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ASSUMED KNOWLEDGE

• Familiarity with measurement of lengths, angles and area. 

• Basic knowledge of congruence and similarity.

• Familiarity with simple geometric proofs. 

• Simple geometric constructions.

• Factorisation of whole numbers.

• Simple surd notation.

MOTIVATION

Is there a simple relationship between the length of the sides of a triangle? Apart from the 

fact that the sum of any two sides is greater than the third, there is, in general, no simple 

relationship between the three sides of a triangle.

Among the set of all triangles, there is a special class, known as right-angled triangles or 

right triangles that contain a right angle. The longest side in a right‑angled triangle is called 

the hypotenuse. The word is connected with a Greek word meaning to stretch because 

the ancient Egyptians discovered that if you take a piece of rope, mark off 3 units, then 4 

units and then 5 units, this can be stretched to form a triangle that contains a right angle. 

This was very useful to the Egyptian builders.

This raises all sorts of questions. What is so special about the lengths 3, 4 and 5? Are 

there other sets of numbers with this property? Is there a simple relationship between the 

lengths of the sides in a right‑angled triangle? Given the lengths of the sides of a triangle, 

can we tell whether or not the triangle is right angled?
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Most adults remember the mathematical formula

   c2 = a2 + b2

or perhaps

“the square on the hypotenuse is the sum of the squares on the other two sides.”

The first version uses an implied standard notation, the second version uses archaic 

language but both are Pythagoras’ theorem. This theorem enables us to answer the 

questions raised in the previous paragraph.

The discovery of Pythagoras’ theorem led the Greeks to prove the existence of numbers 

that could not be expressed as rational numbers. For example, taking the two shorter 

sides of a right triangle to be 1 and 1, we are led to a hypotenuse of length 2, which is 

not a rational number. This caused the Greeks no end of trouble and led eventually to the 

discovery of the real number system. This will be discussed briefly in this module but will 

be developed further in a later module, The Real Numbers.

Triples of integers such as (3, 4, 5) and (5, 12, 13) which occur as the side lengths of 

right‑angled triangles are of great interest in both geometry and number theory – they are 

called Pythagorean triples. We find all of them in this module.

Pythagoras’ theorem is used in determining the distance between two points in both  

two and three dimensional space. How this is done is outlined in the Links Forward 

section of this module. 

Pythagoras’ theorem can be generalised to the cosine rule and used to establish Heron’s 

formula for the area of a triangle. Both of these are discussed in the Links Forward section.
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CONTENT

STANDARD NOTATION

Let ABC be a triangle. We may write ABC. 

Then by convention, a is length of the interval BC. 

We also talk about angle A or A for BAC. 

So a is the length of the side opposite angle A.

Using this notation we can succinctly state Pythagoras’ theorem and two of the most 

important theorems in trigonometry, the sine rule and the cosine rule. The sine rule and 

cosine rule are established in the Links Forward section.

RIGHT-ANGLED TRIANGLES

Among the set of all triangles there is a special class 

known as right-angled triangles or right triangles. A right 

triangle has one angle, a right angle. The side opposite 

the right angle is called the hypotenuse. It is the longest 

side of the triangle

We also talk about the shorter sides of a right‑angled triangle.

Let us use the standard notation described 

above and assume C = 90°. 

If a and b are fixed then c is determined. 

Also a < c, b < c and c < a + b.

To prove c is determined note that

ACB  DFE (SAS), so c = y

(See the module, Congruence)

A

a

B

b

C

c

hypotenuse

A

a B

b

C

c

A

a B

b

C

c

D

a E

b

F

y



{7}The Improving Mathematics Education in Schools (TIMES) Project

THE THEOREM

A triangle with sides 3 cm, 4 cm, 5 cm is a right‑angled triangle. Similarly, if we draw a 

right‑angled triangle with shorter sides 5 cm, 12 cm and measure the third side, we find 

that the hypotenuse has length ‘close to’ 13 cm. To understand the key idea behind 

Pythagoras’ theorem, we need to look at the squares of these numbers.

You can see that in a 3, 4, 5 triangle, 9 + 16 = 25 or 32 + 42 = 52 and in the 5, 12, 13 

triangle, 

25 + 144 = 169 or 52 + 122 = 132.

We state Pythagoras’ theorem:

• The square of the hypotenuse of a right‑angled 

triangle is equal to the sum of the squares  

of the lengths of the other two sides.

