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Zusammenfassung

Wir untersuchen die Verteilung einfacher Nullstellen der Riemannschen Zetafunktion.

Sei L =logT und H < T. Wir berechnen auf eine neue Art und Weise (alten Ideen von
Atkinson und neuen Ideen von Jutila und Motohashi folgend) das quadratische Moment
des Produktes von F(s) = ((s) + 7('(s) und eines gewissen Dirichletpolynoms A(s) =

<M ar(g) der Lénge M = T% mit < 2 in Nihe der kritischen Geraden: Ist R eine

positive Konstante, a = 1 — & und a(n) = ,u(n)na*% (1 - lfgg](}[), so gilt
T+H 1 6 1 1 1 1
AF(a+i)2dt = H(=4-(1-R——) - — (14 =+ —
[ @il a (3+5(1-R=55) -5 (1+ 5+ )
0 1 1 4
2R [ _ YV stears
+e <12R+4R39>+0(1))+O(T3 M3).

Hierin ist der Hauptterm wohlbekannt, aber der Fehlerterm wesentlich kleiner als bei an-
deren Ansédtzen (z.B. O (T st )) Bei einer bestimmten Wahl von R ergibt sich mit
Levinsons Methode, dafl ein positiver Anteil aller Zetanullstellen mit Imaginarteilen in
[T, T + H] auf der kritischen Geraden liegt und einfach ist, sofern H > T9%%! (und eine
bessere, aber kompliziertere Wahl von A(s) erlaubt sogar H > T9552)!
Fiir noch kiirzere Intervalle finden wir mit der Methode von Conrey, Ghosh und
Gonek
2
> (o="F10 (HL+172+),
T<~<T+H dm
wobei iiber die nichtreellen Zetanullstellen ¢ = 3 + iy summiert wird. Also liegt in jedem
Intervall [T',T + T%*'E] der Imaginérteil einer einfachen Nullstelle von ((s) bzw.

t{lo: T<y<T+H, (o) #0} > HT 2%,

Zusammen mit einer Dichteabschéatzung fiir die Zetanullstellen mit Realteil > % von Bala-
subramanian ergibt sich eine nichttriviale Einschrankung fiir die Realteile: Z.B. finden wir
einfache Zetanullstellen o = 3+ iy mit 7 < v < T + 7% und % <p< % + &, wozu unser

Ergebnis mit Levinsons Methode nicht fahig ist.

Schlagworter: Riemannsche Zetafunktion, quadratisches Moment, Levinsons Methode.



Abstract

We investigate the distribution of simple zeros of the Riemann zeta-function.

Let H <T and L =logT. We calculate in a new way (following old ideas of Atkinson
and new ideas of Jutila and Motohashi) the mean square of the product of F(s) = ((s) +
1(¢'(s) and a certain Dirichlet polynomial A(s) = 3,< o) of length M = T? with 6 < 3

n

near the critical line: if R is a positive constant, a = $—% and a(n) = ,u(n)na*% (1 - 110—05%),
then

T+H 1 0 1 1 1 1
AF(a+it)2dt = H(=4-(1-R——) - — (14 =+ —
[ 1R a <2+6< R 2R> 239( +R+2R2>

9 1 1 4

2R steasrs

+e <12R+4R39>+0(1))+O(T3 M3).

The main term is well known, but the error term is much smaller than the one obtained
by other approaches (e.g. O (T steps )) It follows from Levinson’s method, with an
appropriate choice of R, that a positive proportion of the zeros of the zeta-function with
imaginary parts in [T, T + H] lie on the critical line and are simple, when H > 70! (and
by an optimal but more complicated choice of A(s) even when H > T9-352)!
For shorter intervals we find with the Method of Conrey, Ghosh and Gonek
2
Y =240 (HL+13+),

T<~<T+H m
where the sum is taken over the nontrivial zeros ¢ = 3 + iy of ((s). So every interval
[T,T + T%JFE] contains the imaginary part of a simple zero of ((s)! Hence

t{o: T<~y<T+HC( () #0} > HT 37°.

With a density result of Balasubramanian we get even a nontrivial restriction for the real
parts: e.g. at the limit of our results with Levinson’s method we find simple zeros o = +iy

of the zeta-function with T' < v < T + 795 and % <p< % +e.

Keywords: Riemann zeta-function, mean square, Levinson’s method.

The used notation is traditional as in the classical book of Titchmarsh [40]. So we write
for example (k,[) for the greatest common divisor and [k,[] for the least common
multiple of the integers k,l. Every non standard writing or new definitions are given
where they first occur; new defined notions are bold faced (as above). The symbol e marks
the end of a proof. Implicit constants in O( )-terms may always depend on e.

Basic analytical facts (e.g. the properties of the Gamma-function) are stated without
citation; most of them can be found in [4]. Chapter 1 gives a brief introduction to the
theory of the Riemann zeta-function; for more details see [40] and [26].
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Chapter 1

Introduction

Let s = o0 +it,i = v/—1. Then the Riemann zeta-function is defined by

1
ns

- (0 >1).

1Y) )=
n=1

Since Euler’s discovery (1737) of the analytic version of the unique prime factorization of
the positive integers

=1 11 1\ !
(1.2) Z—S:H<1+—S+$+.“>:H<1——S) (0>1)
=1 pep pp pelP p

one has a close connection between the zeta-function and multiplicative number theory:
because of the simple pole of ((s) in s = 1 the product does not converge. This means that
there are infinitely many primes!

This fact is well known since Euclid’s elementary proof, but the analytic access encodes
much more arithmetic information as Riemann [35] showed: investigating ((s) as a function
of a complex variable s (Euler deals only with real s), he discovered an analytic continuation
to 0 > 0 except for a single pole in s = 1 and a certain symmetry around s = %, the
functional equation

(13) =% (1 - 8) C(1—s)= 73T (g) C(s)

(a "real” version was conjectured and partially proved by Euler), such that ((s) is defined
in the whole complex plane. From the Euler product (1.2) we deduce that there are no
zeros in the halfplane o > 1. Since the Gamma-function has no zeros at all, but poles at
s =0,—1,—-2, ..., the functional equation (1.3) implies the existence of the trivial zeros of
the zeta-function

((—2n)=0  for nelN,

but no others in ¢ < 0. Since the poles of the Gamma-function are all simple the trivial
zeros are also simple. Nontrivial zeros o = 3 + iy can only occur in the critical strip
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0 < o <1, but not on the real axis, which easily follows from the identity

(2 - 1)) = 3
n=1

valid for ¢ > 0 (see [40], formula (2.12.4)). Since the zeta-function is real on the real axis

(=n"

we have by the reflection principle a further functional equation

(14)  ¢B) =)

