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Table A–15

Charts of Theoretical Stress-Concentration Factors K*
t

Figure A–15–1

Bar in tension or simple

compression with a transverse

hole. σ0 = F/A, where

A = (w − d)t and t is the

thickness.

K
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Figure A–15–2

Rectangular bar with a

transverse hole in bending.

σ0 = Mc/I , where

I = (w − d)h3/12.
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Figure A–15–3

Notched rectangular bar in

tension or simple compression.

σ0 = F/A, where A = dt and t

is the thickness.
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Table A–15

Charts of Theoretical Stress-Concentration Factors K*
t (Continued)
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Figure A–15–4

Notched rectangular bar in

bending. σ0 = Mc/I , where

c = d/2, I = td
3/12, and t is

the thickness.

Figure A–15–5

Rectangular filleted bar in

tension or simple compression.

σ0 = F/A, where A = dt and 

t is the thickness.

Figure A–15–6

Rectangular filleted bar in

bending. σ0 = Mc/I , where

c = d/2, I = td
3/12, t is the

thickness.

*Factors from R. E. Peterson, “Design Factors for Stress Concentration,” Machine Design, vol. 23, no. 2, February 1951, p. 169; no. 3, March

1951, p. 161, no. 5, May 1951, p. 159; no. 6, June 1951, p. 173; no. 7, July 1951, p. 155. Reprinted with permission from Machine Design, 

a Penton Media Inc. publication.

(continued)
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Table A–15

Charts of Theoretical Stress-Concentration Factors K*
t (Continued)

Figure A–15–7

Round shaft with shoulder fillet

in tension. σ0 = F/A, where

A = πd
2/4.

Figure A–15–8

Round shaft with shoulder fillet

in torsion. τ0 = T c/J , where

c = d/2 and J = πd
4/32.

Figure A–15–9

Round shaft with shoulder fillet

in bending. σ0 = Mc/I , where

c = d/2 and I = πd
4/64.
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Table A–15

Charts of Theoretical Stress-Concentration Factors K*
t (Continued)

Figure A–15–10

Round shaft in torsion with

transverse hole.

Figure A–15–11

Round shaft in bending 

with a transverse hole. σ0 =

M/[(π D
3/32) − (d D

2/6)],

approximately.
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Figure A–15–12

Plate loaded in tension by a 

pin through a hole. σ0 = F/A,

where A = (w − d)t . When

clearance exists, increase Kt

35 to 50 percent. (M. M. Frocht

and H. N. Hill, “Stress-

Concentration Factors around

a Central Circular Hole in a

Plate Loaded through a Pin in

Hole,” J. Appl. Mechanics, 

vol. 7, no. 1, March 1940,

p. A-5.)

d

h

t

K
t

d /w

0 0.1 0.2 0.3 0.4 0.60.5 0.80.7
1

3

5

7

9

11

w

h/w = 0.35

h/w $ 1.0

h/w = 0.50

F

F/2 F/2

(continued)

*Factors from R. E. Peterson, “Design Factors for Stress Concentration,” Machine Design, vol. 23, no. 2, February 1951, p. 169; no. 3, March

1951, p. 161, no. 5, May 1951, p. 159; no. 6, June 1951, p. 173; no. 7, July 1951, p. 155. Reprinted with permission from Machine Design, a

Penton Media Inc. publication.
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Charts of Theoretical Stress-Concentration Factors K*
t (Continued)

*Factors from R. E. Peterson, “Design Factors for Stress Concentration,” Machine Design, vol. 23, no. 2, February 1951, p. 169; no. 3, March 1951,

p. 161, no. 5, May 1951, p. 159; no. 6, June 1951, p. 173; no. 7, July 1951, p. 155. Reprinted with permission from Machine Design, a Penton

Media Inc. publication.
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Figure A–15–13

Grooved round bar in tension.

σ0 = F/A, where A = πd
2/4.

Figure A–15–14

Grooved round bar in bending.

σ0 = Mc/ l , where c = d/2

and I = πd
4/64.

Figure A–15–15

Grooved round bar in torsion.

τ0 = T c/J, where c = d/2 and

J = πd
4/32.
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Table A–15

Charts of Theoretical Stress-Concentration Factors K*
t (Continued)

Figure A–15–16

Round shaft with flat-bottom

groove in bending and/or

tension.

σ0 =

4F

πd 2
+

32M

πd 3

Source: W. D. Pilkey, Peterson’s

Stress-Concentration Factors,

2nd ed. John Wiley & Sons,

New York, 1997, p. 115.
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Table A–15

Charts of Theoretical Stress-Concentration Factors K*
t (Continued)

Figure A–15–17

Round shaft with flat-bottom

groove in torsion.

τ0 =

16T

πd3

Source: W. D. Pilkey, Peterson’s

Stress-Concentration Factors,

2nd ed. John Wiley & Sons,

New York, 1997, p. 133
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Table A–16

Approximate Stress-

Concentration Factor Kt

for Bending of a Round

Bar or Tube with a

Transverse Round Hole

Source: R. E. Peterson, Stress-

Concentration Factors, Wiley,

New York, 1974, pp. 146, 235.

The nominal bending stress is σ0 = M/Znet where Znet is a reduced

value of the section modulus and is defined by

Znet =

π A

32D
(D

4
− d

4)

Values of A are listed in the table. Use d = 0 for a solid bar

d/D

0.9 0.6 0

a/D A Kt A Kt A Kt

0.050 0.92 2.63 0.91 2.55 0.88 2.42

0.075 0.89 2.55 0.88 2.43 0.86 2.35

0.10 0.86 2.49 0.85 2.36 0.83 2.27

0.125 0.82 2.41 0.82 2.32 0.80 2.20

0.15 0.79 2.39 0.79 2.29 0.76 2.15

0.175 0.76 2.38 0.75 2.26 0.72 2.10

0.20 0.73 2.39 0.72 2.23 0.68 2.07

0.225 0.69 2.40 0.68 2.21 0.65 2.04

0.25 0.67 2.42 0.64 2.18 0.61 2.00

0.275 0.66 2.48 0.61 2.16 0.58 1.97

0.30 0.64 2.52 0.58 2.14 0.54 1.94

M M

D d

a

(continued)



1034 Mechanical Engineering Design

Table A–16 (Continued)

Approximate Stress-Concentration Factors Kts for a Round Bar or Tube Having a Transverse Round Hole and

Loaded in Torsion Source: R. E. Peterson, Stress-Concentration Factors, Wiley, New York, 1974, pp. 148, 244.

