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Abstract 

Boundary integral equations (BIE) are reformulations of boundary value 
problems for partial differential equations. There is a plethora of research on 
numerical methods for all types of these equations such as solving by 
discretization which includes numerical integration. In this paper, the Neumann 
problem is reformulated to a BIE, and then moving least squares as a meshless 
method is described for solving this integral equation.  Error analysis of this 
method is discussed and then its application and accuracy are illustrated by some 
case studies. 
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Introduction 

Laplace’s equation is a second order partial 
differential equation as 

0 ,u in D   

where   is the Laplace operator and u is a scalar 
function of two or three variables. The general theory of 
solution to Laplace's equation is known as potential 
theory. The solutions of Laplace's equation are all 
harmonic functions which are important in many fields 
of science, notably the fields of electromagnetism, 
astronomy and fluid dynamics. The Dirichlet problem 
for Laplace's equation consists of finding a solution u on 
some domain D such that u  on the boundary of D 
satisfies 

, ,u f on S D    

where f is a given function. The Neumann boundary 
conditions for Laplace's equation specify not the 
function u itself on the boundary of D, but its normal 
derivative 

, .
u

f on S D
n


  


 

Physically, this corresponds to the construction of a 
potential for a vector field whose effect is known at the 
boundary of D alone. An important question is whether 
a solution to a Dirichlet or Neumann problem exists, 
and if it does, whether it is unique or not. This question 
is of great importance in both mathematics and physics. 
Obviously, if we could not guarantee the existence of a 
solution, the effort of finding it can be in vain. In 
addition, even if a solution exists, it may not be unique, 
and then we could not tie the solution to the unique 
physical state that we are modeling. The question of 
uniqueness is easier to answer than that of existence. 
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For the Dirichlet problem, if a solution exists, it is 
unique; and for the Neumann problem, it is unique to 
within an arbitrary constant. The existence theorem, 
however, is more difficult to prove (see [1]). 

There are various numerical methods to solve these 
problems. One of them is the finite difference method 
(FDM) for the solution of differential equations, 
especially, for boundary value problems. 

Another numerical technique for finding approxi-
mate solutions of partial differential equation is the 
finite element method (FEM). The solution approach is 
based either on eliminating the differential equation 
completely or rendering the partial differential equation 
into an approximating system of ordering differential 
equation, which are then numerically integrated using 
standard techniques such as Euler's method, Runge-
Kutta, etc. In solving partial differential equations, the 
primary challenge is to create an equation that 
approximates the equation under study, and is also 
numerically stable. This means that errors in the input 
and intermediate calculations do not accumulate and, 
therefore, do not cause the resulting output to be 
meaningless. In so doing, there are several ways, all of 
which have both advantages and disadvantages. The 
Finite Element Method is a good choice for solving 
partial differential equations over complicated domains 
(like cars and oil pipelines), when the domain changes 
(as during a solid state reaction with a moving 
boundary), when the desired precision varies over the 
entire domain, or when the solution lacks smoothness. 
For instance, in a frontal crash simulation it is possible 
to increase prediction accuracy in important areas like 
the front of the car and reduce it in its rear. The 
differences between FEM and FDM are: 
 The most attractive feature of the FEM is its ability 

to handle complicated geometries (and boundaries) 
with relative ease. While FDM in its basic form is 
restricted to handle rectangular shapes and simple 
alterations thereof, the handling of geometries in 
FEM is theoretically straightforward. 

 The most attractive feature of finite differences is 
that it can be very easy to implement. 

 There are several ways one could consider the FDM 
a special case of the FEM approach. One might 
choose basis functions as either piecewise constant 
functions or Dirac delta functions. In both 
approaches, the approximations are defined on the 
entire domain, but need not be continuous. 
Alternatively, one might define the function on a 
discrete domain, with the result that the continuous 
differential operator no longer makes sense, however 
this approach is not FEM. 

 There are reasons to consider the mathematical 

foundation of the finite element approximation more 
sound, for instance, because the quality of the 
approximation between grid points is poor in FDM. 