Hence the nontrivial zeros lie symmetrically to the real axis and the critical line ¢ = %
There are infinitely many nontrivial zeros: define N(7T) as the number of zeros ¢ = 3 + iy
with 0 < 8 < 1, 0 < v < T (counting multiplicities). Riemann conjectured and von
Mangoldt proved the Riemann-von Mangoldt-formula

T T
1.5 N(T) = —log— 4 O(logT).
(1.5) (T) = 5-log 5— + O(log T)
Riemann calculated the ”first” zeros % +¢14.13..., % +421.02..., ... and stated the famous
and yet unproved Riemann hypothesis that all zeros in the critical strip have real part

% or equivalently

((s)#0 for o> %

The importance of the Riemann hypothesis lies in its connection with the distribution of
primes: Riemann states an analogue to the explicit formula

(16 ww)= Y lp=r-> 2 S0~ J1g (1- ),

o 0 ¢

where the summation is taken over the prime powers (in the case of an integer z the
corresponding terms in the sums have to be halved); he works with the prime counting
function 7(x) := >°,<, 1, but for analytic reasons we prefer ¥(z). Hadamard and de la
Vallée-Poussin showed that there are no zeros of ((s) "too close to ¢ = 1” (depending on t),
but up to now no strip in 0 < ¢ < 1 without zeros is known! Following Riemann’s ideas and
with new discoveries in complex analysis at hand they were able to prove (independently)
the prime number theorem (1896)

U(x) ~x

or equivalently 7 (z) ~ @. The presently best known error term is

(L.7) ¥(z)—z < zexp (—C’(log x)% (log log x)_%)

due to Vinogradov and Korobov (1958). One may suggest by (1.6) and can show in fact
for the error term in the prime number theorem

(1.8)  U(z)—z<2(logz)? <= ((s)#0 in o>0.
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So by the symmetry of the nontrivial zeros the Riemann hypothesis states that the primes
are distributed as uniformly as possible!

Many computations were done to find a counter example to the Riemann hypothesis:
e.g. van de Lune, te Riele and Winter (1986) localized the first 1500000001 zeros without
exception on the critical line; moreover they all turned out to be simple! By observations
like this it is conjectured, that all or at least almost all zeros of the zeta-function are simple.
But, if m(o) denotes the multiplicity of the zero p, it is only known that

m(o) < log ||,

which follows from the Riemann-von Mangoldt-formula (1.5).
Not only the vertical distribution of the zeros has arithmetical consequences, also their
multiplicities: Cramér [11] showed, assuming the Riemann hypothesis,

wix ), (M5) dees

e

m(o) |”

0

)

where the sum is taken over distinct zeros; this mean value is minimal iff all zeros are
simple. That would mean that the error term in the prime number theorem is on average
much smaller than one may suggest by (1.8). This and further relations were elaborated
by Mueller [33].

Another arithmetical correspondence combines Riemann’s hypothesis and the simplicity
of all zeros of ((s): Mertens conjectured for the Moebius transform of the coefficients of
the Dirichlet series of ﬁ

(1.9) Z p(n) < 23

n<x

with an implicit constant < 1, where u(n) = (—1)" if n is squarefree and the product of
r different primes, or otherwise p(n) = 0. This Mertens hypothesis was disproved by
Odlyzko and te Riele (1983), but it is still open, whether (1.9) holds for some implicit
constant > 1. This would imply Riemann’s hypothesis and additionally that all zeros are
simple (see [23])!

But what is known about the distribution of nontrivial zeros and their multiplicities?
Hardy (1914) investigated the function

_it F(i‘F%) 1
e )

which is real for real ¢. Since Z(t) has exactly the same real zeros as ¢ (% + it) it is possible

Z(t):=m7

to localize by the mean value theorem odd order zeros of the zeta-function on the critical
line. In that way Hardy was the first to show that there are infinitely many zeros on the
critical line. With the new idea of a "mollifier” (see also Chapter 2) Selberg was able to
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find even a positive proportion of all zeros: if Nyo(7') denotes the number of zeros g of ((s)
on the critical line with 0 < v < T, he found

No(T + H) — No(T

lim inf o7 + H) o(7)

T B - NT)

for H > T3+, Karatsuba improved this result to H > Tte by technical refinement. The
proportion is very small, about 107% as Min calculated; a later refinement by Zuravlev,
using ideas of Siegel, gives after all Z if H = T (cf. [26], p.36). However, the localized
zeros are not necessarily simple!

Littlewood (1924) investigated the distribution of the zeros using an integrated version
of the argument principle (see [40], §9.9): let f(s) be regular in and upon the boundary of
the rectangle R with vertices a, a + i1, b+ iT, b and not zero on o = b, and let v(o,T)
denote the number of zeros of f(s) inside the rectangle with real part > o including those
with imaginary part = T but not = 0. Then Littlewood’s Lemma states that

b
/ log f(s)ds = —27?1'/ v(o,T)do.
OR a

Now let N(o,T) denote the number of zeros counted by N(T'), but only those with real
part > 0. Then Littlewood found

N(o,T) < T =0o(N(T))

for every fixed o > % So "most” of the zeros lie arbitrarily ”close to” the critical line!
Speiser [36] showed (discussing the Riemann surface of the zeta-function) that Rie-

mann’s hypothesis is equivalent to the nonvanishing of ’(s) in the strip 0 < o < %

On the critical line we have another relation between the zeros of {(s) and ¢’(s): we rewrite

the functional equation (1.3) as

(1.10)  ¢(s) = x(s)C(1 —s),
where

(2m)°

x(s) == W

is a meromorphic function with only real zeros and poles. By Stirling’s formula

(111)  x(s) = (%)%Uexp (z (% ~tlog #)) (1 +0 (%)) (t>1).

Differentiation of (1.10) gives
(1.12)  {'(s) = x'(s)C(L = 5) = x(s)C"(L — 5)-

This shows by the reflection principle that every zero of the derivative of the zeta-function
on the critical line is a multiple zero of the zeta-function itself:

(1.13) ('(%—l—it)—o = ((%—i—it)—o.
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Thus the nonvanishing of {'(s) in 0 < o < % would imply Riemann’s hypothesis and that
all zeros of the zeta-function are simple!

Levinson and Montgomery [30] gave a quantitative version of Speiser’s surprising result
applying the argument principle to the logarithmic derivative of (1.10) (for details of the
following see the notes of §10 by Heath-Brown in [40]): if ¢’ = 3’ +i7’ denotes the zeros of
¢'(s), then

(1.14) ﬁ{g' : —1<5’<%, T<fy’§T+H}
1
= ﬁ{g : O<ﬁ<§, T<7§T+H}+O(log(T+H)).