• In symbols c2 = a2 + b2.

EXAMPLE

Find the length of the hypotenuse 

in the right triangle opposite.

SOLUTION

Let x be the length of the hypotenuse. Then by Pythagoras’ theorem,

 x2 = 122+ 162 = 400. So x = 20.

Proof of the theorem

A mathematical theorem is a logical statement, ‘If p then q’ where p and q are clauses 

involving mathematical ideas. The converse of ‘If p then q’ is the statement, ‘If q then p’. 

The converse may or may not be true but certainty needs a separate proof. 

Converse of Pythagoras’ theorem: If c2 = a2 + b2 then C is a right angle.

There are many proofs of Pythagoras’ theorem.

Proof 1 of Pythagoras’ theorem

For ease of presentation let = 1
2

ab be the area of the right‑angled triangle ABC with 

right angle at C.

A

aB

b

C

c

12

16

x
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The two diagrams show a square 

of side length a + b divided up into 

various squares and triangles congruent  

to ABC.

From the left hand diagram

(a + b)2 = a2 + b2 + 4  (1)

From the right hand diagram

(a + b)2 = 4 + c2  (2)

Comparing the two equations we obtain c2 = a2 + b2 and the theorem is proved.

Several other proofs of Pythagoras’ theorem are given in the Appendix.

EXERCISE 1

Find the hypotenuse of the right‑angled triangles whose other sides are:

a 5, 12  b 9, 12 c 35, 12

d 15, 8 e 15, 20 f 15, 112

Note: Clearly one can use a calculator and reduce each of the above calculations to half 

a dozen keystrokes. This leads to no insights at all. As a suggestion, if a perfect square is 

between 4900 and 6400 then the number is between 70 and 80. If the last digit of the 

square is 1 then the number ends in a 1 or a 9, etc.

Applications of Pythagoras’ theorem

EXAMPLE

A rectangle has length 8 cm and diagonal 17 cm. 

What is its width?

SOLUTION

Let b be the width, measured in cm. Then

 172 = 82 + b2  (Pythagoras’ theorem)

 289 = 64 + b2

 b2 = 289 – 64

  = 225, 

  so b = 15.

The width of the rectangle is 15 cm.

a a

a

a

b b

b

b

b2

a2 a

a

a

a

b

b

b

b

c2

c

c
c

c

17 cm
8 cm

b cm



{9}The Improving Mathematics Education in Schools (TIMES) Project

EXERCISE 2

A ladder of length 410 cm is leaning against a wall. 

It touches the wall 400 cm above the ground.  

What is the distance between the foot of the  

ladder and the wall?

The Converse theorem

We now come to the question: 

Given the lengths of the sides of a triangle, can we tell whether or not the  

triangle is right angled?

This is answered using the converse of Pythagoras’ theorem. 

The converse theorem says: 

 If a2 + b2 = c2 then the triangle is right angled (with right angle at C).

Thus, for example, a triangle with sides 20, 21, 29 is right angled since 

 202 + 212 = 400 + 441 

   = 841 

   = 292

The obvious question, which we shall answer later in this module, is can we find all such 

‘Pythagorean triples of whole numbers’?

We shall give two proofs of the converse – rather different in nature. However, both use 

the theorem itself in the proof! This does not often happen in elementary mathematics 

but is quite common in more advanced topics.

First proof of the converse

We assume c2 = a2 + b2

Construct a second triangle DEF 

with EFD = 90°, EF = a and DF = b.

Then, by Pythagoras’ theorem,  

ED2 = a2 + b2.

But c2 = a2 + b2 so ED = c. Hence

 ABC  DEF (SSS).

So, BCA = 90° since EFD = 90° and the converse is proved.

400 cm

410 cm

A

a

B

bC

c

D

a

E

bF
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Second proof of the converse

We assume c2 = a2 + b2

Drop the perpendicular from B to AC, 

assume D is between A and C.

Clearly x < a and y < b so

 c2 = x2 + y2 (Pythagoras’ theorem)

   < a2 + b2 = c2

This is a contradiction, so C = D or D is to the left of C on the line AC.

EXERCISE 3 

Work out the details of the proof when D is to the left of C on the line AC.

EXAMPLE

Which of the triangles below are right‑angled triangles?  

