A tutorial on Stalmarck’s proof procedure for
propositional logic

Mary Sheeran and Gunnar Stalmarck

Prover Technology AB and Chalmers University of Technology, Sweden

Abstract. We explain Stalmarck’s proof procedure for classical propo-
sitional logic. The method is implemented in a commercial tool that has
been used successfully in real industrial verification projects. Here, we
present the proof system underlying the method, and motivate the vari-
ous design decisions that have resulted in a system that copes well with
the large formulas encountered in industrial-scale verification.

1 Introduction

In the computer aided design of electronic circuits, a key function is tautol-
ogy checking, that is testing whether a Boolean expression is true for all truth
assignments of its variables. Tautology checking is used not only in hardware ver-
ification, but also in synthesis and optimisation. All known methods of tautology
checking take time exponential in the size of the input formula, in the worst case.
Since the problem is known to be co-NP complete [9], it seems unlikely that we
can do any better than this in the worst case. But what about the formulas that
actually arise in practice? In many cases, Binary Decision Diagrams (BDDs) and
their variants work well, both for tautology checking and for other applications,
such as model checking. A glance through the proceedings of the first conference
on Formal Methods for CAD confirms that BDDs have become ubiquitous in
hardware verification [31].

In this tutorial, we explain Stdlmarck’s method of tautology checking that
may well rival BDDs [8] in some applications, but that is relatively unknown
in the hardware verification community [15]. This patented method is imple-
mented in a commercial tool that has been used in many industrial system
verification projects [5]. Complex devices, such as engine management units or
railway interlocking systems, are modelled in propositional logic, either directly
or by translation from industry-standard formats. The required properties of the
system are also expressed in propositional logic, and to verify the system is to
check that the formula system — properties is a tautology. Often, the verification
problem can be expressed as an inductive proof, and the base case and the step
checked using Stalmarck’s method. Many of these real-world verifications give
rise to enormous formulas that could not be handled by current BDD packages.
Groote has found Stalmarck’s method to be very efficient compared to BDD-
based methods and the Otter prover in the verification of the safety guaranteeing

system at a particular Dutch railway station [14]. The largest formula encoun-
tered so far arose in railway interlocking; it had 350, 000 connectives and the log
recording the proof (for later independent checking) was 780 megabytes long.

The exciting thing about Stalmarck’s method is that it copes with such
formulas with aplomb, provided that they are easy according to a proof-theoretic
measure that we will discuss later. And what is even more surprising is that real-
world problems do indeed give rise to large but easy formulas.

Let us first give a brief and informal description of the method, before be-
ginning a deeper analysis of it.

2 Stalmarck’s method in brief

Stalmarck’s proof method for propositional logic can be understood in various
different ways. Here, we first present the algorithm very briefly. Our intention
is to give the reader some intuition about the operation of the algorithm, while
whetting his appetite for the deeper study that follows. The presentation in this
section is much influenced by an early paper by Stélmarck and Saflund [33].
There is a straightforward translation from formulas in propositional logic

(say with negation, conjunction, disjunction and implication) to formulas built
from only implication and L (false). We repeatedly apply the following trans-
formations:

AVB to -A—B

AANB to —(A—--B)

-—A to A

—-A to A— L

Let such an implication formula have propositional variables a4, ...a,, and
compound subformulas By, ... By. By is A itself, and B; = C; — D;, where C;
and D; are subformulas of A. We invent a new name b; (different from each
a;) for each compound subformula B;. Thus b; is the variable representing the
formula B;, and we write rep(B;) = b;. A propositional variable represents the
formula that is just that variable: rep(a;) = a;.

Now, the formula A can be represented by the set of triplets

(b1, rep(Ch), rep(D1))

(bg, 1ep(Ck),rep(Dy))

where a triplet (z,y,2) is an abbreviation for z < (y — z). We treat L as a
special case of a propositional variable, and write it as 0 in triplets. We write T
(true) as 1.

Ezample The formula p — (¢ — p) becomes

(b1,q,p)
(b2,p,b1)

To prove a formula valid, we assume it to be false and try to derive a con-
tradiction using either simple rules or a branching rule called the dilemma rule.

Simple rules A simple rule takes a triggering triplet and derives new information
about its variables. For example, we know that if y — z is false, then y must be
true and z false. We write this rule as

o 8

Applying a rule to an element of a set of triplets gives a new set of triplets
into which we substitute the newly calculated variable instantiations. The new

set need not contain the triggering triplet, as a triplet can only be triggered once,
and a triggered triplet cannot be terminal, as defined below.

Ezample (continued) The formula p — (¢ — p) gave triplets

(b1,q,p)
(b2,p, b1)

Assume b2 (which corresponds to the formula itself) to be false and apply rule
r1 to the triplet (0, p,bl), dropping that triplet from the set:

(b1,q,p)
(0,p,b1) =

(b1,4,p)[p/1,b1/0] =

(0,4,1)
The single triplet that results is what we call a terminal triplet. It is contra-
dictory, since it is not possble that ¢ — 1 is false. Since the assumption that
p — (¢ — p) is false gives a terminal triplet, we conclude that the formula is valid.

The other terminal triplets are (1,1,0) and (0,0, z).

We now list the remaining 6 simple rules:

(z,0,2)
z/1

oz BB)

(m7 17 z) (m7 y7 0)
(r4) ryF (r5) I

(r6) (w;r}r,lz) (r7) (:c;z;,ly)

Note that in rules 74 and r5 we gain information not about the exact value
of a variable, but about the equality or inequality of two variables. The reader
might like to check that a triggered triplet is never terminal.

The simple rules alone are not complete. We need some form of branching.

Dilemma rule

T
T[z/1] T[z/0]
D1 D2
U[S1] V[Ss]
T1S]

D; and D- are derivations (or proofs). D; starts from the set of triplets T' and the
assumption that z is true. Dy starts from T and the assumption that z is false.
If one of these derivations gives a terminal triplet, then the result of applying
this rule is the result of the other derivation. If neither D; nor D> leads to a
contradiction, then the resulting substitution (or variable instantiation) is the
intersection of S7 and S2. Any information gained both from assuming that z is
true and from assuming that it is false must hold independent of the value of z.

Ezample We show the formula ((p—p) = p) = (p—9q) = (p—q9) = p) —q)
to be a tautology. The triplets produced are

(b1,p,9)
(b2,b1,p)
(63,02, q)
(b4,p,9)
(b5, p,p)
(b6, b5, p)
(b7, 6, b4)
(68,07, b3)

We set b8 to be false and apply the simple rules repeatedly. We start by applying
rule r1 to the last triplet, and applying the resulting substitution, which we list

in place of the triggering triplet, since that can be dropped:

(b1,p,9)
(b2,01,p)
(0,82, q)
(b4,p,9)
(b5,p,p)
(b6, b5, p)
(1,6, b4)
[b7/1,53/0]

This gives another opportunity to apply rule r1 on the triplet that starts with
0:

(b1, p,0)
(1,b1,p)
[b2/1,4/0]
b4,p,0)

b5,p,p)
b6, b5, p)

1,56, b4)
[b7/1,3/0]

(
(
(
1,

Next, we apply rule 77 to the triplet that ends with two ps, followed by 74 to
the triplet below it.

(b1,p,0)
(1,61, p)
[b2/1,4/0]
(b4,p,0)
[b5/1]
[b6/p]
(1,p,b4)
[b7/1,53/0]

Finally, we apply rule 75 to each of the triplets ending with 0.

[b7/1,b3/0]

Now, we have only two triplets left: (1, —p, p) and (1, p, —p) and none of the simple
rules applies. We must apply the dilemma rule. In the left branch, we assume p to
be true and get the triplets (1,0,1) and (1,1, 0), the second of which is terminal.
In the other branch, we get the same two triplets but in the reverse order, so we
reach a contradiction in both branches and the application of the dilemma rule
also results in a contradiction. This means that the assumption that the formula
is false leads to a contradiction, so we conclude that the formula is a tautology.

The proof system M consisting of the simple rules 71 to 7 and the dilemma
rule is sound and complete for formulas made from variables and implication.
Any boolean formula can be translated to such a formula in linear time by a
procedure described by Stalmarck [32]. So the system M is sound and complete
for full propositional logic.

We make the proof system into a proof method by making a sequence of
increasingly more powerful subsystems of M. M, is M without the dilemma
rule. M;y; is M in which the derivations in the two branches of the dilemma
rule are restricted to be M; derivations. So, proofs in M; have at most one
open assumption about the value of a variable, proofs in My have at most two
simultaneous assumptions, and so on.