So there are as many nontrivial zeros of the zeta-function as of its derivative in the left half
of the critical strip (apart from a small hypothetical error).
This plays an extremely important role in Chapter 2, so we give now a

Sketch of the proof of (1.14). Let 7 and T with 77 < T% such that neither ((s) nor
¢'(s) vanishes for t =Tj,—1 < o < % (this may be assumed since the zeros of a non constant
meromorphic function have no limit point). We observe the change in argument in %(s)
around the rectangle R with vertices % — 6 +i17y, % — 0 +iTy,—1+ i1y and —1 + T} for a
small positive 0. Logarithmic differentiation of the functional equation (1.10) gives

/ / !
(1L15) )=S0 - F1-s),

where by (1.11) or Stirling’s formula

(1.16) X;,(s) _ —log% +0 (%) (t> 1),

In particular we have

/
t
C(c14it) = —log 4+ O(1)
¢ 2
(since C?/(2 + 4t) is given by logarithmic differentiation of the Euler product (1.2) as an
absolutely convergent Dirichlet series). Thus on ¢ = —1 the change in argument in Cé(s) is

< 1. For the other vertical edge we first get by (1.15) and (1.16)

!/

1
(117)  Re % (5 +it> <1 (t£4)
for t large enough (since for o = % the symmetry between s and 1 — s is just complex
conjugation). In the neighbourhood of a zero ¢ = 3 + iy of multiplicity m(o) we have
obviously

¢
¢

(51 =" 1 e 0(1s o).

(1.18) ,
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With s = 1 + it — p follows Re ¢ < —1 by (1.17), and with s = 3 — & + it we get

¢ . m(o)d 1
Re Z(s) BT +Re e+ 0(ls— ) < —3

for |s — o| small enough. Hence we have for a sufficiently small ¢ (that depends only on T5)

(’(1 ) 1
2 — < ——
ReC 5 O+t 5

for Ty <t < Ty. It follows immediately that arg %’(5) varies only by < 1 along this vertical
line. Moreover it is well known that ¢(s) and ¢/(s) are both < t¢ for o > —2 with a certain
constant C' (by the Phragmén-Lindel6f-principle). By the functional equation (1.10), (1.11)

and (1.16) we also have
3

((=1+4T3) > T7,

3
(’(—1+iTj) > Tj2 log T;.

Thus we find that arg {(s) and arg(’(s) both vary by < log Ty along the horizontal edges
of R by use of Jensen’s formula in a standard way (see §9.4 in [40]). So the total change
of argument in %(s) around the rectangle R is < log T>. Now with the argument principle
follows immediately (1.14) (with (1.5) the restricted 77 resp. T» can obviously be replaced
by arbitrary T resp. T'+ H with an error < log(T + H)).e

A similar ”argument” holds for C?/(s) — s. Therefore we have instead of (1.14)

ﬁ{s : %(s)—s, —1<0<%, T<t§T—i—H}

= ﬁ{g : O<ﬁ<%, T<7§T+H}+O(log(T+H)),

too. So one could localize almost all nontrivial zeros of the zeta-function on the critical line
by showing that the logarithmic derivative of the zeta function has no fixed points in the
left half of the critical strip! A first approach of function iteration to Riemann’s hypothesis
was discussed by Hinkkanen [19]. But (because of Newton approximation) he prefers to
iterate a‘g(s) — s, where &(s) := s(s — )7~ 2T (3) ¢(s).

Moreover, Levinson and Montgomery find also

1 T
> (5/ - 5) ~ 5 log L,
0<y'<T T

so that frequently ' > %,

(what one may expect by Speiser’s result)!

and obviously the zeros of (/(s) are asymmetrically distributed



Chapter 2

Levinson’s Method

The correspondence (1.14) between the distributions of the zeros of ((s) and its derivative
is the starting point of Levinson’s method. Let H < T and L = logT. If we write N for
the left hand side of (1.14), it follows by the symmetry of the zeros of ((s) that

(2.1) No(T+H)—No(T)=N(T+ H)— N(T)—2N + O(L).
So applying Littlewood’s Lemma to ¢’(1 — s) one may hope to get a good estimate of
No(T + H) — No(T). But with regard to (1.12) and (1.16) it is convenient to replace
¢'(1 — s) by the approximation
1
F(s) = C(s) + 7¢/(5)

(see [5]), multiplied with a suitable Dirichlet polynomial A(s) to ”"mollify” the wild be-
haviour of ¢’(1 — s) in the critical strip. We take

A(s) == Z %

with M = T? and coefficients

(22)  a(n) = p(n)n® "> <1 - i)ogg i ) ’

where a is a certain constant chosen later (then the product AF approximates C?/(1 —s)
and logarithmic derivatives have ”small” order; see for that the theorem on the logarithmic

derivative in [34], §IX.5). Since AF'(s) can only have more zeros than F'(s), this leads to
1
2m (— — a) N
2
T+H 9
< Zlog —/ |AF(a + it)[? dt + O(L)
2 H Jr

(we write here and in the sequel AF(s) instead of A(s)F(s)). If one takes a := 2 — & with

IN

T+H
/ log |AF(a + it)| dt + O(L)
T
H 1

a positive constant R chosen later, then by (2.1)

No(T + H) — No(T) 11 /T+H 2
> JE— J— .
NT+H) —NT) > 1 Rlog T |AF(a +it)|” dt +o(1)

(2.3)

9
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Using this with M = T2, H = TL~2° and R = 1.3 Levinson [29] localized more than one
third of the nontrivial zeros of the zeta-function on the critical line, which is much more
than Selberg’s approach gives!

Moreover, Heath-Brown [17] and Selberg (unpublished) discovered that those localized
zeros are all simple: let Nér) (T') denote the number of zeros o = % + iy of multiplicity r
with 0 <y <T. By (1.13) we have

o0

N S / _ (r) (r)
ﬁ{g =S+ T<y ST—i—H}_Tz;(r—l)(NO (T + H) = N§™(1)) .
Hence we get instead of (2.1)
NG+ H) = NGO (1) = S (r = 2) (NG (1 + H) = (1))
r=3
= N(T+H)—N(T)—2<N—|—ti{g'—%—H‘fy’ : T<7’§T+H}>+O(L).

So we may replace (2.3) even by

(1) B (1) T+H
Ny (T + H) — Ny (T) > 1_llogi/ |AF(a +it)|* dt + o(1).
T

@Y —NTrE =N R®H

By optimizing the technique Levinson himself and others improved the proportion %
sligthly (see [5]), but more recognizable is Conrey’s new approach [6] to Levinson’s method
using Kloosterman sums. By that he was able to choose a mollifier of length M = T77¢ to
show that more than two fifths of the zeros are simple and on the critical line! The use of
longer mollifiers leads to larger proportions (as one can easily deduce from the asymptotic
mean value in Theorem 2.1). But in general there exists no asymptotic formula for the mean
square of A((s), where A(s) is an arbitrary Dirichlet polynomial of length 79 with 6 > 1
(perhaps not even for 6 > %) as Balasubramanian, Conrey and Heath-Brown [3] showed.
Farmer [13] observed that in the special case of Dirichlet polynomials given by (2.2) one
could expect to have asymptotic formulas valid for all § > 0 (0 = oo -conjecture). If it is
possible to take mollifiers of infinite length, then almost all zeros lie on the critical line and
are simple!