 The quality of a FEM approximation is often higher 
than in the corresponding FDM approach, but this 
extremely depend on problem and several examples 
to the contrary can be provided. 
The finite volume method (FVM) is a method for 

representing and evaluating partial differential equations 
in the form of algebraic equations (see [2]). Similar to 
the finite difference method or finite element method, 
values are calculated at discrete places on a meshed 
geometry. "Finite volume" refers to the small volume 
surrounding each node point on a mesh. In the finite 
volume method, volume integrals in a partial differential 
equation that contain a divergence term are converted to 
surface integrals. These integrals are then evaluated as 
fluxes at the surfaces of each finite volume. Because the 
flux entering a given volume is identical to that leaving 
the adjacent volume, these methods are conservative. 
Another advantage of the finite volume method is that it 
is easily formulated to allow for unstructured meshes. 

Since 1970 there has been a significant increase in 
the popularity of using boundary integral equations to 
solve Laplace's equation and many other elliptic 
equations. A given boundary value problem for an 
elliptic partial differential equation over an open region 
D can often be reformulated as an equivalent integral 
equation over the boundary of D. Such a reformulation 
is called a boundary integral equation, and has the 
advantage of diminishing the number of space 
dimension by one and of the capability to handle 
problems involving infinite domains. This leads to a 
reduction in the number of algebraic equations 
generated for the solutions. There exist some numerical 
methods to solve the obtained boundary integral 
equation such as the Wavelet-Galerkin method 
introduced in [3]. In this paper we describe 
reformulation of a boundary value problem (Neumann 
problem) to a boundary integral equation. Then we 
introduce a meshless method based on moving least 
squares to solve the obtained integral equation. The 
moving least squares (MLS) as an approximating 
method has been introduced by Shepard [4], and 
Lancaster and Salkauskas [5]. Since the numerical 
approximations of MLS are based on a cluster of 
scattered nodes instead of an interpolation on elements, 
there have many meshless methods which are based on 
the MLS method for the numerical solution of 
differential equations in recent years. Error analysis and 
convergence of this method are discussed and its 
accuracy and applications are illustrated by some 
numerical examples. 
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The Dirac delta function is not a function in the usual 
sense, because we have ( ) 0x   for 0x   and 

(0)   , it is, therefore, more correctly referred to as 

the Dirac delta distribution. It has properties which are 
mentioned below 

a) We have ( ) 1x dx



  since ( ) 1nw x dx




  

for all 1n  . 
b) For any continuous function ( )h x : 

( ) ( ) (0).x h x dx h



  

c) In general, for any constant  : 

( ) ( ) ( ).x h x dx h  



   

d) The Dirac delta function is the slope of the 

Heaviside step function 
0

( )
1

if x
H x

if x






  


 

(where   is a constant): ( ) ( ).x H x      

Laplace’s equation, as well as most of the common 
equations, has a well-known fundamental solution. The 
fundamental solution is a solution of the following 
equation for an arbitrary point A D  

( ) 0,w A Q     

It means w  is a solution of 0w   which has a 
singularity at the point A. This is not difficult to find this 
solution, and one can see [7] for a description of the 
manner in which w  can be determined. In 2-D 
Laplace’s equation the fundamental solution is 

1
w(Q) log|A Q|

2
   . 

Assume 2 ( )u C D , where u(Q)  be a solution of 

Laplace's equation, and let v(Q) log|A Q|  , with 

A D . Since 
1

( ) ( )
2

w Q v Q


   and w(Q)  is the 

fundamental solution, then 

1
( ) 0,

2
v A Q


      

or 

2 ( ).v A Q    

Also we have 0u  , because we supposed that 
u(Q)  be a solution of Laplace’s equation. Now by 

replacing them into the Green’s second identity (5) we 
will have the following relation 

( )
2 ( ) [ log | |

( )

( ) [log | |]] , ,
( )

S

Q

u Q
u A A Q

Q

u Q A Q dS A D
Q

 
 




  



 n

n

 (6) 

where the property (c) of Dirac delta function is used in 
the left side. Assume P S , and A tends to P, then we 
obtain the following limits where one can find a proof 
of them in [8] or other text on Laplace’s equation 

( )
lim log | |

( )

( )
log | | ,

(
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and 
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(

.
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By taking limit for both side of the equation (6) and 
using the above relations we have 

1 ( )
( ) [ log | |

( )

( ) [log | |]] , ,
( )

S

Q

u Q
u P P Q

Q

u Q P Q dS P S
Q




 



  



 n

n

 (7) 

which gives a relationship between the values of u and 
its normal derivative on S. By using the boundary 
condition of the Neumann problem, u f  n  on S, 

we rewrite (7) as follows 

1
( ) ( ) [log | |]

( )

1
( ) log | | , .

