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Abstract.  In this article, we address the problem of how temperature of a 
quantum system is observed. By proposing a thought experiment, we argue 
that temperature must be conceived as an operator and its measurement must 
necessarily accompany a collapse in the wavefunction. We model a temperature 
measurement device and determine the expectation value and quantum 
uncertainty of its readout. Lastly, we explore the consequences of this point of 
view and propose an experiment to verify if temperature is indeed a quantum 
observable.
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1. Introduction

Temperature is the centerpiece of statistical mechanics. Conventionally, it is defined as 
the change in entropy S(E) with internal energy E, at constant volume V  and particle 
number N,

1

T
=

∂S(E)

∂E

∣∣∣∣
V ,N

. (1)

Despite its experimental and theoretical practicality, temperature has been the 
subject of a number of unresolved foundational debates. Defining entropy and temper-
ature rigorously for systems with discrete energy levels is an open problem [1]. For 
systems with suciently closely spaced energy levels, entropy is defined in terms of 
the density operator ρ̂ as S = Tr(ρ̂ log ρ̂) and temperature as T−1 = ∆S/∆E. Another 
issue revolves around which of the two definitions of temperature, Boltzmann or Gibbs, 
is correct [1–8]. This leads to a debate on whether negative temperatures have physi-
cal meaning, since the latter cannot be negative. The question of how temperature 
should transform under Lorentz transformations has been unclear [9–11], and is still 
not resolved satisfactorily [12]. A review of definitions of temperature, thermodynamics 
of small systems, and a discussion on negative temperatures can be found in [13].

The applicability of concepts of thermodynamics, including definitions of temper-
ature, for finite particle systems has also been in question [13–17]. The statistical errors 
resulting from trying to infer temperature from a finite number of energy measure-
ments was investigated in [18, 19]. The problem of measuring the temperature of non- 
standard classical systems by real thermometers is studied in detail in [20]. As exper-
imental techniques for measuring temperature of mesoscopic systems improve, a better 
foundational construction of temperature becomes essential [21–23].

https://doi.org/10.1088/1742-5468/aacfb8
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In this article, we formulate how measurements of thermodynamic quantities asso-
ciated with a quantum systems, particularly temperature, should be formalized. We 
start by describing an EPR-like paradox for temperature to motivate an alternative 
definition of temperature in order to resolve the paradox. Specifically, we model what 
happens when the temperature of a quantum system is measured with a ‘physical ther-
mometer’. Our key argument is that temperature cannot be a local realistic variable, 
and must be redefined as a quantum operator.

Standard quantum mechanics does allow certain quantities to be local-realistic 
parameters. Examples include mass, charge and spin coupling coecient. There is no 
fundamental limit that prohibits monitoring these quantities and knowing their values 
at all times, with arbitrarily small uncertainty. Furthermore, this knowledge comes at 
no cost of disrupting other physical observables or wavefunctions. Since these quanti-
ties are treated as parameters in wavefunctions and density matrices, and are not oper-
ators, they have a single definite value, and no possibility of collapsing into a multitude 
of eigenvalues. In standard quantum statistical mechanics, temperature is also treated 
as a parameter, as in (1).

The present study is motivated by the observation that, in practice, all thermal 
measurement devices operate by mapping temperature to other physical observables 
such as the length of a mercury column, or the current that passes through a thermo-
electric material. If length and current are quantum operators with eigenvalues, eigen-
states, expectation values and uncertainties, then it seems reasonable to demand that 
temperature should also be associated with a quantum operator.

We argue here that temperature must be viewed as an operator rather than as a 
local realistic parameter. Specifically, we propose a thought experiment that leads to an 
apparent paradox if one is allowed full knowledge of temperature at all times, without 
restrictions pertaining operator algebra and wavefunction collapse. We then propose 
a new definition that treats temperature both experimentally and theoretically as a 
quantum mechanical operator, T̂ , and show that this indeed is one way to resolve the 
paradox. We then discuss a model for a practical quantum thermometer that works 
by indicating the temperature in terms of position, conceptually similar to the mer-
cury thermometer. Finally, we discuss possible experimental consequences of the non- 
standard definition proposed here.

2. Thought experiment: entangling temperature

In the energy basis, the density operator (ρ̂) for a system in a microcanonical ensemble 
is a diagonal operator (Γ)−1I, where Γ is the total number of microstates and I is the 
identity operator. For a system in thermal equilibrium with a heat bath at temperature 

T, it is given by ρ̂ = e−Ĥ/kBT/Tr(e−Ĥ/kBT ). The canonical and grand canonical density 
operators are also diagonal in the energy basis.