Levinson evaluated the integral in (2.4) using the approximative functional equa-
tion

()= Y X)X s + 0 (¢ 4 3y ).

n<x n<ly

valid for 0 < o0 < 1 and 27wzy = t, which produces an error term O (T ste M )

To avoid errors of this order, we will calculate the integral in a different way combining
ideas and methods of Atkinson, Jutila and Motohashi. Of course, we get the same main
term as Levinson. So this leads not to an improvement of his result concerning the long
interval, but with our error term we obtain better results for short intervals [T, T + H|

(i.e. limsupg_, o llo(fo; < 1):
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Theorem 2.1 For 6 < % we have

T+H 1 0 1 1 1 1
AF(a+it)?dt = H(~+2(1-R-—) = — (14 =+ —
/T |AF(a+ it)[2 dt <2+6< R 2R> 239( +R+2R2>

9 1 1 4
2R ¥ - I
+e <12R+4R39>+0(1))+O(T3 M3).

By (2.4) we find (after some computation) with the choice R = 2.495 and 6 = 0.193:

Corollary 2.2 For H > T%%1 ¢ positive proportion of the zeros of the zeta-function with
imaginary parts in [T, T + H| lie on the critical line and are simple!

Levinson’s approach leads only to positive proportions in intervals of length H > 7969, But
in both cases we observe the phenomenon that only short mollifiers give positive proportions
in short intervals!

One can work with more complicated coefficients than (2.2) and with ((s) + %C’ (s)
instead of F'(s), where A is optimally chosen later. Then one obtains even a positive
proportion using mollifiers with § = 0.164 (as Farmer [14] showed). This leads to

NPT + H) - NV (1)

>0
whenever H > 70-552]
Now we give the

2.1 Proof of Theorem 2.1

Before we start we give a sketch of the proof. Let
T+H
(2.5) / |AF(a +it)*dt = I(T,H) + E(T, H),
T

where I(T, H) denotes the main term and E(T, H) the error term. We are following Atkin-
son’s approach to the mean square of the zeta-function on the critical line (or Motohashi’s
generalization to the mean square of the zeta-function multiplied with a Dirichlet poly-
nomial): we split the integrand in the range where it is given as a product of Dirichlet
series into its diagonal and nondiagonal terms (§2.1.1). In the nondiagonal terms we isolate
certain parts that, as all diagonal terms, give contributions to the main part. Since these
terms are analytic on the line of integration, we can calculate I(T, H) very easily only by in-
tegrating certain functions involving the Gamma-function and evaluating the zeta-function
near its pole (§2.1.2). Unfortunately, we need an analytic continuation of the remaining
nondiagonal terms, which produces the error term, to the line of integration. After a cer-
tain transformation (§2.1.3), we are able to find such an analytic continuation by use of a
Voronoi-type-formula (§2.1.6). With a special averaging technique due to Jutila (§2.1.8) we
bound E(T, H) by estimates of exponential integrals (§2.1.9).
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2.1.1 Decomposition of the integrand
We have to integrate
(2.6) |AF(a+it)]* = AF(2)AF(2a — z)
= AC(2)AC(2a — 2) + %(AC’(z)AC(Qa —2)

+AC(2)AC (20— 2)) + %Ac(z)Ag(za —2)

with z = a + it along T < t < T + H. First we try to find a more suitable expression of
this: for b,c € INg := INU {0} and Re u,Re v > 1 we have (writing 3_, ; for the double sum

k)
®) ) o \bte a(k)a(l) b c
AP W) A () = (=1)" > D k)l (log m)”(log n)

k<M m.n

B o~ alk)a) (kN L
- k,ng/;(hW])“*” (l gh[’f,l]> (l gh[/al])
+f(u, br0,61) + flv, ¢ u,b1),

where

flu,bsv, c;w(k, 1))
R C )

m,n k<M

mEb ‘mod k
m+n=0 mod [

with an arbitrary function w(k,1). Define

So(u,’l)) — Z CL(]C)CL(Z)

kI [kﬁ, l]quv )
a(k)a(l [k, (]
Si(u,v) = Y 0 log ——,
kI [k, l]ut k
a(k)a(l [k, 1] [k, 1]
So(u,v) = ——log log
kI [k, [|wt k l

Then we have
(2.7)  AC(w)AC(v) = ((u+v)So(u,v) + f(u,0;0,0;1) + f(v,0;u,0;1).

This gives an analytic continuation of f(u,b;v,c;w(k,l)) (as in [1] or [21], §15.2): since the
Dirichlet polynomial A(s) may be omitted from the following considerations, we observe
with integration by parts

[e.9]

Sm+m) = [T me+a) " di

n=1
ml—v 1 —v 2, —Rev—1
= 1 3™ +O(|v|m )
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Hence we have for k=1=1in f(u,0;v,0;1)

Zm (m+n)" = 1 iml_“_”—l Oom_“_”
U_lmzl 2m*l

+0 <|v|2 Z mRe(“JrU)l) ,
m=1

and therefore

1 1
Zm (m+mn) —mg(u—kv—l)—kig“(u—i—v)

is regular for Re (u + v) > 0. So (2.7) holds by analytic continuation for w,v with
Re u,Re v > 0 unless u,v =1 or u + v = 1,2. Analogously we find for the same range

(2.8)  Ad(WAL(v) = ((u+v)So(u,v) —((u+v)Si(u,v)
+f(u,1;v,0;1) + f(v,1;u,0;1),

29)  ACWAC (W) = "(u+v)So(u,v) — 2 (u+v)S1(u,v) + ((u+v)S2(u,v)
+f(u,1;v,1;1) + f(v, 1;u,1;1).

Now we transform f: with the well known formula (see [40], §2.4)

(2.10) TI'(s)N*= / 2 te N2 2 (0 >0)
0
we obtain
f(u,0;0,0;1)
1 [0.9] o
= —— a(k)a(l)/ / gLyl e mENY oy,
I'(u)T'(v) k;l;M o Jo ;
s> m=0 mod k
m~+n=0 mod [
With

1< Nf 1 N =0mod !