QS

QS

u P u Q P Q dS
Q

f Q P Q dS P S






  



 





n
 (8) 

The equation (8) is an integral equation of the second 
kind which is solvable if and only if the boundary 
function f satisfies the condition (2). Unfortunately, it is 
not uniquely solvable. The simplest way to deal with the 
lack of uniqueness in solving (8) is to introduce an 
additional condition such as 

*( ) 0,u P   

for some fixed point *P S . Let 1u (Q)  and 2u (Q)  be 

two disjoint solutions of (8) which both satisfy in the 



A Boundary Meshless Method for Neumann Problem 

281 

above condition. By choosing *P P  and 1u u  or 

2u ,  the equation (8) implies 

*
1

*

( ) [log | |]
( )

( ) log | | ,

 

 

QS

QS

u Q P Q dS
Q

f Q P Q dS


 





n  

*
2

*

( ) [log | |]
( )

( ) log | | ,

 

 

QS

QS

u Q P Q dS
Q

f Q P Q dS


 





n  

which in turn imply 1 2u (Q)=u (Q) . Thus the equation 

(8) has a unique solution. When the representation 
( ) ( ( ), ( ))t t t r  of (1) for S is applied to integral 

equation (8), this equation becomes 

0
( ) ( , ) ( ) ( ), 0 ,

L
u t K t s u s ds g t t L      (9) 

with 

2 2

( )[ ( ) ( )] ( )[ ( ) ( )]
( , ) , ,

[ ( ) ( )] [ ( ) ( )]

s t s s t s
K t s s t

t s t s

     
   

   
 

  
 

2 2

( ) ( ) ( ) ( )
( , ) ,

2[ ( ) ( ) ]

t t t t
K t t

t t

   
 

   


 
 

and the right hand side 

2 2

0
( ) ( ( )) ( ) ( ) log | ( ) ( ) | .

L
g t f s t t t s ds     r r r  

The solution of this Fredholm integral equation of 
the second kind is the solution of the Neumann problem 

on the boundary of D. Let 1( )u C D
i i
  be a solution 

of Laplace's equation in iD  (interior of D), then iu  

satisfies the following relation (see [6]) 

( ) ( ) [log | |] , ,
( ) Q iS

u A u Q A Q dS A D
i Q


  

 n
 

with using (1) for S it takes the form 

0
( , ) ( , , ) ( ) , ( , ) ,

L

i iu x y M x y s u s ds x y D   (10) 

2 2

( )[ ( ) ] ( )[ ( ) ]
( , , ) .

[ ( ) ] [ ( ) ]

s s x s s y
M x y s

s x s y

   
 

   


  
 

Fredholm integral equation (9) can be solved with 
any methods which have been described in books on 
integral equations. In this paper, we solve it by a 
meshless method which is based on the moving least 
square (MLS) method (see [9]). This method does not 

require any background interpolation or approximation 
cells and does not depend on the geometry of domain. It 
is, therefore, suitable for problems with any kind of 
domains. 

Moving Least Squares Method 

For a better sense of moving least squares (MLS), we 
introduce least squares (LS) and weighted least square 
(WLS) at first. Given n points where located at positions 

d
i x R  for 1,...,i n . We wish to obtain a globally 

defined function ( )hu x  that approximates the given 

scalar values iu  at points ix  in the least-squares sense 

with the error functional 2( )h
iLS i iJ u u  x‖ ‖ . 

