68), and (4, 508), whose
answer is a � 7, b � 5, c � �6, and d � 4.

Section 3.3

18. Create an anonymous function for 10e�2x and use it to plot the function
over the range 0 � x � 2.

19. Create an anonymous function for 20x2 � 200x � 3 and use it
a. to plot the function to determine the approximate location of its

minimum, and
b. with the fminbnd function to precisely determine the location of the

minimum.

20. Create four anonymous functions to represent the function ,

which is composed of the functions h(z) � 6ez, g(y) � 3 cos y, and

f(x) � x2. Use the anonymous functions to plot over the range
0 � x � 4.

21. Use a primary function with a subfunction to compute the zeros of the
function 3x3 � 12x2 � 33x � 90 over the range �10 � x � 10.

22. Create a primary function that uses a function handle with a nested func-
tion to compute the minimum of the function 20x2 � 200x � 3 over the
range 0 � x � 10.

Section 3.4

23. Use a text editor to create a file containing the following data. Then use
the load function to load the file into MATLAB, and use the mean func-
tion to compute the mean value of each column.
55 42 98
51 39 95
63 43 94
58 45 90

6e3 cos x2

6e3 cos x2

Problems 151

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 151

24. Enter and save the data given in Problem 23 in a spreadsheet. Then im-
port the spreadsheet file into the MATLAB variable A. Use MATLAB to
compute the sum of each column.

25. Use a text editor to create a file from the data given in Problem 23, but
separate each number with a semicolon. Then use the Import Wizard to
load and save the data in the MATLAB variable A.

152 CHAPTER 3 Functions and Files

pal48185_03_120-152.qxd 9/28/07 8:20 PM Page 152

153

C H A P T E R 4
Decision-Making
Programs
OUTLINE
4.1 Relational Operators and Logical Variables

4.2 Logical Operators and Functions

4.3 Conditional Statements

4.4 Loops

4.5 The switch Structure

4.6 Debugging MATLAB Programs

4.7 Summary

Problems

The MATLAB interactive mode is very useful for simple problems, but more com-
plex problems require a script file. Such a file can be called a computer program,
and writing such a file is called programming. The usefulness of MATLAB is greatly
increased by the use of decision-making functions in its programs. These functions
enable you to write programs whose operations depend on the results of calculations
made by the program. Sections 4.1 through 4.3 deal with these functions.

MATLAB can also repeat calculations a specified number of times or until
some condition is satisfied. This feature enables engineers to solve problems of
great complexity or requiring numerous calculations. These “loop” structures are
covered in Section 4.4.

The switch structure enhances the MATLAB decision-making capabili-
ties. This topic is covered in Section 4.5. Use of the MATLAB Editor/Debugger
for debugging programs is covered in Section 4.6.

4.1 Relational Operators and Logical Variables
MATLAB has six relational operators to make comparisons between arrays. These
operators are shown in Table 4.1–1. Note that the equal to operator consists of

RELATIONAL
OPERATOR

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 153

two � signs, not a single � sign as you might expect. The single � sign is the as-
signment, or replacement, operator in MATLAB.
The result of a comparison using the relational operators is either 0 (if the
comparison is false), or 1 (if the comparison is true), and the result can be used
as a variable. For example, if x = 2 and y = 5, typing z = x < y returns
the value z = 1 and typing u = x==y returns the value u = 0. To make the
statements more readable, we can group the logical operations using parentheses.
For example, z = (x < y) and u = (x==y).

When used to compare arrays, the relational operators compare the arrays on
an element-by-element basis. The arrays being compared must have the same di-
mension. The only exception occurs when we compare an array to a scalar. In that
case all the elements of the array are compared to the scalar. For example, sup-
pose that x = [6,3,9] and y = [14,2,9]. The following MATLAB
session shows some examples.

>>z = (x < y)
z =

1 0 0
>>z = (x ~= y)
z =

1 1 0
>>z = (x > 8)
z =

0 0 1

The relational operators can be used for array addressing. For example, with
x = [6,3,9] and y = [14,2,9], typing z = x(x<y) finds all the
elements in x that are less than the corresponding elements in y. The result is
z = 6.

The arithmetic operators �, �, *, /, and \ have precedence over the rela-
tional operators. Thus the statement z = 5 > 2 + 7 is equivalent to z = 5
> (2+7) and returns the result z = 0. We can use parentheses to change the
order of precedence; for example, z = (5 > 2) + 7 evaluates to z = 8.

The relational operators have equal precedence among themselves, and
MATLAB evaluates them in order from left to right. Thus the statement

154 CHAPTER 4 Decision-Making Programs

Table 4.1–1 Relational operators

Relational operator Meaning

� Less than.
�� Less than or equal to.
� Greater than.
�� Greater than or equal to.
�� Equal to.
~� Not equal to.

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 154

z = 5 > 3 ~= 1

is equivalent to

z = (5>3) ~= 1

Both statements return the result z = 0.
With relational operators that consist of more than one character, such as ==

or >=, be careful not to put a space between the characters.

The logical Class

When the relational operators are used, such as x = (5 > 2), they create a log-
ical variable, in this case, x. Prior to MATLAB 6.5 logical was an attribute of
any numeric data type. Now logical is a first-class data type and a MATLAB
class, and so logical is now equivalent to other first-class types such as char-
acter and cell arrays. Logical variables may have only the values 1 (true) and 0
(false).

Just because an array contains only 0s and 1s, however, it is not necessarily
a logical array. For example, in the following session k and w appear the same,
but k is a logical array and w is a numeric array, and thus an error message is is-
sued. The logical array k can be used to select those elements of xwhose absolute
values are greater than 1. These elements are then stored in the array z.

>>x = [-2:2]
x =

-2 -1 0 1 2
>>k = (abs(x)>1)
k =

1 0 0 0 1
>>z = x(k)
z =

-2 2
>>w = [1,0,0,0,1];
>>v = x(w)
??? Subscript indices must either be real positive . . .

integers or logicals.

The logical Function

Logical arrays can be created with the relational and logical operators and with
the logical function. The logical function returns an array that can be used
for logical indexing and logical tests. Typing B = logical(A), where A is a
numeric array, returns the logical array B. So to correct the error in the previous
session, you may type instead w = logical([1,0,0,0,1]) before typing
v = x(w).

When a finite, real value other than 1 or 0 is assigned to a logical variable,
the value is converted to logical 1 and a warning message is issued. For example,

4.1 Relational Operators and Logical Variables 155

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 155

when you type y = logical(9), y will be assigned the value logical 1 and
a warning will be issued. You may use the double function to convert a
logical array to an array of class double. For example, x = (5>3); y =
double(x);. Some arithmetic operations convert a logical array to a double
array. For example, if we add zero to each element of B by typing B = B + 0, the
array B will be converted to a numeric (double) array. However, not all MATLAB
functions can accept logical variables as input arguments. For example, typing

>>x = ([2, 3] > [1, 6]);
>>y = sin(x)

in Release 2007a will generate an error message, whereas y = sind(x) gives
the correct answer. The reason is that in sind.m the operation x = x - 90 *
round(x/90) converts x from class logical to class double. This, however, is
not an important issue because it hardly makes sense to use the sin function with
a logical argument. The help text for sin.m warns that the argument must be in
radians; that is, a real number.

Accessing Arrays Using Logical Arrays

When a logical array is used to address another array, it extracts from that array
the elements in the locations where the logical array has 1s. So typing A(B),
where B is a logical array of the same size as A, returns the values of A at the in-
dices where B is 1.

Given A = [5,6,7;8,9,10;11,12,13] and B = logical
(eye(3)), we can extract the diagonal elements of A by typing C = A(B) to
obtain C = [5;9;13]. Specifying array subscripts with logical arrays extracts
the elements that correspond to the true (1) elements in the logical array.

Note, however, that using the numeric array eye(3), as C = A(eye(3)),
results in an error message because the elements of eye(3) do not correspond
to locations in A. If the numeric array values correspond to valid locations, you
may use a numeric array to extract the elements. For example, to extract the di-
agonal elements of A with a numeric array, type C = A([1,5,9]).

MATLAB data types are preserved when indexed assignment is used. So
now that logical is a MATLAB data type, if A is a logical array, for example
A = logical(eye(4)), then typing A(3,4) = 1 does not change A to a
double array. However, typing A(3,4) = 5 will set A(3,4) to logical 1 and
cause a warning to be issued.

4.2 Logical Operators and Functions
MATLAB has five logical operators, which are sometimes called Boolean oper-
ators (see Table 4.2–1). These operators perform element-by-element operations.
With the exception of the NOT operator (~), they have a lower precedence than
the arithmetic and relational operators (see Table 4.2–2). The NOT symbol is
called the tilde.

156 CHAPTER 4 Decision-Making Programs

LOGICAL
OPERATOR

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 156

The NOT operation ~A returns an array of the same dimension as A; the new
array has ones where A is zero and zeros where A is nonzero. If A is logical, then
~A replaces ones with zeros and zeros with ones. For example, if x = [0,3,9]
and y = [14,-2,9], then z = ~x returns the array z = [1,0,0] and the
statement u = ~x > y returns the result u = [0,1,0]. This expression is
equivalent to u = (~x) > y, whereas v = ~(x > y) gives the result v =
[1,0,1]. This expression is equivalent to v = (x <= y).

The & and | operators compare two arrays of the same dimension. The only
exception, as with the relational operators, is that an array can be compared to a
scalar. The AND operation A&B returns ones where both A and B have nonzero el-
ements and zeros where any element of A or B is zero. The expression z = 0&3 re-
turns z = 0; z = 2&3 returns z = 1; z = 0&0 returns z = 0, and
z = [5,-3,0,0]&[2,4,0,5] returns z = [1,1,0,0]. Because of opera-
tor precedence, z = 1&2+3 is equivalent to z = 1&(2+3), which returns z =
1. Similarly, z = 5<6&1 is equivalent to z = (5<6)&1, which returns z = 1.

Let x = [6,3,9] and y = [14,2,9] and let a = [4,3,12]. The
expression

z = (x>y) & a

4.2 Logical Operators and Functions 157

Table 4.2–1 Logical operators

Operator Name Definition

~ NOT ~A returns an array the same dimension as A; the
new array has ones where A is zero and zeros
where A is nonzero.

& AND A & B returns an array the same dimension as A
and B; the new array has ones where both A and B
have nonzero elements and zeros where either A
or B is zero.

| OR A | B returns an array the same dimension as A
and B; the new array has ones where at least one
element in A or B is nonzero and zeros where A
and B are both zero.

&& Short-Circuit AND Operator for scalar logical expressions. A && B
returns true if both A and B evaluate to true, and
false if they do not.

|| Short-Circuit OR Operator for scalar logical expressions. A || B
returns true if either A or B or both evaluate to
true, and false if they do not.

Table 4.2–2 Order of precedence for operator types

Precedence Operator type

First Parentheses; evaluated starting with the innermost pair.
Second Arithmetic operators and logical NOT (~); evaluated from left to right.
Third Relational operators; evaluated from left to right.
Fourth Logical AND.
Fifth Logical OR.

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 157

gives z = [0,1,0], and

z = (x>y)&(x>a)

returns the result z = [0,0,0]. This is equivalent to

z = x>y&x>a

which is much less readable.
Be careful when using the logical operators with inequalities. For example,

note that ~(x > y) is equivalent to x <= y. It is not equivalent to x < y. As
another example, the relation 5 � x � 10 must be written as

(5 < x) & (x < 10)

in MATLAB.
The OR operation A|B returns ones where at least one of A and B has

nonzero elements and zeros where both A and B are zero. The expression z =
0|3 returns z = 1; the expression z = 0|0 returns z = 0; and

z = [5,-3,0,0]|[2,4,0,5]

returns z = [1,1,0,1]. Because of operator precedence,

z = 3<5|4==7

is equivalent to

z =(3<5)|(4==7)

which returns z = 1. Similarly, z = 1|0&1 is equivalent to z = (1|0)&1,
which returns z = 1, while z = 1|0&0 is equivalent to z = 1|(0&0),which
returns z = 1.

Because of the precedence of the NOT operator, the statement

z = ~3==7|4==6

returns the result z = 0, which is equivalent to

z = ((~3)==7)|(4==6)

The exclusive OR function xor(A,B) returns zeros where A and B are either
both nonzero or both zero, and ones where either A or B is nonzero, but not both.
The function is defined in terms of the AND, OR, and NOT operators as follows.

function z = xor(A,B)
z = (A|B) & ~(A&B);

The expression

z = xor([3,0,6],[5,0,0])

returns z = [0,0,1], whereas

z = [3,0,6]|[5,0,0]

returns z = [1,0,1].

158 CHAPTER 4 Decision-Making Programs

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 158

Table 4.2–3 is a so-called truth table that defines the operations of the
logical operators and the function xor. Until you acquire more experience with
the logical operators, you should use this table to check your statements. Remem-
ber that true is equivalent to logical 1, and false is equivalent to logical 0. We can
test the truth table by building its numerical equivalent as follows. Let x and y
represent the first two columns of the truth table in terms of ones and zeros.

The following MATLAB session generates the truth table in terms of ones
and zeros.

>>x = [1,1,0,0]’;
>>y = [1,0,1,0]’;
>>Truth_Table = [x,y,~x,x|y,x&y,xor(x,y)]
Truth_Table =

1 1 0 1 1 0
1 0 0 1 0 1
0 1 1 1 0 1
0 0 1 0 0 0

Starting with MATLAB 6, the AND operator (&) was given a higher prece-
dence than the OR operator (|). This was not true in earlier versions of
MATLAB, so if you are using code created in an earlier version, you should make
the necessary changes before using it in MATLAB 6 or higher. For example, now
the statement y = 1|5&0 is evaluated as y = 1|(5&0), yielding the result
y = 1, whereas in MATLAB 5.3 and earlier, the statement would have been
evaluated as y = (1|5)&0, yielding the result y = 0. To avoid potential prob-
lems due to precedence, it is important to use parentheses in statements contain-
ing arithmetic, relational, or logical operators, even where parentheses are
optional. MATLAB now provides a feature to enable the system to produce ei-
ther an error message or a warning for any expression containing & and | that
would be evaluated differently than in earlier versions. If you do not use this fea-
ture, MATLAB will issue a warning as the default. To activate the error feature,
type feature(‘OrAndError’,1). To reinstate the default, type feature
(‘OrAndError’,0).

Short-Circuit Operators

The following operators perform AND and OR operations on logical expressions
containing scalar values only. They are called short-circuit operators because they

4.2 Logical Operators and Functions 159

TRUTH TABLE

Table 4.2–3 Truth table

x y ~x x|y x&y xor(x,y)

true true false true true false
true false false true false true
false true true true false true
false false true false false false

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 159

evaluate their second operand only when the result is not fully determined by the first
operand. They are defined as follows in terms of the two logical variables A and B.

A&&B Returns true (logical 1) if both A and B evaluate to true, and false
(logical 0) if they do not.
A||B Returns true (logical 1) if either A or B, or both, evaluate to true, and
false (logical 0) if they do not.

Thus in the statement A&&B, if A equals logical zero, then the entire expres-
sion will evaluate to false, regardless of the value of B, and therefore there is no
need to evaluate B.

For A||B, if A is true, regardless of the value of B, the statement will evaluate
to true.

Table 4.2–4 lists several useful logical functions.

160 CHAPTER 4 Decision-Making Programs

Table 4.2–4 Logical functions

Logical function Definition

all(x) Returns a scalar, which is 1 if all the elements in the vector
x are nonzero and 0 otherwise.

all(A) Returns a row vector having the same number of columns as
the matrix A and containing ones and zeros, depending on
whether or not the corresponding column of A has all
nonzero elements.

any(x) Returns a scalar, which is 1 if any of the elements in the
vector x is nonzero and 0 otherwise.

any(A) Returns a row vector having the same number of columns as
A and containing ones and zeros, depending on whether or
not the corresponding column of the matrix A contains any
nonzero elements.

find(A) Computes an array containing the indices of the nonzero el-
ements of the array A.

[u,v,w] � find(A) Computes the arrays u and v containing the row and column
indices of the nonzero elements of the array A and computes
the array w containing the values of the nonzero elements.
The array w may be omitted.

finite(A) Returns an array of the same dimension as A with ones
where the elements of A are finite and zeros elsewhere.

ischar(A) Returns a 1 if A is a character array and 0 otherwise.
isempty(A) Returns a 1 if A is an empty array and 0 otherwise.
isinf(A) Returns an array of the same dimension as A, with ones

where A has ‘inf’ and zeros elsewhere.
isnan(A) Returns an array of the same dimension as A with ones

where A has ‘NaN’ and zeros elsewhere. (‘NaN’ stands for
“not a number,” which means an undefined result.)

isnumeric(A) Returns a 1 if A is a numeric array and 0 otherwise.
isreal(A) Returns a 1 if A has no elements with imaginary parts and 0

otherwise.
logical(A) Converts the elements of the array A into logical values.
xor(A,B) Returns an array the same dimension as A and B; the new ar-

ray has ones where either A or B is nonzero, but not both, and
zeros where A and B are either both nonzero or both zero.

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 160

Logical Operators and the find Function

The find function is very useful for creating decision-making programs, espe-
cially when combined with the relational or logical operators. The function
find(x) computes an array containing the indices of the nonzero elements of
the array x. For example, consider the session

>>x = [-2, 0, 4];
>>y = find(x)
y =

1 3

The resulting array y = [1, 3] indicates that the first and third elements of x
are nonzero. Note that the find function returns the indices, not the values. In
the following session, note the difference between the result obtained by
x(x<y) and the result obtained by find(x<y).

>>x = [6, 3, 9, 11];y = [14, 2, 9, 13];
>>values = x(x<y)
values =

6 11
>>how_many = length (values)
how_many =

2
>>indices = find(x<y)
indices =

1 4

Thus two values in the array x are less than the corresponding values in the array y.
They are the first and fourth values, 6 and 11. To find out how many, we could
also have typed length(indices).

The find function is also useful when combined with the logical operators.
For example, consider the session

>>x = [5, -3, 0, 0, 8]; y = [2, 4, 0, 5, 7];
>>z = find(x&y)
z =

1 2 5

The resulting array z = [1, 2, 5] indicates that the first, second, and fifth
elements of both x and y are nonzero. Note that the find function returns the
indices, and not the values. In the following session, note the difference be-
tween the result obtained by y(x&y) and the result obtained by find(x&y)
above.

>>x = [5, -3, 0, 0, 8];y = [2, 4, 0, 5, 7];
>>values = y(x&y)
values =

2 4 7

4.2 Logical Operators and Functions 161

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 161

>>how_many = length(values)
how_many =

3

Thus there are three nonzero values in the array y that correspond to nonzero values
in the array x. They are the first, second, and fifth values, which are 2, 4, and 7.

In the above examples, there were only a few numbers in the arrays x and
y, and thus we could have obtained the answers by visual inspection. However,
these MATLAB methods are very useful either where there is so much data that
visual inspection would be very time-consuming, or where the values are gen-
erated internally in a program.

Test Your Understanding

T4.2–1 If x = [5,-3,18,4] and y = [-9,13,7,4], what will be the re-
sult of the following operations? Use MATLAB to check your answer.

a. z � ~y > x
b. z � x&y
c. z � x|y
d. z � xor(x,y)

T4.2–2 Suppose that x � [-9, -6,0, 2, 5] and y � [-10, -6 2, 4,
6]. What is the result of the following operations? Determine the an-
swers by hand, and then use MATLAB to check your answers.

a. z � (x < y)
b. z � (x > y)
c. z � (x ~� y)
d. z � (x �� y)
e. z � (x > 2)

T4.2–3 Suppose that x � [-4, -1, 0, 2, 10] and y � [-5, -2, 2,
5, 9]. Use MATLAB to find the values and the indices of the elements
in x that are greater than the corresponding elements in y.

162 CHAPTER 4 Decision-Making Programs

Height and Speed of a Projectile

The height and speed of a projectile (such as a thrown ball) launched with a speed of �0 at
an angle A to the horizontal are given by

where g is the acceleration due to gravity. The projectile will strike the ground
when h(t) � 0, which gives the time to hit, thit � 2(�0 /g)sin A. Suppose that A �
40�, �0 � 20 m/s, and g � 9.81 m/s2. Use the MATLAB relational and logical

 y(t) = 2y2
0 - 2y0 gt sin A + g2t2

 h(t) = y0 t sinA - 0.5gt2

EXAMPLE 4.2–1

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 162

4.3 Conditional Statements 163

% Set the values for initial speed, gravity, and angle.

v0 = 20; g = 9.81; A = 40*pi/180;

% Compute the time to hit.

t_hit = 2*v0*sin(A)/g;

% Compute the arrays containing time, height, and speed.

t = [0:t_hit/100:t_hit];

h = v0*t*sin(A) - 0.5*g*t.^2;

v = sqrt(v0^2 - 2*v0*g*sin(A)*t + g^2*t.^2);

% Determine when the height is no less than 6,

% and the speed is no greater than 16.

u = find(h>=6&v<=16);

% Compute the corresponding times.

t_1 = (u(1)-1)*(t_hit/100)

t_2 = u(length(u)-1)*(t_hit/100)

The results are t1 � 0.8649 and t2 � 1.7560. Between these two times h 	 6 m and �

16 m/s.
We could have solved this problem by plotting h (t) and � (t), but the accuracy of the

results would be limited by our ability to pick points off the graph; in addition, if we had
to solve many such problems, the graphical method would be more time-consuming.

Test Your Understanding

T4.2–4 Consider the problem given in Example 4.2–1. Use relational and logical
operators to find the times for which either the projectile’s height is less
than 4 m or the speed is greater than 17 m/s. Plot h(t) and � (t) to confirm
your answer.

4.3 Conditional Statements
The MATLAB conditional statements enable us to write programs that make
decisions. Conditional statements contain one or more of the if, else, and
elseif statements. The end statement denotes the end of a conditional statement.

operators to find the times when the height is no less than 6 m and the speed is
simultaneously no greater than 16 m/s. In addition, discuss another approach to
obtaining a solution.

■ Solution
The key to solving this problem with relational and logical operators is to use the find
command to determine the times at which the logical expression (h >� 6)&(v <�

16) is true. First we must generate the vectors h and v corresponding to times t1 and t2 be-
tween 0
 t
 thit, using a spacing for time t that is small enough to achieve sufficient ac-
curacy for our purposes. We will choose a spacing of thit/100, which provides 101 values
of time. The program follows. When computing the times t1 and t2, we must subtract 1
from u(1) and from length(u) because the first element in the array t corresponds
to t � 0 (that is, t(1) is 0).

CONDITIONAL
STATEMENTS

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 163

if x >= 0
y = sqrt(x)

end

If x is negative, the program takes no action. The logical expression here is x >=0,
and the statement is the single line y = sqrt(x).

The if structure may be written on a single line; for example:

if x >= 0, y = sqrt(x), end

However, this form is less readable than the previous form. The usual practice is
to indent the statements to clarify which statements belong to the if and its cor-
responding end and thereby improve readability.

The logical expression may be a compound expression; the statements may
be a single command or a series of commands separated by commas or semi-
colons or on separate lines. For example if x and y have scalar values:

z = 0;w = 0;
if (x > 0)&(y > 0)
z = sqrt(x) + sqrt(y)
w = log(x) - 3*log(y)

end

The values of z and w are computed only if both x and y are positive. Otherwise,
z and w retain their values of zero.

We may “nest” if statements, as shown by the following example.

if logical expression 1
statement group 1
if logical expression 2

statement group 2
end

end

Note that each if statement has an accompanying end statement.

164 CHAPTER 4 Decision-Making Programs

The if Statement

The if statement’s basic form is

if logical expression
statements

end

Every if statement must have an accompanying end statement. The end state-
ment marks the end of the statements that are to be executed if the logical expres-
sion is true. A space is required between the if and the logical expression, which
may be a scalar, a vector, or a matrix.

For example, suppose that x is a scalar and that we want to compute
only if x 	 0. In English, we could specify this procedure as follows:

If x is greater than or equal to zero, compute y from . The following if
statement implements this procedure in MATLAB assuming x already has a
scalar value.

y = 1x
y = 1x

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 164

The else Statement

When more than one action can occur as a result of a decision, we can use the
else and elseif statements along with the if statement. The basic structure
for the use of the else statement is

if logical expression
statement group 1

else
statement group 2

end

For example, suppose that for x 	 0 and that y � ex � 1 for x � 0.
The following statements will calculate y, assuming that x already has a scalar
value.

if x >= 0
y = sqrt(x)

else
y = exp(x) - 1

end

When the test, if logical expression, is performed, where the logical ex-
pression may be an array, the test returns a value of true only if all the ele-
ments of the logical expression are true! For example, if we fail to recognize
how the test works, the following statements do not perform the way we might
expect.

x = [4,-9,25];
if x < 0

disp(‘Some of the elements of x are negative.’)
else

y = sqrt(x)
end

When this program is run it gives the result

y =
2 0 + 3.000i 5

The program does not test each element in x in sequence. Instead it tests the truth
of the vector relation x < 0. The test if x < 0 returns a false value because it
generates the vector [0,1,0]. Compare the preceding program with the follow-
ing program.

x = [4,-9,25];
if x >= 0

y = sqrt(x)
else

y = 1x

4.3 Conditional Statements 165

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 165

disp(‘Some of the elements of x are negative.’)
end

When executed, it produces the following result: Some of the elements
of x are negative. The test if x < 0 is false, and the test if x >= 0
also returns a false value because x >= 0 returns the vector [1,0,1].

We sometimes must choose between a program that is concise, but perhaps
more difficult to understand, and one that uses more statements than is necessary.
For example, the statements

if logical expression 1
if logical expression 2

statements
end

end

can be replaced with the more concise program

if logical expression 1 & logical expression 2
statements

end

The elseif Statement

The general form of the if statement is

if logical expression 1
statement group 1

elseif logical expression 2
statement group 2

else
statement group 3

end

The else and elseif statements may be omitted if not required. However, if
both are used, the else statement must come after the elseif statement to take
care of all conditions that might be unaccounted for.

For example, suppose that y � ln x if x 	 5 and that if 0
 x � 5.
The following statements will compute y if x has a scalar value.

if x >= 5
y = log(x)

else
if x >= 0

y = sqrt(x)
end

end

y = 1x

166 CHAPTER 4 Decision-Making Programs

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 166

If x � �2, for example, no action will be taken. If we use an elseif, we need
fewer statements. For example:

if x >= 5
y = log(x)

elseif x >= 0
y = sqrt(x)

end

Note that the elseif statement does not require a separate end statement.
The else statement can be used with elseif to create detailed decision-

4.3 Conditional Statements 167

making programs. For example, suppose that y � ln x for x � 10, for 0 y = 1x

 x
 10, and y � e x � 1 for x � 0. The following statements will compute y if
x already has a scalar value.

if x > 10
y = log(x)

elseif x >= 0
y = sqrt(x)

else
y = exp(x) - 1

end

Decision structures may be nested; that is, one structure can contain another
structure, which in turn can contain another, and so on.

Test Your Understanding

T4.3–1 Given a number x and the quadrant q (q � 1, 2, 3, 4), write a program to
compute sin�1(x) in degrees, taking into account the quadrant. The pro-
gram should display an error message if |x| � 1.

Checking the Number of Input and Output Arguments

Sometimes you will want to have a function act differently depending on how
many inputs it has. You can use the function nargin, which stands for “number
of input arguments.” Within the function you can use conditional statements to
direct the flow of the computation depending on how many input arguments there
are. For example, suppose you want to compute the square root of the input if
there is only one, but compute the square root of the average if there are two
inputs. The following function does this.

function z = sqrtfun(x, y)
if (nargin == 1)
z = sqrt(x);

elseif (nargin == 2)
z = sqrt((x + y)/2);

end

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 167

The nargout function can be used to determine the number of output
arguments.

Strings and Conditional Statements

A string is a variable that contains characters. Strings are useful for creating in-
put prompts and messages and for storing and operating on data such as names
and addresses. To create a string variable, enclose the characters in single quotes.
For example, the string variable name is created as follows:

>>name = ‘Leslie Student’;

The following string, number

>>number = ‘123’;

is not the same as the variable number created by typing number � 123.
Strings are stored as row vectors in which each column represents a charac-

ter. For example, the variable name has 1 row and 14 columns (each blank space
occupies one column). We can access any column the way we access any other
vector. For example, the letter S in the name Leslie Student occupies the eighth
column in the vector name. It can be accessed by typing name(8).

One of the most important applications for strings is to create input prompts
and output messages. The following prompt program uses the isempty(x)
function, which returns a 1 if the array x is empty and 0 otherwise. It also uses
the input function, whose syntax is

x = input(‘prompt’, ‘string’)

This function displays the string prompt on the screen, waits for input from the
keyboard, and returns the entered value in the string variable x. The function re-
turns an empty array if you press the Enter key without typing anything.

The following prompt program is a script file that allows the user to answer
Yes by typing either Y or y or by pressing the Enter key. Any other response is
treated as a No answer.

168 CHAPTER 4 Decision-Making Programs

response = input(‘Do you want to continue? Y/N [Y]: ‘,’s’);

if (isempty(response))|(response == ‘Y’)|(response == ‘y’)
response = ‘Y’

else
response = ‘N’

end

Many more string functions are available in MATLAB. Type help strfun
to obtain information on these.

Solving Sets of Equations

In Section 2.5 we saw that the set of linear algebraic equations Ax � b with m
equations and n unknowns has solutions if and only if (1) rank[A] � rank[A b]. Let
r � rank[A]. If condition (1) is satisfied and if r � n, then the solution is unique. If

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 168

4.3 Conditional Statements 169

condition (1) is satisfied but r � n, an infinite number of solutions exists; in addition,
r unknown variables can be expressed as linear combinations of the other n � r
unknown variables, whose values are arbitrary. In this case we can use the rref
command to find the relations between the variables. Pseudocode uses natural lan-
guage and mathematical expressions to construct statements that look like computer
statements but without detailed syntax. The pseudocode in Table 4.3–1 can be used
to outline an equation solver program before writing it.

A flowchart can be used to describe the possible paths that a program’s com-
putations can take, depending on how the conditional statements are executed. A
condensed flowchart appears in Figure 4.3–1. From this chart or the pseudocode,

Table 4.3–1 Pseudocode for the linear equation solver

If the rank of A equals the rank of [A b], then
determine whether the rank of A equals the number of unknowns. If so, there is a unique solution, which can be
computed using left division. Display the results and stop.
Otherwise, there is an infinite number of solutions, which can be found from the augmented matrix. Display the
results and stop.

Otherwise (if the rank of A does not equal the rank of [A b]), then there are no solutions. Display this message and stop.

rank(A) = rank([A b])
?

No
rank(A) = # of unknowns

?

Unique solution exists.
Compute it with A\b.

Infinite # of solutions exist.
Compute augmented matrix
using rref command.

Display answer. Display answer.

Display message:
No solutions exist.

No

Yes

Yes

Stop

A , b

Figure 4.3–1 Flowchart illustrating a program to solve linear equations.

FLOWCHART

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 169

we can develop the script file shown in Table 4.3–2. The program uses the given
arrays A and b to check the rank conditions, the left-division method to obtain the
solution, if one exists, and the rref method if there is an infinite number of so-
lutions. Note that the number of unknowns equals the number of columns in A,
which is given by size_A(2), the second element in size_A. Note also that
the rank of A cannot exceed the number of columns in A.

Test Your Understanding

T4.3–2 Type in the script file lineq.m given in Table 4.3–2 and run it for the
following cases. Hand check the answers.

a. A � [1, -1;1, 1], b � [3;5]
b. A � [1, -1;2, -2], b � [3;6]
c. A � [1, -1;2, -2], b � [3;5]

4.4 Loops
A loop is a structure for repeating a calculation a number of times. Each repeti-
tion of the loop is a pass. MATLAB uses two types of explicit loops: the for

170 CHAPTER 4 Decision-Making Programs

Table 4.3–2 MATLAB program to solve linear equations

% Script file lineq.m

% Solves the set Ax � b, given A and b.

% Check the ranks of A and [A b].

if rank(A) �� rank([A b])

% The ranks are equal.

size_A � size (A);

% Does the rank of A equal the number of unknowns?

if rank(A) �� size_A(2)

% Yes. Rank of A equals the number of unknowns.

disp (‘There is a unique solution, which is:’)

x � A\b % Solve using left division.

else

% Rank of A does not equal the number of unknowns.

disp(‘There is an infinite number of solutions.’)

disp(‘The augmented matrix of the reduced system is:’)

rref([A b]) % Compute the augmented matrix.

end

else

% The ranks of A and [A b] are not equal.

disp (‘There are no solutions.’)

end

pal48185_04_153-204.qxd 10/4/07 3:07 PM Page 170

loop, when the number of passes is known ahead of time, and the while loop,
when the looping process must terminate when a specified condition is satisfied,
and thus the number of passes is not known in advance.

for Loops

A simple example of a for loop is

for k = 5:10:35
x = k^2

end

The loop variable k is initially assigned the value 5, and x is calculated from
x = k^2. Each successive pass through the loop increments k by 10 and calcu-
lates x until k exceeds 35. Thus k takes on the values 5, 15, 25, and 35, and x
takes on the values 25, 225, 625, and 1225. The program then continues to exe-
cute any statements following the end statement.

The typical structure of a for loop is

for loop variable = m:s:n
statements

end

The expression m:s:n assigns an initial value of m to the loop variable, which is
incremented by the value s—called the step value or incremental value. The
statements are executed once during each pass, using the current value of the loop
variable. The looping continues until the loop variable exceeds the terminating
value n. For example, in the expression for k = 5:10:36, the final value of
k is 35. Note that we need not place a semicolon after the for m:s:n statement
to suppress printing k.

Note that a for statement needs an accompanying end statement. The end
statement marks the end of the statements that are to be executed. A space is re-
quired between the for and the loop variable, which may be a scalar, a vector,
or a matrix, although the scalar case is by far the most common.

The for loop may be written on a single line; for example:

for x = 0:2:10, y = sqrt(x), end

However, this form is less readable than the previous form. The usual practice is
to indent the statements to clarify which statements belong to the for and its cor-
responding end and thereby improve readability.

4.4 Loops 171

Series Calculation with a for Loop

Write a script file to compute the sum of the first 15 terms in the series 5k2 � 2k, k � 1, 2, 3,
. . . , 15.

■ Solution
Because we know how many times we must evaluate the expression 5k2 � 2k, we can use
a for loop. The script file is the following:

EXAMPLE 4.4–1

FOR LOOP

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 171

total = 0;

for k = 1:15

total = 5*k^2 - 2*k + total;

end

disp (‘The sum for 15 terms is:’)

disp (total)

The answer is 5960.

172 CHAPTER 4 Decision-Making Programs

Plotting with a for Loop

EXAMPLE 4.4–2
Write a script file to plot the function:

for �5 � x � 30.

■ Solution
We choose a spacing dx � 35/300 to obtain 301 points, which is sufficient to obtain a
smooth plot. The script file is the following:

dx = 35/300;

x = [-5:dx:30];

for k = 1:length(x)

if x(k) >= 9

y(k) = 15*sqrt(4*x(k)) + 10;

elseif x(k) >= 0

y(k) = 10*x(k) + 10;

else

y(k) = 10;

end

end

plot (x,y), xlabel(’x’), ylabel(‘y’)

Note that we must use the index k to refer to x within the loop, as x(k).

y = L
1514x + 10 x Ú 9

10x + 10 0 … x 6 9

10 x 6 0

EXAMPLE 4.4–2

We may nest loops and conditional statements, as shown by the following
example. (Note that each for and if statement needs an accompanying end
statement.)

Suppose we want to create a special square matrix that has ones in the first row
and first column, and whose remaining elements are the sum of two elements, the

NESTED LOOPS

pal48185_04_153-204.qxd 10/4/07 3:58 PM Page 172

element above and the element to the left, if the sum is less than 20. Otherwise, the
element is the maximum of those two element values. The following function cre-
ates this matrix. The row index is r; the column index is c. Note how indenting
improves the readability.

function A = specmat(n)
A = ones(n);
for r = 1:n

for c = 1:n
if (r>1)&(c>1)
s = A(r-1,c) + A(r,c-1);
if s<20

A(r,c) = s;
else

A(r,c) = max(A(r-1,c),A(r,c-1));
end

end
end

end

Typing specmat(5) produces the following matrix

4.4 Loops 173

1 1 1 1 1

1 2 3 4 5

1 3 6 10 15

1 4 10 10 15

1 5 15 15 15

Test Your Understanding

T4.4–1 Write a program to produce the following matrix:

Note the following rules when using for loops with the loop variable
expression k = m:s:n:

■ The step value s may be negative. For example, k = 10:-2:4 produces
k = 10, 8, 6, 4.

■ If s is omitted, the step value defaults to one.
■ If s is positive, the loop will not be executed if m is greater than n.

A = ≥
4 8 12

10 14 18

16 20 24

22 26 30

¥

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 173

■ If s is negative, the loop will not be executed if m is less than n.
■ If m equals n, the loop will be executed only once.
■ If the step value s is not an integer, round-off errors can cause the loop to

execute a different number of passes than intended.

When the loop is completed, k retains its last value. You should not alter the value
of the loop variable k within the statements. Doing so can cause unpredictable
results.

A common practice in traditional programming languages like BASIC and
FORTRAN is to use the symbols i and j as loop variables. However, this conven-
tion is not good practice in MATLAB, which uses these symbols for the imaginary
unit For example, what do you think is the result of the following program?
Try it and see!

x = 1; y = 1;
for i = 1:5

x = x + 6i
y = y + 5/i

end

The break and continue Statements

It is permissible to use an if statement to “jump” out of the loop before the loop
variable reaches its terminating value. The break command, which terminates
the loop but does not stop the entire program, can be used for this purpose. For
example:

for k = 1:10
x = 50 - k^2;
if x < 0

break
end
y = sqrt(x)

end
% The program execution jumps to here
% if the break command is executed.

However, it is usually possible to write the code to avoid using the break
command. This can often be done with a while loop as explained in the next
section.

The break statement stops the execution of the loop. There can be applica-
tions where we want to not execute the case producing an error but continue ex-
ecuting the loop for the remaining passes. We can use the continue statement
to do this. The continue statement passes control to the next iteration of the
for or while loop in which it appears, skipping any remaining statements in
the body of the loop. In nested loops, continue passes control to the next iter-
ation of the for or while loop enclosing it.

1-1.

174 CHAPTER 4 Decision-Making Programs

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 174

For example, the following code uses a continue statement to avoid com-
puting the logarithm of a negative number.

x = [10,1000,-10,100];
y = NaN*x;
for k = 1:length(x)

if x(k) < 0
continue

end
y(k) = log10(x(k));

end
y

The result is y = 1, 3, NaN, 2.

Using an Array as a Loop Index

It is permissible to use a matrix expression to specify the number of passes. In
this case the loop variable is a vector that is set equal to the successive columns
of the matrix expression during each pass. For example,

A = [1,2,3;4,5,6];
for v = A

disp(v)
end

is equivalent to

A = [1,2,3;4,5,6];
n = 3;
for k = 1:n

v = A(:,k)
end

The common expression k = m:s:n is a special case of a matrix expression in
which the columns of the expression are scalars, not vectors.

For example, suppose we want to compute the distance from the origin to a
set of three points specified by their xy coordinates (3,7), (6,6), and (2,8). We can
arrange the coordinates in the array coord as follows.

Then coord = [3,6,2;7,6,8]. The following program computes the dis-
tance and determines which point is farthest from the origin. The first time
through the loop the index coord is [3, 7]’. The second time the index is
[6, 6]’, and during the final pass it is [2, 8]’.

k = 0;
for coord = [3,6,2;7,6,8]

c3 6 2

7 6 8
d

4.4 Loops 175

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 175

k = k + 1;
distance(k) = sqrt(coord’*coord)

end
[max_distance,farthest] = max(distance)

The previous program illustrates the use of an array index but the problem
can be solved more concisely with the following program, which uses the diag
function to extract the diagonal elements of an array.

coord = [3,6,2;7,6,8];
distance = sqrt(diag(coord’*coord))
[max_distance,farthest] = max(distance)

EXAMPLE 4.4–3

176 CHAPTER 4 Decision-Making Programs

EXAMPLE 4.4–3 Data Sorting

A vector x has been obtained from measurements. Suppose we want to consider any data
value in the range �0.1 � x � 0.1 as being erroneous. We want to remove all such ele-
ments and replace them with zeros at the end of the array. Develop two ways of doing this.
An example is given in the following table.

■ Solution
The following script file uses a for loop with conditional statements. Note how the empty
array [] is used.

x = [1.92,0.05,-2.43,-0.02,0.09,0.85,-0.06];

y = [];z = [];

for k = 1:length(x)

if abs(x(k)) >= 0.1

y = [y,x(k)];

else

z = [z,x(k)];

end

end

xnew = [y,zeros(size(z))]

The next script file uses the find function.

Before After

x(1) 1.92 1.92
x(2) 0.05 �2.43
x(3) �2.43 0.85
x(4) �0.02 0
x(5) 0.09 0
x(6) 0.85 0
x(7) �0.06 0

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 176

x = [1.92,0.05,-2.43,-0.02,0.09,0.85,-0.06];

y = x(find(abs(x) >= 0.1));

z = zeros(size(find(abs(x)<0.1)));

xnew = [y,z]

Use of Logical Arrays as Masks

Consider the array A.

The following program computes the array B by computing the square roots of
all the elements of A whose value is no less than 0, and adding 50 to each
element that is negative.

A = [0, -1, 4; 9, -14, 25; -34, 49, 64];
for m = 1:size(A,1)

for n = 1:size(A,2)
if A(m,n) >= 0

B(m,n) = sqrt(A(m,n));
else

B(m,n) = A(m,n) + 50;
end

end
end
B

The result is

When a logical array is used to address another array, it extracts from that
array the elements in the locations where the logical array has 1s. We can often
avoid the use of loops and branching and thus create simpler and faster programs
by using a logical array as a mask that selects elements of another array. Any
elements not selected will remain unchanged.

The following session creates the logical array C from the numeric array A
given previously.

>>A = [0, -1, 4; 9, -14, 25; -34, 49, 64];
>>C = (A >= 0);

B = J
0 49 2

3 36 5

16 7 8
K

A = J
0 -1 4

9 -14 25

-34 49 64 K

4.4 Loops 177

MASK

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 177

The result is

We can use this technique to compute the square root of only those elements
of A given in the previous program that are no less than 0 and add 50 to those
elements that are negative. The program is

A = [0, -1, 4; 9, -14, 25; -34, 49, 64];
C = (A >= 0);
A(C) = sqrt(A(C))
A(~C) = A(~C) + 50

The result after the third line is executed is

The result after the last line is executed is

while Loops

The while loop is used when the looping process terminates because a speci-
fied condition is satisfied, and thus the number of passes is not known in advance.
A simple example of a while loop is

x = 5;
while x < 25

disp(x)
x = 2*x - 1;

end

The results displayed by the disp statement are 5, 9, and 17. The loop variable x
is initially assigned the value 5, and it has this value until the statement x =
2*x - 1 is encountered the first time. The value then changes to 9. Before each
pass through the loop, x is checked to see whether its value is less than 25. If so, the
pass is made. If not, the loop is skipped and the program continues to execute any
statements following the end statement. A principal application of while loops is
when we want the loop to continue as long as a certain statement is true. Such a task
is often more difficult to do with a for loop.

The typical structure of a while loop follows.

A = J
0 49 2

3 36 5

16 7 8 K

A = J
0 -1 2

3 -14 25

-34 49 64 K

C = J
1 0 1

1 0 1

0 1 1 K

178 CHAPTER 4 Decision-Making Programs

WHILE LOOP

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 178

while logical expression
statements

end

MATLAB first tests the truth of the logical expression. A loop variable must be
included in the logical expression. For example, x is the loop variable in the state-
ment while x < 25. If the logical expression is true, the statements are exe-
cuted. For the while loop to function properly, the following two conditions
must occur:

1. The loop variable must have a value before the while statement is
executed.

2. The loop variable must be changed somehow by the statements.

The statements are executed once during each pass, using the current value of the
loop variable. The looping continues until the logical expression is false. Always
make sure that the loop variable has a value assigned to it before the start of
the loop.

Each while statement must be matched by an accompanying end. As with
for loops, the statements should be indented to improve readability. You may
nest while loops, and you may nest them with for loops and if statements.

It is possible to create an infinite loop, which is a loop that never ends. For
example:

x = 8;
while x ~= 0

x = x - 3;
end

Within the loop the variable x takes on the values 5, 2, �1, �4, . . . , and the con-
dition x ~= 0 is always satisfied, so the loop never stops.

4.4 Loops 179

Series Calculation with a while Loop

Write a script file to determine how many terms are required for the sum of the series 5k2

� 2k, k � 1, 2, 3, . . . to exceed 10,000. What is the sum for this many terms?

■ Solution
Because we do not know how many times we must evaluate the expression 5k2 � 2k, we
use a while loop. The script file is the following:

total = 0;

k = 0;

while total < 1e+4

k = k + 1;

total = 5*k^2 - 2*k + total;

end

disp(‘The number of terms is:’)

EXAMPLE 4.4–4

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 179

disp(k)

disp(‘The sum is:’)

disp(total)

The sum is 10,203 after 18 terms.

180 CHAPTER 4 Decision-Making Programs

Growth of a Bank Account

Determine how long it will take to accumulate at least $10,000 in a bank account if you
deposit $500 initially and $500 at the end of each year, if the account pays 5 percent an-
nual interest.

■ Solution
Because we do not know how many years it will take, a while loop should be used. The
script file is the following.

amount = 500;

k=0;

while amount < 10000

k = k+1;

amount = amount*1.05 + 500;

end

amount

k

The final results are amount � 1.0789e�004, or $10,789, and k � 14, or
14 years.

The Editor/Debugger is capable of automatically indenting to improve the
readability of a file. For example, if, else, elseif, for, and while
structures do not require indenting, but doing so enables the reader to identify
the structure more easily. The Editor/Debugger automatically indents the lines
after if, else, elseif, for, and while statements when you press the En-
ter key. It continues to indent until the corresponding end statement is reached.
It also uses syntax highlighting to identify key statements by displaying them in
different colors. Table 4.4–1 summarizes these statements.

Table 4.4–1 Some MATLAB programming statements

Command Description

else Delineates an alternate block of commands.
elseif Conditionally executes an alternate block of commands.
end Terminates for, while, and if statements.
find(x) Computes an array containing the indices of the nonzero elements of

the array x.
for Repeats commands a specified number of times.
if Executes commands conditionally.
while Repeats commands an indefinite number of times.

EXAMPLE 4.4–5

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 180

Test Your Understanding

T4.4–2 Write a script file using conditional statements to evaluate the following
function, assuming that the scalar variable x has a value. The function is

for x � 0, y � 3x � 1 for 0
 x � 10, and y � 9 sin

(5x� 50) � 31 for x 	 10. Use your file to evaluate y for x � �5, x � 5,
and x � 15, and check the results by hand.

T4.4–3 Use a for loop to determine the sum of the first 20 terms in the series
3k2, k � 1, 2, 3, . . . 20. (Answer: 8610.)

T4.4–4 Use a while loop to determine how many terms in the series 3k2, k �
1, 2, 3, . . . are required for the sum of the terms to exceed 2000. What is
the sum for this number of terms? (Answer: 13 terms, with a sum of
2457.)

T4.4–5 Rewrite the following code using a while loop to avoid using the
break command.

for k � 1:10
x � 50 - k^2;
if x < 0

break
end
y � sqrt(x)

end

T4.4–6 Find to two decimal places the largest value of x before the error in the se-
ries approximation ex 1 � x � x2/2 � x3/6 exceeds 1 percent. (Answer:
x � 0.83.)

4.5 The switch Structure
The switch structure provides an alternative to using the if, elseif, and
else commands. Anything programmed using switch can also be pro-
grammed using if structures. However, for some applications the switch
structure is more readable than code using the if structure. The syntax is

switch input expression (scalar or string)
case value1

statement group 1
case value2

statement group 2

y = 1x2
+ 1

4.5 The switch Structure 181

L

SWITCH
STRUCTURE

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 181

.

.

.
otherwise

statement group n
end

The input expression is compared to each case value. If they are the same,
then the statements following that case statement are executed and processing
continues with any statements after the end statement. If the input expression is
a string, then it is equal to the case value if strcmp returns a value of 1 (true).
Only the first matching case is executed. If no match occurs, the statements fol-
lowing the otherwise statement are executed. However, the otherwise
statement is optional. If it is absent, execution continues with the statements fol-
lowing the end statement if no match exists. Each case value statement must
be on a single line.

For example, suppose the variable angle has an integer value that repre-
sents an angle measured in degrees from North. The following switch block
displays the point on the compass that corresponds to that angle.

switch angle
case 45

disp(‘Northeast’)
case 135

disp(‘Southeast’)
case 225

disp(‘Southwest’)
case 315

disp(‘Northwest’)
otherwise

disp(‘Direction Unknown’)
end

The use of a string variable for the input expression can result in very read-
able programs. For example, in the following code the numeric vector x has val-
ues, and the user enters the value of the string variable response; its intended
values are min, max, or sum. The code then either finds the minimum or max-
imum value of x or sums the elements of x, as directed by the user.

t = [0:100]; x = exp(-t).*sin(t);
response = input(‘Type min, max, or sum.’,’s’)
response = lower(response);
switch response

case ‘min’
minimum = min(x)

case ‘max’
maximum = max(x)

182 CHAPTER 4 Decision-Making Programs

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 182

case ‘sum’
total = sum(x)

otherwise
disp(‘You have not entered a proper choice.’)

end

The switch statement can handle multiple conditions in a single case
statement by enclosing the case value in a cell array (Cell arrays are denoted
by curly braces and are treated in Section 2.7.). For example, the following
switch block displays the corresponding point on the compass, given the in-
teger angle measured from North.

switch angle
case {0,360}

disp(‘North’)
case {-180,180}

disp(‘South’)
case {-270,90}

disp(‘East’)
case {-90,270}

disp(‘West’)
otherwise

disp(‘Direction Unknown’)
end

Test Your Understanding

T4.5–1 Write a program using the switch structure to input one angle, whose
value may be 45, �45, 135, or �135�, and display the quadrant (1, 2, 3,
or 4) containing the angle.

4.5 The switch Structure 183

Using the switch Structure for Calendar Calculations

Use the switch structure to compute the total elapsed days in a year, given the number
(1–12) of the month, the day, and an indication of whether or not the year is a leap year.

■ Solution
Note that February has an extra day if the year is a leap year. The following function com-
putes the total elapsed number of days in a year, given the month, the day of the month,
and the value of extra_day, which is 1 for a leap year, and 0 otherwise.

function total_days = total(month,day,extra_day)

total_days = day;

for k = 1:month - 1

switch k

EXAMPLE 4.5–1

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 183

case {1,3,5,7,8,10,12}

total_days = total_days + 31;

case {4,6,9,11}

total_days = total_days + 30;

case 2

total_days = total_days + 28 + extra_day;

end

end

The function can be used as shown in the following program.

month = input(‘Enter month (1 - 12): ‘);

day = input(‘Enter day (1 - 31): ‘);

extra_day = input(‘Enter 1 for leap year; 0 otherwise: ‘);

total_days = total(month,day,extra_day)

4.6 Debugging MATLAB Programs
Use of the MATLAB Editor/Debugger as an M-file editor was discussed in Sec-
tion 1.4 of Chapter 1. Figure 1.4–1 (in Chapter 1) shows the Editor/Debugger screen.
Figure 4.6–1 shows the Debugger containing two programs to be analyzed. Here we
discuss its use as a debugger. Before you use the Debugger, try to debug your pro-
gram using the common sense guidelines presented under Debugging Script Files
in Section 1.4. MATLAB programs are often short because of the power of its
commands, and you may not need to use the Debugger unless you are writing

184 CHAPTER 4 Decision-Making Programs

Figure 4.6–1 The Editor/Debugger containing two programs to be analyzed.

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 184

4.6 Debugging MATLAB Programs 185

large programs. However, the cell mode discussed in this section is useful even
for short programs. The Editor/Debugger menu bar contains the following
items: File, Edit, Text, Cell, Tools, Debug, Desktop, Window, and Help. The
File, Edit, Desktop, Window, and Help menus are similar to those in the
Desktop. The Cell menu will be discussed shortly. The Tools menu involves ad-
vanced topics that will not be treated in this text. The Desktop menu is similar to
that in the Command window. It enables you to dock and undock windows, arrange
the Editor window, and turn the Editor toolbar on and off.

Below the menu bar is the Editor/Debugger toolbar. It enables you to
access several of the items in the menus with one click of the mouse. Hold the
mouse cursor over a button on the toolbar to see its function. For example,
clicking the button with the binoculars icon is equivalent to selecting Find
and Replace from the Edit menu. One item on the toolbar that is not in the
menus is the function button with the script f icon (f). Use this button to go to
a particular function in the M-file. The list of functions that you will see in-
cludes only those functions whose function statements are in the program. The
list does not include functions that are called from the M-file.

The Text menu supplements the Edit menu for creating M-files. With the
Text menu you can insert or remove comments, increase or decrease the amount
of indenting, turn on smart indenting, and evaluate and display the values of se-
lected variables in the Command window. Click anywhere in a previously typed
line, and then click Comment in the Text menu. This makes the entire line a com-
ment. To turn a commented line into an executable line, click anywhere in the
line, and then click Uncomment in the Text menu.

Cell Mode

The cell mode can be used to debug programs. It can also be used to generate a
report. See the end of Section 5.2 for a discussion of the latter usage. A cell is a
group of commands. (Such a cell should not be confused with the cell array data
type covered in Section 2.7.) The double percent character (%%) is used to mark
the beginning of a new cell, and it is called a cell divider. To use the cell mode,
first enter your program into the Editor. Then click the Cell button and select
Enable Cell Mode. The cell toolbar then appears, as shown in Figure 4.6–2.

Consider the following simple program that plots either a quadratic or a
cubic function.

%% Evaluate a quadratic and a cubic.
clear, clc
x = linspace(0, 10, 300);
%% Quadratic
y1 = polyval([1, -8, 6], x); plot(x,y1)
%% Cubic
y2 = polyval([1, -11, 9, 9], x); plot(x,y2)

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 185

After entering and saving the program, and enabling cell mode, you can click
on one of the evaluation icons shown on the left-hand side of the cell toolbar (see
Figure 4.6–2). These enable you to evaluate the current single cell (where the cur-
sor is currently), to evaluate the current cell and advance to the next cell, or to
evaluate the entire program.

A useful feature of cell mode is that it enables you to evaluate the results of
changing a parameter. For example, in Figure 4.6–2, suppose the cursor is next
to the number �8. If you click the plus (�) or minus (�) sign in the cell toolbar,
the parameter (�8) will be decremented or incremented by the increment shown
in the window (1.0 is the default, which you can change). If you have already run
the program and the quadratic plot is on the screen, click the minus sign once to
change the parameter from �8 to �9 and watch the plot change.

You can also change the parameter by a divisive or multiplicative factor (1.1
is the default). Click the divide or multiply symbol on the cell toolbar.

The Debug Menu

Breakpoints are points in the file where execution stops temporarily so that
you can examine the values of the variables up to that point. You set break-
points with the Set/Clear Breakpoint item on the Debug menu. Use the Step,
Step In, and Step Out items on the Debug menu to step through your file af-
ter you have set breakpoints and run the file. Click Step to watch the script
execute one step at a time. Click Step In to step into the first executable line
in a function being called. Click Step Out in a called function to run the rest
of the function and then return to the calling program.

The solid green arrow to the left of the line text indicates the next line to be
executed. When this arrow changes to a hollow green arrow, MATLAB control
is now in a function being called. Execution returns to the line with the solid
green arrow after the function completes its operation. The arrow turns yellow

186 CHAPTER 4 Decision-Making Programs

Figure 4.6–2 The cell mode of the Editor/Debugger.

BREAKPOINT

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 186

at a line where execution pauses or where a function completes its operation.
When the program pauses you can assign new values to a variable, using either
the Command window or the Array Editor.

Click on the Go Until Cursor item to run the file until it reaches the line
where the cursor is; this process sets a temporary breakpoint at the cursor. You
can save and execute your program directly from the Debug menu if you want,
by clicking on Run (or Save and Run if you have made changes). You need
not set any breakpoints beforehand. Click Exit Debug Mode to return to nor-
mal editing. To save any changes you have made to the program, first exit the
debug mode, and then save the file.