- omi—t ) — ’

szleXp<7”1> {o . N#0modl
(what we shall frequently use) we find

Z efma:f(ern)y

m,n
m=0 mod k
m+n=0 mod [

= i —m(z+y) Z e ™ - Z exp <27r27(m —il_ n)f)
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Hence with

1, kf=0modl
5““‘{0, kf # 0mod !

it follows for Re uw > 0,Re v > 1 and Re (u + v) > 2 that
(211)  f(u,0,0,0;1)

B m Z a(k)a(l){% Z /O°° Yo <exp (y — 27ri§> — 1>1

kI<M 6(ff=i1

oo gu—l 1 o0 f -1

ey ¢ b [T (o (s 2mid) 1)
b et 12 gy v (e (v o2

© L kf ),
= Mo +y)—2mits ) <1) =2 dea
X/o x ((exp( (x+y) i YE— x dy
= Fi(u,0;v,0;1) + F5(u,0;v,0;1).
By the well known formula (see [22], formula (2.11))

o'} l,u—l
(2.12) A dr = y" Tl —-u) (0<Reu<1),

r+y
valid for y > 0, we obtain
Fi(u,0;v,0;1)
P(1—u) < a(ka(l) /°° FPEE ( ( .f> !
= — yur exp |y — 2mi=- —1)
I'(v) MEM ki 0 ; l
- kf=0 mod

Since kf =0 mod [ iff f =0 mod ﬁ the inner sum equals

(k,l) o0 o0
Z exp <—N <y - 27rii)> = (k) Z e Ny
g=1 N=1 (k7 l) N=1

N=0 mod (k,l)

= (k) (0 1)

Thus we get, substituting y(k,[) — v,

Fi(u,0;0,0;1)
_ F(l_u) (kvl)Q_u_U o u+v— —
- k%Ma(k)a(l)ikl /0 2 (0 — 1)1 dy,
Define now
Kolwo) = 3 atweEL"
k<M kil
B (k, 1270k
Kilo) = 3 a0 s o
B (k, 1)2 v l
Ky(u,v) = kJZS:Ma(k)a(l) ¥ log ) log 0k
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Then with
I'¢(s) :/ #2e*—1)" dz
0

(which is at first only defined for ¢ > 1, but leads to an analytic continuation of ((s)
throughout the whole complex plane except for s = 1; see (2.10) and [40], §2.4) we obtain

Fi(u,0;v,0;1) = Ko(u,v)MI’((u +v—1),
I'(v)
which gives an analytic continuation to 0 < Re u,Re v < 1. If Fy(u,0;v,0;1) also denotes
the analytic continuation of the function F3 given by (2.11) to a domain in the critical strip
that includes the line of integration Re u = Re v = a, that we will give later (see §2.1.7),
we have in the same range
(1 —w)

(213)  f(u,050,0;1) = Ko(u, 0) —Fr=

I'¢(u+v—1)+ Fa(u,0;v,0;1).
Furthermore, one gets

flu,Lo,01) = > a(k)a(l) Y

m,n
k<M m=0 mod k
m+n=0 mod [

logk — logm
m*(m +n)?

= f(u,0;v,0;log k) + E%f(u,();v,(); 1)

with
f(u,0;v,0;log k)
—u 2—u—v
= %F((u +v—1) k’lz;M a(k)a(l)% log k
+F5(u,0;v,0;log k)
and
0
%f(u,O;U,O;l)
= ko) {EE T e e -1y - DT W
= Kofu) { S T v = 1) = o - 1)
I'(1—u) N (B (k:,l)Q_“_”O 1
oy Tl 3 eyl
+%Fg(u, 0;v,0;1).
Altogether we find
(2.14)  f(u,1;v,0;1)
= Kl(u,v)%lﬂqu—i—v—l)
PO =) e remg o 1) = D= W e
o) { S IO 0 = 1) = ST e - D))

0
+Fy(u,0;v,0;log k) + a—Fg(u, 0;v,0;1).
u
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Finally, we have

flu, L0, 1;1)
(log k — logm)(log I — log(m + n))
= k)a(l
a0 = e+
m+n=0 mod [
= (.00, 0:log kog ) + o (1,050, 0 log 1) + o (1, v, 0: o )
0 0
+%%f(ua 0;v,0;1)
with
f(u,0;v,0;log k log )
NG (k,1)2u—v
T)I‘((u +v—1) MXS:M a(k)a(l)T log klog
+F5(u,0;v,0;log klogl),
0
%f(u, 0;v,0;log )
(T =), , 'l —u)
- ( F 2+ T v = 1) = T v D)
k,l 2—u—v
X Z a(k)a(l)()kil logl
k<M
I'(1—u) (k,1)>7vv 1
+ ) D¢(u+v— 1)k%Ma(k:)a(l) T log D log
—i—agqu(u, 0;v,0;log ),
0
%f(u,O;v,O; log k)
(T =), , AT A D) B
- ( F T T 0 = 1) = ()= BT+ D)
k,l 2—u—v
x > a(k:)a(l)()kil log k
k<M
I'(1—u) (k,1)2vv 1
+ () I'¢(u+v—1) k%Ma(k)a(l) v log ) log k

2 Py, 0:0,0: log )

and
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0 0
%%f(ua 0) v, 0) 1)

~ Koo { )5

X (T'¢C+T)(u+v—1)+

T¢(u+v—1)— <%(v)r(1£(;)u) + F,(Fl(;)u))
(1 —w)
I'(v)
I'l—w) I T'(1-u)
+H- (e T
r(l—w),, Nt v (Bl (k,1)27u—v 1
S T T+ 1ﬁk%%»@>a> e
—u 2—u—v 2
—i—%lﬂg(u +v-1) Y a(k)a(l) (, l)k:l <log ! ))

k<M

(T"¢+217¢ + ¢ (u + v — 1)}
) I¢(u+wv—1)

+2

0 0
+%%FQ(U,O,’0,0, 1)
Thus

(215)  f(u,L;v,1;1)

(1 —u) ut
T I'¢(u+ 1)

Ky (u, 0) {2%&@ Tt v —1)

- (F0" ;)U) * F/(;(;)U)) rctu+ =)

= Ks(u,v)

(U)%Fg(u—i-v -1
- (F(Fl(i;)“ + %(v)%) (I'C +T¢)(u+ v — 1)
(1 —u)

+—T@T4V%+2VC+Fdxu+v—U}

+F5(u,0;v,0;log klogl) + gFg(u,O;v,O; log 1)
U
0

0 0
—f-%FQ(U,O,’U,O, lOg k) + %%FQ(U,O,U,O, 1)

For u + v = 2a the sums S;(u,v) and Kj(u,v) are independent of u and v, so let S; =
Si(z,2a — z) = 8j(2a — z,2) and K; = Kj(z,2a — 2) = K;j(2a — z,2) for j = 0,1,2. The
error term E(T, H) will arise from the integral over the functions F» and their derivatives