Stalmarck’s method can be seen as a family of algorithms that efficiently
search for short proofs in M; for a given 4. One can find a proof in My in linear
time; this is just the closure of the simple rules. The time required to exhaustively
search for a proof in My, is O(n?**1), where n is the size of the formula.

We say that a valid formula is i — hard if it is provable in M;, but not provable
in M; for any j < 4. This notion of formula hardness is important, and we will
return to it. For now, it is sufficient to note that many industrial verification
problems give rise to formulas whose hardness degree is 0 or 1. The formulas
may be large, but the method is much more sensitive to the hardness degree of
a formula than to its size in terms of number of variables or connectives. This
means that the method is applicable for industrial verification, even at large
scale.

It is tempting to believe that the reader who understands the above descrip-
tion of Stalmarck’s method knows all that he needs to know about the method.
Our contention is that this is not the case. One can gain a much deeper under-

standing of the method by placing it in a wider context, and by comparing it to
more standard approaches. So please read on!

In the remainder of this tutorial, we first briefly present two standard proof
systems for propositional logic: Gentzen’s cut-free sequent calculus and seman-
tic tableaux. Next, we show how cut-free proofs are intrinsically redundant, and
motivate a rather different proof method, in which we use relations on formulas,
rather than just sets of formulas that are known to be true or false. The sys-
tem KE and the Davis-Putnam procedure can be seen as special cases of this
approach. Next, we add a new kind of rule, to give the Dilemma proof system.
This is the system that underlies Stdlmarck’s method. Finally, we outline the
Dilemma proof procedure, give some important complexity results, and discuss
applications.

3 Necessary Background: Proof Systems

In order to understand why a proof procedure is efficient from a practical point
of view, we must study the underlying proof system. A proof procedure consists
of two parts: an inductive definition of the classical consequence relation (that
is rules about what it means to be a tautology) and a related algorithm for
generating proofs. The algorithm can really only be understood by showing how
it relates to a particular way of defining the consequence relation. And the way
in which one defines the consequence relation — the choice of underlying proof
system — has a surprisingly large effect on the performance of the resulting
algorithm. So the first step in designing an efficient proof procedure is to choose
a suitable proof system. Let us review some standard proof systems for classical
propositional logic, and their properties.

3.1 Gentzen’s Sequent Calculus with Cut

Gentzen introduced the sequent calculus during the thirties in order to prove
his Hauptsatz. Tt states that all proofs can be brought into a form in which
the only formulas appearing in the proof are subformulas of the formula to be
proved. Proofs in this calculus contain expressions of the form {A;,..., A, } F
{Bi,...,Bmn}, so called sequents, informally read as “if all of the A;s are true,
then one of the Bjs is true”.

Proofs start from obviously valid sequents of the form A + A, the axioms.
Complex formulas are then built up in the sequents by applications of operational
rules. The calculus also includes a rule for introducing new formulas, the thinning
rule, and one rule that removes formulas, the cut rule. Thinning can be used to
minimize the number of different sequents in proofs and hence, to reduce proof
complexity when proofs are viewed as directed acyclic graphs, rather than trees.
When presenting the rules, we write I', A for the set I'U {A}.

Axiom

AFA

Structural Rules

I'rA cwy DAFA Traa
T,0F A, A Y TFA

(Thinning)

Operational Rules

(Or-teft) L AFZxA v BFI’—BAF : (Or-right) IF :AA? :‘114\’/%
nicef) iR (Andrh)

(mpte) TSR i)
(Neg-left) % (Neg-right) %

3.2 Removing Cut, and Gaining the Subformula Principle

The sequent calculus is complete, even if we remove the Cut rule. That is what
Gentzen’s Haupsatz says. All of the rules of the cut-free sequent calculus are
elimination rules, so the system trivially obeys the subformula principle. Every
proof uses only subformulas of the formula to be proved. No extraneous formulas
or definitions are used, so that only concepts that were already there in the
formula to be proved are used. The proof is direct, or as Gentzen put it, it is not
roundabout [13]. As we shall see later, having the subformula principle allows
us to place bounds on proof size, and this is very important in practice.

3.3 Removing Thinning

If, in addition, we take as axioms sequents of the form I’ A - A, A, then we can
add extra formulas using axioms, and the Thinning Rule becomes redundant and
can be removed. The resulting system is essentially the same as Kleene’s system
G4 [18]. This system has been particularly important in automated deduction
because it lends itself to a goal oriented proof search. One can start with the
sequent that is to be proved and use the rules backwards, aiming to reach axioms
or obviously unprovable sequents. This proof procedure works because all of the
rules in G4 are invertible: the provability of the sequent below the line implies
the provability of the sequents above the line. Note that the thinning rule is not
invertible.

3.4 The Semantic Tableau Method

Smullyan’s system of ‘analytic tableaux’ [30] is another classic proof method.
Any valuation of a formula (an assignment of T (true) or L (false)) to the

propositional variables) must make the formula either true or false. So, for each
connective, we examine the possible cases. If A A B is true, then A must be true
and B must be true (the And rule). If A A B is false, then A is false or B is
false and we explore both possibilities (the Not-And rule). This combination of
the law of the excluded middle with the usual semantic interpretation of the
connectives gives the following tableau rules for propositional logic:

AANB -(AV B)
(And) A (Not-Or) -A
B -B
AV B -(A A B)
-(A — B)
(mp) 228 (Not-tmp) A
-A|B
-B
(Not-Not) _;A

This method analyses a formula by progressively breaking it into its compo-
nent parts, using these rules. The branching rules (Or, Impl and Not-And) are
such that the disjunction of the formulas in the branches is a consequence of the
formula above the line. Rules such as Not-Or that have two formulas below the
line are just shorthand for a pair of rules, each giving a single formula. We start
with the formula to be proved at the root of a tree and repeatedly apply the
above rules. Along any path through the tree, we build up information about
one possible valuation of the subformulas, by gathering a set that contains all
of the formulas along that path. Think of this as being all of the formulas that
we know to be true in a particular valuation. If we end up with an explicitly
contradictory set, one containing both A and —A for some formula A, then the
exploration of that branch has failed to find a model (a setting of the proposi-
tional variables the makes the formula true). If all of the branches of the tree are
contradictory in this way, then we know that there is no model of the formula,
so it is contradictory and its negation is valid.

Semantic Tableaux systems were first introduced during the fifties, by Beth,
Kanger, Hintikka and Shiitte almost simultaneously [3,17,16,24]. Because the
system has only elimination rules, it trivially obeys the subformula principle.
This has the important effect of placing a limit on the size of proofs in relation
to the size of the formula to be proved. We write the size of formula A as |A|.
It is the number of variable occurrences plus the number of connectives. The
number of subformulas of a formula is the same as the size of the formula, and
is also the maximum length of any path in a semantic tableau, since each step
along the path adds one formula to a set of formulas.

3.5 The Intrinsic Redundancy of Cut-free Proofs

No matter what procedure is used to search for proofs in G4 or the tableau
system, the search tree can grow explosively, even for simple commonly occuring
examples. Such growth happens even for the smallest possible proof, so the
problem is not in the procedure but in the cut-free nature of the proof system.
D’Agostino, in his thesis [10], presents a small and enlightening example: the
minimal tableau refutation (without Cut or Thinning) of the formula

(AVBYA(AV-B)A(mAVC)A(mAV -0)

AvB
Av-B
-Av C
-Av -C

e

NN,
ey >N

Each of the seven paths explored results in a contradiction. Note, however,
that in the righthand side of the tree, we explore a part of the search space that
has already been explored in the left subtree. After building the left subtree,
we know that assuming that A is true leads to a contradiction, yet we repeat
this search even after assuming that B is true. (Don’t be misled by the picture
into thinking that using graphs instead of trees might help! Our trees are really
decorated at each node with the set of formulas along the path from the root,
and each node in the above tree corresponds to a different set.) This kind of
redundant pattern can be repeated inside the redundant subtrees, so that a
combinatorial explosion results. The semantic tableaux rules given above don’t
really match the search space that we are trying to explore. We would like our
refutation trees to be a better match with the search space. The solution is to
put back in a form of cut, while keeping the subformula principle.

To understand this step, we must study the space that we are searching, and
what rules and proofs look like.

3.6 Rules

Rules in tableau systems correspond to clauses in the defintion of true in a
valuation. So, for example, if AV B is true and A is false, then B is true. This

and the other two elimination rules for V are written
AVB=T AVB=T AVvB=1
A=1 B=1 A=1
B=T A=T B=1

The introduction rules for V are

A=T B=T
AVB=T AVB=T

A
B
Vv

oo NI
M=

A L

Here, when analysing a connective o, we consider not only A o B but also its
immediate subformulas and their complements. This gives a different set of rules
from the classic tableau rules that we have already seen.