Using Breakpoints

Most debugging sessions start by setting a breakpoint. A breakpoint stops M-file
execution at a specified line and allows you to view or change values in the func-
tion’s workspace before resuming execution. To set a breakpoint, position the
cursor in the line of text and click on the breakpoint icon in the toolbar or select
Set/Clear Breakpoints from the Debug menu.You can also set a breakpoint by
right-clicking on the line of text to bring up the Context menu and choose
Set/Clear Breakpoint. A red circle next to a line indicates that a breakpoint is set
at that line. If the line selected for a breakpoint is not an executable line, then the
breakpoint is set at the next executable line. The Debug menu enables you to
clear all the breakpoints (select Clear Breakpoints in All Files). The Debug
menu also lets you halt M-file execution if your code generates a warning, an
error, or a NaN or Inf value (select Stop if Errors/Warnings).

For more details about the menus and examples of using the Debugger, see
Chapter 4 of Palm, (2005a).

4.7 Summary
Now that you have finished this chapter, you should be able to write programs
that can perform decision-making procedures; that is, the program’s operations
depend on results of the program’s calculations or on input from the user. Sec-
tions 4.1 through 4.3 covered the required features: the relational operators, the
logical operators and functions, and the conditional statements.

You should also be able to use MATLAB loop structures to write programs
that repeat calculations a specified number of times or until some condition is sat-
isfied. This feature enables you to solve problems of great complexity or requir-
ing numerous calculations. The for loop and while loop structures were
covered in Section 4.4. Section 4.5 covered the switch structure.

Section 4.6 gave an overview of how to debug programs using the Editor/
Debugger. Tables summarizing the MATLAB commands introduced in this
chapter are located throughout the chapter. Table 4.7–1 will help you locate these
tables. It also summarizes those commands not found in the other tables.

4.7 Summary 187

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 187

Key Terms with Page References

188 CHAPTER 4 Decision-Making Programs

Table 4.7–1 Guide to MATLAB commands introduced in Chapter 4

Relational operators Table 4.1–1
Logical operators Table 4.2–1
Order of precedence for operator types Table 4.2–2
Truth table Table 4.2–3
Logical functions Table 4.2–4
Some MATLAB programming statements Table 4.4–1

Miscellaneous commands

Command Description Section

break Terminates the execution of a for or a while loop. 4.4
case Used with switch to direct program execution. 4.5
continue Passes control to the next iteration of a for or while loop. 4.4
double Converts a logical array to class double. 4.1
else Delineates an alternate block of statements. 4.3
elseif Conditionally executes statements. 4.3
end Terminates for, while, and if statements. 4.3, 4.4
for Repeats statements a specific number of times. 4.4
if Executes statements conditionally. 4.3
input(‘s1’, ‘s’) Display the prompt string s1 and stores user input as a string. 4.3
logical Converts numeric values to logical values. 4.1
lower(‘s’) Converts the string s to all lowercase. 4.5
nargin Determines the number of input arguments of a function. 4.3
nargout Determines the number of output arguments of a function. 4.3
switch Directs program execution by comparing the input expression with

the associated case expressions. 4.5
while Repeats statements an indefinite number of times. 4.4
xor Exclusive OR function. 4.2

Breakpoint, 186
Conditional statement, 163
Flowchart, 169
for loop, 171
Logical operator, 156
Mask, 177

Nested loops, 172
Relational operator, 153
switch structure, 181
Truth table, 159
while loop, 178

Problems
You can find answers to problems marked with an asterisk at the end of the text.

Section 4.1

1.* Suppose that x � 6. Find the results of the following operations by
hand and use MATLAB to check your results.
a. z � (x<10)
b. z � (x��10)

pal48185_04_153-204.qxd 10/4/07 3:07 PM Page 188

c. z � (x>�4)
d. z � (x~�7)

2.* Find the results of the following operations by hand and use MATLAB to
check your results.
a. z � 6>3�8
b. z � 6�3>8
c. z � 4>(2�9)
d. z � (4<7)�3
e. z � 4<7�3
f. z � (4<7)*5
g. z � 4<(7*5)
h. z � 2/5>�5

3.* Suppose that x � [10, -2, 6, 5, -3] and y � [9,-3,
2, 5,-1]. Find the results of the following operations by hand and use
MATLAB to check your results.
a. z � (x<6) b. z � (x<�y)
c. z � (x��y) d. z � (x~�y)

4. For the arrays x and y given below, use MATLAB to find all the elements
in x that are greater than the corresponding elements in y.

x � [-3, 0, 0, 2, 6, 8] y � [-5, -2, 0, 3, 4, 10]

5. The array price given below contains the price in dollars of a certain
stock over 10 days. Use MATLAB to determine how many days the price
was above $20.

price � [19, 18, 22, 21, 25, 19, 17, 21, 27, 29]

6. The arrays price_A and price_B given below contain the price in
dollars of two stocks over 10 days. Use MATLAB to determine how
many days the price of stock A was above the price of stock B.
price_A � [19, 18, 22, 21, 25, 19, 17, 21, 27, 29]
price_B � [22, 17, 20, 19, 24, 18, 16, 25, 28, 27]

7. The arrays price_A, price_B, and price_C given below contain the
price in dollars of three stocks over 10 days.
a. Use MATLAB to determine how many days the price of stock A was

above both the price of stock B and the price of stock C.
b. Use MATLAB to determine how many days the price of stock A was

above either the price of stock B or the price of stock C.
c. Use MATLAB to determine how many days the price of stock A

was above either the price of stock B or the price of stock C,
but not both.

price_A � [19, 18, 22, 21, 25, 19, 17, 21, 27, 29]
price_B � [22, 17, 20, 19, 24, 18, 16, 25, 28, 27]
price_C � [17, 13, 22, 23, 19, 17, 20, 21, 24, 28]

Problems 189

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 189

190 CHAPTER 4 Decision-Making Programs

Section 4.2

8.* Suppose that x � [-3, 0, 0, 2, 5, 8] and y � [-5, -2,
0, 3, 4, 10]. Find the results of the following operations by hand
and use MATLAB to check your results.
a. z � y<~x b. z � x&y
c. z � x|y d. z � xor(x,y)

9. The height and speed of a projectile (such as a thrown ball) launched with
a speed of 0 at an angle A to the horizontal are given by

where g is the acceleration due to gravity. The projectile will strike the
ground when h(t) � 0, which gives the time to hit thit � 2(�0 /g) sin A.

Suppose that A � 30�, 0 � 40 m/s, and g � 9.81 m/s2. Use the
MATLAB relational and logical operators to find the times when
a. The height is no less than 15 m.
b. The height is no less than 15 m and the speed is simultaneously no

greater than 36 m/s.
c. The height is less than 5 m or the speed is greater than 35 m/s.

10.* The price, in dollars, of a certain stock over a 10-day period is given in
the following array.

price � [19, 18, 22, 21, 25, 19, 17, 21, 27, 29]

Suppose you owned 1000 shares at the start of the 10-day period, and
you bought 100 shares every day the price was below $20 and sold 100
shares every day the price was above $25. Use MATLAB to compute
(a) the amount you spent in buying shares, (b) the amount you received
from the sale of shares, (c) the total number of shares you own after the
10th day, and (d) the net increase in the worth of your portfolio.

11. Let e1 and e2 be logical expressions. DeMorgan’s laws for logical
expressions state that

NOT(e1 AND e2) implies that (NOT e1) OR (NOT e2)

and

NOT(e1 OR e2) implies that (NOT e1) AND (NOT e2)

Use these laws to find an equivalent expression for each of the following
expressions and use MATLAB to verify the equivalence.
a. ~((x < 10)&(x>�6))
b. ~((x �� 2)|(x > 5))

y

 y(t) = 2y2
0 - 2y0gt sin A + g2t2

 h(t) = y0t sin A - 0.5gt2

y

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 190

12. Are these following expressions equivalent? Use MATLAB to check your
answer for specific values of a, b, c, and d.
a. 1. (a��b)&((b��c)|(a��c))

2. (a��b)|((b��c)&(a��c))
b. 1. (a<b)&((a>c)|(a>d))

2. (a<b)&(a>c)|((a<b)&(a>d))

Section 4.3

13. Write a script file using conditional statements to evaluate the following
function, assuming that the scalar variable x has a value. The function is
y � ex � 1 for x � �1, y � 2 � cos(�x) for �1
 x � 5, and y � 10(x � 5)
� 1 for x 	 5. Use your file to evaluate y for x � �5, x � 3, and x � 15,
and check the results by hand.

14. Rewrite the following statements to use only one if statement.

if x < y
if z < 10

w � x*y*z
end

end

15. Write a program that accepts a numerical value x from 0 to 100 as input
and computes and displays the corresponding letter grade given by the
following table.
A x 	 90
B 80
 x
 89
C 70
 x
 79
D 60
 x
 69
F x � 60
a. Use nested if statements in your program (do not use elseif).
b. Use only elseif clauses in your program.

16. Write a program that accepts a year and determines whether or not the
year is a leap year. Use the mod function. The output should be the
variable extra_day, which should be 1 if the year is a leap year and
0 otherwise. The rules for determining leap years in the Gregorian
calendar are:

1. All years evenly divisible by 400 are leap years.
2. Years evenly divisible by 100 but not by 400 are not leap years.
3. Years divisible by 4 but not by 100 are leap years.
4. All other years are not leap years.

For example, the years 1800, 1900, 2100, 2300, and 2500 are not leap
years, but 2400 is a leap year.

Problems 191

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 191

17. Figure P17 shows a mass-spring model of the type used to design packag-
ing systems and vehicle suspensions, for example. The springs exert a
force that is proportional to their compression, and the proportionality
constant is the spring constant k. The two side springs provide additional
resistance if the weight W is too heavy for the center spring. When the
weight W is gently placed, it moves through a distance x before coming to
rest. From statics, the weight force must balance the spring forces at this
new position. Thus

a. Create a function file that computes the distance x, using the input
parameters W, k1, k2, and d. Test your function for the following two
cases, using the values k1 � 104 N/m; k2 � 1.5 � 104 N/m; d � 0.1 m.

b. Use your function to plot x versus W for 0
 W
 3000 N for the
values of k1, k2, and d given in part a.

W = 2000 N

W = 500 N

if x Ú d W = k1x + 2k2(x - d)

if x 6 d W = k1x

192 CHAPTER 4 Decision-Making Programs

d

W

k2

k1

k2

x

Platform

Figure P17

Section 4.4

18. Use a for loop to plot the function given in Problem 13 over the interval
�2
 x
 6. Properly label the plot. The variable y represents height in
kilometers, and the variable x represents time in seconds.

19. Plot the function y � 10(1 � e�x/4) over the interval 0
 x
 xmax, using a
while loop to determine the value of xmax such that y(xmax) � 9.8.
Properly label the plot. The variable y represents force in newtons, and
the variable x represents time in seconds.

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 192

20. Use a for loop to determine the sum of the first 10 terms in the series
5k3, k � 1, 2, 3, . . . 10.

21. The (x, y) coordinates of a certain object as a function of time t are given by

for 0
 t
 4. Write a program to determine the time at which the object
is the closest to the origin at (0, 0). Determine also the minimum distance.
Do this two ways:
a. By using a for loop.
b. By not using a for loop.

22. Consider the array A.

Write a program that computes the array B by computing the natural loga-
rithm of all the elements of A whose value is no less than 1, and adding
20 to all the other elements. Do this two ways:
a. By using a for loop with conditional statements.
b. By using a logical array as a mask.

23. We want to analyze the mass-spring system discussed in Problem 17 for
the case in which the weight W is dropped onto the platform attached to
the center spring. If the weight is dropped from a height h above the plat-
form, we can find the maximum spring compression x by equating the
weight’s gravitational potential energy W(h � x) with the potential energy
stored in the springs. Thus

which can be solved for x as

and

which gives the following quadratic equation to solve for x:

a. Create a function file that computes the maximum compression x due
to the falling weight. The function’s input parameters are k1, k2, d, W,
and h. Test your function for the following two cases, using the values
k1 � 104 N/m; k2 � 1.5 � 104 N/m; and d � 0.1 m.

(k1 + 2k2)x
2

- (4k2d + 2W)x + 2k2d
2

- 2Wh = 0 if x Ú d

W(h + x) =
1
2k1x

2
+

1
2(2k2)(x - d)2 if x Ú d

x =

W ; 2W2
+ 2k1Wh

k1
 if x 6 d

W(h + x) =
1
2k1x

2 if x 6 d

A = J
3 5 -4

-8 -1 33

-17 6 -9 K

y(t) = 25t2
- 120t + 144x(t) = 5t - 10

Problems 193

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 193

194 CHAPTER 4 Decision-Making Programs

b. Use your function file to generate a plot of x versus h for 0
 h
 2m.
Use W � 100 N and the preceding values for k1, k2, and d.

24. Electrical resistors are said to be connected “in series” if the same current
passes through each and “in parallel” if the same voltage is applied across
each. If in series, they are equivalent to a single resistor whose resistance
is given by

If in parallel, their equivalent resistance is given by

Write an M-file that prompts the user for the type of connection (series or
parallel) and the number of resistors n and then computes the equivalent
resistance.

25. a. An ideal diode blocks the flow of current in the direction opposite that
of the diode’s arrow symbol. It can be used to make a half-wave
rectifier as shown in Figure P25a. For the ideal diode, the voltage L
across the load RL is given by

y

1

R
=

1

R1
+

1

R2
+

1

R3
+

Á
+

1

Rn

R = R1 + R2 + R3 +
Á

+ Rn

W = 2000 N, h = 0.5 m

W = 100 N, h = 0.5 m

+

–

v
S

v
L

Diode

+

–

v
S

v
L

+ –

(a)

(b)

0 .6 V

Figure P25

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 194

Suppose the supply voltage is

yS(t) = 3e-t>3 sin(pt) volts

yL = eyS if yS 7 0

0 if yS … 0

Problems 195

0 1 0 20 3 0
0

10

20

30
1

2

3

4

5

6

x (m iles)

y
(miles)

East

North

Figure P26

where time t is in seconds. Write a MATLAB program to plot the voltage
�L versus t for 0
 t
 10.
b. A more accurate model of the diode’s behavior is given by the offset

diode model, which accounts for the offset voltage inherent in
semiconductor diodes. The offset model contains an ideal diode and a
battery whose voltage equals the offset voltage (which is approxi-
mately 0.6 V for silicon diodes) [Rizzoni, 1996]. The half-wave
rectifier using this model is shown in Figure P25b. For this circuit,

Using the same supply voltage given in part a, plot the voltage �L versus t
for 0
 t
 10; then compare the results with the plot obtained in part a.

yL = eyS - 0.6 if yS 7 0.6

0 if yS … 0.6

26.* A company wants to locate a distribution center that will serve six of its
major customers in a 30 � 30 mi area. The locations of the customers

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 195

relative to the southwest corner of the area are given in the following
table in terms of (x, y) coordinates (the x direction is east; the y direction
is north) (see Figure P26). Also given is the volume in tons per week that
must be delivered from the distribution center to each customer. The
weekly delivery cost ci for customer i depends on the volume Vi and the
distance di from the distribution center. For simplicity we will assume that
this distance is the straight-line distance. (This assumes that the road
network is dense.) The weekly cost is given by ci � 0.5diVi; i � 1, . . . , 6.
Find the location of the distribution center (to the nearest mile) that
minimizes the total weekly cost to service all six customers.

196 CHAPTER 4 Decision-Making Programs

27. A company has the choice of producing up to four different products with
its machinery, which consists of lathes, grinders, and milling machines.
The number of hours on each machine required to produce a product is
given in the following table, along with the number of hours available per
week on each type of machine. Assume that the company can sell every-
thing it produces. The profit per item for each product appears in the last
line of the table.

Product

1 2 3 4 Hours available

Hours required
Lathe 1 2 0.5 3 40
Grinder 0 2 4 1 30
Milling 3 1 5 2 45

Unit profit ($) 100 150 90 120

x location y location Volume
Customer (miles) (miles) (tons/week)

1 1 28 3
2 7 18 7
3 8 16 4
4 17 2 5
5 22 10 2
6 27 8 6

a. Determine how many units of each product the company should make
to maximize its total profit and then compute this profit. Remember,
the company cannot make fractional units, so your answer must be in
integers. (Hint: First estimate the upper limits on the number of prod-
ucts that can be produced without exceeding the available capacity.)

b. How sensitive is your answer? How much does the profit decrease if
you make one more or one less item than the optimum?

28. A certain company makes televisions, stereo units, and speakers. Its parts
inventory includes chassis, picture tubes, speaker cones, power supplies,

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 196

and electronics. The inventory, required components, and profit for each
product appear in the following table. Determine how many of each
product to make in order to maximize the profit.

Problems 197

Product

Television Stereo unit Speaker unit Inventory

Requirements
Chassis 1 1 0 450
Picture Tube 1 0 0 250
Speaker Cone 2 2 1 800
Power Supply 1 1 0 450
Electronics 2 2 1 600

Unit profit ($) 80 50 40

29. Use a while loop to determine how many terms in the series 2k, k � 1,
2, 3, . . . , are required for the sum of the terms to exceed 2000. What is
the sum for this number of terms?

30. One bank pays 5.5 percent annual interest, while a second bank pays
4.5 percent annual interest. Determine how much longer it will take to
accumulate at least $50,000 in the second bank account if you deposit
$1000 initially, and $1000 at the end of each year.

31.* Use a loop in MATLAB to determine how long it will take to
accumulate $1,000,000 in a bank account if you deposit $10,000 initially
and $10,000 at the end of each year; the account pays 6 percent annual
interest.

32. A weight W is supported by two cables anchored a distance D apart
(see Figure P32). The cable length LAB is given, but the length LAC is
to be selected. Each cable can support a maximum tension force equal
to W. For the weight to remain stationary, the total horizontal force
and total vertical force must each be zero. This principle gives the
equations

We can solve these equations for the tension forces TAB and TAC if we
know the angles � and �. From the law of cosines

u = cos-1aD2
+ L2

AB - L2
AC

2DLAB
b

TAB sin u + TAC sin f = W

-TAB cos u + TAC cos f = 0

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 197

From the law of sines

For the given values D � 6 ft, LAB � 3 ft, and W � 2000 lb, use a loop in
MATLAB to find LAC min, the shortest length LAC we can use without TAB
or TAC exceeding 2000 lb. Note that the largest LAC can be is 6.7 ft (which
corresponds to � � 90�). Plot the tension forces TAB and TAC on the same
graph versus LAC for LAC min
 LAC
 6.7.

33.* In the structure in Figure P33a, six wires support three beams. Wires 1
and 2 can support no more than 1200 N each, wires 3 and 4 can support
no more than 400 N each, and wires 5 and 6 no more than 200 N each.
Three equal weights W are attached at the points shown. Assuming that
the structure is stationary and that the weights of the wires and the beams
are very small compared to W, the principles of statics applied to a partic-
ular beam state that the sum of vertical forces is zero and that the sum of
moments about any point is also zero. Applying these principles to each
beam using the free-body diagrams shown in Figure P33b, we obtain the
following equations. Let the tension force in wire i be Ti. For beam 1

For beam 2

-W - 2T5 + 3T4 = 0

T3 + T4 = W + T5

-T3 - 4T4 - 5W - 6T6 + 7T2 = 0

T1 + T2 = T3 + T4 + W + T6

f = sin-1aLAB sin u

LAC
b

198 CHAPTER 4 Decision-Making Programs

θ �

W

A

B

C

D

LA B LAC

Figure P32

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 198

For beam 3

Find the maximum value of the weight W the structure can support.
Remember that the wires cannot support compression, so Ti must be
nonnegative.

-W + 3T6 = 0

T5 + T6 = W

Problems 199

34. The equations describing the circuit shown in Figure P34 are:

 i2 = i3 + i5

 i1 = i2 + i4

 -R5i5 + R3i3 + y2 = 0

 -R4i4 + R2i2 + R5i5 = 0

 -y1 + R1i1 + R4i4 = 0

1m
1 2

3

(a)

(b)

4

5

6
W

W

W

1m 1m 1m 1m 1m 1m

W

W

W

T1 T2

T6T4T3

T5
T6

1 3 1 1 1

11 1 1

1 2

Figure P33

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 199

35. Many applications require us to know the temperature distribution in an
object. For example, this information is important for controlling the
material properties, such as hardness, when cooling an object formed
from molten metal. In a heat transfer course, the following description of
the temperature distribution in a flat, rectangular metal plate is often
derived. The temperature is held constant at T1 on three sides, and at T2 on

200 CHAPTER 4 Decision-Making Programs

+

–

+

–

v1 v2R5

R1 R2 R3

R4

i5i4

i3i2i1

Figure P34

y

x

T1

T2

T1

T1
0 L

0

W

T (x ,y)

Figure P35

a. The given values of the resistances and the voltage �1 are R1 � 5, R2 �
100, R3 � 200, R4 � 150, R5 � 250 k�, and �1 � 100 V. (Note that 1 k�
� 1000 �.) Suppose that each resistance is rated to carry a current of no
more than 1 mA (� 0.001 A). Determine the allowable range of
positive values for the voltage 2.

b. Suppose we want to investigate how the resistance R3 limits the
allowable range for �2. Obtain a plot of the allowable limit on 2 as
a function of R3 for 150
 R3
 250 k�.

y

y

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 200

the fourth side (see Figure P35). The temperature T(x, y) as a function of
the xy coordinates shown is given by

where

Use the following data: T1 � 70�F, T2 � 200�F, and W � L � 2 ft.
a. The terms in the preceding series become smaller in magnitude as n

increases. Write a MATLAB program to verify this fact for n � 1, . . . ,
19 for the center of the plate (x � y � 1).

b. Using x � y � 1, write a MATLAB program to determine how many
terms are required in the series to produce a temperature calculation
that is accurate to within 1 percent. (That is, for what value of n will
the addition of the next term in the series produce a change in T of less
than 1 percent.) Use your physical insight to determine whether this
answer gives the correct temperature at the center of the plate.

c. Modify the program from part b to compute the temperatures in the
plate; use a spacing of 0.2 for both x and y.

36. Consider the following script file. Fill in the lines of the following table
with the values that would be displayed immediately after the while state-
ment if you ran the script file. Write in the values the variables have each
time the while statement is executed. You might need more or fewer lines
in the table. Then type in the file, and run it to check your answers.

w(x, y) =

2
p a

q

n odd

2
n

 sin anpx

L
b sinh(npy>L)

sinh(npW>L)

T(x, y) = (T2 - T1) w (x, y) + T1

Problems 201

Pass

First

Second

Third

Fourth

Fifth

k b x y

k � 1;b � -2;x � -1;y � -2;
while k <� 3

k, b, x, y
y � x^2 - 3;
if y < b

b � y;

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 201

end
x � x � 1;
k � k � 1;

end

37. Assume that the human player makes the first move against the computer
in a game of Tic-Tac-Toe, which has a 3 � 3 grid. Write a MATLAB
function that lets the computer respond to that move. The function’s input
argument should be the cell location of the human player’s move. The
function’s output should be the cell location of the computer’s first move.
Label the cells as 1, 2, 3 across the top row; 4, 5, 6 across the middle row,
and 7, 8, 9 across the bottom row.

38. Suppose you project that you will be able to deposit the following
monthly amounts into a savings account for a period of five years.
The account initially has no money in it.

Year 1 2 3 4 5
Monthly deposit ($) 300 350 350 350 400

At the end of each year in which the account balance is at least $3000,
you withdraw $2000 to buy a certificate of deposit (CD), which pays 6
percent interest compounded annually.

Write a MATLAB program to compute how much money will
accumulate in five years in the account and in any CDs you buy. Run
the program for two different savings interest rates: 4 percent and
5 percent.

39.* A certain company manufactures and sells golf carts. At the end of each
week, the company transfers the carts produced that week into storage
(inventory). All carts that are sold are taken from the inventory. A simple
model of this process is

where

The projected weekly sales for 10 weeks are

Week 1 2 3 4 5 6 7 8 9 10
Sales 50 55 60 70 70 75 80 80 90 55

S(k) = the number of carts sold in week k

I(k) = the number of carts in inventory in week k

P(k) = the number of carts produced in week k

I(k + 1) = P(k) + I(k) - S(k)

202 CHAPTER 4 Decision-Making Programs

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 202

Suppose the weekly production is based on the previous week’s sales so
that P(k) � S(k � 1). Assume that the first week’s production is 50 carts;
that is, P(1) � 50. Write a MATLAB program to compute and plot the
number of carts in inventory for each of the 10 weeks or until the
inventory drops below zero. Run the program for two cases: a. an initial
inventory of 50 carts so that I(1) � 50, and b. an initial inventory of 30
carts so that I(1) � 30.

40. Redo Problem 39 with the restriction that the next week’s production is
set to zero if the inventory exceeds 40 carts.

Section 4.5

41. The following table gives the approximate values of the static coefficient
of friction � for various materials.

Problems 203

Materials �

Metal on metal 0.20
Wood on wood 0.35
Metal on wood 0.40
Rubber on concrete 0.70

To start a weight W moving on a horizontal surface, you must push with a
force F, where F � �W. Write a MATLAB program that uses the
switch structure to compute the force F. The program should accept as
input the value of W and the type of materials.

42. The height and speed of a projectile (such as a thrown ball) launched with
a speed of 0 at an angle A to the horizontal are given by

where g is the acceleration due to gravity. The projectile will strike the
ground when h(t) � 0, which gives the time to hit thit � 2(0 /g) sin A.

Use the switch structure to write a MATLAB program to compute
either the maximum height reached by the projectile, the total horizontal
distance traveled, or the time to hit. The program should accept as input
the user’s choice of which quantity to compute and the values of �0 , A,
and g. Test the program for the case where �0 � 40 m/s, A � 30�, and g �
9.81 m/s2.

43. Use the switch structure to write a MATLAB program to compute how
much money accumulates in a savings account in one year. The program
should accept the following input: the initial amount of money deposited
in the account; the frequency of interest compounding (monthly,
quarterly, semiannually, or annually); and the interest rate. Run your

y

 y(t) = 1y2
0 - 2y0gt sin A + g2t2

 h(t) = y0t sin A - 0.5gt2

y

pal48185_04_153-204.qxd 10/4/07 5:52 PM Page 203

program for a $1000 initial deposit for each case; use a 5 percent interest
rate. Compare the amounts of money that accumulate for each case.

44. We often need to estimate the pressures and volumes of a gas in a con-
tainer. The van der Waals equation is often used for this purpose. It is

P =

RT

VN - b
-

a

VN 2

204 CHAPTER 4 Decision-Making Programs

Gas a (L2-atm/mol2) b (L/mol)

Helium, He 0.0341 0.0237
Hydrogen, H2 0.244 0.0266
Oxygen, O2 1.36 0.0318
Chlorine, Cl2 6.49 0.0562
Carbon dioxide, CO2 3.59 0.0427

45. Using the program developed in Problem 16, write a program that uses
the switch structure to compute the number of days in a year up to a
given date, given the year, the month, and the day of the month.

equation. The function’s input arguments should be T, , and a string
variable containing the name of a gas listed in the table. Test your

VN

where the term b is a correction for the volume of the molecules, and the
term is a correction for molecular attractions. The gas constant is R, a>VN 2

the absolute temperature is T, and the gas specific volume is The VN .
value of R is the same for all gases; it is R � 0.08206 L-atm/mol-K. The
values of a and b depend on the type of gas. Some values are given in the
following table. Write a user-defined function using the switch
structure that computes the pressure P on the basis of the van der Waals

function for chlorine (Cl2) for T � 300 K and VN = 20 L>mol.

pal48185_04_153-204.qxd 9/30/07 2:48 PM Page 204

C H A P T E R 5
Advanced Plotting
and Model Building
OUTLINE
5.1 xy Plotting Functions

5.2 Additional Commands and Plot Types

5.3 Interactive Plotting in MATLAB

5.4 Function Discovery

5.5 Regression

5.6 The Basic Fitting Interface

5.7 Three-Dimensional Plots

5.8 Summary

Problems

In this chapter you will learn additional features to use to create a variety of two-
dimensional plots, which are also called xy plots, and three-dimensional plots called
xyz plots, or surface plots. Two-dimensional plots are discussed in Sections 5.1
through 5.3. Section 5.7 discusses three-dimensional plots. These plotting functions
are described in the graph2d and graph3d help categories, so typing help
graph2d or help graph3dwill display a list of the relevant plotting functions.

An important application of plotting is function discovery, the technique for
using data plots to obtain a mathematical function or “mathematical model” that
describes the process that generated the data (Section 5.4). Another method for
obtaining models is regression, covered in Sections 5.5 and 5.6.

5.1 xy Plotting Functions
The “anatomy” and nomenclature of a typical xy plot is shown in Figure 5.1–1,
in which the plot of a data set and a curve generated from an equation appear. A
plot can be made from measured data or from an equation. When data is plotted,

205

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 205

each data point is plotted with a data symbol, or point marker, such as the small
circles shown in Figure 5.1–1. An exception to this rule would be when there are
so many data points that the symbols would be too densely packed. In that case,
the data points should be plotted with a dot. However, when the plot is generated
from a function, data symbols must never be used! Lines between closely spaced
points are always used to plot a function.

The MATLAB basic xy plotting function is plot(x,y) as we saw in
Chapter 1. If x and y are vectors, a single curve is plotted with the x values on the
abscissa and the y values on the ordinate. The xlabel and ylabel commands
put labels on the abscissa and the ordinate, respectively. The syntax is
xlabel(‘text’), where text is the text of the label. Note that you must en-
close the label’s text in single quotes. The syntax for ylabel is the same. The
title command puts a title at the top of the plot. Its syntax is title
(’text’), where text is the title’s text.

The plot(x,y) function in MATLAB automatically selects a tick-mark
spacing for each axis and places appropriate tick labels. This feature is called
autoscaling. MATLAB also chooses limits for the x and y axes. The order of the
xlabel, ylabel, and title commands does not matter, but we must place

206 CHAPTER 5 Advanced Plotting and Model Building

Zero Drag Model
Data

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

1600

Time (seconds)

H
ei

gh
t (

fe
et

)

Height of a Falling Object Versus Time

PLOT TITLE

DATA SYMBOL

LEGEND

TICK- MARK LABEL
AXIS LABEL

TICK MARK

Figure 5.1–1 Nomenclature for a typical xy plot.

DATA SYMBOL

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 206

them after the plot command, either on separate lines using ellipses or on the
same line separated by commas.

After the plot command is executed, the plot will appear in the Figure
window. You can obtain a hard copy of the plot in one of several ways:

1. Use the menu system. Select Print on the File menu in the Figure window.
Answer OK when you are prompted to continue the printing process.

2. Type print at the command line. This command sends the current plot
directly to the printer.

3. Save the plot to a file to be printed later or imported into another applica-
tion such as a word processor. You need to know something about graphics
file formats to use this file properly. See the subsection Exporting Figures
later in this section.

Type help print to obtain more information.
MATLAB assigns the output of the plot command to figure window num-

ber 1. When another plot command is executed, MATLAB overwrites the con-
tents of the existing figure window with the new plot. Although you can keep
more than one figure window active, we do not use this feature in this text.

When you have finished with the plot, close the figure window by selecting
Close from the File menu in the figure window. If you do not close the window,
it will not reappear when a new plot command is executed. However, the
figure will still be updated.

grid and axis Commands

The grid command displays gridlines at the tick marks corresponding to the
tick labels. You can use the axis command to override the MATLAB selec-
tions for the axis limits. The basic syntax is axis([xmin xmax ymin
ymax]). This command sets the scaling for the x- and y-axes to the minimum
and maximum values indicated. Note that, unlike an array, this command does
not use commas to separate the values.

The axis command has the following variants:

■ axis square, which selects the axes’ limits so that the plot will be
square.

■ axis equal, which selects the scale factors and tick spacing to be the
same on each axis. This variation makes plot(sin(x),cos(x)) look
like a circle, instead of an oval.

■ axis auto, which returns the axis scaling to its default autoscaling
mode in which the best axes limits are computed automatically.

Type help axis to see the full list of variants.

Plots of Complex Numbers

With only one argument, say, plot(y), the plot function will plot the values
in the vector y versus their indices 1, 2, 3, . . . , and so on. If y is complex,

5.1 xy Plotting Functions 207

AXIS LIMITS

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 207

plot(y) plots the imaginary parts versus the real parts. Thus plot(y) in this
case is equivalent to plot(real(y),imag(y)). This situation is the only
time when the plot function handles the imaginary parts; in all other variants of
the plot function, it ignores the imaginary parts. For example, the script file

z = 0.1 + 0.9i;
n = [0:0.01:10];
plot(z.^n),xlabel(‘Real’),ylabel(‘Imaginary’)

generates a spiral plot.

The Function Plot Command fplot

MATLAB has a “smart” command for plotting functions. The fplot command
automatically analyzes the function to be plotted and decides how many plotting
points to use so that the plot will show all the features of the function. Its syntax
is fplot(function, [xmin xmax]), where function is a function han-
dle to the function to be plotted and [xmin xmax] specifies the minimum and
maximum values of the independent variable. The range of the dependent
variable can also be specified. In this case the syntax is fplot(function,
[xmin xmax ymin ymax]).

For example, the session

>>f = @(x) (cos(tan(x)) - tan(sin(x)));
>>fplot(f,[1 2])

produces the plot shown in Figure 5.1–2. The fplot command automatically
chooses enough plotting points to display all the variations in the function. We
can achieve the same results using the plot command, but we need to know how
many values to compute to generate the plot.

Another form is [x,y] = fplot(function, limits), where limits
may be either [xmin xmax] or [xmin xmax ymin ymax]. With this form
the command returns the abscissa and ordinate values in the column vectors x
and y, but no plot is produced. The returned values can then be used for other pur-
poses, such as plotting multiple curves, which is the topic of the next section.
Other commands can be used with the fplot command to enhance a plot’s ap-
pearance, for example, the title, xlabel, and ylabel commands and the
line type commands to be introduced in the next section.

Plotting Polynomials

We can plot polynomials more easily by using the polyval function. For ex-
ample, to plot the polynomial 3x5 � 2x4 � 100x3 � 2x2 � 7x � 90 over the range
�6 � x � 6 with a spacing of 0.01, you type

>>x = [-6:0.01:6];
>>p = [3,2,-100,2,-7,90];
>>plot(x,polyval(p,x)),xlabel(‘x’),ylabel(‘p’)

208 CHAPTER 5 Advanced Plotting and Model Building

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 208

Table 5.1–1 summarizes the xy plotting commands discussed in this section.

5.1 xy Plotting Functions 209

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
 –3

–2.5

 –2

–1.5

 –1

–0.5

Figure 5.1–2 A plot generated with the fplot command.

Table 5.1–1 Basic xy plotting commands

Command Description

axis([xmin xmax ymin ymax]) Sets the minimum and maximum limits of the x- and y-axes.
fplot(function,[xmin xmax]) Performs intelligent plotting of functions, where function is a

function handle that describes the function to be plotted and [xmin
xmax] specifies the minimum and maximum values of the independent
variable. The range of the dependent variable can also be specified. In
this case the syntax is fplot(function, [xmin xmax ymin
ymax]).

grid Displays gridlines at the tick marks corresponding to the tick labels.
plot(x,y) Generates a plot of the array y versus the array x on rectilinear axes.
plot(y) Plots the values of y versus their indices if y is a vector. Plots the

imaginary parts of y versus the real parts if y is a vector having
complex values.

print Prints the plot in the Figure window.
title(‘text’) Puts text in a title at the top of a plot.
xlabel(‘text’) Adds a text label to the x-axis (the abscissa).
ylabel(‘text’) Adds a text label to the y-axis (the ordinate).

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 209

Test Your Understanding

T5.1–1 Plot the equation for 0 � x � 35 and 0 � y � 3.5.

T5.1–2 Use the fplot command to investigate the function tan(cos x)�
sin(tan x) for 0 � x � 2�. How many values of x are needed to obtain
the same plot using the plot command? (Answer: 292 values.)

T5.1–3 Plot the imaginary part versus the real part of the function (0.2 � 0.8i)n

for 0 � n � 20. Choose enough points to obtain a smooth curve. La-
bel each axis and put a title on the plot. Use the axis command to
change the tick-label spacing.

Saving Figures

When you create a plot, the Figure window appears. This window has eight
menus, which are discussed in detail in Section 5.4. The File menu is used for
saving and printing the figure. You can save your figure in a format that can be
opened during another MATLAB session or in a format that can be used by other
applications.

To save a figure that can be opened in subsequent MATLAB sessions, save
it in a figure file with the .fig file name extension. To do this, select Save from
the Figure window File menu or click the Save button (the disk icon) on the tool-
bar. If this is the first time you are saving the file, the Save As dialog box appears.
Make sure that the type is MATLAB Figure (*.fig). Specify the name you want
assigned to the figure file. Click OK. You can also use the saveas command.

To open a figure file, select Open from the File menu or click the Open but-
ton (the opened folder icon) on the toolbar. Select the figure file you want to open
and click OK. The figure file appears in a new figure window.

Exporting Figures

If you want to save the figure in a format that can be used by another application,
such as the standard graphics file formats TIFF or EPS, perform these steps.

1. Select Export Setup from the File menu. This dialog provides options you
can specify for the output file, such as the figure size, fonts, line size and
style, and output format.

2. Select Export from the Export Setup dialog. A standard Save As dialog
appears.

3. Select the format from the list of formats in the Save As type menu. This
selects the format of the exported file and adds the standard file name
extension given to files of that type.

4. Enter the name you want to give the file, less the extension.
5. Click Save.

y = 0.411.8x

210 CHAPTER 5 Advanced Plotting and Model Building

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 210

You can also export the figure from the command line, by using the print
command. See MATLAB help for more information about exporting figures in
different formats.

You can also copy a figure to the clipboard and then paste it into another
application:

1. Select Copy Options from the Edit menu of the Figure window. The
Copying Options page of the Preferences dialog box appears.

2. Complete the fields on the Copying Options page and click OK.
3. Select Copy Figure from the Edit menu.

The figure is copied to the Windows clipboard and can be pasted into another
application.

MATLAB also enables you to save figures in formats compatible with
PowerPoint and MSWord. See the MATLAB help for more information.

The graphics functions covered in this section and in Section 5.3 can be placed
in script files that can be reused to create similar plots. This feature gives them an
advantage over the interactive plotting tools that are discussed in Section 5.3.

5.2 Additional Commands and Plot Types
MATLAB can create figures that contain an array of plots, called subplots. These are
useful when you want to compare the same data plotted with different axis types, for
example. The MATLAB subplot command creates such figures. We frequently
need to plot more than one curve or data set on a single plot. Such a plot is called an
overlay plot. This section describes these plots and several other types of plots.

Subplots

You can use the subplot command to obtain several smaller “subplots” in the
same figure. The syntax is subplot(m,n,p). This command divides the
Figure window into an array of rectangular panes with m rows and n columns.
The variable p tells MATLAB to place the output of the plot command follow-
ing the subplot command into the pth pane. For example, subplot(3,2,5)
creates an array of six panes, three panes deep and two panes across, and directs
the next plot to appear in the fifth pane (in the bottom-left corner). The following
script file created Figure 5.2–1, which shows the plots of the functions y �
e�1.2x sin(10x � 5) for 0 � x � 5 and y � |x3 � 100| for �6 � x � 6.

x = [0:0.01:5];
y = exp(-1.2*x).*sin(10*x+5);
subplot(1,2,1)
plot(x,y),xlabel(‘x’),ylabel(‘y’),axis([0 5 -1 1])
x = [-6:0.01:6];
y = abs(x.^3-100);
subplot(1,2,2)
plot(x,y),xlabel(‘x’),ylabel(‘y’),axis([-6 6 0 350])

5.2 Additional Commands and Plot Types 211

SUBPLOT

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 211

212 CHAPTER 5 Advanced Plotting and Model Building

 –5 0 5
0

50

100

150

200

250

300

350

x

y

0 1 2 3 4
 –1

 –0.8

 –0.6

 –0.4

 –0.2

0

0.2

0.4

0.6

0.8

1

x

y

Figure 5.2–1 Application of the subplot command.

Test Your Understanding

T5.2–1 Pick a suitable spacing for t and � , and use the subplot command to
plot the function z � e�0.5t cos(20t � 6) for 0 � t � 8 and the function u �
6 log10 (�

2 � 20) for �8 � � � 8. Label each axis.

Overlay Plots

You can use the following variants of the MATLAB basic plotting functions
plot(x,y) and plot(y) to create overlay plots:

■ plot(A) plots the columns of A versus their indices and generates n
curves where A is a matrix with m rows and n columns.

■ plot(x,A) plots the matrix A versus the vector x, where x is either a
row vector or column vector and A is a matrix with m rows and n columns.
If the length of x is m, then each column of A is plotted versus the vector x.
There will be as many curves as there are columns of A. If x has length n,
then each row of A is plotted versus the vector x. There will be as many
curves as there are rows of A.

■ plot(A,x) plots the vector x versus the matrix A. If the length of x is m,
then x is plotted versus the columns of A. There will be as many curves as

OVERLAY PLOT

pal48185_05_205-270.qxd 10/4/07 3:08 PM Page 212

there are columns of A. If the length of x is n, then x is plotted versus the
rows of A. There will be as many curves as there are rows of A.

■ plot(A,B) plots the columns of the matrix B versus the columns of the
matrix A.

Data Markers and Line Types

To plot the vector y versus the vector x and mark each point with a data marker, en-
close the symbol for the marker in single quotes in the plot function. Table 5.2–1
shows the symbols for some of the available data markers. For example, to use a small
circle, which is represented by the lowercase letter o, type plot(x,y, ‘o’). This
notation results in a plot like the one on the left in Figure 5.2–2. To connect each
data marker with a straight line, we must plot the data twice, by typing
plot(x,y,x,y,’o’). See the plot on the right in Figure 5.2–2.

Suppose we have two curves or data sets stored in the vectors x, y, u, and v.
To plot y versus x and v versus u on the same plot, type plot(x,y,u,v). Both
sets will be plotted with a solid line, which is the default line style. To distinguish
the sets, we can plot them with different line types. To plot y versus x with a solid
line and u versus vwith a dashed line, type plot(x,y,u,v,’��’), where the
symbols ‘��’ represent a dashed line. Table 5.2–1 gives the symbols for other line
types. To plot y versus x with asterisks (*) connected with a dotted line, you must
plot the data twice by typing plot(x,y,’*’,x,y,’:’).

You can obtain symbols and lines of different colors by using the color symbols
shown in Table 5.2–1. The color symbol can be combined with the data-marker sym-
bol and the line-type symbol. For example, to plot y versus xwith green asterisks (*)
connected with a red dashed line, you must plot the data twice by typing
plot(x,y,’g*’,x,y,’r��’). (Do not use colors if you are going to print the
plot on a black-and-white printer.)

Labeling Curves and Data

When more than one curve or data set is plotted on a graph, we must distinguish
between them. If we use different data symbols or different line types, then we must

5.2 Additional Commands and Plot Types 213

Table 5.2–1 Specifiers for data markers, line types, and colors

Data markers† Line types Colors

Dot () Solid line - Black k
Asterisk (*) * Dashed line - - Blue b
Cross (�) � Dash-dotted line -. Cyan c
Circle (o) o Dotted line : Green g
Plus sign (�) � Magenta m
Square () s Red r
Diamond () d White w
Five-pointed star () p Yellow y

†Other data markers are available. Search for “markers” in MATLAB help.

�
�

##

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 213

either provide a legend or place a label next to each curve. To create a legend, use
the legend command. The basic form of this command is legend
(‘string1’,’string2’), where string1 and string2 are text strings
of your choice. The legend command automatically obtains from the plot the
line type used for each data set and displays a sample of this line type in the leg-
end box next to the string you selected. The following script file produced the plot
in Figure 5.2–3.

x = [0:0.01:2];
y = sinh(x);
z = tanh(x);
plot(x,y,x,z,’��’),xlabel(‘x’),...
ylabel(‘Hyperbolic Sine and Tangent’),...

legend(‘sinh(x)’,’tanh(x)’)

The legend command must be placed somewhere after the plot command.
When the plot appears in the Figure window, use the mouse to position the leg-
end box. (Hold down the left button on the mouse to move the box.)

Another way to distinguish curves is to place a label next to each. The label
can be generated with either the gtext command, which lets you place the la-
bel using the mouse, or with the text command, which requires you to specify
the coordinates of the label. The syntax of the gtext command is
gtext(‘string’), where string is a text string that specifies the label of

214 CHAPTER 5 Advanced Plotting and Model Building

0 5 10
0

0.5

1

1.5

2

2.5

3

3.5

x

y

0 5 10
0

0.5

1

1.5

2

2.5

3

3.5

x

y

Figure 5.2–2 Use of data markers.

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 214

your choice. When this command is executed, MATLAB waits for a mouse button
or a key to be pressed while the mouse pointer is within the Figure window; the la-
bel is placed at that position of the mouse pointer. You may use more than one gtext
command for a given plot. The text command, text(x,y,’string’), adds a
text string to the plot at the location specified by the coordinates x,y. These coordi-
nates are in the same units as the plot’s data. Of course, finding the proper coordi-
nates to use with the text command usually requires some trial and error.

The hold Command

The hold command creates a plot that needs two or more plot commands.
Suppose we wanted to plot y2 � 4 � e�x cos 6x versus y1 � 3 � e�x sin 6x, �1 �
x � 1 on the same plot with z � (0.1 � 0.9i)n, where 0 � n � 10. This plot
requires two plot commands. The script file to create this plot using the hold
command follows.

x = [-1:0.01:1];
y1 = 3+exp(-x).*sin(6*x);
y2 = 4+exp(-x).*cos(6*x);
plot((0.1+0.9i).^[0:0.01:10]),hold,plot(y1,y2),...
gtext(‘y2 versus y1’),gtext(‘Imag(z) versus Real(z)’)

Figure 5.2–4 shows the result. When more than one plot command is used, do
not place any of the gtext commands before any plot command. Because the

5.2 Additional Commands and Plot Types 215

sinh(x)
tanh(x)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

x

H
yp

er
bo

lic
 S

in
e

an
d

H
yp

er
bo

lic
 T

an
ge

nt

Figure 5.2–3 Application of the legend command.

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 215

scaling changes as each plot command is executed, the label placed by the
gtext command might end up in the wrong position. Table 5.2–2 summarizes
the plot enhancement introduced in this section.

216 CHAPTER 5 Advanced Plotting and Model Building

 –1 0 1 2 3 4 5 6
 –1

0

1

2

3

4

5

6

7

y2 versus y1

Imag (z) versus Real (z)

Figure 5.2–4 Application of the hold command.

Table 5.2–2 Plot enhancement commands

Command Description

gtext(‘text’) Places the string text in the Figure window at a point specified by the mouse.
hold Freezes the current plot for subsequent graphics commands.
legend(‘leg1’,’leg2’,...) Creates a legend using the strings leg1, leg2, and so on and specifies its

placement with the mouse.
plot(x,y,u,v) Plots, on rectilinear axes, four arrays: y versus x and v versus u.
plot(x,y,’type’) Plots the array y versus the array x on rectilinear axes, using the line type,

data marker, and colors specified in the string type. See Table 5.2–1.
plot(A) Plots the columns of the m � n array A versus their indices and generates n

curves.
plot(P,Q) Plots array Q versus array P. See the text for a description of the possible

variants involving vectors and/or matrices: plot(x,A), plot(A,x), and
plot(A,B).

subplot(m,n,p) Splits the Figure window into an array of subwindows with m rows and n
columns and directs the subsequent plotting commands to the pth subwindow.

text(x,y,’text’) Places the string text in the Figure window at a point specified by
coordinates x, y.

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 216

Test Your Understanding

T5.2–2 Plot the following two data sets on the same plot. For each set, x � 0, 1,
2, 3, 4, 5. Use a different data marker for each set. Connect the markers
for the first set with solid lines. Connect the markers for the second set
with dashed lines. Use a legend, and label the plot axes appropriately.
The first set is y �11, 13, 8, 7, 5, 9. The second set is y �2, 4, 5, 3, 2, 4.

T5.2–3 Plot y � cosh x and y � 0.5ex on the same plot for 0 � x � 2. Use differ-
ent line types and a legend to distinguish the curves. Label the plot axes
appropriately.

T5.2–4 Plot y � sinh x and y � 0.5ex on the same plot for 0 � x � 2. Use a solid
line type for each, the gtext command to label the sinh x curve, and
the text command to label the 0.5ex curve. Label the plot axes
appropriately.

T5.2–5 Use the hold command and the plot command twice to plot y � sin x
and y � x � x3/3 on the same plot for 0 � x � 1. Use a solid line type
for each and use the gtext command to label each curve. Label the plot
axes appropriately.

Annotating Plots

You can create text, titles, and labels that contain mathematical symbols, Greek
letters, and other effects such as italics. The features are based on the TEX
typesetting language. For more information, including a list of the available
characters, search the online help for “text properties.”

You can create a title having the mathematical function Ae�t/� sin(� t) by typing

>>title(‘{\it Ae}^{-{\it t/\tau}}\sin({\it \omega t})’)

The backslash character \ precedes all TEX character sequences. Thus the strings
\tau and \omega represent the Greek letters � and �. Superscripts are created
by typing ^; subscripts are created by typing _. To set multiple characters as super-
scripts or subscripts, enclose them in braces. For example, type x_{13} to
produce x13. In mathematical text variables are usually set in italic, and functions,
like sin, are set in roman type. To set a character, say, x, in italic using the TEX
commands, you type {\it x}.

Logarithmic Plots

Logarithmic scales—abbreviated log scales—are widely used (1) to represent a
data set that covers a wide range of values and (2) to identify certain trends in data.
Certain types of functional relationships appear as straight lines when plotted us-
ing a log scale. This method makes it easier to identify the function. A log-log plot
has log scales on both axes. A semilog plot has a log scale on only one axis.

5.2 Additional Commands and Plot Types 217

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 217

218 CHAPTER 5 Advanced Plotting and Model Building

Figure 5.2–5 shows a log-log plot of the function

Because of the wide range in values on both the abscissa and ordinate, recti-
linear scales would not reveal the important features. The following program
produced Figure 5.2–5.

x = logspace(-1, 2, 500); u = x.^2;
num = 100*(1-0.01*u).^2 + 0.02*u;
den = (1-u).^2 + 0.1*u;
y = sqrt(num./den);
loglog(x,y), xlabel(‘x’), ylabel(‘y’)

It is important to remember the following points when using log scales:

1. You cannot plot negative numbers on a log scale, because the logarithm of
a negative number is not defined as a real number.

2. You cannot plot the number 0 on a log scale, because log10 0 � ln 0 � ��.
You must choose an appropriately small number as the lower limit on the plot.

3. The tick-mark labels on a log scale are the actual values being plotted; they
are not the logarithms of the numbers. For example, the range of x values
in the plot in Figure 5.2–5 is from 10�1 � 0.1 to 102 � 100.

y =
100(1 - 0.01x2)2

+ 0.02x2

(1 - x2)2
+ 0.1x2

 0.1 … x … 100

10
 –1

10
0

10
1

10
2

10
 –2

10
 –1

10
0

10
1

10
2

x

y

Figure 5.2–5 Example of a log-log plot. Note the wide range of values of both x and y.

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 218

MATLAB has three commands for generating plots having log scales. The
appropriate command depends on which axis must have a log scale. Follow these
rules:

1. Use the loglog(x,y) command to have both scales logarithmic.
2. Use the semilogx(x,y) command to have the x scale logarithmic and

the y scale rectilinear.
3. Use the semilogy(x,y) command to have the y scale logarithmic and

the x scale rectilinear.

Table 5.2–3 summarizes these functions. For other 2D plot types, type help
specgraph.

We can plot multiple curves with these commands just as with the plot
command. In addition, we can use the other commands, such as grid, xlabel,
and axis, in the same manner.

Stem, Stairs, and Bar Plots

MATLAB has several other plot types that are related to xy plots. These include
the stem, stairs, and bar plots. Their syntax is very simple; namely, stem(x,y),
stairs(x,y), and bar(x,y). See Table 5.2–3.

Separate y-Axes

The plotyy function generates a graph with two y-axes. The syntax plotyy
(x1,y1,x2,y2) plots y1 versus x1 with y-axis labeling on the left, and plots y2
versus x2 with y-axis labeling on the right. The syntax plotyy(x1,y1,x2,
y2,’type1’,’type2’) generates a ‘type1’ plot of y1 versus x1with y-axis
labeling on the left, and generates a ‘type2’ plot of y2 versus x2 with y-axis la-
beling on the right. For example, plotyy(x1,y1,x2,y2,‘plot’,‘stem’)

5.2 Additional Commands and Plot Types 219

Table 5.2–3 Specialized plot commands

Command Description

bar(x,y) Creates a bar chart of y versus x.
loglog(x,y) Produces a log-log plot of y versus x.
plotyy(x1,y1,x2,y2) Produces a plot with two y-axes, y1 on the left and y2

on the right.
polar(theta,r,’type’) Produces a polar plot from the polar coordinates

theta and r, using the line type, data marker, and
colors specified in the string type.

semilogx(x,y) Produces a semilog plot of y versus x with logarithmic
abscissa scale.

semilogy(x,y) Produces a semilog plot of y versus x with logarithmic
ordinate scale.

stairs(x,y) Produces a stairs plot of y versus x.
stem(x,y) Produces a stem plot of y versus x.

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 219

uses plot(x1,y1) to generate a plot for the left axis, and stem(x2,y2) to gen-
erate a plot for the right axis. To see other variations of the plotyy function, type
help plotyy.

Polar Plots

Polar plots are two-dimensional plots made using polar coordinates. If the po-
lar coordinates are (�, r) , where � is the angular coordinate and r is the radial
coordinate of a point, then the command polar(theta,r) will produce the
polar plot. A grid is automatically overlaid on a polar plot. This grid consists of
concentric circles and radial lines every 30º. The title and gtext com-
mands can be used to place a title and text. The variant command
polar(theta,r,’type’) can be used to specify the line type or data
marker, just as with the plot command.

220 CHAPTER 5 Advanced Plotting and Model Building

EXAMPLE 5.2–1 Plotting Orbits

The equation

describes the polar coordinates of an orbit measured from one of the orbit’s two focal
points. For objects in orbit around the sun, the sun is at one of the focal points. Thus
r is the distance of the object from the sun. The parameters p and � determine the size
of the orbit and its eccentricity, respectively. Obtain the polar plot that represents an
orbit having � � 0.5 and p � 2 AU (AU stands for “astronomical unit”; 1 AU is the
mean distance from the sun to Earth). How far away does the orbiting object get from
the sun? How close does it approach Earth’s orbit?

■ Solution
Figure 5.2–6 shows the polar plot of the orbit. The plot was generated by the following
session.

>>theta = [0:pi/90:2*pi];

>>r = 2./(1-0.5*cos(theta));

>>polar(theta,r),title(‘Orbital Eccentricity = 0.5’)

The sun is at the origin, and the plot’s concentric circular grid enables us to deter-
mine that the closest and farthest distances the object is from the sun are approximately
1.3 and 4 AU. Earth’s orbit, which is nearly circular, is represented by the innermost
circle. Thus the closest the object gets to Earth’s orbit is approximately 0.3 AU. The
radial gridlines allow us to determine that when � = 90	 and 270	, the object is 2 AU
from the sun.

r =

p

1 - P cos u

POLAR PLOT

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 220

Test Your Understanding

T5.2–6 Obtain the plots shown in Figure 5.2–7. The power function is y �
2x�0.5, and the exponential function is y � 101�x.

T5.2–7 Plot the function y � 8x3 for �1 � x � 1 with a tick spacing of 0.25 on
the x-axis and 2 on the y-axis.

T5.2–8 The spiral of Archimedes is described by the polar coordinates (�, r),
where r � a�. Obtain a polar plot of this spiral for 0 � � � 4�, with the
parameter a � 2.

Publishing Reports Containing Graphics

MATLAB 7 provides the publish function for creating reports, which may
have embedded graphics. Reports generated by the publish function may be
exported to a variety of common formats including HTML (Hyper Text Markup
Language), which is used for Web-based reports, MS Word, PowerPoint, and
LATEX. To publish a report, do the following.

1. Open the Editor, type in the m-file that forms the basis of the report, and
save it. Use the double percent character (%%) to indicate a section head-
ing in the report. This character marks the beginning of a new cell, which is
a group of commands. (Such a cell should not be confused with the cell
array data type covered in Section 2.7.) Enter any blank lines you wish to

5.2 Additional Commands and Plot Types 221

Orbital Eccentricity = 0.5

 1

 2

 3

 4

30

210

60

240

90

270

120

300

150

330

180 0

Figure 5.2–6 A polar plot showing an orbit having an eccentricity of 0.5.

pal48185_05_205-270.qxd 10/4/07 3:08 PM Page 221

appear in the report. Consider, as a very simple example, the following
sample file polyplot.m.

%% Example of Report Publishing:
% Plotting the cubic y = x^3 - 6x^2 + 10x+4.

%% Create the independent variable.

%% Define the cubic from its coefficients.
P = [1, -6, 10, 4]; % p contains the coefficients.