(
+Ko(u,v) {1%
)

with respect to u and v, evaluated at u = z,v = 2a — z and vice versa. Later we will bound
those integrals in the same manner, so we shall denote (finite) sums of functions F, and
their derivatives by G(u,v) = G(z), respectively. Then we obtain with (2.13) in (2.7)
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A((2)AC(2a - 2)
N'i—z2) TI'(l-2a+2)

= SOC(2Q)+KO{F(2(L—Z) - F(Z) }FC(QCL—l)-f-G(Z),

and with (2.14) in (2.8)

A('(2)A¢(2a — 2)

= So¢'(2a) — S1¢(2a)

ko (e reve = (o= + )
M-z  T'(1-2a+2)
F(2a—z) T F(Z) )}

+K, {IF((Qla_—ZZ)) T (1 }(2:) + 2) } I'¢(2a — 1) + G(z)

= AC(2)A(2a - 2)

_T¢(2a—1) (

(after exchanging u = z and v = 2a — z above). Finally, we get with (2.15) in (2.9)
AC(2)AC (20— 2)
— S¢"(20) ~ 251'(20) + Sa€(20) + Ko { (

Ni—z2) TI'(l-2a+2)
I'(2a — 2) + I'(z) )
x (D¢ 4+ 207¢" +T¢")(2a — 1) — (%(20, —z) Ii(;a—_zz))

. %(Z)I‘(l —F(2:)+ 2 FF(/;_—Z;) Lra ;(22’6;+ z)) I'¢+T¢)(2a — 1)
4 <FF(Z)% + %(2a—z)rr(;2:i))>F<(2a_ 1)}

1K, {2 (13((22__2)) + ra ;(QS)JF Z)> (T'¢+T¢)(2a - 1)

I’ 'l—z) I" T'l—2a+2z) TI'(1-2a+z2)
- (F(Q“ "oy TTH T T T TR
N FF(;Z:z))) T'¢(2a — 1)} + K, {FF(SCL__ZZ)) L _F(Q;J“ ) } I'¢(2a—1)

+G(z).

Collecting these expressions one obtains for the main term of (2.6)

(2.16) AF(2)AF(2a — z)

= sofoza) + 2¢'2a) + ")} - 2 {20 + 1020

T(1-2) T(1-2a+2)

+%<(2a) + Ko {(F(Qa " T ) I'¢(2a — 1)+
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2

/ / F(l _Z) F(1—2a+2)
+z{(I’C+FC)(20—1) (F(Qa—z) I'(2) )
I'(1—2) I"(1—2a+2)
— I'¢(2a - 1) (F(Qa —2) * I'(z) )}
1 'l—2)  I'(1-2a+2)
2 { (F(Qa —2) ['(2)

) (T¢ 4+ 21'¢' + T¢") (20 — 1)

r Nl—-2 I, T'(1-2a+2)
- <F(2“ "o T TH T T

I'(1-2) F/(1_2a+z)>(F'(—i—FC’)(Qa—l)

T(a—2) ()

4 (%(@% + %’(20, _ z)rr(/;__” r'¢(2a — 1)}}

o2 (g ) e (o (s
[(-2az) _F(2:)+ 2)> (I +T¢)(2a — 1) — (%(2@ - z)%

I T—20+2) T'0-20+2) T0=2)\1
+ F( ) T(2) + I'(z) + I’(2a—z)>r<(2 1))}

IS {1?((22__2)) ra _F(Q,:) +2) } T¢(2a — 1) + G(2).

L2

2.1.2 The main term

Before we integrate (2.16), we first calculate the factors that do not depend on z: from the

functional equation (1.10) or

 (@2n)® B
TC(8) = 5 e 53 S —9)
and its derivatives
/ / (277)8 / T s
'¢+T = —('(1—=38)+(1—-5)|log2m + = tan —
(MC+TOE) = o {01 =) +C1 =) (log2r+ Fran 5 )}
and
(T"¢ +21'¢" +1¢") (s)
(27T)S " / T s
= m{g (I1—-s5)—2¢"(1-s) <10g27r+§tan?)

one easily gets

(2.17) T¢(2a

9 2
+C¢(1—s) ((log2w+gtan%s> +<2c:sﬁ> )},
2

(27T)2a—1

)=\
) 2(:08@C

(2 - 20’)7
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(2.18)  (I"¢+T¢)(2a — 1)
% {_CI(Q —2a) +((2 - 2a) <1og 2 + gtan @)}

2 cos 5

and

(2.19) (D¢ +20'¢ +T¢")(2a — 1)
(27r)%a—1 " T m(2a — 1)
= Ser 2a 716" (2 = 2a) — 2¢'(2 - 2a) <10g27r+§tan7>

9 2
+((2 — 2a) ((log%* 3 tan @) ! (ﬁ) ) }
nZa—1)

With Stirling’s formula we find

I'(1-2)

T(2a — 2) = exp (QCL—1+(1—2a)log(1—z)+0<%)>,

Therefore we get
ati(T+H) T(1 — 2) 1 a+i(T+H)
— Y 4z = (e**'4+0 <—>) / 1—2)7204;
~/cl+iT F(QCL — Z) < T a+iT ( )

T 1—2a
_ (_Z-)Qan (_) H + O(HTan)
e
and analogously

a—il’ I'(l-=2) 90q (T2 —2
—dz = @ = H HT—4%).
/ai(TJrH) I'(2a — z) S ( e ) +0( )

Via z — 2a — z we have

ati(T+H) T 1 _ Z aFiT 1 —2q + Z)
/ / dz,
a

+iT 2a —2) arirrm)  L(2)

SO

1 / —iT a+i(T+H) 1—2 F(1—2a+z))d
- z
2 (T+H a+iT 2a — z) I'(z)

= 2cos< 1—2a)<z> H+O(HT™ 2a)

e

In a similar manner

1 [ po—iT atiT+H) ] /T/(1—2) TI'(1—2a+ z)>
= + + d
2i {/a—i(T+H) /a+iT } (F(Qa - z) I'(z) ’

= 2cos (M) (%)1_% HL+O(HLT_2“)
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and

1 { a—iT a+i(T+H)

55 Uorem ™.

2t | Ja—i(r+H) JatiT

I (1 - rr..ri-2

(—(2@— 2) 1-2) w) dz

T r2a—2 T T T

1—-9 T 1—2a
— 2cos (M) (—) HL?+ O(HL2T2),
e
respectively. With these formulas we are able to calculate the main part of

T+H
/ |AF(a + it)|? dt
T

1 a—iT ati(T+H)
= — / +/ AF(2)AF(2a — 2z)dz
2i | Ja—i(r+H)  JatiT

as follows: because of the simple pole of ((s) in s = 1 we have for k € INg
k!
(5 _ 1)k+1

so integrating the equation (2.16) we get with (2.17), (2.18) and (2.19) for the main part