To ensure that the density operator for a system in a microcanonical ensemble is 
diagonal in all bases, the postulate of random a priori phases is necessary [24, 25]. 
This postulate states that if a system is in thermal equilibrium, then the wavefunction 
is an incoherent superposition of the basis states, that is, the probability amplitudes 
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have random a priori phases. This way, a large system in thermal equilibrium always 
has a diagonal density matrix. An incoherent superposition of energy eigenfunctions 
cannot be distinguished from a statistical mixture of the same, and the density opera-
tors obtained in both cases are equal. The lack of information of energy in one case is 
equivalent to the lack of information of the phases in another.

We illustrate the diculty with the conventional definition of temperature with 
the following thought experiment (see figure 1). Consider a collection of 2N spins with 
magnetic moments μ each, in an external magnetic field �B = Bẑ.

Let the system be completely isolated1 and be prepared in an energy eigenstate with 
energy E. At thermal equilibrium, this system can be described by a microcanonical 

1 It is possible to suciently isolate two state systems from the environment for short durations. For example, see 
[39] and references therein.

Figure 1. The thermal analogue of the EPR system. A system at thermal 
equilibrium whose particles are entangled through interactions, is split into two 
subsystems. The subsystems are taken far away and the energy of one particle 
in one of the subsystems is measured. The measurement causes the subsystem 
to thermalize to a higher (or lower) temperature. Entanglement causes the other 
subsystem to thermalize to a lower (or higher) temperature, making it possible to 
determine that a measurement was made far away.

https://doi.org/10.1088/1742-5468/aacfb8
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ensemble with energy E. According to the postulate of random a priori phases, the 
system should be described by the incoherent superposition of all states with energy E,

|ψ〉 = 1√
R

R∑
r=1

eiφr

∣∣∣ψ(r)
M

〉
, R =

(
2N

M

)
, (2)

where R is the total number of microstates, φj are uniformly distributed independent 

random variables on [0, 2π), and |ψ(r)
M 〉 is the rth wavefunction with M excited spins. For 

example, |ψ(1)
2 〉 = |11000 . . .〉, |ψ(2)

2 〉 = |10100 . . .〉, and so on.
According to definition (1), the temperature is

TM ,2N = α/ log(2N/M − 1), α = 2µB/kB. (3)
Now let us view this system as two subsystems containing N spins each (as shown 

in figure 1), and suppose that the coupling between subsystems is so weak that the 
many-body wavefunction will not change as the subsystems are separated apart. Once 
separated, we measure the state of one of the spins in the first subsystem. This will 
cause a partial collapse in the many-body wavefunction. After the measurement, the 
system is allowed to thermalize [26–28]. If the spin is observed in its ground state, the 
wavefunction becomes,

|ψ0〉 =
1√
R0

R0∑
r=0

eiφ0,r

∣∣∣ψ(r)
0,M

〉
, R0 =

(
2N − 1

M

)
 (4)

where |ψ(r)
0,M〉 denotes the rth wavefunction with M excited spins, and the first is unexcited. 

On the other hand, if the spin is observed in the excited state, the wavefunction becomes,

|ψ1〉 =
1√
R1

R1∑
r=0

eiφ1,r

∣∣∣ψ(r)
1,M

〉
, R1 =

(
2N − 1

M − 1

)
, (5)

where, |ψ(r)
1,M〉 denotes the rth wavefunction with M excited spins and the first is excited.

When the single spin in the first subsystem is measured in the ground/excited 
state, the second system will re-thermalize to a temperature that is higher/lower. The 
dierences in temperature will be

∆T0 = TM ,2N−1 − TM ,2N ≈ α

N log2(2N/M)
, (6)

∆T1 = TM−1,2N−1 − TM ,2N ≈ −α

M log2(2N/M) (7)

respectively, where the approximations hold for 2N � M � 1. These temperature 
dierences vanish in the thermodynamic limit, but in principle, are detectable for finite 
systems.

If temperature is a local realistic parameter, and not an operator, there is nothing 
in the formal structure of quantum mechanics prohibiting us from knowing the temper-
ature of either system at all times, without having to collapse any wavefunction.

As such, an observer detecting a slight increase or decrease in subsystem two would 
infer that a spin has been measured far away, in subsystem one. Since this can be 

https://doi.org/10.1088/1742-5468/aacfb8
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used for superluminal communication, we must conclude that temperature cannot be a 
parameter that can be known without a wavefunction collapse. There must be quantum 
mechanical constraints on its theoretical definition and its experimental measurement.

The thought experiment presented is essentially a simple thermal analogue of the 
classical EPR setup [29]: we have split a thermal system into two in a way such that 
their temperatures are entangled; and then perturbed the temperature in one system 
by collapsing a single spin, to influence the temperature in the other.

The problem of superluminal communication in the EPR paradox is easily resolved 
thanks to well-defined spin operators and a quantum measurement process that pro-
hibits non-local influences to measurement statistics [30]. However the same operator 
formulation is not available to us for temperature and other thermodynamic variables.