Name the right angle in each case.

a A

B

C

14 cm

32 cm
27 cm

  b D

E

F

15 cm

39 cm

36 cm

SOLUTION

a Triangle ABC is not a right‑angled triangle since 142 + 272 ≠ 322.

b Triangle DEF is a right‑angled triangle since 152 + 362 = 392. F is the right angle

IRRATIONAL NUMBERS

Consider the sequence 1 , 2, 3, 4, 5,…

3 52

10 2

This sequence of positive real numbers is strictly increasing and n is a whole number if 

and only if n is a perfect square such as 36 or 49. The sequence tends to infinity, that is, 

there is no upper bound for n.

A

a

B

bC D

c
x

y
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A right‑angled triangle with equal side lengths is an isosceles triangle. Hence the angles 

are 45°, 45° and 90°. If the length of a side is 1 then the hypotenuse is of length 2 (since 

12 + 12 = 2).

Next we consider the right‑angled triangle with shorter sides 1 and  2 . It’s hypotenuse 

has length  3 . We can iterate this idea obtaining:

1

12
2

3

1

3
4

1

4
5

1

Using the above constructions it follows that a length where n is a whole number greater 

than 1, can be constructed using just ruler and compass (see module, Constructions).

Since 1 < 2 < 2, 2 is not a whole number but perhaps 2 is rational. This is not so, as 

was discovered about 600BC. These ideas are dealt with in more detail in the module, 

The Real Numbers.

When irrational numbers occur in problems involving Pythagoras’ theorem, we can either

• leave the answer in symbolic form,  for example 24 (= 2 6) or

• approximate the answer using a calculator, for example 2 6 ≈ 4.90 

(to two decimal places).

EXAMPLE

Find the length, correct to 2 decimal places, 

of the missing side in the right triangle opposite.

SOLUTION

By Pythagoras’ theorem,

 x2 + 52 = 72

 x2 + 25 = 49

 x2 = 24

 x = 24

  = 2 6

  ≈ 4.90 (correct to two decimal places)

5

7

x
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EXERCISE 4

A cross‑country runner runs 3km west, then 2km south and then 8km east. How far is she 

from her starting point? Give your answer in kilometres and correct to 2 decimal places.

EXERCISE 5

Find the exact length of the long diagonal in a cube of side length 3 cm.

PYTHAGOREAN TRIADS

Three whole numbers that are the lengths of the sides of a right‑angled triangle are called 

a Pythagorean Triad or Pythagorean Triple. Thus, {3, 4, 5} is a Pythagorean Triad.

The formula for how to generate such triples was known by about 2000BC. This is 

“proved” by a clay tablet (Plimpton 322) which contains fifteen different triples including 

(1679, 2400, 2929). The tablet is dated to 1800 BC. With your calculator check this is a 

Pythagorean triple. This was obviously not found by chance!

Starting with (3, 4, 5) we can find or construct infinitely many such triples by taking integer 

multiples:

(3, 4, 5), (6, 8, 10), (9, 12, 15), …..

Consider a triple (a, b, c) of positive whole numbers with a2 + b2 = c2. If a and b have a 

common factor then it also divides c. So a useful definition is that the Pythagorean triple 

(a, b, c) is primitive if, HCF (a, b) = HCF (b, c) = HCF (a, c) = 1 that is, the highest common 

factor of a and b is 1, etc. If we can find all primitive Pythagorean triples then we can find 

all triples by simply taking whole number multiples of the primitive triples.

There are various families of examples. Consider the identity:

(n + 1)2 – n2 = 2n + 1

So if 2n + 1 is a perfect square then we can construct a primitive triple ( 2n + 1, n, n + 1). 

In this way, taking 2n + 1 = 9, 25, 49, 81, ….. we obtain triples: 

(3, 4, 5); (5, 12, 13); (7, 24, 25); (9, 40, 41),….

It is possible to list all primitive triples. One form of this ‘classification’ is in the following 

theorem. We shall prove it using some elementary number theory including the use of 

the fundamental theorem of arithmetic and the use of the HCF. The symbol | is used for 

‘divides exactly into’. The result gives a formula for all primitive Pythagorean Triads.
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Theorem

If a2 + b2 = c2 and (a, b, c) is a primitive triad then a = p2 – q2, b = 2pq and 

c = p2 + q2 where the HCF of p and q is 1 and p and q are not both odd.

Proof

At least one of a, b and c is odd since the triad is primitive.

The square of a whole number is either a multiple of 4 or one more than a multiple  

of 4, hence a and b cannot both be odd. 