We can extend this idea by considering not just truth values of subformulas,
but also whether two formulas must have the same truth value. For example, if
A and B have the same value, then A V B also has that value, and if A and B
have different values, then A V B must be true.

A=B
== A=-B
B=AVE AVB=T

By examining each connective in turn, we can generate a large set of propagation
rules. We include only the proper rules. In general, the rules for a connective o
look like

FlEGl,...FnEGn
F=G

where each F;,G; € {4,B,Ao B,~A,-~B, T, L}. A rule is proper if and only if

{FlfGl,FnEGn}béJ_
{Fi=G,.. F, =G} —{F =G} F F=G

3.7 The Systems KE/I and KE

The subset of the proper rules for which G,G; € {T, L} corresponds to the
introduction and elimination rules of the propositional fragment of the system
KE/I. This proof system was introduced by Mondadori, and has been further
studied by D’Agostino [23,10]. Using just the introduction and elimination rules
does not give a system that is complete for propositional logic. However, adding
a single branching rule, the principle of bivalence,

(PB) A=T|A=1

gives a proof system that is complete for propositional logic and that does not
suffer from the kind of redundancy that we illustrated earlier. We have put back
the cut rule! A is restriced to be a subformula of the formula to be proved, so we
again have the subformula principle (with the associated bound on proof size)
and because of this the PB rule is known as an analytic form of cut. Indeed,
just the elimination rules plus the PB rule form a complete system, KE, which
is extensively studied in D’Agostino’s thesis [10].

The formula (AVB)A(AV-B)A(=AVC)A(=AV-C), for which we earlier
showed the minimal tableau refutation, gives the following K E-refutation.

AvB
Av-B
AAv C
-Av-C
AN
B C
B -C

Let us start from KE and extend the language of formulas to include gen-
eralised conjunction and disjunction. If we now add two simplification rules
(affirmative-negative and subsumption), we get a proof procedure that is equiv-
alent to the well-known Davis-Putnam procedure [12] (in the version of [11]) for
formulas in conjunctive normal form (CNF). So, KE can be seen as a generali-
sation of Davis-Putnam that does not require reduction to CNF.

The proof system underlying Stalmarck’s method uses the larger set of prop-
agation rules in which the G and G; are no longer constrained to be in {T, L}. It
is no longer sufficient to maintain sets of formulas that are known to be true or
false; we must also maintain information about sets of formulas that are known
to have the same value. To do this, we introduce formula relations.

3.8 Formula Relations

The complement of a formula A, written A’, is B if A = =B and is = A otherwise.
Let S(X) be the set containing all the subformulas of X (including T) and their
complements.

A formula relation ~ on X is an equivalence relation with domain S(X), with
the constraint that if A ~ B then A’ ~ B'. If A ~ B, that means that A and B
are in the same equivalence class and must have the same truth value. Working
with S(X), which includes the complements of subformulas of X, allows us to
encode both equalities and inequalities between subformulas. A # B is encoded
as A' ~ B.

We write R(A = B) for the least formula relation containing R and relat-
ing A and B. We call A = B an association. If m is the association A = B,

then m is the complementary association. A = B’. Of course (R(m))(m) is
explicitly contradictory. We extend the notation for addition to formula re-
lations from single associations to sets of associations in the obvious way. If
M = {mg,mq,...m;} is a set of associations, then R(M), which we write
R(mg,my,...m;), is (R(mg))(my ... m;).

The smallest formula relation is the identity relation on S(X), written X+.
It simply places each element of S(X) in its own equivalence class. Rather more
interesting is X7 (X = T), which we abbreviate to X ". This partial valuation
will later be the starting point when we attempt to refute X.

Ezxample Let C and D be propositional variables, and X = C A D. Then,
X' = {[C AD, T], [C], [D], [_'(C A D)a J_], [_'C]a [_'D]}

where equivalence classes are shown using square brackets.
We call the equivalence class containing T the True-class, that containing |
the False-class, and the remaining classes the indeterminate classes.

3.9 Applying Rules to Formula Relations

Each schematic rule
F1 EGl,...Fn EGn

F=G

corresponds to a partial function on formula relations. It takes a formula relation
R in which each F; = G| for i in {1..n}, and returns the larger R(F = G).
Continuing the previous example: applying the two A-elimination rules

ANB=T ANB=T
A=T B=T

in sequence to X T = {[C A D, T],[C],[D],[~(C A D), 1],[=C], [=D]} gives Ry
and then Rs.

Ry ={[CAD,C,T],[D],[~(C AD),-C,1],[-D]}
R, ={[CAD,C,D, T],[-(C AD),~C,-D, 1]}

R, contains exactly two equivalence classes, and no further simple rules are
applicable to it. It gives a model of C' A D, which therefore cannot be refuted.

If, instead, we take Y = C' A =C and apply the two A-elimination rules to
YT, we get R3 and Ry.

R; ={[C A-C,C,T],[~(C A=C),~C, L]}
Ry ={[CA-C,C, T,~(CA=C),-C, 1]}
R4 groups all of the formulas in its domain into a single equivalence class, and so

is the largest formula relation on Y. It is explicitly contradictory since it (several
times) places a formula and its complement in the same equivalence class. (For

convenience, we overload the 1 symbol, and use it also to represent all such
explicitly contradictory formula relations.) So, this sequence of rule applications
constitues a refutation of C' A —C'. From the assumption that C' A —C' is true, we
have derived a contradiction.

In the above examples, we have seen that each successful application of a
simple rule merges (at least) two pairs of equivalence classes. And indeed, if one
class contains a particular set of subformulas, then there is another ‘shadow’ class
containing the complements of those subformulas. In real implementations, we
halve the number of equivalence classes by making the shadow classes implicit.
The result is that each successful application of a proper rule merges at least
one pair of equivalence classes, and so reduces the number of equivalence classes
by at least one.

4 The Dilemma Proof System

We are now ready to present the Dilemma proof system that underlies Stalmarck’s
method. The large set of proper rules that we have introduced allows us to reach
conclusions that would require branching in systems with a smaller set of simple
rules. Since the lengths of paths in refutation graph proofs are bounded by the
size of the formula to be proved, it is branching that is the critical factor for
complexity speed up.

Of course branching cannot be avoided altogether, since the simple rules are
not complete for propositional logic. We introduce a special ‘branch and merge’
rule called the Dilemma rule. The Dilemma proof system is just this rule plus
the simple rules.

4.1 The Dilemma Rule

The Dilemma, rule is pictured as

R
R(A=B) R(A=-B)
(derivation) (derivation)
Ry R,
Ri M Ry

Given a formula relation R, we apply the Dilemma rule by choosing A and
B from different (and non-complementary) equivalence classes in R. We make
two new Dilemma derivations starting from R(A = B) and R(A = —-B), to
give Ry and R, respectively. Finally, we intersect R; and Ry, to extract the
conclusions that are common to both branches. If an explicitly contradictory
formula relation is always extended to the relation with a single equivalence
class, then the intersection operation is simply set intersection (N) of the relations
viewed as sets of pairs. In practice, we stop a derivation as soon as two formulas
F and —F are placed in the same equivalence class. Then R; M R, is defined

to be Ry if R; is explicitly contradictory (written Ry = 1), Ry if Ry = 1, and
Ri N Ry otherwise.

Note that R is a subset of both R; and Rs, since a derivation only adds to
the relation. This means that R is a subset of R;MRs, and the rule is sound. The
rule can be seen as the combination of a cut (the branch) with two (backwards)
applications of thinning, from R; M Ry to Ry, and from R; M Ry to R». In the
context in which these thinning applications appear, they are invertible. If we
can refute R; M Rs, then we have refuted R, so it must be possible to refute
both R; and Rs. If we omit the use of thinning, and simply refute R; and Rs
separately, then the two proofs are likely to have much in common (since Ry
and R, have R in common). Using thinning avoids this repetition, and so has
an effect akin to that of having lemmas.

4.2 Dilemma Derivations

The following three clauses define what it means to be a Dilemma derivation,
and also the related notion of proof depth.

1. Simple Rules. If the application of one of the simple rules to R; gives Rs,
then IT = Ry R, (R; followed by R») is a Dilemma derivation of R, from Rj.
We write that assertion as IT : Ry = R,. If none of the simple rules applies
to R, we say that R itself is a derivation of R from R. In both cases, the
proof depth, written depth(II), is zero.

2. Composition. If II; : Ry = R, and I, : Ry = Rj3, then we can compose the
proofs: IT;II, : Ry = R3. The composition contains only one copy of the
intermediate relation Ry. The proof depth of the composition is defined to
be maz(depth(II), depth(Ils)).