3. Resolution to the paradox

To oer a resolution we define a ‘temperature operator’ T̂  and temperature eigenstates 
to which temperature measurements collapse. In this representation, the states corre-
sponding to particular temperatures must be pure wavefunctions instead of statistical 
mixtures. We must then show that under these definitions, the measurement statistics 
cannot indeed be influenced non-locally.

For isolated systems there is a one-to-one correspondence between temperature 
and total energy (T = f(E)) [19, 31]2. Thus, one natural way of constructing T̂  is to 
map temperature to total energy so that temperature eigenfunctions are identical to 
many-body energy eigenfunctions, and its eigenvalues are the values of temperature 
corresponding to many-body energy eigenvalues.

For experimental compatibility with the standard statistical mechanics, we define 
the temperature operator as

T̂ =
∑
n

f(En)|En〉〈En| = f(Ĥ)
 (8)

where En are many-body energy eigenvalues, and f(E) is obtained from the mapping 
between average energy and temperature

E = f−1(τ) =

∑
n En exp(−En/kBτ)∑

n exp(−En/kBτ)
. (9)

How does this operator resolve the paradox? According to our proposed framework, 
(2), (4) and (5) are all temperature eigenstates corresponding to dierent temper atures. 
In order to know the temperature of the second subsystem, one would have to per-
form a quantum measurement of temperature, which collapses the wavefunction to 
a ‘temper ature eigenstate’. Before this measurement, the system is in an incoherent 
superposition of states that correspond to dierent numbers of spins in the excited state 
in the two subsystems. Thus, a temperature measurement on the second subsystem can 
result in many dierent values with dierent probabilities. Although the measurement 

2 In some atypical systems, temperature is not in one to one correspondence with energy. We exclude such systems 
from this discussion.

https://doi.org/10.1088/1742-5468/aacfb8
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done on the first subsystem causes a superluminal heat transfer, we will show that this 
makes no dierence in the probability of finding the second subsystem at a certain 
temperature.

Before the measurement is performed on a spin in the first subsystem, the probabil-
ity of finding the temperature of the second subsystem to be Tm,N, i.e. collapsing it to 
the temperature eigenstate |Tm,N〉, is

P I
m,N = |ψ(Tm,N)|2 = |〈Tm,N |ψ〉|2 =

1

R

R∑
r=1

∣∣∣
〈
Tm,N |ψ(r)

M

〉∣∣∣
2

. (10)

All states in (2) have M excited spins. Thus, a given term in (10) is 1 if the ψ
(r)
M  

corresponds to m excited spins in the second subsystem and 0 otherwise. The num-

ber of wavefunctions with m excited spins in the second box is w =

(
N

m

)(
N

M −m

)
. 

Substituting R =

(
2N

M

)
 in (10),

P I
m,N =

(
2N

M

)−1 (
N

m

)(
N

M −m

)
. (11)

When the spin in the first system is measured, it can be either in the ground or the 
excited state and the wavefunction collapses into (4) or (5), with probabilities

p0 = e−βµB/Z = M/2N ,

p1 = eβµB/Z = (2N −M)/2N .
 (12)

If the temperature of the second subsystem is measured after this, the probability P F
m,N 

of finding its temperature to be Tm,N is

P F
m,N =

p0
R0

R0∑
r=1

∣∣∣
〈
Tm,N |ψ(r)

0,M

〉∣∣∣
2

+
p1
R1

R1∑
r=1

∣∣∣
〈
Tm,N |ψ(r)

1,M

〉∣∣∣
2

.

Substituting (12) and using similar counting procedures,

P F
m,N =

M

2N

(
2N − 1

M

)−1 (
N

m

)(
N − 1

M −m

)
+

2N −M

2N

(
2N − 1

M − 1

)−1 (
N

m

)(
N − 1

M −m− 1

)

=

(
2N

M

)−1 (
N

m

)(
N

M −m

)

which, as we see, is equal to the P I
m,N in (11). In other words, while the measurement of 

a spin in the first subsystem can aect the outcome of a temperature measurement in 
the second subsystem and lead to superluminal heat transfer, this does not cause any 
measurable non-local statistical dierence.

So far we have described the temperature operator for isolated systems. In gen-
eral, a system can interact with the environment or with a heat bath. If temperature 
is defined in terms of energy, as in (8), for a system with finite number of particles, 
interactions with the environment will cause the wavefunction |ψ〉 of the system to 

https://doi.org/10.1088/1742-5468/aacfb8
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be in a superposition of dierent energies and hence a superposition of temperatures. 
A temper ature measurement as defined in equation (8), could then yield a number of 
dierent values, with probability |ψ(T )|2 = |〈T |ψ〉|2, where |T 〉 is an eigenstate of the 
operator equation (8). Note that if the system in the canonical ensemble has an infinite 
number of particles, it is equivalent to a microcanonical ensemble and its energy is con-
stant. Therefore, as in the case of isolated systems, temperature measurements always 
give the same value. From the point of view presented in this paper, such system 
remains in a temperature eigenstate, with zero quantum uncertainty in temperature.