Thus, we pose the following minimization problem 

2min ( ) ,h

i
h d

m
i iu

u u


 x ‖‖  (11) 

where hu  is taken from d
m , the space of polynomials 

of total degree m in d spatial dimensions, and it can be 
written as 

( ) ( ) ( ). ,h Tu  x p x a p x a  (12) 

where 1( ) [ ( ),..., ( )]Tkp pp x x x  is the polynomial basis 

vector and 1[ ,..., ]Tka aa  is the vector of unknown 

coefficients, which we want to minimize in (11). We 
can minimize (11) by setting the partial derivatives of 
the error functional LSJ  to zero, i.e. 0LSJ  , where 

1[ / ,..., / ]Tka a      , which is a necessary condition 

for a minimization. Then we obtain a linear system of 
equations 

( ) ( ) ( ) ,T
i i i i

i i
u p x p x a p x  

which is solved as 

1[ ( ) ( ) ( )] .T
i i i i

i i
u  a p x p x p x  (13) 

If the square matrix ( ) ( )T
iLS i iA   p x p x  is 

nonsingular, replacing Eq. (13) into Eq. (12) provides 
the fit function ( )hu x . 

In the weighted least squares formulation, for a fixed 

point dx R , we minimize 

2min ( ) ( ) .
h d

m

h
i i i

u i

w u u


  x x x‖ ‖‖ ‖  (14) 

The unknown coefficients we want to obtain from 

the solution to (14) are weighted by distance to x  and 

therefore a function of x . Thus, the local, weighted 
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least squares approximation in x  is written as 

( ) ( ) ( ) ( ). ( ).h Tu  
x

x p x a x p x a x  (15) 

By taking partial derivatives of the error functional 

W LSJ  with respect to the unknown coefficients ( )a x  we 

obtain 

1( ) [ ( ) ( ) ( ) ]

. .( ) ( )

T
i i i

i

i i i
i

w

w u

 



a x x x p x p x

x x p x

‖ ‖

‖ ‖
 (16) 

Obviously, the only difference between Eqs. (13) 
and (16) is the weighting terms. Note that whereas the 
coefficients a  in Eq. (13) are global, the coefficients 

( )a x  are local and need to be recomputed for every x . 

If the square matrix ( ) ( ) ( )T
iWLS i i iA w  x x p x p x‖ ‖  

is nonsingular, replacing Eq. (16) into Eq. (15) provides 
the fit function ( )hu

x
x . 

The MLS method was proposed by Lancaster and 
Salkauskas [5] for smoothing and interpolating data. 
The idea is to start with a weighted least squares 
formulation for an arbitrary fixed point in dR , and then 
move this point over the entire parameter domain, 
where a weighted least squares fit is computed and 
evaluated for each point individually. It can be shown 
that the global function ( )hu x , obtained from a set of 

local functions, 

( ) ( ),h hu u xx x  

2 ,min ( ) ( )
h d

m

h
i i i

u i
w u u


 

x
xx x x‖ ‖‖ ‖  

is continuously differentiable if and only if the 
weighting function is continuously differentiable (see 
Levins work [10,11]). 

Now we extend the MLS method for BIE which is 
obtained in the previous section. For this purpose, we 
follow [9]. Given data values 1{ }N

j ju u  at nodes jx , 

the MLS method produces a function ( )h s du C R  that 

approximates data u  in a weighted square sense. Let 
d
q  be the space of polynomials of degree q, q N  

and q s , and let 0 1{ , ,..., }mp p p  be any basis of d
q . 

The MLS approximation ( )hu x  of ( )u x  for all x , 

can be defined as 

( ) ( ), ,h Tu   x P a x x  (17) 

where 0 1( ) [ , ,..., ]T
mp p pP x  and ( )a x  is a vector with 

components a ( )j x , 0,1,...,j m , which are functions 

of the space coordinates x . In this paper we suppose 
that the basis of d

q  is a complete monomial basis of 

order m .For example, for a 1-D problem, the linear 
basis is {1, }x , and the quadratic basis is 2{1, , }x x . For 

a 2-D problem, the linear basis is {1, , }x y , and the 

quadratic basis is 2 2{1, , , , , }x y x xy y  where ( , )x yx . 

The coefficient vector ( )a x  is determined by 

minimizing a weight discrete square norm, which is 
defined as (u is a scalar function) 

2

1

( ) ( )( ( ) ( ) )

[ . ( ) ] . .[ . ( ) ],

n
T

j j j
j

T

J w P u

P W P



 

  

x x x a x

a x u a x u

 (18) 

where jw ( )x  is the weight function associated with the 

node j and n is the number of nodes in   for which the 
weight function jw ( ) 0x  and ju  are the fictitious 

nodal values, but not the nodal values of the unknown 
trial function ( )hu x  i.e. ( )h

j ju ux . The matrices P 

and W are defined as 

1
1

2

( 1)

( )
( ) 0

( )
, .