3. Dilemma Rule. If I, : R(A = B) = Ry and Il : R(A = —-B) = Ra, then

R
m 1L
RiNR,

is a derivation from R to Ry M Ry with depth maxz(depth(IIy), depth(Il2)) +1

Proofs built using these rules have a series-parallel shape. The depth of a
proof is the same as the maximum number of simultaneously open branches.

Ezample

Ry
Ry
B3
R3(AEB) R3(AE—|B)
Ry
R5 RIO
Re(C=D) Re(C = -D)
R;
Rg RQ
Rs 1 Rg Rll

(Rg 1 Rg) MR

This proof has depth 2. The size of a Dilemma proof II, denoted |II|, is the
number of occurrences of formula relations in /7. This proof has size 16.

To make the link back from derivations involving formula relations to proofs
about formulas, note that the derivation of a contradictory formula relation from
XT constitutes a refutation of the formula X. Similarly, we can check whether
or not X is a tautology by attempting to refute X +(X = 1).

4.3 Proof hardness

A formula relation R is k-easy if and only if there is a derivation IT : R = L
with depth(IT) < k. A relation R is k-hard if and only if there is no derivation
IT : R = 1 with depth(Il) < k. A relation R has hardness degree k, h(R) = k,
if and only if R is k-easy and k-hard.

Note that if we know that a relation has hardness degree less than ¢, then
there must exist a proof IT : R = L whose depth is less than ¢. We write
proof (R) to represent such a proof and this will prove convenient later in proofs
about complexity.

The formula (AA(BVC)) = ((AAB)V(AAC)) has hardness degree 0, while
reversing the direction of the implication gives a formula of hardness degree 1.
Harrison’s paper on Stalmarck’s algorithm as a HOL derived rule lists many
1- and 2-hard problems with performance statistics for Harrison’s implementa-
tion of the method [15]. Many of the examples are circuits taken from the set
of examples presented at the IFIP International Workshop on Applied Formal
Methods for Correct VLSI Design, held at IMEC in 1989.

In practice, it turns out that real industrial verification problems often pro-
duce formulas with hardness degree 0 or 1. Why is this? One reason must be
that the Dilemma system has a large set of propagation rules, reducing the need
for branching. The only other explanation that we can offer is the observation
that systems that have been designed by one person, or in which one person
understands and can argue informally for the correctness of the system tend to
result in easy formulas. Systems in which components are coupled together in
a relatively uncontrolled way, so that behaviour is hard to predict by informal

analysis, are also hard to analyse formally. These empirical observations indi-
cate that it is a good idea to introduce design rules that improve verifiability.
Indeed, the main supplier of railway interlocking software in Sweden has made
an important move in this direction, by introducing software coding rules that
guarantee the verifiability of the resulting interlocking control software; see sec-
tion 6.1. Figuring out how to place constraints on the designer so that it is easy
to reason about the correctness of his products seems likely to be an important
area of research in formal methods.

5 From proof system to proof procedure

We have now studied the Dilemma proof system. How do we turn it into an
efficient proof procedure? The first step is to find a good data structure for rep-
resenting formulas. The second is to provide an efficient algorithm that searches
exhaustively for shallow Dilemma proofs.

5.1 Triplets

For ease of manipulation, compound subformulas are represented by triplets,
having the form z : yoz. The triplet variable z represents the compound formula
obtained by applying a binary operator o to the triplet operands y and 2. x
represents a subformula, and y and z are literals, that is either variables (real or
triplet variables) or negated variables.

Ezample The formula (AA(BVC)) = ((AAB)V (AAC)) is reduced to triplets
as follows:

o

.c.)

:bve

taNbd
ralNc
:fVyg
te— h

SR - o QL0 o o~
IS}
>
IS

.

The saturation algorithm

A relation R is k-saturated if and only if for every Dilemma derivation IT : R = S
with depth(IT) < k, it holds that R = S. In other words, proofs of depth k or
less add no new equivalences between subformulas.

The k-saturation procedure exhaustively searches for a proof of depth k.
If a relation R has hardness degree k, then saturate(R,k) must be explicitly
contradictory, and k-saturation finds a disproof of R. The procedure is defined
recursively.

O-saturation applies the propagation rules to a relation until no more rules
are applicable. It chooses a compound subformula, applies a related simple rule
and then continues to apply simple rules on those triplets whose variables were
affected by the result of the first rule. The process continues until no further
simple rules can be applied.

The following pseudo-code fragment presents O-saturation.

saturate(R,0) =

Q := Compound(R)
while non-empty(Q)
do
remove some q from the set Q
if contradictory(R(q))
then return R(q)
else Q := Q union affected(R(q)-R)
R := R(q
od
return R

The set Compound(R), the initial pool of subformulas to be processed, contains
compound subformulas in the domain of R. However, it is restricted to contain
only one representative from each of the classes that are distinct from the True
and False classes. This method of using representatives of the indeterminate
equivalence classes is vital for the complexity of the algorithm, as we shall see
later. We choose one element ¢ from the pool and apply to R a simple rule
related to ¢. R(q) is R(F = G) if there is a simple rule whose premises all
involve formulas from the set containing ¢ and its immediate subformulas and
their complements, and whose conclusion is F' = G. If no such simple rule applies,
then R(q) is just R.

The application of a rule related to ¢ in this way leads to the discovery of a
set of new equivalences, R(q) — R. Call the set of subformulas mentioned in these
new equivalences N. We might expect to add back to the pool the subformulas in
N, all the subformulas from the same equivalence classes as those in N, and the
‘parents’ of all these formulas. (The parent of a formula contains that formula
as an immediate subformula.) These are the triplets that might be affected by
the new information gained in applying the rule. Adding N and formulas from
the same equivalence classes allows information to be propagated downwards
in the formula. Adding the parents allows information to propagate upwards.
Again, we make some optimisations that are important for the complexity of the
algorithm. If a formula contains a variable v that has been added to one of the
indeterminate classes, then that formula is only placed in the pool if it contains
a second variable from the same equivalence class. In addition, we continue to

use a single variable to represent each of the indeterminate classes, replacing
variables by their representatives as triplets enter the pool. The effect of this is
that each triplet is evaluated at most twice during 0-saturation. We call the set
of triplets added back to the pool by this procedure affected (R(q)-R). Having
thus (possibly) augmented the pool, we update R with the new equivalences and
repeat, until the pool is empty. At that point, no more simple rules apply to R
and O-saturation is complete.

(k + 1)-saturation is defined in terms of branching and k-saturation. The
version presented here branches on the truth or falsity of a subformula, rather
than on equivalence between two arbitrary subformulas. This is the version that
is currently implemented. A better strategy might perhaps be to try to merge
the two largest equivalence classes.

saturate(R,k+1) =

repeat
L : Sub (R)
R’ :=R
while non-empty(L)
do
remove some 1 from L
R1 := saturate(R(1 equiv FALSE),k)
R2 := saturate(R(1 equiv TRUE) ,k)
if contradictory(R1) and contradictory(R2)
then return R1 union R2
else if contradictory(R1)

then R := R2
else if contradictory(R2)
then R := R1
else R := Rl intersect R2
od
until R’ = R
return R

The set Sub(R) contains the subformulas of R, both variables and compound
subformulas. As in the case of 0-saturation, we place into this pool of formu-
las only one representative of each of the indeterminate equivalence classes. We
repeatedly branch on each subformula in turn until there are no further conse-
quences in the form of new equivalences. Of course, one does not use (k + 1)-
saturation until after k-saturation has been performed, since branching should
be minimised. Information gained during k-saturation is available during the
subsequent (k + 1) saturation. It is the continuous gathering of information (in
the form of equivalences) that distinguishes the algorithm from both breadth
first search and iterative deepening.

Note how the saturation algorithm propagates information both upwards and
downwards in the syntax tree of the formula. In this, it is rather relational.

After the development of the algorithm described here, Kunz et al indepen-
dently developed recursive learning, a method of solving the Boolean satisfiabil-
ity problem, with applications in digital test generation [19]. The method has
much in common with that presented here, and also discovers logical relation-
ships between subformulas of a formula (or nodes in a circuit).

6 Complexity Results

6.1 A lower bound on proof length in Dilemma

Ifa f;)rmula, has hardness degree k, then a lower bound on the length of its proof
is 2k/2,

Before showing the proof, we introduce a useful proof-theoretic trick. In prov-
ing the lower bound, we must again and again construct derivations of limited
depth. For a relation R with hardness degree less than ¢, then proof(R) is a
proof of R with depth less than ¢ (and we know that such a proof must exist).