T

T
D a d

The maximum stress occurs on the inside of the hole, slightly below the shaft surface. The nominal shear stress is τ0 = T D/2Jnet,

where Jnet is a reduced value of the second polar moment of area and is defined by

Jnet =

π A(D
4
− d

4)

32

Values of A are listed in the table. Use d = 0 for a solid bar.

d/D

0.9 0.8 0.6 0.4 0

a/D A Kts A Kts A Kts A Kts A Kts

0.05 0.96 1.78 0.95 1.77

0.075 0.95 1.82 0.93 1.71

0.10 0.94 1.76 0.93 1.74 0.92 1.72 0.92 1.70 0.92 1.68

0.125 0.91 1.76 0.91 1.74 0.90 1.70 0.90 1.67 0.89 1.64

0.15 0.90 1.77 0.89 1.75 0.87 1.69 0.87 1.65 0.87 1.62

0.175 0.89 1.81 0.88 1.76 0.87 1.69 0.86 1.64 0.85 1.60

0.20 0.88 1.96 0.86 1.79 0.85 1.70 0.84 1.63 0.83 1.58

0.25 0.87 2.00 0.82 1.86 0.81 1.72 0.80 1.63 0.79 1.54

0.30 0.80 2.18 0.78 1.97 0.77 1.76 0.75 1.63 0.74 1.51

0.35 0.77 2.41 0.75 2.09 0.72 1.81 0.69 1.63 0.68 1.47

0.40 0.72 2.67 0.71 2.25 0.68 1.89 0.64 1.63 0.63 1.44
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Loading Factor kc

When fatigue tests are carried out with rotating bending, axial (push-pull), and torsional

loading, the endurance limits differ with Sut. This is discussed further in Sec. 6–17.

Here, we will specify average values of the load factor as

kc =

{

1 bending

0.85 axial

0.59 torsion
17

(6–26)

Temperature Factor kd

When operating temperatures are below room temperature, brittle fracture is a strong

possibility and should be investigated first. When the operating temperatures are higher

than room temperature, yielding should be investigated first because the yield

strength drops off so rapidly with temperature; see Fig. 2–9. Any stress will induce

creep in a material operating at high temperatures; so this factor must be considered too.

A 0.95σ =

{

0.05ab axis 1-1

0.052xa + 0.1t f (b − x) axis 2-2

1

22

1

a

b t
f

x

A 0.95σ =

{

0.10at f axis 1-1

0.05ba t f > 0.025a axis 2-2

1

2 2

1

a

b

t
f

A 0.95σ = 0.05hb

de = 0.808
√

hb

b

h

2

2

11

A 0.95σ = 0.01046d
2

de = 0.370d

d

Table 6–3

A0.95σ Areas of Common

Nonrotating Structural

Shapes

17
Use this only for pure torsional fatigue loading. When torsion is combined with other stresses, such as

bending, kc = 1 and the combined loading is managed by using the effective von Mises stress as in Sec. 5–5.

Note: For pure torsion, the distortion energy predicts that (kc)torsion = 0.577.
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Finally, it may be true that there is no fatigue limit for materials operating at high tem-

peratures. Because of the reduced fatigue resistance, the failure process is, to some

extent, dependent on time.

The limited amount of data available show that the endurance limit for steels

increases slightly as the temperature rises and then begins to fall off in the 400 to 700°F

range, not unlike the behavior of the tensile strength shown in Fig. 2–9. For this reason

it is probably true that the endurance limit is related to tensile strength at elevated tem-

peratures in the same manner as at room temperature.
18

It seems quite logical, therefore,

to employ the same relations to predict endurance limit at elevated temperatures as are

used at room temperature, at least until more comprehensive data become available. At

the very least, this practice will provide a useful standard against which the perfor-

mance of various materials can be compared.

Table 6–4 has been obtained from Fig. 2–9 by using only the tensile-strength data.

Note that the table represents 145 tests of 21 different carbon and alloy steels. A fourth-

order polynomial curve fit to the data underlying Fig. 2–9 gives

kd = 0.975 + 0.432(10
−3)TF − 0.115(10

−5)T 2

F

+ 0.104(10
−8)T 3

F
− 0.595(10

−12)T 4

F

( 6–27)

where 70 ≤ TF ≤ 1000
◦

F.

Two types of problems arise when temperature is a consideration. If the rotating-

beam endurance limit is known at room temperature, then use

kd =

ST

SRT

(6–28)

Temperature, °C ST/SRT Temperature, °F ST/SRT

20 1.000 70 1.000

50 1.010 100 1.008

100 1.020 200 1.020

150 1.025 300 1.024

200 1.020 400 1.018

250 1.000 500 0.995

300 0.975 600 0.963

350 0.943 700 0.927

400 0.900 800 0.872

450 0.843 900 0.797

500 0.768 1000 0.698

550 0.672 1100 0.567

600 0.549

*Data source: Fig. 2–9.

Table 6–4

Effect of Operating

Temperature on the

Tensile Strength of

Steel.* (ST = tensile

strength at operating

temperature;

SRT = tensile strength

at room temperature; 

0.099 ≤ σ̂ ≤ 0.110)

18
For more, see Table 2 of ANSI/ASME B106. 1M-1985 shaft standard, and E. A. Brandes (ed.), Smithell’s

Metals Reference Book, 6th ed., Butterworth, London, 1983, pp. 22–134 to 22–136, where endurance limits

from 100 to 650°C are tabulated.
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Miscellaneous-Effects Factor kf

Though the factor k f is intended to account for the reduction in endurance limit due to

all other effects, it is really intended as a reminder that these must be accounted for,

because actual values of k f are not always available.

Residual stresses may either improve the endurance limit or affect it adversely.

Generally, if the residual stress in the surface of the part is compression, the endurance

limit is improved. Fatigue failures appear to be tensile failures, or at least to be caused

by tensile stress, and so anything that reduces tensile stress will also reduce the possi-

bility of a fatigue failure. Operations such as shot peening, hammering, and cold rolling

build compressive stresses into the surface of the part and improve the endurance limit

significantly. Of course, the material must not be worked to exhaustion.