%% Plot the cubic
plot (x, polyval(p, x)), xlabel(‘x’), ylabel(‘y’)

2. Run the file to check it for errors. (To do this for a larger file, you may use
the cell mode of the Debugger to execute its each cell one at a time; see
Section 4.6)

3. Use the publish and open functions to create the report in the desired for-
mat. Using our sample file, we can obtain a report in HTML format by typing

>>publish (‘polyplot’,’html’)
>>open html/polyplot.html

You should see a report like the one shown in Figure 5.2–8.

222 CHAPTER 5 Advanced Plotting and Model Building

0.5 1 1.5
0

5

10

15

20

x
y

Exponential

Power

0.5 1 1.5

10
0

10
1

x

y

Exponential

Power

10
 –2

10
 –1

10
0

10
 –1

10
0

10
1

x

y

Exponential

Power

Figure 5.2–7 The power function y � 2x�0.5 and the exponential function y � 101�x.

x = linspace(0, 4, 300); % Use 300 points between 0 and 4.

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 222

5.2 Additional Commands and Plot Types 223

Example of Report Publishing:

Plotting the cubic y = xˆ3 � 6 xˆ2 + 10x+ 4 .

Contents

• Create the independent variable.
• Define the cubic.
• Plot the cubic.

Create the independent variable.

x = linspace(0, 4, 300); % Use 300 points between 0 and 4.

Define the cubic.

p = [1, -6, 10, 4]; % p contains the coefficients.

Plot the cubic.

plot(x,polyval(p,x)),xlabel(’x’),ylabel(’y’)

0 0.5 1 1.5 2 2.5 3 3.5 4
4

5

6

7

8

9

10

11

12

x

y

Figure 5.2–8 A sample report published from MATLAB.

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 223

Instead of using the publish and open functions, you may select
Publish to HTML from the File menu in the Editor window. To publish to
another format, select instead Publish to and then choose the desired
format from the menu.

Once it is published in HTML, you may click on a section heading in the
Contents to go to that section. This is useful for larger reports.

If you want the equation to look professionally typeset, you may edit the
resulting report in the appropriate editor (say, MS Word, or LATEX). For exam-
ple, to set the cubic polynomial in the resulting LATEX file, use the commands
presented earlier in this section to replace the equation in the second line of the
report with

y = {\it x}^3 - 6{\it x}^2 + 10{\it x} + 4

5.3 Interactive Plotting in MATLAB
The interactive plotting environment in MATLAB is a set of tools for:

■ Creating different types of graphs,
■ Selecting variables to plot directly from the Workspace Browser,
■ Creating and editing subplots,
■ Adding annotations such as lines, arrows, text, rectangles, and ellipses, and
■ Editing properties of graphics objects, such as their color, line weight, and

font.

The Plot Tools interface includes the following three panels associated with
a given figure.

■ The Figure Palette: Use this to create and arrange subplots, to view and
plot workspace variables, and to add annotations.

■ The Plot Browser: Use this to select and control the visibility of the axes
or graphics objects plotted in the figure, and to add data for plotting.

■ The Property Editor: Use this to set basic properties of the selected object
and to obtain access to all properties through the Property Inspector.

The Figure Window

When you create a plot, the Figure window appears with the Figure toolbar visi-
ble (see Figure 5.3–1). This window has eight menus.

The File Menu The File menu is used for saving and printing the figure. This
menu was discussed in Section 5.1 under Saving Figures and Exporting Figures.

The Edit Menu You can use the Edit menu to cut, copy, and paste items, such
as legend or title text, that appear in the figure. Click on Figure Properties to
open the Property Editor—Figure dialog box to change certain properties of the
figure.

224 CHAPTER 5 Advanced Plotting and Model Building

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 224

Three items on the Edit menu are very useful for editing the figure. Click-
ing the Axes Properties item brings up the Property Editor—Axes dialog box.
Double-clicking on any axis also brings up this box. You can change the scale
type (linear, log, etc.), the labels, and the tick marks by selecting the tab for
the desired axis or the font to be edited.

The Current Object Properties item enables you to change the properties
of an object in the figure. To do this, first click on the object, such as a plotted
line, then click on Current Object Properties in the Edit menu. You will see the
Property Editor—Lineseries dialog box that lets you change properties such as
line weight and color, data-marker type, and plot type.

Clicking on any text, such as that placed with the title, xlabel,
ylabel, legend, or gtext commands, then selecting Current Object
Properties in the Edit menu brings up the Property Editor—Text dialog box,
which enables you to edit the text.

The View Menu The items on the View menu are the three toolbars (Figure
Toolbar, Plot Edit Toolbar, and Camera Toolbar), the Figure Palette, the Plot
Browser, and the Property Editor. These will be discussed later in this section.

The Insert Menu The Insert menu enables you to insert labels, legends, titles,
text, and drawing objects, rather than using the relevant commands from the

5.3 Interactive Plotting in MATLAB 225

Figure 5.3–1 The Figure window with the Figure toolbar displayed.

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 225

Command window. To insert a label on the y-axis, for example, click on the Y
Label item on the menu; a box will appear on the y-axis. Type the label in this
box, and then click outside the box to finish.

The Insert menu also enables you to insert arrows, lines, text, rectangles, and
ellipses in the figure. To insert an arrow, for example, click on the Arrow item;
the mouse cursor changes to a crosshair style. Then click the mouse button, and
move the cursor to create the arrow. The arrowhead will appear at the point where
you release the mouse button. Be sure to add arrows, lines, and other annotations
only after you are finished moving or resizing your axes, because these objects
are not anchored to the axes. (They can be anchored to the plot by pinning; see
the MATLAB help.)

To delete or move a line or arrow, click on it, then press the Delete key to
delete it, or press the mouse button and move it to the desired location. The Axes
item lets you use the mouse to place a new set of axes within the existing plot.
Click on the new axes, and a box will surround them. Any further plot commands
issued from the Command window will direct the output to these axes.

The Light item applies to 3D plots.

The Tools Menu The Tools menu includes items for adjusting the view (by
zooming and panning) and the alignment of objects on the plot. The Edit Plot item
starts the plot editing mode, which can also be started by clicking on the northwest-
facing arrow on the Figure toolbar. The Tools menu also gives access to the Data
Cursor, which is discussed later in this section. The last two items, Basic Fitting
and Data Statistics, will be discussed in Sections 5.6 and 6.1, respectively.

Other Menus The Desktop menu enables you to dock the Figure window
within the desktop. The Window menu lets you switch between the Command
window and any other Figure windows. The Help menu accesses the general
MATLAB Help System, as well as help features specific to plotting.

There are three toolbars available in the Figure window: the Figure tool-
bar, the Plot Edit toolbar, and the Camera toolbar. The View menu lets you se-
lect which ones you want to appear. We will discuss the Figure toolbar and the
Plot Edit toolbar in this section. The Camera toolbar is useful for 3D plots,
which are discussed at the end of this chapter.

The Figure Toolbar

To activate the Figure toolbar, select it from the View menu (see Figure 5.3–1).
The four left-most buttons are for opening, saving, and printing the figure. Click-
ing on the northwest-facing arrow button toggles the plot edit mode on and off.

The Zoom-in and Zoom-out buttons let you obtain a close-up or faraway
view of the figure. The Pan and Rotate 3D buttons are used for 3D plots.

The Data Cursor button enables you to read data directly from a graph by dis-
playing the values of points you select on plotted lines, surfaces, images, and so on.

The Insert Colorbar button inserts a color map strip in the graph and is use-
ful for 3D surface plots. The Insert Legend button enables you to insert a legend

226 CHAPTER 5 Advanced Plotting and Model Building

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 226

in the plot. The last two buttons hide or show the plot tools and dock the figure if
it is undocked.

The Plot Edit Toolbar

Once a plot is in the window, you can enable plot editing by clicking on the
northwest-facing arrow on the Figure toolbar. Then double-click on an axis, a plot-
ted line, or a label to activate the appropriate property editor. Select Plot Edit tool-
bar from the View menu (see Figure 5.3–2). To add text that is not a label, title,
or legend, click the button labeled T, move the cursor to the desired location for
the text, click the mouse button, and type the text. When finished, click outside the
text box and note that the nine left-most buttons become highlighted and available.
These enable you to modify the color, font, and other attributes of the text.

To insert arrows, lines, rectangles, and ellipses, click on the appropriate but-
ton and follow the instructions given previously for the Insert menu.

The Plot Tools

Once a figure has been created you can display any or all of the three Plot Tools
(Figure Palette, Plot Browser, and Property Editor) by selecting them from the

5.3 Interactive Plotting in MATLAB 227

Figure 5.3–2 The Figure window with the Figure and Plot Edit toolbars displayed.

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 227

View menu. You can also start the environment by first creating a plot and then
clicking on the Show Plot Tools icon in the Figure toolbar (see Figure 5.3–3), or
by creating a figure with the plotting tools attached by using the plottools
command. Remove the tools by clicking on the Hide Tools icon.

Figure 5.3–3 shows the result of clicking on the plotted line after clicking the
Show Plot Tools icon. The plotting interface then displays the Property Editor—
Lineseries.

The Figure Palette

The Figure Palette contains three panels, which are selected and expanded by
clicking the appropriate button. Click on the grid icon in the New Subplots panel
to display the selector grid that enables you to specify the layout of the subplots.
In theVariables panel you can select a graphics function to plot the variable by se-
lecting the variable and right-clicking to display the context menu. This menu
contains a list of possible plot types based on the type of variable you select. You
can also drag the variable into an axes set and MATLAB will select an appropri-
ate plot type.

Selecting More Plots from the context menu activates the Plot Catalog tool,
which provides access to most of the plotting functions. After selecting a plot
category, and a plot type from that category, you will see its description in the

228 CHAPTER 5 Advanced Plotting and Model Building

Figure 5.3–3 The Figure window with the Plot Tools activated.

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 228

5.3 Interactive Plotting in MATLAB 229

right-most display. Type the name of one or more variables in the Plotted Vari-
ables field, separated by commas, and they will be passed to the selected plotting
function as arguments. You can also type a MATLAB expression that uses any
workspace variables shown in the Figure Palette.

Click on the Annotations panel to display a menu of objects such as lines,
arrows, etc. Click on the desired object and use the mouse to position and size it.

The Plot Browser

The Plot Browser provides a legend of all the graphs in the figure. For example, if
you plot an array with multiple rows and columns, the Browser lists each axis and
the objects (lines, surfaces, etc.) used to create the graph. To set the properties of an
individual line, double-click on the line. Its properties are displayed in the Property
Editor—Lineseries box, which opens on the bottom of the figure.

If you select a line in the graph, the corresponding entry in the Plot Browser
is highlighted, indicating which column in the variable produced the line. The
check box next to each item in the Browser controls the object’s visibility. For ex-
ample, if you want to plot only certain columns of data, you can uncheck the
columns not wanted. The graph updates as you uncheck each box and rescales the
axes as required.

The Property Editor

The Property Editor enables you to access a subset of the selected object’s
properties. When no object is selected, the Property Editor displays the figure’s
properties. There are several ways to display the Property Editor.

1. Double-click an object when plot edit mode is enabled.
2. Select an object and right-click to display its context menu, then select

Properties.
3. Select Property Editor from the View menu.
4. Use the propertyeditor command.

The Property Editor enables you to change the most commonly used object
properties. If you want to access all object properties, use the Property Inspector.
To display the Property Inspector, click the Inspector button on any Property
Editor panel. Use of this feature requires detailed knowledge of object properties
and handle graphics, and thus will not be covered here.

Recreating Graphs from M-Files

Once your graph is finished, you can generate MATLAB code to reproduce the
graph by selecting Generate M-File from the File menu. MATLAB creates a
function that recreates the graph and opens the generated M-File in the editor.
This feature is particularly useful for capturing property settings and other mod-
ifications made in the plot editor. You can also use the makemcode function.

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 229

Adding Data to Axes

The Plot Browser provides the mechanism by which you add data to axes. The
procedure is as follows:

1. Select a 2D or 3D axis from the New Subplots subpanel.
2. After creating the axis, select it in the Plot Browser panel to enable the

Add Data button at the bottom of the panel.
3. Click the Add Data button to display the Add Data to Axes dialog box.

The Add Data to Axes dialog enables you to select a plot type and specify
the workspace variables to pass to the plotting function. You can also spec-
ify a MATLAB expression, which is evaluated to produce the data to plot.

5.4 Function Discovery
Function discovery is the process of finding, or “discovering,” a function that can
describe a particular set of data. The following three function types can often de-
scribe physical phenomena.

1. The linear function: y(x) � mx � b. Note that y(0) � b.
2. The power function: y(x) � bxm. Note that y(0) � 0 if m
 0, and y(0) � �

if m � 0.
3. The exponential function: y(x) � b(10)mx or its equivalent form y �

bemx, where e is the base of the natural logarithm (ln e � 1). Note that
y(0) � b for both forms.

Each function gives a straight line when plotted using a specific set of axes:

1. The linear function y � mx � b gives a straight line when plotted on
rectilinear axes. Its slope is m and its intercept is b.

2. The power function y � bxm gives a straight line when plotted on log-log
axes.

3. The exponential function y � b(10)mx and its equivalent form y � bemx give
a straight line when plotted on a semilog plot whose y-axis is logarithmic.

The last two properties are illustrated in Figure 5.2–7, which shows the power
function y � 2x�0.5 and the exponential function y � 101�x. We look for a straight
line on the plot because it is relatively easy to recognize, and therefore we can
easily tell whether the function will fit the data well.

Use the following procedure to find a function that describes a given set of
data. We assume that one of the function types (linear, exponential, or power) can
describe the data.

1. Examine the data near the origin. The exponential function can never pass
through the origin (unless of course b � 0, which is a trivial case). (See
Figure 5.4–1 for examples with b � 1.) The linear function can pass
through the origin only if b � 0. The power function can pass through the
origin but only if m � 0. (See Figure 5.4–2 for examples with b � 1.)

230 CHAPTER 5 Advanced Plotting and Model Building

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 230

5.4 Function Discovery 231

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

x

y

The Exponential Function y = 10mx

m = 2
m = 1

m = 0

m = –1
m = –2

Figure 5.4–1 Examples of exponential functions.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

x

y

The Power Function y = xm

m = – 0.5

m = 2
m = 1

m = 0.5

m = 0

Figure 5.4–2 Examples of power functions.

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 231

2. Plot the data using rectilinear scales. If it forms a straight line, then it can
be represented by the linear function and you are finished. Otherwise, if
you have data at x � 0, then
a. If y(0) � 0, try the power function.
b. If y(0) 0, try the exponential function.

If data is not given for x � 0, proceed to step 3.
3. If you suspect a power function, plot the data using log-log scales. Only a

power function will form a straight line on a log-log plot. If you suspect an
exponential function, plot the data using the semilog scales. Only an expo-
nential function will form a straight line on a semilog plot.

4. In function discovery applications, we use the log-log and semilog plots
only to identify the function type, but not to find the coefficients b and m.
The reason is that it is difficult to interpolate on log scales.

We can find the values of b and m with the MATLAB polyfit function.
This function finds the coefficients of a polynomial of specified degree n that best
fits the data, in the so-called least-squares sense. The syntax appears in Table 5.4–1.
The least-squares method is presented in Sections 2.5 and 5.5.

Because we are assuming that our data will form a straight line on either
a rectilinear, semilog, or log-log plot, we are interested only in a polynomial
that corresponds to a straight line; that is, a first-degree polynomial, which we
will denote as w � p1z � p2. Thus, referring to Table 5.4–1, we see that the
vector p will be [p1, p2] if n is 1. This polynomial has a different interpreta-
tion in each of the three cases:

■ The linear function: y � mx � b. In this case the variables w and z in the
polynomial w � p1z � p2 are the original data variables x and y, and we can
find the linear function that fits the data by typing p = polyfit(x,y,1).
The first element p1 of the vector p will be m, and the second element p2 will
be b.

■ The power function: y � bxm. In this case log10y � m log10 x � log10 b,
which has the form w � p1z � p2, where the polynomial variables w and z
are related to the original data variables x and y by w � log10 y and z �
log10 x. Thus we can find the power function that fits the data by typing p =
polyfit(log10(x), log10(y),1). The first element p1 of the
vector p will be m, and the second element p2 will be log10b. We can find b
from .b = 10

p2

Z

232 CHAPTER 5 Advanced Plotting and Model Building

Table 5.4–1 The polyfit function

Command Description

p = polyfit(x,y,n) Fits a polynomial of degree n to data described by the
vectors x and y, where x is the independent variable.
Returns a row vector p of length n � 1 that contains the
polynomial coefficients in order of descending powers.

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 232

■ The exponential function: y � b(10)mx. In this case log10y � mx � log10b,
which has the form w � p1z � p2, where the polynomial variables w and z
are related to the original data variables x and y by w � log10y and z � x. Thus
we can find the exponential function that fits the data by typing p =
polyfit(x, log10(y),1). The first element p1 of the vector p will be
m, and the second element p2 will be log10b. We can find b from .b = 10

p2

5.4 Function Discovery 233

Time t (sec) Temperature T (�F)

0 145
620 130

2266 103
3482 90

Temperature Dynamics

The temperature of coffee cooling in a porcelain mug at room temperature (68	F) was
measured at various times. The data follows.

EXAMPLE 5.4–1

Develop a model of the coffee’s temperature as a function of time and use the model to
estimate how long it took the temperature to reach 120	F.

■ Solution
Because T (0) is finite but nonzero, the power function cannot describe this data, so we do
not bother to plot the data on log-log axes. Common sense tells us that the coffee will cool
and its temperature will eventually equal the room temperature. So we subtract the room
temperature from the data and plot the relative temperature, T �68, versus time. If the rel-
ative temperature is a linear function of time, the model is T � 68 � mt � b. If the relative
temperature is an exponential function of time, the model is T � 68 � b(10)mt. Figure 5.4–3
shows the plots used to solve the problem. The following MATLAB script file generates
the top two plots. The time data is entered in the array time, and the temperature data is
entered in temp.

% Enter the data.

time = [0,620,2266,3482];

temp = [145,130,103,90];

% Subtract the room temperature.

temp = temp - 68;

% Plot the data on rectilinear scales.

subplot(2,2,1)

plot(time,temp,time,temp,’o’),xlabel(‘Time (sec)’),...

ylabel(‘Relative Temperature (deg F)’)

%

% Plot the data on semilog scales.

subplot(2,2,2)

semilogy(time,temp,time,temp,’o’),xlabel(‘Time (sec)’),...

ylabel(‘Relative Temperature (deg F)’)

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 233

The data forms a straight line on the semilog plot only (the top right plot). Thus it can be
described with the exponential function T � 68 � b(10)mt. Using the polyfit com-
mand, the following lines can be added to the script file.

% Fit a straight line to the transformed data.

p = polyfit(time,log10(temp),1);

m = p(1)

b = 10^p(2)

The computed values are m � �1.5557 � 10�4 and b � 77.4469. Thus our derived model
is T � 68 � b(10)mt. To estimate how long it will take for the coffee to cool to 120	F, we
must solve the equation 120 � 68 � b(10)mt for t. The solution is t �

[(log10(120�68)�log10b)]/m. The MATLAB command for this calculation is shown in
the following script file, which is a continuation of the previous script and produces the
bottom two subplots shown in Figure 5.4–3.

% Compute the time to reach 120 degrees.

t_120 = (log10(120-68)-log10(b))/m

% Show the derived curve and estimated point on semilog

scales.

t = [0:10:4000];

T = 68+b*10.^(m*t);

subplot(2,2,3)

semilogy(t,T-68,time,temp,’o’,t_120,120-68,’+’),

234 CHAPTER 5 Advanced Plotting and Model Building

0 1000 2000 3000 4000
20

30

40

50

60

70

80

Time (sec)

R
el

at
iv

e
Te

m
pe

ra
tu

re
 (

de
g

F
)

0 1000 2000 3000 4000
10

1

10
2

Time (sec)

R
el

at
iv

e
Te

m
pe

ra
tu

re
 (

de
g

F
)

0 1000 2000 3000 4000
10

1

10
2

Time (sec)

R
el

at
iv

e
Te

m
pe

ra
tu

re
 (

de
g

F
)

0 1000 2000 3000 4000
80

90

100

110

120

130

140

150

Time (sec)

Te
m

pe
ra

tu
re

 (
de

g
F

)
Figure 5.4–3 Temperature of a cooling cup of coffee, plotted on various coordinates.

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 234

xlabel(‘Time (sec)’),...

ylabel(‘Relative Temperature (deg F)’)

%

% Show the derived curve and estimated point on rectilinear

subplot(2,2,4)

plot(t,T,time,temp+68,’o’,t_120,120,’+’),xlabel(‘Time

(sec)’),...

ylabel(‘Temperature (deg F)’)

The computed value of t_120 is 1112. Thus the time to reach 120	 F is 1112 sec. The plot
of the model, along with the data and the estimated point (1112, 120) marked with a � sign,
is shown in the bottom two subplots in Figure 5.4–3. Because the graph of our model lies
near the data points, we can treat its prediction of 1112 sec with some confidence.

5.4 Function Discovery 235

Hydraulic Resistance

A 15-cup coffee pot (see Figure 5.4–4) was placed under a water faucet and filled to the
15-cup line. With the outlet valve open, the faucet’s flow rate was adjusted until the water
level remained constant at 15 cups, and the time for one cup to flow out of the pot was
measured. This experiment was repeated with the pot filled to the various levels shown in
the following table:

EXAMPLE 5.4–2

Figure 5.4–4 An experiment to verify
Torricelli’s principle.

Liquid volume V (cups) Time to fill one cup t (sec)

15 6
12 7
9 8
6 9

scales.

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 235

(a) Use the preceding data to obtain a relation between the flow rate and the number
of cups in the pot. (b) The manufacturer wants to make a 36-cup pot using the same out-
let valve but is concerned that a cup will fill too quickly, causing spills. Extrapolate the
relation developed in part (a) and predict how long it will take to fill one cup when the pot
contains 36 cups.

■ Solution
(a) Torricelli’s principle in hydraulics states that f � rV1/2, where f is the flow rate through
the outlet valve in cups per second, V is the volume of liquid in the pot in cups, and r is a
constant whose value is to be found.We see that this relation is a power function where
the exponent is 0.5. Thus if we plot log10(f) versus log10(V), we should obtain a straight
line. The values for f are obtained from the reciprocals of the given data for t. That is, f �

1/t cups per second.
The MATLAB script file follows. The resulting plots appear in Figure 5.4–5. The

volume data is entered in the array cups, and the time data is entered in meas_times.

% Data for the problem.

cups = [6,9,12,15];

meas_times = [9,8,7,6];

meas_flow = 1./meas_times;

%

% Fit a straight line to the transformed data.

236 CHAPTER 5 Advanced Plotting and Model Building

101
10 –1

Volume (cups)

F
lo

w
 R

at
e

(c
up

s/
se

c)

5 10 15 20 25 30 35
0

2

4

6

8

10

Volume (cups)

F
ill

 T
im

e
pe

r
C

up
 (

se
c)

Figure 5.4–5 Flow rate and fill time for a coffee pot.

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 236

p = polyfit(log10(cups),log10(meas_flow),1);

coeffs = [p(1),10^p(2)];

m = coeffs(1)

b = coeffs(2)

%

% Plot the data and the fitted line on a loglog plot to see

% how well the line fits the data.

x = [6:0.01:40];

y = b*x.^m;

subplot(2,1,1)

loglog(x,y,cups,meas_flow,’o’),grid,xlabel(‘Volume (cups)’),...

ylabel(‘Flow Rate (cups/sec)’),axis([5 15 0.1 0.3])

The computed values are m � 0.433 and b � 0.0499, and our derived relation is f �

0.0499V 0.433. Because the exponent is 0.433, not 0.5, our model does not agree exactly
with Torricelli’s principle, but it is close. Note that the first plot in Figure 5.4–5 shows
that the data points do not lie exactly on the fitted straight line. In this application it is
difficult to measure the time to fill one cup with an accuracy greater than an integer
second, so this inaccuracy could have caused our result to disagree with that predicted
by Torricelli.

(b) Note that the fill time is 1/f, the reciprocal of the flow rate. The remainder of the
MATLAB script uses the derived flow rate relation f � 0.0499V 0.433 to plot the extrapo-
lated fill-time curve 1/f versus t.

% Plot the fill time curve extrapolated to 36 cups.

subplot(2,1,2)

plot(x,1./y,cups,meas_times,’o’),grid,xlabel(‘Volume(cups)’),...

ylabel(‘Fill Time per Cup (sec)’),axis([5 36 0 10])

%

% Compute the fill time for V = 36 cups.

fill_time = 1/(b*36^m)

The predicted fill time for one cup is 4.2 sec. The manufacturer must now decide if
this time is sufficient for the user to avoid overfilling. (In fact, the manufacturer did
construct a 36-cup pot, and the fill time is approximately 4 sec, which agrees with our
prediction.)

5.5 Regression
In the previous section we used the MATLAB function polyfit to perform re-
gression analysis with functions that are linear or could be converted to linear
form by a logarithmic or other transformation. The polyfit function is based
on the least squares method, which is also called regression. We now show how
to use this function to develop polynomial and other types of functions.

5.5 Regression 237

REGRESSION

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 237

The Least Squares Method

Suppose we have the three data points given in the following table, and we need
to determine the coefficients of the straight line y � mx � b that best fit the fol-
lowing data in the least squares sense.

238 CHAPTER 5 Advanced Plotting and Model Building

The values of m and b that minimize J are found by setting the partial deriv-
atives �J/�m and �J/�b equal to zero.

These conditions give two equations that must be solved for the two unknowns m
and b. The solution is m � 0.9 and b � 11/6. The best straight line in the least
squares sense is y � 0.9x � 11/6. If we evaluate this equation at the data values x
� 0, 5, and 10, we obtain the values y � 1.833, 6.333, 10.8333. These values are
different from the given data values y � 2, 6, and 11 because the line is not a per-
fect fit to the data. The value of J is J � (1.833�2)2 � (6.333�6)2 �
(10.8333�11)2 � 0.16656689. No other straight line will give a lower value of J
for this data.

In general, for the polynomial a1x
n � a2x

n�1 � · · · � anx � an�1, the sum of
the squares of the residuals for m data points is

The values of the n � 1 coefficients ai that minimize J can be found by solving a
set of n � 1 linear equations. The polyfit function provides this solution. Its
syntax is p = polyfit(x,y,n). Table 5.5–1 summarizes the polyfit and
polyval functions.

Consider the data set where x � 1, 2, 3, . . . , 9 and y � 5, 6, 10, 20, 28, 33,
34, 36, 42. The following script file computes the coefficients of the first- through
fourth-degree polynomials for this data and evaluates J for each polynomial.

J = a
m

i = 1
(a1x

n
+ a2x

n - 1
+

Á
+ anx + an + 1 - yi)

2

0J

0b
= 30m + 6b - 38 = 0

0J

0m
= 250m + 30b - 280 = 0

x y

0 2
5 6

10 11

According to the least squares criterion, the line that gives the best fit is the one
that minimizes J, the sum of the squares of the vertical differences between the
line and the data points. These differences are called the residuals. Here there are
three data points, and J is given by

RESIDUALS

J = a
3

i = 1
(mxi + b - yi)

2
= (0m + b - 2)2

+ (5m + b - 6)2
+ (10m + b - 11)2

pal48185_05_205-270.qxd 10/4/07 3:08 PM Page 238

x = [1:9];
y = [5,6,10,20,28,33,34,36,42];
for k = 1:4

coeff = polyfit(x,y,k)
J(k) = sum((polyval(coeff,x)-y).^2)

end

The J values are, to two significant figures, 72, 57, 42, and 4.7. Thus the value of
J decreases as the polynomial degree is increased, as we would expect.

It is tempting to use a high-degree polynomial to obtain the best possible fit.
However, there are two dangers in using high-degree polynomials. High-degree
polynomials often exhibit large excursions between the data points and thus
should be avoided if possible. The second danger with using high-degree poly-
nomials is that they can produce large errors if their coefficients are not repre-
sented with a large number of significant figures. In some cases it might not be
possible to fit the data with a low-degree polynomial. In such cases we might be
able to use several cubic polynomials. This method, called cubic splines, is cov-
ered in Chapter 6.

Test Your Understanding

T5.5–1 Obtain and plot the first- through fourth-degree polynomials for the fol-
lowing data: x � 0, 1, . . . , 5 and y � 0, 1, 60, 40, 41, and 47. Find the
coefficients and the J values.
(Answer: The polynomials are 9.5714x � 7.5714; �3.6964x2 �
28.0536x � 4.7500; 0.3241x3 � 6.1270x2 � 32.4934x � 5.7222; and
2.5208x4 � 24.8843x3 � 71.2986x2 � 39.5304x � 1.4008. The corre-
sponding J values are 1534, 1024, 1017, and 495, respectively.)

5.5 Regression 239

Table 5.5–1 Functions for polynomial regression

Command Description

p = polyfit(x,y,n) Fits a polynomial of degree n to data described by the vectors x and
y, where x is the independent variable. Returns a row vector p of
length n+1 that contains the polynomial coefficients in order of
descending powers.

[p,s, mu] = polyfit(x,y,n) Fits a polynomial of degree n to data described by the vectors x and
y, where x is the independent variable. Returns a row vector p of
length n+1 that contains the polynomial coefficients in order of
descending powers and a structure s for use with polyval to obtain
error estimates for predictions. The optional output variable mu is a
two-element vector containing the mean and standard deviation of x.

[y,delta] = polyval(p,x,s,mu) Uses the optional output structure s generated by [p,s,mu] =
polyfit(x,y,n) to generate error estimates. If the errors in the
data used with polyfit are independent and normally distributed
with constant variance, at least 50 percent of the data will lie within
the band y � delta.

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 239

Fitting Other Functions

Given the data (y, z), the logarithmic function y � m ln z � b can be converted to
a first-degree polynomial by transforming the z values into x values by the trans-
formation x � ln z. The resulting function is y � mx � b.

Given the data (y, z), the function y � b(10)m/z can be converted to an expo-
nential function by transforming the z values by the transformation x � 1/z.

Given the data (�, x), the function � � 1/(mx � b) can be converted to a first-
degree polynomial by transforming the � data values with the transformation y �
1/�. The resulting function is y � mx � b.

The Quality of a Curve Fit

The least squares criterion used to fit a function f(x) is the sum of the squares of
the residuals J. It is defined as

(5.5–1)

We can use the J value to compare the quality of the curve fit for two or more
functions used to describe the same data. The function that gives the smallest
J value gives the best fit.

We denote the sum of the squares of the deviation of the y values from their
mean by S, which can be computed from

(5.5–2)

This formula can be used to compute another measure of the quality of the curve
fit, the coefficient of determination, also known as the r-squared value. It is
defined as

(5.5–3)

For a perfect fit, J � 0 and thus r2 � 1. Thus the closer r2 is to 1, the bet-
ter the fit. The largest r2 can be is 1. The value of S indicates how much the data
is spread around the mean, and the value of J indicates how much of the data
spread is unaccounted for by the model. Thus the ratio J /S indicates the frac-
tional variation unaccounted for by the model. It is possible for J to be larger
than S, and thus it is possible for r2 to be negative. Such cases, however, are in-
dicative of a very poor model that should not be used. As a rule of thumb, a
good fit accounts for at least 99 percent of the data variation. This value corre-
sponds to r2
 0.99.

For example, the following table gives the values of J, S, and r2 for the first-
through fourth-degree polynomials used to fit the data x � 1, 2, 3, . . . , 9 and
y � 5, 6, 10, 20, 28, 33, 34, 36, 42.

r2
= 1 -

J

S

S = a
m

i = 1
(yi - y)2

y

J = a
m

i = 1
[f(xi) - yi]

2

240 CHAPTER 5 Advanced Plotting and Model Building

COEFFICIENT OF
DETERMINATION

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 240

5.5 Regression 241

Because the fourth-degree polynomial has the largest r2 value, it represents the
data better than the representation from first- through third-degree polynomials,
according to the r2 criterion.

To calculate the values of S and r2, add the following lines to the end of the
script file shown on page 239.

mu = mean(y);
for k=1:4

S(k) = sum((y-mu).^2);
r2(k) = 1 - J(k)/S(k);

end
S
r2

Scaling the Data

The effect of computational errors in computing the coefficients can be lessened
by properly scaling the x values. When the function polyfit(x,y,n) is exe-
cuted, it will issue a warning message if the polynomial degree n is greater than
or equal to the number of data points (because there will not be enough equations
for MATLAB to solve for the coefficients), or if the vector x has repeated, or
nearly repeated, points, or if the vector x needs centering and/or scaling. The
alternate syntax [p, s, mu] = polyfit(x,y,n) finds the coefficients p
of a polynomial of degree n in terms of the variable

The output variable mu is a two-element vector, [�x, 	x], where �x is the mean
of x, and 	x is the standard deviation of x (the standard deviation is discussed
in Chapter 6).

You can scale the data yourself before using polyfit. Some common scal-
ing methods are

if the range of x is small, or

if the range of x is large.

xN =

x
xmax

 or xN =

x
xmean

xN = x - xmin or xN = x - mx

xN = (x - mx)>sx

Degree n J S r2

1 72 1562 0.9542
2 57 1562 0.9637
3 42 1562 0.9732
4 4.7 1562 0.9970

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 241

Estimation of Traffic Flow

The following data gives the number of vehicles (in millions) crossing a bridge each year
for 10 years. Fit a cubic polynomial to the data and use the fit to estimate the flow in the
year 2008.

Year 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Vehicle flow 2.1 3.4 4.5 5.3 6.2 6.6 6.8 7 7.4 7.8
(millions)

■ Solution
If we attempt to fit a cubic to this data, as in the following session, we get a warning
message.

>>Year = [1998:2007];

>>Veh_Flow = [2.1,3.4,4.5,5.3,6.2,6.6,6.8,7,7.4,7.8];

>>p = polyfit(Year,Veh_Flow,3)

Warning: Polynomial is badly conditioned.

The problem is caused by the large values of the independent variable Year. Because
their range is small, we can simply subtract 1998 from each value. Continue the session
as follows.

>>x = Year-1998; y = Veh_Flow;

>>p = polyfit(x,y,3)

p =

0.0087 -0.1851 1.5991 2.0362

>>J = sum((polyval(p,x)-y).^2);

>>S = sum((y-mean(y)).^2);

>>r2 = 1 - J/S

r2 =

0.9972

Thus the polynomial fit is good because the coefficient of determination is 0.9972. The
corresponding polynomial is

where f is the traffic flow in millions of vehicles, and t is the time in years measured from
0. We can use this equation to estimate the flow at the year 2008 by substituting t � 2008,
or by typing in MATLAB polyval(p,10). Rounded to one decimal place, the an-
swer is 8.2 million vehicles.

Using Residuals

We now show how to use the residuals as a guide to choosing an appropriate func-
tion to describe the data. In general, if you see a pattern in the plot of the residu-
als, it indicates that another function can be found to describe the data better.

f = 0.0087(t - 1998)3
- 0.1851(t - 1998)2

+ 1.5991(t - 1998) + 2.0362

242 CHAPTER 5 Advanced Plotting and Model Building

EXAMPLE 5.5–1

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 242

Modeling Bacteria Growth

The following table gives data on the growth of a certain bacteria population with time.
Fit an equation to this data.

5.5 Regression 243

EXAMPLE 5.5–2

Time (min) Bacteria (ppm) Time (min) Bacteria (ppm)

0 6 10 350
1 13 11 440
2 23 12 557
3 33 13 685
4 54 14 815
5 83 15 990
6 118 16 1170
7 156 17 1350
8 210 18 1575
9 282 19 1830

■ Solution
We try three polynomial fits (linear, quadratic, and cubic), and an exponential fit. The script
file is given below. Note that we can write the exponential form as y � b(10)mt � 10mt�a,
where b � 10a.

% Time data

x = [0:19];

% Population data

y = [6,13,23,33,54,83,118,156,210,282,...

350,440,557,685,815,990,1170,1350,1575,1830];

% Linear fit

p1 = polyfit(x,y,1);

% Quadratic fit

p2 = polyfit(x,y,2);

% Cubic fit

p3 = polyfit(x,y,3);

% Exponential fit

p4 = polyfit(x,log10(y),1);

% Residuals

res1 = polyval(p1,x)-y;

res2 = polyval(p2,x)-y;

res3 = polyval(p3,x)-y;

res4 = 10.^polyval(p4,x)-y;

You can then plot the residuals as shown in Figure 5.5–1. Note that there is a definite
pattern in the residuals of the linear fit. This indicates that the linear function cannot
match the curvature of the data. The residuals of the quadratic fit are much smaller, but
there is still a pattern, with a random component. This indicates that the quadratic
function also cannot match the curvature of the data. The residuals of the cubic fit are

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 243

even smaller, with no strong pattern and a large random component. This indicates that
a polynomial degree higher than three will not be able to match the data curvature any
better than the cubic. The residuals for the exponential are the largest of all, and indi-
cate a poor fit. Note also how the residuals systematically increase with t, indicating that
the exponential cannot describe the data’s behavior after a certain time.

Thus the cubic is the best fit of the four models considered. Its coefficient of deter-
mination is r2 � 0.9999. The model is

where y is the bacteria population in ppm and t is time in minutes.

Multiple Linear Regression

Suppose that y is a linear function of two or more variables, x1, x2, . . . , for
example, y � a0 � a1x1 � a2x2. To find the coefficient values a0, a1, and a2 to
fit a set of data (y, x1, x2) in the least squares sense, we can make use of the
fact that the left-division method for solving linear equations uses the least
squares method when the equation set is overdetermined (see Section 2.5). To
use this method, let n be the number of data points and write the linear equation
in matrix form as Xa � y where

y = 0.1916t3
+ 1.2082t2

+ 3.607t + 7.7307

244 CHAPTER 5 Advanced Plotting and Model Building

0 5 10 15 20
–600

–400

–200

0

200

400

t (min)

R
es

id
ua

ls
 (

pp
m

)

Linear

0 5 10 15 20
–60

–40

–20

0

20

40

60

t (min)

R
es

id
ua

ls
 (

pp
m

)

Quadratic

0 5 10 15 20
–15

–10

–5

0

5

10

t (min)

R
es

id
ua

ls
 (

pp
m

)

Cubic

0 5 10 15 20
–500

0

500

1000

1500

t (min)

R
es

id
ua

ls
 (

pp
m

)

Exponential

Figure 5.5–1 Residual plots for the four models.

MULTIPLE
LINEAR
REGRESSION

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 244

where x1i, x2i, and yi are the data, i � 1, . . . , n. The solution for the coefficients
is given by a = X\y.

a =

a0

 a1

a2

 X =

1 x11 x21

1 x12 x22

1 x13 x23
Á

1 x1n x2n

 y =

y1

y2

y3
Á

yn

5.5 Regression 245

Breaking Strength and Alloy Composition

We want to predict the strength of metal parts as a function of their alloy composition. The
tension force y required to break a steel bar is a function of the percentage x1 and x2 of
each of two alloying elements present in the metal. The following table gives some perti-
nent data. Obtain a linear model y � a0 � a1x1 � a2x2 to describe the relationship.

EXAMPLE 5.5–3

Breaking strength (kN) % of element 1 %of element 2
y x1 x2

7.1 0 5
19.2 1 7
31 2 8
45 3 11

■ Solution
The script file is as follows:

x1 = [0:3]’;x2 = [5,7,8,11]’;

y = [7.1,19.2,31,45]’;

X = [ones(size(x1)), x1, x2];

a = X\y

yp = X*a;

Max_Percent_Error = 100*max(abs((yp-y)./y))

The vector yp is the vector of breaking-strength values predicted by the model. The scalar
Max_Percent_Error is the maximum percent error in the four predictions. The re-
sults are a = [0.8000, 10.2429, 1.2143]’ and Max_Percent_Error =
3.2193. Thus the model is y � 0.8 � 10.2429x1 � 1.2143x2. The maximum percent
error of the model’s predictions, as compared to the given data, is 3.2193 percent.

Linear-in-the-Parameters Regression

Sometimes we want to fit an expression that is neither a polynomial nor a func-
tion that can be converted to linear form by a logarithmic or other transforma-
tion. In some cases we can still do a least squares fit if the function is a linear
expression in terms of its parameters. The following example illustrates the
method.

LINEAR-IN-
PARAMETERS

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 245

Response of a Biomedical Instrument

Engineers developing instrumentation often need to obtain a response curve that describes
how fast the instrument can make measurements. The theory of instrumentation shows that
often the response can be described by one of the following equations, where � is the voltage
output, and t is time. In both models, the voltage reaches a steady-state constant value as

, and T is the time required for the voltage to equal 95 percent of the steady-state value.

The following data gives the output voltage of a certain device as a function of time. Ob-
tain a function that describes this data.

 y(t) = a1 + a2e
-3t>T

+ a3te
-3t>T (second - order model)

 y(t) = a1 + a2e
-3t>T (first - order model)

t : q

246 CHAPTER 5 Advanced Plotting and Model Building

EXAMPLE 5.5–4

t (s) 0 0.3 0.8 1.1 1.6 2.3 3

(V) 0 0.6 1.28 1.5 1.7 1.75 1.8y

■ Solution
Plotting the data we estimate that it takes approximately 3 seconds for the voltage to be-
come constant. Thus we estimate that T � 3. The first-order model written for each of the
n data points results in n equations, which can be expressed as follows:

or, in matrix form,

which can be solved for the coefficient vector a using left division. The following
MATLAB script solves the problem.

t = [0,0.3,0.8,1.1,1.6,2.3,3];

y = [0,0.6,1.28,1.5,1.7,1.75,1.8];

X = [ones(size(t));exp(-t)]’;

a = X\y’

The answer is a1 � 2.0258 and a2 � �1.9307.
A similar procedure can be followed for the second-order model.

Continue the previous script as follows.

X = [ones(size(t));exp(-t);t.*exp(-t)]’;

a = X\y’

≥
1 e-t1 t1e

-t1

1 e-t2 t2e
-t2

Á Á

1 e-tn tne-tn

¥ J
a1

a2

a3
K = ≥

y1

y2
Á

yn

¥

Xa = y¿

≥
1 e-t1

1 e-t2

Á Á

1 e-tn

¥ ca1

a2
d = ≥

y1

y2
Á

yn

¥

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 246

The answer is a1 � 1.7496, a2 � �1.7682, and a3 � 0.8885. The two models are plotted
with the data in Figure 5.5–2. Clearly the second-order model gives the better fit.

5.6 The Basic Fitting Interface
MATLAB supports curve fitting through the Basic Fitting interface. Using this
interface, you can quickly perform basic curve fitting tasks within the same easy-
to-use environment. The interface is designed so that you can:

■ Fit data using a cubic spline or a polynomial up to degree 10.
■ Plot multiple fits simultaneously for a given data set.
■ Plot the residuals.
■ Examine the numerical results of a fit.
■ Interpolate or extrapolate a fit.
■ Annotate the plot with the numerical fit results and the norm of residuals.
■ Save the fit and evaluated results to the MATLAB workspace.

Depending on your specific curve fitting application, you can use the Basic
Fitting interface, the command line functions, or both. Note: you can use the
Basic Fitting interface only with two-dimensional data. However, if you plot

5.6 The Basic Fitting Interface 247

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t (s)

v
(V

)

Data
First Order
Second Order

Figure 5.5–2 Comparison of first- and second-order model fits.

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 247

multiple data sets as a subplot, and at least one data set is two-dimensional,
then the interface is enabled.

Two panes of the Basic Fitting interface are shown in Figure 5.6–1. To repro-
duce this state:

1. Plot some data.
2. Select Basic Fitting from the Tools menu of the Figure window.
3. When the first pane of the Basic Fitting interface appears, click the right

arrow button once.

The third pane is used for interpolating or extrapolating a fit. It appears when you
click the right arrow button a second time.

At the top of the first pane is the Select data window which contains the
names of all the data sets you display in the Figure window associated with the
Basic Fitting interface. Use this menu to select the data set to be fit. You can
perform multiple fits for the current data set. Use the Plot Editor to change the
name of a data set. The remaining items on the first pane are used as follows.

248 CHAPTER 5 Advanced Plotting and Model Building

Figure 5.6–1 The Basic Fitting interface.

pal48185_05_205-270.qxd 10/4/07 4:03 PM Page 248

■ Center and scale X data. If checked, the data is centered at zero mean
and scaled to unit standard deviation. You may need to center and scale
your data to improve the accuracy of the subsequent numerical computa-
tions. As described in the previous section, a warning is returned to the
Command window if a fit produces results that may be inaccurate.

■ Plot fits. This panel allows you to visually explore one or more fits to the
current data set.

■ Check to display fits on figure. Select the fits you want to display for the
current data set. You can choose as many fits for a given data set as you want.
However, if your data set has n points, then you should use polynomials with,
at most, n coefficients. If you fit using polynomials with more than n
coefficients, the interface will automatically set a sufficient number of
coefficients to 0 during the calculation so that a solution can be obtained.

■ Show equations. If checked, the fit equation is displayed on the plot.
■ Significant digits. Select the significant digits associated with the fit

coefficient display.
■ Plot residuals. If checked, the residuals are displayed. You can display the

residuals as a bar plot, a scatter plot, a line plot using either the same figure
window as the data or using a separate figure window. If you plot multiple
data sets as a subplot, then residuals can be plotted only in a separate figure
window. See Figure 5.6–2.

5.6 The Basic Fitting Interface 249

Figure 5.6–2 A figure produced by the Basic Fitting interface.

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 249

■ Show norm of residuals. If checked, the norm of residuals is displayed. The
norm of residuals is a measure of the goodness of fit, where a smaller value
indicates a better fit. The norm is the square root of the sum of the squares of
the residuals.

The second pane of the Basic Fitting Interface is labeled Numerical Results. This
pane enables you to explore the numerical results of a single fit to the current data
set without plotting the fit. It contains three items.

■ Fit. Use this menu to select an equation to fit to the current data set. The
fit results are displayed in the box below the menu. Note that selecting an
equation in this menu does not affect the state of the Plot fits selection.
Therefore, if you want to display the fit in the data plot, you may need to
check the relevant check box in Plot fits.

■ Coefficients and norm of residuals. Displays the numerical results for the
equation selected in Fit. Note that when you first open the Numerical
Results panel, the results of the last fit you selected in Plot fits are displayed.

■ Save to workspace. Launches a dialog box that allows you to save the fit
results to workspace variables.

The third pane of the Basic Fitting interface contains three items.

■ Find Y � f(X). Use this to interpolate or extrapolate the current fit.
Enter a scalar or a vector of values corresponding to the independent
variable (X). The current fit is evaluated after you click on the Evaluate
button, and the results are displayed in the associated window. The
current fit is displayed in the Fit window.

■ Save to workspace. Launches a dialog box that allows you to save the
evaluated results to workspace variables.

■ Plot evaluated results. If checked, the evaluated results are displayed on
the data plot.

5.7 Three-Dimensional Plots
MATLAB provides many functions for creating three-dimensional plots. Here
we will summarize the basic functions to create three types of plots: line plots,
surface plots, and contour plots. Information about the related functions is avail-
able in MATLAB help (category graph3d).

Three-Dimensional Line Plots

Lines in three-dimensional space can be plotted with the plot3 function. Its
syntax is plot3(x,y,z). For example, the following equations generate a
three-dimensional curve as the parameter t is varied over some range:

 z = t
 y = e-0.05t cos t
 x = e-0.05t sin t

250 CHAPTER 5 Advanced Plotting and Model Building

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 250

If we let t vary from t � 0 to t � 10�, the sin and cos functions will vary through five
cycles, while the absolute values of x and y become smaller as t increases. This
process results in the spiral curve shown in Figure 5.7–1, which was produced with
the following session.

>>t = [0:pi/50:10*pi];
>>plot3(exp(-0.05*t).*sin(t),exp(-0.05*t).*cos(t),t),...

xlabel(‘x’),ylabel(‘y’),zlabel(‘z’),grid

Note that the grid and label functions work with the plot3 function, and that
we can label the z-axis by using the zlabel function, which we have seen for the
first time. Similarly, we can use the other plot-enhancement functions discussed
in Sections 5.1 and 5.2 to add a title and text and to specify line type and color.

Surface Mesh Plots
The function z � f (x, y) represents a surface when plotted on xyz axes, and the
mesh function provides the means to generate a surface plot. Before you can use
this function, you must generate a grid of points in the xy plane, and then evaluate
the function f (x, y) at these points. The meshgrid function generates the grid.
Its syntax is [X,Y] = meshgrid(x,y). If x = [xmin:xspacing:xmax]
and y = [ymin:yspacing:ymax], then this function will generate the coor-
dinates of a rectangular grid with one corner at (xmin, ymin) and the opposite

5.7 Three-Dimensional Plots 251

 –1
 –0.5

0
0.5

1

 –1

 –0.5

0

0.5

1
0

5

10

15

20

25

30

35

xy

z

Figure 5.7–1 The curve x � e�0.05t sin t, y � e�0.05t cos t, z � t plotted with the
plot3 function.

SURFACE MESH
PLOTS

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 251

corner at (xmax, ymax). Each rectangular panel in the grid will have a width equal
to xspacing and a depth equal to yspacing. The resulting matrices X and Y con-
tain the coordinate pairs of every point in the grid. These pairs are then used to
evaluate the function.

The function [X,Y] = meshgrid(x) is equivalent to [X,Y] =
meshgrid(x,x) and can be used if x and y have the same minimum values, the
same maximum values, and the same spacing. Using this form, you can type [X,Y]
= meshgrid (min:spacing:max), where min and max specify the mini-
mum and maximum values of both x and y and spacing is the desired spacing of
the x and y values.

After the grid is computed, you create the surface plot with the mesh func-
tion. Its syntax is mesh(x,y,z). The grid, label, and text functions can be used
with the mesh function. The following session shows how to generate the sur-
face plot of the function z � xe�[(x�y2)2�y2], for �2 � x � 2 and �2 � y � 2, with
a spacing of 0.1. This plot appears in Figure 5.7–2.

>>[X,Y] = meshgrid(-2:0.1:2);
>>Z = X.*exp(-((X-Y.^2).^2�Y.^2));
>>mesh(X,Y,Z),xlabel(‘x’),ylabel(‘y’),zlabel(‘z’)

Be careful not to select too small a spacing for the x and y values for two reasons:
(1) Small spacing creates small grid panels, which make the surface difficult to
visualize, and (2) the matrices X and Y can become too large.

The surf and surfc functions are similar to mesh and meshc except
that the former create a shaded surface plot. You can use the Camera toolbar
and some menu items in the Figure window to change the view and lighting of
the figure.

252 CHAPTER 5 Advanced Plotting and Model Building

 –2
 –1

0
1

2

 –2

 –1

0

1

2
 –0.5

0

0.5

xy

z

Figure 5.7–2 A plot of the surface z � xe�[(x�y2)2�y2] created with the mesh function.

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 252

Contour Plots

Topographic plots show the contours of the land by means of constant elevation
lines. These lines are also called contour lines, and such a plot is called a contour
plot. If you walk along a contour line, you remain at the same elevation. Contour
plots can help you visualize the shape of a function. They can be created with the
contour function, whose syntax is contour(X,Y,Z). You use this function
the same way you use the mesh function; that is, first use the meshgrid function
to generate the grid and then generate the function values. The following session
generates the contour plot of the function whose surface plot is shown in Figure
5.7–2; namely, z � xe�[(x�y2)2�y2], for �2 � x � 2 and �2 � y � 2, with a spac-
ing of 0.1. This plot appears in Figure 5.7–3.

>>[X,Y] = meshgrid(-2:0.1:2);
>>Z = X.*exp(-((X-Y.^2).^2+Y.^2));
>>contour(X,Y,Z),xlabel(‘x’),ylabel(‘y’)

You can add labels to the contour lines. Type help clabel.
Contour plots and surface plots can be used together to clarify the function. For

example, unless the elevations are labeled on contour lines, you cannot tell whether
there is a minimum or a maximum point. However, a glance at the surface plot will
make this easy to determine. On the other hand, accurate measurements are not

5.7 Three-Dimensional Plots 253

 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2
 –2

 –1.5

 –1

 –0.5

0

0.5

1

1.5

2

x

y

Figure 5.7–3 A contour plot of the surface z � xe�[(x�y2)2�y2] created with the
contour function.

CONTOUR PLOT

pal48185_05_205-270.qxd 10/4/07 11:41 PM Page 253

possible on a surface plot; these can be done on the contour plot because no distor-
tion is involved. Thus a useful function is meshc, which shows the contour lines be-
neath the surface plot. The meshz function draws a series of vertical lines under the
surface plot, while the waterfall function draws mesh lines in one direction only.
The results of these functions are shown in Figure 5.7–4 for the function
z � xe�(x2�y2).

Table 5.7–1 summarizes the functions introduced in this section. For other
3D plot types, type help specgraph.

254 CHAPTER 5 Advanced Plotting and Model Building

 –2

 –2 –2

 –2
0

2

 –2

 –2 –2

 –2

0

2
 –0.5

 –0.5 –0.5

 –0.5

0

0.5

xy

z

0
2

0

2

0

0.5

xy

z

0
2

0

2

0

0.5

xy

z

0
2

0

2

0

0.5

xy

z

(a) (b)

(c) (d)

Figure 5.7–4 Plots of the surface z � xe�(x2
�y2) created with the mesh function and its

variant forms: meshc, meshz, and waterfall. a) mesh, b) meshc, c) meshz,

Table 5.7–1 Three-dimensional plotting functions

Function Description

contour(x,y,z) Creates a contour plot.
mesh(x,y,z) Creates a three-dimensional mesh surface plot.
meshc(x,y,z) Same as mesh but draws a contour plot under the surface.
meshz(x,y,z) Same as mesh but draws a series of vertical reference

lines under the surface.
surf(x,y,z) Creates a shaded three-dimensional mesh surface plot.
surfc(x,y,z) Same as surf but draws a contour plot under the sur-
face.
[X,Y] = meshgrid(x,y) Creates the matrices X and Y from the vectors x and y to

define a rectangular grid.
[X,Y] = meshgrid(x) Same as [X,Y] = meshgrid(x,x).
waterfall(x,y,z) Same as mesh but draws mesh lines in one direction only.

d) waterfall.

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 254

Test Your Understanding

T5.7–1 Create a surface plot and a contour plot of the function z � (x � 2)2 � 2xy
� y2.

5.8 Summary
This chapter explained how to use the powerful MATLAB commands to create ef-
fective and pleasing two-dimensional and three-dimensional plots. You learned an
important application of plotting—function discovery—which is the technique for
using data plots to obtain a mathematical function that describes the data. Regres-
sion can be used to develop a model for cases where there is considerable scatter in
the data.

The following guidelines will help you create plots that effectively convey
the desired information:

■ Label each axis with the name of the quantity being plotted and its units!
■ Use regularly spaced tick marks at convenient intervals along each axis.
■ If you are plotting more than one curve or data set, label each on its plot or

use a legend to distinguish them.
■ If you are preparing multiple plots of a similar type or if the axes’ labels

cannot convey enough information, use a title.
■ If you are plotting measured data, plot each data point in a given set with

the same symbol, such as a circle, square, or cross.
■ If you are plotting points generated by evaluating a function (as opposed to

measured data), do not use a symbol to plot the points. Instead, connect the
points with solid lines.

Key Terms with Page References

Problems 255

Axis limits, 207
Coefficient of determination, 240
Contour plot, 253
Data symbol, 206
Linear-in-parameters, 245
Multiple linear regression, 244

Overlay plot, 212
Polar plot, 220
Regression, 237
Residuals, 238
Subplot, 211
Surface mesh plot, 251

Problems
You can find the answers to problems marked with an asterisk at the end of the text.

Sections 5.1, 5.2, and 5.3

1.* Breakeven analysis determines the production volume at which the total
production cost is equal to the total revenue. At the breakeven point, there

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 255

is neither profit nor loss. In general, production costs consist of fixed
costs and variable costs. Fixed costs include salaries of those not directly
involved with production, factory maintenance costs, insurance costs, and
so on. Variable costs depend on production volume and include material
costs, labor costs, and energy costs. In the following analysis, assume that
we produce only what we can sell; thus the production quantity equals the
sales. Let the production quantity be Q, in gallons per year.

Consider the following costs for a certain chemical product:
Fixed cost: $3 million per year.
Variable cost: 2.5 cents per gallon of product.
The selling price is 5.5 cents per gallon.

Use this data to plot the total cost and the revenue versus Q, and
graphically determine the breakeven point. Fully label the plot and mark the
breakeven point. For what range of Q is production profitable? For what
value of Q is the profit a maximum?

2. Consider the following costs for a certain chemical product:
Fixed cost: $2.045 million/year.
Variable costs:

Material cost: 62 cents per gallon of product.
Energy cost: 24 cents per gallon of product.
Labor cost: 16 cents per gallon of product.