4. Alternative temperatures for alternative thermometers

While defining a temperature operator by mapping it to the Hamiltonian does provide 
a solution to the ‘thermal EPR paradox’ discussed above, this mapping is not unique. 
Other variables such as kinetic energy, magnetization or position can also be mapped 
to temperature. These alternative operators will have fundamentally dierent proper-
ties and need not even commute with each other.

A general temperature measurement involves a system (S) and a thermometer (M) 
that interacts with the system. The general Hamiltonian (Ĥ) for the system-thermom-
eter supersystem is Ĥ = ĤS + ĤM + Ĥint. We will denote corresponding temperatures, 
energies and wavefunctions with the same subscripts, S and M.

When a thermometer is coupled to the system, the supersystem thermalizes to a 
temperature eigenstate with temperature TS. The thermometer must have an indicat-
ing (many-body) variable X̂, e.g. energy, position or magnetization, the expectation 
value of which depends sensitively on temperature, 〈XS〉 = f−1(TS), analogous to (9).

For the thermometer to read out the instantaneous temperature at a given time, it 
must perform a single quantum measurement of X̂, and then map it to a temperature. 
Once the measurement is complete, the supersystem collapses into a temperature eigen-
state Tm = f(Xm). As a concrete example, in the next section we study the properties 
of a simple thermometer that utilizes position as an indicating variable.

5. Position thermometer

A standard mercury thermometer displays the temperature in terms of the amount of 
expansion of a mercury column. Thus, from an empirical and operational point of view, 
if position is an operator, then so temperature should be also.

Conceptually motivated by the mercury column, we now model a ‘device’ that dis-
plays temperature in terms of the position of a ‘indicator needle’.

The device simply consists of a collection of N one-dimensional harmonic oscillators 

with natural frequency ω and mass m. We will take the indicating variable to be the sum 

of their squared positions, Ŷ = 1
N

∑
i x̂

2
i. This is an alternative convention to (8), where 

now temperature and position commute, and a measurement of an ensemble of positions 
will result in a collapse of the wavefunction of the system to a temperature eigenstate |T 〉.

https://doi.org/10.1088/1742-5468/aacfb8
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A full description of out-of-equilibrium dynamics of the thermometer would require 
either solving the Schrodinger’s equation for the entire supersystem or describing the 
system as a source of dissipation and noise [32, 33]. For the sake of simplicity, we will 
instead assume that the system is isolated, at thermal equilibrium and in a temperature 
eigenstate TS. We also assume that the system is much larger than the thermometer, so 
that the system-thermometer supersystem thermalizes to a temperature almost exactly 
equal to TS.

When the thermometer reaches equilibrium with the system, its wavefunction and 
density operator is fully defined by the (non-operator) quantity TS, the temperature of 
the system,

|ψM〉 = 1

Γ

[ ∞∑
j=1

|Ej〉 exp(−Ej/2kBTS)e
iφj

]
,

ρ̂M = exp(−ĤM/kBTS)/Z; Z = Tr(exp(−ĤM/kBTS))
 (13)

where Γ is a normalization constant and φj are random phases that occur along with 
the Boltzmann factors due to tracing over the system degrees of freedom.

Given that the system is in a temperature eigenstate TS what is the quantum expec-
tation value and quantum uncertainty of T̂  for the ‘indicator needle’ of our temper-
ature measurement device? 

At equilibrium with the system, the variance in position is (see appendix),

〈x̂2〉 = �
2mω

coth

(
�ω

2kBTS

)
. (14)

We substitute the quantum variable Ŷ  for 〈x2〉 and T̂  for TS, so that the temper-
ature reading of the thermometer is mapped to a physical variable,

T̂ =
�ω
2kB

[
arcoth(2mωŶ /�)

]−1

. (15)

This equation can be viewed as a calibration curve for our thermometer, in the sense 
that once an observer measures Ŷ , obtains an eigenvalue Ym, she would use (15) to get 
the instantaneous temperature Tm, an eigenvalue of T̂ .