The endurance limits of parts that are made from rolled or drawn sheets or bars,

as well as parts that are forged, may be affected by the so-called directional character-

istics of the operation. Rolled or drawn parts, for example, have an endurance limit

in the transverse direction that may be 10 to 20 percent less than the endurance limit in

the longitudinal direction.

Parts that are case-hardened may fail at the surface or at the maximum core radius,

depending upon the stress gradient. Figure 6–19 shows the typical triangular stress dis-

tribution of a bar under bending or torsion. Also plotted as a heavy line in this figure are

the endurance limits Se for the case and core. For this example the endurance limit of the

core rules the design because the figure shows that the stress σ or τ, whichever applies,

at the outer core radius, is appreciably larger than the core endurance limit.

S
e 
(case)

s or !

S
e 
(core)

Case

Core

Figure 6–19

The failure of a case-hardened

part in bending or torsion. In

this example, failure occurs in

the core.

Reliability, % Transformation Variate za Reliability Factor ke

50 0 1.000

90 1.288 0.897

95 1.645 0.868

99 2.326 0.814

99.9 3.091 0.753

99.99 3.719 0.702

99.999 4.265 0.659

99.9999 4.753 0.620

Table 6–5

Reliability Factors ke

Corresponding to

8 Percent Standard

Deviation of the

Endurance Limit
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6–10 Stress Concentration and Notch Sensitivity
In Sec. 3–13 it was pointed out that the existence of irregularities or discontinuities,

such as holes, grooves, or notches, in a part increases the theoretical stresses signifi-

cantly in the immediate vicinity of the discontinuity. Equation (3–48) defined a stress-

concentration factor Kt (or Kts), which is used with the nominal stress to obtain the

maximum resulting stress due to the irregularity or defect. It turns out that some mate-

rials are not fully sensitive to the presence of notches and hence, for these, a reduced

value of Kt can be used. For these materials, the effective maximum stress in fatigue is,

σmax = K f σ0 or τmax = K f sτ0 (6–30)

where K f is a reduced value of Kt and σ0 is the nominal stress. The factor K f is com-

monly called a fatigue stress-concentration factor, and hence the subscript f. So it is

convenient to think of Kf as a stress-concentration factor reduced from Kt because of

lessened sensitivity to notches. The resulting factor is defined by the equation

K f =

maximum stress in notched specimen

stress in notch-free specimen
(a)

Notch sensitivity q is defined by the equation

q =

K f − 1

Kt − 1
or qshear =

K f s − 1

Kts − 1
(6–31)

where q is usually between zero and unity. Equation (6–31) shows that if q = 0, then

K f = 1, and the material has no sensitivity to notches at all. On the other hand, if

q = 1, then K f = Kt , and the material has full notch sensitivity. In analysis or design

work, find Kt first, from the geometry of the part. Then specify the material, find q, and

solve for Kf from the equation

K f = 1 + q(Kt − 1) or K f s = 1 + qshear(Kts − 1) (6–32)

Notch sensitivities for specific materials are obtained experimentally. Published

experimental values are limited, but some values are available for steels and aluminum.

Trends for notch sensitivity as a function of notch radius and ultimate strength are

shown in Fig. 6–20 for reversed bending or axial loading, and Fig. 6–21 for reversed

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0

0.2

0.4

0.6

0.8

1.0

Notch radius r, in

Notch radius r, mm

N
o
tc

h
 s

e
n
s
it

iv
it

y
 q

S ut
=

200 kpsi

(0.4)

60

100

150 (0.7)

(1.0)

(1.4 GPa)

Steels

Alum. alloy

Figure 6–20

Notch-sensitivity charts for

steels and UNS A92024-T

wrought aluminum alloys

subjected to reversed bending

or reversed axial loads. For

larger notch radii, use the

values of q corresponding

to the r = 0.16-in (4-mm)

ordinate. (From George Sines

and J. L. Waisman (eds.), Metal

Fatigue, McGraw-Hill, New

York. Copyright © 1969 by The

McGraw-Hill Companies, Inc.

Reprinted by permission.)
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torsion. In using these charts it is well to know that the actual test results from which

the curves were derived exhibit a large amount of scatter. Because of this scatter it is

always safe to use K f = Kt if there is any doubt about the true value of q. Also, note

that q is not far from unity for large notch radii.

Figure 6–20 has as its basis the Neuber equation, which is given by

K f = 1 +

Kt − 1

1 +

√

a/r
(6–33)

where 
√

a is defined as the Neuber constant and is a material constant. Equating

Eqs. (6–31) and (6–33) yields the notch sensitivity equation

q =

1

1 +

√

a
√

r

(6–34)

correlating with Figs. 6–20 and 6–21 as

Bending or axial:
√

a = 0.246 − 3.08(10
−3)Sut + 1.51(10

−5)S
2

ut
− 2.67(10

−8)S
3

ut

(6–35a)

Torsion:
√

a = 0.190 − 2.51(10
−3)Sut + 1.35(10

−5)S
2

ut
− 2.67(10

−8)S
3

ut
(6–35b)

where the equations apply to steel and Sut is in kpsi. Equation (6–34) used in conjunction

with Eq. pair (6–35) is equivalent to Figs. (6–20) and (6–21). As with the graphs, the

results from the curve fit equations provide only approximations to the experimental data.

The notch sensitivity of cast irons is very low, varying from 0 to about 0.20,

depending upon the tensile strength. To be on the conservative side, it is recommended

that the value q = 0.20 be used for all grades of cast iron.

EXAMPLE 6–6 A steel shaft in bending has an ultimate strength of 690 MPa and a shoulder with a fillet

radius of 3 mm connecting a 32-mm diameter with a 38-mm diameter. Estimate Kf using:

(a) Figure 6–20.

(b) Equations (6–33) and (6–35).
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Figure 6–21

Notch-sensitivity curves for

materials in reversed torsion.

For larger notch radii, 

use the values of qshear

corresponding to r = 0.16 in 

(4 mm).