Assume that we produce only what we sell. Let P be the selling price in
dollars per gallon. Suppose that the selling price and the sales quantity
Q are interrelated as follows: Q � 6 � 106 � 1.1 � 106P. Accordingly,
if we raise the price, the product becomes less competitive and sales
drop.

Use this information to plot the fixed and total variable costs versus
Q, and graphically determine the breakeven point(s). Fully label the plot
and mark the breakeven points. For what range of Q is the production
profitable? For what value of Q is the profit a maximum?

3.* a) Estimate the roots of the equation

by plotting the equation. b) Use the estimates found in Part (a) to find the
roots more accurately with the fzero function.

4. To compute the forces in structures, sometimes we must solve equations
similar to the following. Use the fplot function to find all the positive
roots of this equation:

x tan x = 7

x3
- 3x2

+ 5x sin apx

4
-

5p

4
b + 3 = 0

256 CHAPTER 5 Advanced Plotting and Model Building

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 256

5.* Cables are used to suspend bridge decks and other structures. If a heavy
uniform cable hangs suspended from its two endpoints, it takes the shape
of a catenary curve whose equation is

where a is the height of the lowest point on the chain above some horizon-
tal reference line, x is the horizontal coordinate measured to the right from
the lowest point, and y is the vertical coordinate measured up from the
reference line.

Let a � 10 m. Plot the catenary curve for �20 � x � 30 m. How high
is each endpoint?

6. Using estimates of rainfall, evaporation, and water consumption, the town
engineer developed the following model of the water volume in the
reservoir as a function of time.

where V is the water volume in liters, and t is time in days. Plot V(t)
versus t. Use the plot to estimate how many days it will take before the
water volume in the reservoir is 50 percent of its initial volume of 109 L.

7. It is known that the following Leibniz series converges to the value �/4 as
n → �.

Plot the difference between �/4 and the sum S(n) versus n for 0 � n
�200.

8. A certain fishing vessel is initially located in a horizontal plane at x � 0 and
y � 10 mi. It moves on a path for 10 hr such that x � t and y � 0.5t2 � 10,
where t is in hours. An international fishing boundary is described by the
line y � 2x � 6.
a. Plot and label the path of the vessel and the boundary.
b. The perpendicular distance of the point (x1, y1) from the line Ax � By �

C � 0 is given by

where the sign is chosen to make d
 0. Use this result to plot the distance
of the fishing vessel from the fishing boundary as a function of time for
0 � t � 10 hr.

d =

Ax1 + By1 + C

;2A2
+ B2

S(n) = a
n

k = 0
(-1)k

1

2k + 1

V(t) = 109
+ 108(1 - e-t>100) - 107t

y = a coshax
a
b

Problems 257

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 257

9. Plot columns 2 and 3 of the following matrix A versus column 1. The
data in column 1 is time (seconds). The data in columns 2 and 3 is force
(newtons).

10.* Many applications use the following “small angle” approximation for the
sine to obtain a simpler model that is easy to understand and analyze. This
approximation states that sin x � x, where x must be in radians. Investigate
the accuracy of this approximation by creating three plots. For the first, plot
sin x and x versus x for 0 � x � 1. For the second, plot the approximation
error sin x � x versus x for 0 � x � 1. For the third, plot the relative error
[sin(x) � x]/sin(x) versus x for 0 � x � 1. How small must x be for the
approximation to be accurate within 5 percent?

11. You can use trigonometric identities to simplify the equations that appear
in many applications. Confirm the identity tan(2x) � 2 tan x/(1 � tan2 x)
by plotting both the left and the right sides versus x over the range
0 � x � 2�.

12. The complex number identity eix � cos x � i sin x is often used to convert
the solutions of equations into a form that is relatively easy to visualize.
Confirm this identity by plotting the imaginary part versus the real part
for both the left and right sides over the range 0 � x � 2�.

13. Use a plot over the range 0 � x � 5 to confirm that sin(ix) � i sinh x.

14.* The function y(t) � 1 � e�bt, where t is time and b > 0, describes many
processes, such as the height of liquid in a tank as it is being filled and the
temperature of an object being heated. Investigate the effect of the param-
eter b on y(t). To do this, plot y versus t for several values of b on the
same plot. How long will it take for y(t) to reach 98 percent of its
steady-state value?

15. The following functions describe the oscillations in electrical circuits and the
vibrations of machines and structures. Plot these functions on the same plot.
Because they are similar, decide how best to plot and label them to avoid
confusion.

16. In certain kinds of structural vibrations, a periodic force acting on the
structure will cause the vibration amplitude to repeatedly increase and

 y(t) = 7e-0.4t cos(5t - 3)

 x(t) = 10e-0.5t sin(3t + 2)

A =

0 -8 6

5 -4 3

10 -1 1

15 1 0

20 2 -1

258 CHAPTER 5 Advanced Plotting and Model Building

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 258

decrease with time. This phenomenon, called beating, also occurs in
musical sounds. A particular structure’s displacement is described by

where y is the displacement in inches and t is the time in seconds. Plot
y versus t over the range 0 � t � 20 for f1 � 8 rad/sec and f2 � 1 rad/sec.
Be sure to choose enough points to obtain an accurate plot.

17.* The height h(t) and horizontal distance x(t) traveled by a ball thrown at an
angle A with a speed � are given by

At Earth’s surface the acceleration due to gravity is g � 9.81 m/s2.
a. Suppose the ball is thrown with a velocity � � 10 m/s at an angle of

35º. Use MATLAB to compute how high the ball will go, how far it
will go, and how long it will take to hit the ground.

b. Use the values of � and A given in part a to plot the ball’s trajectory;
that is, plot h versus x for positive values of h.

c. Plot the trajectories for � � 10 m/s corresponding to five values of the
angle A: 20º, 30º, 45º, 60º, and 70º.

d. Plot the trajectories for A � 45º corresponding to five values of the
initial velocity �: 10, 12, 14, 16, and 18 m/s.

18. The perfect gas law relates the pressure p, absolute temperature T, mass
m, and volume V of a gas. It states that

The constant R is the gas constant. The value of R for air is 286.7
N · m/kg · K. Suppose air is contained in a chamber at room temperature
(20ºC � 293 K). Create a plot having three curves of the gas pressure in
N/m2 versus the container volume V in m3 for 20 � V � 100. The three
curves correspond to the following masses of air in the container: m � 1 kg;
m � 3 kg; and m � 7 kg.

19. Oscillations in mechanical structures and electric circuits can often be
described by the function

where t is time and � is the oscillation frequency in radians per unit time.
The oscillations have a period of 2�/�, and their amplitudes decay in time
at a rate determined by �, which is called the time constant. The smaller �
is, the faster the oscillations die out.

y(t) = e-t>t sin(vt + f)

pV = mRT

 x(t) = yt cos A

 h(t) = yt sin A -

1

2
gt2

y(t) =

1

f2
1 - f2

2

[cos(f2t) - cos(f1t)]

Problems 259

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 259

a. Use these facts to develop a criterion for choosing the spacing of the
t values and the upper limit on t to obtain an accurate plot of y(t).
(Hint: Consider two cases: 4� � 2�/� and 4� � 2�/�.)

b. Apply your criterion, and plot y(t) for � � 10, � � �, and
 � 2.
c. Apply your criterion, and plot y(t) for � � 0.1, � � 8�, and
 � 2.

20. When a constant voltage was applied to a certain motor initially at rest, its
rotational speed s(t) versus time was measured. The data appears in the
following table:

260 CHAPTER 5 Advanced Plotting and Model Building

Time (sec) 1 2 3 4 5 6 7 8 10

Speed (rpm) 1210 1866 2301 2564 2724 2881 2879 2915 3010

Determine whether the following function can describe the data. If so, find
the values of the constants b and c.

21. The following table shows the average temperature for each year in a
certain city. Plot the data as a stem plot, a bar plot, and a stairs plot.

s(t) = b(1 - ect)

Year 1990 1991 1992 1993 1994

Temperature (ºC) 18 19 21 17 20

22. $10,000 invested at 5 percent interest compounded annually will grow
according to the formula

where k is the number of years (k � 0, 1, 2, . . .). Plot the amount of
money in the account for a 10-year period. Do this problem with four
types of plots: the xy plot, the stem plot, the stairs plot, and the bar plot.

23. The volume V and surface area A of a sphere of radius r are given by

a. Plot V and A versus r in two subplots, for 0.1 � r � 100 m. Choose
axes that will result in straight-line graphs for both V and A.

b. Plot V and r versus A in two subplots, for 1 � A � 104 m2. Choose
axes that will result in straight-line graphs for both V and r.

24. The current amount A of a principal P invested in a savings account
paying an annual interest rate r is given by

A = Pa1 +

r
n
bnt

V =

4

3
 pr3 A = 4pr2

y(k) = 104(1.05)k

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 260

where n is the number of times per year the interest is compounded. For
continuous compounding, A � Pert. Suppose $10,000 is initially invested
at 3.5 percent (r � 0.035).
a. Plot A versus t for 0 � t � 20 years for four cases: continuous

compounding, annual compounding (n � 1), quarterly compounding
n � 4), and monthly compounding (n � 12). Show all four cases on
the same subplot and label each curve. On a second subplot, plot the
difference between the amount obtained from continuous compounding
and the other three cases.

b. Redo part a but plot A versus t on log-log and semilog plots. Which
plot gives a straight line?

Section 5.4

25. The distance a spring stretches from its “free length” is a function of how
much tension force is applied to it. The following table gives the spring
length y that the given applied force f produced in a particular spring. The
spring’s free length is 4.7 in. Find a functional relation between f and x,
the extension from the free length (x � y � 4.7).

Problems 261

Force f (lb) Spring length y (in.)

0 4.7
0.47 7.2
1.15 10.6
1.64 12.9

x 25 30 35 40 45

y 5 260 480 745 1100

x 550 600 650 700 750

y 41.2 18.62 8.62 3.92 1.86

x 2.5 3 3.5 4 4.5 5 5.5 6 7 8 9 10

y 1500 1220 1050 915 810 745 690 620 520 480 410 390

26.* In each of the following problems, determine the best function y(x)
(linear, exponential, or power function) to describe the data. Plot the
function on the same plot with the data. Label and format the plots
appropriately.
a.

b.

c.

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 261

27. The population data for a certain country is

262 CHAPTER 5 Advanced Plotting and Model Building

Year 2002 2003 2004 2005 2006 2007

Population (millions) 10 10.8 11.7 12.7 13.8 14.9

Time (s) 0 1 2 3 4 5 6

Temperature (ºC) 300 150 75 35 12 5 2

Temperature (ºF) 100 120 140 160 180 200 220

Bearing life (hours � 103) 28 21 15 11 8 6 4

Obtain a function that describes this data. Plot the function and the
data on the same plot. Estimate when the population will be double its
2002 size.

28.* The half-life of a radioactive substance is the time it takes to decay by
half. The half-life of carbon 14, which is used for dating previously living
things, is 5500 years. When an organism dies, it stops accumulating
carbon 14. The carbon 14 present at the time of death decays with time.
Let C(t)/C(0) be the fraction of carbon 14 remaining at time t. In
radioactive carbon dating, scientists usually assume that the remaining
fraction decays exponentially according to the following formula:

a. Use the half-life of carbon 14 to find the value of the parameter b, and
plot the function.

b. If 90 percent of the original carbon 14 remains, estimate how long ago
the organism died.

c. Suppose our estimate of b is off by �1 percent. How does this error
affect the age estimate in b?

29. Quenching is the process of immersing a hot metal object in a bath for a
specified time to obtain certain properties such as hardness. A copper
sphere 25 mm in diameter, initially at 300ºC, is immersed in a bath at 0ºC.
The following table gives measurements of the sphere’s temperature versus
time. Find a functional description of this data. Plot the function and the
data on the same plot.

C(t)

C(0)
= e-bt

30. The useful life of a machine bearing depends on its operating temperature, as
the following data shows. Obtain a functional description of this data. Plot
the function and the data on the same plot. Estimate a bearing’s life if it
operates at 150ºF.

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 262

31. A certain electric circuit has a resistor and a capacitor. The capacitor is
initially charged to 100 V. When the power supply is detached, the
capacitor voltage decays with time, as the following data table shows.
Find a functional description of the capacitor voltage � as a function of
time t. Plot the function and the data on the same plot.

Problems 263

Time (s) 0 0.5 1 1.5 2 2.5 3 3.5 4

Voltage (V) 100 62 38 21 13 7 4 2 3

Sections 5.5 and 5.6

32.* The distance a spring stretches from its “free length” is a function of how
much tension force is applied to it. The following table gives the spring
length y that was produced in a particular spring by the given applied
force f. The spring’s free length is 4.7 in. Find a functional relation
between f and x, the extension from the free length (x � y � 4.7).

Force f (lb) Spring length y (in.)

0 4.7
0.47 7.2
1.15 10.6
1.64 12.9

33. The following data gives the drying time T of a certain paint as a function
of the amount of a certain additive A.
a. Find the first-, second-, third-, and fourth-degree polynomials that fit

the data and plot each polynomial with the data. Determine the quality
of the curve fit for each by computing J, S, and r2.

b. Use the polynomial giving the best fit to estimate the amount of
additive that minimizes the drying time.

A (oz) 0 1 2 3 4 5 6 7 8 9

T (min) 130 115 110 90 89 89 95 100 110 125

� (mi/hr) 20 30 40 50 60 70

d (ft) 45 80 130 185 250 330

34.* The following data gives the stopping distance d as a function of initial
speed �, for a certain car model. Find a quadratic polynomial that fits the
data. Determine the quality of the curve fit by computing J, S, and r2.

35.* The number of twists y required to break a certain rod is a function of the
percentage x1 and x2 of each of two alloying elements present in the rod. The

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 263

following table gives some pertinent data. Use linear multiple regression to
obtain a model y � a0 � a1x1 � a2x2 of the relationship between the number
of twists and the alloy percentages. In addition, find the maximum percent
error in the predictions.

264 CHAPTER 5 Advanced Plotting and Model Building

Number of twists Percentage of element 1 Percentage of element 2
y x1 x2

40 1 1
51 2 1
65 3 1
72 4 1
38 1 2
46 2 2
53 3 2
67 4 2
31 1 3
39 2 3
48 3 3
56 4 3

36. The following represents pressure samples, in pounds per square inch
(psi), taken in a fuel line once every second for 10 sec.

Time (sec) Pressure (psi) Time (sec) Pressure (psi)

1 26.1 6 30.6
2 27.0 7 31.1
3 28.2 8 31.3
4 29.0 9 31.0
5 29.8 10 30.5

a. Fit a first-degree polynomial, a second-degree polynomial, and a
third-degree polynomial to this data. Plot the curve fits along with the
data points.

b. Use the results from part a to predict the pressure at t � 11 sec.
Explain which curve fit gives the most reliable prediction. Consider
the coefficients of determination and the residuals for each fit in mak-
ing your decision.

37. A liquid boils when its vapor pressure equals the external pressure acting
on the surface of the liquid. This is the reason why water boils at a lower
temperature at higher altitudes. This information is important for people
who must design processes utilizing boiling liquids. Data on the vapor
pressure P of water as a function of temperature T is given in the follow-
ing table. From theory we know that ln P is proportional to 1/T . Obtain a
curve fit for P(T) from this data. Use the fit to estimate the vapor pressure
at 285 K and at 300 K.

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 264

38. The solubility of salt in water is a function of the water temperature. Let S
represent the solubility of NaCl (sodium chloride) as grams of salt in 100 g
of water. Let T be temperature in ºC. Use the following data to obtain a
curve fit for S as a function of T. Use the fit to estimate S when T � 25ºC.

Problems 265

T (K) P (torr)

273 4.579
278 6.543
283 9.209
288 12.788
293 17.535
298 23.756

T (C) S (g NaCl/100 g H2O)

10 35
20 35.6
30 36.25
40 36.9
50 37.5
60 38.1
70 38.8
80 39.4
90 40

39. The solubility of oxygen in water is a function of the water temperature.
Let S represent the solubility of O2 as millimoles of O2 per liter of
water. Let T be temperature in ºC. Use the following data to obtain a
curve fit for S as a function of T. Use the fit to estimate S when
T � 8ºC and T � 50ºC.

T (ºC) S (millimoles O2 /L H2O)

5 1.95
10 1.7
15 1.55
20 1.40
25 1.30
30 1.15
35 1.05
40 1.00
45 0.95

40. The following function is linear in the parameters a1 and a2.

Use least squares regression with the following data to estimate the values
of a1 and a2. Use the curve fit to estimate the values of y at x � 1.5 and at
x � 11.

y(x) = a1 + a2 ln x

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 265

41. Chemists and engineers must be able to predict the changes in chemical
concentration in a reaction. A model used for many single reactant
processes is:

where C is the chemical concentration and k is the rate constant. The
order of the reaction is the value of the exponent n. Solution methods for
differential equations (which are discussed in Chapter 7) can show that
the solution for a first-order reaction (n � 1) is

The following data describes the reaction

Use this data to obtain a least squares fit to estimate the value of k.

(CH3)3CBr + H2O : (CH3)3COH + HBr

C(t) = C(0)e-kt

Rate of change of concentration = -kCn

266 CHAPTER 5 Advanced Plotting and Model Building

x 1 2 3 4 5 6 7 8 9 10

y 10 14 16 18 19 20 21 22 23 23

Time t (h) C(mol of (CH3)3 CBr/L)

0 0.1039
3.15 0.0896
6.20 0.0776

10.0 0.0639
18.3 0.0353
30.8 0.0207
43.8 0.0101

42. Chemists and engineers must be able to predict the changes in chemical
concentration in a reaction. A model used for many single reactant
processes is:

where C is the chemical concentration and k is the rate constant. The
order of the reaction is the value of the exponent n. Solution methods for
differential equations (which are discussed in Chapter 7) can show that
the solution for a first-order reaction (n � 1) is

and the solution for a second-order reaction (n �2) is

1

C(t)
=

1

C(0)
+ kt

C(t) = C(0)e-kt

Rate of change of concentration = -kCn

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 266

The following data (from Brown, 1994) describes the gas-phase
decomposition of nitrogen dioxide at 300ºC.

2NO2 : 2NO + O2

Problems 267

Time t (min) C (mol of reactant/L)

5 0.3575
10 0.3010
15 0.2505
20 0.2095
25 0.1800
30 0.1500
35 0.1245
40 0.1070
45 0.0865

Time t (s) C(mol NO2 /L)

0 0.0100
50 0.0079

100 0.0065
200 0.0048
300 0.0038

Determine whether this is a first-order or second-order reaction, and
estimate the value of the rate constant k.

43. Chemists and engineers must be able to predict the changes in
chemical concentration in a reaction. A model used for many single
reactant processes is:

where C is the chemical concentration and k is the rate constant. The
order of the reaction is the value of the exponent n. Solution methods for
differential equations (which are discussed in Chapter 7) can show that
the solution for a first-order reaction (n � 1) is

The solution for a second-order reaction (n � 2) is

and the solution for a third-order reaction (n � 3) is

1

2C2(t)
=

1

2C2(0)
+ kt

1

C(t)
=

1

C(0)
+ kt

C(t) = C(0)e-kt

Rate of change of concentration = -kCn

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 267

The preceding data describes a certain reaction. By examining the
residuals, determine whether this is a first-order, second-order, or
third-order reaction, and estimate the value of the rate constant k.

Section 5.7

44. The popular amusement ride known as the corkscrew has a helical shape.
The parametric equations for a circular helix are

where a is the radius of the helical path and b is a constant that
determines the “tightness” of the path. In addition, if b � 0, the helix has
the shape of a right-handed screw; if b � 0, the helix is left-handed.

Obtain the three-dimensional plot of the helix for the following three
cases and compare their appearance with one another. Use 0 � t � 10�
and a � 1.
a. b � 0.1
b. b � 0.2
c. b � �0.1

45. A robot rotates about its base at two revolutions per minute while lowering
its arm and extending its hand. It lowers its arm at the rate of 120º per
minute and extends its hand at the rate of 5 m/min. The arm is 0.5 m long.
The xyz coordinates of the hand are given by

where t is time in minutes.
Obtain the three-dimensional plot of the path of the hand for 0 � t �

0.2 min.

46. Obtain the surface and contour plots for the function z � x2 � 2xy � 4y2,
showing the minimum at x � y � 0.

47. Obtain the surface and contour plots for the function z � �x2 � 2xy �
3y2. This surface has the shape of a saddle. At its saddlepoint at x � y �0,
the surface has zero slope, but this point does not correspond to either a

 z = (0.5 + 5t) cos a2p

3
tb

 y = (0.5 + 5t) sin a2p

3
tb sin (4pt)

 x = (0.5 + 5t) sin a2p

3
tb cos (4pt)

 z = bt

 y = a sin t

 x = a cos t

268 CHAPTER 5 Advanced Plotting and Model Building

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 268

minimum or a maximum. What type of contour lines correspond to a
saddlepoint?

48. Obtain the surface and contour plots for the function z �(x�y2)(x�3y2).
This surface has a singular point at x � y � 0, where the surface has zero
slope, but this point does not correspond to either a minimum or a maxi-
mum. What type of contour lines correspond to a singular point?

49. A square metal plate is heated to 80ºC at the corner corresponding to x �
y � 1. The temperature distribution in the plate is described by

Obtain the surface and contour plots for the temperature. Label each axis.
What is the temperature at the corner corresponding to x � y � 0?

50. The following function describes oscillations in some mechanical
structures and electric circuits:

In this function t is time, and � is the oscillation frequency in radians per
unit time. The oscillations have a period of 2�/�, and their amplitudes
decay in time at a rate determined by �, which is called the time constant.
The smaller � is, the faster the oscillations die out.

Suppose that
 � 0, � � 2, and � can have values in the range 0.5 �
� � 10 sec. Then the preceding equation becomes

Obtain a surface plot and a contour plot of this function to help visualize
the effect of � for 0 � t � 15 sec. Let the x variable be time t and the y
variable be �.

51. The following equation describes the temperature distribution in a flat
rectangular metal plate. The temperature on three sides is held constant at
T1, and at T2 on the fourth side (see Figure P51). The temperature T (x, y) as
a function of the xy coordinates shown is given by

where

The given data for this problem are: T1 � 70ºF, T2 � 200ºF, and
W � L � 2 ft.

Using a spacing of 0.2 for both x and y, generate a surface mesh plot
and a contour plot of the temperature distribution.

w(x,y) =

2
p a

q

n odd

2
n

 sin anpx

L
b

sinh(npy>L)

sinh(npW>L)

T(x,y) = (T2 - T1)w(x,y) + T1

z(t) = e-t>t sin(2t)

z(t) = e-t>t sin(vt + f)

T = 80e-(x - 1)2

e-3(y - 1)2

Problems 269

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 269

52. The electric potential field V at a point, due to two charged particles, is
given by

where q1 and q2 are the charges of the particles in coulombs (C), r1 and r2
are the distances of the charges from the point (in meters), and �0 is the
permittivity of free space, whose value is

Suppose the charges are q1 � 2 � 10�10 C and q2 � 4 � 10�10 C. Their
respective locations in the xy plane are (0.3, 0) and (�0.3, 0) m. Plot the
electric potential field on a 3D surface plot with V plotted on the z-axis over
the ranges �0.25 � x � 0.25 and �0.25 � y � 0.25. Create the plot two
ways: a. by using the surf function and b. by using the meshc function.

53. Refer to Problem 23 of Chapter 4. Use the function file created for that
problem to generate a surface mesh plot and a contour plot of x versus h
and W for 0 � W � 500 N and for 0 � h � 2 m. Use the values: k1 � 104

N/m; k2 � 1.5 � 104 N/m; and d � 0.1 m.

54. Refer to Problem 26 of Chapter 4. To see how sensitive the cost is to
location of the distribution center, obtain a surface plot and a contour plot
of the total cost as a function of the x and y coordinates of the distribution
center location. How much would the cost increase if we located the
center 1 mi in any direction from the optimal location?

55. Refer to Example 3.2–1. Use a surface plot and a contour plot of the perime-
ter length L as a function of d and � over the ranges 1 � d � 30 ft and 0.1 �
� � 1.5 rad. Are there valleys other than the one corresponding to d �
7.5984 and � � 1.0472? Are there any saddle points?

P0 = 8.854 * 10-12 C2>N . m2

V =

1

4pP0
 aq1

r1
+

q2

r2
b

270 CHAPTER 5 Advanced Plotting and Model Building

y

x

T1

T2

T1

T1
0 L

0

W

T (x ,y)

Figure P51

pal48185_05_205-270.qxd 9/30/07 2:50 PM Page 270

C H A P T E R 6
Statistics, Probability,
and Interpolation
OUTLINE
6.1 Statistics and Histograms

6.2 The Normal Distribution

6.3 Random Number Generation

6.4 Interpolation

6.5 Summary

Problems

This chapter begins with an introduction to basic statistics in Section 6.1. You
will see how to obtain and interpret histograms, which are specialized plots for
displaying statistical results. The normal distribution, commonly called the
bell-shaped curve, forms the basis of much of probability theory and many sta-
tistical methods. It is covered in Section 6.2. In Section 6.3 you will see how
to include random processes in your simulation programs. In Section 6.4 you
will see how to use interpolation with data tables to estimate values that are
not in the table.

When you have finished this chapter, you should be able to use MATLAB to
do the following:

■ Solve basic problems in statistics and probability.
■ Create simulations incorporating random processes.
■ Apply interpolation techniques.

271

pal48185_06_271-304.qxd 10/4/07 3:09 PM Page 271

6.1 Statistics and Histograms
With MATLAB you can compute the mean (the average), the mode (the most
frequently occurring value), and the median (the middle value) of a set of data.
MATLAB provides the mean(x), mode(x) and median(x) functions to
compute the mean, mode, and median of the data values stored in x, if x is a vec-
tor. However, if x is a matrix, a row vector is returned containing the mean (or
mode or median) value of each column of x. These functions do not require the
elements in x to be sorted in ascending or descending order.

The way the data is spread around the mean can be described by a histogram
plot. A histogram is a plot of the frequency of occurrence of data values versus
the values themselves. It is a bar plot of the number of data values that occur
within each range, with the bar centered in the middle of the range.

To plot a histogram, you must group the data into subranges, called bins. The
choice of the bin width and bin center can drastically change the shape of the
histogram. If the number of data values is relatively small, the bin width cannot
be small because some of the bins will contain no data and the resulting histogram
might not usefully illustrate the distribution of the data.

To obtain a histogram, first sort the data if it has not yet been sorted (you can
use the sort function here). Then choose the bin ranges and bin centers and
count the number of values in each bin. Use the bar function to plot the number
of values in each bin versus the bin centers as a bar chart. The function
bar(x,y) creates a bar chart of y versus x.

MATLAB also provides the hist command to generate a histogram. This
command has several forms. Its basic form is hist(y), where y is a vector
containing the data. This form aggregates the data into 10 bins evenly spaced
between the minimum and maximum values in y. The second form is
hist(y,n), where n is a user-specified scalar indicating the number of bins.
The third form is hist(y,x), where x is a user-specified vector that deter-
mines the location of the bin centers; the bin widths are the distances between
the centers.

272 CHAPTER 6 Statistics, Probability, and Interpolation

BINS

HISTOGRAMS

MEAN

MODE

MEDIAN

Breaking Strength of Thread

To ensure proper quality control, a thread manufacturer selects samples and tests them for
breaking strength. Suppose that 20 thread samples are pulled until they break, and the
breaking force is measured in newtons rounded off to integer values. The breaking force
values recorded were 92, 94, 93, 96, 93, 94, 95, 96, 91, 93, 95, 95, 95, 92, 93, 94, 91, 94,
92, and 93. Plot the histogram of the data.

■ Solution
Store the data in the vector y, which is shown in the following script file. Because there
are six outcomes (91, 92, 93, 94, 95, 96 N), we choose six bins. However, if you use
hist(y,6), the bins will not be centered at 91, 92, 93, 94, 95, and 96. So use the form

EXAMPLE 6.1–1

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 272

hist(y,x), where x = [91:96]. The following script file generates the histogram
shown in Figure 6.1–1.

% Thread breaking strength data for 20 tests.

y = [92,94,93,96,93,94,95,96,91,93,...

95,95,95,92,93,94,91,94,92,93];

% The six possible outcomes are 91,92,93,94,95,96.

x = [91:96];

hist(y,x),axis([90 97 0 6]),ylabel(‘Absolute Frequency’),...

xlabel(‘Thread Strength (N)’),...

title(‘Absolute Frequency Histogram for 20 Tests’)

The absolute frequency is the number of times a particular outcome oc-
curs. For example, in 20 tests this data shows that a 95 occurred four times.
The absolute frequency is 4, and its relative frequency is 4/20, or 20 percent
of the time.

When there is a large amount of data, you can avoid typing in every data value
by first aggregating the data. The following example shows how this is done us-
ing the ones function. The following data was generated by testing 100 thread

6.1 Statistics and Histograms 273

90 91 92 93 94 95 96 97
0

1

2

3

4

5

6

Thread Strength (N)

A
bs

ol
ut

e
F

re
qu

en
cy

Absolute Frequency Histogram for 20 Tests

Figure 6.1–1 Histograms for 20 tests of thread strength.

ABSOLUTE
FREQUENCY

RELATIVE
FREQUENCY

pal48185_06_271-304.qxd 10/4/07 3:09 PM Page 273

samples. The number of times 91, 92, 93, 94, 95, or 96 N was measured is 13, 15,
22, 19, 17, and 14, respectively.

% Thread strength data for 100 tests.
y = [91*ones(1,13),92*ones(1,15),93*ones(1,22),...

94*ones(1,19),95*ones(1,17),96*ones(1,14)];
x = [91:96];
hist(y,x),ylabel(‘Absolute Frequency’),...

xlabel(‘Thread Strength (N)’),...
title(‘Absolute Frequency Histogram for 100 Tests’)

The result appears in Figure 6.1–2.
The hist function is somewhat limited in its ability to produce useful his-

tograms. Unless all the outcome values are the same as the bin centers (as is the
case with the thread examples), the graph produced by the hist function will
not be satisfactory. This case occurs when you want to obtain a relative
frequency histogram. In such cases you can use the bar function to generate the
histogram. The following script file generates the relative frequency histogram
for the 100 thread tests. Note that if you use the bar function, you must aggre-
gate the data first.

274 CHAPTER 6 Statistics, Probability, and Interpolation

90 91 92 93 94 95 96 97
0

5

10

15

20

25

Thread Strength (N)

A
bs

ol
ut

e
F

re
qu

en
cy

Absolute Frequency Histogram for 100 Tests

Figure 6.1–2 Absolute frequency histogram for 100 thread tests.

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 274

% Relative frequency histogram using the bar function.
tests = 100;
y = [13,15,22,19,17,14]/tests;
x = [91:96];
bar(x,y),ylabel(‘Relative Frequency’),...

xlabel(‘Thread Strength (N)’),...
title(‘Relative Frequency Histogram for 100 Tests’)

The result appears in Figure 6.1–3.
The fourth, fifth, and sixth forms of the hist function do not generate a plot,

but are used to compute the frequency counts and bin locations. The bar
function can then be used to plot the histogram. The syntax of the fourth form
is [z,x] = hist(y), where z is the returned vector containing the frequency
count and x is the returned vector containing the bin locations. The fifth and sixth
forms are [z,x] = hist(y,n) and [z,x] = hist(y,x). In the latter
case the returned vector x is the same as the user-supplied vector. The following
script file shows how the sixth form can be used to generate a relative frequency
histogram for the thread example with 100 tests.

tests = 100;
y = [91*ones(1,13),92*ones(1,15),93*ones(1,22),...

6.1 Statistics and Histograms 275

90 91 92 93 94 95 96 97
0

0.05

0.1

0.15

0.2

0.25

Thread Strength (N)

R
el

at
iv

e
F

re
qu

en
cy

Relative Frequency Histogram for 100 Tests

Figure 6.1–3 Relative frequency histogram for 100 thread tests.

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 275

94*ones(1,19),95*ones(1,17),96*ones(1,14)];
x = [91:96];
[z,x] = hist(y,x);bar(x,z/tests),...

title(‘Relative Frequency Histogram for 100 Tests’)

The plot generated by this M-file will be identical to that shown in Figure 6.1–3.
These commands are summarized in Table 6.1–1.

Test Your Understanding

T6.1–1 In 50 tests of thread, the number of times 91, 92, 93, 94, 95, or 96 N was
measured was 7, 8, 10, 6, 12, and 7, respectively. Obtain the absolute and
relative frequency histograms.

The Data Statistics Tool

With the Data Statistics tool you can calculate statistics for data and add plots
of the statistics to a graph of the data. The tool is accessed from the Figure
window after you plot the data. Click on the Tools menu, then select Data
Statistics. The menu appears as shown in Figure 6.1–4. To plot the mean of
the dependent variable (y), click the box in the row labeled mean under the
column labeled Y, as shown in the figure. You can plot other statistics as well;
these are shown in the figure. You can save the statistics to the workspace as
a structure by clicking on the Save to Workspace button. This opens a dialog

276 CHAPTER 6 Statistics, Probability, and Interpolation

Table 6.1–1 Histogram functions

Command Description

bar(x,y) Creates a bar chart of y versus x.
hist(y) Aggregates the data in the vector y into 10 bins evenly spaced

between the minimum and maximum values in y.
hist(y,n) Aggregates the data in the vector y into n bins evenly spaced

between the minimum and maximum values in y.
hist(y,x) Aggregates the data in the vector y into bins whose center

locations are specified by the vector x. The bin widths are the
distances between the centers.

[z,x] = hist(y) Same as hist(y) but returns two vectors z and x that
contain the frequency count and the bin locations.

[z,x] = hist(y,n) Same as hist(y,n) but returns two vectors z and x that
contain the frequency count and the bin locations.

[z,x] = hist(y,x) Same as hist(y,x) but returns two vectors z and x that
contain the frequency count and the bin locations. The
returned vector x is the same as the user-supplied vector x.

ylabel(‘Relative Frequency’),xlabel(‘Thread Strength (N)’),...

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 276

box that prompts you for a name for the structure containing the x data, and a
name for the y data structure.

6.2 The Normal Distribution
Rolling a die is an example of a process whose possible outcomes are a limited
set of numbers; namely, the integers from 1 to 6. For such processes the proba-
bility is a function of a discrete-valued variable, that is, a variable having a lim-
ited number of values. For example, Table 6.2–1 gives the measured heights of
100 men 20 years of age. The heights were recorded to the nearest 1/2 in., so the
height variable is discrete valued.

Scaled Frequency Histogram

You can plot the data as a histogram using either the absolute or relative
frequencies. However, another useful histogram uses data scaled so that the to-
tal area under the histogram’s rectangles is 1. This scaled frequency histogram
is the absolute frequency histogram divided by the total area of that histogram.
The area of each rectangle on the absolute frequency histogram equals the bin
width times the absolute frequency for that bin. Because all the rectangles
have the same width, the total area is the bin width times the sum of the
absolute frequencies. The following M-file produces the scaled histogram
shown in Figure 6.2–1.

6.2 The Normal Distribution 277

Figure 6.1–4 The Data Statistics tool.

SCALED
FREQUENCY
HISTOGRAM

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 277

% Absolute frequency data.
y_abs=[1,0,0,0,2,4,5,4,8,11,12,10,9,8,7,5,4,4,3,1,1,0,1];
binwidth = 0.5;
% Compute scaled frequency data.
area = binwidth*sum(y_abs);
y_scaled = y_abs/area;

278 CHAPTER 6 Statistics, Probability, and Interpolation

Table 6.2–1 Height data for men 20 years of age

Height (in.) Frequency Height (in.) Frequency

64 1 70 9
64.5 0 70.5 8
65 0 71 7
65.5 0 71.5 5
66 2 72 4
66.5 4 72.5 4
67 5 73 3
67.5 4 73.5 1
68 8 74 1
68.5 11 74.5 0
69 12 75 1
69.5 10

62 64 66 68 70 72 74 76
0

0.05

0.1

0.15

0.2

0.25

Height (in.)

S
ca

le
d

F
re

qu
en

cy

Figure 6.2–1 Scaled histogram of height data.

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 278

% Define the bins.
bins = [64:binwidth:75];
% Plot the scaled histogram.
bar(bins,y_scaled),...

ylabel(‘Scaled Frequency’),xlabel(‘Height (in.)’)

Because the total area under the scaled histogram is 1, the fractional area
corresponding to a range of heights gives the probability that a randomly selected
20-year-old man will have a height in that range. For example, the heights of the
scaled histogram rectangles corresponding to heights of 67 through 69 in. are 0.1,
0.08, 0.16, 0.22, and 0.24. Because the bin width is 0.5, the total area correspon-
ding to these rectangles is (0.1�0.08�0.16�0.22�0.24)(0.5) � 0.4. Thus
40 percent of the heights lie between 67 and 69 in.

You can use the cumsum function to calculate areas under the scaled
frequency histogram, and therefore calculate probabilities. If x is a vector,
cumsum(x) returns a vector the same length as x, whose elements are the sum
of the previous elements. For example, if x =[2, 5, 3, 8], cumsum(x)=
[2, 7, 10, 18]. If A is a matrix, cumsum(A) computes the cumulative sum
of each row. The result is a matrix the same size as A.

After running the previous script, the last element of cumsum(y_scaled)*
binwidth is 1, which is the area under the scaled frequency histogram. To
compute the probability of a height lying between 67 and 69 in. (that is, above the
6th value up to the 11th value, type)

>>prob = cumsum(y_scaled)*binwidth;
>>prob67_69 = prob(11)-prob(6)

The result is prob67_69 = 0.4000, which agrees with our previous
calculation of 40 percent.

Continuous Approximation to the Scaled Histogram

For processes having an infinite number of possible outcomes, the probability
is a function of a continuous variable and is plotted as a curve rather than as
rectangles. It is based on the same concept as the scaled histogram; that is, the
total area under the curve is 1, and the fractional area gives the probability of
occurrence of a specific range of outcomes. A probability function that
describes many processes is the normal or Gaussian function, which is shown
in Figure 6.2–2.

This function is also known as the “bell-shaped curve.” Outcomes that can
be described by this function are said to be “normally distributed.” The normal
probability function is a two-parameter function; one parameter, �, is the mean
of the outcomes, and the other parameter, �, is the standard deviation. The mean
� locates the peak of the curve and is the most likely value to occur. The width,
or spread, of the curve is described by the parameter �. Sometimes the term
variance is used to describe the spread of the curve. The variance is the square of
the standard deviation �.

6.2 The Normal Distribution 279

NORMAL OR
GAUSSIAN
FUNCTION

NORMALLY
DISTRIBUTED

STANDARD
DEVIATION

VARIANCE

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 279

The normal probability function is described by the following equation:

(6.2–1)

It can be shown that approximately 68 percent of the area lies between the
limits of � � � � x � � � �. Consequently, if a variable is normally distributed,
there is a 68 percent chance that a randomly selected sample will lie within one
standard deviation of the mean. In addition, approximately 96 percent of the area
lies between the limits of � � 2� � x � � � 2�, and 99.7 percent, or practically
100 percent, of the area lies between the limits of � � 3� � x � � � 3�.

The functions mean(x), var(x), and std(x) compute the mean, variance,
and standard deviation of the elements in the vector x.

p(x) =

1

s12p
 e-(x -m)2>2s2

280 CHAPTER 6 Statistics, Probability, and Interpolation

1/σ√2σ π

0.6065/σ√2σ π
2σ

μ μ + σ+μ + σ–
x

p

Figure 6.2–2 The basic shape of the normal distribution curve.

Mean and Standard Deviation of Heights

Statistical analysis of data on human proportions is required in many engineering
applications. For example, designers of submarine crewquarters need to know how small
they can make bunk lengths without eliminating a large percentage of prospective crew
members. Use MATLAB to estimate the mean and standard deviation for the height data
given in Table 6.2–1.

■ Solution
The script file follows. The data given in Table 6.2–1 is the absolute frequency data and is
stored in the vector y_abs. A bin width of 1/2 in. is used because the heights were mea-
sured to the nearest 1/2 in. The vector bins contains the heights in 1/2 in. increments.

To compute the mean and standard deviation, reconstruct the original (raw) height
data from the absolute frequency data. Note that this data has some zero entries. For
example, none of the 100 men had a height of 65 in. Thus to reconstruct the raw data, start
with a empty vector y_raw and fill it with the height data obtained from the absolute

EXAMPLE 6.2–1

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 280

frequencies. The for loop checks to see whether the absolute frequency for a particular
bin is nonzero. If it is nonzero, append the appropriate number of data values to the
vector y_raw. If the particular bin frequency is 0, y_raw is left unchanged.

% Absolute frequency data.

y_abs = [1,0,0,0,2,4,5,4,8,11,12,10,9,8,7,5,4,4,3,1,1,0,1];

binwidth = 0.5;

% Define the bins.

bins = [64:binwidth:75];

% Fill the vector y_raw with the raw data.

% Start with an empty vector.

y_raw = [];

for i = 1:length(y_abs)

if y_abs(i)>0

new = bins(i)*ones(1,y_abs(i));

else

new = [];

end

y_raw = [y_raw,new];

end

% Compute the mean and standard deviation.

mu = mean(y_raw),sigma = std(y_raw)

When you run this program, you will find that the mean is � � 69.6 in. and the stan-
dard deviation is � � 1.96 in.

6.2 The Normal Distribution 281

If you need to compute probabilities based on the normal distribution, you
can use the erf function. Typing erf(x) returns the area to the left of the value
t � x under the curve of the function This area, which is a function of x,
is known as the error function, and is written as erf(x). The probability that the
random variable x is less than or equal to b is written as P(x � b) if the outcomes
are normally distributed. This probability can be computed from the error function
as follows:

(6.2–2)

The probability that the random variable x is no less than a and no greater than b
is written as P(a � x � b). It can be computed as follows:

(6.2–3)P(a … x … b) =

1

2
 cerf ab - m

s12
b - erf aa - m

s12
b d

P(x … b) =

1

2
 c1 + erf ab - m

s12
b d

2e-t2>1p.
ERROR FUNCTION

Estimation of Height Distribution

Use the results of Example 6.2–1 to estimate how many 20-year-old men are no taller than
68 in. How many are within 3 in. of the mean?

EXAMPLE 6.2–2

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 281

■ Solution
In Example 6.2–1 the mean and standard deviation were found to be � � 69.3 in. and � �

1.96 in. In Table 6.2–1, note that few data points are available for heights less than 68 in.
However, if you assume that the heights are normally distributed, you can use equation
(6.2–2) to estimate how many men are shorter than 68 in. Use (6.2–2) with b � 68; that is,

To determine how many men are within 3 in. of the mean, use (6.2–3) with a � � � 3 �
66.3 and b � � � 3 � 72.3; that is,

In MATLAB these expressions are computed in a script file as follows:

mu = 69.3;

sigma = 1.96;

% How many are no taller than 68 inches?

b1 = 68;

P1 = (1+erf((b1-mu)/(sigma*sqrt(2))))/2

% How many are within 3 inches of the mean?

a2 = 66.3;

b2 = 72.3;

When you run this program, you obtain the results P1 = 0.2536 and P2 = 0.8741.
Thus 25 percent of 20-year-old men are estimated to be 68 inches or less in height, and
87 percent are estimated to be between 66.3 and 72.3 inches tall.

Test Your Understanding

T6.2–1 Suppose that 10 more height measurements are obtained so that the fol-
lowing numbers must be added to Table 6.2–1.

P(66.3 … x … 72.3) =

1

2
 cerf a 3

1.9612
b - erf a -3

1.9612
b d

P(x … 68) =

1

2
 c1 + erf a68 - 69.3

1.9612
b d

282 CHAPTER 6 Statistics, Probability, and Interpolation

Height (in.) Additional data

64.5 1
65 2
66 1
67.5 2
70 2
73 1
74 1

(a) Plot the scaled frequency histogram. (b) Find the mean and standard
deviation. (c) Use the mean and standard deviation to estimate how many

P2 = (erf((b2-mu)/(sigma*sqrt(2)))-erf((a2-mu)/(sigma* sqrt(2))))/2

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 282

20-year-old men are no taller than 69 in. (d) Estimate how many are
between 68 and 72 in. tall.
(Answers: (b) mean � 69.4 in., standard deviation � 2.14 in.; (c) 43 percent;
(d) 63 percent.)

Sums and Differences of Random Variables

It can be proved that the mean of the sum (or difference) of two independent
normally distributed random variables equals the sum (or difference) of their
means, but the variance is always the sum of the two variances. That is, if x and
y are normally distributed with means �x and �y, and variances �2

x and �2
y, and

if u � x � y and � x � y, then

(6.2–4)

(6.2–5)

(6.2–6)

These properties are applied in some of the homework problems.

6.3 Random Number Generation
We often do not have a simple probability distribution to describe the distribution
of outcomes in many engineering applications. For example, the probability that
a circuit consisting of many components will fail is a function of the number and
the age of the components, but we often cannot obtain a function to describe the
failure probability. In such cases we often resort to simulation to make predic-
tions. The simulation program is executed many times, using a random set of
numbers to represent the failure of one or more components, and the results are
used to estimate the desired probability.

Uniformly Distributed Numbers

In a sequence of uniformly distributed random numbers, all values within a given in-
terval are equally likely to occur. The MATLAB function rand generates random
numbers uniformly distributed over the interval [0,1]. Type rand to obtain a single
random number in the interval [0,1]. Typing rand again generates a different num-
ber because the MATLAB algorithm used for the rand function requires a “state”
to start. MATLAB obtains this state from the computer’s CPU clock. Thus every
time the rand function is used, a different result will be obtained. For example,

rand
ans =

0.6161
rand
ans =

0.5184

 s2
u = s2

y = s2
x + s2

y

 my = mx - my

 mu = mx + my

6.3 Random Number Generation 283

y

UNIFORMLY
DISTRIBUTED

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 283

Type rand(n) to obtain an n � n matrix of uniformly distributed random
numbers in the interval [0, 1]. Type rand(m,n) to obtain an m � n matrix of
random numbers. For example, to create a 1 � 100 vector y having 100 random
values in the interval [0, 1], type y = rand(1,100). Using the rand
function this way is equivalent to typing rand 100 times. Even though there is
a single call to the rand function, the rand function’s calculation has the
effect of using a different state to obtain each of the 100 numbers so that they
will be random.

Use Y = rand(m,n,p,...) to generate a multidimensional array Y
having random elements. Typing rand(size(A)) produces an array of
random entries that is the same size as A.

For example, the following script makes a random choice between two
equally probable alternatives.

if rand < 0.5
disp(‘heads’)

else
disp(‘tails’)

end

In order to compare the results of two or more simulations, you sometimes will
need to generate the same sequence of random numbers each time the simulation
runs. To generate the same sequence, you must use the same state each time. The
current state s of the uniform number generator can be obtained by typing s =
rand(‘twister’). This returns a vector containing the current state of the uni-
form generator. To set the state of the generator to s, type rand(‘twister’,s).
Typing rand(‘twister’,0) resets the generator to its initial state. Typing
rand(‘twister’,j), for integer j, resets the generator to state j. Typing
rand(‘twister’,sum(100*clock)) resets the generator to a different
state each time. Table 6.3–1 summarizes these functions.

The name ‘twister’ refers to the specific algorithm used by MATLAB to
generate random numbers. In MATLAB Version 4, ‘seed’ was used instead of
‘twister’. In Versions 5 through 7.3, ‘state’ was used. Use ‘twister’
in Version 7.4 and later. The following session shows how to obtain the same
sequence every time rand is called.

>>rand(‘twister’,0)
>>rand
ans =

0.5488
>>rand
ans =

0.7152
>>rand(‘twister’,0)
>>rand

284 CHAPTER 6 Statistics, Probability, and Interpolation

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 284

ans =
0.5488

>>rand
ans =

0.7152

You need not start with the initial state in order to generate the same sequence.
To show this, continue the above session as follows.

>>s = rand(‘twister’);
>>rand(‘twister’,s)
>>rand
ans =

0.6028
>>rand(‘twister’,s)
>>rand
ans =

0.6028

6.3 Random Number Generation 285

Table 6.3–1 Random number functions

Command Description

rand Generates a single uniformly distributed random number between
0 and 1.

rand(n) Generates an n � n matrix containing uniformly distributed random
numbers between 0 and 1.

rand(m,n) Generates an m � n matrix containing uniformly distributed random
numbers between 0 and 1.

s = rand(‘state’) Returns a vector s containing the current state of the uniformly
distributed generator.

rand(‘twister’,s) Sets the state of the uniformly distributed generator to s.
rand(‘twister’,0) Resets the uniformly distributed generator to its initial state.
rand(‘twister’,j) Resets the uniformly distributed generator to state j, for integer j.
rand(‘twister’,sum(100*clock)) Resets the uniformly distributed generator to a different state each

time it is executed.
randn Generates a single normally distributed random number having a

mean of 0 and a standard deviation of 1.
randn(n) Generates an n � n matrix containing normally distributed random

numbers having a mean of 0 and a standard deviation of 1.
randn(m,n) Generates an m � n matrix containing normally distributed random

numbers having a mean of 0 and a standard deviation of 1.
s = randn(‘state’) Like rand(‘state’) but for the normally distributed generator.
randn(‘state’,s) Like rand(‘state’,s) but for the normally distributed generator.
randn(‘state’,0) Like rand(‘state’,0) but for the normally distributed generator.
randn(‘state’,j) Like rand(‘state’,j) but for the normally distributed generator.
randn(‘state’,sum(100*clock)) Like rand(‘state’,sum(100*clock)) but for the normally

distributed generator.
randperm(n) Generates a random permutation of the integers from 1 to n.

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 285

You can use the rand function to generate random numbers in an interval
other than [0, 1]. For example, to generate values in the interval [2, 10], first
generate a random number between 0 and 1, multiply it by 8 (the difference
between the upper and lower bounds), and then add the lower bound (2). The
result is a value that is uniformly distributed in the interval [2, 10]. The general
formula for generating a uniformly distributed random number y in the interval
[a, b] is

(6.3–1)

where x is a random number uniformly distributed in the interval [0, 1]. For
example, to generate a vector y containing 1000 uniformly distributed random
numbers in the interval [2, 10], you type y = 8*rand(1,1000) + 2. You can
check the results with the mean, min, and max functions. You should obtain
values close to 6, 2, and 10, respectively.

You can use rand to generate random results for games involving dice, for
example, but you must use it to create integers. An easier way is to use the
randperm(n) function, which generates a random permutation of the integers
from 1 to n. For example, randperm(6) might generate the vector [3 2 6 4
1 5], or some other permutation of the numbers from 1 to 6. Note that
randperm calls rand and therefore changes the state of the generator.

Test Your Understanding

T6.3–1 Use MATLAB to generate a vector y containing 1500 uniformly distrib-
uted random numbers in the interval [�5, 15]. Check your results with
the mean, min, and max functions.

Normally Distributed Random Numbers

In a sequence of normally distributed random numbers, the values near the mean
are more likely to occur. We have noted that the outcomes of many processes can
be described by the normal distribution. Although a uniformly distributed ran-
dom variable has definite upper and lower bounds, a normally distributed random
variable does not.

The MATLAB function randn will generate a single number that is nor-
mally distributed with a mean equal to 0 and a standard deviation equal to 1. Type
randn(n) to obtain an n � n matrix of such numbers. Type randn(m,n) to
obtain an m � n matrix of random numbers.

The functions for retrieving and specifying the state of the normally distributed
random number generator are identical to those for the uniformly distributed gener-
ator, except that randn(...) replaces rand(...) in the syntax and ‘state’
is used instead of ‘twister’. These functions are summarized in Table 6.3–1.

You can generate a sequence of normally distributed numbers having a mean
� and standard deviation � from a normally distributed sequence having a mean

y = (b - a)x + a

286 CHAPTER 6 Statistics, Probability, and Interpolation

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 286

of 0 and a standard deviation of 1. You do this by multiplying the values by � and
adding � to each result. Thus if x is a random number with a mean of 0 and a
standard deviation of 1, use the following equation to generate a new random
number y having a standard deviation of � and a mean of �.

(6.3–2)

For example, to generate a vector y containing 2000 random numbers normally
distributed with a mean of 5 and a standard deviation of 3, you type y =
3*randn(1,2000) + 5. You can check the results with the mean and std
functions. You should obtain values close to 5 and 3, respectively.

Test Your Understanding

T6.3–2 Use MATLAB to generate a vector y containing 1800 random numbers
normally distributed with a mean of 7 and a standard deviation of 10.
Check your results with the mean and std functions. Why can’t you use
the min and max functions to check your results?

Functions of Random Variables If y and x are linearly related, as

(6.3–3)

and if x is normally distributed with a mean �x and standard deviation �x, it can
be shown that the mean and standard deviation of y are given by

(6.3–4)

(6.3–5)

However, it is easy to see that the means and standard deviations do not combine
in a straightforward fashion when the variables are related by a nonlinear func-
tion. For example, if x is normally distributed with a mean of 0, and if y � x2, it
is easy to see that the mean of y is not 0, but is positive. In addition, y is not nor-
mally distributed.

Some advanced methods are available for deriving a formula for the mean
and variance of y � f(x), but for our purposes, the simplest way is to use random
number simulation.

It was noted in the previous section that the mean of the sum (or difference)
of two independent normally distributed random variables equals the sum (or dif-
ference) of their means, but the variance is always the sum of the two variances.
However, if z is a nonlinear function of x and y, then the mean and variance of z
cannot be found with a simple formula. In fact, the distribution of z will not even
be normal. This outcome is illustrated by the following example.

 sy = |b|sx

 my = bmx + c

y = bx + c

y = sx + m

6.3 Random Number Generation 287

Statistical Analysis and Manufacturing Tolerances

Suppose you must cut a triangular piece off the corner of a square plate by measuring the
distances x and y from the corner (see Figure 6.3–1). The desired value of x is 10 in., and

EXAMPLE 6.3–1

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 287

the desired value of � is 20�. This requires that y � 3.64 in. We are told that measurements
of x and y are normally distributed with means of 10 and 3.64, respectively, with a
standard deviation equal to 0.05 in. Determine the standard deviation of � and plot the
relative frequency histogram for �.

■ Solution
From Figure 6.3–1, we see that the angle � is determined by � � tan�1(y/x).We can find
the statistical distribution of � by creating random variables x and y that have means of 10
and 3.64, respectively, with a standard deviation of 0.05. The random variable � is then
found by calculating � � tan�1(y/x) for each random pair (x, y). The following script file
shows this procedure.

s = 0.05; % standard deviation of x and y

n = 8000; % number of random simulations

x = 10 + s*randn(1,n);

y = 3.64 + s*randn(1,n);

theta = (180/pi)*atan(y./x);

mean_theta = mean(theta)

sigma_theta = std(theta)

xp = [19:0.1:21];

z = hist(theta,xp);

yp = z/n;

The choice of 8000 simulations was a compromise between accuracy and the amount of
time required to do the calculations. You should try different values of n and compare the
results. The results gave a mean of 19.9993� for � with a standard deviation of 0.2730�.
The histogram is shown in Figure 6.3–2. Although the plot resembles the normal distri-
bution, the values of � are not distributed normally. From the histogram we can calculate
that approximately 65 percent of the values of � lie between 19.8 and 20.2. This range cor-
responds to a standard deviation of 0.2�, not 0.273� as calculated from the simulation data.
Thus the curve is not a normal distribution.

288 CHAPTER 6 Statistics, Probability, and Interpolation

x

y

Plate

θ

Figure 6.3–1 Dimensions of a
triangular cut.

bar(xp,yp),xlabel(‘Theta (degrees)’),ylabel(‘Relative Frequency’)

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 288

This example shows that the interaction of two of more normally distributed vari-
ables does not produce a result that is normally distributed. In general, the result is nor-
mally distributed if and only if the result is a linear combination of the variables.

6.4 Interpolation
Paired data might represent a cause and effect, or input-output relationship, such
as the current produced in a resistor as a result of an applied voltage, or a time
history, such as the temperature of an object as a function of time. Another type
of paired data represents a profile, such as a road profile (which shows the height
of the road along its length). In some applications we want to estimate a variable’s
value between the data points. This process is called interpolation. In other cases
we might need to estimate the variable’s value outside of the given data range.
This process is extrapolation. Interpolation and extrapolation are greatly aided by
plotting the data. Such plots, some perhaps using logarithmic axes, often help to
discover a functional description of the data.

Suppose we have the following temperature measurements, taken once an
hour starting at 7:00 A.M. The measurements at 8 A.M. and 10 A.M. are missing for
some reason, perhaps because of equipment malfunction.