0 ( )
( )

T

T

nT n n
n n m

w

P W

w


 

 
  
      
    

  

p x
x

p x

x
p x


  




 

The stationary point of J, in Eq. (18), with respect to 
( )a x  leads to the following linear relation between 

( )a x  and u  

( ) ( ) ( ) ,A Bx a x x u  (19) 

where the matrices ( )A x  and ( )B x  are defined by 

1

( ) ( ) ( ) ( ) ( ),
n

T T
j j j

j

A P WP B P w x


   x x p x p x  

1 1 2 2

( )

[ ( ) ( ), ( ) ( ),..., ( ) ( )].

T

n n

B P W

w w w





x

x p x x p x x p x
 

The matrix A is often called the moment matrix, it is 
of size (m 1) (m 1)   . Computing ( )a x , using Eq. 

(19) and substituting it into Eq. (17), gives 

1

( ) ( ). ( ) , ,
n

h T
j j

j

u u


   x x u x x  (20) 

where 
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1( ) ( ) ( ) ( ),T T A B x p x x x  

or 

0

1( ) ( )[ ( ) ( )] .
m

j k
k

p A B
kj




 x x x x  (21) 

( )j x ’s are called the shape functions of the MLS 

approximation, corresponding to nodal points jx . 

 
Remark 3. In Eq. (21), to avoid calculating 1A  , we 
can get 1C A B  and then solve the systems AC B  
and since for ( )j x , only components of j-th column of 

C are needed, it is enough to solve only linear system 

j jAC B  which jC  and jB  are j-th column of C and 

B, respectively. This system can be solved by iterative 
methods. 

If ( ) ( )r
jw C x  and ( ) ( )s

kp C x , j 1, , n  , 

k 0,1, ,m   then ( , )( ) ( )min r s
j C  x . The Gaussian 

weight function is applied in the present work as 

2 2

2
w (x)=

0,                 

[ ( / ) ] [ ( / ) ]
,0 ,

                                   d >h ,

1 [ ( / ) ]
j

j j
j j

j j

j

exp d exp h
d h

exp h

 


  
 

 







 

where j jd  x x   (the Euclidean distance between 

x  and jx ),   is a constant which controls the shape of 

the weight function jw , and jh  is the size of the 

support domain. 

Integral Equation and MLS 

In this section, we follow [9] to solve an integral 
equation by MLS method. Then we use it for BIE which 
has been obtained in section 2. Consider Fredholm 
integral equation 

( ) ( , ) ( ) ( ), [ , ],
b

a
u x x u d g x x a b        (22) 

where u is unknown function,   is a real parameter, a 
and b are finite real numbers and (x, )   is called 

kernel function. Assume that u ,  ,   and g  have 

necessary conditions for solvability of the equation and 
analyzing the method. 

To apply the method, at first N nodal points i{x }  are 

selected on interval [ , ]a b  where 1 2 ...a x x  

Nx b  . The distribution of nodes could be selected 

regularly or randomly. Then we can use hu  from Eq. 

(20) instead of u . So Eq. (22) becomes 

( ) ( , ) ( ) ( ), [ , ],
bh h

a
u x x u d g x x a b        (23) 

or equivalently 

1

[ ( ) ( , ) ( ) ] ( ), [ , ], 
N b

j j ja
j

x x d u g x x a b     


     

Assume that the above Eq. holds at ix  

1

[ ( ) ( , ) ( ) ]

i=1,2,...N( , .)