368 Mechanical Engineering Design

Combining these stresses in accordance with the distortion energy failure theory,

the von Mises stresses for rotating round, solid shafts, neglecting axial loads, are

given by

σ ′

a
= (σ 2

a
+ 3τ 2

a
)1/2

=

[

(

32K f Ma

πd3

)2

+ 3

(

16K f s Ta

πd3

)2
]1/2

(7–5)

σ ′

m
= (σ 2

m
+ 3τ 2

m
)1/2

=

[

(

32K f Mm

πd3

)2

+ 3

(

16K f s Tm

πd3

)2
]1/2

(7–6)

Note that the stress-concentration factors are sometimes considered optional for the

midrange components with ductile materials, because of the capacity of the ductile

material to yield locally at the discontinuity.

These equivalent alternating and midrange stresses can be evaluated using an

appropriate failure curve on the modified Goodman diagram (See Sec. 6–12, p. 303, and

Fig. 6–27). For example, the fatigue failure criteria for the modified Goodman line as

expressed previously in Eq. (6–46) is

1

n
=

σ ′

a

Se

+

σ ′

m

Sut

Substitution of σ ′

a
and σ ′

m
from Eqs. (7–5) and (7–6) results in

1

n
=

16

πd3

{

1

Se

[

4(K f Ma)
2
+ 3(K f s Ta)

2
]1/2

+

1

Sut

[

4(K f Mm)2
+ 3(K f s Tm)2

]1/2

}

For design purposes, it is also desirable to solve the equation for the diameter. This

results in

d =

(

16n

π

{

1

Se

[

4(K f Ma)
2
+ 3(K f s Ta)

2
]1/2

+

1

Sut

[

4(K f Mm)2
+ 3(K f s Tm)2

]1/2

})1/3

Similar expressions can be obtained for any of the common failure criteria by sub-

stituting the von Mises stresses from Eqs. (7–5) and (7–6) into any of the failure

criteria expressed by Eqs. (6–45) through (6–48), p. 306. The resulting equations for

several of the commonly used failure curves are summarized below. The names

given to each set of equations identifies the significant failure theory, followed by a

fatigue failure locus name. For example, DE-Gerber indicates the stresses are com-

bined using the distortion energy (DE) theory, and the Gerber criteria is used for the

fatigue failure.

DE-Goodman

1

n
=

16

πd3

{

1

Se

[

4(K f Ma)
2
+ 3(K f s Ta)

2
]1/2

+

1

Sut

[

4(K f Mm)2
+ 3(K f s Tm)2

]1/2

}

(7–7)

d =

(

16n

π

{

1

Se

[

4(K f Ma)
2
+ 3(K f s Ta)

2
]1/2

+

1

Sut

[

4(K f Mm)2
+ 3(K f s Tm)2

]1/2

})1/3 (7–8)
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DE-Gerber

1

n
=

8A

πd3Se







1 +

[

1 +

(

2BSe

ASut

)2
]1/2







(7–9)

d =





8n A

π Se







1 +

[

1 +

(

2BSe

ASut

)2
]1/2











1/3

(7–10)

where

A =

√

4(K f Ma)2
+ 3(K f s Ta)2

B =

√

4(K f Mm)2
+ 3(K f s Tm)2

DE-ASME Elliptic

1

n
=

16

πd3

[

4

(

K f Ma

Se

)2

+ 3

(

K f s Ta

Se

)2

+ 4

(

K f Mm

Sy

)2

+ 3

(

K f s Tm

Sy

)2
]1/2

(7–11)

d =







16n

π

[

4

(

K f Ma

Se

)2

+ 3

(

K f s Ta

Se

)2

+ 4

(

K f Mm

Sy

)2

+ 3

(

K f s Tm

Sy

)2
]1/2







1/3

(7–12)

DE-Soderberg

1

n
=

16

πd3

{

1

Se

[

4(K f Ma)
2
+ 3(K f s Ta)

2
]1/2

+

1

Syt

[

4(K f Mm)2
+ 3(K f s Tm)2

]1/2

}

(7–13)

d =

(

16n

π

{

1

Se

[

4(K f Ma)
2
+ 3(K f s Ta)

2
]1/2

+

1

Syt

[

4(K f Mm)2
+ 3(K f s Tm)2

]1/2

})1/3
(7–14)

For a rotating shaft with constant bending and torsion, the bending stress is com-

pletely reversed and the torsion is steady. Equations (7–7) through (7–14) can be sim-

plified by setting Mm and Ta equal to 0, which simply drops out some of the terms.

Note that in an analysis situation in which the diameter is known and the factor of

safety is desired, as an alternative to using the specialized equations above, it is always

still valid to calculate the alternating and mid-range stresses using Eqs. (7–5) and (7–6),

and substitute them into one of the equations for the failure criteria, Eqs. (6–45) through

(6–48), and solve directly for n. In a design situation, however, having the equations

pre-solved for diameter is quite helpful.

It is always necessary to consider the possibility of static failure in the first load cycle.

The Soderberg criteria inherently guards against yielding, as can be seen by noting that

its failure curve is conservatively within the yield (Langer) line on Fig. 6–27, p. 305. The

ASME Elliptic also takes yielding into account, but is not entirely conservative
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(a) Plain end, right hand (c) Squared and ground end,

left hand

(b) Squared or closed end,

right hand

(d ) Plain end, ground,

left hand

+ +

+ +

Figure 10–2

Types of ends for compression

springs: (a) both ends plain; 

(b) both ends squared; (c) both

ends squared and ground;

(d) both ends plain and ground.

Type of Spring Ends

Plain and Squared or Squared and
Term Plain Ground Closed Ground

End coils, Ne 0 1 2 2

Total coils, Nt Na Na 1 1 Na 1 2 Na 1 2

Free length, L0 pNa 1 d p(Na 1 1) pNa 1 3d pNa 1 2d

Solid length, Ls d (Nt 1 1) dNt d (Nt 1 1) dNt

Pitch, p (L0 2 d)/Na L0 /(Na 1 1) (L0 2 3d )/Na (L0 2 2d )/Na

Table 10–1

Formulas for the

Dimensional

Characteristics of

Compression-Springs.

(Na = Number of Active

Coils) 

Source: From Design

Handbook, 1987, p. 32.