So we may assume a is odd, b is even and c is odd.

c2 = a2 + b2 so b2 = c2 – a2 = (c – a)(c + a)

Let d be the HCF of c – a and c + a, so d|c –a and d|c + a so d|2c and d|2a 

But a and c are coprime so d = 1 or 2 but c – a and c + a are even. So d = 2

Hence we have

c – a
2  and c + a

2  are coprime integers. But

b2

4  = c – a
2 . c + a

2  so c – a
2  is a square as is c + a

2 .

Set c + a
2  = p2 , c – a

2  = q2 then c = p2 + q2 , a = p2 – q2 and b2

4  = p2q2 or b = 2pq.

Finally if p and q are odd then a and c are even which is not the case. 

So the theorem is proved.

EXAMPLE 

 22 – 12 = 3, 2 × 2 × 1 = 4 and 22 + 12 = 5 so the triple (3, 4, 5) corresponds to (p, q) = (2, 1)

EXERCISE 6 

Investigate:

a (p, q) = (2, 1), (3, 2), (4, 3), …..

b (p, q) = (4, 1), (5, 2), (6, 3), (7, 4), …..

c (p, q) = (2, 1), (4, 1), (6, 1), (8, 1), …..
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EXERCISE 7

Find the values of p and q corresponding to the triple (1679, 2400, 2929) from the clay 

tablet Plimpton 322. The largest triple on Plimpton 322 is (12 709, 13 500, 18 541) – find p 

and q in this case as well.

LINKS FORWARD

THE DISTANCE FORMULA IN R2 (THE COORDINATE PLANE)

In two dimensional coordinate geometry perhaps 

the most basic question is ‘What is the distance between  

two points A and B with coordinates (x1, y1) and (x2, y2)?’

Suppose that A(x1, y1) and B(x2, y2) are two points

in the plane.

Consider the right‑angled triangle AXB where 

X is the point (x2, y1). Then

 AX = x2 – x1 or x1 – x2 and

 BX = y2 – y1 or y1 – y2 

depending on the relative positions of A and B.

By Pythagoras’ theorem

AB2  = AX2 + BX2

= (x2 – x1)
2 + (y2 – y1)

2

Therefore AB = BA = (x
2
 – x

1
)2 + (y

2
 – y

1
)2

DISTANCES IN THREE-DIMENSIONAL SPACE

The distance d from (0, 0) to (x, y) in the coordinate plane satisfies d2 = x2 + y2.

We can extend coordinate geometry to 3‑dimensions 

by choosing a point O called the origin and choosing 

three lines through O all perpendicular to each other. 

We call these lines the x‑axis, the y‑axis and the z‑axis.

It is possible to go from O to any point P by ‘moving’ 

a units along the x‑axis, then b units parallel to the 

y‑axis and then c units parallel to the z‑axis. 

We say the coordinates of the point P are (a, b, c).

A(x
1
, y

1
) X(x

2
, y

1
)

B(x
2
, y

2
)

x

y

b

c

P

y

x

z

a AO

B
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Again a basic question is ‘What is the distance OP?’ The answer is 

OP2 = a2 + b2 +  c2.

To see this, let A = (a, 0, 0) and B = (a, b, 0). The triangle OAB is right‑angled at A. 

Hence OB2 = OA2 + AB2 = a2 + b2.

Next OBP is right–angled at B so OP2 = OB2 + BP2 = a2 + b2 + c2.

CIRCLES IN THE PLANE, CENTRE THE ORIGIN

A circle is the path traced out by a point moving a fixed distance from a fixed point  

called the centre. 

First suppose we draw a circle in the Cartesian plane centre the origin and radius 1  

and suppose (x, y) is on this circle.

(x, y)

1

1

1

(x, y)

x

y

r

r

r

Then by Pythagoras’ theorem (or the distance formula in R2)

x2 + y2 = 12

Conversely, if x2 + y2 = 1 then the point (x, y) lies on the circle of radius 1.

Similarly, if x2 + y2 = r2 then (x, y) lies on the circle, centre the origin, of radius r and 

conversely all points on this circle satisfy the equation.

PYTHAGORAS’ THEOREM IN TRIGONOMETRY

Consider the right‑angled triangle ABC, with C = 90° and B = °

Now by definition cos  = a
c  and sin  = b

c .

By Pythagoras’ theorem, a2 + b2 = c2. Therefore a
c

2

+ b
c

2 = 1.