The position distribution for a single thermalized harmonic oscillator is (see appendix)

P (x) = exp(−x2/2σ2)/
√
2πσ2 (16)

where σ2 = (�/2mω) coth(�ω/2kBTS). Therefore the probability distribution for y  =  x2 
is given by

P (y) =
dx

dy

∣∣∣∣
x

P (x) +
dx

dy

∣∣∣∣
−x

P (−x) =
1

σ
√
2πy

exp
(
− y

2σ2

)
. (17)

From the above distribution we determine that 〈y〉 = σ2 and Var(y) = 2σ4. We can 
use the central limit theorem to approximate the distribution for the many-body vari-
able Ym,

P (Ym) = |〈Ym|ψM〉|2 ≈
√

N

2πσ4
exp

(
−N(Ym − σ2)2

2σ4

)
. (18)

https://doi.org/10.1088/1742-5468/aacfb8
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Finally, the probability distribution for temperature is obtained from (15),

P(T ) = |〈T |ψM〉|2 = dYm

dT
P (Ym) =

�2

4mkBT 2
csch2

(
�ω

2kBT

)
P (Ym(T ,TS)) (19)

where

P (Ym(T ,TS)) =

√
N

2πσ4
exp

{
−N�2

8m2ω2σ4

[
coth

(
�ω

2kBT

)
− coth

(
�ω

2kBTS

)]2}
.

 

(20)

The average temperature measured by this thermometer is the expectation value of 
the temperature operator and is approximately equal to the temperature of the system. 
Figure 2 shows the expectation value and quantum uncertainty associated with the 
temperature operator for various TS, N and ω.

Equation (9) is correct only when the energy on the left side is the expectation value 
of energy (or another indicating variable). Therefore, to measure the exact temperature, 
one must make repeated measurements of the variable, take their average and solve 
equation (9) (or a similar equation for that variable). However, quantum mechanics only 
allows instantaneous measurements defined by linear operators. As such, we cannot define 
an operator as the average of several measurements. Instead, we define the temperature 
operator in terms of the measured energy or position. Therefore, the expectation value of 
the temperature operator may not be equal to the temperature of the system, which is 
equal to the temperature eigenvalue corresponding to the average value of the variable. 
This deviation can be seen in figure 2 for oscillators with high natural frequencies. This 

Figure 2. The system has a temperature TS and the thermometer consists of 
N harmonic oscillators of a given natural frequency (ω) and the mass m of each 
harmonic oscillator is assumed to be equal to the mass of a typical molecule (6 
a.u.). (A). The expectation value of the temperature operator is plotted against 
the temperature of the system for dierent TS, ω and N. Oscillators with very high 
natural frequency are inaccurate at low temperatures, but their accuracy increases 
with N. (B). The uncertainty in temperature is plotted against N for various ω. 
As N increases, the uncertainty in temperature decreases. For ω < 10 THz, the 
uncertainty is not strongly dependent on ω.

https://doi.org/10.1088/1742-5468/aacfb8


Temperature as a quantum observable

11https://doi.org/10.1088/1742-5468/aacfb8

J. S
tat. M

ech. (2018) 073102

problem goes away when the number of particles is so large that the wavefunction of the 
thermometer is approximately a delta function at the expectation value.

6. Experimental consequences

The operator view of temperature has testable consequences. Specifically, it should 
be possible to construct systems whose wavefunctions are superpositions of two or 
more dierent temperature eigenfunctions. We propose an experiment to observe such 
temperature superpositions in figure 3. A paramagnetic material is kept at a temper-
ature T1. A photon is passed through a beam splitter towards the material, which if 
absorbed, will raise the temperature of the material to T2. This causes the material to 
be in a superposition of two temperature states, and hence two magnetizations. A spin 
source placed near the material emits pulses of particles with identical spin state. When 
the spin pulse reaches the screen with two slits, the spins will be in a superposition of 
two dierent scattered states. Therefore, we should be able to see an interference pat-
tern on the rear screen. If just a spot is observed behind either of the slits, then this 
will indicate that the temperature operator that we have described is not the correct 
way to resolve the paradox discussed above.

Furthermore, if the material is ferromagnetic and slightly below its Curie temper-
ature, a photon projected through a beam splitter should bring the system into a super-
position of temperature eigenstates that corresponds to a superposition of macroscopic 
phases. A substance can be cold and hot, or a ferromagnet and a paramagnet at the 
same time.

Figure 3. Proposed experiment to observe temperature superposition states. A 
paramagnetic substance is kept at a temperature T1. A source emits a photon 
of high energy, enough to slightly raise the temperature of the substance upon 
absorption. A beam splitter is kept between the source and the sample so that 
the sample is in a superposition of two temperature states, and thus two dierent 
magnetizations. When the spins emitted by a source reach the screen with two 
slits, they will be in a superposition of two dierent scattered states. Therefore, 
we should be able to see an interference pattern on the rear screen. If just a spot 
is observed behind either of the slits, then this will indicate that the temperature 
operator that we have described is not the correct way to resolve the paradox.
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Note that if each spin acquires a dierent random phase while passing by the ther-
malized magnetic material, the interference pattern will be washed out. Therefore it is 
important that the spins are ejected in a suciently tight pulse, so that they all experi-
ence the same magnetic state of the material.