Courtesy of Associated Spring.

4Edward L. Forys, “Accurate Spring Heights,” Machine Design, vol. 56, no. 2, January 26, 1984.

used without question. Some of these need closer scrutiny as they may not be integers.

This depends on how a springmaker forms the ends. Forys4 pointed out that squared

and ground ends give a solid length Ls of

Ls = (Nt − a)d

where a varies, with an average of 0.75, so the entry d Nt in Table 10–1 may be over-

stated. The way to check these variations is to take springs from a particular spring-

maker, close them solid, and measure the solid height. Another way is to look at the

spring and count the wire diameters in the solid stack.

Set removal or presetting is a process used in the manufacture of compression

springs to induce useful residual stresses. It is done by making the spring longer than

needed and then compressing it to its solid height. This operation sets the spring to the

required final free length and, since the torsional yield strength has been exceeded,

induces residual stresses opposite in direction to those induced in service. Springs to

be preset should be designed so that 10 to 30 percent of the initial free length is

removed during the operation. If the stress at the solid height is greater than 1.3 times

the torsional yield strength, distortion may occur. If this stress is much less than 1.1

times, it is difficult to control the resulting free length.

Set removal increases the strength of the spring and so is especially useful when

the spring is used for energy-storage purposes. However, set removal should not be

used when springs are subject to fatigue.
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5Cyril Samónov “Computer-Aided Design,” op. cit.

6A. M. Wahl, Mechanical Springs, 2d ed., McGraw-Hill, New York, 1963.

7J. A. Haringx, “On Highly Compressible Helical Springs and Rubber Rods and Their Application for

Vibration-Free Mountings,” I and II, Philips Res. Rep., vol. 3, December 1948, pp. 401–449, and vol. 4,

February 1949, pp. 49–80.

10–5 Stability
In Chap. 4 we learned that a column will buckle when the load becomes too large.

Similarly, compression coil springs may buckle when the deflection becomes too

large. The critical deflection is given by the equation

ycr = L0C ′

1

[

1 −

(

1 −

C ′

2

λ2
eff

)1/2
]

(10–10)

where ycr is the deflection corresponding to the onset of instability. Samónov5 states that

this equation is cited by Wahl6 and verified experimentally by Haringx.7 The quantity

λeff in Eq. (10–10) is the effective slenderness ratio and is given by the equation

λeff =

αL0

D
(10–11)

C ′

1 and C ′

2 are elastic constants defined by the equations

C ′

1 =

E

2(E − G)

C ′

2 =

2π2(E − G)

2G + E

Equation (10–11) contains the end-condition constant α. This depends upon how the

ends of the spring are supported. Table 10–2 gives values of α for usual end conditions.

Note how closely these resemble the end conditions for columns.

Absolute stability occurs when, in Eq. (10–10), the term C ′

2/λ
2
eff is greater than

unity. This means that the condition for absolute stability is that

L0 <
π D

α

[

2(E − G)

2G + E

]1/2

(10–12)

End Condition Constant a

Spring supported between flat parallel surfaces (fixed ends) 0.5

One end supported by flat surface perpendicular to spring axis (fixed);

other end pivoted (hinged) 0.707

Both ends pivoted (hinged) 1

One end clamped; other end free 2

∗Ends supported by flat surfaces must be squared and ground.

Table 10–2

End-Condition 

Constants α for Helical

Compression Springs* 
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Relative
ASTM Exponent Diameter, A, Diameter, A, Cost

Material No. m in kpsi ? inm mm MPa ? mmm of Wire

Music wire* A228 0.145 0.004–0.256 201 0.10–6.5 2211 2.6

OQ&T wire† A229 0.187 0.020–0.500 147 0.5–12.7 1855 1.3

Hard-drawn wire‡ A227 0.190 0.028–0.500 140 0.7–12.7 1783 1.0

Chrome-vanadium wire§ A232 0.168 0.032–0.437 169 0.8–11.1 2005 3.1

Chrome-silicon wire‖ A401 0.108 0.063–0.375 202 1.6–9.5 1974 4.0

302 Stainless wire# A313 0.146 0.013–0.10 169 0.3–2.5 1867 7.6–11

0.263 0.10–0.20 128 2.5–5 2065

0.478 0.20–0.40 90 5–10 2911

Phosphor-bronze wire** B159 0 0.004–0.022 145 0.1–0.6 1000 8.0

0.028 0.022–0.075 121 0.6–2 913

0.064 0.075–0.30 110 2–7.5 932

∗Surface is smooth, free of defects, and has a bright, lustrous finish.

†Has a slight heat-treating scale which must be removed before plating.

‡Surface is smooth and bright with no visible marks.

§Aircraft-quality tempered wire, can also be obtained annealed.

‖Tempered to Rockwell C49, but may be obtained untempered.

#Type 302 stainless steel.

∗∗Temper CA510.

Table 10–4

Constants A and m of Sut = A/dm for Estimating Minimum Tensile Strength of Common Spring Wires 

Source: From Design Handbook, 1987, p. 19. Courtesy of Associated Spring.

Joerres8 uses the maximum allowable torsional stress for static application shown in

Table 10–6. For specific materials for which you have torsional yield information use

this table as a guide. Joerres provides set-removal information in Table 10–6, that

Ssy ≥ 0.65Sut increases strength through cold work, but at the cost of an additional

operation by the springmaker. Sometimes the additional operation can be done by the

manufacturer during assembly. Some correlations with carbon steel springs show that

the tensile yield strength of spring wire in torsion can be estimated from 0.75Sut . The

corresponding estimate of the yield strength in shear based on distortion energy theory

is Ssy = 0.577(0.75)Sut = 0.433Sut
.
= 0.45Sut . Samónov discusses the problem of

allowable stress and shows that

Ssy = τall = 0.56Sut (10–16)

for high-tensile spring steels, which is close to the value given by Joerres for hard-

ened alloy steels. He points out that this value of allowable stress is specified by Draft

Standard 2089 of the German Federal Republic when Eq. (10–2) is used without stress-

correction factor.

8Robert E. Joerres, “Springs,” Chap. 6 in Joseph E. Shigley, Charles R. Mischke, and Thomas H. Brown,

Jr. (eds.), Standard Handbook of Machine Design, 3rd ed., McGraw-Hill, New York, 2004.