(220)  ¢W(s) = (~1)* +0(1)  (s—1),

- H<so Leom) + 2c'a0) + Jcia)}

B Lo + 100w+ S2cioa)

T\'"% /K, , 2K, , K,
+ (—) (FC (2~ 20) ~ 25102 — 20) + 222 - 20,)) )

1 2 2
- H<SO{2a— 1" T2a—12  I?@2a- 1)3}

__{ 1 }+ S5
L 2a—1 L2a-12J " I12Q2a—1)

< T )12a ( 2K 2K, K, )
+(=— + + .
2me L2(1 —2a)3  L2%2(1—2a)? L3(1—2a)

Of course we have for H = T the same main term as Levinson. With his further calculations
(see [29], §11-14)

1 1 0L /1 2 1 6L /1 0L
SQN————i-a—i-—(——a), Sl"“_—'i‘_(__a)? SQN_’

0L 2 3 \2 2 3 \2 3
1 1 0L /1 2 1 6L /1 0L
Kowﬁ+§_a+? E_CL)’ KlN_§_?(§_a>a KZN?
we obtain
1 0 1 1 1 1
221) I(T,H) ~ H(=+4+Z(1-R——)—— (14+=+—
(221) I(T,H) <2+6< QR) 2R9(+R+2R2)

0 1
2R ¥ -
te <12R+4R39>)'
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2.1.3 Transformation of the error term
For G(u,v), i.e. for

FQ(U, 07 v, 07 ’U)(k, l))

k<M

« /OOO LUl ((exp <k(x +y) — 27m‘#) — 1) - — %) dz dy

and its derivatives with respect to u,v we need an analytic continuation to a domain that
includes Re u = Re v = a. Obviously it is sufficient to find one for

plu) = mle:l/ooo y (exp <y — 2m§) _ 1)_1

« /OOO Lu-1 ((exp (k:(x +y) — 27?1'#) - 1)1 - %) dzx dy

with fixed k,{. Following the ideas of Atkinson [1] and Motohashi [32] we first transform
o(u,v) into a more suitable expression. Therefore we rewrite the integrals as Hankel in-

tegrals (as Riemann [35] did when proving the functional equation (1.3), see for that [40],

§2.4 and [4], §111.5.6.4).
Let f(z) be a meromorphic function without poles on the nonnega-

tive real axis. Consider the integral [, f(z)z¥ !dz with0 <w < 1
and the contour C that starts at r > 0, proceeds along the pos-
itive real axis to a small ¢ > 0, describes a circle of radius ¢ r R
counterclockwise around the origin, returns along the real axis
back to r and describes a circle of radius r clockwise around the
origin. Im logz varies on the small circle from 0 to 27. With

w=l — o(w=1)logz we obtain

/Cf(z)zw_l dz
[ f [ e [
= (eQmw — 1) /: f(2)z2° tdz + {/M:E — /|Z|:r} f(2)zv 1 dz.

Now let r — oo and € — 0. Since lim, ¢~ 2f(2) = 0 the integrals over the circles vanish,

z

and we obtain, using the calculus of residues,

(62’”“’ - 1) /OOO f(2)2¥dz = /Cf(z)zw dz = —27riZRes f(z)z".

Hence

1

P = TG @ 1 @ 11
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l

Xy /(;y”—l (exp <y — 2m§) — 1) B
u—1

f=1

x ((exp (k:(x +y) — 2772'#) - 1)_1 - %) dx dy.
Note that

(eXp <k(x +y) — 2mkl—f> - 1) o %

X
C

is regular apart from simple poles in

x_—y+%<n+(1—5(f))¥) (neZn+0 — 8(f) =1)

(in the case d(f) = 1 the pole in x = —y can be lifted) with residues

(v Z (nra- 6<f>>?))u_1.

Thus we obtain
l

plu,v) = r(u)r((v;zzzi— D fZ /ooo v (exp <y B 27”%) B 1)_1

=1

o0

Y (y Py (% +(1- 5(f))§)>U1 dy

n=-—oo

n#0 <= §(f)=1

s
sin Tu

(where the path of integration is replaced by the original one). With I'(u)I'(1 — u) =
and (2.12) we have

(v—2mi (3 + - 6<f>>§))”1

_ sinmu /OO 2~ dx
T Jo wry—omi (B4 (1-0()f)
We can interpret the reciprocal of the denominator of the integrand as an integral

1
z+y—2mi (B + (1 -5(f)F)

_ /Oooexp (—z {x—i—y— omi (% +a —5(f))§>}) dz.

Since we may obviously exchange here (and below) summation and integration, we get

i /OOO yv 1 (exp (y - 27?1%) - 1)1

n=-—oo

n#0 <= §(f)=1

x/ooox“_l/oooexp (—z {x—i—y— 2mi (% + (1 - 5(f))§> }) dz dz dy.

1 l
Plu0) =TT };
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~1
Now we replace (exp (y — 2772'7{) — 1) by a geometric series. Then ¢(u,v) equals

n;to <~ §(f)=1

X exp <—z {x—i—y— 2mi (% +(1- 5(f))§>} —-m (y— 2m’§>) dz dx dy

- klzz Z // ¢ e

f=1m=1 n=-—00
n#0 <= §(f)=1

/y ~1,-y m+z)dyeXp<2Wi<z{%+(l_5(f))§}+m§>) dz

(exchanging the order of integration is obviously allowed by Fubini’s theorem). By (2.10)
and the substitution z = ym we obtain

olu,v) = lZZm v Z / “A+y)™

jim=1 oo S
X exp (2771' (ym{% + (1 —5(f))§} +Tf>> dy.
Let k = ﬁ,)\ = %D Then
n m An+k(l—94§
m(EJr(l_‘s(f))%) RO . (,@A L
wio_ m g

I (kD) AT

Now we interpret An+ (1 —3(f))f as a linear form in n and f. This linear form represents
(exactly once) all multiples of A but not zero in the case of 0(f) = 1 (since n # 0 <=
d(f) = 1) and otherwise all integers # 0. Let % denote the inverse of x mod A. Thus with
N =M+ k(1 —6(f))f we have f = NE mod \. Let further M = (k ;- Then we obtain

(k, l)2fu7v o0 Lu o) . NE
ou,v) = —F— Z MY Z exp <2mM—>
ki oyt N§;§° A

o MN
X / y “(14+y) Yexp <2m'y ) dy.
0 KA
Define now e(z) = exp(2miz),
= Z d
din

and further d(n) = og(n). Then we obtain by setting n = M N

o(u,v) = ~———— (MQ — i T1—u—v (1)) ( )/Oooy“(Hy)”e(%) dy.

n=—oo

n#0
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Now

> oaetine(nf) [Ty n e () ay

7 i rruanye (<n) [Ty n e (<28) dy

is just the conjugate of

as well as u = z,v = 2a — z are conjugates on Re z = a. Define

(2.22)  g(u,v;k,1) Zol - ( ?) /OOO y “(I+y) e (%) dy.