7. Discussion

We presented a thought experiment that leads to a violation of causality if the stan-
dard definition of temperature is used. We then suggested a possible way of resolving 
the issue by promoting temperature to a quantum operator. Specifically, we considered 
two possible operator definitions, one based on energy and another based on position. 
We considered a model thermal measurement device that displays the temperature of 
a system through the position of an indicator, and determined expectation values and 
quantum uncertainties associated with the ‘indicator needle’ of this device, and thus, 
that of temperature.

In our framework, the temperature operator must be system specific, in the sense 
that a quantum thermometer needs to be calibrated according to the system that 
it measures. For example, for an energy-measuring thermometer, the mapping (9) 
between energy and temperature depends on the density of states of the system. Thus, 
a thermometer must be re-calibrated whenever a dierent system is to be measured. 
Furthermore, since the density of states will be perturbed upon the coupling of the 
thermometer and the system, a thermometer needs to be calibrated also according to 
how strongly it interacts with a system. Similar eects has already been considered for 
classical thermometers [20].

It was pointed out in [34], in a very similar spirit to the present work, that temper-
ature and pressure are not fundamental observables, but can only be inferred indirectly. 
For example, the temperature of a system can be estimated by doing one single (classi-
cal) measurement of energy. This procedure and statistical errors resulting from it were 
studied in [18, 19]. Estimation of the temperature of a system by repeated energy mea-
surements on the same system was discussed in [35]. Some eigenstate specific temper-
atures and statistical inference errors arising from them have been investigated in [36].

Even though [18, 19, 34–36] discuss temperature uncertainties or assign temper-
atures to eigenstates of other operators, these investigations still view temperature as 
a local realistic parameter, in the sense that systems do have a definite temperature, 
but this temperature cannot be inferred accurately due to the fluctuations in energy 
and the finite number of measurements. This view of temperature strictly prohibits 
interference eects.

In our view however, an uncertainty in temperature can be intrinsically quantum 
mechanical, as discussed at the end of section 3. In most experiments these quant um 
mechanical uncertainties will not manifest as interference eects due to incoher-
ence between thermal states in thermal superpositions. However we can hope that 
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macroscopic superposition experiments such as that shown in figure 3 can tease out the 
quantum nature of temperature.

Recent theoretical studies of nanoscale thermometers such as [37] support the idea 
of a quantum uncertainty for temperature. Future experiments similar to that described 
in figure 3 may further help distinguish between alternative resolutions to our EPR-
like problem, developing and strengthening the foundations of temperature beyond the 
elementary arguments oered here.

Furthermore, what we have argued here for temperature might also make sense for 
other macroscopic thermodynamic entities such as free energy, entropy, volume and 
pressure, so that they too are redefined in terms of the Hamiltonian or other operators 
[34, 38].

Appendix. Derivation of harmonic oscillator position distribution

For the sake of completeness here we include a derivation of the position distribution 
of a thermalized harmonic oscillator [40–42].

The Hamiltonian for a one-dimensional harmonic oscillator is

Ĥ = �ω(a†a+ 1/2).

So the diagonal element of the density matrix in the position basis ρ(x) can be written 
as

ρ(x) = Z−1 exp(−λ/2) f(x) (A.1)

where, λ = β�ω and f(x) = 〈x| exp(−λa†a)|x〉. (A.2)

We calculate the variation in f(x) when x is changed slightly:

|x+ dx〉 = (1− ip

�
dx)|x〉

Hence, f(x+ dx) = f(x) +
idx

�
〈x|

[
p, exp(−λa†a)

]
|x〉.

 

(A.3)

Since x is proportional to (a+ a†) and p is proportional to (a− a†), we evaluate the 
quantities:

a exp(−λa†a)|φn〉 =
√
n exp(−λn)|φn−1〉 (A.4)

exp(−λa†a)a|φn〉 =
√
n exp(−λ(n− 1))|φn−1〉. (A.5)

From (A.4) and (A.5),

exp(−λa†a)a = exp(λ)a exp(−λa†a). (A.6)

Similarly,

exp(−λa†a)a† = exp(−λ)a† exp(−λa†a). (A.7)
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Subtracting (A.7) from (A.6),

[a− a†, exp(−λa†a)] = tanh(λ/2)[a+ a†, exp(−λa†a)]+. (A.8)

Using x =
√

�/2mω(a+ a†) and p =
√

�/2mω(a+ a†):

[ p, exp(−λa†a)] = imω tanh(λ/2)[x, exp(−λa†a)]+. (A.9)

Substituting (A.9) in equation (A.3), we get:

f(x+ dx)− f(x) = −mω

�
dx tanh(λ/2)〈x|[x, exp(−λa†a)]+|x〉

= −2x
mω

�
tanh(λ/2) f(x)dx.