Elastic Limit,
Percent of Sut Diameter E G

Material Tension Torsion d, in Mpsi GPa Mpsi GPa

Music wire A228 65–75 45–60 <0.032 29.5 203.4 12.0 82.7

0.033–0.063 29.0 200 11.85 81.7

0.064–0.125 28.5 196.5 11.75 81.0

>0.125 28.0 193 11.6 80.0

HD spring A227 60–70 45–55 <0.032 28.8 198.6 11.7 80.7

0.033–0.063 28.7 197.9 11.6 80.0

0.064–0.125 28.6 197.2 11.5 79.3

>0.125 28.5 196.5 11.4 78.6

Oil tempered A239 85–90 45–50 28.5 196.5 11.2 77.2

Valve spring A230 85–90 50–60 29.5 203.4 11.2 77.2

Chrome-vanadium A231 88–93 65–75 29.5 203.4 11.2 77.2

A232 88–93 29.5 203.4 11.2 77.2

Chrome-silicon A401 85–93 65–75 29.5 203.4 11.2 77.2

Stainless steel

A313* 65–75 45–55 28 193 10 69.0

17-7PH 75–80 55–60 29.5 208.4 11 75.8

414 65–70 42–55 29 200 11.2 77.2

420 65–75 45–55 29 200 11.2 77.2

431 72–76 50–55 30 206 11.5 79.3

Phosphor-bronze B159 75–80 45–50 15 103.4 6 41.4

Beryllium-copper B197 70 50 17 117.2 6.5 44.8

75 50–55 19 131 7.3 50.3

Inconel alloy X-750 65–70 40–45 31 213.7 11.2 77.2

*Also includes 302, 304, and 316.

Note: See Table 10–6 for allowable torsional stress design values.

Table 10–5

Mechanical Properties of Some Spring Wires

Maximum Percent of Tensile Strength

Before Set Removed After Set Removed
Material (includes KW or KB) (includes Ks)

Music wire and cold- 45 60–70

drawn carbon steel

Hardened and tempered 50 65–75

carbon and low-alloy

steel

Austenitic stainless 35 55–65

steels

Nonferrous alloys 35 55–65

Table 10–6

Maximum Allowable

Torsional Stresses for

Helical Compression

Springs in Static

Applications

Source: Robert E. Joerres,

“Springs,” Chap. 6 in Joseph 

E. Shigley, Charles R. Mischke,

and Thomas H. Brown, Jr. (eds.),

Standard Handbook of Machine

Design, 3rd ed., McGraw-Hill,

New York, 2004.
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Figure 10–6

Ends for extension springs.

(a) Usual design; stress at A is

due to combined axial force

and bending moment. (b) Side

view of part a; stress is mostly

torsion at B. (c) Improved

design; stress at A is due to

combined axial force and

bending moment. (d ) Side

view of part c ; stress at B is

mostly torsion.

F
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A

(c) (d )

B

d

(a) (b)

r
1

F F

B

d

r
1

r
2

r
2

d

Note: Radius r
1
 is in the plane of

the end coil for curved beam

bending stress. Radius r
2
 is

at a right angle to the end 

coil for torsional shear stress.

Figure 10–5

Types of ends used on

extension springs. (Courtesy

of Associated Spring.)

(a) Machine half loop–open (b) Raised hook

(c) Short twisted loop (d ) Full twisted loop

+ +

++

must be included in the analysis. In Fig. 10–6a and b a commonly used method of

designing the end is shown. The maximum tensile stress at A, due to bending and

axial loading, is given by

σA = F

[

(K )A

16D

πd3
+

4

πd2

]

(10–34)
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where (K )A is a bending stress-correction factor for curvature, given by

(K )A =

4C2
1 − C1 − 1

4C1(C1 − 1)
C1 =

2r1

d
(10–35)

The maximum torsional stress at point B is given by

τB = (K )B

8F D

πd3
(10–36)

where the stress-correction factor for curvature, (K)B, is

(K )B =

4C2 − 1

4C2 − 4
C2 =

2r2

d
(10–37)

Figure 10–6c and d show an improved design due to a reduced coil diameter.

When extension springs are made with coils in contact with one another, they are

said to be close-wound. Spring manufacturers prefer some initial tension in close-wound

springs in order to hold the free length more accurately. The corresponding load-

deflection curve is shown in Fig. 10–7a, where y is the extension beyond the free length
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(a) Geometry of the force F

and extension y curve of an

extension spring; (b) geometry

of the extension spring; and 

(c) torsional stresses due to

initial tension as a function of

spring index C in helical

extension springs.
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Table 9–3

Minimum Weld-Metal

Properties

AWS Electrode Tensile Strength Yield Strength, Percent
Number* kpsi (MPa) kpsi (MPa) Elongation

E60xx 62 (427) 50 (345) 17–25

E70xx 70 (482) 57 (393) 22

E80xx 80 (551) 67 (462) 19

E90xx 90 (620) 77 (531) 14–17

E100xx 100 (689) 87 (600) 13–16

E120xx 120 (827) 107 (737) 14

*The American Welding Society (AWS) specification code numbering system for electrodes. This system

uses an E prefixed to a four- or five-digit numbering system in which the first two or three digits designate

the approximate tensile strength. The last digit includes variables in the welding technique, such as current

supply. The next-to-last digit indicates the welding position, as, for example, flat, or vertical, or overhead.

The complete set of specifications may be obtained from the AWS upon request.

Table 9–4

Stresses Permitted by the

AISC Code for Weld

Metal

Type of Loading Type of Weld Permissible Stress n*

Tension Butt 0.60Sy 1.67

Bearing Butt 0.90Sy 1.11

Bending Butt 0.60–0.66Sy 1.52–1.67

Simple compression Butt 0.60Sy 1.67

Shear Butt or fillet 0.30S
†
ut

*The factor of safety n has been computed by using the distortion-energy theory.

†Shear stress on base metal should not exceed 0.40Sy of base metal.

a welded cold-drawn bar has its cold-drawn properties replaced with the hot-rolled

properties in the vicinity of the weld. Finally, remembering that the weld metal is usu-

ally the strongest, do check the stresses in the parent metals.