What happens, though, if we are dealing with derivations that do not end
in 1? Let us assume that we have a proof IT : R = R(M) where M =
{mg,m1,...my} is a set of associations. Is there anything that we can do to
build a proof of known depth? Yes, indeed there is. Our building blocks are
variants on II that lead to L. Let M| = {mqg,m1,...mj_1,m;}.

Then, construct II; : R(M]) = L from IT by extending each relation in the
proof with M/ Because the final relation in the proof then always contains both
m; and 1;, then it must be contradictory.

So, we can safely use proof (R(M])) as a building block in the following
derivation, which we call unroll(R, M).

R
proof (R(mo)) R(mo)
R(mo)
p’f‘OOf(R(mo,T)’_Ll)) R(mo,ml)
R(mg,m1)

R(mo,ml, . mk_l)
proof (R(mo,my ..., mg_1,my)) R(mg,m,...mg)
R(M)

If, in addition, we know that h(R(M])) < c for each ¢, then this derivation
has depth less than ¢ + 1. Note that the trick would have worked equally well
had the original IT been a derivation from R to R;(M). The resulting derivation
is still from R to R(M), however.

Now, we are ready to show that if a formula has hardness degree at least k,
then the length of its proof in Dilemma must be at least 2¥/2. We do this by
turning the implication around (and negating its components). We show that

if the length of a proof IT : R = 1 is less than 2™, then the hardness of the
relation R must be less than 2n.
The proof is by induction on the length of I7.

Base Case: If |II| = 1 then h(II) = 0. The proof contains a single relation.

Induction Step: Assume 1 < |II| < 2". There are two cases to consider. Either
the proof starts with a simple rule application or it starts with an application of
the dilemma rule.

Case (a): II = I 11, with I} : R = Ry, a simple rule application, and
II, : Ry = R». By the induction hypothesis, h(R;) < 2n, and R; is derived from
R by the application of a simple rule. Hence, h(R) < 2n.

Case (b): IT has the form

R
Ry Ry
S T
R3(M) Ry(M)
ROT)
U
1

where M is the set of associations found by (both branches of) the dilemma rule.
Obviously, [II| = |S| + |T| + |U| + 1, so one of the following three cases must
apply to II:

1. |S| <2t and |T| <27t
2. |S| <277t and |U| < 277!
3. |T| <2t and |U| < 27!

Case (1): Since both S and T are short, we apply our trick to both of them.
Take the case of S : Ry = R3(M). When we make variants of S that lead to L as
explained above, then we know that those derivations also have length less than
27=1 50 by the induction hypothesis, each of the R; (M) must have hardness
less than 2n — 2. So unroll(Ry, M) : Ry = R;(M) has depth less than 2n — 1.
A similar argument applies to T. For U, we know by the induction hypothesis,
that h(R(M)) < 2n, so proof (R(M)) has depth less than 2n. Plugging everything

together, the following derivation

R
R1 R2
unroll(Ry, M) unroll(Ry, M)
R (M) Ry(M)
R(M)
proof (R(M))
1

has depth less than 2n, as required.

Case (2): This time, we concentrate on making a derivation in which the T
branch (which is the longer one) moves below the dilemma rule. To do this, we
must construct a left branch that ends in 1. We can certainly make a shallow
proof from R; to Ry (M) using unroll, just as we did in the previous case. Can
we make a shallow proof from R; (M) to L? First, we take the derivation U :
R(M) = 1, and rewrite it into a derivation from Ry (M) = L by extending each
relation in the proof by Ry — R. The resulting derivation has length less than
2"~1 and so by the inductive hypothesis, h(R;(M)) < 2n—2 and proof (R, (M))
has depth less than 2n — 2.

Similarly, we can make version of U that is a derivation from R4(M) = L
by extending each relation in the proof by R4 — R. The derivation that is T :
Ry = R4(M) followed by this new version of U has length less than |II] and so
by the inductive hypothesis, h(R2) < 2n and proof (Rz) has depth less than 2n.

The following derivation

R
Ry R,
unroll(Ry, M)
Ry (M)
proof (Ry (M)
1

R,

proof (Ry)
L

has depth less than 2n, as required.

Case (3) is similar. Q.E.D.

For analytic KE/I, the corresponding lower bound result is that a formula of
hardness degree k has a lower bound on proof length of 2¥ (and not 2*/? as in
Dilemma). The difference comes not from the move to relations on subformulas
but from the series-parallel shape of derivations.

6.2 An upper bound on the length of derivations in Dilemma

A proper k-derivation is a derivation of depth k without redundant rule appli-
cations. We show that for a given k, there is a polynomial upper bound on the
length of proper k-derivations in Dilemma. We define a function f such that
f(k,m) < mk+! for all natural numbers k and m.

f(k,m) =m, k=0vm<3
fk+1,m)=2x ™ f(k,5) +m, m>3

Next, we show that if IT : R = R' is a proper k-derivation, then |II| <
f(k,m), where m is the number of equivalence classes in R. The proof is by
induction on k.

Base Case: II is a 0O-derivation, in which only simple rules are applied, and
so is just a sequence of relations. How long can the sequence be? Well, there
are only m equivalence classes in R, and each simple rule merges at least two
equivalence classes, so the maximum length of the sequence of relations is m.
Hence |II] < f(0,m) = m.

Induction Step: IT : R = R'is a k+1-derivation. We only treat the worst case,
in which the dilemma rule is applied as much as possible. Then, the proof must
consist of m — 1 applications of the dilemma rule, each of which has branches of
depth less than or equal to k. (In a proof with fewer uses of dilemma, some of
the S;, T; pairs would simply be removed, corresponding to the application of a
simple rule instead, or would themselves contain fewer uses of dilemma.)

R
S1 Th

Each S; and T; has a “top relation” that contains at most m — i equivalence
classes. So, |S;| = |T3| < f(k,i), by the induction hypothesis. Thus, we can
calculate that |IT| < (2 x Ej’ljl (k, 7)) +m = f(k+1,m).

Because of the polynomial bound on f, we can conclude that an upper bound
on the length of a proper k-derivation IT : R = R' is m*t!, where m is the
number of equivalence classes in R. It should be noted that the upper bound is
subexponentional over the lower bound.

6.3 The hierarchy of hardness

An interesting question is “Do the hardness degrees actually form a hierarchy,
or does everything collapse at some particular degree k?”. The answer is that
we know that the (infinite) hierarchy exists. Ajtai has shown that there cannot
exist polynomial size proofs of the so-called pigeon hole formulas (a propositional
encoding of the pigeon hole principle) in bounded depth Frege systems [refl].
Furthermore, it is a routine task to polynomially embed k-proofs in Dilemma of
the pigeon hole formulas into a bounded depth Frege system [2]. Perhaps it is
not so surprising that the hierarchy exists. If it collapsed, then all tautologies
would be k-easy and so have polynomial size Dilemma proofs. This would mean
that NP = co-NP, in contrary to the intuition of most complexity theorists.

6.4 Dilemma versus analytic KE/I

Is Dilemma superior to analytic KE/I? There are infinite formula sequences for
which the hardness of each F; is less than a constant k£ in Dilemma, but grows
logarithmically in analytic KE/I. It is interesting to note that the hardness degree
for analytic KE/I and Dilemma are instead related linearly if either the formula
relations are replaced by sets or if the Dilemma rule is replaced by analytic cut,
but in the relational version. The relational version seems to open opportunities
to remove repetitions by the invertible thinning used in the Dilemma rule.

6.5 Time complexity for the saturation procedure

In order to estimate the complexity of the saturation algorithm, we count the
maximum number of “triplet evalutations” during during k-saturation of a rela-
tion R with m different equivalence classes and with n different variables.

We first note that a triplet with only one unassigned variable either propa-
gates a value to that variable or is useless and can be removed. We will assume
that we do not add such useless triplets to the pool of triplets more than once.
We also assume that there is a unique variable in each equivalence class that
is used as a representative for the class. The pool of triplets contains only such
representatives, since other variables are replaced by their representatives before
entering the pool.

Consider the 0-saturation procedure. First note that triplets in the pool con-
tain at most two different variables. Why is this? There are two kinds of triplets
in the pool: those that contain a variable that has been added to the True- or
False- class (leaving only two remaining variables), and those that contain a
variable that has been added to another class C. In the latter case, we only add
the triplet to the pool if it contains a second variable that also belongs to C,
and both of those variables end up being replaced by the class representative.

If such a triplet with at most two distinct variables propagates when it is
evaluated, it will be useless for further evaluation, and so never put back into
the pool. Either all of its variables are instantiated or the value of the only
variable left is redundant. If on the other hand, the triplet is lifted out of the
pool without propagating, then it will, by the same argument as above, only
contain one variable next time it enters the pool.

So, in 0-saturation, each triplet is evaluated at most twice, and the maximum
number of evaluations of triplets can be bounded by 2n.