 
(A.10)

Therefore, f(x) satisfies the dierential equation

df(x)

dx
+

2x

ξ2
f(x) = 0

where, ξ =

√
�
mω

coth

(
λ

2

)
.

 

(A.11)

The solution to (A.11) is

f(x) = f(0) exp(−x2/ξ2). (A.12)

Since the probability distribution is normalized to 1, we finally obtain

ρ(x) =
1

ξ
√
π
exp(−x2/ξ2). (A.13)

Therefore, 〈x̂〉 = 0 and 〈x̂2〉 = �
2mω

coth(β�ω
2
). The same result has been derived using 

other techniques in [40, 42].

References

  [1]  Hänggi P, Hilbert S and Dunkel J 2016 Phil. Trans. R. Soc. A 374 20150039
  [2]  Swendsen R H 2017 arXiv:1702.05810
  [3]  Swendsen R H and Wang J-S 2016 Physica A 453 24
  [4]  Swendsen R H and Wang J-S 2015 Phys. Rev. E 92 020103
  [5]  Buonsante P, Franzosi R and Smerzi A 2016 Ann. Phys. 375 414
  [6]  Dunkel J and Hilbert S 2014 Nat. Phys. 10 67
  [7]  Frenkel D and Warren P B 2015 Am. J. Phys. 83 163
  [8]  Cerino L, Puglisi A and Vulpiani A 2015 J. Stat. Mech. P12002
  [9]  Sewell G L 2008 J. Phys. A: Math. Theor. 41 382003
 [10]  Landsberg P T and Matsas G E 1996 Phys. Lett. A 223 401
 [11]  Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. Rev. Lett. 23 880
 [12]  Mareš J, Hubík P, Šesták J, Špička V, Krištofik J and Stávek J 2010 Physica E 42 484
 [13]  Puglisi A, Sarracino A and Vulpiani A 2017 Phys. Rep.
 [14]  Hartmann M, Mahler G and Hess O 2004 Phys. Rev. Lett. 93 080402
 [15]  Hartmann M, Mahler G and Hess O 2005 Physica E 29 66
 [16]  Hartmann M and Mahler G 2005 Europhys. Lett. 70 579
 [17]  Hartmann M, Mahler G and Hess O 2004 Phys. Rev. E 70 066148
 [18]  Mahler G 2014 Quantum Thermodynamic Processes: Energy and Information Flow at the Nanoscale (Boca 

Raton, FL: CRC Press) pp 307, 312–5

https://doi.org/10.1088/1742-5468/aacfb8
https://doi.org/10.1098/rsta.2015.0039
https://doi.org/10.1098/rsta.2015.0039
http://arxiv.org/abs/1702.05810
https://doi.org/10.1016/j.physa.2016.01.068
https://doi.org/10.1016/j.physa.2016.01.068
https://doi.org/10.1103/PhysRevE.92.020103
https://doi.org/10.1103/PhysRevE.92.020103
https://doi.org/10.1016/j.aop.2016.10.017
https://doi.org/10.1016/j.aop.2016.10.017
https://doi.org/10.1038/nphys2815
https://doi.org/10.1038/nphys2815
https://doi.org/10.1119/1.4895828
https://doi.org/10.1119/1.4895828
https://doi.org/10.1088/1742-5468/2015/12/P12002
https://doi.org/10.1088/1751-8113/41/38/382003
https://doi.org/10.1088/1751-8113/41/38/382003
https://doi.org/10.1016/S0375-9601(96)00791-8
https://doi.org/10.1016/S0375-9601(96)00791-8
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1016/j.physe.2009.06.038
https://doi.org/10.1016/j.physe.2009.06.038
https://doi.org/10.1103/PhysRevLett.93.080402
https://doi.org/10.1103/PhysRevLett.93.080402
https://doi.org/10.1016/j.physe.2005.05.002
https://doi.org/10.1016/j.physe.2005.05.002
https://doi.org/10.1209/epl/i2004-10518-5
https://doi.org/10.1209/epl/i2004-10518-5
https://doi.org/10.1103/PhysRevE.70.066148
https://doi.org/10.1103/PhysRevE.70.066148