Hence, one of the most fundamental identities in trigonometry.

cos2 
 + sin2

 = 1

There are 2 important formulas linking the side lengths  

of a triangle and the angles of the triangle. 

A

aB

b

C

c
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Theorem – The cosine rule

Let ABC be a triangle with an acute angle at A. 

Then a2 = b2 + c2 – 2bc cos A

Proof

Suppose the altitude from C has length h and 

divides AB into intervals of length x and y

By Pythagoras’ theorem

 b2 = h2 + x2 and 

 a2 = h2 + y2

Also c = x + y  so, eliminating h2

 a2 – b2 = y2 – x2 

 a2 = b2 + c2 – (x + y)2 + y2 – x2 

  = b2 + c2 – 2x2 – 2xy 

  = b2 + c2 – 2x(x + y)

Now x = b cos A and x + y = c so

 a2 = b2 + c2 – 2bc cos A

EXERCISE 8

Show that the cosine rule is still true when A is obtuse.

Theorem – The sine rule a
sin A  = b

sin B  = c
sin C  

EXERCISE 9

Write down expressions for sin A and sin B and hence prove the sine rule.

B

b

C

A

a

h

A

A

a

B

b

C

c

B

b

C

A

a
h

x y
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APOLLONIUS’ THEOREM AND HERON’S FORMULA

Euclid’s Elements was written about 300BC. As discussed elsewhere in these modules 

this amazing set of thirteen books collected together most of the geometry and number 

theory known at that time. During the next century Apollonius and Archimedes developed 

mathematics considerably. Apollonius is best remembered for his study of ellipses, parabolas 

and hyperbolas. Archimedes is often ranked as one of the most important mathematicians 

of all time. He carried out a number of calculations, which anticipated ideas from integral 

calculus. In this section we discuss Heron’s formula that scholars believe was discovered by 

Pythagoras.

We shall prove Apollonius’ theorem and Heron’s formula which both follow from 

Pythagoras’ theorem using algebra.

Apollonius’ theorem

Suppose ABC is any triangle, a = 2x and m is the length of the median from A to BC then

b2 + c2 = 2x2 + 2m2

Proof

Let length of the altitude AE be h. Also let CE = t, ED = s.

Clearly s + t = x and there are three right‑angled triangles so

m2 = h2 + s2

c2 = h2 + (s + x)2

b2 = h2 + t2

Taking into account the formula to be proved we consider 

c2 + b2 – 2m2 = h2 + (s + x)2 + h2 + t2 – 2h2 –2s2

  = s2 + 2sx + x2 + t2 – 2s2 

  = x2 + 2sx + t2 – s2 

  = x2 + 2sx + (t + s)(t – s)

  = x2 + 2sx + (t – s)x

  = x2 + sx + tx

  = 2x2

That is, b2 + c2 = 2m2 + 2x2

In the above diagram we asumed then C is acute and E is between C and B. The other 

cases can be dealt with similarly.

B

b

A

C E D

c

h m

t s x
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EXERCISE 10

Use the cosine rule to write m2 in ACD and c2 in ACB.

Deduce Apollonius’ theorem in a couple of steps.

Heron’s formula

This is an amazing formula expressing the area of a triangle in terms of its side lengths.

To write this in its standard form consider a ABC with side lengths a, b and c. 

We let 2s = a + b + c and let  be the area of ABC (s is the semi‑perimeter 

of the triangle). Then 


2 = s (s – a) (s – b) (s – c)

We give a proof that uses only Pythagoras’ theorem, the formula for the area of a triangle 

and some algebra.

Proof

Let h be the length of the altitude from C to AB which 

divides AB into intervals of length x and y. 

Then x + y = c.

The area of a triangle is half base times height so

 = 1
2

hc  and 4
2 = h2c2 (1)

Pythagoras’ theorem gives

a2 = h2 + x2  (2)

b2 = h2 + y2 = h2 + (c – x)2 (3)

We must eliminate h and x from equations (1), (2) and (3). This is non‑trivial!