Time 7 A.M. 9 A.M. 11 A.M. 12 noon

Temperature (�F) 49 57 71 75

6.4 Interpolation 289

18.5 19 19.5 20 20.5 21 21.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Theta (degrees)

R
el

at
iv

e
F

re
qu

en
cy

Figure 6.3–2 Scaled histogram of the angle �.

INTERPOLATION

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 289

A plot of this data is shown in Figure 6.4–1 with the data points connected
by dashed lines. If we need to estimate the temperature at 10 A.M., we can read
the value from the dashed line that connects the data points at 9 A.M. and 11 A.M.
From the plot we thus estimate the temperature at 8 A.M. to be 53�F and at
10 A.M. to be 64�F. We have just performed linear interpolation on the data to
obtain an estimate of the missing data. Linear interpolation is so named
because it is equivalent to connecting the data points with a linear function (a
straight line).

Of course we have no reason to believe that the temperature follows the
straight lines shown in the plot, and our estimate of 64�F will most likely be in-
correct, but it might be close enough to be useful. Using straight lines to connect
the data points is the simplest form of interpolation. Another function could be
used if we have a good reason to do so. Later in this section we use polynomial
functions to do the interpolation.

Linear interpolation in MATLAB is obtained with the interp1 and
interp2 functions. Suppose that x is a vector containing the independent vari-
able data and that y is a vector containing the dependent variable data. If x_int
is a vector containing the value or values of the independent variable at which we
wish to estimate the dependent variable, then typing interp1(x,y,x_int)
produces a vector the same size as x_int containing the interpolated values of

290 CHAPTER 6 Statistics, Probability, and Interpolation

7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
45

50

55

60

65

70

75

80
Temperature Measurements at a Single Location

Time (hr)

T
em

pe
ra

tu
re

 (
de

g
F

)

Figure 6.4–1 A plot of temperature data versus time.

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 290

y that correspond to x_int. For example, the following session produces an
estimate of the temperatures at 8 A.M. and 10 A.M. from the preceding data. The
vectors x and y contain the times and temperatures, respectively.

>>x = [7, 9, 11, 12];
>>y = [49, 57, 71, 75];
>>x_int = [8, 10];
>>interp1(x,y,x_int)
ans =

53
64

You must keep in mind two restrictions when using the interp1 function.
The values of the independent variable in the vector x must be in ascending or-
der, and the values in the interpolation vector x_int must lie within the range
of the values in x. Thus we cannot use the interp1 function to estimate the
temperature at 6 A.M., for example.

The interp1 function can be used to interpolate in a table of values by
defining y to be a matrix instead of a vector. For example, suppose we now have
temperature measurements at three locations and that the measurements at 8 A.M.
and 10 A.M. are missing for all three locations. The data is

6.4 Interpolation 291

Temperatures (�F)

Time Location 1 Location 2 Location 3

7 A.M. 49 52 54
9 A.M. 57 60 61
11 A.M. 71 73 75
12 noon 75 79 81

We define x as before, but now we define y to be a matrix whose three columns
contain the second, third, and fourth columns of the preceding table. The follow-
ing session produces an estimate of the temperatures at 8 A.M. and 10 A.M. at
each location.

>>x = [7, 9, 11, 12]’;
>>y(:,1) = [49, 57, 71, 75]’;
>>y(:,2) = [52, 60, 73, 79]’;
>>y(:,3) = [54, 61, 75, 81]’;
>>x_int = [8, 10]’;
>>interp1(x,y,x_int)
ans =

53.0000 56.0000 57.5000
64.0000 65.5000 68.0000

Thus the estimated temperatures at 8 A.M. at each location are 53, 56, and 57.5�F,
respectively. At 10 A.M. the estimated temperatures are 64, 65.5, and 68. From

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 291

this example we see that if the first argument x in the interp1(x,y,x_int)
function is a vector and the second argument y is a matrix, the function inter-
polates between the rows of y and computes a matrix having the same num-
ber of columns as y and the same number of rows as the number of values in
x_int.

Note that we need not define two separate vectors x and y. Rather, we can
define a single matrix that contains the entire table. For example, by defining the
matrix temp to be the preceding table, the session would look like this:

>>temp(:,1) = [7, 9, 11, 12]’;
>>temp(:,2) = [49, 57, 71, 75]’;
>>temp(:,3) = [52, 60, 73, 79]’;
>>temp(:,4) = [54, 61, 75, 81]’;
>>x_int = [8, 10]’;
>>interp1(temp(:,1),temp(:,2:4),x_int)
ans =

53.0000 56.0000 57.5000
64.0000 65.5000 68.0000

Two-Dimensional Interpolation

Now suppose that we have temperature measurements at four locations at 7 A.M.
These locations are at the corners of a rectangle 1 mi wide and 2 mi long. Assign-
ing a coordinate system origin (0, 0) to the first location, the coordinates of the
other locations are (1, 0), (1, 2), and (0, 2); see Figure 6.4–2. The temperature
measurements are shown in the figure. The temperature is a function of two

292 CHAPTER 6 Statistics, Probability, and Interpolation

y

x
(1,0)(0,0)

(1,2)(0,2)

53° 57°

(0.6, 1.5)

49° 54°

Figure 6.4–2 Temperature
measurements at four locations.

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 292

variables, the coordinates x and y. MATLAB provides the interp2 function to
interpolate functions of two variables. If the function is written as z � f(x, y) and
we wish to estimate the value of z for x � xi and y � yi, the syntax is
interp2(x,y,z,x_i,y_i).

Suppose we want to estimate the temperature at the point whose coordinates
are (0.6, 1.5). Put the x coordinates in the vector x and the y coordinates in the
vector y. Then put the temperature measurements in a matrix z such that going
across a row represents an increase in x and going down a column represents an
increase in y. The session to do this is as follows:

>>x = [0,1];
>>y = [0,2];
>>z = [49,54;53,57]
z =

49 54
53 57

>>interp2(x,y,z,0.6,1.5)
ans =

54.5500

Thus the estimated temperature is 54.55�.
The syntax of the interp1 and interp2 functions is summarized in

Table 6.4–1. MATLAB also provides the interpn function for interpolating
multidimensional arrays.

Cubic-Spline Interpolation

High-order polynomials can exhibit undesired behavior between the data points,
and this can make them unsuitable for interpolation. An alternative procedure that
is widely used is to fit the data points using a lower-order polynomial between
each pair of adjacent data points. This method is called spline interpolation and
is so named for the splines used by illustrators to draw a smooth curve through a
set of points.

Spline interpolation obtains an exact fit that is also smooth. The most com-
mon procedure uses cubic polynomials, called cubic splines, and thus is called

6.4 Interpolation 293

Table 6.4–1 Linear interpolation functions

Command Description

y_int=interp1(x,y,x_int) Used to linearly interpolate a function of one
variable: y � f(x). Returns a linearly
interpolated vector y_int at the specified
value x_int, using data stored in x and y.

z_int=interp2(x,y,z,x_,y_int) Used to linearly interpolate a function of two
variables: y � f(x, y). Returns a linearly
interpolated vector z_int at the specified
values x_int and y_int, using data stored
in x, y, and z.

CUBIC SPLINES

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 293

cubic-spline interpolation. If the data is given as n pairs of (x, y) values, then n � 1
cubic polynomials are used. Each has the form

for xi � x � xi�1 and i � 1, 2, . . . , n � 1. The coefficients ai, bi, ci, and di for
each polynomial are determined so that the following three conditions are satis-
fied for each polynomial:

1. The polynomial must pass through the data points at its endpoints at xi and xi�1.
2. The slopes of adjacent polynomials must be equal at their common data point.
3. The curvatures of adjacent polynomials must be equal at their common

data point.

For example, a set of cubic splines for the temperature data given earlier follows
(y represents the temperature values, and x represents the hourly values). The data
is repeated here.

We will shortly see how to use MATLAB to obtain these polynomials. For 7 �
x � 9,

For 9 � x � 11,

For 11 � x � 12,

MATLAB provides the spline command to obtain a cubic-spline inter-
polation. Its syntax is y_int = spline(x,y,x_int), where x and y are
vectors containing the data and x_int is a vector containing the values of the
independent variable x at which we wish to estimate the dependent variable y.
The result y_int is a vector the same size as x_int containing the interpo-
lated values of y that correspond to x_int. The spline fit can be plotted by
plotting the vectors x_int and y_int. For example, the following session
produces and plots a cubic-spline fit to the preceding data, using an increment
of 0.01 in the x values.

>>x = [7,9,11,12];
>>y = [49,57,71,75];
>>x_int = [7:0.01:12];
>>y_int = spline(x,y,x_int);
>>plot(x,y,’o’,x,y,’— —‘,x_int,y_int),...

xlabel(‘Time (hr)’),ylabel(‘Temperature (deg F)’), ...

y3(x) = -0.35(x - 11)3
- 1.35(x - 11)2

+ 5.7(x - 11) + 71

y2(x) = -0.35(x - 9)3
+ 0.75(x - 9)2

+ 6.9(x - 9) + 57

y1(x) = -0.35(x - 7)3
+ 2.85(x - 7)2

- 0.3(x - 7) + 49

yi(x) = ai(x - xi)
3

+ bi(x - xi)
2

+ ci(x - xi) + di

294 CHAPTER 6 Statistics, Probability, and Interpolation

x 7 9 11 12

y 49 57 71 75

pal48185_06_271-304.qxd 10/4/07 6:00 PM Page 294

axis([7 12 45 80])

The plot is shown in Figure 6.4–3. The dashed lines represent linear inter-
polation, and the solid curve is the cubic spline. If we evaluate the spline poly-
nomial at x � 8, we obtain y(8) � 51.2�F. This estimate is different from the
53�F estimate obtained from linear interpolation. It is impossible to say which
estimate is more accurate without having greater understanding of the tempera-
ture dynamics.

We can obtain an estimate more quickly by using the following variation of
the interp1 function.

y_est = interp1(x,y,x_est,’spline’)

In this form the function returns a column vector y_est that contains the esti-
mated values of y that correspond to the x values specified in the vector x_est,
using cubic-spline interpolation.

In some applications it is helpful to know the polynomial coefficients, but we
cannot obtain the spline coefficients from the interp1 function. However, we
can use the form

[breaks, coeffs, m, n] = unmkpp(spline(x,y))

6.4 Interpolation 295

7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
45

50

55

60

65

70

75

80
Temperature Measurements at a Single Location

Time (hr)

T
em

pe
ra

tu
re

 (
de

g
F

)

Figure 6.4–3 Linear and cubic-spline interpolation of temperature data.

title(‘Temperature Measurements at a Single Location’), ...

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 295

to obtain the coefficients of the cubic polynomials. The vector breaks
contains the x values of the data, and the matrix coeffs is an m � n matrix
containing the coefficients of the polynomials. The scalars m and n give the
dimensions of the matrix coeffs; m is the number of polynomials, and n is
the number of coefficients for each polynomial (MATLAB will fit a lower-
order polynomial if possible, so there can be fewer than four coefficients). For
example, using the same data, the following session produces the coefficients
of the polynomials given earlier:

>>x = [7,9,11,12];
>>y = [49,57,71,75];
>> [breaks, coeffs, m, n] = unmkpp(spline(x,y))
breaks =

7 9 11 12
coeffs =

-0.3500 2.8500 -0.3000 49.0000
-0.3500 0.7500 6.900 57.0000
-0.3500 -1.3500 5.7000 71.0000

m =
3

n =
4

296 CHAPTER 6 Statistics, Probability, and Interpolation

Table 6.4–2 Polynomial interpolation functions

Command Description

y_est = interp1(x,y,x_est, method) Returns a column vector y_est that contains the
estimated values of y that correspond to the x values
specified in the vector x_est, using interpolation
specified by method. The choices for method are
‘nearest’, ‘linear’, ‘spline’, ‘pchip’, and ‘cubic’.

y_int = spline(x,y,x_int) Computes a cubic-spline interpolation where x
and y are vectors containing the data and x_int
is a vector containing the values of the independent
variable x at which we wish to estimate the
dependent variable y. The result y_int is a
vector the same size as x_int containing the
interpolated values of y that correspond to x_int.

y_int = pchip (x,y,x_int) Similar to spline but uses piecewise cubic
Hermite polynomials for interpolation to preserve
shape and respect monotonicity.

[breaks, coeffs, m, n] = unmkpp(spline(x,y)) Computes the coefficients of the cubic-spline
polynomials for the data in x and y. The vector
breaks contains the x values, and the matrix
coeffs is an m � n matrix containing the
polynomial coefficients. The scalars m and n give
the dimensions of the matrix coeffs; m is the
number of polynomials, and n is the number of
coefficients for each polynomial.

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 296

The first row of the matrix coeffs contains the coefficients of the first polyno-
mial, and so on. These functions are summarized in Table 6.4–2. The Basic
Fitting interface, which is available on the Tools menu of the Figure window, can
be used for cubic-spline interpolation. See Chapter 5, Section 5.6 for instructions
for using the interface.

As another example of interpolation, consider 10 evenly spaced data points
generated by the function y � 1/(3 � 3x � x2) over the range 0 � x � 4. The top
graph in Figure 6.4–4 shows the results of fitting a cubic polynomial and an
eighth-order polynomial to the data. Clearly the cubic is not suitable for inter-
polation. As we increase the order of the fitted polynomial, we find that the poly-
nomial does not pass through all the data points if the order is less than 7.
However, there are two problems with the eighth-order polynomial: we should

6.4 Interpolation 297

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

y

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

y

x

data
cubic
eighth−order

data
spline

Figure 6.4–4 Top graph: Interpolation with a cubic polynomial and an eighth-order polynomial. Bottom graph:
Interpolation with a cubic spline.

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 297

not use it to interpolate over the interval 0 � x � 0.5, and its coefficients must be
stored with very high accuracy if we use the polynomial to interpolate. The
bottom graph in Figure 6.4–4 shows the results of fitting a cubic spline, which is
clearly a better choice here.

Interpolation with Hermite Polynomials

The pchip function uses piecewise continuous Hermite interpolation polynomi-
als (PCHIP). Its syntax is identical to that of the spline function. With pchip
the slopes at the data points are computed to preserve the “shape” of the data and
to “respect” monotonicity. That is, the fitted function will be monotonic on inter-
vals where the data is monotonic, and will have a local extremum on intervals
where the data has a local extremum. The differences between the two functions
are that

■ The second derivatives are continuous with spline but may be discontin-
uous with pchip, so spline may give a smoother function.

■ Therefore, the spline function is more accurate if the data is “smoother.”
■ There are no overshoots and less oscillation in the function produced by

pchip, even if the data is not smooth.

Consider the data given by x � [0, 1, 2, 3, 4, 5] and y � [0, �10, 60, 40, 41,
47]. The top graph in Figure 6.4–5 shows the results of fitting a fifth-order poly-
nomial and a cubic spline to the data. Clearly the fifth-order polynomial is less
suitable for interpolation because of the large excursions it makes, especially over
the ranges 0 � x � 1 and 4 � x � 5. These excursions are often seen with high-
order polynomials. Here, the cubic spline is more useful. The bottom graph in
Figure 6.4–5 compares the results of a cubic spline fit with a piecewise continu-
ous Hermite polynomial fit (using pchip), which is clearly a better choice here.

MATLAB provides a number of other functions to support interpolation for
three-dimensional data. See griddata, griddata3, griddatan, interp3,
and interpn in the MATLAB help.

6.5 Summary
This chapter introduces MATLAB functions that have widespread and important
uses in statistics and data analysis. Section 6.1 gives an introduction to basic
statistics and probability, including histograms, which are specialized plots for
displaying statistical results. The normal distribution that forms the basis of many
statistical methods is covered in Section 6.2. Section 6.3 covers random number
generators and their use in simulation programs. Section 6.4 covers interpolation
methods, including linear and spline interpolation.

Now that you have finished this chapter, you should be able to use MATLAB to

■ Solve basic problems in statistics and probability.
■ Create simulations incorporating random processes.
■ Apply interpolation to data.

298 CHAPTER 6 Statistics, Probability, and Interpolation

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 298

Key Terms with Page References

6.5 Summary 299

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−60

−40

−20

0

20

40

60

80

x

y

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−40

−20

0

20

40

60

80

x

y

data
fifth order
spline

data
pchip
spline

Figure 6.4–5 Top graph: Interpolation with a fifth-order polynomial and a cubic spline. Bottom graph: Interpolation
with piecewise continuous Hermite polynomials (pchip) and a cubic spline.

Absolute frequency, 273
Bins, 272
Cubic splines, 293
Error function, 281
Gaussian function, 279
Histogram, 272
Interpolation, 289
Mean, 272
Median, 272

Mode, 272
Normally distributed, 279
Normal function, 279
Relative frequency, 273
Scaled frequency histogram, 277
Standard deviation, 279
Uniformly distributed, 283
Variance, 279

pal48185_06_271-304.qxd 10/4/07 3:09 PM Page 299

Problems
You can find the answers to problems marked with an asterisk at the end of
the text.

Section 6.1

1. The following list gives the measured gas mileage in miles per gallon for
22 cars of the same model. Plot the absolute frequency histogram and the
relative frequency histogram.

23 25 26 25 27 25 24 22 23 25 26
26 24 24 22 25 26 24 24 24 27 23

2. Thirty pieces of structural timber of the same dimensions were subjected
to an increasing lateral force until they broke. The measured force in
pounds required to break them is given in the following list. Plot the ab-
solute frequency histogram. Try bin widths of 50, 100, and 200 lb. Which
gives the most meaningful histogram? Try to find a better value for the
bin width.

243 236 389 628 143 417 205
404 464 605 137 123 372 439
497 500 535 577 441 231 675
132 196 217 660 569 865 725
457 347

3. The following list gives the measured breaking force in newtons for a
sample of 60 pieces of certain type of cord. Plot the absolute frequency
histogram. Try bin widths of 10, 30, and 50 N. Which gives the most
meaningful histogram? Try to find a better value for the bin width.

311 138 340 199 270 255 332 279 231 296 198 269
257 236 313 281 288 225 216 250 259 323 280 205
279 159 276 354 278 221 192 281 204 361 321 282
254 273 334 172 240 327 261 282 208 213 299 318
356 269 355 232 275 234 267 240 331 222 370 226

Section 6.2

4. For the data given in Problem 1,
a. Plot the scaled frequency histogram.
b. Compute the mean and standard deviation and use them to estimate the

lower and upper limits of gas mileage corresponding to 68 percent of
cars of this model. Compare these limits with those of the data.

300 CHAPTER 6 Statistics, Probability, and Interpolation

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 300

5. For the data given in Problem 2,
a. Plot the scaled frequency histogram.
b. Compute the mean and standard deviation and use them to estimate the

lower and upper limits of strength corresponding to 68 percent and to
96 percent of such timber pieces. Compare these limits with those of
the data.

6. For the data given in Problem 3,
a. Plot the scaled frequency histogram.
b. Compute the mean and standard deviation, and use them to estimate

the lower and upper limits of breaking force corresponding to
68 percent and 96 percent of cord pieces of this type. Compare these
limits with those of the data.

7.* Data analysis of the breaking strength of a certain fabric shows that it is
normally distributed with a mean of 200 lb and a variance of 9.
a. Estimate the percentage of fabric samples that will have a breaking

strength no less than 194 lb.
b. Estimate the percentage of fabric samples that will have a breaking

strength no less than 197 lb and no greater than 203 lb.

8. Data from service records shows that the time to repair a certain machine
is normally distributed with a mean of 50 min and a standard deviation
of 5 min. Estimate how often it will take more than 60 min to repair a
machine.

9. Measurements of a number of fittings show that the pitch diameter of the
thread is normally distributed with a mean of 5.007 mm and a standard
deviation of 0.005 mm. The design specifications require that the pitch
diameter must be 5 	 0.01 mm. Estimate the percentage of fittings that
will be within tolerance.

10. A certain product requires that a shaft be inserted into a bearing.
Measurements show that the diameter d1 of the cylindrical hole in the
bearing is normally distributed with a mean of 3 cm with a variance of
0.0064. The diameter d2 of the shaft is normally distributed with a mean
of 2.96 cm and a variance of 0.0036.
a. Compute the mean and the variance of the clearance c � d1 � d2.
b. Find the probability that a given shaft will not fit into the bearing.

(Hint: Find the probability that the clearance is negative.)

11.* A shipping pallet holds 10 boxes. Each box holds 300 parts of different
types. The part weight is normally distributed with a mean of 1 lb and a
standard deviation of 0.2 lb.
a. Compute the mean and standard deviation of the pallet weight.
b. Compute the probability that the pallet weight will exceed 3015 lb.

Problems 301

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 301

12. A certain product is assembled by placing three components end to end. The
components’ lengths are L1, L2, and L3. Each component is manufactured on
a different machine, so the random variation in their lengths is independent
of each other. The lengths are normally distributed with means of 1, 2, and
1.5 ft and variances of 0.00014, 0.0002, and 0.0003, respectively.
a. Compute the mean and variance of the length of the assembled product.
b. Estimate what percentage of assembled products will be no less than

4.48 and no more than 4.52 ft in length.

Section 6.3

13. Use a random number generator to produce 1000 uniformly distributed
numbers with a mean of 10, a minimum of 2, and a maximum of 18. Ob-
tain the mean and the histogram of these numbers and discuss whether or
not they appear uniformly distributed with the desired mean.

14. Use a random number generator to produce 1000 normally distributed
numbers with a mean of 20 and a variance of 4. Obtain the mean,
variance, and the histogram of these numbers and discuss whether or not
they appear normally distributed with the desired mean and variance.

15. The mean of the sum (or difference) of two independent random variables
equals the sum (or difference) of their means, but the variance is always the
sum of the two variances. Use random number generation to verify this
statement for the case where z � x � y, where x and y are independent and
normally distributed random variables. The mean and variance of x are
�x � 10 and �2

x � 2. The mean and variance of y are �y � 15 and
�2

y � 3. Find the mean and variance of z by simulation and compare the re-
sults with the theoretical prediction. Do this for 100, 1000, and 5000 trials.

16. Suppose that z � xy, where x and y are independent and normally
distributed random variables. The mean and variance of x are �x � 10 and
�2

x � 2. The mean and variance of y are �y � 15 and �2
y � 3. Find the mean

and variance of z by simulation. Does �z � �x �y? Does �2
z � �2

x �
2
y?

Do this for 100, 1000, and 5000 trials.

17. Suppose that y � x2, where x is a normally distributed random variable
with a mean and variance of �x � 0 and �2

x � 4. Find the mean and
variance of y by simulation. Does �y � �2

x? Does �y � �2
x? Do this for

100, 1000, and 5000 trials.

18.* Suppose you have analyzed the price behavior of a certain stock by
plotting the scaled frequency histogram of the price over a number of
months. Suppose that the histogram indicates that the price is normally
distributed with a mean $100 and a standard deviation of $5. Write a
MATLAB program to simulate the effects of buying 50 shares of this
stock whenever the price is below the $100 mean, and selling all your
shares whenever the price is above $105. Analyze the outcome of this
strategy over 250 days (the approximate number of business days in a

302 CHAPTER 6 Statistics, Probability, and Interpolation

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 302

year). Define the profit as the yearly income from selling stock plus the
value of the stocks you own at year’s end, minus the yearly cost of
buying stock. Compute the mean yearly profit you would expect to
make, the minimum expected yearly profit, the maximum expected
yearly profit, and the standard deviation of the yearly profit. The broker
charges 6 cents per share bought or sold with a minimum fee of
$40 per transaction. Assume you make only one transaction per day.

19. Suppose that data shows that a certain stock price is normally distrib-
uted with a mean of $150 and a variance of 100. Create a simulation to
compare the results of the following two strategies over 250 days. You
start the year with 1000 shares. With the first strategy, every day the
price is below $140 you buy 100 shares, and every day the price is
above $160 you sell all the shares you own. With the second strategy,
every day the price is below $150 you buy 100 shares, and every day
the price is above $160 you sell all the shares you own. The broker
charges 5 cents per share traded with a minimum of $35 per transaction.

20. Write a script file to simulate 100 plays of a game in which you flip two
coins. You win the game if you get two heads, lose if you get two tails, and
you flip again if you get one head and one tail. Create three user-defined
functions to use in the script. Function flip simulates the flip of one coin,
with the state s of the random number generator as the input argument, and
the new state s and the result of the flip (0 for a tail and 1 for a head) as the
outputs. Function flips simulates the flipping of two coins, and calls
flip. The input of flips is the state s, and the outputs are the new state
s and the result (0 for two tails, 1 for a head and a tail, and 2 for two
heads). Function match simulates a turn at the game. Its input is the state
s, and its outputs are the result (1 for win, 0 for lose) and the new state s.
The script should first reset the random number generator to its initial state,
compute the state s, and then pass this state to the user-defined functions.

21. Write a script file to play a simple number guessing game as follows.
The script should generate a random integer in the range 1, 2, 3, . . . , 14,
15. It should provide for the player to make repeated guesses of the
number, and should indicate if the player has won or give the player a
hint after each wrong guess. The responses and hints are:
■ “You won,” and then stop the game.
■ “Very close,” if the guess is within 1 of the correct number.
■ “Getting close,” if the guess is within 2 or 3 of the correct number.
■ “Not close,” if the guess is not within 3 of the correct number.

Section 6.4

22.* Interpolation is useful when one or more data points are missing. This sit-
uation often occurs with environmental measurements, such as tempera-
ture, because of the difficulty of making measurements around the clock.
The following table of temperature versus time data is missing readings at

Problems 303

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 303

23. The following table gives temperature data in �C as a function of time of
day and day of the week at a specific location. Data is missing for the
entries marked with a question mark (?). Use linear interpolation with
MATLAB to estimate the temperature at the missing points.

304 CHAPTER 6 Statistics, Probability, and Interpolation

Time (hours, P.M.) 1 2 3 4 5 6 7 8 9 10 11 12

Temperature (ºC) 10 12 18 24 ? 21 20 18 ? 15 13 8

Day

Hour Mon Tues Wed Thurs Fri

1 17 15 12 16 16
2 13 ? 8 11 12
3 14 14 9 ? 15
4 17 15 14 15 19
5 23 18 17 20 24

24. Computer-controlled machines are used to cut and to form metal and
other materials when manufacturing products. These machines often use
cubic splines to specify the path to be cut or the contour of the part to be
shaped. The following coodinates specify the shape of a certain car’s front
fender. Fit a series of cubic splines to the coordinates and plot the splines
along with the coordinate points.

x (ft) 0 0.25 0.75 1.25 1.5 1.75 1.875 2 2.125 2.25

y (ft) 1.2 1.18 1.1 1 0.92 0.8 0.7 0.55 0.35 0

25. The following data is the measured temperature T of water flowing from a
hot water faucet after it is turned on at time t � 0.

t (sec) T (�F) t (sec) T (�F)

0 72.5 6 109.3
1 78.1 7 110.2
2 86.4 8 110.5
3 92.3 9 109.9
4 110.6 10 110.2
5 111.5

a. Plot the data first connecting them with straight lines, and then with a
cubic spline.

b. Estimate the temperature values at the following times using linear in-
terpolation and then cubic-spline interpolation: t � 0.6, 2.5, 4.7, 8.9.

c. Use both the linear and cubic-spline interpolations to estimate the time
it will take for the temperature to equal the following values: T � 75,
85, 90, 105.

5 and 9 hours. Use linear interpolation with MATLAB to estimate the
temperature at those times.

pal48185_06_271-304.qxd 9/30/07 2:52 PM Page 304

C H A P T E R 7
Numerical Methods
for Calculus and
Differential Equations
OUTLINE
7.1 Numerical Integration

7.2 Numerical Differentiation

7.3 First-Order Differential Equations

7.4 Higher-Order Differential Equations

7.5 Special Methods for Linear Equations

7.6 Summary

Problems

This chapter covers numerical methods for computing integrals and derivatives
and for solving ordinary differential equations. Some integrals cannot be evalu-
ated analytically, and we need to compute them numerically with an approximate
method (Section 7.1). In addition, it is often necessary to use data to estimate rates
of change, and this requires a numerical estimate of the derivative (Section 7.2).
Finally, many differential equations cannot be solved analytically, and so we
must be able to solve them by using appropriate numerical techniques. Section 7.3
covers first-order differential equations, and Section 7.4 extends the methods to
higher-order equations. More powerful methods are available for linear equations.
Section 7.5 treats these methods.

When you have finished this chapter, you should be able to

■ Use MATLAB to numerically evaluate integrals.
■ Use numerical methods with MATLAB to estimate derivatives.
■ Use the MATLAB numerical differential equation solvers to obtain solutions.

305

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 305

7.1 Numerical Integration
The integral of a function f(x) for a � x � b can be interpreted as the area be-
tween the f(x) curve and the x-axis, bounded by the limits x � a and x � b. If we
denote this area by A, then we can write A as

(7.1–1)

An integral is called a definite integral if it has specified limits of integration.
Indefinite integrals have specified limits. Improper integrals can have infinite
values, depending on their integration limits. For example, the following integral
can be found in most integral tables:

However, it is an improper integral if the integration limits include the point x � 1.
So, even though an integral can be found in an integral table, you should exam-
ine the integrand to check for singularities, which are points at which the inte-
grand is undefined. The same warning applies when you are using numerical
methods to evaluate integrals.

Trapezoidal Integration

The simplest way to find the area under a curve is to split the area into rectangles
(Figure 7.1–1a). If the widths of the rectangles are small enough, the sum of their
areas gives the approximate value of the integral. A more sophisticated method is
to use trapezoidal elements (Figure 7.1–1b). Each trapezoid is called a panel. It
is not necessary to use panels of the same width; to increase the method’s

L

1

x - 1
 dx = ln ƒ x - 1 ƒ

A =

L

b

a
f(x) dx

306 CHAPTER 7 Numerical Methods for Calculus and Differential Equations

SINGULARITIES

DEFINITE
INTEGRAL

INDEFINITE

IMPROPER
INTEGRAL

(a)

Rectangular

a b
x

y

y = f(x)

(b)

Trapezoidal

a b
x

y

y = f(x)

Figure 7.1–1 Illustration of (a) rectangular and (b) trapezoidal numerical integration.

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 306

accuracy, you can use narrow panels where the function is changing rapidly.
When the widths are adjusted according to the function’s behavior, the method is
said to be adaptive. MATLAB implements trapezoidal integration with the
trapz function. Its syntax is trapz(x, y), where the array y contains the
function values at the points contained in the array x. If you want the integral of
a single function, then y is a vector. To integrate more than one function, place
their values in a matrix y; trapz(x, y) will compute the integral of each
column of y.

You cannot directly specify a function to integrate with the trapz function;
you must first compute and store the function’s values ahead of time in an array.
Later we will discuss two other integration functions, the quad and quadl
functions, that can accept functions directly. However, they cannot handle arrays
of values. So the functions complement one another. The trapz function is
summarized in Table 7.1–1.

As a simple example of the use of the trapz function, let us compute the
integral

(7.1–2)

whose exact answer is A � 2. To investigate the effect of panel width, let us first
use 10 panels with equal widths of �/10. The script file is

x = linspace(0,pi,10);
y = sin(x);
A = trapz(x,y)

A =

L

p

0
sin x dx

7.1 Numerical Integration 307

Table 7.1–1 Basic syntax of numerical integration functions

Command Description

dblquad(fun,a,b,c,d) Computes the double integral of the function f(x,y) between the
limits a � x � b and c � y � d. The input fun specifies the func-
tion that computes the integrand. It must accept a vector argument x
and scalar y, and it must return a vector result.

polyint(p,C) Computes the integral of the polynomial p using an optional
user-specified constant of integration C.

quad(fun,a,b) Uses an adaptive Simpson rule to compute the integral of the function
fun between the limits a and b. The input fun, which represents the
integrand f (x), is a function handle for the integrand function. It must
accept a vector argument x and return the vector result y.

quadl(fun,a,b) Uses Lobatto integration. The syntax is identical to quad.
trapz(x,y) Uses trapezoidal integration to compute the integral of y with

respect to x, where the array y contains the function values at the
points contained in the array x.

triplequad(fun,a,b,c,d,e,f) Computes the triple integral of the function f (x,y,z) between the
limits a � x � b, c � y � d, and e � y � f. The input fun
specifies the function that computes the integrand. It must accept a
vector argument x, scalar y, and scalar z, and it must return a vector
result.

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 307

The answer is A � 1.9797, which gives a relative error of 100(2 – 1.9797)
/2 � 1%. Now try 100 panels of equal width; replace the array x with x =
linspace(0,pi,100). The answer is A � 1.9998 for a relative error of
100(2 – 1.9998)/2 � 0.01%. If we examine the plot of the integrand sin x, we see
that the function is changing faster near x � 0 and x � � than near x � �/2. Thus
we could achieve the same accuracy by using fewer panels if narrower panels are
used near x � 0 and x � �.

We normally use the trapz function when the integrand is given as a table
of values. Otherwise, if the integrand is given as a function, use the quad or
quadl functions, to be introduced shortly.

308 CHAPTER 7 Numerical Methods for Calculus and Differential Equations

Velocity from an Accelerometer

An accelerometer is used in aircraft, rockets, and other vehicles to estimate the vehicle’s
velocity and displacement. The accelerometer integrates the acceleration signal to pro-
duce an estimate of the velocity, and it integrates the velocity estimate to produce an
estimate of displacement. Suppose the vehicle starts from rest at time t � 0, and its mea-
sured acceleration is given in the following table.

Time (s) 0 1 2 3 4 5 6 7 8 9 10

Acceleration (m/s2) 0 2 4 7 11 17 24 32 41 48 51

EXAMPLE 7.1–1

(a) Estimate the velocity � after 10 s.
(b) Estimate the velocity at times t � 1, 2, . . . , 10 s.

■ Solution
(a) The initial velocity is zero, so � (0) � 0. The relation between the velocity and accel-
eration a(t) is

The script file is shown below.

t = [0:10];

a = [0,2,4,7,11,17,24,32,41,48,51];

v10 = trapz(t,a)

The answer given for the velocity after 10 s is given by v10, and it is 211.5 m/s.
(b) The following script file uses the fact that the velocity can be expressed as

where � (t1) � 0.

t = [0:10];

a = [0,2,4,7,11,17,24,32,41,48,51];

y(tk + 1) =

L

tk + 1

tk

a(t) dt + y(tk) k = 1, 2, . . . , 10

y(10) =

L

10

0
a(t) dt + y(0) =

L

10

0
a(t) dt

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 308

v(1) = 0;

for k = [1:10]

v(k+1) = trapz(t(k:k+1), a(k:k+1))+v(k);

end

disp([t’,v’])

The answers are given in the following table.

7.1 Numerical Integration 309

Time (s) 0 1 2 3 4 5 6 7 8 9 10

Velocity (m/s) 0 1 4 9.5 18.5 32.5 53 81 117 162 211.5

Test Your Understanding

T7.1–1 Modify the script file given in part (b) of Example 7.1-1 to estimate the
displacement at times t � 1, 2, . . . , 10 s. (Partial answer: The displace-
ment after 10 s is 584.25 m.)

Quadrature Functions

Another approach to numerical integration is Simpson’s rule, which divides the in-
tegration range b – a into an even number of sections and uses a different quadratic
function to represent the integrand for each panel. A quadratic function has three
parameters, and Simpson’s rule computes these parameters by requiring that the
quadratic pass through the function’s three points corresponding to the two adjacent
panels. To obtain greater accuracy, we can use polynomials of degree higher than 2.

The MATLAB function quad implements an adaptive version of Simpson’s
rule. The quadl function is based on an adaptive Lobatto integration method,
where the letter “l” in quadl stands for Lobatto. The term quad is an abbrevia-
tion of quadrature, which is an old term for the process of measuring areas. Some
writers distinguish between the terms quadrature and integration and reserve
integration to mean numerical integration of ordinary differential equations.
We will not make that distinction.

The function quad(fun,a,b) computes the integral of the function fun
between the limits a and b. The input fun, which represents the integrand f(x),
is either a function handle of the integrand function (the preferred method) or the
name of the function as a character string (i.e., placed in single quotes). The func-
tion y � f (x) must accept a vector argument x and must return the vector result y.
The basic syntax of quadl is identical and is summarized in Table 7.1–1.

To illustrate, let us compute the integral given in (7.1–2). The session con-
sists of one command: A = quad(@sin, 0, pi) or A = quad(‘sin’,
0, pi). The answer given by MATLAB is A � 2.0000, which is correct to four
decimal places. We use quad1 the same way.

Because the quad and quadl functions call the integrand function using
vector arguments, you must always use array operations when defining the func-
tion. The following example shows how this is done.

QUADRATURE

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 309

Evaluation of Fresnel’s Cosine Integral

Some simple-looking integrals cannot be evaluated in closed form. An example is Fres-
nel’s cosine integral

(7.1–3)

a) Demonstrate two ways to compute the integral when the upper limit is
b) Demonstrate the use of a nested function to compute the more general integral

(7.1–4)

for n � 2 and for n � 3.

Solution
a) The integrand cos x2 obviously does not contain any singularities that might cause prob-
lems for the integration function. We demonstrate two ways to use the quad function.
1. With a function file: Define the integrand with a user-defined function as shown by

the following function file.

function c2 = cossq(x)

c2 = cos(x.^2);

The quad function is called as follows: A = quad(@cossq,0,sqrt(2*pi)).
The result is A � 0.6119.

2. With an anonymous function (anonymous functions are discussed in Section 3.3):
The session is

>>cossq = @(x)cos(x.^2);

>>A = quad(cossq,0,sqrt(2*pi))

A =

0.6119

The two lines can be combined into one as follows:

A = quad(@(x)cos(x.^2),0,sqrt(2*pi))

The advantage of using an anonymous function is that you need not create and save
a function file. However, for complicated integrand functions, using a function file is
preferable.

b) Because quad requires that the integrand function have only one argument, the
following code will not work.

>>cossq = @(x)cos(x.^n);

>>n = 2;

>>A = quad(cossq,0,sqrt(2*pi))

??? Undefined function or variable ‘n’.

Instead we will use parameter passing with a nested function (Nested functions are dis-
cussed in Section 3.3). First create and save the following function.

A =

L

b

0
cos xn

 dx

b = 12p.

A =

L

b

0
cos x2

 dx

310 CHAPTER 7 Numerical Methods for Calculus and Differential Equations

EXAMPLE 7.1–2

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 310

function A = integral_n(n)

A = quad(@cossq_n,0,sqrt(2*pi));

% Nested function

function integrand = cossq_n(x)

integrand = cos(x.^n);

end

end

The session for n � 2 and n � 3 is as follows.

>>A = integral_n(2)

A =

0.6119

>>A = integral_n(3)

A =

0.7734

The quad functions have some optional arguments for analyzing and adjusting
the algorithm’s efficiency and accuracy. Type help quad for details.

Test Your Understanding

T7.1–2 Use both the quad and quadl functions to compute the integral

and compare the answers with that obtained from the closed-form
solution, which is A � 0.9163.

Polynomial Integration

MATLAB provides the polyint function to compute the integral of a poly-
nomial. The syntax q = polyint(p, C) returns a polynomial q represent-
ing the integral of polynomial p with a user-specified scalar constant of
integration C. The elements of the vector p are the coefficients of the polynomial,
arranged in descending powers. The syntax polyint(p) assumes the constant
of integration C is zero.

For example, the integral of 12x3 � 9x2 � 8x � 5 is obtained from q =
polyint([12,9,8,5], 10). The answer is q = [3, 3, 4, 5, 10],
which corresponds to 3x4 � 3x3 � 4x2 � 5x � 10. Because polynomial integrals
can be obtained from a symbolic formula, the polyint function is not a numerical
integration operation.

A =

L

5

2

1
x

 dx

7.1 Numerical Integration 311

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 311

Double Integrals

The function dblquad computes double integrals. Consider the integral

The basic syntax is

A = dblquad(fun, a, b, c, d)

where fun is the handle to a user-defined function that defines the integrand
f (x,y). The function must accept a vector x and a scalar y, and it must return a vec-
tor result, so the appropriate array operations must be used. The extended syntax
enables the user to adjust the accuracy and to use quadl or a user-defined quad-
rature routine. See the MATLAB help for details.

For example, using an anonymous function to compute the integral

you type

>>fun = @(x,y)x.*y^2;
>>A = dblquad(fun, 1, 3, 0, 1)

The answer is A � 1.3333.
The preceding integral is carried out over the rectangular region specified by

1 � x � 3, 0 � y � 1. Some double integrals are specified over a nonrectangu-
lar region. These problems can be handled by a transformation of variables. You
can also use a rectangular region that encloses the nonrectangular region and
force the integrand to be zero outside of the nonrectangular region, by using the
MATLAB relational operators, for example. See Problem 15. The following
example illustrates the former approach.

A =

L

1

0 L

3

1
xy2dx dy

A =

L

d

c L

b

a
f(x,y) dx dy

312 CHAPTER 7 Numerical Methods for Calculus and Differential Equations

Double Integral over a Nonrectangular Region

Compute the integral

over the region R bounded by the lines

Solution
We must convert the integral into one that is specified over a rectangular region. To do
this, let u � x – y and � � 2x � y. Thus, using the Jacobian, we obtain

x - y = ;1 2x + y = ;2

A =

LLR
(x - y)4(2x + y)2 dx dy

EXAMPLE 7.1–3

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 312

Then the region R is specified as a rectangular region in terms of u and �. Its boundaries
are given by u � �1 and � � �2, and the integral becomes

and the MATLAB session is

>>fun = @(u,v)u.^4*v^2;

>>A = (1/3)*dblquad(fun, -1, 1, -2, 2)

The answer is A � 0.7111.

Triple Integrals

The function triplequad computes triple integrals. Consider the integral

The basic syntax is

A = triplequad(fun, a, b, c, d, e, f)

where fun is the handle to a user-defined function that defines the integrand
f (x,y,z). The function must accept a vector x, a scalar y, and a scalar z, and it must
return a vector result, so the appropriate array operations must be used. The ex-
tended syntax enables the user to adjust the accuracy and to use quadl or a user-
defined quadrature routine. See the MATLAB help for details. For example, to
compute the integral

You type

>>fun = @(x,y,z)(x*y-y^2)/z;
>>A = triplequad(fun, 1, 3, 0, 2, 1, 2)

The answer is A � 1.8484.

7.2 Numerical Differentiation
The derivative of a function can be interpreted graphically as the slope of the
function. This interpretation leads to various methods for computing the deriva-
tive of a set of data. Figure 7.2–1 shows three data points that represent a
function y(x). Recall that the definition of the derivative is

A =

L

2

1 L

2

0 L

3

1
axy - y2

z
b dx dy dz

A =

L

f

e L

d

c L

b

a
 f(x,y,z) dx dy dz

A =

1

3L

2

-2L

1

-1
u4v2du dv

dx dy = ` 0x>0u 0x>0v

0y>0u 0y>0v
` du dv = ` 1>3 1>3

-2>3 1>3 ` du dv =

1

3
 du dv

7.2 Numerical Differentiation 313

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 313

(7.2–1)

The success of numerical differentiation depends heavily on two factors: the
spacing of the data points and the scatter present in the data due to measurement
error. The greater the spacing, the more difficult it is to estimate the derivative.
We assume here that the spacing between the measurements is regular; that is,
x3 – x2 � x2 – x1 � �x. Suppose we want to estimate the derivative dy/dx at the
point x2. The correct answer is the slope of the straight line passing through the
point (x2, y2); but we do not have a second point on that line, so we cannot find
its slope. Therefore, we must estimate the slope by using nearby data points. One
estimate can be obtained from the straight line labeled A in the figure. Its slope is

(7.2–2)

This estimate of the derivative is called the backward difference estimate, and it
is actually a better estimate of the derivative at x � x1 � (�x)/2 than at x � x2.
Another estimate can be obtained from the straight line labeled B. Its slope is

(7.2–3)

This estimate is called the forward difference estimate, and it is a better estimate
of the derivative at x � x2 � (�x)/2 than at x � x2. Examining the plot, you might
think that the average of these two slopes would provide a better estimate of the
derivative at x � x2, because the average tends to cancel out the effects of mea-
surement error. The average of mA and mB is

mB =

y3 - y2

x3 - x2
=

y3 - y2

¢x

mA =

y2 - y1

x2 - x1
=

y2 - y1

¢x

dy

dx
=

lim
¢x:0

¢y

¢x

314 CHAPTER 7 Numerical Methods for Calculus and Differential Equations

True Slope

y3

y2

y1 A C

B

x1

Δx Δx

x2 x3

y = f (x)

Figure 7.2–1 Illustration of methods for estimating the
derivative dy/dx.

FORWARD
DIFFERENCE

BACKWARD
DIFFERENCE

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 314

(7.2–4)

This is the slope of the line labeled C, which connects the first and third data
points. This estimate of the derivative is called the central difference estimate.

The diff Function

MATLAB provides the diff function to use for computing derivative estimates.
Its syntax is d = diff(x), where x is a vector of values, and the result is a vec-
tor d containing the differences between adjacent elements in x. That is, if x has
n elements, d will have n – 1 elements, where d � [x(2) – x(1), x(3) – x(2), . . . ,
x(n) – x(n – 1)]. For example, if x = [5, 7, 12, –20], then diff(x) re-
turns the vector [2, 5, –32]. The derivative dy/dx can be estimated from
diff(y)./diff(x).

The following script file implements the backward difference and central
difference methods for artificial data generated from a sinusoidal signal that is
measured 51 times during one half-period. The measurement error is uniformly
distributed between –0.025 and 0.025.

x = [0:pi/50:pi];
n = length(x);
% Data-generation function with +/–0.025 random error.
y = sin(x)+.05*(rand(1,51)–0.5);
% Backward difference estimate of dy/dx.
d1 = diff(y)./diff(x);
subplot(2,1,1)
plot(x(2:n),d1,x(2:n),d1,’o’)
% Central difference estimate of dy/dx.
d2 = (y(3:n)–y(1:n–2))./(x(3:n)–x(1:n–2));
subplot(2,1,2)
plot(x(2:n–1),d2,x(2:n–1),d2,’o’)

Test Your Understanding

T7.2–1 Modify the previous program to use the forward difference method to es-
timate the derivative. Plot the results, and compare with the results from
the backward and central difference methods.

Polynomial Derivatives

MATLAB provides the polyder function to compute the derivative of a poly-
nomial. Its syntax has several forms. The basic form is d = polyder(p),
where p is a vector whose elements are the coefficients of the polynomial,
arranged in descending powers. The output d is a vector containing the coeffi-
cients of the derivative polynomial.

mC =

mA + mB

2
=

1

2
ay2 - y1

¢x
+

y3 - y2

¢x
b =

y3 - y1

2 ¢x

7.2 Numerical Differentiation 315

CENTRAL
DIFFERENCE

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 315

The second syntax form is d = polyder(p1,p2). This form computes
the derivative of the product of the two polynomials p1 and p2. The third form
is [num, den] = polyder(p2,p1). This form computes the derivative of
the quotient p2/p1. The vector of coefficients of the numerator of the derivative
is given by num. The denominator is given by den.

Here are some examples of the use of polyder. Let p1 � 5x � 2 and p2 �
10x2 � 4x – 3. Then

These results can be obtained with the following program.

p1 = [5, 2];p2 = [10, 4, -3];
% Derivative of p2.
der2 = polyder(p2)
% Derivative of p1*p2.
prod = polyder(p1,p2)
% Derivative of p2/p1.
[num, den] = polyder(p2,p1)

The results are der2 = [20, 4], prod = [150, 80, -7], num =
[50, 40, 23], and den = [25, 20, 4].

Because polynomial derivatives can be obtained from a symbolic formula,
the polyder function is not a numerical differentiation operation.

Gradients

The gradient �f of a function f(x,y) is a vector pointing in the direction of increas-
ing values of f (x,y). It is defined by

where i and j are the unit vectors in the x and y directions, respectively. The con-
cept can be extended to functions of three or more variables.

In MATLAB the gradient of a set of data representing a two-dimensional
function f(x,y) can be computed with the gradient function. Its syntax is
[df_dx, df_dy] = gradient (f, dx, dy), where df_dx and df_dy
represent f / x and f/ y, and dx and dy are the spacing in the x and y values0000

§f =

0f

0x
 i +

0f

0y
 j

d(p2/p1)

dx
=

50x2
+ 40x + 23

25x2
+ 20x + 4

d(p1p2)

dx
= 150x2

+ 80x - 7

p1p2 = 50x3
+ 40x2

- 7x - 6

dp2

dx
= 20x + 4

316 CHAPTER 7 Numerical Methods for Calculus and Differential Equations

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 316

associated with the numerical values of f. The syntax can be extended to include
functions of three or more variables.

The following program plots the contour plot and the gradient (shown by
arrows) for the function

The plots are shown in Figure 7.2–2. The arrows point in the direction of
increasing f.

[x,y] = meshgrid(–2:0.25:2);
f = x.*exp(–((x–y.^2).^2+y.^2));
dx = x(1,2) – x(1,1); dy = y(2,1) – y(1,1);
[df_dx, df_dy] = gradient(f, dx, dy);
subplot(2,1,1)
contour(x,y,f), xlabel(‘x’), ylabel(‘y’), . . .

f(x,y) = xe-(x2
+ y2)2

+ y2

7.2 Numerical Differentiation 317

x

y

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1

0

1

2

−2
−1

0
1

2

−2
−1

0
1

2
−0.5

0

0.5

xy

f

Figure 7.2–2 Gradient, contour, and surface plots of the function f(x,y) = xe-(x2
+ y2)2

+ y2.

pal48185_07_305-353.qxd 10/4/07 3:11 PM Page 317

hold on, quiver(x,y,df_dx, df_dy), hold off
subplot(2,1,2)
mesh(x,y,f),xlabel(‘x’),ylabel(‘y’),zlabel(‘f’)

The curvature is given by the second-order derivative expression called the
Laplacian.

It can be computed with the de12 function. See the MATLAB help for details.
The MATLAB differentiation functions discussed here are summarized in

Table 7.2–1.

7.3 First-Order Differential Equations
In this section, we introduce numerical methods for solving first-order differen-
tial equations. In Section 7.4 we show how to extend the techniques to higher-
order equations.

An ordinary differential equation (ODE) is an equation containing ordinary
derivatives of the dependent variable. An equation containing partial derivatives
with respect to two or more independent variables is a partial differential equa-
tion (PDE). Solution methods for PDEs are an advanced topic, and we will not
treat them in this text. In this chapter we limit ourselves to initial-value problems
(IVPs). These are problems where the ODE must be solved for a given set of

§
2f(x,y) =

0
2f

0x2
+

0
2f

0y2

318 CHAPTER 7 Numerical Methods for Calculus and Differential Equations

LAPLACIAN

Table 7.2–1 Numerical differentiation functions

Command Description

d = diff(x) Returns a vector d containing the differ-
ences between adjacent elements in the
vector x.

[df_dx,df_dy] = Computes the gradient of the function
gradient(f,dx,dy) f (x, y), where df_dx and df_dy

represent f/ x and f/ y, and dx and dy
are the spacing in the x and y values asso-
ciated with the numerical values of f.

d = polyder(p) Returns a vector d containing the
coefficients of the derivative of the
polynomial represented by the vector p.

d = polyder(p1,p2) Returns a vector d containing the
coefficients of the polynomial that is the
derivative of the product of the
polynomials represented by p1 and p2.

[num, den] = polyder(p2,p1) Returns the vectors num and den
containing the coefficients of the
numerator and denominator polynomials
of the derivative of the quotient p2/p1,
where p1 and p2 are polynomials.

0000

ORDINARY
DIFFERENTIAL
EQUATION

INITIAL-VALUE
PROBLEM

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 318

values specified at some initial time, which is usually taken to be t � 0. Other
types of ODE problems are discussed at the end of Section 7.6.

It will be convenient to use the following abbreviated “dot” notation for
derivatives.

The free response of a differential equation, sometimes called the homogeneous
solution or the initial response, is the solution for the case where there is no forcing
function. The free response depends on the initial conditions. The forced response is
the solution due to the forcing function when the initial conditions are zero. For lin-
ear differential equations, the complete or total response is the sum of the free and
the forced responses. Nonlinear ODEs can be recognized by the fact that the depen-
dent variable or its derivatives appear raised to a power or in a transcendental func-
tion. For example, the equations and are nonlinear.

The essence of a numerical method is to convert the differential equation into
a difference equation that can be programmed. Numerical algorithms differ partly
as a result of the specific procedure used to obtain the difference equations. It is
important to understand the concept of “step size” and its effects on solution
accuracy. To provide a simple introduction to these issues, we consider the sim-
plest numerical methods, the Euler method and the predictor-corrector method.

The Euler Method

The Euler method is the simplest algorithm for numerical solution of a differen-
tial equation. Consider the equations

(7.3–1)

where f (t, y) is a known function and y0 is the initial condition, which is the given
value of y(t) at t � 0. From the definition of the derivative,

If the time increment �t is chosen small enough, the derivative can be replaced
by the approximate expression

(7.3–2)

Assume that the function f (t,y) in (7.3–1) remains constant over the time inter-
val (t, t � �t), and replace (7.3–1) by the following approximation:

y(t + ¢t) - y(t)

¢t
= f(t, y)

dy

dt
L

y(t + ¢t) - y(t)

¢t

dy

dt
= lim

¢t:0

y(t + ¢t) - y(t)

¢t

dy

dt
= f(t,y) y(0) = y0

y
#

= cosyy
#

= y2

y
#

(t) =

dy

dt
 y

$

(t) =

d2y

dt2

7.3 First-Order Differential Equations 319

FREE RESPONSE

FORCED
RESPONSE

EULER METHOD

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 319

or

(7.3–3)

The smaller �t is, the more accurate are our two assumptions leading to (7.3–3).
This technique for replacing a differential equation with a difference equation is
the Euler method. The increment �t is called the step size.

Equation (7.3–3) can be written in more convenient form as

(7.3–4)

where tk�1 � tk � �t. This equation can be applied successively at the times tk by
putting it in a for loop. The accuracy of the Euler method can be improved some-
times by using a smaller step size. However, very small step sizes require longer
run times and can result in a large accumulated error due to roundoff effects.

The Predictor-Corrector Method

The Euler method can have a serious deficiency in problems where the variables
are rapidly changing, because the method assumes the variables are constant over
the time interval �t. One way of improving the method is to use a better approx-
imation to the right-hand side of (7.3–1). Suppose instead of the Euler approxi-
mation (7.3–4) we use the average of the right-hand side of (7.3–1) on the interval
(tk, tk�1). This gives

(7.3–5)

where

(7.3–6)

with a similar definition for fk�1. Equation (7.3–5) is equivalent to integrating
(7.3–1) with the trapezoidal rule.

The difficulty with (7.3–5) is that fk�1 cannot be evaluated until y(tk�1) is
known, but this is precisely the quantity being sought. A way out of this difficulty
is to use the Euler formula (7.3–4) to obtain a preliminary estimate of y(tk�1). This
estimate is then used to compute fk�1 for use in (7.3–5) to obtain the required
value of y(tk�1).

The notation can be changed to clarify the method. Let h � �t and yk � y(tk),
and let xk�1 be the estimate of y(tk�1) obtained from the Euler formula (7.3–4).
Then, by omitting the tk notation from the other equations, we obtain the follow-
ing description of the predictor-corrector process.

(7.3–7)

(7.3–8)

This algorithm is sometimes called the modified Euler method. However, note
that any algorithm can be tried as a predictor or a corrector. Thus many other
methods can be classified as predictor-corrector.

 Trapezoidal corrector yk + 1 = yk +

h

2
 [f(tk, yk) + f(tk + 1, xk + 1)]

 Euler predictor xk + 1 = yk + hf(tk, yk)

fk = f[tk, y(tk)]

y(tk + 1) = y(tk) +

¢t

2
 (fk + fk + 1)

y(tk + 1) = y(tk) + ¢t f[tk, y(tk)]

y(t + ¢t) = y(t) + f (t,y) ¢t

320 CHAPTER 7 Numerical Methods for Calculus and Differential Equations

STEP SIZE

PREDICTOR-
CORRECTOR
METHOD

MODIFIED EULER
METHOD

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 320

Runge-Kutta Methods

The Taylor series representation forms the basis of several methods of solving
differential equations, including the Runge-Kutta methods. The Taylor series
may be used to represent the solution y(t � h) in terms of y(t) and its derivatives
as follows.

(7.3–9)

The number of terms kept in the series determines its accuracy. The required deriva-
tives are calculated from the differential equation. If these derivatives can be found,
(7.3–9) can be used to march forward in time. In practice, the high-order derivatives
can be difficult to calculate, and the series (7.3–9) is truncated at some term. The
Runge-Kutta methods were developed because of the difficulty in computing the de-
rivatives. These methods use several evaluations of the function f(t,y) in a way that
approximates the Taylor series. The number of terms in the series that is duplicated
determines the order of the Runge-Kutta method. Thus, a fourth-order Runge-Kutta
algorithm duplicates the Taylor series through the term involving h4.