Temperature as a quantum observable

15https://doi.org/10.1088/1742-5468/aacfb8

J. S
tat. M

ech. (2018) 073102

 [19]  Jahnke T, Lanery S and Mahler G 2011 Phys. Rev. E 83 011109
 [20]  Baldovin M, Puglisi A, Sarracino A and Vulpiani A 2017 J. Stat. Mech. 113202
 [21]  Brites C D, Lima P P, Silva N J, Millán A, Amaral V S, Palacio F and Carlos L D 2012 Nanoscale 4 4799
 [22]  Horodecki M and Oppenheim J 2013 Nat. Commun. 4 2059
 [23]  Ferraro A, García-Saez A and Acín A 2012 Europhys. Lett. 98 10009
 [24]  Pathria R K and Beale P D 2011 Statistical Mechanics (New York: Academic) p 120
 [25]  Tolman R C 1938 The Principles of Statistical Mechanics (Oxford: Clarendon Press)
 [26]  Srednicki M 1994 Phys. Rev. E 50 888
 [27]  Gogolin C and Eisert J 2016 Rep. Prog. Phys. 79 056001
 [28]  Malabarba A S, García-Pintos L P, Linden N, Farrelly T C and Short A J 2014 Phys. Rev. E 90 012121
 [29]  Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
 [30]  Bell J S 2004 Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philoso-

phy (Cambridge: Cambridge University Press)
 [31]  Falcioni M, Villamaina D, Vulpiani A, Puglisi A and Sarracino A 2011 Am. J. Phys. 79 777
 [32]  Weiss U 2012 Quantum Dissipative Systems vol 13 (Singapore: World Scientific)
 [33]  Gardiner C and Zoller P 2004 Quantum Noise: a Handbook of Markovian and Non-Markovian Quantum 

Stochastic Methods with Applications to Quantum Optics vol 56 (Berlin: Springer)
 [34]  Gemmer J, Michel M and Mahler G 2009 Quantum Thermodynamics (Berlin: Springer) pp 263–74
  Gemmer J, Michel M and Mahler G 2009 Quantum Thermodynamics (Berlin: Springer) pp 275–89
  Gemmer J, Michel M and Mahler G 2009 Quantum Thermodynamics (Berlin: Springer) pp 149–55
 [35]  De Pasquale A, Yuasa K and Giovannetti V 2017 Phys. Rev. A 96 012316
 [36]  Borgonovi F, Mattiotti F and Izrailev F M 2017 Phys. Rev. E 95 042135
 [37]  Miller H J and Anders J 2018 Nat. Commun. 9 2203
 [38]  Borowski P, Gemmer J and Mahler G 2003 Europhys. Lett. 62 629
 [39]  Saeedi K, Simmons S, Salvail J Z, Dluhy P, Riemann H, Abrosimov N V, Becker P, Pohl H-J, Morton J J 

and Thewalt M L 2013 Science 342 830
 [40]  Feynman R P 1972 Statistical Mechanics: a Set of Lectures (New York: W.A. Benjamin)
 [41]  Cohen-Tannoudji C, Diu B and Laloe F 1991 Quantum Mechanics vol 1 (New York: Wiley)
 [42]  Barragán-Gil L and Walser R 2018 Am. J. Phys. 86 22

https://doi.org/10.1088/1742-5468/aacfb8
https://doi.org/10.1103/PhysRevE.83.011109
https://doi.org/10.1103/PhysRevE.83.011109
https://doi.org/10.1088/1742-5468/aa933e
https://doi.org/10.1039/c2nr30663h
https://doi.org/10.1039/c2nr30663h
https://doi.org/10.1038/ncomms3059
https://doi.org/10.1038/ncomms3059
https://doi.org/10.1209/0295-5075/98/10009
https://doi.org/10.1209/0295-5075/98/10009
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1103/PhysRevE.90.012121
https://doi.org/10.1103/PhysRevE.90.012121
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1119/1.3563046
https://doi.org/10.1119/1.3563046
https://doi.org/10.1103/PhysRevA.96.012316
https://doi.org/10.1103/PhysRevA.96.012316
https://doi.org/10.1103/PhysRevE.95.042135
https://doi.org/10.1103/PhysRevE.95.042135
https://doi.org/10.1038/s41467-018-04536-7
https://doi.org/10.1038/s41467-018-04536-7
https://doi.org/10.1209/epl/i2003-00420-8
https://doi.org/10.1209/epl/i2003-00420-8
https://doi.org/10.1126/science.1239584
https://doi.org/10.1126/science.1239584
https://doi.org/10.1119/1.5008268
https://doi.org/10.1119/1.5008268

	﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿Temperature as a quantum observable
	﻿﻿Abstract
	﻿﻿1. ﻿﻿﻿Introduction
	﻿﻿2. ﻿﻿﻿Thought experiment: entangling temperature
	﻿﻿3. ﻿﻿﻿Resolution to the paradox
	﻿﻿4. ﻿﻿﻿Alternative temperatures for alternative thermometers
	﻿﻿5. ﻿﻿﻿Position thermometer
	﻿﻿6. ﻿﻿﻿Experimental consequences
	﻿﻿7. ﻿﻿﻿Discussion
	﻿Appendix. ﻿﻿﻿Derivation of harmonic oscillator position distribution
	﻿﻿﻿References﻿﻿﻿﻿