To calculate the complexity of k 4 1-saturation, it is easiest to consider again
the code presented earlier.

saturate(R,k+1) =
repeat

L : = Sub(R)

R’ := R

while non-empty(L)

do
remove some 1 from L
R1 := saturate(R(1 equiv FALSE),k)
R2 := saturate(R(1 equiv TRUE) ,k)
if contradictory(R1) and contradictory(R2)
then return R1 union R2
else if contradictory(R1)

then R := R2
else if contradictory(R2)
then R := R1
else R := Rl intersect R2
od
until R’ = R
return R

Each iteration of the body of the repeat loop reduces the number of equiva-
lence classes in the relation R by one, apart from the last iteration, which leaves
R unchanged. So, the body of the repeat loop is executed at most m times,
where m is the number of equivalence classes in the top relation. Initially, the
list L has length m, and its length is reduced by at least one at each iteration.
This means that the body of the while loop, which contains two k-saturations,
is executed m times in the first iteration, m — 1 times in the next, and so on. For
a formula, the initial number of equivalence classes is the same as the number
of triplets. So, we can define a recursive function that captures this reasoning,
in much the same style as we used in the earlier upper bound proof about proof
length. The function g(k,m) characterises the maximum number of evaluated
triplets, where k is the saturation degree and m is the number of triplets. The
base case comes from the argument about the complexity of 0-saturation. The
step reflects the above argument about iterations of the repeat and while loops.

So, we define

9(0,m) =2xm
g(k + l,m) = 2i:12 X1 X g(kam)

The rate of growth of g(k,m) is bounded by O(m2*+1).

Our conclusion is that using the saturation procedure, the time required to
search exhaustively for a proof of depth k of a formula A is bounded by O(n2*+1),
where n is the size of A. Note that the upper bound on proof search is not more
than the square of the upper bound on proof length, and so it is still “under
exponential” related to the shortest possible proof.

7 Industrial applications

We present brief descriptions of three different industrial applications of Stalmarck’s
method.

7.1 Minimal models as a method of documentation

To illustrate the surprising variety of ways in which propositional logic can be
used in the analysis of existing systems, we briefly describe a recent study in the
area of power station control.

At one of Sweden’s nuclear power plants, the function of safety critical control
systems is documented in so-called logic schemas. A graphical notation shows
how three kinds of components, combinational, memory and real-time elements,
are connected to realise a particular function. A typical such function might
control the opening or closing of a single valve.

The logic schemas have the advantage of giving an implementation-independent
description of the required function. They are used both in communcation with
regulating authorities and suppliers, and by control-room staff when searching
for errors. However, the documents are hand-drawn, and difficult to maintain
and analyse.

Prover Technology AB was recently asked to propose ways to improve, and
also computerise, this system of documentation. They proposed that each logic
schema be hand-translated to the NP-Tools format — a graphical notation for
propositional logic with arithmetic used in Prover Technology’s verification toolkit.
A system containing memory elements is represented by a state transition func-
tion in which previous and current states are explicity represented. In addition,
it was proposed that each schema be translated to a triggering table that shows
in a concise tabular form the circumstances (values of variables) in which the
output of the function goes high or low. These tables are constructed by finding
minimal partial models of the formula corresponding to the schema [35]. A par-
tial model of a formula F' is an assignment of values to some variables for which
all possible assignments of the remaining variables give models (in the ordinary
sense) of F. A partial model is minimal if there is no other partial model that
assigns values to fewer variables. In many cases, it is necessary to simplify the
schema in order to give a reasonable number of minimal models; however, these
simplifications can themselves be carefully documented. In a typical example, a
17-input and gate is modelled by a new variable representing its output. This
greatly reduces the number of models, but does not remove any of the important
ones. Using this approach to simplifying schemas, a transition function contain-
ing 29 inputs, one of which is a state variable, and 19 gates is first reduced to
a schema with 8 inputs and 8 gates. It then produces the following table for
when the Open output goes from low to high. The state variable does not appear

I.Y_20s|K40_L1|L2_or_Sim L2|Man_Close|Req_Open|omk354V51_V58|vent_open
- - 0 - 1 - -
0 0 - - 1 - -

because what we want to know are what combinations of variables cause the
state to go from low to high.

These triggering tables capture system behaviour at just the right level of
asbtraction and are a good complement to the schematic diagrams. They also
facilitate comparison between different versions of a given function — something
that has proved rather difficult with the old method of documentation. This
is an example where a technically simple technique, related to the well-known
theory of prime implicants, could answer a real need in industry.

It is interesting to note that one can use saturation instead of tautology
checking to generate small but not necessarily minimal models. In many appli-
cations, one would like to generate minimal models, but the tautology checking
needed to generate them simply takes too long. Using 0-saturation instead gives
small models in linear time.

7.2 Verification experiments at Saab

During the 1990s, Saab Military Aircraft, Link6ping, Sweden, has put consider-
able effort into developing a unified system development methodology. Experi-
ments in the practical application of formal methods have formed part of this
work, and it is expected that formal methods will be one of the components in
the future system developer’s toolbox [36].

Saab have applied NP-Tools, a verification toolkit based around an imple-
mentation of Stalmarck’s method, in case studies on safety and reliability of
integrated subsystems in the JAS 39 Gripen and Saab 2000 aircraft. Here, we
briefly present one project, in which the landing gear system in the JAS 39
Gripen was modelled and analysed using propositional logic. For further details
of projects at Saab, the reader is referred to reference [36].

In the JAS Gripen project, the system to be controlled consists of two large
retractable wheels (called gears) and a smaller nose gear. Each gear has a door
that can be closed both when the gear is retracted and when it is extended. The
hydraulic system moves both gears and doors, but the movement of gears and
doors is not physically coupled. The control system contains both a software and
a hardware control unit. The software unit collects information about the status
of the landing gear system and other related systems to control movement of
gears and doors. The hardware unit provides redundancy and can take over in
case of computer breakdown.

Both the hardware and software control units were modelled directly at the
level of propositional logic. The inputs in the model are status signals sent by
sensors, as well as commands from the pilot and information about the engine,
electrical power supply, speed and so on. The outputs are control signals to ma-
noevre the hydraulic system. Thus, the system modelled was the control part of
a standard control loop, in which continuous signals were disretised where nec-
essary. The model was built in bottom-up fashion, from existing documentation,
which was in a mixture of tabular and schematic forms. The macro facility of
NP-Tools, a simple form of encapsulation, was used to give a hierarchical system
description. The complete system — again state transition function with previous
and current states explicitly represented —had approximately 100 inputs and 100
outputs.

A typical safety critical requirement that was checked of this system is “Gears
and doors must never collide”. (It is important to check such properties; there
have been cases where functional test on a physical test rig has revealed this
kind of error and the damage that it can cause.) Another typical requirement is
“Emergency extension of landing gear must always be possible”.

Once the control system had been shown to fulfil its functional and safety
requirements, its fault-tolerant behaviour was analysed using methods related to
FTA (fault tree analysis) and FMEA (failure mode and effect analysis). Errors
in sensors and in hardware components were explicitly modelled; one could say
that the model was made more realistic. In this way, the behaviour of the system
under single or multiple faults could be analysed, in a way that is familiar to
hardware designers, but perhaps not to software developers.

The modelling took approximately one man-month, and was carried out in
part by the Swedish consultancy company LUTAB. A lot of that time was spent
modelling integer values (which at that time were not supported in the imple-
mentation of Stalmarck’s method used) by means of boolean variables. Expe-
rience showed that simple safety properties of the form “it is always the case
that a certain property holds” were easily verified. More complicated reasoning,
such as showing that a requirement is fulfilled within a certain number of time
steps proved to be more problematic. It seems likely that some of these problems
stemmed from the need to do too much manual modelling. Using the synchronous
data flow language Lustre, and the related notion of synchronous observer, to
allow modelling of safety properties in the programming language itself, gives a
more user-friendly verification methodology [20,21]. The LUCIFER tool provides
a translator from Lustre with synchronous observers to the NP-Tools format [22].
It frees the user from having to think about what kinds of inductive proofs he
is performing, by automatically generating the required number of “unrollings”
of the transition function and also the formulas for the requirements. LUCIFER
also provides an effective model checker. For this kind of system verification, it
seems that it is vital to make the proofs invisible to the user if one is aiming for
acceptance in real development projects.

One of the conclusions of the project at Saab was that it is necessary to
develop user-friendly methods and tools for expressing and validating require-
ments. This area is the subject of ongoing research and product development at
Prover, as part of the EU project FAST [1]. Providing help with the manage-
ment and validation of requirements is likely to be an important niche for formal
methods in industry.