The AISC code, as well as the AWS code, for bridges includes permissible stresses

when fatigue loading is present. The designer will have no difficulty in using these

codes, but their empirical nature tends to obscure the fact that they have been estab-

lished by means of the same knowledge of fatigue failure already discussed in Chap. 6.

Of course, for structures covered by these codes, the actual stresses cannot exceed the

permissible stresses; otherwise the designer is legally liable. But in general, codes tend

to conceal the actual margin of safety involved.

The fatigue stress-concentration factors listed in Table 9–5 are suggested for

use. These factors should be used for the parent metal as well as for the weld metal.

Table 9–6 gives steady-load information and minimum fillet sizes.

Table 9–5

Fatigue 

Stress-Concentration

Factors, Kfs

Type of Weld Kfs

Reinforced butt weld 1.2

Toe of transverse fillet weld 1.5

End of parallel fillet weld 2.7

T-butt joint with sharp corners 2.0



484 Mechanical Engineering Design

in which Ju is found by conventional methods for an area having unit width. The trans-

fer formula for Ju must be employed when the welds occur in groups, as in Fig. 9–12.

Table 9–1 lists the throat areas and the unit second polar moments of area for the most

common fillet welds encountered. The example that follows is typical of the calcula-

tions normally made.

Table 9–1

Torsional Properties of Fillet Welds*

d
G

y

y

dG

x

b

d

b

y

x

G

dG

y

b

x

dG

y

b

x

G
r

Unit Second Polar
Weld Throat Area Location of G Moment of Area

1. A = 0.707 hd x̄ = 0 Ju = d 3/12

ȳ = d/2

2. A = 1.414 hd x̄ = b/2 Ju =

d(3b2
+ d 2)

6
ȳ = d/2

3. A = 0.707h(b 1 d) x̄ =

b2

2(b + d)
Ju =

(b + d )4
− 6b 2d 2

12(b + d )

ȳ =

d 2

2(b + d )

4.
A = 0.707h(2b 1 d) x̄ =

b2

2b + d
Ju =

8b3
+ 6bd 2

+ d3

12
−

b4

2b + d

ȳ = d/2

5.
A = 1.414h(b 1 d) x̄ = b/2 Ju =

(b + d)3

6
ȳ = d/2

6. A = 1.414 πhr Ju = 2πr3

*G is centroid of weld group; h is weld size; plane of torque couple is in the plane of the paper; all welds are of unit width.



488 Mechanical Engineering Design

Table 9–2

Bending Properties of Fillet Welds*

d
G

y

y

dG

x

b

dG

y

b

x

dG

y

b

x

y

d

G

x

b

dG

y

b

x

dG

y

b

x

Weld Throat Area Location of G Unit Second Moment of Area

1.
A = 0.707hd x̄ = 0 Iu =

d 3

12
ȳ = d/2

2.
A = 1.414hd x̄ = b/2 Iu =

d 3

6
ȳ = d/2

3.
A = 1.414hb x̄ = b/2 Iu =

bd 2

2
ȳ = d/2

4.
A = 0.707h(2b 1 d ) x̄ =

b2

2b + d
Iu =

d 2

12
(6b + d )

ȳ 5 d/2

5.
A = 0.707h(b 1 2d ) x̄ = b/2 Iu =

2d 3

3
− 2d 2 ȳ + (b + 2d )ȳ 2

ȳ =

d 2

b + 2d

6.
A = 1.414h(b 1 d ) x̄ = b/2 Iu =

d 2

6
(3b + d )

ȳ = d/2

7.
A = 0.707h(b 1 2d ) x̄ = b/2 Iu =

2d 3

3
− 2d 2 ȳ + (b + 2d )ȳ 2

ȳ =

d 2

b + 2d
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dG

y

b

x

r
G

Table 9–2

Continued

4For a copy, either write the AISC, 400 N. Michigan Ave., Chicago, IL 60611, or contact on the Internet at

www.aisc.org.

9–5 The Strength of Welded Joints
The matching of the electrode properties with those of the parent metal is usually not

so important as speed, operator appeal, and the appearance of the completed joint. The

properties of electrodes vary considerably, but Table 9–3 lists the minimum properties

for some electrode classes.

It is preferable, in designing welded components, to select a steel that will result in a

fast, economical weld even though this may require a sacrifice of other qualities such as

machinability. Under the proper conditions, all steels can be welded, but best results will be

obtained if steels having a UNS specification between G10140 and G10230 are chosen.All

these steels have a tensile strength in the hot-rolled condition in the range of 60 to 70 kpsi.

The designer can choose factors of safety or permissible working stresses with more

confidence if he or she is aware of the values of those used by others. One of the best stan-

dards to use is the American Institute of Steel Construction (AISC) code for building

construction.4 The permissible stresses are now based on the yield strength of the mate-

rial instead of the ultimate strength, and the code permits the use of a variety of ASTM

structural steels having yield strengths varying from 33 to 50 kpsi. Provided the loading

is the same, the code permits the same stress in the weld metal as in the parent metal. For

these ASTM steels, Sy = 0.5Su. Table 9–4 lists the formulas specified by the code for

calculating these permissible stresses for various loading conditions. The factors of safety

implied by this code are easily calculated. For tension, n = 1/0.60 = 1.67. For shear,

n = 0.577/0.40 = 1.44, using the distortion-energy theory as the criterion of failure.

It is important to observe that the electrode material is often the strongest material

present. If a bar of AISI 1010 steel is welded to one of 1018 steel, the weld metal is

actually a mixture of the electrode material and the 1010 and 1018 steels. Furthermore,

Weld Throat Area Location of G Unit Second Moment of Area

8.
A = 1.414h(b 1 d) x̄ = b/2 Iu =

d 2

6
(3b + d )

ȳ = d/2

9. A = 1.414π ihr lu 5 πr3

*Iu, unit second moment of area, is taken about a horizontal axis through G, the centroid of the weld group, h is weld size; the plane of the bending

couple is normal to the plane of the paper and parallel to the y-axis; all welds are of the same size.