 (2) – (3) a2 – b2 = h2 + x2 – h2 – (c – x)2 

  a2 – b2 = 2cx – c2 

  2cx = a2 + c2 – b2 (4)

Next (2) gives 

  h2 = a2 – x2   

substitute into (1)

  4
2 = c2(a2 – x2)

 16
2 = 4c2a2 – 4c2x2 (5) 

A

a

C

B

b

x y

h
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Square (4) and substitute into (5)

16
2= (2ca)2 – (a2 + c2 – b2)2

This is the difference of two squares, so

16
2= (2ca + a2 + c2 – b2)(2ca – a2 – c2 + b2)

= ((a + c)2 – b2)(b2 – (a – c)2)

= (a + c + b)(a + c – b)(b + a – c)(b – a + c)

= 2s(2s – 2b)(2s – 2c)(2s – 2a)

So  
2 = s(s – a)(s – b)(s – c)

EXERCISE 11

Find the areas of the triangles with side lengths:

a 13, 14, 15  b 13, 20, 21  c 10, 17, 21  d 51, 52, 53

HISTORY 

As outlined above, the theorem, named after the sixth century BC Greek philosopher 

and mathematician Pythagoras, is arguably the most important elementary theorem in 

mathematics, since its consequences and generalisations have wide ranging applications.

It is often difficult to determine via historical sources how long certain facts have been 

known. However, in the case of Pythagoras’ theorem there is a Babylonian tablet, known 

as Plimpton 322, that dates from about 1700BC. This tablet lists fifteen Pythagorean triples 

including (3, 4, 5), (28, 45, 53) and (65, 72, 97). It does not include (5, 12, 13) or (8, 15, 17) 

but it does include (12 709, 13 500, 18 541)! The fifteen triples correspond (very roughly) 

to angles between 30° and 45° in the right‑angled triangle. The Babylonian number 

system is base 60 and all of the even sides are of the form 2a 3b 5c presumably to facilitate 

calculations in base 60. Most historical documents are found as fragments and one could 

call this the Rosetta Stone of mathematics. Whichever interpretation of the purpose of 

Plimpton 322 is correct, and there are several, it is clear that both Pythagoras’ theorem 

and how to construct Pythagorean Triples was known well before 1700BC.

The nature of mathematics began to change about 600 BC. This was closely linked to 

the rise of the Greek city states. There was constant trade and hence ideas spread freely 

from the earlier civilisations of Egypt and Babylonia. Most of the history is lost forever, but 

tradition has it the Thales, Pythagoras and their students, were responsible for developing 

many of the key ideas – in particular the need to prove theorems! What we do know is 

what was known at about 300BC. This is because Euclid of Alexandria wrote his thirteen 

volume book the Elements. Contrary to popular belief, this book is by no means solely 

about geometry.
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Book 1 of the Elements is on geometry and attempts to set geometry on a sound logical 

basis by giving some twenty‑three definitions and lists five postulates and five common 

notions. This axiomatic approach, although flawed and incomplete gave a logical 

approach to the study of geometry which was a central part of a classical education right 

up to the twentieth century. The imperfections of Euclid were not fixed until 1900 when 

David Hilbert gave a modern correct system of axioms. In Book 1 of Euclid a number of 

theorems are proved such as the well‑known result that in an isosceles triangle the base 

angles are equal. The final theorem, Proposition 1‑47, is Pythagoras’ theorem. The proof 

given is not the easiest known at the time, but uses only congruence and other results 

proved in Book 1. Euclid’s Elements are very sophisticated.

APPENDIX

OTHER PROOFS OF PYTHAGORAS’ THEOREM

There are hundreds of proofs of Pythagoras’ theorem –  

one attributed to Napoleon and one attributed to a 19th century US president!

We shall present a few more including Euclid’s proof.

Second proof

We take the second diagram from the first proof.

 is the area of the triangle so  = 1
2 ab. 

The large square is a + b by a + b so

(a + b)2 = 4 + c2 

a2 + 2ab + b2 = 4 1
2 ab  + c2 

or c2 = a2 + b2.

Third proof

We assume b > a.

The side length of the inner square is b – a 

Hence

 (b – a)2 + 4 = c2 

 a2 – 2ab + b2 + 2ab = c2 

 a2 + b2 = c2 

and we have another proof of Pythagoras’ theorem.

a

a

a

a

b

b

b

b

c2

c

c
c

c

a b a

ac c

c

c
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The first three proofs are essentially based on congruence of triangles, partially disguised 

as sums of areas. Some proofs use similarity. One of the nicest or perhaps minimalist 

proofs comes from considering, a simple diagram which contains three triangles all similar 

to each other.

Fourth proof

We take an arbitrary right‑angled triangle ABC with C = 90° and let CD be an altitude of 

the triangle of length h.