7.3 Software development for railway interlocking systems

In Sweden, ADtranz is the main supplier of railway interlocking software. The
railway interlocking software developed at ADtranz is written in a domain-
specific synchronous declarative language called Sternol. That this is (rather
surprisingly) the case has undoubtedly aided verification efforts in the area! It is
also one of the reasons why we think that it is fair to say that many of the sys-
tems verified using tools based on Stalmarck’s method have been hardware-like.
From our point of view, there is very little difference between a Sternol program
and a circuit.

Here, we briefly outline how verification is tackled in this application. The
overall picture is an interesting one. There is a set of generic safety requirements
that apply to every railyard in Sweden. These requirements have been formalised
in a timed first-order logic. There is also a generic program, written in Sternol,
that contains code for each kind of generic object found in railyards. Typical
examples are signals, points and track sections. An object has parameters, which
allow a specific instance to be created — for example a signal with three lamps.
Objects also have In, Out and Own integer variables, with finite domains. For
each Out and Own variable, z, an equation group of the form

:eo

r:=e if ¢

T, =€, if ¢,

specifies both initialisation (to eg) and how the variable should be set on each
cycle. Each e; is an integer expression, and each ¢; is a condition, made from
integer expressions, relations (like ;) and logical connectives.

To describe a particular yard, the programmer connects together instances
of the generic objects in a way that closely matches the yard’s physical layout.
A cycle of an object instance is then as follows:

Initialisation Fix parameter values and initialise Own variables.

Fizpoint computation Repeatedly read In values and evaluate equation groups,
until a fixpoint is reached. Write Out values.

Given this computational model, each object can be translated to a formula
that is repeated (in what might be called microcycles) to make a single cycle.
(Since object variables have finite integer domains, the formulas produced are
in propositional logic extended with finite domain integer arithmetic. This is
the logic handled by the commercial implementation of stalmarck’s method; we
call it PROP+.) The translation allows us to perform induction proofs about
invariant properties of individual objects. These invariants can then be added

to the object models, facilitating proofs at the yard level. Many such invariants
can be automatically generated.

Other checks can be performed on objects; for example one can check (that
is prove) for each equation group, that the conditions are mutually exclusive.
This test for unintentional nondeterminism avoids potential runtime errors in
the code. It is entirely automatic, and has been incorporated into ADtranz’
development environment since 1990. A yard that encounters such an unwanted
double value at runtime is automatically set into a safe state (in which nothing
moves) until the error has been located and corrected. Such shutdowns are costly.
Having an automatic way to avoid them has allowed ADtranz to greatly reduce
time spent on testing.

The verifications just discussed are done for each object. What about the
yard? The entire yard also performs a fixpoint computation. It repeatedly reads
In values from the yard and the environment, and evaluates objects (as described
above) until a fixpoint is reached. It then writes Out values to the yard. We can
build a formula in propositional logic with finite domain integer arithmetic cor-
responding to the transition function of the entire yard. It consists of fixpoint
models of object instances, and equalities expressing In/Out connections be-
tween objects. The requirements for the yard are generated by instantiating the
generic requirements according to the yard layout. Quantifiers are expanded over
sets of objects, and the requirements are simplified by partial evaluation. The
instantiated yard model can then be checked against the instantiated require-
ments, and again the proofs are by induction. The proofs in the base case and
step, which are performed using Stalmarck’s method, are logged and checked by
an independent proof checker.

Based on their experience in performing this kind of formal verification, AD-
tranz have introduced coding rules for Sternol that guarantee the verifiability of
the resulting interlocking control software. These rules constrain the program-
mer, forcing him to construct hierarchical state machines in a particular style.
For example, if resources are claimed in a particular order, then they must be
released in reverse order. The result of following these guidelines has been that
all formulas generated from Sternol programs since their introduction have been
of hardness degree 1 or less, and so quickly proved.

The effect of introducing these automatic (and therefore user friendly) for-
mal verification techniques has been positive. Several programming errors were
detected just after the introduction of the method. However, safety requirements
are now routinely proved for all installations. ADtranz report about 90% time
and cost reduction for each installed interlocking system. In a recent project to
develop new software to control a yard, it was found that verification took a
total of two man days, as compared to 10 man years before the introduction of
formal verification. Since formal verification was introduced, no program errors
have been found in running systems. The solution described here is marketed
by ADtranz, in a product called SVT. We would contend that this large scale
well-engineered methodology, with its supporting tool, is one of the most serious
and convincing applications of formal methods anywhere.

So, the verification method used at ADtranz relies on the existence of generic
requirements, and of a generic system description. Should they exist, the yard
layout allows us to generate formulas both for the requirements and for the
Sternol program controlling the yard. The final step is to do the actual proofs
about the yard in question, using the formulas. Perhaps surpsisingly, we feel
that this pattern, with generic requirements and generic system descriptions, is
repeated in several different application areas — an example being Programmable
Logic Controller programming for factory automation.

Using a variation on the methods just described, Borélv has partially vali-
dated of the interlocking software for the Madrid Subway Station Lago [6]. He
found that some points could be in a neutral position, rather than being locked
in the correct position. Such an error might cause minor damage to train and
track and is not considered very safety critical. However, the error was corrected.
A similar verification was carried out in 1997 for a larger railyard in Finland.
There, a serious safety critical error was found, which might have led to a de-
railment. The error is currently being corrected. The small Madrid verification
produced formulas containing around 36, 000 triplets and took 40 man-hours of
work in total. The largest yard analysed so far resulted in a formula containing
about half a million triplets.

8 Using Stalmarck’s method in CAD

Stalmarck’s method provides an efficient way to do tautology checking on large
formulas. We expect it to be applicable in CAD. Some of the industrial verifica-
tion problems that have been tackled using Stalmarck’s method are very similar
to post hoc hardware verification of systems built using boolean operations and
arithmetic. Typically, systems are modelled as synchronous boolean automata,
as in the examples described in the previous section. There seems to be no
reason why circuits should not be verified in the same style. Some promising
experiments in this area have been carried out by Block and Singh [29].

8.1 Verification of FPGA cores using Stalmarck’s method

Field Programmable Gate Arrays (FPGAs) now contain as many as a million
gates, and designers rely increasingly on predesigned and verified blocks known
as cores or virtual components. For example, the COREGen tool from Xilinx
(a leading FPGA manufacturer) generates handcrafted and highly optimised
designs in several domains, including arithmetic and digital signal processing.
Cores often have a long development time. They are made complicated by the
need for portability, and in addition customers demand components that have
undergone systematic verification. For this reason, cores are a prime target for
formal verification techniques designed to reduce development time, and give
greater confidence that the system meets its specification. Block and Singh pro-
pose the following core verification flow, which relies on the availability of a
high level specification of the core’s desired functionality. (Note that fixed size

instances of cores are verified, as the aim is to perform fast automatic proofs in
propositional logic. The intention is to use this kind of verification at run time
to verify reconfigurable cores.)

Core decomposition Rather than trying to verify a complete core all at once, the
subcomponents are first verified, bottom up. This gives smaller, more tractable
proofs, and eases the location of errors.

Core specification Each entity to be verified must be provided with a behavioural
or register transfer level description in a hardware description language. This
specification must be synthesisable; it must be possible to produce a circuit (a
netlist of simple components) from it using standard commercial synthesis tools.
Many cores come with such a behavioural specification.

Core netlist generation The core specification is put through a commercial syn-
thesis tool (such as Synopsys Design Compiler) to produce a netlist for a fixed
size instance of the core, in the standard interchange format EDIF.

Implementation netlist generation The COREGen tool is used to produce an
EDIF netlist for the (real) implementation of the core.

EDIF to NP-Tools translation We need to compare the two EDIF netlists pro-
duced from the specification and the implementation. To make this possible,
Block and Singh have developed a translator from EDIF to the NP-Tools for-
mat, in which (yet again) the result is either a combinational circuit or a state
transition function.

Proof of equivalence of the two netlists Proof is by ordinary combinational equiv-
alence checking (which is just tautology checking) or by induction.

Fuailed proofs give countermodels Countermodels can be examined either in the
NP-Tools system or (via an automatically generated simulation script) in the
Model Technology VHDL/Verilog simulator.

This rather pragmatic core verification method has the advantage that it fits
very well with the existing design flow. It has been shown to work well on a
number of cores, including adders, counters and a constant coefficient multiplier.
Work on verifying more complicated cores is in progress. None of the examples
tackled so far has required more than two unrollings of the transition function
in the inductive proof. However, we expect larger scale systems to require our
recently developed model checking technique, which is based on induction, but
with additional constraints on the sequences of states considered [27]. Indeed,
this application is a useful testbed for newly developed methods of verifying
synchronous systems.