MATLAB ODE Solvers

In addition to the many variations of the predictor-corrector and Runge-Kutta al-
gorithms that have been developed, there are more advanced algorithms that use
a variable step size. These “adaptive” algorithms use larger step sizes when the
solution is changing more slowly. MATLAB provides several functions, called
solvers, that implement the Runge-Kutta and other methods with variable step
size. Two of these are the ode45 and ode15s functions. The ode45 function
uses a combination of fourth- and fifth-order Runge-Kutta methods. It is a
general-purpose solver whereas ode15s is suitable for more difficult equations
called “stiff” equations. These solvers are more than sufficient to solve the prob-
lems in this text. It is recommended that you try ode45 first. If the equation
proves difficult to solve (as indicated by a lengthy solution time or by a warning
or error message), then use ode15s.

In this section we limit our coverage to first-order equations. Solution of
higher-order equations is covered in Section 7.4. When used to solve the equa-
tion , the basic syntax is (using ode45 as the example)

[t,y] = ode45(@ydot, tspan, y0)

where @ydot is the handle of the function file whose inputs must be t and y, and
whose output must be a column vector representing dy/dt, that is, f(t, y). The
number of rows in this column vector must equal the order of the equation. The
syntax for ode15s is identical. The function file ydot may also be specified by
a character string (i.e., its name placed in single quotes), but use of the function
handle is now the preferred approach.

The vector tspan contains the starting and ending values of the indepen-
dent variable t, and optionally any intermediate values of t where the solution is

y
#

= f(t,y)

y(t + h) = y(t) + hy
#

(t) +

1

2
h2y

$

(t) + . . .

7.3 First-Order Differential Equations 321

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 321

desired. For example, if no intermediate values are specified, tspan is [t0,
tf], where t0 and tf are the desired starting and ending values of the indepen-
dent parameter t. As another example, using tspan�[0, 5, 10] tells MATLAB
to find the solution at t � 5 and at t � 10. You can solve equation backward in
time by specifying t0 to be greater than tf.

The parameter y0 is the initial value y(0). The function file must have its first
two input arguments as t and y in that order, even for equations where f (t, y) is not
a function of t. You need not use array operations in the function file because the
ODE solvers call the file with scalar values for the arguments. The solvers may
have an additional argument, options, which is discussed at the end of this
section.

First consider an equation whose solution is known in closed form, so that
we can make sure we are using the method correctly.

322 CHAPTER 7 Numerical Methods for Calculus and Differential Equations

Response of an RC Circuit

The model of the RC circuit shown in Figure 7.3–1 can be found from Kirchhoff’s volt-
age law and conservation of charge. It is . Suppose the value of RC is
0.1 s. Use a numerical method to find the free response for the case where the applied volt-
age is zero and the initial capacitor voltage is y(0) � 2 V. Compare the results with the
analytical solution, which is y(t) � 2e–10t.

Solution
The equation for the circuit becomes . First solve this for .
Next define and save the following function file. Note that the order of the input
arguments must be t and y even though t does not appear on the right-hand side of the
equation.

function ydot = RC_circuit(t,y)

% Model of an RC circuit with no applied voltage.

ydot = -10*y;

The initial time is t � 0, so set t0 to be 0. Here we know from the analytical solution that
y(t) will be close to 0 for t 	 0.5 s, so we choose tf to be 0.5 s. In other problems we
generally do not have a good guess for tf, so we must try several increasing values of tf
until we see enough of the response on the plot.

y: y
#

= -10y0.1y
#

+ y = 0

y

RCy
#

+ y = y(t)

y

R

C

+

–

v

Figure 7.3–1 An RC circuit.

EXAMPLE 7.3–1

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 322

The function ode45 is called as follows, and the solution plotted along with the
analytical solution y_true.

[t, y] = ode45(@RC_circuit, [0, 0.5], 2);

y_true = 2*exp(-10*t);

plot(t,y,’o’,t,y_true), xlabel(‘Time(secs)’),...

ylabel(‘Capacitor Voltage’)

Note that we need not generate the array t to evaluate y_true because t is generated
by the ode45 function. The plot is shown in Figure 7.3–2. The numerical solution is
marked by the circles, and the analytical solution is indicated by the solid line. Clearly the
numerical solution gives an accurate answer. Note that the step size has been automati-
cally selected by the ode45 function.

Earlier versions of MATLAB required that the function name, here
RC_circuit, be enclosed within single quotes, but this might not be allowed in
future versions. The use of function handles is now preferred, such as @RC_circuit.
As we will see, additional capabilities are available with function handles.

Test Your Understanding

T7.3–1 Use MATLAB to compute and plot the solution of the following equation.

10

dy

dt
+ y = 20 + 7 sin 2t y(0) = 15

7.3 First-Order Differential Equations 323

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (s)

C
ap

ac
ito

r
V

ol
ta

ge

Figure 7.3–2 Free response of an RC circuit.

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 323

When the differential equation is nonlinear, we often have no analytical so-
lution to use for checking our numerical results. In such cases we can use our
physical insight to guard against grossly incorrect results. We can also check the
equation for singularities that might affect the numerical procedure. Finally, we
can sometimes use an approximation to replace the nonlinear equation with a lin-
ear one that can be solved analytically. Although the linear approximation does
not give the exact answer, it can be used to see if our numerical answer is “in the
ballpark.” The following example illustrates this approach.

324 CHAPTER 7 Numerical Methods for Calculus and Differential Equations

Liquid Height in a Spherical Tank

Figure 7.3–3 shows a spherical tank for storing water. The tank is filled through a hole in
the top and drained through a hole in the bottom. If the tank’s radius is r, you can use inte-
gration to show that the volume of water in the tank as a function of its height h is given by

(7.3–10)

Torricelli’s principle states that the liquid flow rate through the hole is proportional to the
square root of the height h. Further studies in fluid mechanics have identified the relation
more precisely, and the result is that the volume flow rate through the hole is given by

(7.3–11)

where A is the area of the hole, g is the acceleration due to gravity, and Cd is an experi-
mentally determined value that depends partly on the type of liquid. For water, Cd � 0.6
is a common value. We can use the principle of conservation of mass to obtain a differen-
tial equation for the height h. Applied to this tank, the principle says that the rate of change
of liquid volume in the tank must equal the flow rate out of the tank; that is,

(7.3–12)

From (7.3–10),

dV

dt
= 2prh

dh

dt
- ph2

dh

dt
= ph (2r - h)

dh

dt

dV

dt
= -q

q = CdA12gh

V(h) = prh2
- p

h3

3

r

h

Figure 7.3–3 Draining of
a spherical tank.

EXAMPLE 7.3–3

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 324

Substituting this and (7.3–11) into (7.3–12) gives the required equation for h.

(7.3–13)

Use MATLAB to solve this equation to determine how long it will take for the tank
to empty if the initial height is 9 ft. The tank has a radius of r � 5 ft and has a 1-in., diameter
hole in the bottom. Use g � 32.2 ft/sec2. Discuss how to check the solution.

Solution:
With Cd � 0.6, r � 5, g � 32.2, and A � �(1/24)2, (7.3–13) becomes

(7.3–14)

We can first check the above expression for dh/dt for singularities. The denominator does
not become zero unless h � 0 or h � 10, which correspond to a completely empty and a
completely full tank. So we will avoid singularities if 0 � h � 10.

Finally, we can use the following approximation to estimate the time to empty. Re-
place h on the right side of (7.3–14) with its average value, namely, (9�0)/2 � 4.5 ft. This
gives dh/dt � – 0.00286, whose solution is h(t) � h(0) – 0.00286t � 9 – 0.00286 t. Ac-
cording to this equation the tank will be empty at t � 9/0.00286 � 3147 sec, or 52 min. We
will use this value as a “reality check” on our answer.

The function file based on (7.3–14) is

function hdot � height(t,h)

hdot = -(0.0334*sqrt(h))/(10*h-h^2);

The file is called as follows, using the ode45 solver.

[t, h]=ode45 (@height, [0, 2475], 9);

plot(t,h),xlabel(‘Time (sec)’), ylabel(‘Height (ft)’)

The resulting plot is shown in Figure 7.3–4. Note how the height changes more rapidly
when the tank is nearly full or nearly empty. This is to be expected because of the effects
of the tank’s curvature. The tank empties in 2475 sec, or 41 min. This value is not grossly
different from our rough estimate of 52 min, so we should feel comfortable accepting the
numerical results. The value of the final time of 2475 sec was found by increasing the final
time until the plot showed that the height became 0.

7.4 Higher-Order Differential Equations
To use the ODE solvers to solve an equation higher than order 1, you must first
write the equation as a set of first-order equations. This is easily done. Consider
the second-order equation

(7.4–1)5y
$

+ 7y
#

+ 4y = f(t)

dh

dt
= -

0.03341h

10h - h2

p(2rh - h2)
dh

dt
= -CdA12gh

7.4 Higher-Order Differential Equations 325

pal48185_07_305-353.qxd 10/4/07 3:11 PM Page 325

Solve it for the highest derivative:

(7.4–2)

Define two new variables, x1 and x2, to be y and its derivative That is, define
x1 � y and This implies that

This form is sometimes called the Cauchy form or the state-variable form.
Now write a function file that computes the values of and and stores

them in a column vector. To do this, we must first have a function specified for
f(t). Suppose that f(t) � sin t. Then the required file is

function xdot = example_1(t,x)
% Computes derivatives of two equations
xdot(1) = x(2);
xdot(2) = (1/5)*(sin(t)–4*x(1)-7*x(2));
xdot = [xdot(1); xdot(2)];

x
#

2x
#

1

x2
#

=

1

5
f(t) -

4

5
x1 -

7

5
x2

x
#

1 = x2

x2 = y
#

.
y
#

.

y
$

=

1

5
f(t) -

4

5
y -

7

5
y
#

326 CHAPTER 7 Numerical Methods for Calculus and Differential Equations

0 500 1000 1500 2000 2500
0

1

2

3

4

5

6

7

8

9

Time (sec)

H
ei

gh
t (

ft)

Figure 7.3–4 Plot of water height in a spherical tank.

CAUCHY OR
STATE-VARIABLE
FORM

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 326

Note that xdot(1) represents xdot(2) represents x(1) represents x1,
and x(2) represents x2. Once you become familiar with the notation for the
state-variable form, you will see that the previous code could be replaced with the
following shorter form.

function xdot = example_1(t,x)
% Computes derivatives of two equations
xdot = [x(2); (1/5)*(sin(t)-4*x(1)-7*x(2))];

Suppose we want to solve (7.4–1) for 0 � t � 6 with the initial conditions
x(0) � 3, Then the initial condition for the vector x is [3, 9]. To use
ode45, you type

[t, x] = ode45(@example_1, [0, 6], [3, 9]);

Each row in the vector x corresponds to a time returned in the column vector t.
If you type plot(t,x), you will obtain a plot of both x1 and x2 versus t. Note
x is a matrix with two columns. The first column contains the values of x1 at
the various times generated by the solver; the second column contains the val-
ues of x2. Thus, to plot only x1, type plot(t,x(:,1)). To plot only x2, type
plot(t,x(:,2)).

When we are solving nonlinear equations, sometimes it is possible to check
the numerical results by using an approximation that reduces the equation to a
linear one. The following example illustrates such an approach with a second-
order equation.

x
#

(0) = 9.

x
#

2,x
#

1,

7.4 Higher-Order Differential Equations 327

A Nonlinear Pendulum Model

The pendulum shown in Figure 7.4–1 consists of a concentrated mass m attached to a rod
whose mass is small compared to m. The rod’s length is L. The equation of motion for this
pendulum is

(7.4–3)

Suppose that L � 1 m and g � 9.81 m/s2. Use MATLAB to solve this equation for �(t) for
two cases: �(0) � 0.5 rad and �(0) � 0.8� rad. In both cases Discuss how to
check the accuracy of the results.

Solution
If we use the small-angle approximation sin �, the equation becomes

(7.4–4)

which is linear and has the solution

(7.4–5)u(t) = u(0) cos
g

L
 t

u
$

+

g

L
 u = 0

L

u
#
 (0) = 0.

u
$

+

g

L
 sin u = 0

EXAMPLE 7.4–1

y�

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 327

if Thus the amplitude of oscillation is �(0), and the period is
We can use this information to select a final time and to check our nu-

merical results.
First rewrite the pendulum equation (7.4–3) as two first-order equations. To do this,

let and . Thus

The following function file is based on the last two equations. Remember that the
output xdot must be a column vector.

function xdot = pendulum(t,x)

g = 9.81; L = 1;

xdot = [x(2); –(g/L)*sin(x(1))];

This file is called as follows. The vectors ta and xa contain the results for the case where �(0)
� 0.5. In both cases, The vectors tb and xb contain the results for �(0) � 0.8�.

[ta, xa] = ode45(@pendulum, [0,5], [0.5, 0];

[tb, xb] = ode45(@pendulum, [0,5], [0.8*pi, 0];

plot(ta, xa(:,1), tb,xb(:,1)), xlabel (‘Time (s)’), . . .

ylabel(‘Angle (rad)’), gtext(‘Case 1’), gtext(‘Case 2’)

The results are shown in Figure 7.4–2. The amplitude remains constant, as predicted
by the small-angle analysis, and the period for the case where �(0) � 0.5 is a little larger
than 2 s, the value predicted by the small-angle analysis. So we can place some confidence
in the numerical procedure. For the case where �(0) � 0.8�, the period of the numerical

.
u(0) = 0.

x
#

2 =

.
u
#

= -
g

L
 sin x1

x1
#

= u
#

= x2

x2 = u
#

x1 = u

1L>g = 2.006 s.
P = 2pu

#

(0) = 0.

328 CHAPTER 7 Numerical Methods for Calculus and Differential Equations

g

θ

L

m

Figure 7.4–1 A pendulum.

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 328

solution is about 3.3 s. This illustrates an important property of nonlinear differential equa-
tions. The free response of a linear equation has the same period for any initial conditions;
however, the form and therefore the period of the free response of a nonlinear equation
often depends on the particular values of the initial conditions.

In this example, the values of g and L were encoded in the function
pendulum(t,x). Now suppose you want to obtain the pendulum response for
different lengths L or different gravitational accelerations g. You could use the
global command to declare g and L as global variables, or you could pass
parameter values through an argument list in the ode45 function; but starting
with MATLAB 7, the preferred method is to use a nested function. Nested func-
tions are discussed in Section 3.3. The following program shows how this is done.

function pendula
g = 9.81; L = 0.75; % First case.
tf = 6*pi*sqrt(L/g); % Approximately 3 periods.
[t1, x1] = ode45(@pendulum, [0,tf], [0.4, 0];
%
g = 1.63; L = 2.5; % Second case.
tf = 6*pi*sqrt(L/g); % Approximately 3 periods.
[t2, x2] = ode45(@pendulum, [0,tf], [0.2, 0];
plot(t1, x1(:,1), t2, x2(:,1)), . . .

7.4 Higher-Order Differential Equations 329

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
 –3

 –2

 –1

0

1

2

3

Time (s)

A
ng

le
 (

ra
d)

Case 1

Case 2

Figure 7.4–2 The pendulum angle as a function of time for two starting positions.

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 329

xlabel (‘time (s)’), ylabel (‘\theta (rad)’)
% Nested function.

function xdot = pendulum(t,x)
xdot = [x(2);–(g/L)*sin(x(1))];

end
end

Advanced Solver Capabilities

The complete preferred ODE solver syntax in MATLAB 7, using ode45 as an
example, is

[t, y] = ode45(@ydot, tspan, y0, options)

where the options argument is created with the odeset function.

The odeset Function The odeset function creates an options structure to
be supplied to the solver. Its syntax is

options = odeset(‘name1’, ‘value1’ ‘name2’,‘value2’,.. .)

where name is the name of a property and value is the value to be assigned to
the property.

Asimple example will clarify things. The Refine property is used to increase
the number of output points from the solver by an integer factor n. For ode45
the default value of n is 4 because of the solver’s large step sizes. Suppose we
want to solve the following equation: for with y(0) � 0.
Define the following function file.

function ydot = sinefn(t,y)
ydot = sin(t)^2;

Then use the odeset function to set the value of Refine to n � 8, and call the
ode45 solver, as shown in the following code. This will produce twice as many
points to plot to obtain a smoother curve.

options = odeset(‘Refine’,8);
[t, y] = ode45(@sinefn, [0, 4*pi], 0, options);

Another property is the Events property, which has two possible values: on
and off. It can be used to locate transitions to, from, or through zeros of a user-
defined function. This can be used to detect in the ODE solution when a variable
makes a transition to, from, or through a certain value, such as zero. This feature
can be used to simulate a dropped ball bouncing up from the floor. A program to
do this is given in Chapter 8 of [Palm, 2005a]. See the MATLAB help for other
examples.

There are many properties that can be set with the odeset function. To see
a list of these, type odeset. Table 7.4–1 summarizes the syntax of the ODE
solvers using ode45 as an example.

0 … t … 4py
#

= sin2 t

330 CHAPTER 7 Numerical Methods for Calculus and Differential Equations

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 330

7.5 Special Methods for Linear Equations
MATLAB provides some convenient tools to use if the differential equation
model is linear. Even though there are general methods available for finding the
analytical solutions of linear differential equations, it is sometimes more conven-
ient to use a numerical method to find the solution. Examples of such situations
are when the forcing function is a complicated function or when the order of the
differential equation is higher than 2. In such cases the algebra involved in ob-
taining the analytical solution might not be worth the effort, especially if the main
objective is to obtain a plot of the solution.

Matrix Methods

We can use matrix operations to reduce the number of lines to be typed in the de-
rivative function file. For example, the following equation describes the motion
of a mass connected to a spring, with viscous friction acting between the mass
and the surface. Another force u(t) also acts on the mass.

(7.5–1)

This can be put into Cauchy form by letting x1 � y and . This gives

This can be written as one matrix equation as follows.

x
#

2 =

1
m

 u(t) -

k
m

x1 -

c
m

x2

x
#

1 = x2

x2 = y
#

my
$

+ cy
#

+ ky = u(t)

7.5 Special Methods for Linear Equations 331

Table 7.4–1 Syntax of the ODE solver ode45

Command Description

[t, y] = ode45(@ydot, Solves the vector differential equation specified by the function file
tspan, y0, options) whose handle is @ydot and whose inputs must be t and y, and whose output

must be a column vector representing dy/dt; that is, f(t, y). The number of rows
in this column vector must equal the order of the equation. The vector tspan
contains the starting and ending values of the independent variable t, and
optionally any intermediate values of t where the solution is desired. The vector
y0 contains the initial values. The function file must have two input
arguments, t and y, even for equations where f(t, y) is not a function of t.
The options argument is created with the odeset function. The syntax is
identical for the solver ode15s.

options = odeset Creates an integrator options structure options to be used with the
(‘name1’, ‘value1’ ODE solver, in which the named properties have the specified values,
‘name2’, ‘value2’, where name is the name of a property and value is the value to be
. . .) assigned to the property. Any unspecified properties have default values.

Typing odeset with no input arguments displays all property names and their
possible values.

y
#

= f(t,y)

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 331

In compact form this is

(7.5–2)

where

The following function file shows how to use matrix operations. In this ex-
ample, m � 1, c � 2, k � 5, and the applied force is u(t) � 10.

function xdot = msd(t,x)
% Function file for mass with spring and damping.
% Position is first variable, velocity is second variable.
u = 10;
m = 1;c = 2;k = 5;
A = [0, 1;-k/m, -c/m];
B = [0; 1/m];
xdot = A*x+B*u;

Note that the output xdot will be a column vector because of the definition of
matrix-vector multiplication. We try different values of the final time until we see
the entire response. Using a final time of 5 and the initial conditions x1(0) � 0
and x2(0) � 0, we call the solver and plot the solution as follows:

[t, x] = ode45(@msd, [0,5], [0,0];
plot(t,x(:,1),t,x(:,2),’——’)

Figure 7.5–1 shows the edited plot. Note that we could have avoided embedding
the values of the parameters m, c, k, and u by making msd a nested function as
was done with the functions pendulum and pendula in Section 7.4.

Test Your Understanding

T7.5–1 Plot the position and velocity of a mass with a spring and damping, hav-
ing the parameter values m � 2, c � 3, and k � 7. The applied force is
u � 35, the initial position is y(0) � 2, and the initial velocity is
y
#

(0) = -3.

A = c 0 1

-
k
m -

c
m
d B = c 01

m
d x = cx1

x2
d

x
#

= Ax + Bu(t)

cx
#

1

x
#

2
d = J

0 1

-

k
m

-

c
m
K cx1

x2
d + J

0

1
m
Ku(t)

332 CHAPTER 7 Numerical Methods for Calculus and Differential Equations

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 332

Characteristic Roots from the eig Function

The characteristic roots of a linear differential equation give information about
the speed of response and the oscillation frequency, if any.

MATLAB provides the eig function to compute the characteristic roots
when the model is given in the state-variable form (7.5–2). Its syntax is eig(A),
where A is the matrix that appears in (7.5–2). (The function’s name is an abbre-
viation of eigenvalue, which is another name for characteristic root.) For
example, consider the equations

(7.5–3)

(7.5–4)

The matrix A for these equations is

To find the characteristic roots, type

>>A = [-3, 1;-1, -7];
>>r = eig(A)

The answer so obtained is r = [–6.7321, -3.2679]. To find the time con-
stants, which are the negative reciprocals of the real parts of the roots, you type

A = c -3 1

-1 -7
d

x
#

2 = -x1 - 7x2

x
#

1 = -3x1 + x2

7.5 Special Methods for Linear Equations 333

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
 –1

 –0.5

0

0.5

1

1.5

2

2.5

3

Time (s)

D
is

pl
ac

em
en

t (
m

)
an

d
V

el
oc

ity
 (

m
/s

)

Displacement

Velocity

Figure 7.5–1 Displacement and velocity of the mass as a function of time.

EIGENVALUE

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 333

tau = -1./real(r). The time constants are 0.1485 and 0.3060. Four times
the dominant time constant, or 4(0.3060) � 1.224, gives the time it takes for the
free response to become approximately zero.

ODE Solvers in the Control System Toolbox

Many of the functions from the Control System Toolbox are available in the
Student Edition of MATLAB. Some of these can be used to solve linear, time-
invariant (constant-coefficient) differential equations. They are sometimes more
convenient to use and more powerful than the ODE solvers discussed thus far,
because general solutions can be found for linear, time-invariant equations. Here
we discuss several of these functions. These are summarized in Table 7.5–1. The
other features of the Control System Toolbox require advanced methods, and will
not be covered here. See [Palm, 2005b] for coverage of these methods.

An LTI object describes a linear, time-invariant equation, or sets of equa-
tions, here referred to as the system. An LTI object can be created from different
descriptions of the system, it can be analyzed with several functions, and it can
be accessed to provide alternate descriptions of the system. For example, the
equation

(7.5–5)

is one description of a particular system. This description is called the reduced
form. The following is a state-model description of the same system:

(7.5–6)

where x1 � x, and

(7.5–7)

Both model forms contain the same information. However, each form has its own
advantages, depending on the purpose of the analysis.

Because there are two or more state variables in a state model, we need to be
able to specify which state variable, or combination of variables, constitutes the
output of the simulation. For example, models (7.5–6) and (7.5–7) can represent
the motion of a mass, with x1 the position and x2 the velocity of the mass. We need
to be able to specify whether we want to see a plot of the position, or the veloc-
ity, or both. This specification of the output, denoted by the vector y, is done in
general with the matrices C and D, which must be compatible with the following
equation.

(7.5–8)

where the vector u(t) allows for multiple inputs. To continue the previous exam-
ple, if we want the output to be the position x � x1, then y � x1, and we would
select C � [1,0] and D � 0. Thus, in this case, (7.5–8) reduces to y � x1.

y = Cx + Du(t)

A = c 0 1

-
5
2 -

3
2
d B = c01

2
d x = cx1

x2
d

x2 = x
#

,

x
#

= Ax + Bu

2x
$

+ 3x
#

+ 5x = u(t)

334 CHAPTER 7 Numerical Methods for Calculus and Differential Equations

LTI OBJECT

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 334

To create an LTI object from the reduced form (7.5–5), use the tf(right,
left) function, and type

>>sys1 � tf(1, [2, 3, 5]);

where the vector right is the vector of coefficients of the right-hand side of the
equation, arranged in descending derivative order, and left is the vector of co-
efficients of the left-hand side of the equation, also arranged in descending deriv-
ative order. The result, sys1, is the LTI object that describes the system in
reduced form, also called the transfer function form. (The name of the function,
tf, stands for transfer function, which is an equivalent way of describing the co-
efficients on the left- and right-hand sides of the equation.)

The LTI object sys2 in transfer function form for the equation

(7.5–9)

is created by typing

>>sys2 = tf([3, 9, 2], [6, -4, 7, 5]);

To create an LTI object from a state model, you use the ss(A, B, C, D)
function, where ss stands for state space. For example, to create an LTI object
in state-model form for the system described by (7.5–6) through (7.5–8), you type

>>A = [0, 1; -5/2, -3/2]; B = [0; 1/2];
>>C = [1, 0]; D = 0;
>>sys3 = ss(A,B,C,D);

An LTI object defined using the tf function can be used to obtain an equiv-
alent state-model description of the system. To create a state model for the sys-
tem described by the LTI object sys1 created previously in transfer function
form, you type ss(sys1). You will then see the resulting A, B, C, and D
matrices on the screen. To extract and save the matrices, use the ssdata
function as follows.

>>[A1, B1, C1, D1] = ssdata(sys1);

The results are

When using ssdata to convert a transfer function form to a state model, note
that the output y will be a scalar that is identical to the solution variable of the
reduced form; in this case the solution variable of (7.5–1) is the variable y. To
interpret the state model, we need to relate its state variables x1 and x2 to y. The
values of the matrices C1 and D1 tell us that the output variable y � 0.5x2. Thus
we then see that x2 � 2y. The other state variable x1 is related to x2 by
Thus x1 = y

#

.
x
#

2 = 2x1.

A1 = c -1.5 -1.25

2 0
d B1 = c0.5

0
d C1 = 30 0.54 D1 = [0]

6
d3x

dt3
- 4

d2x

dt2
+ 7

dx

dt
+ 5x = 3

d2u

dt2
+ 9

du

dt
+ 2u

7.5 Special Methods for Linear Equations 335

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 335

To create a transfer function description of the system sys3, previously
created from the state model, you type tfsys3 = tf(sys3);To extract and
save the coefficients of the reduced form, use the tfdata function as follows:

[right, left] = tfdata(sys3, ‘v’)

For this example, the vectors returned are right = 1 and left = [1, 1.5,
2.5]. The optional parameter ‘v’ tells MATLAB to return the coefficients as
vectors; otherwise, they are returned as cell arrays. These functions are summa-
rized in Table 7.5–1.

Test Your Understanding

T7.5–2 Obtain the state model for the reduced-form model

Then convert the state model back to reduced form, and see if you get
the original reduced-form model.

Linear ODE Solvers

The Control System Toolbox provides several solvers for linear models. These
solvers are categorized by the type of input function they can accept: zero input,
impulse input, step input, and a general input function. These are summarized in
Table 7.5–2.

The initial Function The initial function computes and plots the
free response of a state model. This is sometimes called the initial condition
response or the undriven response in the MATLAB documentation. The basic

5x
$

+ 7x
#

+ 4x = u(t)

336 CHAPTER 7 Numerical Methods for Calculus and Differential Equations

Table 7.5–1 LTI object functions

Command Description

sys = ss(A, B, C, D) Creates an LTI object in state-space form, where the matrices A, B,
C, and D correspond to those in the model y �
Cx � Du.

[A, B, C, D] = ssdata(sys) Extracts the matrices A, B, C and D corresponding to those in the
model y � Cx � Du.

sys = tf(right,left) Creates an LTI object in transfer function form, where the vector
right is the vector of coefficients of the right-hand side of the
equation, arranged in descending derivative order, and left is the
vector of coefficients of the left-hand side of the equation, also
arranged in descending derivative order.

sys2 = tf(sys1) Creates the transfer function model sys2 from the state model
sys1.

sys1 = ss(sys2) Creates the state model sys1 from the transfer function model
sys2.

[right, left] = tfdata(sys,’v’) Extracts the coefficients on the right- and left-hand sides of the
reduced-form model specified in the transfer function model sys.
When the optional parameter ‘v’ is used, the coefficients are
returned as vectors rather than as cell arrays.

x
#

= Ax + Bu,

x
#

= Ax + Bu,

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 336

syntax is initial(sys,x0), where sys is the LTI object in state-model form
and x0 is the initial-condition vector. The time span and number of solution
points are chosen automatically. For example, to find the free response of the
state model (7.5–5) through (7.5–8), for x1(0) � 5 and x2(0) � –2, first define it
in state-model form. This was done previously to obtain the system sys3. Then
use the initial function as follows.

>>initial(sys3, [5, -2])

The plot shown in Figure 7.5–2 will be displayed on the screen. Note that
MATLAB automatically labels the plot, computes the steady-state response, and
displays it with a dotted line.

7.5 Special Methods for Linear Equations 337

Table 7.5–2 Basic syntax of the LTI ODE solvers

Command Description

impulse(sys) Computes and plots the impulse response of the LTI object sys.
initial(sys,x0) Computes and plots the free response of the LTI object sys given in

state-model form, for the initial conditions specified in the vector x0.
lsim(sys,u,t) Computes and plots the response of the LTI object sys to the input

specified by the vector u, at the times specified by the vector t.
step(sys) Computes and plots the step response of the LTI object sys.

See the text for description of extended syntax.

Time (sec.)

A
m

pl
itu

de

Initial Condition Results

0 1 2 3 4 5 6 7 8
 –1

0

1

2

3

4

5

Figure 7.5–2 Free response of the model given by (7.5–5) through (7.5–8) for
x1(0) � 5 and x2(0) � –2.

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 337

To specify the final time tf, use the syntax initial(sys,x0,tf). To
specify a vector of times of the form t = [0:dt:tf], at which to obtain the
solution, use the syntax initial(sys,x0,t).

When called with left-hand arguments, as [y, t, x] = initial
(sys,x0,. . .), the function returns the output response y, the time
vector t used for the simulation, and the state vector x evaluated at those times.
The columns of the matrices y and x are the outputs and the states, respectively.
The number of rows in y and x equals length(t). No plot is drawn. The
syntax initial(sys1, sys2, . . .,x0,t) plots the free response of
multiple LTI systems on a single plot. The time vector t is optional. You can
specify line color, line style, and marker for each system; for example,
initial(sys1,’r’, sys2,’y— —’,sys3,’gx’,x0).

The impulse Function The impulse function plots the unit-impulse re-
sponse for each input-output pair of the system, assuming that the initial con-
ditions are zero. (The unit impulse is also called the Dirac delta function.) The
basic syntax is impulse(sys), where sys is the LTI object. Unlike the
initial function, the impulse function can be used with either a state
model or a transfer function model. The time span and number of solution
points are chosen automatically. For example, the impulse response of (7.5–5)
is found as follows:

>>sys1 = tf(1, [2, 3, 5]);
>>impulse(sys1)

The extended syntax of the impulse function is similar to that of the initial
function.

The step Function The step function plots the unit-step response for each
input-output pair of the system, assuming that the initial conditions are zero. [The
unit step function u(t) is 0 for t
 0 and 1 for t � 0]. The basic syntax is
step(sys), where sys is the LTI object. The step function can be used with
either a state model or a transfer function model. The time span and number of
solution points are chosen automatically. The extended syntax of the step func-
tion is similar to that of the initial and the impulse functions.

To find the unit-step response, for zero initial conditions, of the state model
(7.5–6) through (7.5–8), and the reduced-form model

(7.5–10)

the session is (assuming sys3 is still available in the workspace)

>>sys4 = tf([5, 1], [5, 7, 5]);
>>step(sys3,’b’,sys4,’— —’)

The result is shown in Figure 7.5–3. The steady-state response is indicated by the
horizontal dotted line. Note how the steady-state response and the time to reach
that state are automatically determined.

5x
$

+ 7x
#

+ 5x = 5f
#

+ f

338 CHAPTER 7 Numerical Methods for Calculus and Differential Equations

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 338

Step response can be characterized by the following parameters.

■ Steady-state value: The limit of the response as .
■ Settling time: The time for the response to reach and stay within a certain

percentage (usually 2%) of its steady-state value.
■ Rise time: The time required for the response to rise from 10% to 90% of

its steady-state value.
■ Peak response: The largest value of the response.
■ Peak time: The time at which the peak response occurs.

When the step(sys) function puts a plot on the screen, you may use the plot
to calculate these parameters by right-clicking anywhere within the plot area.
This brings up a menu. Choose “Characteristics” to obtain a submenu that con-
tains the response characteristics. When you select a specific characteristic, for
example “peak response,” MATLAB puts a large dot on the peak and displays
dashed lines indicating the value of the peak response and the peak time. Move
the cursor over this dot to see a display of the values. You can use the other solvers
in the same way, although the menu choices may be different. For example, peak
response and settling time are available when you use the impulse(sys)
function, but not the rise time. If instead of choosing “Characteristics,” you
choose “Properties” and select the “Options” tab, you can change the defaults for
the settling time and rise time, which are 2% and 10% to 90%.

t : q

7.5 Special Methods for Linear Equations 339

Time (sec.)

A
m

pl
itu

de

Step Response

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 7.5–3 Step response of the model given by (7.5–6) through (7.5–8) and the
model (7.5–10), for zero initial conditions.

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 339

Using this method, we find that the solid curve in Figure 7.5–3 has the
following characteristics:

■ Steady-state value: 0.2
■ 2% Settling time: 5.22
■ 10–90% Rise time: 1.01
■ Peak response: 0.237
■ Peak time: 2.26

You can also read values off any part of the curve by placing the cursor on
the curve at the desired point. You can also move the cursor along the curve and
read the values as they change. Using this method, we find that the solid curve in
Figure 7.5–3 crosses the steady-state value of 0.2 for the second time at t � 3.74.

You can suppress the plot generated by step and create your own plot as
follows, assuming sys3 is still available in the workspace.

[x,t] = step(sys3);
plot(t,x)

You can then use the Plot Editor tools to edit the plot. However, with this ap-
proach, right-clicking on the plot will no longer give you information about the
step response characteristics.

Suppose the step input is not a unit step but instead is 0 for t
 0 and 10 for
t � 0. There are two ways to obtain the solution with the factor 10. Using sys3
as the example, these are step(10*sys3); and

[x,t] = step(sys3);
plot(t,10*x)

The lsim Function The lsim function plots the response of the system to
an arbitrary input. The basic syntax for zero-initial conditions is
lsim(sys,u,t), where sys is the LTI object, t is a time vector having reg-
ular spacing, as t = [0:dt:tf], and u is a matrix with as many columns
as inputs, and whose ith row specifies the value of the input at time t(i). To
specify nonzero initial conditions for a state-space model, use the syntax
lsim(sys,u,t,x0). This computes and plots the total response (the free
plus forced response). Right-clicking on the plot brings up the menu contain-
ing the “Characteristics” choice, although the only characteristic available is
the peak response.

When called with left-hand arguments, as [y, t] = lsim(sys, u,...), the
function returns the output response y and the time vector t used for the simula-
tion. The columns of the matrix y are the outputs, and the number of its rows equals
length(t). No plot is drawn. To obtain the state vector solution for state-space
models, use the syntax [y, t, x] = lsim(sys,u,...). The syntax
lsim(sys1,sys2,. ..,u,t,x0) plots the responses of multiple LTI sys-
tems on a single plot. The initial condition vector xo is needed only if the initial
conditions are nonzero. You can specify line color, line style, and marker for each
system; for example, lsim(sys1,’r’,sys2,’y--’,sys3,’gx’,u,t).

340 CHAPTER 7 Numerical Methods for Calculus and Differential Equations

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 340

We will see an example of the lsim function shortly.

Programming Detailed Forcing Functions

As a final example of higher-order equations, we now show how to program a
detailed forcing function for use with the lsim function. We use a dc motor as
the application. The equations for an armature-controlled dc motor (such as a
permanent magnet motor) shown in Figure 7.5–4 are the following. They result
from Kirchhoff’s voltage law and Newton’s law applied to a rotating inertia. The
motor’s current is i and its rotational velocity is �.

(7.5–11)

(7.5–12)

where L, R, and I are the motor’s inductance, resistance, and inertia; KT and Ke
are the torque constant and back emf constant; c is a viscous damping constant;
and �(t) is the applied voltage. These equations can be put into matrix form as
follows, where x1 � i and x2 � �.

cx
#

1

x
#

2
d = c -R

L -
Ke

L
KT

I -
c
I

d cx1

x2
d + c 1L

0
d v(t)

I
dv

dt
= KTi - cv

L
di

dt
= -Ri - Kev + v(t)

7.5 Special Methods for Linear Equations 341

R

v

i

Ke

T = KTi

ω

cω

L

+

–

I

ω

Figure 7.5–4 An armature-controlled dc motor.

Trapezoidal Profile for a DC Motor

In many applications we want to accelerate the motor to a desired speed, and allow it to
run at that speed for some time before decelerating to a stop. Investigate whether an applied
voltage having a trapezoidal profile will accomplish this. Use the values R � 0.6
, L �

0.002 H, KT � 0.04 N � m/A, Ke � 0.04 V� s/rad, c � 0, and I � 6 � 10–5 kg � m2. The
applied voltage in volts is given by

v(t) = μ
100t

10

-100(t - 0.4) + 10

0

0 … t 6 0.1

0.1 … t … 0.4

0.4 6 t … 0.5

t 7 0.5

EXAMPLE 7.5–1

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 341

This is shown in the top graph in Figure 7.5–5.

■ Solution
The following program first creates the model sys from the matrices A, B, C, and D. We
choose C and D to obtain the speed x2 as the only output. (To obtain both the speed and
the current as outputs, we would choose C = [1, 0; 0, 1] and D = [0; 0].) The
program then computes the time constants using the eig function, and then creates
time, the array of time values to be used by lsim. We choose the time increment 0.0001
to be a very small fraction of the total time, 0.6 s.

The trapezoidal voltage function is then created with a for loop. This is perhaps the
easiest way because the if-elseif-else structure mimics the equations that define
� (t). The initial conditions x1(0) and x2(0) are assumed to be zero, and so they need not
be specified in the lsim function.

% File dcmotor.m

R = 0.6; L = 0.002; c = 0;

K_T = 0.04; K_e = 0.04; I = 6e–5;

A = [-R/L, -K_e/L; K_T/I, -c/I];

B = [1/L; 0]; C = [0,1]; D = [0];

sys = ss(A,B,C,D);

Time_constants = -1./real(eig(A))

time = [0:0.0001:0.6];

k = 0;

for t = [0:0.0001:0.6]

342 CHAPTER 7 Numerical Methods for Calculus and Differential Equations

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

t (s)
V

ol
ta

ge
 (

V
)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

100

200

300

t (s)

V
el

oc
ity

 (
ra

d/
s)

Figure 7.5–5 Voltage input and resulting velocity response of a dc motor.

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 342

k = k + 1;

if t < 0.1

v(k) = 100*t;

elseif t < = 0.4

v(k) = 10;

elseif t < = 0.5

v(k) = –100*(t-0.4) + 10;

else

v(k) = 0;

end

end

[y,t] = lsim(sys, v, time);

subplot(2,1,1), plot(time,v)

subplot(2,1,2), plot(time,y)

The time constants are computed to be 0.0041 and 0.0184 s. The largest time con-
stant indicates that the motor’s response time is approximately 4(0.0184) � 0.0736 s. Be-
cause this time is less than the time needed for the applied voltage to reach 10 V, the motor
should be able to follow the desired trapezoidal profile reasonably well. To know for
certain, we must solve the motor’s differential equations. The results are plotted in the
bottom graph of Figure 7.5–5. The motor’s velocity follows a trapezoidal profile as
expected, although there is some slight deviation because of its electrical resistance and
mechanical inertia.

LTI Viewer The Control System Toolbox contains the LTI Viewer, which
assists in the analysis of LTI systems. It provides an interactive user interface that
allows you to switch between different types of response plots and between the
analysis of different systems. The viewer is invoked by typing ltiview. See the
MATLAB help for more information.

Predefined Input Functions

You can always create any complicated input function to use with the ODE solver
ode45 or lsim by defining a vector containing the input function’s values at
specified times, as was done in Example 7.5–1 for the trapezoidal profile. How-
ever, MATLAB provides the gensig function that makes it easy to construct pe-
riodic input functions.

The syntax [u, t] = gensig(type, period) generates a periodic
input of a specified type type, having a period period. The following types
are available: sine wave (type � ‘sin’), square wave (type � ‘square’), and
narrow-width periodic pulse (type � ‘pulse’). The vector t contains the times,
and the vector u contains the input values at those times. All generated inputs
have unit amplitudes. The syntax [u, t] = gensig(type, period,
tf,dt) specifies the time duration tf of the input and the spacing dt between
the time instants.

7.5 Special Methods for Linear Equations 343

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 343

For example, suppose a square wave with period 5 is applied to the follow-
ing reduced-form model.

(7.5–13)

To find the response for zero initial conditions, over the interval 0 � t � 10,
using a step size of 0.01, the session is

>>sys5 = tf(4,[1,2,4]);
>>[u, t] = gensig(‘square’,5,10,0.01);
>>[y, t] = lsim (sys5,u,t);plot(t,y,u), . . .

axis([0 10 -0.5 1.5]), . . .
xlabel(‘Time’),ylabel(‘Response’)

The result is shown in Figure 7.5–6.

7.6 Summary
This chapter covered numerical methods for computing integrals and derivatives,
and for solving ordinary differential equations. Now that you have finished this
chapter, you should be able to do the following.

■ Numerically evaluate single, double, and triple integrals whose integrands
are given functions.

x
$

+ 2x
#

+ 4x = 4f

344 CHAPTER 7 Numerical Methods for Calculus and Differential Equations

0 1 2 3 4 5 6 7 8 9 10
 –0.5

0

0.5

1

1.5

Time

R
es

po
ns

e

Figure 7.5–6 Square-wave response of the model x
$

+ 2x
#

+ 4x = 4f.

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 344

■ Numerically evaluate single integrals whose integrands are given as
numerical values.

■ Numerically estimate the derivative of a set of data.
■ Compute the gradient and Laplacian of a given function.
■ Obtain in closed form the integral and derivative of a polynomial function.
■ Use the MATLAB ODE solvers to solve single first-order ordinary

differential equations whose initial conditions are specified.
■ Convert higher-order ordinary differential equations into a set of first-order

equations.
■ Use the MATLAB ODE solvers to solve sets of higher-order ordinary

differential equations whose initial conditions are specified.
■ Use MATLAB to convert a model from transfer function form to

state-variable form, and vice versa.
■ Use the MATLAB linear solvers to solve linear differential equations to ob-

tain the free response and the step response for arbitrary forcing functions.

We have not covered all the differential equation solvers provided in
MATLAB, but limited our coverage to ordinary differential equations whose
initial conditions are specified. MATLAB provides algorithms for solving boundary-
value problems (BVPs) such as

See the help for the function bvp4c. Some differential equations are specified
implicitly as The solver ode15i can be used for such problems.
MATLAB can also solve delay-differential equations (DDE) such as

See the help for the functions dde23, ddesd, and deval. The function pdepe
can solve partial differential equations. See also pdeval. In addition, MATLAB
provides support for analyzing and plotting the solver’s output. See the functions
odeplot, odephas2, odephas3, and odeprint.

Key Terms with Page References

x
$

+ 7x
#

+ 10x + 5x(t - 3) = 0

f(t, y, y
#

) = 0.

x
$

+ 7x
#

+ 10x = 0 x(0) = 2 x(5) = 8 0 … t … 5

7.6 Summary 345

Backward difference, 314
Cauchy form, 326
Central difference, 315
Definite integral, 306
Eigenvalue, 333
Euler method, 319
Forced response, 319
Forward difference, 314
Free response, 319
Improper integral, 306
Indefinite integral, 306

Initial value problem (IVP), 318
Laplacian, 318
LTI object, 334
Modified Euler method, 320
Ordinary differential equation
(ODE), 318
Predictor-corrector method, 320
Quadrature, 309
Singularities, 306
State-variable form, 326
Step size, 320

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 345

Problems
You can find answers to problems marked with an asterisk at the end of the text.

Section 7.1

1.* An object moves at a velocity �(t) � 5 � 7t2 m/s starting from the posi-
tion x(2) � 5 m at t � 2 s. Determine its position at t � 10 s.

2. The total distance traveled by an object moving at velocity �(t) from the
time t � a to the time t � b is

The absolute value |� (t)| is used to account for the possibility that � (t) might
be negative. Suppose an object starts at time t � 0 and moves with a velocity
of �(t) � cos(�t) m. Find the object’s location at t � 1 s if x(0) � 2 m.

3. An object starts with an initial velocity of 3 m/s at t � 0, and it
accelerates with an acceleration of a(t) � 5t m/s2. Find the total distance
the object travels in 5 s.

4. The equation for the voltage �(t) across a capacitor as a function of time is

where i(t) is the applied current and Q0 is the initial charge. A certain
capacitor initially holds no charge. Its capacitance is C � 10–7 F. If a
current i(t) � 0.2 [1 � sin (0.2t)] A is applied to the capacitor, compute
the voltage �(t) at t � 1.2 s.

5. A certain object’s position as a function of time is given by x(t) � 6t
sin 5t m. Compute its velocity and acceleration at t � 5 s.

6. A certain object moves with the velocity �(t) given in the table below:
Determine the object’s position x(t) at t � 10 s if x(0) � 3.

v(t) =

1

C
a
L

t

0
 i(t) dt + Q0b

x(b) =

L

b

a
ƒ v(t) ƒ dt + x(a)

346 CHAPTER 7 Numerical Methods for Calculus and Differential Equations

Time (s) 0 1 2 3 4 5 6 7 8 9 10

Velocity (m/s) 0 2 5 7 9 12 15 18 22 20 17

7.* A tank having vertical sides and a bottom area of 100 ft2 is used to store
water. The tank is initially empty. To fill the tank, water is pumped into
the top at the rate given in the following table. Determine the water height
h(t) at t � 10 min.

Time (min) 0 1 2 3 4 5 6 7 8 9 10

Flow rate (ft3/min) 0 80 130 150 150 160 165 170 160 140 120

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 346

8. A cone-shaped paper drinking cup (like the kind supplied at water foun-
tains) has a radius R and a height H. If the water height in the cup is h, the
water volume is given by

Suppose that the cup’s dimensions are R � 1.5 in. and H � 4 in.
(a) If the flow rate from the fountain into the cup is 2 in.3/s, how long

will it take to fill the cup to the brim?
(b) If the flow rate from the fountain into the cup is given by 2(1 – e–2t)

in.3/s, how long will it take to fill the cup to the brim?

9. A certain object has a mass of 100 kg and is acted on by a force
f (t) � 500[2 – e–t sin(5�t)] N. The mass is at rest at t � 0. Determine the
object’s velocity at t � 5 s.

10.* A rocket’s mass decreases as it burns fuel. The equation of motion for a
rocket in vertical flight can be obtained from Newton’s law, and it is

where T is the rocket’s thrust and its mass as a function of time is given
by m(t) � m0(1 – rt/b). The rocket’s initial mass is m0, the burn time is b,
and r is the fraction of the total mass accounted for by the fuel.
Use the values T � 48,000 N, m0 � 2200 kg, r � 0.8, g � 9.81 m/s2, and
b � 40 s. Determine the rocket’s velocity at burnout.

11. The equation for the voltage � (t) across a capacitor as a function of time is

where i(t) is the applied current and Q0 is the initial charge. Suppose that
C � 10–7 F and that Q0 � 0. Suppose the applied current is i(t) � 0.3 �
0.1e–5t sin(25�t) A. Plot the voltage � (t) for 0 � t � 7 s.

12. Compute the indefinite integral of p(x) � 5x2 – 6x � 8.

13. Compute the double integral

14. Compute the double integral

A =

L

4

0 L

p

0
 x2 sin y dx dy

A =

L

3

0 L

3

1
(x2

+ 3xy) dx dy

v(t) =

1

C
 a
L

t

0
 i(t) dt + Q0b

m(t)
dv

dt
= T - m(t)g

V =

1

3
 pa R

H
b2

h3

Problems 347

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 347

15. Compute the double integral

Note that the region of integration lies to the right of the line y � x. Use
this fact and a MATLAB relational operator to eliminate values for which
y � x.

16. Compute the triple integral

Section 7.2

17. Plot the estimate of the derivative dy/dx from the following data. Do this
by using forward, backward, and central differences. Compare the results.

x 0 1 2 3 4 5 6 7 8 9 10

y 0 2 5 7 9 12 15 18 22 20 17

18. At a relative maximum of a curve y(x), the slope dy/dx is zero. Use the
following data to estimate the values of x and y that correspond to a maxi-
mum point.

x 0 1 2 3 4 5 6 7 8 9 10

y 0 2 5 7 9 10 8 7 6 8 10

19. Compare the performance of the forward, backward, and central
difference methods for estimating the derivative of the following function:
y(x) � e–x sin(3x). Use 101 points from x � 0 to x � 4. Use a random
additive error of �0.01.

20. Compute the expressions for dp2/dx, d(p1p2)/dx, and d(p2/p1)/dx for p1 �
3x2 � 7 and p2 � 5x2 – 6x � 8.

21. Plot the contour plot and the gradient (shown by arrows) for the
function

Section 7.3

22. Plot the solution of the equation

if f (t) � 0 for t
 0 and f(t) � 10 for t 	 0. The initial condition is
y(0) � 5.

5y
#

+ y = f(t)

f(x,y) = -x2
+ 2xy + 3y2

A =

L

2

1 L

1

0 L

3

1
 xeyz

 dx dy dz

A =

L

1

0 L

3

y
 x2 (x + y) dx dy

348 CHAPTER 7 Numerical Methods for Calculus and Differential Equations

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 348

23. The equation for the voltage y across the capacitor of an RC circuit is

where �(t) is the applied voltage. Suppose that RC � 0.2 s and that the
capacitor voltage is initially 2 V. Suppose also that the applied voltage
goes from 0 to 10 V at t � 0. Plot the voltage y(t) for 0 � t � 1 s.

24. The following equation describes the temperature T(t) of a certain object
immersed in a liquid bath of constant temperature Tb.

Suppose the object’s temperature is initially T(0) � 70�F and the bath
temperature is Tb � 170�F.
(a) How long will it take for the object’s temperature T to reach the bath

temperature?
(b) How long will it take for the object’s temperature T to reach 168�F?
(c) Plot the object’s temperature T(t) as a function of time.

25.* The equation of motion of a rocket-propelled sled is, from Newton’s law,

where m is the sled mass, f is the rocket thrust, and c is an air resistance
coefficient. Suppose that m � 1000 kg and c � 500 N � s/m. Suppose also
that �(0) � 0 and f � 75,000 N for t 	 0. Determine the speed of the sled
at t � 10 s.

26.* The following equation describes the motion of a mass connected to a
spring, with viscous friction on the surface.

Plot y(t) for y(0) � 10, if

(a) m � 3, c � 18, and k � 102
(b) m � 3, c � 39 and k � 120

27. The equation for the voltage y across the capacitor of an RC circuit is

where �(t) is the applied voltage. Suppose that RC � 0.2 s and that the
capacitor voltage is initially 2 V. Suppose also that the applied voltage is
�(t) � 10[2 – e–t sin(5�t)] V. Plot the voltage y(t) for 0 � t � 5 s.

RC
dy

dt
+ y = v(t)

y
#

(0) = 5

my
$

+ cy
#

+ ky = 0

mv
#

= f - cv

10
dT

dt
+ T = Tb

RC
dy

dt
+ y = v(t)

Problems 349

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 349

28. The equation describing the water height h in a spherical tank with a drain
at the bottom is

Suppose the tank’s radius is r � 3 m and that the circular drain hole has a
radius of 2 cm. Assume that Cd � 0.5 and that the initial water height is
h(0) � 5 m. Use g � 9.81 m/s2.
(a) Use an approximation to estimate how long it takes for the tank to

empty.
(b) Plot the water height as a function of time until h(t) � 0.

29. The following equation describes a certain dilution process, where y(t)
is the concentration of salt in a tank of fresh water to which salt brine is
being added.

Suppose that y(0) � 0. Plot y(t) for 0 � t � 10.

Section 7.4

30. The following equation describes the motion of a certain mass connected
to a spring, with viscous friction on the surface,

where f (t) is an applied force. Suppose that f (t) � 0 for t
 0 and f(t) �
10 for t 	 0.
(a) Plot y(t) for

(b) Plot y(t) for y(0) � 0 and Discuss the effect of the
nonzero initial velocity.

31. The following equation describes the motion of a certain mass connected
to a spring, with viscous friction on the surface,

where f (t) is an applied force. Suppose that f(t) � 0 for t
 0 and f(t) �
10 for t 	 0.
(a) Plot y(t) for

(b) Plot y(t) for y(0) � 0 and Discuss the effect of the
nonzero initial velocity.

32.* The following equation describes the motion of a certain mass connected
to a spring, with no friction,

3y
$

+ 75y = f(t)

y
#

(0) = 10.

y(0) = y
#

(0) = 0.

3y
$

+ 39y
#

+ 120y = f(t)

y
#

(0) = 10.

y(0) = y
#

(0) = 0.

3y
$

+ 18y
#

+ 102y = f(t)

dy

dt
+

2

10 + 2t
 y = 4

p(2rh - h2)
dh

dt
= -CdA12gh

350 CHAPTER 7 Numerical Methods for Calculus and Differential Equations

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 350

where f(t) is an applied force. Suppose the applied force is sinusoidal with
a frequency of � rad/s and an amplitude of 10 N: f (t) � 10 sin(� t).
Suppose that the initial conditions are Plot y(t) for 0 �
t � 20 s. Do this for the following three cases. Compare the results of
each case.

(a) � � 1 rad/s
(b) � � 5 rad/s
(c) � � 10 rad/s

33. Van der Pol’s equation has been used to describe many oscillatory
processes. It is

Plot y(t) for � � 1 and 0 � t � 20, using the initial conditions y(0) � 2,

34. The equation of motion for a pendulum whose base is accelerating hori-
zontally with an acceleration a(t) is

Suppose that g � 9.81 m/s2, L � 1 m, and Plot �(t) for 0 � t
� 10 s for the following three cases.

(a) The acceleration is constant: a � 5 m/s2, and �(0) � 0.5 rad.
(b) The acceleration is constant: a � 5 m/s2, and �(0) � 3 rad.
(c) The acceleration is linear with time: a � 0.5t m/s2, and �(0) � 3 rad.

35. Van der Pol’s equation is

This equation is stiff for large values of the parameter �. Compare the
performance of ode45 and ode15s for this equation. Use � � 1000
and 0 � t � 3000, with the initial conditions y(0) � 2, Plot
y(t) versus t.

Section 7.5

36. The equations for an armature-controlled dc motor are the following. The
motor’s current is i and its rotational velocity is �.

(7.6–1)

(7.6–2)

where L, R, and I are the motor’s inductance, resistance, and inertia; KT
and Ke are the torque constant and back emf constant; c is a viscous
damping constant; and �(t) is the applied voltage.

I
dv

dt
= KTi - cv

L
di

dt
= -Ri - Kev + v(t)

y
#

(0) = 0.

y
$

- m(1 - y2)y
#

+ y = 0

u
#

(0) = 0.

Lu
$

+ g sin u = a(t) cos u

y
#

(0) = 0.

y
$

- m(1 - y2)y
#

+ y = 0

Problems 351

y(0) = y
#

(0) = 0.

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 351

Use the values R � 0.8
, L � 0.003 H, KT � 0.05 N � m/A, Ke � 0.05
V � s/rad, c � 0, and I � 8 � 10–5 kg � m2.
(a) Suppose the applied voltage is 20 V. Plot the motor’s speed and

current versus time. Choose a final time large enough to show the
motor’s speed becoming constant.

(b) Suppose the applied voltage is trapezoidal as given below.

Plot the motor’s speed versus time for 0 � t � 0.3 s. Also plot the applied
voltage versus time. How well does the motor speed follow a trapezoidal
profile?

37.* Compute and plot the unit-impulse response of the following model.

38. Compute and plot the unit-step response of the following model.

39.* Find the reduced form of the following state model.

40. The following state model describes the motion of a certain mass con-
nected to a spring, with viscous friction on the surface, where m � 1, c �
2, and k � 5.

(a) Use the initial function to plot the position x1 of the mass, if the
initial position is 5 and the initial velocity is 3.

(b) Use the step function to plot the step response of the position and
velocity for zero initial conditions, where the magnitude of the step
input is 10. Compare your plot with that shown in Figure 7.5–1.