N b

j i i j ja
j

i

x x d u

g x

     






 
 (24) 

Using a 1m -point quadrature formula with the 

coefficients k{ }  and weights k{ }  in interval [ , ]a b  to 

numerically solve the integration in (24), yielding 

1

1 1

ˆ[ ( ) ( , ) ( )

i=1,2,...N

]

( ), .

mN

j i i k j k k j
j k

i

x x u

g x

     
 





 
 (25) 

where ˆ ju  are the approximate values of ju  when we 

use a quadrature rule instead of the exact integral. Now 
if we set F  as an N by N matrix which is defined by 

1

,
1

( ) ( , ) ( ) ,
m

i j j i i k j k k
k

F x x d      


   

and vectors 


1 2ˆ ˆ ˆ[ , ,..., ] ,T

Nu u uu  

and 

1 2[ , ,..., ] ,T
Ng g gg  

then we have the following linear system of equations 

 .F u g  (26) 

By solving Eq. (26) with a proper numerical method 
such as Gauss elimination method or LU factorization, 
we find values of ˆ ju . Then the value of u(x)  at any 

point [ , ]x a b  can be approximated by Eq. (20) as 

1

ˆ( ) ( ) ( ) , [ , ]. 
n

N j j
j

u x u x x u x a b


    

We use this method to solve BIE (9), and then we 
calculate the values of the solution of the Neumann 
problem at any point of the domain by (10). 
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Error Analysis 

The error analysis of this method is based on what 
has been described in [9]. We write Eq. (22) in operator 
form as 

( ) ,u g    (27) 

where 

( , ) ( ) .
b

a
u x u d      

Similarly Eq. (23) can be written as 

( ) ,hu g    (28) 

and assume that   is a compact operator (for more 
details about the compact integral operators see chapter 
1 of [6]). From [9] we have the following lemma and 
theorems. 
 
Theorem 4. There exist constants ,  1,2r rC  , such 

that for each ,1( )ru C    

1 | |
,1(  )  ,0 | | . h r

r rL
D u D u C R u r    

 
     ∣ ∣  

where Ris an upper bound of the mesh-size. 
 
Lemma 5. If (27) be uniquely solvable and 

0hu u    then (28) is uniquely solvable. 
The approximation scheme for numerical integration 

can be written as 

( ) .M Nu g    

Now the following theorem shows the convergence 
analysis of the method in L  norm. 
 
Theorem 6. Let ,1( )( 1,2)ru C r    where   be a 

closed, bounded set in dR  and let (x, )   be 

continuous for ,x   . Assume the quadrature sche-

me is convergent for all continuous functions on  . 
Further, assume that the integral equation (27) is 
uniquely solvable for given ( )g C   with 0  . 

Moreover take a suitable approximation hu  of u. Then 
for all sufficiently large values of M , the approximate 
inverses 

1( )M   exist and are uniformly bounded, 

1
1

1

1 ( ) .
( )

( ) . ( )

,

M
M

M M M

Q




 






 
 

  



    
   

     ∣ ∣  

with a suitable constant Q   . For the equations 

( )u g    and ( )M Nu g   , we have 

1
,1( ) ( )

( ) ( )

  (1 )

,

r
N r r ML L

M L L

u u C R u Q F F

Q F F u


  

  

   

 

   

   

∣ ∣
 

where R  and rC  are introduced in Theorem 4. 

Let ( ) ( , )N
iu x y  be the solution of (10) by using the 

approximation solution Nu  

( )

0
( , ) ( , , ) ( ) ,

LN
i Nu x y M x y s u s ds   (29) 

and let ( , )N m
iu  denote the result of approximation 

( ) ( , )N
iu x y  using a quadrature rule 

( )

1

( , ) ( , , ) ( ).
m

N
i j j N j

j

u x y w M x y x u x


   

Such as [6], for a convex region 

( )( , )
max ( , ) (  , ) . 2

i

N
i i N Lx y D

u x y u x y u u  
   ∣ ∣  

The total error is given by 

( , ) ( )

( ) ( , )

( , ) ( , ) [ ( , ) ( , )]

[ ( , ) ( , )].

N m N
i i i

N N m
i i

u x y u x y u x y u x y
i

u x y u x y

  

 
 

Results and Discussion 

In this section, efficiency and accuracy of the 
method are illustrated by some numerical examples. The 
routines are written in Fortran 90. 
 
Example 1. This example is solved in [6] as a Dirichlet 
problem and we solve it as a Neumann problem with 
our proposed method. Let the boundary S  be the 
ellipse 

   cos , sin ,0 2 .r t a t b t t     

In this case, the kernel K  of (9) can be reduced to 

( , ) ( ),
2

s t
K t s  

  

2 2 2 2
( ) ,

2[ ( ) ( )]

ab

a sin b cos
 

 





 

and the integral equation (9) becomes 

2

0
( ) ( ) ( ) ( ), 0 2 .