TABLE 12-3
Properties of weld—treating weld as line

Outline of welded joint Bending

b=width, d=depth (about horizontal axis x–x) Twisting
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Note: Multiply the values Jw by the size of the weld w to obtain polar moment of inertia Jo of the weld.
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Nominal Coarse-Pitch Series Fine-Pitch Series

Major Tensile- Minor- Tensile- Minor-
Diameter Pitch Stress Diameter Pitch Stress Diameter

d p Area At Area Ar p Area At Area Ar

mm mm mm2 mm2 mm mm2 mm2

1.6 0.35 1.27 1.07

2 0.40 2.07 1.79

2.5 0.45 3.39 2.98

3 0.5 5.03 4.47

3.5 0.6 6.78 6.00

4 0.7 8.78 7.75

5 0.8 14.2 12.7

6 1 20.1 17.9

8 1.25 36.6 32.8 1 39.2 36.0

10 1.5 58.0 52.3 1.25 61.2 56.3

12 1.75 84.3 76.3 1.25 92.1 86.0

14 2 115 104 1.5 125 116

16 2 157 144 1.5 167 157

20 2.5 245 225 1.5 272 259

24 3 353 324 2 384 365

30 3.5 561 519 2 621 596

36 4 817 759 2 915 884

42 4.5 1120 1050 2 1260 1230

48 5 1470 1380 2 1670 1630

56 5.5 2030 1910 2 2300 2250

64 6 2680 2520 2 3030 2980

72 6 3460 3280 2 3860 3800

80 6 4340 4140 1.5 4850 4800

90 6 5590 5360 2 6100 6020

100 6 6990 6740 2 7560 7470

110 2 9180 9080

*The equations and data used to develop this table have been obtained from ANSI B1.1-1974 and B18.3.1-1978.

The minor diameter was found from the equation dr = d −1.226 869p, and the pitch diameter from dp = d −

0.649 519p. The mean of the pitch diameter and the minor diameter was used to compute the tensile-stress area.

Table 8–1

Diameters and Areas of

Coarse-Pitch and Fine-

Pitch Metric Threads.*

Square and Acme threads, whose profiles are shown in Fig. 8–3a and b, respec-

tively, are used on screws when power is to be transmitted. Table 8–3 lists the pre-

ferred pitches for inch-series Acme threads. However, other pitches can be and often

are used, since the need for a standard for such threads is not great.

Modifications are frequently made to both Acme and square threads. For instance,

the square thread is sometimes modified by cutting the space between the teeth so as

to have an included thread angle of 10 to 15◦. This is not difficult, since these threads

are usually cut with a single-point tool anyhow; the modification retains most of the

high efficiency inherent in square threads and makes the cutting simpler. Acme threads
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Figure 8–4

The Joyce worm-gear screw

jack. (Courtesy Joyce-Dayton

Corp., Dayton, Ohio.)

are sometimes modified to a stub form by making the teeth shorter. This results in a

larger minor diameter and a somewhat stronger screw.

8–2 The Mechanics of Power Screws
A power screw is a device used in machinery to change angular motion into linear

motion, and, usually, to transmit power. Familiar applications include the lead screws

of lathes, and the screws for vises, presses, and jacks.

An application of power screws to a power-driven jack is shown in Fig. 8–4. You

should be able to identify the worm, the worm gear, the screw, and the nut. Is the

worm gear supported by one bearing or two?

d, in 1
4

5
16

3
8

1
2

5
8

3
4

7
8

1 1 1
4

1 1
2

1 3
4

2 2 1
2

3

p, in 1
16

1
14

1
12

1
10

1
8

1
6

1
6

1
5

1
5

1
4

1
4

1
4

1
3

1
2

Table 8–3

Preferred Pitches for

Acme Threads
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common material pairs. Table 8–6 shows coefficients of starting and running friction

for common material pairs.

8–3 Threaded Fasteners
As you study the sections on threaded fasteners and their use, be alert to the stochastic

and deterministic viewpoints. In most cases the threat is from overproof loading of

fasteners, and this is best addressed by statistical methods. The threat from fatigue is

lower, and deterministic methods can be adequate.

Figure 8–9 is a drawing of a standard hexagon-head bolt. Points of stress con-

centration are at the fillet, at the start of the threads (runout), and at the thread-root

fillet in the plane of the nut when it is present. See Table A–29 for dimensions. The

diameter of the washer face is the same as the width across the flats of the hexagon.

The thread length of inch-series bolts, where d is the nominal diameter, is

LT =

{

2d +
1
4

in L ≤ 6 in

2d +
1
2

in L > 6 in
(8–13)

and for metric bolts is

LT =











2d + 6

2d + 12 125 <

2d + 25

L ≤ 125 d ≤ 48

L ≤ 200

L > 200

(8–14)

where the dimensions are in millimeters. The ideal bolt length is one in which only

one or two threads project from the nut after it is tightened. Bolt holes may have burrs

or sharp edges after drilling. These could bite into the fillet and increase stress con-

centration. Therefore, washers must always be used under the bolt head to prevent

this. They should be of hardened steel and loaded onto the bolt so that the rounded

edge of the stamped hole faces the washer face of the bolt. Sometimes it is necessary

to use washers under the nut too.

The purpose of a bolt is to clamp two or more parts together. The clamping load

stretches or elongates the bolt; the load is obtained by twisting the nut until the bolt

Screw Nut Material

Material Steel Bronze Brass Cast Iron

Steel, dry 0.15–0.25 0.15–0.23 0.15–0.19 0.15–0.25

Steel, machine oil 0.11–0.17 0.10–0.16 0.10–0.15 0.11–0.17

Bronze 0.08–0.12 0.04–0.06 — 0.06–0.09

Table 8–5

Coefficients of Friction f

for Threaded Pairs

Source: H. A. Rothbart and 

T. H. Brown, Jr., Mechanical

Design Handbook, 2nd ed.,

McGraw-Hill, New York, 2006.

Combination Running Starting

Soft steel on cast iron 0.12 0.17

Hard steel on cast iron 0.09 0.15

Soft steel on bronze 0.08 0.10

Hard steel on bronze 0.06 0.08

Table 8–6

Thrust-Collar Friction

Coefficients 

Source: H. A. Rothbart and 

T. H. Brown, Jr., Mechanical

Design Handbook, 2nd ed.,

McGraw-Hill, New York, 2006.
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