41. Consider the following equation.

(a) Plot the free response for the initial conditions y(0) � 10,
(b) Plot the unit-step response (for zero initial conditions).

y
#

(0) = -5.

5y
$

+ 2y
#

+ 10y = f(t)

cx
#

1

x
#

2
d = c 0 1

-5 -2
d cx1

x2
d + c0

1
d f(t)

cx
#

1

x
#

2
d = c -4 -1

2 -3
d cx1

x2
d + c2

5
d u(t)

10y
$

+ 6y
#

+ 2y = f + 3f
#

10y
$

+ 3y
#

+ 7y = f(t)

v(t) = μ
400t

20

-400(t - 0.2) + 20

0

 0 … t 6 0.05

0.05 … t … 0.2

0.2 6 t … 0.25

 t 7 0.25

352 CHAPTER 7 Numerical Methods for Calculus and Differential Equations

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 352

(c) The total response to a step input is the sum of the free response and
the step response. Demonstrate this fact for this equation by plotting
the sum of the solutions found in parts (a) and (b), and comparing the
plot with that generated by solving for the total response with y(0) �
10,

42. The model for the RC circuit shown in Figure P42 is

For RC � 0.1 s, plot the voltage response �o(t) for the case where the
applied voltage is a single square pulse of height 10 V and duration 0.2 s,
starting at t � 0. The initial capacitor voltage is zero.

RC

dvo

dt
+ vo = vi

y
#

(0) = -5.

Problems 353

R

Cvi vo

+

–

Figure P42

pal48185_07_305-353.qxd 9/30/07 3:00 PM Page 353

Symbolic Processing
OUTLINE
8.1 Symbolic Expressions and Algebra

8.2 Algebraic and Transcendental Equations

8.3 Calculus

8.4 Differential Equations

8.5 Laplace Transforms

8.6 Symbolic Linear Algebra

8.7 Summary

Problems

Symbolic processing is the term used to describe how a computer performs
operations on mathematical expressions in the way, for example, that humans do
algebra with pencil and paper. Whenever possible, we wish to obtain solutions in
closed form because they give us greater insight into the problem. Symbolic
processing is a way to obtain closed-form solutions.

This chapter explains how to define a symbolic expression such as y � sin x/
cos x in MATLAB and how to use MATLAB to simplify expressions wherever
possible. For example, the previous function simplifies to y �sin x/cos x � tan x.
MATLAB can perform such simplifications and operations such as addition and
multiplication on mathematical expressions. We can use MATLAB to obtain
symbolic solutions to algebraic equations such as x2 � 2x � a � 0 (the solution
for x is). MATLAB can also perform symbolic differentia-
tion and integration and can solve ordinary differential equations in closed form.

To use the methods of this chapter, you must have either the Symbolic Math
toolbox or the Student Edition of MATLAB, which contains all the functions of
the Symbolic Math toolbox but has limited access to the Maple® kernel.

The programs in this chapter are compatible with versions 2 through 3.2 of
the toolbox, although different versions might give slightly different error messages
and slightly different displays of expressions.

x = -1 ; 11 - a

8 C H A P T E R

354

SYMBOLIC
EXPRESSION

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 354

The symbolic processing capabilities in MATLAB are based on the Maple V
software package, which was developed by Waterloo Maple Software, Inc. The
MathWorks has licensed the Maple “engine,” that is, the core of Maple. If you
have used Maple before, however, or plan to use it in the future, you should be
aware that the syntax used by MATLAB differs from that used by the commer-
cially available Maple package.

When you have finished this chapter, you should be able to use MATLAB to

■ Create symbolic expressions and manipulate them algebraically.
■ Obtain symbolic solutions to algebraic and transcendental equations.
■ Perform symbolic differentiation and integration.
■ Evaluate limits and series symbolically.
■ Obtain symbolic solutions to ordinary differential equations.
■ Obtain Laplace transforms.
■ Perform symbolic linear algebra operations, including obtaining

expressions for determinants, matrix inverses, and eigenvalues.

8.1 Symbolic Expressions and Algebra
The sym function can be used to create “symbolic objects” in MATLAB. If the in-
put argument to sym is a string, the result is a symbolic number or variable. If the
input argument is a numeric scalar or matrix, the result is a symbolic representation
of the given numeric values. For example, typing x = sym(‘x’) creates the sym-
bolic variable with name x. Typing x = sym(‘x’,‘real’) tells MATLAB to
assume that x is real. Typing x = sym(‘x’,‘unreal’) tells MATLAB to
assume that x is not real. Typing x = sym(‘x’, ‘positive’) makes x a
positive (real) variable.

In the syntax object_name = sym(‘string’), string may be a sin-
gle letter or combination of letters, a combination of letters and digits starting
with a letter, or a number. The object names are case-sensitive.

The syms function enables you to combine more than one such statement
into a single statement. For example, typing syms x is equivalent to typing x =
sym(‘x’), and typing syms x y u v creates the four symbolic variables x,
y, u, and v. When used without arguments, syms lists the symbolic objects in
the workspace. The syms command, however, cannot be used to create symbolic
constants; you must use sym for this purpose.

The syms command enables you to specify that certain variables are real.
For example,

>>syms x y real

You can use the sym function to create symbolic constants by using a
numerical value for the argument. For example, typing pi = sym(‘pi’),
fraction = sym(‘1/3’), and sqroot2 = sym(‘sqrt(2)’) create
symbolic constants that avoid the floating-point approximations inherent in the

8.1 Symbolic Expressions and Algebra 355

SYMBOLIC
CONSTANT

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 355

values of �, 1/3, and . If you create the symbolic constant � this way, it
temporarily replaces the built-in numeric constant, and you no longer obtain a
numerical value when you type its name. For example,

>>pi = sym(‘pi’)
pi =
pi
>>sqroot2 = sym(‘sqrt(2)’)
sqroot2 =
sqrt(2)
>>a = 3*sqrt(2) % This gives a numeric result.
a =

4.2426
>>b = 3*sqroot2 % This gives a symbolic result.
b =
3*2^(1/2)
>>c = sym (2);
>>d = 5/3
d =

1.6667
>>f = c*d
f =
10/3

Note that MATLAB indents numeric results but not symbolic results. Note
also that when a numerical variable (such as d in the previous session) is used in
a symbolic expression (such as f), the exact value (5/3 here) is used.

Symbolic constants can look like numbers but are actually symbolic expres-
sions. Symbolic expressions can look like character strings but are a different sort
of quantity. You can use the class function to determine whether or not a quan-
tity is symbolic, numeric, or a character string.

Symbolic Expressions

You can use symbolic variables in expressions and as arguments of functions.You
use the operators � � * / ^ and the built-in functions just as you use them with
numerical calculations. For example, typing

>>syms x y
>>s = x + y;
>>r = sqrt(x^2 + y^2);

creates the symbolic variables s and r. The terms s = x + y and r = sqrt
(x^2 + y^2) are examples of symbolic expressions. The variables s and r created
this way are not the same as user-defined function files. That is, if you later assign x
and y numeric values, typing r will not cause MATLAB to evaluate the equation

. We will see later how to evaluate symbolic expressions numerically.
Note that execution of the line syms x y does not display the variables even
though there is no semicolon at the end of the line.

r = 1x2
+ y2

12

356 CHAPTER 8 Symbolic Processing

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 356

The vector and matrix notation used in MATLAB also applies to symbolic
variables. For example, you can create a symbolic matrix A as follows:

>>n = 3; syms x;
>>A = x.^((0:n)’*(0:n))
A =
[1, 1, 1, 1]
[1, x, x^2, x^3]
[1, x^2, x^4, x^6]
[1, x^3, x^6, x^9]

In MATLAB the variable x is the default independent variable, but other vari-
ables can be specified to be the independent variable. It is important to know which
variable is the independent variable in an expression. The function findsym(E)
can be used to determine the symbolic variable used by MATLAB in a particular
expression E.

The function findsym(E) finds the symbolic variables in a symbolic
expression or matrix, where E is a scalar or matrix symbolic expression, and
returns a string containing all of the symbolic variables appearing in E. The vari-
ables are returned in alphabetical order and are separated by commas. If no
symbolic variables are found, findsym returns the empty string.

By contrast, the function findsym(E,n) returns the n symbolic variables
in E closest to x, with the tie breaker going to the variable closer to z. The follow-
ing session shows some examples of its use:

>>syms b x1 y
>>findsym(6*b+y)
ans =
b,y

8.1 Symbolic Expressions and Algebra 357

DEFAULT
VARIABLE

>>findsym(6*b+y+x) %Note: x has not been declared symbolic.
??? Undefined function or variable ‘x’.
>>findsym(6*b+y,1) %Find the one variable closest to x.
ans =
y
>>findsym(6*b+y+x1,1) %Find the one variable closest to x.
ans =
x1
>>findsym(6*b+y*i) %i is not symbolic.
ans =
b, y

Manipulating Expressions

The function collect(E) collects coefficients of like powers in the expres-
sion E. If there is more than one variable, you can use the optional form
collect(E,v), which collects all the coefficients with the same power
of v.

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 357

>>syms x y
>>E = (x-5)^2+(y-3)^2;
>>collect(E)
ans =
x^2-10*x+25+(y-3)^2
>>collect(E,y)
ans =
y^2-6*y+(x-5)^2+9

The function expand(E) expands the expression E by carrying out powers.
For example,

>>syms x y
>>expand((x+y)^2) % Applies algebra rules.
ans =
x^2+2*x*y+y^2
>>expand(sin(x+y)) % Applies trig identities.
ans =
sin(x)*cos(y)+cos(x)*sin(y)
>>simplify(6*((sin(x))^2+(cos(x))^2)) % Another identity.
ans =

6

The function factor(E) factors the expression E. For example,

>>syms x y
>>factor(x^2-1)
ans =
(x-1)*(x+1)

The function simplify(E) simplifies the expression E, using Maple’s
simplification rules. For example,

>>syms x y
>>simplify(x*sqrt(x^8*y^2))
ans =
x*(x^8*y^2)^(1/2)

The function simple(E) searches for the shortest form of the expression
E in terms of number of characters. When called, the function displays the
results of each step of its search. When called without the argument, simple
acts on the previous expression and displays the simplification steps. The form
[r, how] = simple(E) does not display intermediate steps, but saves
those steps in the string how. The shortest form found is stored in r. Typing
r = simple(E) stores the shortest form in r without displaying the simpli-
fication steps.

The function [num den] = numden(E) returns two symbolic expressions
that represent the numerator num and denominator den for the rational
representation of the expression E.

358 CHAPTER 8 Symbolic Processing

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 358

The function double(E) converts the expression E to floating-point,
double-precision numeric form. The expression Emust not contain any symbolic
variables. For example,

>>sqroot2 = sym(‘sqrt(2)’);
>>y = 6*sqroot2
y =
6*2^(1/2)
z = double(y)
z =

8.4853

The function poly2sym(p) converts a coefficient vector p to a symbolic
polynomial in terms of x. The form poly2sym(p, ‘v’) generates the poly-
nomial in terms of the variable v. For example,

>>poly2sym([5,-3,7],‘y’)
ans =
5*y^2-3*y+7

The function sym2poly(E) converts the expression E to a polynomial
coefficient vector.

>>syms x
>>sym2poly(9*x^2+4*x+6)
ans =
9 4 6

The function pretty(E) displays the expression E on the screen in a form
that resembles typeset mathematics.

The function subs(E,old,new) substitutes new for old in the expression
E, where old can be a symbolic variable or expression and new can be a symbolic
variable, expression, or matrix, or a numeric value or matrix. For example,

>>syms x y
>>E = x^2+6*x+7;
>>F = subs(E,x,y)
F =
y^2+6*y+7

If old and new are cell arrays of the same size, each element of old is
replaced by the corresponding element of new. If E and old are scalars and new
is an array or cell array, the scalars are expanded to produce an array result.

If you want to tell MATLAB that f is a function of the variable t, type f =
sym(‘f(t)’). Thereafter, f behaves like a function of t, and you can manip-
ulate it with the toolbox commands. For example, to create a new function

the session is

>>syms t
>>f = sym(‘f(t)’);

g(t) = f(t + 2) - f(t),

8.1 Symbolic Expressions and Algebra 359

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 359

>>g = subs(f,t,t+2)–f
g =
f(t+2)–f(t)

Once a specific function is defined for f(t), the function g(t) will be available. We
will use this technique with the Laplace transform in Section 8.5.

To perform multiple substitutions, enclose the new and old elements in
braces. For example, to substitute a � x and b � 2 into the expression E � a sin b,
the session is

>>syms a b x
>>E = a*sin(b);
>>F = subs(E,{a, b}, {x, 2})
F =
x*sin(2)

Evaluating Expressions

In most applications we eventually want to obtain numerical values or a plot from
the symbolic expression. Use the subs and double functions to evaluate an
expression numerically. Use subs(E,old,new) to replace oldwith a numeric
value new in the expression E. The result is of class double. For example,

>>syms x y
>>E = x^2+6*x+7; F = y*x^5;
>>G = subs(E,x,2)
G =

23
>>class(G)
ans =
double
>>H = subs (E, x, [1:3])
H=

14 23 34
>>J = subs (F, y, [1:3])
J =
[x^5, 2*x^5, 3*x^5]

The MATLAB function ezplot(E, [xmin xmax]) generates a plot of a sym-
bolic expression E, a function of one variable over the range from xmin to xmax.

Order of Precedence

MATLAB does not always arrange expressions in a form that we normally would
use. For example, MATLAB might provide an answer in the form –c+b, whereas
we would normally write b–c. The order of precedence used by MATLAB must
be constantly kept in mind to avoid misinterpreting the MATLAB output (see
Table 1.1–2 for the order of precedence).MATLAB frequently expresses results in

360 CHAPTER 8 Symbolic Processing

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 360

the form 1/a*b, whereas we would normally write b/a. MATLAB sometimes
writes x^(1/2)*y^(1/2) instead of grouping the terms as (x*y)^(1/2),
and it often fails to cancel negative signs where possible, as in -a/(-b*c-d),
instead of a/(b*c+d).

The function latex(E) converts the expression E to a LaTeX typeset
expression. Tables 8.1–1 and 8.1–2 summarize the functions for creating, evalu-
ating, and manipulating symbolic expressions.

Test Your Understanding

T8.1–1 Given the expressions: E1 � x3 � 15x2 � 75x � 125 and E2 � (x � 5)2

� 20x, use MATLAB to

a. Find the product E1E2 and express it in its simplest form.
b. Find the quotient E1/E2 and express it in its simplest form.
c. Evaluate the sum E1�E2 at x �7.1 in symbolic form and in numeric form.

(Answers: a. (x � 5)5; b. x � 5; c. 13,671/1000 in symbolic form,
13.6710 in numeric form.)

8.1 Symbolic Expressions and Algebra 361

Table 8.1–1 Functions for creating and evaluating symbolic expressions

Command Description

class(E) Returns the class of the expression E.
digits(d) Sets the number of decimal digits used to do variable precision arithmetic. The

default is 32 digits.
double(E) Converts the expression E to double precision numeric form.
ezplot(E) Generates a plot of a symbolic expression E, which is a function of one variable.

The default range of the independent variable is the interval [�2�, 2�] unless this
interval contains a singularity. The optional form ezplot(E,[xmin xmax])
generates a plot over the range from xmin to xmax.

findsym(E) Finds the symbolic variables in a symbolic expression or matrix, where E is a
scalar or matrix symbolic expression, and returns a string containing all the
symbolic variables appearing in E. The variables are returned in alphabetical
order and are separated by commas. If no symbolic variables are found,
findsym returns the empty string.

findsym(E,n) Returns the n symbolic variables in E closest to x, with the tie breaker going to
the variable closer to z.

Latex(E) Converts the expression E to a LaTeX typeset expression.
[num den] = numden(E) Returns two symbolic expressions that represent the numerator expression num and

denominator expression den for the rational representation of the expression E.
x = sym(‘x’) Creates the symbolic variable with name x. Typing x = sym(‘x’,‘real’)

makes x real. Typing x = sym(‘x’,‘unreal’) makes x not real. Typing
x = sym (‘x’, ‘positive’) makes x a positive (real) variable.

syms x y u v Creates the symbolic variables x, y, u, and v. When used without
arguments, syms lists the symbolic objects in the workspace.

vpa(E,d) Sets the number of digits used to evaluate the expression E to d. Typing vpa(E)
causes E to be evaluated to the number of digits specified by the
default value of 32 or by the current setting of digits.

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 361

8.2 Algebraic and Transcendental Equations
The function solve(E) solves a symbolic expression or equation repre-
sented by the expression E. If E represents an equation, the equation’s expres-
sion must be enclosed in single quotes. If E represents an expression, then the
solution obtained will be the roots of the expression E; that is, the solution of
the equation E � 0. Multiple expressions or equations can be solved by sepa-
rating them with a comma, as solve(E1,E2, ..., En). Note that you need
not declare the symbolic variable with the sym or syms function before using
solve.

For example, to solve the equation x � 5 � 0, the session is

>>syms x
>>x = solve(‘x+5 = 0’)
x =
-5

To solve the equation e2x � 3ex = 54, the session is

>>solve(‘exp(2*x)+3*exp(x)=54’)
ans =
[2*log(3)+i*pi]
[log(6)]

When more than one variable occurs in the expression, MATLAB assumes that
the variable closest to x in the alphabet is the variable to be found. You can specify
the solution variable using the syntax solve(E,‘v’), where v is the solution
variable. For example,

362 CHAPTER 8 Symbolic Processing

Table 8.1–2 Functions for manipulating symbolic expressions

Command Description

collect(E) Collects coefficients of like powers in the expression E.
expand(E) Expands the expression E by carrying out powers.
factor(E) Factors the expression E.
poly2sym(p) Converts a polynomial coefficient vector p to a symbolic polynomial. The form

poly2sym(p,‘v’) generates the polynomial in terms of the variable v.
pretty(E) Displays the expression E on the screen in a form that resembles typeset mathematics.
simple(E) Searches for the shortest form of the expression E in terms of number of characters. When

called, the function displays the results of each step of its search. When called without the
argument, simple acts on the previous expression. The form [r, how] = simple(E)
does not display intermediate steps, but saves those steps in the string how. The shortest form
found is stored in r.

simplify(E) Simplifies the expression E using Maple’s simplification rules.
subs(E,old,new) Substitutes new for old in the expression E, where old can be a symbolic variable or ex-

pression, new can be a symbolic variable, expression, or matrix, or a numeric value or matrix.
sym2poly(E) Converts the expression E to a polynomial coefficient vector.

>>solve(‘b^2+8*c+2*b=0’) %Solves for c because it is closer to x.
ans =

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 362

-1/8*b^2-1/4*b
>>solve(‘b^2+8*c+2*b=0’,‘b’) % Solves for b.
ans =
[-1+(1-8*c)^(1/2)]
[-1-(1-8*c)^(1/2)]

Thus the solution of b2 � 8c � 2b � 0 for c is c � �(b2 � 2b)/8. The solution for
b is

You can solve simultaneous equations and save the solutions as vectors by
using the form [x, y] = solve (eq1, eq2). Note the difference in the out-
put formats in the following example. In the first form the result ans is a struc-
ture, with the answers for x and y stored in the fields ans.x and ans. y. (See
Section 2.8 for a discussion of structures and fields.) In the second form the
solution is saved in a cell array. (See Section 2.7 for discussion of cell arrays.)

>>eq1 = ‘6*x+2*y=14’;
>>eq2 = ‘3*x+7*y=31’;
>>solve(eq1,eq2)
ans =
x: [1x1 sym]
y: [1x1 sym]
>>x = ans.x
x =
1
>>y = ans.y =
4
>>[x, y] = solve(eq1,eq2)
x =
1
y =
4

Test Your Understanding

T8.2–1 Use MATLAB to solve the equation .

(Answer: x � .)

T8.2–2 Use MATLAB to solve the equation set x � 6y � a, 2x � 3y �9 for
x and y in terms of the parameter a.
(Answer: x � (a � 18)/5, y � (2a � 9)/15.)

12/2

11 - x2
= x

b = -1 ; 11 - 8c.

8.2 Algebraic and Transcendental Equations 363

SOLUTION
STRUCTURE

Intersection of Two Circles

We want to find the intersection points of two circles. The first circle has a radius of 2 and
is centered at x � 3, y � 5. The second circle has a radius b and is centered at x � 5, y = 3.
See Figure 8.2–1.

EXAMPLE 8.2–1

pal48185_08_354-395.qxd 10/4/07 3:12 PM Page 363

(a) Find the (x, y) coordinates of the intersection points in terms of the parameter b.
(b) Evaluate the solution for the case where .

■ Solution
(a) The intersection points are found from the solutions of the two equations for the
circles. These equations are (x � 3)2 � (y � 5)2 � 4 for the first circle and (x � 5)2 �

(y � 3)2 � b2. The session to solve these equations follows. Note that the result x: [2x1
sym] indicates that there are two solutions for x. Similarly, there are two solutions for y.

>>syms x y b

>>S = solve((x-3)^2+(y–5)^2-4,(x–5)^2+(y–3)^2–b^2)

S =

x: [2x1 sym]

y: [2x1 sym]

>>S.x

ans =

[9/2-1/8*b^2+1/8*(-16+24*b^2-b^4)^(1/2)]

[9/2-1/8*b^2-1/8*(-16+24*b^2-b^4)^(1/2)]

The solution for the x coordinates of the intersection points is

The solution for the y coordinates can be found in a similar way by typing S.y.
(b) Continue the session by substituting into the expression for x.

>>subs(S.x,b,sqrt(3))

ans =

4.9820

3.2680

Thus the x coordinates of the two intersection points are x � 4.982 and x � 3.268.
The y coordinates can be found in a similar way.

b = 13

x =
9
2 -

1
8 b2

;
1
81-16 + 24b2

- b4

b = 13

364 CHAPTER 8 Symbolic Processing

y

2

b

5

5

3

3
x

Figure 8.2–1 Intersection points of two
circles.

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 364

Test Your Understanding

T8.2–3 Find the y coordinates of the intersection points in Example 8.2–1. Use

(Answer: y � 4.7320, 3.0180.)

Equations containing periodic functions can have an infinite number of solu-
tions. In such cases the solve function restricts the solution search to solutions
near 0. For example, to solve the equation sin(2x) � cos x � 0, the session is

>>solve(‘sin(2*x)-cos(x)=0’)
ans =
1/2*pi
-1/2*pi
1/6*pi
5/6*pi

Table 8.2–1 summarizes the solve function.

8.3 Calculus
The diff function is used to obtain the symbolic derivative. Although this func-
tion has the same name as the function used to compute numerical differences
(see Section 7.2), MATLAB detects whether a symbolic expression is used in the
argument and directs the calculation accordingly. The basic syntax is diff(E),
which returns the derivative of the expression E with respect to the default
independent variable.

For example,

>>syms n x y
>>diff(x^n)
ans =
x^n*n/x
>>simplify(ans)
ans =

b = 13.

8.3 Calculus 365

Table 8.2–1 Functions for solving algebraic and transcendental equations

Command Description

solve(E) Solves a symbolic expression or equation represented by the
expression E. If E represents an equation, the equation’s
expression must be enclosed in single quotes. If E represents
an expression, then the solution obtained will be the roots of
the expression E; that is, the solution of the equation E � 0.
You need not declare the symbolic variable with the sym or
syms function before using solve.

solve(E1,. . .,En) Solves multiple expressions or equations.
S = solve(E) Saves the solution in the structure S.

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 365

x^(n-1)*n
>>diff(log(x))
ans =
1/x
>>diff((sin(x))^2)
ans =
2*sin(x)*cos(x)
>>diff(sin(y))
ans =
cos(y)

If the expression contains more than one variable, the diff function operates on the
variable x, or the variable closest to x, unless told to do otherwise. When there is more
than one variable, the diff function computes the partial derivative. For example,

>>diff(sin(x*y))
ans =
cos(x*y)*y

The function diff(E,v,n) returns the nth derivative of the expression E
with respect to the variable v. Both v and n are optional. For example,

is given by

>>syms x y
>>diff(x*sin(x*y),y,2)
ans =
-x^3*sin(x*y)

Table 8.3–1 summarizes the differentiation functions.

0
2 [x sin(xy)]

0y2
= -x3 sin(xy)

366 CHAPTER 8 Symbolic Processing

Table 8.3–1 Symbolic calculus functions

Command Description

diff(E,v,n) Returns the nth derivative of the expression E with respect to
the variable v. Both v and n are optional.

int(E,v,a,b) Returns the integral of the expression E with respect to the
optional variable v over the interval [a, b].

limit(E,v,a) Returns the limit of the expression E as the variable v goes to a.
Both v and a are optional. If a is omitted, the limit is taken as v
goes to 0.

limit(E,v,a,‘d’) Returns the limit of the expression E as the variable v goes to a
from the direction specified by d, which may be right or left.

symsum(E) Returns the symbolic summation of the expression E.
taylor(f,n,a) Gives the first n�1 terms in the Taylor series for the function

defined in the expression f, evaluated at the point x � a. If the
parameter a is omitted, the function returns the series evaluated
at x � 0.

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 366

Test Your Understanding

T8.3–1 Given that y � sinh(3x)cosh(5x), use MATLAB to find dy/dx at x � 0.2.
(Answer: 9.2288.)

T8.3–2 Given that z � 5 cos(2x) ln(4y), use MATLAB to find
(Answer: 5 cos(2x)/y.)

Integration

The int(E) function is used to integrate a symbolic expression E. It attempts to
find the symbolic expression I such that diff(I) = E. If the integral does not
exist in closed form or MATLAB cannot find the integral even if it exists, the
function will return the expression unevaluated. The function int(E) returns
the integral of the expression E with respect to the default independent variable.
For example,

>>syms n x y
>>int(x^n)
ans =
x^(n+1)/(n+1)
>>int(1/x)
ans =
log(x)
>>int(cos(x))
ans =
sin(x)
>>int(sin(y))
ans =
-cos(y)

The form int(E,v,a,b) returns the integral of the expression E with
respect to the variable v evaluated over the interval [a, b]. The argument v is
optional. For example,

>>syms x y
>>int(x*y^2,y,0,5)
ans =
125/3*x

Another example is

>>syms a b x
>>int(x^2,a,b)
ans =
1/3*b^3-1/3*a^3

0z /0y.

8.3 Calculus 367

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 367

The following session gives an example for which no integral can be found.
The indefinite integral exists, but the definite integral does not exist if the limits
of integration include the singularity at x � 1. The integral is

The session is

>>syms x
>>int(1/(x-1))
ans =
log(x-1)
>>int(1/(x-1),0,2)
ans =
NaN

Table 8.3–1 summarizes the integration functions.

Test Your Understanding

T8.3–3 Given that y � x sin(3x), use MATLAB to find � y dx.
(Answer: [sin(3x) � 3x cos(3x)]/9.)

T8.3–4 Given that z � 6y2 tan(8x), use MATLAB to find � z dy.
(Answer: 2y3 tan(8x).)

T8.3–5 Use MATLAB to evaluate

(Answer: 0.6672.)

Taylor Series

The taylor(f,n,a) function gives the first n�1 terms in the Taylor series
for the function defined in the expression f, evaluated at the point x � a. If the
parameter a is omitted the function returns the series evaluated at x � 0. Here are
some examples:

>>syms x
>>f = exp(x);
>>taylor(f,4)
ans =
1+x+1/2*x^2+1/6*x^3
>>taylor(f,3,2)
ans =
exp(2)+exp(2)*(x-2)+1/2*exp(2)*(x-2)^2

L

5

-2
x sin(3x) dx

L

1

x - 1
 dx = ln ƒ x - 1 ƒ

368 CHAPTER 8 Symbolic Processing

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 368

The latter expression corresponds to

The function taylortool opens a graphical interface that plots a function
and the nth partial sum of its Taylor series. See the MATLAB help for details.

Sums

The symsum(E,a,b) function returns the sum of the expression E as the
default symbolic variable varies from a to b. That is, if the symbolic variable is
x, then S = symsum(E,a,b) returns

For example, the summation

is given by

>>syms k n
>>symsum(k,0,n-1)
ans =
1/2*n^2-1/2*n

Limits

The function limit(E,v,a) finds the limit of the expression E as � → a. If v
is omitted, the default symbolic variable is used. If a is omitted, the limit is taken
to 0. For example,

are given by

>>syms h x
>>limit((x-3)/(x^2-9),3)
ans =
1/6
>>limit((sin(x+h)-sin(x))/h,h,0)
ans =
cos(x)

lim
h:0

sin(x + h) - sin(x)

h

lim
x:3

x - 3

x2
- 9

=

1

6

a
n - 1

k = 0
k = 0 + 1 + 2 + 3 +

Á
+ n - 1 =

1

2
n2

-

1

2
n

a
b

x = a
E(x) = E(a) + E(a + 1) + E(a + 2) +

Á
+ E(b)

e2[1 + (x - 2) +
1
2(x - 2)2]

8.3 Calculus 369

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 369

The forms limit(E,v,a,‘right’) and limit(E,v,a,‘left’)
specify the direction of the limit. For example,

are given by

>>syms x
>>limit(1/x,x,0,‘left’)
ans =
-Inf
>>limit(1/x,x,0,‘right’)
ans =
Inf

Table 8.3–1 summarizes the series and limit functions.

Test Your Understanding

T8.3–6 Use MATLAB to find the first three nonzero terms in the Taylor series
for cos x.
(Answer: 1 � x2/2 � x4/24.)

T8.3–7 Use MATLAB to find a formula for the sum

(Answer: m4/4 � m3/2 � m2/4.)

T8.3–8 Use MATLAB to evaluate

(Answer: 0.)

T8.3–9 Use MATLAB to evaluate

(Answer: 2/75.)

8.4 Differential Equations
MATLAB provides the dsolve function for solving ordinary differential equa-
tions. Its various forms differ according to whether they are used to solve single
equations or sets of equations, whether or not boundary conditions are specified,

lim
x:5

2x - 10

x3
- 125

a
7

n = 0
cos(pn)

a
m - 1

m = 0
m3

 lim
x:0 +

1
x

= q

 lim
x:0 -

1
x

= - q

370 CHAPTER 8 Symbolic Processing

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 370

and whether or not the default independent variable t is acceptable. Note that t
is the default independent variable and not x as with the other symbolic functions.

Solving a Single Differential Equation

The dsolve function’s syntax for solving a single equation is dsolve(‘eqn’).
The function returns a symbolic solution of the ODE specified by the symbolic
expression eqn. Use the uppercase letter D to represent the first derivative, use D2
to represent the second derivative, and so on. Any character immediately following
the differentiation operator is taken to be the dependent variable. Thus Dw repre-
sents dw/dt. Because of this syntax, you cannot use uppercase D as a symbolic
variable when using the dsolve function.

The arbitrary constants in the solution are denoted by C1, C2, and so on.
The number of such constants is the same as the order of the ODE. For example,
the equation has the solution The solution can
be found with the following session. Note that you need not declare y to be sym-
bolic prior to using dsolve.

>>dsolve(‘Dy+2*y=12’)
ans =
6+C1*exp(-2*t)

There can be symbolic constants in the equation. The second-order equation
has the solution y(t) � C1e

ct � C2e
�ct, which can be found with the

following session:

>>dsolve(‘D2y=c^2*y’)
ans =
C1*exp(c*t) + C2*exp(-c*t)

Solving Sets of Equations

Sets of equations can be solved with dsolve. The appropriate syntax is
dsolve(‘eqn1’,‘eqn2’,...). The function returns a symbolic solution of
the set of equations specified by the symbolic expressions eqn1 and eqn2.

For example, the set

has the solution x(t) �C1e
3t cos 4t � C2e

3t sin 4t, y(t) ��C1e
3t sin 4t � C2e

3t cos
4t. The session is

>>[x, y] = dsolve(‘Dx=3*x+4*y’,‘Dy=-4*x+3*y’)
x = C1*exp(3*t)*cos(4*t)+C2*exp(3*t)*sin(4*t)
y = -C1*exp(3*t)*sin(4*t)+C2*exp(3*t)*cos(4*t)

dy

dt
= -4x + 3y

dx

dt
= 3x + 4y

y
$

= c2y

y(t) = 6 + C1e
-2t.y

#

+ 2y = 12

8.4 Differential Equations 371

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 371

Specifying Initial and Boundary Conditions

Conditions on the solutions at specified values of the independent variable can be han-
dled as follows. The form dsolve(‘eqn’, ‘cond1’, ‘cond2’,...) returns a
symbolic solution of the ODE specified by the symbolic expression eqn, subject to
the conditions specified in the expressions cond1, cond2, and so on. If y is
the dependent variable, these conditions are specified as follows: y(a) = b,
Dy(a) = c, D2y(a) = d, and so on. These correspond to y(a), and
so on. If the number of conditions is less than the order of the equation, the returned
solution will contain arbitrary constants C1, C2, and so on.

For example, the problem

has the solution y(t) � [1 � cos(bt)]/b. It can be found as follows:

>>dsolve(‘Dy=sin(b*t)’,‘y(0)=0’)
ans =
-cos(b*t)/b+1/b

The problem

has the solution y(t) �(ect � e�ct)/2. The session is

>>dsolve(‘D2y=c^2*y’,‘y(0)=1’,‘Dy(0)=0’)
ans =
1/2*exp(c*t)+1/2*exp(-c*t)

Arbitrary boundary conditions, such as y(0) � c, can be used. For example,
the solution of the problem

is

The session is

>>dsolve(‘Dy+a*y=b’,‘y(0)=c’)
ans =
1/a*b+exp(-a*t)*(-1/a*b+c)

Sets of equations with specified boundary conditions can be solved as follows.
The function dsolve(‘eqn1’,‘eqn2’,...,‘cond1’,‘cond2’,...)
returns a symbolic solution of a set of equations specified by the symbolic

y(t) =

b
a

+ ac-
b
a
b e-at

dy

dt
+ ay = b, y(0) = c

d2y

dt2
= c2y, y(0) = 1, y

#

(0) = 0

dy

dt
= sin(bt), y(0) = 0

y
#

(a), y
$

(a),

372 CHAPTER 8 Symbolic Processing

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 372

expressions eqn1, eqn2, and so on, subject to the initial conditions specified in
the expressions cond1, cond2, and so on.

It is not necessary to specify only initial conditions. The conditions can be
specified at different values of t. For example, to solve the problem

the session is

>>dsolve(‘D2y+9*y=0’,‘y(0)=1’,‘Dy(pi)=2’)
ans =
-2/3*sin(3*t)+cos(3*t)

Although the default independent variable is t, you can use the following syntax
to specify a different independent variable. The function dsolve(‘eqn1’,
‘eqn2’, ..., ‘cond1’,‘cond2’, ..., ‘x’) returns a symbolic
solution of a set of equations where the independent variable is x. The ezplot
function can be used to plot the solution, just as with any other symbolic expres-
sion, provided no undetermined constants are present.

Test Your Understanding

T8.4–1 Use MATLAB to solve the equation

Check the answer by hand or with MATLAB.
(Answer: y(t) � C1 cos(bt) � C2 sin(bt).)

T8.4–2 Use MATLAB to solve the problem

Check the answer by hand or with MATLAB.
(Answer: y(t) � cos(bt).)

Solving Nonlinear Equations

MATLAB can solve some nonlinear differential equations. For example, the
problem

(8.4–1)
dy

dt
= 4 - y2, y(0) = 1

d2y

dt2 + b2y = 0, y(0) = 1, y
#

(0) = 0

d2y

dt2 + b2y = 0

d2y

dt2
+ 9y = 0, y(0) = 1, y

#

(p) = 2

8.4 Differential Equations 373

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 373

can be solved with the following session

>>dsolve(‘Dy=4-y^2’, ‘y(0)=1’)
ans =
2*(exp(4*t-log(-1/3))+1)/(-1+exp(4*t-log(-1/3)))
>>simple(ans)
ans =
2*(3*exp(4*t)-1)/(1+3*exp(4*t))

which is equivalent to

Not all nonlinear equations can be solved in closed form. If so, you will get
a message that a solution could not be found.

Table 8.4–1 summarizes the functions for solving differential equations.

8.5 Laplace Transforms
The Laplace transform of a function y(t) is defined to be

(8.5–1)L[y(t)] = Y(s) =

L

q

0
 y(t)e-st

 dt

L[y(t)]

y(t) = 2
3e4t

- 1

1 + 3e4t

374 CHAPTER 8 Symbolic Processing

Table 8.4–1 The dsolve function

Command Description

dsolve(‘eqn’) Returns a symbolic solution of the ODE speci-
fied by the symbolic expression eqn. Use the
uppercase letter D to represent the first
derivative; use D2 to represent the second deriv-
ative, and so on. Any character immediately fol-
lowing the differentiation operator is taken to be
the dependent variable.

dsolve(‘eqn1’,‘eqn2’, . . .) Returns a symbolic solution of the set of equa-
tions specified by the symbolic expressions
eqn1, eqn2, and so on.

dsolve(‘eqn’,‘cond1’,‘cond2’, . . .) Returns a symbolic solution of the ODE speci-
fied by the symbolic expression eqn, subject to
the conditions specified in the expressions
cond1, cond2, and so on. If y is the depen-
dent variable, these conditions are specified as
follows: y(a) = b, Dy(a) = c, D2(a)
= d, and so on.

dsolve(‘eqn1’,‘eqn2’, . . ., ‘cond1’, Returns a symbolic solution of a set of equations
‘cond2’, . . .) specified by the symbolic expressions eqn1,

eqn2, and so on, subject to the initial conditions
specified in the expressions cond1, cond2,
and so on.

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 374

and can be obtained by typing laplace(function), where function is a
symbolic expression representing the function y(t) in (8.5–1). The default inde-
pendent variable is t, and the default result is a function of s.

Here is a session with some examples. The functions are t3, e�at, and sin bt.

>>syms b t
>>laplace(t^3)
ans =
6/s^4
>>laplace(exp(-b*t))
ans =
1/(s+b)
>>laplace(sin(b*t))
ans =
b/(s^2+b^2)

The inverse Laplace transform is that time function y(t) whose transform
is Y(s); that is, Inverse transforms can be found using the
ilaplace function. For example,

>>syms b s
>>ilaplace(1/s^4)
ans =
1/6*t^3
>>ilaplace(1/(s+b))
ans =
exp(-b*t)
>>ilaplace(b/(s^2+b^2)
ans =
sin(b*t)

The transforms of derivatives are useful for solving differential equations.
Applying integration by parts to the definition of the transform, we obtain

(8.5–2)

This procedure can be extended to higher derivatives. For example, the result for
the second derivative is

(8.5–3)

The general result for any order derivative is

(8.5–4)Ladny

dtn b = snY(s) - a
n

k = 1
sn - kgk - 1

Lad2y

dt2
b = s2Y(s) - sy(0) - y

#

(0)

Lady

dt
b = sL[y(t)] - y(0) = sY(s) - y(0)

y(t) = L
-1[Y(s)].
L

-1[Y(s)]

8.5 Laplace Transforms 375

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 375

where

(8.5–5)

Application to Differential Equations

The derivative and linearity properties of the transform can be used to solve
differential equations such as

(8.5–6)

Application of the Laplace transform gives

(8.5–7)

The free response is given by

The forced response is given by

(8.5–8)

This inverse transform cannot be evaluated until V(s) is specified. Suppose v(t) is
a unit-step function. Then V(s) �1/s, and (8.5–8) becomes

To find the inverse transform, enter

>>syms a b s
>>ilaplace(b/(s*(a*s+1)))
ans =
b*(1-exp(-t/a))

Thus the forced response of (8.5–6) to a unit-step input is b(1 � e�t/a).
Consider the second-order model

(8.5–9)

Transforming this equation gives

X(s) =

x(0)s + x
#

(0) + 1.4x(0)

s2
+ 1.4s + 1

+

F(s)

s2
+ 1.4s + 1

x
$

+ 1.4x
#

+ x = f(t)

L
-1 c b

s(as + 1)
d

L
-1 c b

as + 1
V(s) d

L
-1 c ay(0)

as + 1
d = L

-1 c y(0)

s + 1>a d = y(0)e-t>a

Y(s) =

ay(0)

as + 1
+

b

as + 1
V(s)

ay
#

+ y = bv(t)

gk - 1 =

dk - 1y

dtk - 1
2
t = 0

376 CHAPTER 8 Symbolic Processing

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 376

The free response is obtained from

Suppose the initial conditions are x(0) � 2 and Then the free
response is obtained from

(8.5–10)

It can be found by typing

>>syms s
>>ilaplace((2*s-0.2)/(s^2+1.4*s+1))

The free response thus found is

The forced response is obtained from

If f(t) is a unit-step function, F(s) �1/s and the forced response is

To find the forced response, enter

>>ilaplace(1/(s*(s^2+1.4*s+1)))

The answer obtained is

(8.5–11)

Input Derivatives

Consider a differential equation containing the derivative of the input function
y(t).

(8.5–12)

Suppose y(t) is a unit-step function, which is obtained by the function
heaviside(t) in MATLAB. Its derivative is the Dirac delta function, �(t),
which is given by dirac(t) in MATLAB. Use of the heaviside and dirac

mx
$

+ cx
#

+ kx = dy + gy
#

x(t) = 1 - e-0.7t c2 cos a151

10
tb +

7151

51
 sin a151

10
tb d

x(t) = L
-1 c 1

s(s2
+ 1.4s + 1)

d

x(t) = L
-1 c F(s)

s2
+ 1.4s + 1

d

x(t) = e-0.7t c2 cos a151

10
tb -

16151

51
 sin a151

10
tb d

x(t) = L
-1 c 2s - 0.2

s2
+ 1.4s + 1

d

x
#

(0) = -3.

x(t) = L
-1 cx(0)s + x

#

(0) + 1.4x(0)

s2
+ 1.4s + 1

d

8.5 Laplace Transforms 377

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 377

functions with the dsolve function to find the step response of equations
containing derivatives of the input is not recommended. We now demonstrate
how to use the Laplace transform to find the step response of equations
containing derivatives of the input. Suppose the initial conditions are zero.
Then transforming (8.5–12) gives

(8.5–13)

Suppose that d �1, g � 5, m �1, c � 1.4, and k � 1, with zero initial conditions.
If y(t) is a unit-step function, then Y(s) � 1/s, and (8.5–13) gives

(8.5–14)

The response for the case g � 0 was found earlier. It is given by (8.5–11). The
response for g � 5 is found by typing

>>syms s
>>ilaplace((1+5*s)/(s*(s^2+1.4*s+1)))

The response obtained is

(8.5–15)

Figure 8.5–1 shows the responses given by (8.5–11) and (8.5–15). The effect
of differentiating the input is an increase in the response’s peak value.

Direct Method

Instead of performing by hand the algebra required to find the response transform,
we could use MATLAB to do the algebra for us. We now demonstrate the most
direct way of using MATLAB to solve an equation with the Laplace transform.
One advantage of this method is that we are not required to use the transform
identities (8.5–2) through (8.5–5) for the derivatives. Let us solve the equation

(8.5–16)

with f(t) � sin t, in terms of an unspecified value for y(0). Here is the session:

>>syms a L s t
>>y = sym(‘y(t)’);
>>dydt = sym(‘diff(y(t),t)’);
>>f = sin(t);
>>eq = a*dydt+y-f;
>>E = laplace(eq,t,s)

a
dy

dt
+ y = f(t)

x(t) = 1 - e0.7t ccos a151

10
tb +

43151

51
 sin a151

10
tb d

X(s) =

1 + 5s

s(s2
+ 1.4s + 1)

X(s) =

d + gs

ms2
+ cs + k

 Y(s)

378 CHAPTER 8 Symbolic Processing

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 378

E =
a*(s*laplace(y(t),t,s)-y(0)) + laplace(y(t),t,s)- 1/(s^2+1)
>>E = subs(E,‘laplace(y(t),t,s)’,L)

E =
a*(s*L-y(0))+L-1/(s^2+1)
>>L = solve(E,L)

L =
(a*y(0)*s^2+a*y(0)+1)/(a*s^3+a*s+s^2+1)
>>I = simplify(ilaplace(L))

I =
(-a*cos(t)+sin(t)+exp(-t/a)*y(0)+exp(-t/a) *a^2*y(0)+exp(-t/a)*a)/(1+a^2)
>>I = collect(I,exp(-t/a))

I =
1/(1+a^2)*(-a*cos(t)+sin(t))+(a+y(0)+y(0)*a^2)/(1+a^2)*exp(-t/a)

8.5 Laplace Transforms 379

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

t

x

g = 0

g = 5

Figure 8.5–1 The unit-step response of the model for
g � 0 and g � 5.

x
$

+ 1.4x
#

+ x = y + gy
#

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 379

The answer is

Note that this session consists of the following steps:

1. Define the symbolic variables, including the derivatives that appear in the
equation. Note that y(t) is explicitly expressed as a function of t in these
definitions.

2. Move all terms to the left side of the equation and define the left side as a
symbolic expression.

3. Apply the Laplace transformation to the differential equation to obtain an
algebraic equation.

4. Substitute a symbolic variable, here L, for the expression
laplace(y(t),t,s) in the algebraic equation. Then solve the
equation for the variable L, which is the transform of the solution.

5. Invert L to find the solution as a function of t.

Note that this procedure can also be used to solve sets of equations.

Test Your Understanding

T8.5–1 Find the Laplace transform of the following functions: 1 � e�at and
cos bt. Use the ilaplace function to check your answers.

T8.5–2 Use the Laplace transform to solve the problem

where u(t) is a unit-step function and y(0) � 5,

(Answer: y(t) ��1.6e�3t � 4.6e�t � 2.)

Table 8.5–1 summarizes the Laplace transform functions.

8.6 Symbolic Linear Algebra
You can perform operations with symbolic matrices in much the same way as
with numeric matrices. Here we give examples of finding matrix products, the
matrix inverse, eigenvalues, and the characteristic polynomial of a matrix.

y
#

(0) = 1.30u - 4u
#

,

5y
$

+ 20y
#

+ 15y =

y(t) =

1

1 + a2
{sin t - a cos t + e-t>a[y(0) + a2y(0) + a]}

380 CHAPTER 8 Symbolic Processing

Table 8.5–1 Laplace transform functions

Command Description

ilaplace(function) Returns the inverse Laplace transform of function.
laplace(function) Returns the Laplace transform of function.
laplace(function,x,y) Returns the Laplace transform of function, which is

a function of x, in terms of the Laplace variable y.

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 380

Remember that using symbolic matrices avoids numerical imprecision in
subsequent operations. You can create a symbolic matrix from a numeric matrix
in several ways, as shown in the following session:

>>A = sym([3, 5; 2, 7]); % The most direct method.
>>B = [3, 5; 2, 7];
>>C = sym(B);% B is preserved as a numeric matrix.
>>D = subs(A,[3, 5; 2, 7]);

The first method is the most direct. Use the second method when you want to
keep a numeric version of the matrix. The matrices A and C are symbolic and iden-
tical. The matrices B and D look like A and C but are numeric of class double.

You can create a symbolic matrix consisting of functions. For example, the
relationship between the coordinates (x2, y2) of a coordinate system rotated coun-
terclockwise through an angle a relative to the (x1, y1) coodinate system is

where the rotation matrix R(a) is defined as

(8.6–1)

The symbolic matrix R can be defined in MATLAB as follows:

>>syms a
>>R = [cos(a), sin(a); -sin(a), cos(a)]
R =
[cos(a), sin(a)]
[-sin(a), cos(a)]

If we rotate the coordinate system twice by the same angle to produce a third
coordinate system (x3, y3), the result is the same as a single rotation with twice
the angle. Let us see if MATLAB gives that result. The vector-matrix equation is

Thus R(a)R(a) should be the same as R(2a). Continue the previous session as
follows:

>>Q = R*R
Q =
[cos(a)^2-sin(a)^2, 2*cos(a)*sin(a)]
[-2*cos(a)*sin(a), cos(a)^2-sin(a)^2]
>>Q = simple(Q)
Q =
[cos(2*a), sin(2*a)]
[-sin(2*a), cos(2*a)]

cx3

y3
d = R cx2

y2
d = RR cx1

y1
d

R(a) = c cos a sin a

-sin a cos a
d

cx2

y2
d = c cos a sin a

-sin a cos a d c
x1

y1
d = R cx1

y1
d

8.6 Symbolic Linear Algebra 381

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 381

The matrix Q is the same as R(2a), as we suspected.
To evaluate a matrix numerically, use the subs and double functions. For

example, for a rotation of a � �/4 rad,

>>R = subs(R,a,pi/4);

Characteristic Polynomial and Roots

Sets of first-order linear differential equations can be expressed in vector-matrix
notation as

where x is the vector of dependent variables and f(t) is a vector containing the
forcing functions. For example, for the equation set

the vector x and the matrices A and B are

The equation |sI � A| � 0 is the characteristic equation of the model, where s
represents the characteristic roots or “eigenvalues” of the model. Use the poly(A)
function to find this polynomial, and note that MATLAB uses the default symbolic
variable x to represent the roots. For example, to find the characteristic equation and
solve for the roots in terms of the constant k, use the following session:

>>syms k
>>A = [0,1;-k,-2];
>>poly(A)
ans =
x^2+2*x+k
>>solve(ans)
ans =
-1+(1-k)^(1/2)
-1-(1-k)^(1/2)

Thus the roots are
You can use the eig(A) function to find the roots directly without finding

the characteristic equation.
You can use the inv(A) and det(A) functions to invert and find the de-

terminant of a matrix symbolically. For example, using the same matrix A from
the previous session,

>>inv(A)
ans =
[-2/k, -1/k]
[1, 0]

s = -1 ; 11 - k.

x = cx1

x2
d A = c 0 1

-k -2
d B = c0

1
d

 x
#

2 = -kx1 - 2x2 + f(t)
 x
#

1 = x2

x
#

= Ax + Bf(t)

382 CHAPTER 8 Symbolic Processing

EIGENVALUE

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 382

>>det(A)
ans =
k

Solving Linear Algebraic Equations

You can use matrix methods in MATLAB to solve linear algebraic equations
symbolically. You can use the matrix inverse method, if the inverse exists, or
the left-division method (see Section 2.5 for a discussion of these methods). For
example, to solve the set

using both methods, the session is

>>syms c
>>A = sym([2, -3; 5, c]);
>>b = sym([3; 19]);
>>x = inv(A)*b % The matrix inverse method.
x =
3*c/(2*c+15)+57/(2*c+15)
23/(2*c+15)
>>x = A\b % The left-division method.
x =
3*(19+c)/(2*c+15)
23/(2*c+15)

Although the results appear to be different, they both reduce to the same solution:
x � 3(19 � c)/(2c � 15), y � 23/(2c � 15).

Table 8.6–1 summarizes the functions used in this section. Note that their
syntax is identical to the numeric versions used in earlier chapters.

 5x + cy = 19

 2x - 3y = 3

8.6 Symbolic Linear Algebra 383

Table 8.6–1 Linear algebra functions

Command Description

det(A) Returns the determinant of the matrix A in symbolic form.
eig(A) Returns the eigenvalues (characteristic roots) of the matrix A in

symbolic form.
inv(A) Returns the inverse of the matrix A in symbolic form.
poly(A) Returns the characteristic polynomial of the matrix A in symbolic form.

Test Your Understanding

T8.6–1 Consider three successive coordinate rotations using the same angle a.
Show that the product RRR of the rotation matrix R(a) given by (8.6–1)
equals R(3a).

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 383

T8.6–2 Find the characteristic polynomial and roots of the following matrix.

(Answers: s2 � 7s � 10 � 3k and)

T8.6–3 Use the matrix inverse and the left-division method to solve the follow-
ing set.

(Answer: x �(69 � 4c)/13, y �(46 � 7c)/13.)

8.7 Summary
This chapter covers a subset of the capabilities of the Symbolic Math toolbox.
Now that you have finished this chapter, you should be able to use MATLAB to

■ Create symbolic expressions and manipulate them algebraically.
■ Obtain symbolic solutions to algebraic and transcendental equations.
■ Perform symbolic differentiation and integration.
■ Evaluate limits and series symbolically.
■ Obtain symbolic solutions to ordinary differential equations.
■ Obtain Laplace transforms.
■ Perform symbolic linear algebra operations, including obtaining expres-

sions for determinants, matrix inverses, and eigenvalues.

Key Terms with Page References

 7x - 4y = 23
 -4x + 6y = -2c

s = (-7 ; 19 - 12k)>2.

A = c -2 1

-3k -5
d

384 CHAPTER 8 Symbolic Processing

Boundary condition, 372
Default variable, 357
Eigenvalue, 382
Initial condition, 373

Solution structure, 363
Symbolic constant, 355
Symbolic expression, 354

Problems
You can find the answers to problems marked with an asterisk at the end of the text.

Section 8.1

1. Use MATLAB to prove the following identities:
a. sin2 x � cos2 x � 1
b. sin(x � y) � sin x cos y � cos x sin y
c. sin 2x � 2 sin x cos x
d. cosh2 x � sinh2 x � 1

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 384

2. Use MATLAB to express cos 5� as a polynomial in x, where x � cos �.

3.* Two polynomials in the variable x are represented by the coefficient
vectors p1 = [6,2,7,-3] and p2 = [10,-5,8].
a. Use MATLAB to find the product of these two polynomials; express

the product in its simplest form.
b. Use MATLAB to find the numeric value of the product if x � 2.

4.* The equation of a circle of radius r centered at x � 0, y � 0 is

Use the subs and other MATLAB functions to find the equation of a
circle of radius r centered at the point x � a, y � b. Rearrange the
equation into the form Ax2 � Bx � Cxy � Dy � Ey2 � F and find the
expressions for the coefficients in terms of a, b, and r.

5. The equation for a curve called the “lemniscate” in polar coordinates
(r, �) is

Use MATLAB to find the equation for the curve in terms of Cartesian
coordinates (x, y), where x � r cos � and y � r sin �.

Section 8.2

6.* The law of cosines for a triangle states that a2 � b2 � c2 � 2bc cos A,
where a is the length of the side opposite the angle A, and b and c are the
lengths of the other sides.
a. Use MATLAB to solve for b.
b. Suppose that A � 60º, a � 5 m, and c � 2 m. Determine b.

7. Use MATLAB to solve the polynomial equation x3 � 8x2 � ax � 10 � 0
for x in terms of the parameter a, and evaluate your solution for the case
a � 17. Use MATLAB to check the answer.

8.* The equation for an ellipse centered at the origin of the Cartesian
coordinates (x,y) is

where a and b are constants that determine the shape of the ellipse.
a. In terms of the parameter b, use MATLAB to find the points of

intersection of the two ellipses described by

x2
+

y2

b2
= 1

x2

a2
+

y2

b2
= 1

r2
= a2 cos(2u)

x2
+ y2

= r2

Problems 385

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 385

and

b. Evaluate the solution obtained in part a for the case b � 2.

9. The equation

describes the polar coordinates of an orbit with the coordinate origin at
the sun. If � � 0, the orbit is circular; if 0 < � < 1, the orbit is elliptical.
The planets have orbits that are nearly circular; comets have orbits that
are highly elongated with � nearer to 1. It is of obvious interest to deter-
mine whether or not a comet’s or an asteroid’s orbit will intersect that of
a planet. For each of the following two cases, use MATLAB to determine
whether or not orbits A and B intersect. If they do, determine the polar
coordinates of the intersection point. The units of distance are AU, where
1 AU is the mean distance of the Earth from the sun.
a. Orbit A: p � 1, � � 0.01. Orbit B: p � 0.1, � � 0.9.
b. Orbit A: p � 1, � � 0.01. Orbit B: p � 1.1, � � 0.5.

Section 8.3

10. Use MATLAB to find all the values of x where the graph of y � 3x � 2x
has a horizontal tangent line.

11.* Use MATLAB to determine all the local minima and local maxima and all
the inflection points where dy/dx � 0 of the following function:

12. The surface area of a sphere of radius r is S � 4�r2. Its volume is
V � 4�r3/3.
a. Use MATLAB to find the expression for dS/dV.
b. A spherical balloon expands as air is pumped into it. What is the rate

of increase in the balloon’s surface area with volume when its volume
is 30 in.3?

13. Use MATLAB to find the point on the line y � 2 � x/3 that is closest to
the point x � �3, y � 1.

14. A particular circle is centered at the origin and has a radius of 5. Use
MATLAB to find the equation of the line that is tangent to the circle at
the point x � 3, y � 4.

y = x4
-

16
3 x3

+ 8x2
- 4

r =

p

1 - P cos u

x2

100
+ 4y2

= 1

386 CHAPTER 8 Symbolic Processing

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 386

15. Ship A is traveling north at 6 mi/hr, and ship B is traveling west at 12 mi/hr.
When ship A was dead ahead of ship B, it was 6 mi away. Use MATLAB to
determine how close the ships come to each other.