2

s t
u t u s ds g t t


  
      
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Table 1, indicates the results of solving this equation 
with 

cos( , ) ( ,, ) .x yf x y e x y S   

The exact solution u  is not known explicitly; but we 
obtain a highly accurate solution by using a large value 
of N , and then this solution is used to calculate the 
errors shown in the table. Results are given for 
( , ) (1,5)a b  . We put 1 ( 1)N    then for the linear 

case 2jh    and for the quadratic case 2.5jh    

to ensure the regularity of moment matrix A in MLS 
approximation. Besides, 0.6    in both cases. 
Because of increasing the condition number of A, the 
error increases in quadratic case as Table 1 shows (see 
[12]). To evaluate ( ) ( , )N

iu x y  from Eq. (29), we use the 

trapezoidal rule and as shown in Table 1, we choose 
m N . The error along the line 

( ) ( cos ,0 1,
4

q q a q


  c  

is shown in Table 2. 
 
Example 2. Consider the boundary S  be the circle 

( ) (cos(2 ), sin(2 )), 0 1,r t t t t     

and boundary condition with 

( ) cos(2 ).f t t  

The unique exact solution of this problem is 

( ) (2 ).u t cos t  

Errors of the approximation solution are given in 
Table 3, and ( , )N m

i iu u  along the line 

( ) ( cos , sin ), 0 1,
4 4

q q a b q
 

  c  

is shown in Table 4. 
According to these numerical experiments, the 

obtained errors and the advantages mentioned in the 
previous sections guarantee the efficiency and 
trustworthy of the proposed method. 

In this paper, we used the property of boundary 
integral equation to reduce the 2-D Neumann problem 
to an integral equation in one dimensional space. In 
addition, we utilize MLS as a meshless method for 
solving arisen integral equation. Since this method does 
not need to take a mesh in domain and only requires 
some scattering nodes, it is very useful for problems in 

high dimensions. One can easily extend this method to 
three dimensional Neumann problem and Dirichlet 
problem. 

 
Table 1. Maximum errors for different values of N in example 1 

N Linear (r=1)  Quadratic (r=2) 

 ||e||∞  ||e||∞ 

5 2.945E-3  2.184E-5 

7 1.383E-3  2.484E-4 

9 6.852E-4  1.215E-5 

17 9.926E-5  7.326E-4 

33 1.011E-7  3.629E-4 

 
Table 2. Error 

(N,m)
(i iu (q)) u ( (q))c c  for some q in 

example 1 

q m=7 m=9 m=17 m=33 

0.0 3.623E-1 2.071E-2 2.071E-3 3.671E-4 

0.2 3.031E-1 2.165E-2 8.701E-4 3.235E-5 

0.4 2.573E-2 8.763E-3 3.763E-4 2.238E-5 

0.6 1.150E-2 5.132E-4 1.670E-4 4.060E-6 

0.8 1.335E-3 6.411E-4 2.495E-5 3.101E-6 

0.9 3.592E-2 5.739E-3 3.145E-3 2.056E-5 

 
Table 3. Maximum errors for different values of N in example 2 

N Linear (r=1)  Quadratic (r=2) 

 ||e||∞  ||e||∞ 

5 4.320E-4  1.787E-4 

7 1.534E-4  2.318E-5 

9 7.481E-5  3.881E-6 

17 1.249E-6  4.676E-6 

33 3.985E-8  5.019E-6 

 
Table 4. Error 

(N,m)
(i iu (q)) u ( (q))c c  for some q in 

example 2 

q m=7 m=9 m=17 m=33 

0.0 2.670E-1 2.124E-2 1.038E-3 4.104E-4 

0.2 2.964E-2 2.114E-3 8.806E-3 1.223E-5 

0.4 1.421E-2 9.190E-3 5.919E-4 5.551E-5 

0.6 8.365E-3 4.849E-4 2.449E-5 3.669E-6 

0.8 5.227E-3 5.903E-5 1.229E-6 2.873E-7 

0.9 3.572E-2 7.771E-3 2.939E-4 3.059E-5 
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