CD is perpendicular to AB and x + y = c 

ACD is similar to CBD (AAA), hence AC
CB = CD

BD  = AD
CD  

  That is, b
a = h

x = y
h
  

ACD is similar to ABC (AAA), hence AC
AB = CD

BC = AD
AC  

  That is, 
b

x + y = h
a = 

y
b  

CBD is similar to ABC (AAA), hence CB
AB = BD

BC = CD
AC   

  That is, 
a

x + y = x
a = h

b  

From the second group of equations we obtain (by cross multiplication)

 b2 = y(x + y)

Similarly, from the third group we obtain

 a2 = x(x + y) 

Hence

 a2 + b2 = x(x + y) + y(x + y)

  = (x + y)2 

  = c2 

and the proof is complete.

Next we shall discover Pythagoras’ proof of his theorem. 

More properly it is Euclid’s proof – proposition 47 of 

Euclid’s elements.

We draw squares of areas a2, b2 and c2 adjacent to the 

sides of the triangle ABC.

From  b2 = y(x + y) = yc in the previous proof

  y = b2

c

From a2 = x(x + y) = xc in the previous proof

  x = a2

c

A

a

B

D

bC

h

x

y

a

b

x y

a2

b2

b2c c
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The area of the shaded rectangle is 

cx = ca2

c  = a2 

and the other rectangle is 

cy = cb2

c  = b2 

So we have divided the square, area c2 , into two rectangles of area a2 and b2. This is the 

key idea in Euclid’s proof.

Fifth proof: Euclid’s proof

Euclid’s proof of Pythagoras consists of proving 

the square of area b2 is the same as the area of a 

rectangle. This is done by finding congruent triangles  

of half the area of the two regions. 

Here are the details:

EAB is congruent to CAG (SAS)

since

EA = AC (sides of a square)

AB = AG (sides of a square)

EAB  = CAG (equal to 90° + A)

Hence area EAB = area CAG

area ACDE = 2 × area EAB (triangle and rectangle on same base and same height)

Similarly, area AGHF = 2 × area CAG so,

area AGFH = area ACDE = b2.

In a similar way it can be shown that area BHFI = a2 and the theorem is proved.

ANSWERS TO EXERCISES

EXERCISE 1

a 13 b 15 c 37 d 17 e 25 f 113 

EXERCISE 2

90 cm

A

D

B

E

F IG

H

C

a

c

b
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EXERCISE 3

Let DC = y where D is the point on AC produced so that BD is perpendicular to AC 

produced. Let BD = x.

Assume c2 = a2 + b2

Using Pythagoras’ theorem in triangle BDC: a2 = x2 + y2.

Using Pythagoras’ theorem in triangle BDA: c2 = x2 + (y + b)2.

Use the three equations to show 2by  = 0 which is a contradiction.

EXERCISE 4

5.39 km

EXERCISE 5

3 3 cm

EXERCISE 6

a 

p q a b c

2 1 3 4 5

3 2 5 12 13

4 3 7 24 25

5 4 9 40 41

6 5 11 60 61

7 6 13 84 85

8 7 15 112 113

9 8 17 144 145

10 9 19 180 181

b

p q a b c

4 1 15 8 17

5 2 21 20 29

6 3 27 36 45

7 4 33 56 65

8 5 39 80 89

9 6 45 108 117

10 7 51 140 149

11 8 57 176 185

12 9 63 216 225

13 10 69 260 269
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c

p q a b c

2 1 3 4 5

4 1 15 8 17

6 1 35 12 37

8 1 63 16 65

10 1 99 20 101

EXERCISE 7

p  =  48 and q = 25  and p = 125 and q = 54.

EXERCISE 8

Let D be the point on BA produced so that CD is perpendicular to BA produced. 

Let CD = h and DA = x.

Use Pythagoras’ theorem twice:

b2 = h2 + x2 and a2 = h2 + (x + c)2. Eliminate h and substitute x = b cos(180 – A) = –b cos A 

to obtain the result.

EXERCISE 9

Use h = b sin A = a sin B so a
sin A  = b

sin B  

EXERCISE 10

m2 = b2 + x2 – 2bx cos C and c2 = b2 + 4x2 – 4bx cos C.

Multiply the first equation by 2 and subtract the second equation to obtain the result.

EXERCISE 11

a 84 b 126 c 84 d 1170
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