16. Suppose you have a wire of length L. You cut a length x to make a square,
and use the remaining length L � x to make a circle. Use MATLAB to
find the length x that maximizes the sum of the areas enclosed by the
square and the circle.

17.* A certain spherical street lamp emits light in all directions. It is mounted
on a pole of height h (see Figure P17). The brightness B at point P on the
sidewalk is directly proportional to sin � and inversely proportional to the
square of the distance d from the light to the point. Thus

where c is a constant. Use MATLAB to determine how high h should be to
maximize the brightness at point P, which is 30 ft from the base of the pole.

B =

c

d2
 sin u

Problems 387

Light

30 Feet

Pθ

d
h

Figure P17

18.* A certain object has a mass m � 100 kg and is acted on by a force f(t) �
500[2 � e�t sin(5�t)] N. The mass is at rest at t � 0. Use MATLAB to
compute the object’s velocity at t � 5 s. The equation of motion is

19. A rocket’s mass decreases as it burns fuel. The equation of motion for a
rocket in vertical flight can be obtained from Newton’s law and is

where T is the rocket’s thrust and its mass as a function of time is given by
m(t) � m0(1 � rt/b). The rocket’s initial mass is m0, the burn time is b, and
r is the fraction of the total mass accounted for by the fuel. Use the values
T � 48,000 N; m0 � 2200 kg; r � 0.8; g � 9.81 m/s2; and b � 40 s.
a. Use MATLAB to compute the rocket’s velocity as a function of time

for t � b.
b. Use MATLAB to compute the rocket’s velocity at burnout.

m(t)
dy

dt
= T - m(t)g

mv
#

= f(t).
y

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 387

20. The equation for the voltage �(t) across a capacitor as a function of time is

where i(t) is the applied current and Q0 is the initial charge. Suppose that
C �10�6 F and that Q0 � 0. If the applied current is i(t) � [0.01 � 0.3e�5t

sin(25�t)]10�3 A, use MATLAB to compute and plot the voltage �(t) for 0
� t � 0.3 s.

21. The power P dissipated as heat in a resistor R as a function of the current
i(t) passing through it is P � i2 R. The energy E(t) lost as a function of
time is the time integral of the power. Thus

If the current is measured in amperes, the power is in watts and the energy
is in joules (1 W � 1 J/s). Suppose that a current i(t) � 0.2[1 � sin(0.2t)] A is
applied to the resistor.
a. Determine the energy E(t) dissipated as a function of time.
b. Determine the energy dissipated in 1 min if R � 1000 	.

22. The RLC circuit shown in Figure P22 can be used as a narrowband filter. If
the input voltage �i(t) consists of a sum of sinusoidally varying voltages
with different frequencies, the narrowband filter will allow to pass only
those voltages whose frequencies lie within a narrow range. These filters
are used in tuning circuits, such as those used in AM radios, to allow
reception only of the carrier signal of the desired radio station. The magnifi-
cation ratio M of a circuit is the ratio of the amplitude of the output voltage
�o(t) to the amplitude of the input voltage �i(t). It is a function of the radian
frequency
 of the input voltage. Formulas for M are derived in elementary
electrical circuits courses. For this particular circuit, M is given by

M =

RCv

1(1 - LCv2)2
+ (RCv)2

E(t) =

L

t

0
 P(t)dt = R

L

t

0
i2(t) dt

y(t) =

1

C
a
L

t

0
 i(t)dt + Q0b

388 CHAPTER 8 Symbolic Processing

C

vi voR

L

+

–

Figure P22
The frequency at which M is a maximum is the frequency of the desired
carrier signal.

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 388

a. Determine this frequency as a function of R, C, and L.
b. Plot M versus
 for two cases where C �10�5 F and L � 5 � 10�3 H.

For the first case, R � 1000 	. For the second case, R � 10 	. Com-
ment on the filtering capability of each case.

23. The shape of a cable hanging with no load other than its own weight is a
catenary curve. A particular bridge cable is described by the catenary
y(x) � 10 cosh((x � 20)/10) for 0 � x � 50, where x and y are the hori-
zontal and vertical coordinates measured in feet. (See Figure P23.) It is
desired to hang plastic sheeting from the cable to protect passersby while
the bridge is being repainted. Use MATLAB to determine how many
square feet of sheeting are required. Assume that the bottom edge of the
sheeting is located along the x-axis at y � 0.

Problems 389

Cable

y

x
Bridge Deck

Plastic Sheet

Figure P23

24. The shape of a cable hanging with no load other than its own weight is a
catenary curve. A particular bridge cable is described by the catenary
y(x) � 10 cosh((x � 20)/10) for 0 � x � 50, where x and y are the hori-
zontal and vertical coordinates measured in feet.

The length L of a curve described by y(x) for a � x � b can be found
from the following integral:

Determine the length of the cable.

25. Use the first five nonzero terms in the Taylor series for eix, sin x, and cos x
about x � 0 to demonstrate the validity of Euler’s formula eix � cos x �
i sin x.

26. Find the Taylor series for ex sin x about x � 0 in two ways:
a. By multiplying the Taylor series for ex and that for sin x.
b. By using the taylor function directly on ex sin x.

L =

L

b

a
 1 + ady

dx
b2

dxy�����

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 389

27. Integrals that cannot be evaluated in closed form sometimes can be evalu-
ated approximately by using a series representation for the integrand. For
example, the following integral is used for some probability calculations (see
Chapter 6, Section 6.2):

a. Obtain the Taylor series for e�x2 about x � 0 and integrate the first six
nonzero terms in the series to find I. Use the seventh term to estimate
the error.

b. Compare your answer with that obtained with the MATLAB erf(t)
function, defined as

28.* Use MATLAB to compute the following limits:

a.

b.

c.

29. Use MATLAB to compute the following limits:
a.

b.

c.

d.

e.

f.

30. Use MATLAB to compute the following limits:

a.

b. lim
x: - q

3x3
- 2x

2x3
+ 3

lim
x: q

x + 1
x

lim
x:1 +

x2
- 1

sin(x - 1)2

lim
x:5 -

x2
- 25

x2
- 10x + 25

lim
x:0 -

sin x2

x3

lim
x:0 +

a 1

1 - x
b-1>x2

lim
x:0 +

(cos x)1>tan x

lim
x:0 +

xx

lim
x:0

x4

+ 2x2

x3
+ x

lim
x: -2

x2

- 4

x2
+ 4

lim
x:1

x2

- 1

x2
- x

erf(t) =

2

1pL

t

0
 e-t2

dt

I =

L

1

0
 e-x2

 dx

390 CHAPTER 8 Symbolic Processing

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 390

31. Find the expression for the sum of the geometric series

for r �1.

32. A particular rubber ball rebounds to one-half its original height when
dropped on a floor.
a. If the ball is initially dropped from a height h and is allowed to con-

tinue to bounce, find the expression for the total distance traveled by
the ball after the ball hits the floor for the nth time.

b. If it is initially dropped from a height of 10 ft, how far will the ball
have traveled after it hits the floor for the eighth time?

Section 8.4

33. The equation for the voltage y across the capacitor of an RC circuit is

where �(t) is the applied voltage. Suppose that RC � 0.2 s and that the
capacitor voltage is initially 2 V. If the applied voltage goes from 0 to 10 V
at t � 0, use MATLAB to determine and plot the voltage y(t) for 0 � t � 1 s.

34. The following equation describes the temperature T(t) of a certain object
immersed in a liquid bath of temperature Tb(t):

Suppose the object’s temperature is initially T(0) � 70
F and the bath
temperature is 170
F. Use MATLAB to answer the following questions:
a. Determine T(t).
b. How long will it take for the object’s temperature T to reach 168
F?
c. Plot the object’s temperature T(t) as a function of time.

35.* This equation describes the motion of a mass connected to a spring with
viscous friction on the surface

where f(t) is an applied force. The position and velocity of the mass at
t � 0 are denoted by x0 and �0. Use MATLAB to answer the following
questions:
a. What is the free response in terms of x0 and �0 if m � 3, c � 18, and

k � 102?
b. What is the free response in terms of x0 and �0 if m � 3, c � 39, and

k � 120?

my
$

+ cy
#

+ ky = f(t)

10
dT

dt
+ T = Tb

RC
dy

dt
+ y = y(t)

a
n - 1

k = 0
rk

Problems 391

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 391

36. The equation for the voltage y across the capacitor of an RC circuit is

where �(t) is the applied voltage. Suppose that RC � 0.2 s and that the capacitor
voltage is initially 2 V. If the applied voltage is �(t) � 10[2 � e�t sin(5�t)], use
MATLAB to compute and plot the voltage y(t) for 0 � t � 5 s.

37. The following equation describes a certain dilution process, where y(t) is
the concentration of salt in a tank of fresh water to which salt brine is
being added:

Suppose that y(0) � 0. Use MATLAB to compute and plot y(t) for 0 � t � 10.
38. This equation describes the motion of a certain mass connected to a

spring with viscous friction on the surface

where f(t) is an applied force. Suppose that f(t) � 0 for t � 0 and f(t) � 10
for t � 0.
a. Use MATLAB to compute and plot y(t) when

b. Use MATLAB to compute and plot y(t) when y(0) � 0 and
39. This equation describes the motion of a certain mass connected to a

spring with viscous friction on the surface

where f(t) is an applied force. Suppose that f(t) � 0 for t � 0 and f(t) �10
for t � 0.
a. Use MATLAB to compute and plot y(t) when

b. Use MATLAB to compute and plot y(t) when y(0) � 0 and
40. The equations for an armature-controlled dc motor follow. The motor’s

current is i and its rotational velocity is
.

where L, R, and I are the motor’s inductance, resistance, and inertia; KT and
Ke are the torque constant and back emf constant; c is a viscous damping
constant; and �(t) is the applied voltage.

 I
dv

dt
= KTi - cv

 L
di

dt
= -Ri - Kev + y(t)

y
#

(0) = 10.

y(0) = y
#

(0) = 0.

3y
$

+ 39y
#

+ 120y = f(t)

y
#

(0) = 10.

y(0) = y
#

(0) = 0.

3y
$

+ 18y
#

+ 102y = f(t)

dy

dt
+

2

10 + 2t
y = 4

RC
dy

dt
+ y = y(t)

392 CHAPTER 8 Symbolic Processing

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 392

Use the values R � 0.8 	, L � 0.003 H, KT � 0.05 N�m/A, Ke � 0.05
V � s/rad, c � 0, and I � 8 � 10�5 kg · m2.

Suppose the applied voltage is 20 V. Use MATLAB to compute and plot
the motor’s speed and current versus time for zero initial conditions. Choose
a final time large enough to show the motor’s speed becoming constant.

Section 8.5

41. The RLC circuit described in Problem 22 and shown in Figure P22 has
the following differential equation model:

Use the Laplace transform method to solve for the unit-step response of
�0(t) for zero initial conditions, where C � 10�5 F and L � 5 � 10�3 H.
For the first case (a broadband filter), R � 1000 	. For the second case
(a narrowband filter), R � 10 	. Compare the step responses of the two
cases.

42. The differential equation model for a certain speed control system for a
vehicle is

where the actual speed is �, the desired speed is �d(t), and Kp and KI are
constants called the “control gains.” Use the Laplace transform method to
find the unit-step response (that is, �d (t) is a unit-step function). Use zero
initial conditions. Compare the response for three cases:
a. Kp � 9, KI � 50
b. Kp � 9, KI � 25
c. Kp � 54, KI � 250

43. The differential equation model for a certain position control system for a
metal cutting tool is

where the actual tool position is x; the desired position is xd (t); and Kp, KI,
and KD are constants called the control gains. Use the Laplace transform
method to find the unit-step response (that is, xd(t) is a unit-step function).
Use zero initial conditions. Compare the response for three cases:
a. Kp � 30, KI � KD � 0
b. Kp � 27, KI � 17.18, KD � 0
c. Kp � 36, KI � 38.1, KD � 8.52

= KD

d2xd

dt2
+ Kp

dxd

dt
+ KIxd

d3x

dt3
+ (6 + KD)

d2x

dt2
+ (11 + Kp)

dx

dt
+ (6 + KI)x

y
$

+ (1 + Kp)y
#

+ KIy = Kpy
#

d + KIyd

LCy
$

o + RCy
#

o + yo = RCy
#

i(t)

Problems 393

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 393

44.* The differential equation model for the motor torque m(t) required for a
certain speed control system is

where the desired speed is �d(t), and K is a constant called the control gain.
a. Use the Laplace transform method to find the unit-step response (that is,

�d(t) is a unit-step function). Use zero initial conditions.
b. Use symbolic manipulation in MATLAB to find the value of the peak

torque in terms of the gain K.

Section 8.6

45. Show that R�1(a)R(a) � I, where I is the identity matrix and R(a) is the
rotation matrix given by (8.6–1). This equation shows that the inverse co-
ordinate transformation returns you to the original coordinate system.

46. Show that R�1(a) � R(�a). This equation shows that a rotation through a
negative angle is equivalent to an inverse transformation.

47.* Find the characteristic polynomial and roots of the following matrix:

48.* Use the matrix inverse and the left-division method to solve the following
set for x and y in terms of c:

49. The currents i1, i2, and i3 in the circuit shown in Figure P49 are described
by the following equation set if all the resistances are equal to R.

 3x - 4y = -22

 4cx + 5y = 43

A = c -6 2

3k -7
d

4m
$

+ 4Km
#

+ K2m = K2y
#

d

394 CHAPTER 8 Symbolic Processing

+

–

+

–

v1 v2R5

R1 R2 R3

R4

i 5i 4

i 3i 2i 1

Figure P49

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 394

�1 and �2 are applied voltages; the other two currents can be found from
i4 � i1 � i2 and i5 � i2 � i3.
a. Use both the matrix inverse method and the left-division method to

solve for the currents in terms of the resistance R and the voltages �1 and
�2.

b. Find the numerical values for the currents if R � 1000 	, �1 � 100 V,
and �2 � 25 V.

50. The equations for the armature-controlled dc motor shown in Figure P50
follow. The motor’s current is i, and its rotational velocity is
.

where L, R, and I are the motor’s inductance, resistance, and inertia; KT
and Ke are the torque constant and back emf constant; c is a viscous
damping constant; and �(t) is the applied voltage.
a. Find the characteristic polynomial and the characteristic roots.
b. Use the values R � 0.8 	, L � 0.003 H, KT � 0.05 N � m/A, Ke � 0.05

V � s/rad, and I � 8 � 10�5 kg � m2. The damping constant c is often
difficult to determine with accuracy. For these values find the expres-
sions for the two characteristic roots in terms of c.

c. Using the parameter values in part b, determine the roots for the
following values of c (in N � m � s): c � 0, c � 0.01, c � 0.1, and c �
0.2. For each case, use the roots to estimate how long the motor’s
speed will take to become constant; also discuss whether the speed will
oscillate before it becomes constant.

 I
dv

dt
= KTi - cv

 L
di

dt
= -Ri - Kev + y(t)

J
2R -R 0

-R 3R -R

0 R -2R
K J i1

i2

i3

K = Jy1

0

y2

K

Problems 395

R

v

i

Ke

T = KTi

ω

cω

L

+

–

I

ω

Figure P50

pal48185_08_354-395.qxd 9/30/07 3:03 PM Page 395

396

Guide to Commands
and Functions
in This Text

Operators and special characters

Item Description Pages

+ Plus; addition operator. 6, 51
- Minus; subtraction operator. 6, 51
* Scalar and matrix multiplication operator. 6
.* Array multiplication operator. 61
^ Scalar and matrix exponentiation operator. 6
.^ Array exponentiation operator. 61
\ Left-division operator. 6
/ Right-division operator. 6
.\ Array left-division operator. 61
./ Array right-division operator. 61
: Colon; generates regularly spaced elements and represents 9, 16, 40, 42

an entire row or column.
() Parentheses; encloses function arguments and array indices; 6, 124

overrides precedence.
[] Brackets; encloses array elements. 16, 126
{} Braces; encloses cell elements. 89
... Ellipsis; line-continuation operator. 9
, Comma; separates statements, and elements in a row of an array. 9, 10
; Semicolon; separates columns in an array, and suppresses display. 9, 40, 41
% Percent sign; designates a comment, and specifies formatting. 23
‘ Quote sign and transpose operator. 27, 40, 42
.’ Nonconjugated transpose operator. 42
= Assignment (replacement) operator. 8
@ Creates a function handle. 131

A A P P E N D I X

pal48185_App-A_396-407.qxd 10/4/07 3:18 PM Page 396

Appendix A 397

Logical and relational operators

Item Description Pages

== Relational operator: equal to. 154
~= Relational operator: not equal to. 154
< Relational operator: less than. 154
<= Relational operator: less than or equal to. 154
> Relational operator: greater than. 154
>= Relational operator: greater than or equal to. 154
& Logical operator: AND. 157
&& Short-circuit AND. 159
| Logical operator: OR. 157
|| Short-circuit OR. 157
~ Logical operator: NOT. 157

Special variables and constants

Item Description Pages

ans Most recent answer. 12
eps Accuracy of floating-point precision. 12
i,j The imaginary unit . 12
Inf Infinity. 12
NaN Undefined numerical result (not a number). 12
pi The number �. 12

Commands for managing a session

Item Description Pages

clc Clears Command window. 9
clear Removes variables from memory. 9
doc Displays documentation. 32
exist Checks for existence of file or variable. 9
global Declares variables to be global. 131
help Displays help text in the Command window. 32
helpwin Displays help text in the Help Browser. 32
lookfor Searches help entries for a keyword. 32
quit Stops MATLAB. 9
who Lists current variables. 9
whos Lists current variables (long display). 9

1-1

pal48185_App-A_396-407.qxd 9/30/07 3:07 PM Page 397

398 Appendix A

System and file commands

Item Description Pages

cd Changes current directory. 20
date Displays current date. 140
dir Lists all files in current directory. 20
load Loads workspace variables from a file. 18, 145
path Displays search path. 20
pwd Displays current directory. 20
save Saves workspace variables in a file. 18
type Displays contents of a file. 32
uiimport Activates the Import Wizard. 146
what Lists all MATLAB files. 20
which Displays pathname. 20
wk1read Reads .wk1 spreadsheet file. 145
xlsread Reads .xls spreadsheet file. 145

Input/output commands

Item Description Pages

disp Displays contents of an array or string. 27
format Controls screen display format. 13
input Displays prompts and waits for input. 27
menu Displays a menu of choices. 27
; Suppresses screen printing. 9

Numeric display formats

Item Description Pages

format bank Two decimal digits. 13
format compact Suppresses some line feeds. 13
format long 16 decimal digits. 13
format long e 16 digits plus exponent. 13
format loose Resets to less compact display mode. 13
format + Positive, negative, or zero. 13
format rat Rational approximation. 13
format short Four decimal digits (default). 13
format short e Five digits plus exponent. 13

pal48185_App-A_396-407.qxd 9/30/07 3:07 PM Page 398

Array functions

Item Description Pages

cat Concatenates arrays. 49
find Finds indices of nonzero elements. 160
length Computes number of elements. 45
linspace Creates regularly spaced vector. 45
logspace Creates logarithmically spaced vector. 45
max Returns largest element. 45
min Returns smallest element. 45
norm Computes vector geometric length. 45
size Computes array size. 45
sort Sorts each column. 45
sum Sums each column. 45

Special matrices

Item Description Pages

eye Creates an identity matrix. 67
ones Creates an array of ones. 67
zeros Creates an array of zeros. 67

Matrix functions for solving linear equations

Item Description Pages

det Computes determinant of an array. 85, 383
inv Computes inverse of a matrix. 85, 383
pinv Computes pseudoinverse of a matrix. 85
rank Computes rank of a matrix. 85
rref Computes reduced row echelon form. 85

Exponential and logarithmic functions

Item Description Pages

exp(x) Exponential; ex. 121
log(x) Natural logarithm; ln x. 121
log10(x) Common (base 10) logarithm; log x � log10x. 121
sqrt(x) Square root; 121

Complex functions

Item Description Pages

abs(x) Absolute value; |x|. 121
angle(x) Angle of a complex number x. 121
conj(x) Complex conjugate of x. 121
imag(x) Imaginary part of a complex number x. 121
real(x) Real part of a complex number x. 121

1x.

Appendix A 399

pal48185_App-A_396-407.qxd 9/30/07 3:07 PM Page 399

400 Appendix A

Numeric functions

Item Description Pages

ceil Rounds to the nearest integer toward �. 121
fix Rounds to the nearest integer toward zero. 121
floor Rounds to the nearest integer toward ��. 121
round Rounds toward the nearest integer. 121
sign Signum function. 121

Trigonometric functions

Item Description Pages

Radian measure
acos(x) Inverse cosine; arccos x � cos�1x. 124
acot(x) Inverse cotangent; arccot x � cot�1x. 124
acsc(x) Inverse cosecant; arccsc x � csc�1x. 124
asec(x) Inverse secant; arcsec x � sec�1x. 124
asin(x) Inverse sine; arcsin x � sin�1x. 124
atan(x) Inverse tangent; arctan x � tan�1x. 124
atan2(y,x) Four-quadrant inverse tangent. 124
cos(x) Cosine; cos x. 124
cot(x) Cotangent; cot x. 124
csc(x) Cosecant; csc x. 124
sec(x) Secant; sec x. 124
sin(x) Sine; sin x. 124
tan(x) Tangent; tan x. 124
Degree measure
asind(x) Inverse sine; arcsin x � sin�1x. 18
sind(x) Sine; sin x. 18

Hyperbolic functions

Item Description Pages

acosh(x) Inverse hyperbolic cosine; cosh�1x. 126
acoth(x) Inverse hyperbolic cotangent; coth�1x. 126
acsch(x) Inverse hyperbolic cosecant; csch�1x. 126
asech(x) Inverse hyperbolic secant; sech�1x. 126
asinh(x) Inverse hyperbolic sine; sinh�1x. 126
atanh(x) Inverse hyperbolic tangent; tanh�1x. 126
cosh(x) Hyperbolic cosine; cosh x. 126
coth(x) Hyperbolic cotangent; cosh x/sinh x. 126
csch(x) Hyperbolic cosecant; 1/sinh x. 126
sech(x) Hyperbolic secant; 1/cosh x. 126
sinh(x) Hyperbolic sine; sinh x. 126
tanh(x) Hyperbolic tangent; sinh x/cosh x. 126

pal48185_App-A_396-407.qxd 10/4/07 3:18 PM Page 400

Polynomial functions

Item Description Pages

conv Computes product of two polynomials. 87
deconv Computes ratio of polynomials. 87
eig Computes the eigenvalues of a matrix. 333, 383
poly Computes polynomial from roots. 87, 383
polyder Differentiation of a polynomial. 318
polyfit Fits a polynomial to data. 232, 239
polyint Integration of a polynomial. 307
polyval Evaluates polynomial. 87
roots Computes polynomial roots. 87

String functions

Item Description Pages

lower Converts string to all lowercase. 182

Logical functions

Item Description Pages

all True if all elements are nonzero. 160
any True if any elements are nonzero. 160
find Finds indices of nonzero elements. 160
finite True if elements are finite. 160
ischar True if elements are a character array. 160
isempty True if matrix is empty. 160
isinf True if elements are infinite. 160
isnan True if elements are undefined. 160
isnumeric True if elements have numeric values. 160
isreal True if all elements are real. 160
logical Converts a numeric array to a logical array. 160
xor Exclusive OR. 160

Miscellaneous mathematical functions

Item Description Pages

cross Computes cross products. 69
dot Computes dot products. 69
function Creates a user-defined function. 129
nargin Number of function input arguments. 167
nargout Number of function output arguments. 168

Appendix A 401

pal48185_App-A_396-407.qxd 9/30/07 3:07 PM Page 401

402 Appendix A

Cell and structure functions

Item Description Pages

cell Creates cell array. 90
fieldnames Returns field names in a structure array. 93
isfield Identifies a structure array field. 93
isstruct Identifies a structure array. 93
rmfield Removes a field from a structure array. 93
struct Creates structure array. 93

Basic xy plotting commands

Item Description Pages

axis Sets axis limits and other axis properties. 209
fplot Intelligent plotting of functions. 209
ginput Reads coordinates of the cursor position. 22
grid Displays gridlines. 209
plot Generates xy plot. 209, 216
print Prints plot or saves plot to a file. 209
title Puts text at top of plot. 209
xlabel Adds text label to x-axis. 209
ylabel Adds text label to y-axis. 209

Plot-enhancement commands

Item Description Pages

gtext Enables label placement by mouse. 216
hold Freezes current plot. 216
legend Legend placement by mouse. 216
subplot Creates plots in subwindows. 216
text Places string in figure. 216

Specialized plot functions

Item Description Pages

bar Creates bar chart. 219
loglog Creates log-log plot. 219
open Displays a report created by publish. 222
plotyy Enables plotting on left and right axes. 219
polar Creates polar plot. 219
publish Creates reports with embedded graphics. 221
semilogx Creates semilog plot (logarithmic abscissa). 219
semilogy Creates semilog plot (logarithmic ordinate). 219
stairs Creates stairs plot. 219
stem Creates stem plot. 219

pal48185_App-A_396-407.qxd 9/30/07 3:07 PM Page 402

Three-dimensional plotting functions

Item Description Pages

contour Creates contour plot. 254
mesh Creates three-dimensional mesh surface plot. 254
meshc Same as mesh with contour plot underneath. 254
meshgrid Creates rectangular grid. 254
meshz Same as mesh with vertical lines underneath. 254
plot3 Creates three-dimensional plots from lines and points. 250
surf Creates shaded three-dimensional mesh surface plot. 254
surfc Same as surf with contour plot underneath. 254
waterfall Same as mesh with mesh lines in one direction. 254
zlabel Adds text label to z-axis. 251

Program flow control

Item Description Pages

break Terminates execution of a loop. 174
case Provides alternate execution paths within switch structure. 181
continue Passes control to the next iteration of a for or while loop. 174
else Delineates alternate block of statements. 180
elseif Conditionally executes statements. 180
end Terminates for, while, and if statements. 180
for Repeats statements a specific number of times. 180
if Executes statements conditionally. 180
otherwise Provides optional control within a switch structure. 182
switch Directs program execution by comparing input with 181

case expressions.
while Repeats statements an indefinite number of times. 180

Optimization and root-finding functions

Item Description Pages

fminbnd Finds the minimum of a function of one variable. 135
fminsearch Finds the minimum of a multivariable function. 135
fzero Finds the zero of a function. 135

Histogram functions

Item Description Pages

bar Creates a bar chart. 219, 276
hist Aggregates the data into bins. 276

Appendix A 403

pal48185_App-A_396-407.qxd 9/30/07 3:07 PM Page 403

404 Appendix A

Statistical functions

Item Description Pages

cumsum Computes the cumulative sum across a row. 279
erf(x) Computes the error function erf(x). 281
mean Calculates the mean. 272
median Calculates the median. 272
mode Calculates the mode. 272
std Calculates the standard deviation. 280
var Calculates the variance. 280

Random number functions

Item Description Pages

rand Generates uniformly distributed random numbers 285
between 0 and 1; sets and retrieves the state.

randn Generates normally distributed random numbers; sets 285
and retrieves the state.

randperm Generates random permutation of integers. 285

Interpolation functions

Item Description Pages

interp1 Linear and cubic-spline interpolation of a function of 293, 296
one variable.

interp2 Linear interpolation of a function of two variables. 293
pchip Piecewise cubic Hermite polynomial interpolation. 296
spline Cubic-spline interpolation. 296
unmkpp Computes the coefficients of cubic-spline polynomials. 296

Numerical integration functions

Item Description Pages

dblquad Numerical integration of a double integral. 307
polyint Integration of a polynomial. 307
quad Numerical integration with adaptive Simpson’s rule. 307
quadl Numerical integration with Lobatto quadrature. 307
trapz Numerical integration with the trapezoidal rule. 307
triplequad Numerical integration of a triple integral. 307

pal48185_App-A_396-407.qxd 9/30/07 3:07 PM Page 404

Numerical differentiation functions

Item Description Pages

del 2 Computes the Laplacian from data. 318
diff(x) Computes the differences between adjacent elements 318

in the vector x.
gradient Computes the gradient from data. 318
polyder Differentiates a polynomial, a polynomial product, 318

or a polynomial quotient.

ODE solvers

Item Description Pages

ode15s Stiff, variable-order solver. 331
ode45 Nonstiff, medium-order solver. 331
odeset Creates integrator options structure for ODE solvers. 331

LTI object functions

Item Description Pages

ss Creates an LTI object in state-space form. 336
ssdata Extracts state-space matrices from an LTI object. 336
tf Creates an LTI object in transfer-function form. 336
tfdata Extracts equation coefficients from an LTI object. 336

LTI ODE solvers

Item Description Pages

impulse Computes and plots the impulse response of an 337
LTI object.

initial Computes and plots the free response of an LTI object. 337
lsim Computes and plots the response of an LTI object to a 337

general input.
step Computes and plots the step response of an LTI object. 337

Predefined input functions

Item Description Pages

gensig Generates a periodic sine, square, or pulse input. 343

Appendix A 405

pal48185_App-A_396-407.qxd 9/30/07 3:07 PM Page 405

406 Appendix A

Functions for creating and evaluating symbolic expressions

Item Description Pages

class Returns the class of an expression. 361
digits Sets the number of decimal digits used to do variable 361

precision arithmetic.
double Converts an expression to numeric form. 361
ezplot Generates a plot of a symbolic expression. 361
findsym Finds the symbolic variables in a symbolic expression. 361
latex Converts a symbolic expression into a LATEX typeset 361

expression.
numden Returns the numerator and denominator of an 361

expression.
sym Creates a symbolic variable. 361
syms Creates one or more symbolic variables. 361
vpa Sets the number of digits used to evaluate expressions. 361

Functions for manipulating symbolic expressions

Item Description Pages

collect Collects coefficients of like powers in an expression. 362
expand Expands an expression by carrying out powers. 362
factor Factors an expression. 362
poly2sym Converts a polynomial coefficient vector to a 362

symbolic polynomial.
pretty Displays an expression in a form that resembles 362

typeset mathematics.
simple Searches for the shortest form of an expression. 362
simplify Simplifies an expression using Maple’s 362

simplification rules.
subs Substitutes variables or expressions. 362
sym2poly Converts an expression to a polynomial coefficient 362

vector.

Symbolic solution of algebraic and transcendental equations

Item Description Pages

solve Solves symbolic equations. 365

Symbolic calculus functions

Item Description Pages

diff Returns the derivative of an expression. 366
dirac Dirac delta function (unit impulse). 377
heaviside Heaviside function (unit step). 377
int Returns the integral of an expression. 366
limit Returns the limit of an expression. 366
symsum Returns the symbolic summation of an expression. 366
taylor Returns the Taylor series of a function. 366
taylortool Opens a graphical interface for analyzing Taylor series. 369

pal48185_App-A_396-407.qxd 10/4/07 3:18 PM Page 406

Symbolic solution of differential equations

Item Description Pages

dsolve Returns a symbolic solution of a differential equation 371
or set of equations.

Laplace transform functions

Item Description Pages

ilaplace Returns the inverse Laplace transform. 380
laplace Returns the Laplace transform. 380

Symbolic linear algebra functions

Item Description Pages

det Returns the determinant of a matrix. 383
eig Returns the eigenvalues (characteristic roots) of a matrix. 383
inv Returns the inverse of a matrix. 383
poly Returns the characteristic polynomial of a matrix. 383

Appendix A 407

pal48185_App-A_396-407.qxd 9/30/07 3:07 PM Page 407

408

References

[Brown, 1994] Brown, T. L.; H. E. LeMay, Jr.; and B. E. Bursten. Chemistry: The
Central Science, 6th ed. Upper Saddle River, NJ: Prentice-Hall, 1994.

[Felder, 1986] Felder, R. M. and R. W. Rousseau. Elementary Principles of Chemical
Processes. New York: John Wiley & Sons, 1986.

[Kutz, 1999] Kutz, M., editor. Mechanical Engineers’ Handbook. 2d ed. New York:
John Wiley & Sons, 1999.

[Palm, 2005a] Palm, W. Introduction to MATLAB 7 for Engineers. New York:
McGraw-Hill, 2005.

[Palm, 2005b] Palm, W. System Dynamics. New York: McGraw-Hill, 2005.

B A P P E N D I X

pal48185_App-B_408.qxd 9/30/07 1:01 PM Page 408

Answers to Selected
Problems

409

Chapter 1
2. (a) �13.3333; (b) 0.6; (c) 15; (d) 1.0323
8. (a) x � y � �3 � 2i; (b) xy � �13 � 41i;

(c) x/y � �1.72 � 0.04i
18. �15.685, 0.8425 � 3.4008i
25. L � 12.58 m, perimeter � 39.65 m

Chapter 2
3.

7. (a) Length � 3, absolute value � [2, 4, 7];
(b) Same as (a); (c) Length � 3, absolute

value � [5.831, 5, 7.2801]
12. (a)

(b)

13. (a) [1024, -128; 144, 32];
(b) [4, -8; 4, 8];
(c) [4096, -64; 216, -8]

14. (a) Work done on each segment, in joules
(1 J � 1 N � m) is 800, 275, 525, 750, 1800;

(b) Total work done � 4150 J.

 A - B + C = c -16 12

-2 19
d

 A + B + C = c -4 2

22 15
d

A = c 0 6 12 18 24 30

-20 -10 0 10 20 30
d

25.

28. 60 tons of copper, 67 tons of magnesium, 6 tons
of manganese, 76 tons of silicon, and 101 tons
of zinc

31. M � 869 N � m if F is in newtons and r is in
meters.

37. (a) C � B�1(A�1B � A)

(b)

40. x � 3c, y � �2c, z � c
43. T1 � 19.8�C, T2 � �7.0�C, T3 � �9.7�C. Heat

loss rate is 66.8 W.
46. The nonunique solution is x � 1.38z � 4.92,

y � �0.077z � 1.38, where z can have any value.
49. The exact and unique solution is x � 8, y � 2.
50. There is no exact solution. The least squares

solution is x � 6.09, y � 2.26.
54. 2.8x � 5.12 with a remainder of 50.04x � 11.48
55. 0.5676

C = c -0.6212 -2.3636

1.197 2.1576
d

 BA = c -5 -3

48 22
d

 AB = c -47 -78

39 64
d

pal48185_ANSWER_409-411.qxd 9/30/07 3:05 PM Page 409

Chapter 3
1. (a) 3, 3.1623, 3.6056;

(b) 1.7321i, 0.2848 � 1.7553i, 0.5503 � 1.8174i;
(c) 15 � 21i, 22 � 16i, 29 � 11i;
(d) �0.4 � 0.2i, �0.4667 � 0.0667i,

�0.5333 � 0.0667i
2. (a)

(b)

3. (a) 1.01 rad (58�); (b) 2.13 rad (122�);
(c) �1.01 rad (�58�); (d) �2.13 rad (�122�)

7. F1 � 198 N if � � 0.3, F2 � 100 N, and � � 130�.
10. For the test values, t � 7.46 and 2.73 sec.

Chapter 4
1. (a) z = 1; (b) z = 0; (c) z = 1; (d) z = 1
2. (a) z = 0; (b) z = 1; (c) z = 0; (d) z = 4;

(e) z = 1; (f) z = 5; (g) z = 1; (h) z = 0
3. (a) z = [0, 1, 0, 1, 1];

(b) z = [0, 0, 0, 1, 1];
(c) z = [0, 0, 0, 1, 0];
(d) z = [1, 1, 1, 0, 1]

8. (a) z = [1, 1, 1, 0, 0, 0];
(b) z = [1, 0, 0, 1, 1, 1];
(c) z = [1, 1, 0, 1, 1, 1];
(d) z = [0, 1, 0, 0, 0, 0]

10. (a) $7300; (b) $5600; (c) 1200 shares;
(d) $15,800

26. (a) x � 9, y � 16 miles
31. 33 years
33. W � 300 N. If W � 300, the wire tensions are

Ti � 429, 471, 267, 233, 200, and 100 N,
respectively.

44. Weekly inventory for cases (a) and (b):

Week 1 2 3 4 5
Inventory (a) 50 50 45 40 30
Inventory (b) 30 25 20 20 10

Week 6 7 8 9 10
Inventory (a) 30 30 25 20 10
Inventory (b) 10 5 0 0 (�0)

Chapter 5
1. Production is profitable for Q 	 108 gallons per

year. The profit increases linearly with Q, so
there is no upper limit on the profit.

3. To three significant digits, the roots are �0.480,
1.13, and 3.83.

|x/y| = 0.84, ∠x/y = - 1.67 rad

|xy| = 105, ∠xy = - 2.6 rad;

5. The left end is 47 m above the reference line.
The right end is 110 m above the reference line.

10. 0.54 rad (31�).
14. The steady-state value of y is y � 1. y � 0.98

at t � 4/b.
17. (a) The ball will rise 1.68 m and will travel

9.58 m horizontally before striking the ground
after 1.17 s.

26. (a) y � 53.5x � 1354.5;
(b) y � 3.58
 103x�0.976;
(c) y � 2.06
 105(10)�0.0067x

28. (a) b � 1.2603
 10�4; (b) 836 years;
(c) between 760 and 928 years ago

32. If unconstrained to pass through the origin,
f � 0.1999x � 0.0147. If constrained to pass
through the origin, f � 0.1977x.

34. d � 0.0509�2 � 1.1054� � 2.3571, J � 10.1786,
S � 57,550, r2 � 0.9998

35. y � 40 � 9.6x1 � 6.75x2. Maximum percent
error is 7.125 percent.

Chapter 6
7. (a) 99%; (b) 68%

11. (a) Mean pallet weight is 3000 lb, standard
deviation is 10.95 lb; (b) 9 percent

18. Mean yearly profit � $64,609. Minimum
expected profit � $51,340. Maximum expected
profit � $79,440. Standard deviation of yearly
profit � $5967.

22. The value at 5 P.M. is 22.5, the value at 9 P.M.
is 16.5.

Chapter 7
1. 2360
7. 13.65 ft

10. 1363.4 m/s
25. (a) �(t) � (f/500)(1 � e�t/2); (b) Steady-state

speed is f/500 m/s. The speed is within 2 percent
of this value after t � 8 s.

26. (a) y(t) � C1e
�3t sin 5t � C2e

�3t cos 5t;
(b) y(t) � C1e

�8t � C2e
�5t

39.

Chapter 8
3. (a) 60x5 � 10x4 � 108x3 � 49x2 � 71x � 24;

(b) 2546
4. A � 1, B � �2a, C � 0, D � �2b, E � 1,

F � r2 � a2 � b2

x
$

1 + 7x
#

1 + 14x1 = 2u

410 Answers to Selected Problems

pal48185_ANSWER_409-411.qxd 9/30/07 3:05 PM Page 410

6. (a)

(b) b � 5.69
8. (a)

(b) x � 0.9685, y � 0.4976
11. Critical points: x � 0 and x � 2. Local

minimum at x � 0. Inflection points at x � 2
and x � 2/3

17.
18. 49.68 m/s

h = 1512

; b199>(400b2
- 1);

x = ; 101(4b2
- 1)>(400b2

- 1), y =

b = c cos A ; 1a2
- c2 sin2A; 28. (a) 2; (b) 0; (c) 0

35. (a) y(t)�[0.6y(0) � 0.2�(0)]e�3t sin 5t � y(0)e�3t

cos 5t; (b) y(t)�(1/3)[�(0) � 8y(0)]e�5t �
(1/3)[�(0) � 5y(0)]e�8t

44. (a) m(t) � (K2/4)te�Kt/2; (b) mpeak � K/5.4366

47.

48. x � 62/(16c � 15), y � (129 � 88c)/(16c � 15)

s2
+ 13s + 42 - 6k, s = (-13 ; 21 + 24k)>2

Answers to Selected Problems 411

pal48185_ANSWER_409-411.qxd 9/30/07 3:05 PM Page 411

pal48185_ANSWER_409-411.qxd 10/4/07 9:20 PM Page 412

� addition, 6, 51
� subtraction, 6, 51
* multiplication, 6
. * array multiplication,

61
^ exponentiation, 6
. ^ array exponentia-

tion, 61
\ left division, 6
/ right division, 6
. \ array left division, 61
. / array right division, 61
: colon
array addressing, 42
array generation, 9, 16,

40

() parentheses
function arguments, 124
modifying precedence,

6
{} braces; encloses cell

elements, 89
[] brackets, 16
. . . ellipsis, 9
, comma

column separation, 9
statement separation,

10
; semicolon

display suppression, 9
row separation, 40, 41
% percent sign

comment designation,
23

’ apostrophe
transpose, 40, 42
string designation, 27
. ’ nonconjugated trans-

pose, 42
� assignment or re-

placement
operator, 8
�� equal to, 154
~� not equal to, 154
� less than, 154
�� less than or equal

to, 154
� greater than, 154

�� greater than or
equal to, 154

& AND, 157
&& short-circuit AND,

157
| OR, 197
|| short-circuit OR, 157
~ NOT, 157
�� MATLAB prompt,

3
@ creates a function

handle, 131

I N D E X

Symbols

A

abs, 121
acos, 124
acosh, 126
acot, 124
acoth, 126
acsc, 124
acsch, 126
addpath, 20
all, 160
angle, 121
ans, 12
any, 160
asec, 124
asech, 126
asin, 124

asind, 18
asinh, 126
atan, 124
atan2, 124
atanh, 126
axis, 209

B

bar, 219
break, 174

C

case, 181
cat, 49
cd, 20

ceil, 121
cell, 90
cell disp, 90
cell plot, 90
class, 361
clc, 9
clear, 9
collect, 362
conj, 121
continue, 174
contour, 254
conv, 87
cos, 124
cosd, 18
cosh, 126
cot, 124

coth, 126
cross, 69
csc, 124
csch, 126
cumsum, 279

D

date, 140
dblquad, 307
deconv, 87
delz, 318
det, 85, 383
diff, 318, 366
digits, 361
dir, 20
dirac, 377

MATLAB Commands

413

Pal48185_Index_413-420.qxd 10/5/07 12:32 AM Page 413

414 Index

disp, 27
doc, 32
dot, 69
double, 361
dsolve, 371

E

eig, 333, 383
else, 165
elseif, 165
end, 164
eps, 12
erf, 281
exist, 9
exp, 121
expand, 362
eye, 67
ezplot, 361

F

factor, 362
fieldnames, 93
find, 160
findsym, 361
finite, 160
fix, 121
floor, 121
fminbnd, 135
fminsearch, 135
for, 171
format, 13
fplot, 209
function, 129
fzero, 135

G

gensig, 343
ginput, 22
gradient, 318
grid, 22
global, 131
gtext, 22

H

heaviside, 377
help, 32
helpwin, 32
hist, 219, 276
hold, 216

I

i, 12
if, 164
ilaplace, 380
imag, 121
impulse, 337
Inf, 12
initial, 337
inline, 137
input, 27
int, 366
interp1, 293, 296
interp2, 293
inv, 85, 383
ischar, 160
isempty, 160
isfield, 93
isinf, 160
isnan, 160
isnumeric, 160
isreal, 160
isstruct, 93

J

j, 12

L

laplace, 380
legend, 216
length, 45
limit, 366
linspace, 45
load, 18, 145
log, 121
log10, 121

logical, 160
loglog, 219
logspace, 45
lookfor, 32
lower, 182
lsim, 337

M

max, 45
mean, 272
median, 272
menu, 27
mesh, 254
meshc, 254
meshgrid, 254
meshz, 254
min, 45

N

NaN, 12
nargin, 167
nargout, 168
norm, 45
numden, 361

O

ode15s, 331
ode45, 331
odeset, 331
ones, 67
otherwise, 182

P

path, 20
pathtool, 20
pchip, 296
pi, 12
pinv, 85
plot, 22, 209, 216
plotyy, 219
plot3, 254
polar, 219
poly, 87, 383

poly2sym, 362
polyder, 318
polyfit, 232, 239
polyint, 307
polyval, 87, 315
pretty, 362
print, 209
publish, 221
pwd, 20

Q

quad, 307
quadl, 307
quit, 9

R

rand, 285
randn, 285
randperm, 285
rank, 85
real, 121
rmfield, 93
rmpath, 20
roots, 87
rref, 85

S

save, 18
sec, 124
sech, 126
semilogx, 219
semilogy, 219
sign, 121
simple, 362
simplify, 362
sin, 124
sind, 18
sinh, 126
size, 45
solve, 365
sort, 45
spline, 296, 280

Pal48185_Index_413-420.qxd 10/5/07 12:32 AM Page 414

Index 415

sqrt, 121
ss, 336
ssdata, 336
stairs, 219
std, 280
stem, 219
step, 337
struct, 93
subplot, 216
subs, 362
sum, 45
surf, 251
surfc, 254
switch, 181
sym, 361
sym2poly, 362

syms, 361
symsum, 366

T

tan, 124
tanh, 126
taylor, 366
text, 216
tf, 336
tfdata, 336
title, 22, 269
trapz, 307
triplequad, 367
type, 32

U

uiimport, 146
unmkp, 296

V

var, 280
vpa, 361

W

waterfall, 254
what, 20
which, 20
while, 178
who, 9

whos, 9
wk1read, 145

X

xlabel, 22
xlsread, 145
xor, 160

Y

ylabel, 22

Z

zeros, 67
zlabel, 251

Topics

A

abscissa, 20
absolute frequency,

273
absolute value, 46
anonymous function,

138
argument, 5
array, 16

addition and subtrac-
tion, 50

addressing, 45
cell, 88
division, 51
editor, 47
empty, 43
exponentiation, 51
index, 16
multidimensional,

49
multiplication, 51
operations, 50
pages, 49
powers, 55

size, 41
structure, 91

ASCII files, 18
assignment operator, 8
augmented matrix, 72
axis label, 206
axis limits, 207

B

backward differences,
314

bar plots, 219
Basic Fitting Interface,

247
bin, 272
Boolean operator, 156
boundary condition,

372
breakpoint, 186

C

Cauchy form, 326
cell indexing, 89
cell array, 88

cell mode, 185
central differences, 315
clearing variables, 9
coefficient of determi-

nation, 240
colon, use of, 9, 16, 40,

42
comma, use of, 9, 10
command window, 3
comment, 23
complex numbers, 12

computer solution,
steps for develop-
ing, 28

conditional statement,
163

content indexing, 89
contour plots, 253
Control System tool-

box, 334
cross product, 69
cubic splines, 293
current directory, 13
curve fit, quality of,

240

D

data files, 18
data marker, 22, 273
Data Statistics tool,

276
data symbol, 206
debugging, 25, 184
default variable, 357
definite integral, 306
derivative, 365
Desktop, 83
determinants, 85
differential equation

Cauchy form, 326
ordinary, 318
partial, 318
solvers, 321
state variable form,

326
stiff, 321
symbolic solution of,

371
differentiation, 365

numerical, 318

Pal48185_Index_413-420.qxd 10/5/07 12:32 AM Page 415

polynomial, 318
symbolic, 366

Dirac delta function,
377

directory, 19
dot product, 69
double integral, 312

E

Edit menu, 15
Editor/Debugger, 23,

184
eigenvalue, 333, 382
element-by-element

operations, 50
ellipsis, 9
empty array, 43
error function, 281
Euclidean norm, 76
Euler method, 319
exporting data, 147
exporting figures, 210

F

field, 91
File menu, 14
files

ASCII files, 18
command, 23
data, 18
function, 126
MAT-files, 18
M-files, 23
script, 23
spreadsheet, 145
user-defined, 126

flowchart, 169
for loop, 171
forced response, 319
forward differences,

314
free response, 319
function argument, 147
function definition

line, 126

function discovery, 230
function file, 126
function handle, 131
functions

anonymous, 138
arguments, 147
elementary mathe-

matical, 121
handle, 131
hyperbolic, 126
maximization of,

135
minimization of, 135
nested, 138
numeric, 121
overloaded, 138
primary, 138
private, 138
of random variables,

287
trigonometric, 124
user-defined, 126
zeros of, 135

G

Gauss elimination, 72
Gaussian function, 279
global variable, 131
gradient graphics win-

dow, 21
grid, 22

H

H-1 line, 26
Heaviside function,

377
Help system, 28
histogram, 272

I

identity matrix, 66
ill-conditioned prob-

lem, 70
importing data, 145

importing spreadsheet
files, 145

Import Wizard, 146
improper integral, 306
impulse function, 337,

377
indefinite integral,

306
initial condition, 373
initial value problem,

318
integral

definite, 306
double, 307
improper, 306
indefinite, 306
polynomial

singularity, 306
triple

integration, 306, 367
panel, 306
symbolic, 367
trapezoidal, 306

interpolation, 289
cubic spline, 293
linear, 290
2–D, 292

inverse Laplace trans-
form, 375, 380

L

Laplace transform, 374
Laplacian, 318
least squares method,

82
left division method,

72
length, 46
legend, 216
limits, 366, 369
line continuation, 9

linear algebraic
equations, 67, 69

application of matrix
rank, 72

and augmented
matrix, 72

and Euclidean norm,
76

ill-conditioned sys-
tem of, 70

and least squares
method, 82

overdetermined sys-
tem of, 78

and rank, 72
and reduced row

echelon form, 78
solution by left divi-

sion method, 72
solution by matrix

inverse, 70
solution by

pseudoinverse
method, 75

and subdeterminant,
72

underdetermined
system of, 75

linear-in-parameters,
245

local variable, 126, 130
logarithmic plots, 217,

219
logical arrays, 156

as masks, 177
logical operator, 156
logical class, 155
loop, 170
loop variable, 171
LTI object, 334

M

magnitude, 46, 122
mask, 177
MAT-files, 18
matrix, 46

augmented, 72
creating a, 41
exponentiation, 68

416 Index

Pal48185_Index_413-420.qxd 10/5/07 12:32 AM Page 416

Index 417

identity, 66
inverse, 70
multiplication, 64
null, 66
operations, 57
rank, 71
special, 66
transpose, 42
unity, 66

matrix inverse, 70
mean, 272
median, 272
M-files, 23
minimum norm solu-

tion, 75
mode, 272
modified Euler

method, 320
multidimensional ar-

rays, 49
multiple linear regres-

sion, 244

N

names, 9
nested function, 138
nested loops, 172
normal distribution, 279
normal function, 279
normally distributed,

279
null matrix, 66
numerical differentia-

tion, 313

O

ODE. See differential
equation,

ordinary
ordinate, 20
overdetermined sys-

tem, 82
overlay plots, 21, 212
overloaded function, 138

P

pages (in
multidimensional
arrays), 49

panel, 306
path, 19
peak response, 339
peak time, 339
plot, 20

abscissa, 20
annotating, 217
axis label, 206
axis limits, 207
bar, 219
contour, 253
data symbol, 206,

213
editor. See interac-

tive interface
(below)
hints for improving,

255
grid, 22
interactive interface,

224
legend, 214
line types, 213
logarithmic, 217
ordinate, 20
overlay, 21, 212
polar, 220
recreating from

M-files, 229
second y-axis, 219
stairs, 219
stem, 219
subplots, 211
surface mesh, 251
text placement, 214
three-dimensional

line, 250
tick mark labels, 206
tick marks, 206
tick mark spacing,

206

title, 206
tools, 227

plotting
complex numbers,

207
polynomials, 87
with smart function

plot
command, 208
symbolic expres-

sions, 361
polar plots, 220
polynomial, 85

addition, 86
coefficients, 85
differentiation, 318
integration, 307
division, 85
multiplication, 85
plotting, 87
roots, 86

precedence, 6, 157
predefined constants,

11
predefined input func-

tions, 343
predictor-corrector

method, 320
primary function, 138
private function, 138
probability, 279
programming style, 26
prompt, 3
pseudocode, 169
pseudoinverse method,

75

Q

quadrature, 309

R

random number gener-
ator, 283

rank, 71

reduced row echelon
form, 78

regression, 237
relational operator, 153
relative frequency, 273
replacement operator, 8
residuals, 238
rise time, 339
row vector, 39
r-squared value, 240
Runge-Kutta methods,

321

S

saving
figures, 210
variables, 18

scalar, 6
scaled frequency his-

togram, 277
scaling data, 241
script file, 23
search path, 19
semicolon use of, 9,

40, 41
session, 4
setting time, 339
singular matrix, 70
singularity, 306
smart recall, 10
solution structure, 363
special constants, 12
spreadsheet files, 145
stairs plots, 219
standard deviation, 279
state of random genera-

tor, 283
state-variable form,

326
steady-state value, 339
stem plots, 219
step function, 338
step size, 320
stiff equation, 321
string, 27

Pal48185_Index_413-420.qxd 10/5/07 12:32 AM Page 417

418 Index

structure arrays, 91
subdeterminant, 72
subfunction, 138
subplots, 211
surface mesh plot, 251
switch structure, 181
symbolic

constant, 355
differential equation

solution, 370, 376
differentiation, 365
equation solving,

362
expression, 354
integration, 367
inverse Laplace

transform, 375
Laplace transform,

374

limits, 369
linear algebra, 380
processing, 354
summation, 369
Taylor series, 368

T

tab completion, 10
Taylor series, 368
three-dimensional

plots, 250
contour plots, 253
line plots, 250
surface mesh plots,

251
tick mark, 206
tick-mark label, 206
tick-mark spacing, 206

transfer-function form,
335

transpose, 40
trapezoidal integration,

306
triple integral, 313
truth table, 159

U

underdetermined sys-
tem, 75

uniformly distributed,
283

unit step function,
338

user-defined functions,
126

user input, 27

V

variance, 279
variable, 5
vector, 39

absolute value of, 46
cross product, 69
dot product, 69
length of, 46
magnitude of, 46

vectorized functions, 53

W

while loop, 178
working directory. See

current
directory

workspace, 9
Workspace Browser, 47

Pal48185_Index_413-420.qxd 10/5/07 12:32 AM Page 418

Pal48185_Index_413-420.qxd 10/5/07 12:32 AM Page 419

Pal48185_Index_413-420.qxd 10/5/07 12:32 AM Page 420

	Cover
	Title Page

	Copyright Page
	Dedication
	Contents

	About the Author

	Preface

	CHAPTER 1: An Overview of MATLAB®
	1.1 MATLAB Interactive Sessions
	1.2 Menus and the Toolbar
	1.3 Arrays, Files, and Plots
	1.4 Script Files and the Editor/Debugger
	1.5 The MATLAB Help System
	1.6 Summary
	Key Terms with Page References
	Problems

	CHAPTER 2: Numeric, Cell, and Structure Arrays
	2.1 One- and Two-Dimensional Numeric Arrays
	2.2 Multidimensional Numeric Arrays
	2.3 Element-by-Element Operations
	2.4 Matrix Operations
	2.5 Matrix Methods for Linear Equations
	2.6 Polynomial Operations Using Arrays
	2.7 Cell Arrays
	2.8 Structure Arrays
	2.9 Summary
	Key Terms with Page References
	Problems

	CHAPTER 3: Functions and Files
	3.1 Elementary Mathematical Functions
	3.2 User-Defined Functions
	3.3 Additional Function Topics
	3.4 Working with Data Files
	3.5 Summary
	Key Terms with Page References
	Problems

	CHAPTER 4: Decision-Making Programs
	4.1 Relational Operators and Logical Variables
	4.2 Logical Operators and Functions
	4.3 Conditional Statements
	4.4 Loops
	4.5 The switch Structure
	4.6 Debugging MATLAB Programs
	4.7 Summary
	Key Terms with Page References
	Problems

	CHAPTER 5: Advanced Plotting and Model Building
	5.1 xy Plotting Functions
	5.2 Additional Commands and Plot Types
	5.3 Interactive Plotting in MATLAB
	5.4 Function Discovery
	5.5 Regression
	5.6 The Basic Fitting Interface
	5.7 Three-Dimensional Plots
	5.8 Summary
	Key Terms with Page References
	Problems

	CHAPTER 6: Statistics, Probability, and Interpolation
	6.1 Statistics and Histograms
	6.2 The Normal Distribution
	6.3 Random Number Generation
	6.4 Interpolation
	6.5 Summary
	Key Terms with Page References
	Problems

	CHAPTER 7: Numerical Methods for Calculus and Differential Equations
	7.1 Numerical Integration
	7.2 Numerical Differentiation
	7.3 First-Order Differential Equations
	7.4 Higher-Order Differential Equations
	7.5 Special Methods for Linear Equations
	7.6 Summary
	Key Terms with Page References
	Problems

	CHAPTER 8: Symbolic Processing
	8.1 Symbolic Expressions and Algebra
	8.2 Algebraic and Transcendental
Equations
	8.3 Calculus
	8.4 Differential Equations
	8.5 Laplace Transforms
	8.6 Symbolic Linear Algebra
	8.7 Summary
	Key Terms with Page References
	Problems

	APPENDIX A: Guide to Commands and Functions in This Text
	APPENDIX B: References
	Answers to Selected Problems
	Index