Just as with BDDs, some classes of circuits have proved difficult to verify
using Stalmarck’s method. Multipliers, in particular, give rise to hard formulas,

and the hardness grows with circuit size. We have been experimenting with ways
to systematically reduce proof hardness for regular circuits by adding definitions
of fresh variables to the system formula — something akin to lemmas. The trick
is to know exactly what new definitions to add. Here, we benefit from the fact
that we describe circuits not directly in propositional logic but in the functional
programming language Haskell, in a combinator-based style that has its roots
in uFP and Ruby [4]. We generate propositional logic formulas for instances of
generic circuits by symbolic evaluation. The combinator style makes it easier to
discover where new definitions should be added. We are guided by the fact that
the proof of a circuit instance is closely related to the shape of the circuit. Using
this approach, large combinational multipliers have been verified [26].

9 Summary

We have presented Stalmarck’s patented proof procedure for propositional logic.
The underlying Dilemma proof system is efficient for two reasons.

1. Efficient propagation. It provides efficient propagation of information about
subformulas of the formula to be refuted. This efficiency of propagation
comes both from the large set of introduction and elimination rules and
from the fact that relations are used to maintain equivalences between sub-
formulas.

2. Series-parallel graphs instead of trees. The Dilemma rule recombines the
results of the two sides of a branch. It is a combination of cut and an invertible
form of thinning. This avoids repetition in proofs.

The proof procedure itself is efficient because of the careful design of the k-
saturation algorithm, which guarantees to find short proofs if they exist.

The method has been used to perform industrial-strength formal verification
of many hardware-like systems. The question of whether or not it can be ap-
plied in practice in CAD remains to be answered. We hope that this paper will
stimulate others to join the quest for an answer.

Acknowledgements

Thanks to Koen Claessen for his careful reading of several drafts and to our
colleagues in the Formal Methods group at Chalmers, with whom we have had
many enjoyable discussions. Thanks also to the anonymous referee who helped
us to improve the paper, and to Dag Wedelin, who kindly checked the complex-
ity calculations. Thanks to Ganesh Gopalakrishnan for his encouragement and
his infinite patience. Sheeran’s work at Prover Technology is partly funded by
the EU project SYRF (Synchronous Reactive Formalisms). Stalmarck’s work at
Chalmers is funded by Chalmers Stiftelse.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

P. Abdullah, E. Ciapessoni, P. Marmo, K. Meinke and E. Ratto: FAST: an Inte-
grated Tool for Verification and Validation of Real Time System Requirements.
submitted for publication, 1999.

. M. Ajtai: The Complexity of the Pigeonhole Principle. Proc. 29th Annual Sympo-

sium on Foundations of Computer Science, pp. 346 — 355, IEEE Press, 1988.
E.W. Beth: Semantic entailment and formal derivability. Mededelingen der Kon.
Nederlandes Akademie van Wetenschappen. Afd. letterkunde, n.s., 18, 309-342,
Amsterdam, 1955.

. P. Bjesse, K. Claessen, M. Sheeran and S. Singh: Lava: Hardware Design in Haskell.

Proc. Int. Conf. on Functional Programming, ACM Press, 1998.

A Boridlv: The industrial success of verification tools based on Stalmarck’s method.
Proc. 9" Int. Conf. on Computer Aided Verification, Springer-Verlag LNCS vol.
1254, 1997.

A. Borilv: Formal Verification of a Computerized Railway Interlocking. Formal
Aspects of Computing vol 10, no. 4, April 1999.

A. Bordlv and G. Stalmarck. Prover Technology in Railways, In Industrial-Strength
Formal Methods, Academic Press, 1998.

R. Bryant: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. Comp., vol. c-35, no.8, 1986.

S.A. Cook: The complexity of theorem-proving procedures. In Proc. 3rd ACM
Symp. on the Theory of Computing, 1971.

M. D’Agostino: Investigation into the complexity of some propositional calculi. D.
Phil. Dissertation, Programming Research Group, Oxford University, 1990.

M. Davis, G. Logemann and D. Loveland: A machine program for theorem proving.
Communications of the ACM, 5:394-397, 1962. Reprinted in [28].

M. Davis and H. Putnam: A computing procedure for quantification theory. Journal
of the ACM, 7:201-215, 1960. Reprinted in [28].

G. Gentzen: Untersuchungen iiber das logische Schliessen. Mathematische
Zeitschrift, 39, 176-210, 1935. English translation in The Collected Papers of Ger-
hard Gentzen, Szabo (ed.), North-Holland, Amsterdam, 1969.

J.F. Groote, J.JW.C. Koorn and S.F.M. van Vlijmen: The Safety Guaranteeing Sys-
tem at Station Hoorn-Kersenboogerd. Technical Report 121, Logic Group Preprint
Series, Utrecht Univ., 1994.

J. Harrison: The Stalmarck Method as a HOL Derived Rule. Theorem Proving in
Higher Order Logics, Springer-Verlag LNCS vol. 1125, 1996.

J.K.J. Hintikka: Form and content in quantification theory. Acta Philosophica
Fennica, VII, 1955.

S. Kanger: Provability in Logic. Acta Universitatis Stockholmiensis, Stockholm
Studies in Philosophy, 1, 1957.

S. C. Kleene: Mathematical Logic. John Wiley and Sons Inc., New York, 1967.
W. Kunz and D.K. Pradhan: Recursive Learning: A New Implication Technique for
Efficient Solutions to CAD-problems: Test, Verification and Optimization. IEEE
Trans. CAD, vol. 13, no. 9, 1994.

N. Halbwachs, P. Caspi, P. Raymond and D. Pilaud: The synchronous dataflow
programming language LUSTRE, In Proc. IEEE; Vol. 79, No. 9, 1991.

N. Halbwachs, F. Lagnier and C. Ratel: Programming and verifying real-time sys-
tems by means of the synchronous data-flow programming language Lustre, In
IEEE Transactions on Software Engineering, Sept. 1992.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

M. Ljung: Formal Modelling and Automatic Verification of Lustre Programs Us-
ing NP-Tools, Master’s project thesis, Prover Technology AB and Department of
Teleinformatics, KTH, Stockholm, 1999.

M. Mondadori: An improvement of Jeffrey’s deductive trees. Annali dell’Universita
di Ferrara; Sez III; Discussion paper 7, Universita di Ferrara, 1989.

K. Schiitte: Proof Theory, Springer-Verlag, Berlin, 1977.

G. Stalmarck: A system for determining propositional logic theorems by applying
values and rules to triplets that are generated from a formula, 1989. Swedish Patent
No. 467 076 (approved 1992), U.S. Patent No. 5 276 897 (approved 1994), European
Patent No. 0403 454 (approved 1995).

M.Sheeran and A. Bordlv: How to prove properties of recursively defined circuits
using Stalmarck’s method. Proc. Workshop on Formal Methods for Hardware and
Hardware-like systems, Marstrand, June 1998.

M. Sheeran and G. Stalmarck: Model checking using induction and boolean satis-
fiability. submitted for publication, March 1999.

J. Siekman and G. Wrightson (editors): Automation of Reasoning. Springer-Verlag,
New York, 1983.

S. Singh and C.J. Block: Formal Verification of Reconfigurable Cores. to appear in
Proc. Int. Conf. on Field-Programmable Custom Computing Machines, FCCM’99,
Napa Valley, 1999.

R.M. Smullyan: First Order Logic. Springer, Berlin, 1969.

M. Srivas and A. Camilleri (editors): Proc. Int. Conf. on Formal Methods in
Computer-Aided Design. Springer-Verlag LNCS vol. 1146, 1996.

G. Stalmarck: A Note on the Computational Complexity of the Pure Classical
Implication Calculus. Information Processing Letters, [** What is the complete
reference?], 1989.

G. Stalmarck and M. Sdflund: Modeling and Verifying Systems and Software in
Propositional Logic. in Proc. IFAC SafeComp’90, London, 1990.

M. Siflund: Modelling and formally verifying systems and software in industrial
applications. Proc. second Int. Conf. on Reliability, Maintainability and Safety
(ICRMS ’94), Xu Ferong (ed.), 1994.

J. Ahrman: Evaluation of an algorithm for Generating Partial Models in Propo-
sitional Logic using Stalmarck’s Method. Master’s thesis, Royal Institute of Tech-
nology. Department of Numerical Analysis and Computing Science, 1998.

0. Akerlund, G. Stalmarck and M. Helander: Formal Safety and Reliability Anal-
ysis of Embedded Aerospace Systems at Saab. Proc. 7** IEEE Int. Symp. on Soft-
ware Reliability Engineering (Industrial Track), IEEE Computer Society Press,
1996.