Then we have found

(2.23)  Fy(u,0;v,0;w(k,1))
(k’ l)2—u—v ———
= Z a(k)a(l)w(kvl)T (g(u,’(},k‘,l) +g(u,v,k,l)>
k<M
for w = z,v = 2a — z and vice versa. Hence we may estimate first g(u,v) := g(u,v; k,[) for
fixed k,1 to bound G(u,v) later.

2.1.4 Estermann’s zeta-function

For the analytic continuation of G(u,v) into the critical strip we need estimates of the
arithmetical function
D,, (X; ;) = Z oa(n)e <n§)
n<X

(if X is an integer, the term in the sum corresponding to X has to be halved) for small
positive o and coprime integers k, A and A > 1; note that by (2.22) we have to replace x by
K in our later applications. This function was first studied by Jutila [25] in the case o =0
and Kiuchi [27] for —1 < o < 0, but not for @ > 0. Unfortunately we also need estimates
of derivatives of D, (X; g) with respect to a for small positive a. Because of Cauchy’s
integral-formula we study D, (X; ) as a function of a complex variable .

D (X; %) is the Moebius transform of the coefficients of the Estermann zeta-function

(2.24) E, (8;;) = Zoa(n)e(ng) n-° (e >1)
2RI S )

d=f mod A

- S commin (s (1))

f=1
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where

((si9, M) = Y n°

n
n=g mod A

(o (§) ()

are both defined for o > 1 and g € Z. First we recall some analytic properties of E, (s; %)

due to Estermann [12]: ¢ (s, e ({)) is an entire function for f # 0 mod A, and otherwise
analytic except for a simple pole in s = 1, which always holds for ((s; f, A). In what follows

and

we restrict our investigations to o # 0 (the case aw = 0 can be treated similarly). Since by
(2.24)

A—1

E, (s; ;) —C(s)C(s — s A A) =Y (s —a; f,A)¢ <8;e <f§)>

f=1
is an entire function, it follows that E, (s; §) has the same main part in s = 1 as
C(s)C(s — s A, A) = A*7°((s)¢ (s — ).

Hence

(2.25) E, (s; ;) = ;\Tlg(l —a)+0(1) (s —1).

By (2.24) also

£ (55) - o - on S e (15)

Z s=aifN) = (s —aaN)¢ (sie(7]))

is entire. Thus E, (s; %) has the same main part in s =1 as

A
— M\ le ( ( )) = A28 (5)¢ (s — a).

So we find
K A—ae-t
(226) Ea (S; X) = ﬁ((l + Oé) + O(l) (8 — 1 + Oé).
Apart from these simple poles E, (s;%) is a regular function in the whole complex plane:
as for Riemann’s zeta-function Estermann proved functional equations, namely

((s:9,A) = L (?)Sf(l - )

21
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and
) = ) o
X {6 (Z) C(1—5-g,A) —e (—Z) ¢(1— S;Q,A)}~

From this and (2.24) we deduce the functional equation

(2.27)  E, (s; ;)

_ %(?)%Aﬂfu—gru+a—@

o R T 5
(@) (o) -2 (0

This gives an analytic continuation of E, (s; %) to the whole complex plane.

From (2.27) and Stirling’s formula we find with the Phragmén-Lindel6f-principle (i.e.
the theorem of Phragmén-Lindeldf applied to E, (s; %) or directly by the convexity prop-
erties of Dirichlet series with a functional equation, analogously to its application to the
zeta-function; see [38], §11.1.6 or [40], §5)

(2.28) E, (s; ;) < (Atpttee (Rea—e<o<1l+e |t|>1).

2.1.5 Preparations: Estimates of exponential integrals and Perron’s for-
mula

We interrupt the proof of Theorem 2.1 to state some well known results: in the sequel we
often have to bound exponential integrals with the help of the following lemmas (see [20],
§5.1 and [21], §2.1):

Lemma 2.3 (First derivative test) Let F(t) be real and differentiable with monotonic
F'(t) > m > 0 and G(t) monotonic with |G(t)| < G on [c,d]. Then

d ) G
/G@W@ﬁ<f
c m
This is proved by partial integration of
. 1 A
zF(t)dt:/ iF (¢ zF(t)dt
/e HaI0) iF'(t)e
and the monotonic conditions. With the same idea we find

Lemma 2.4 Let F(t) and G(t) be real functions, F(t) differentiable and S (t) monotonic
with ‘%’ >m >0 fort € c,d]. Then

d . 1
/G@W@ﬁ<f
c m
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In a similar way one can show

Lemma 2.5 (Second derivative test) Let F(t) be real and twice differentiable with
monotonic F"(t) > m > 0 and G(t) monotonic with |G(t)| < G on [c,d]. Then

d G
G(t)eF® gt « ——
/c (Be i

m

Moreover we need

Lemma 2.6 (Perron’s formula) Let ¢ > 0,7 > 2 and 2 < X ¢ Z. If > o° ) com-

n=1 "ns
verges absolutely for o > ¢, then we have

PILOEE = = CHTZ% W2 s
(Xci max \b(n)](l—l—X];gX)).

3 5

The proof (see [38], §I1.2.1) is an immediate consequence of the truncated version of the
well known formula (also called Perron’s formula)

1 c+iooysd B ? ) 0<3T1’
ifee s B2 L
eiee 1, y>1

2.1.6 A truncated Voronoi-type formula
Now we are ready to study D, (X; %) Let a = Re a. For technical reasons we first consider

a < 0.

Theorem 2.7 Let A< X, 1 < N <K X and ’a—i— %’ < % Then we have

K X1+
<) = AT X 11—
) = T+ X1 a)

K K
Ea 03_ Aa X§_
* < A) * ( A)

Dy, (X;

with
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where Jy,(z) and Y,(Z) are the Bessel functions (given below by (2.31) and (2.32)). Espe-

cially for real a we have

[N}

=
=

K 1 E\ _3 « 47T(nX)% T
AVS (X; —) = AzXat oa(n)e (—n—) n- 42 cos <7 - —)

A ™2 ngv A A 4
+0 (AN—%X%+E) .

The proof of this ”complex” result is very similar to Jutila’s "real” one or Kiuchi’s gener-
alization (the real case is stated for completeness to compare with Kiuchi’s result).

Proof. Let € > 0, N € IN and the parameter T be given by
1

(AT)*** = 4x’X (N + 5) :

Applying Perron’s formula Lemma 2.6 we find
K 1 el K\ X 1 1te
Do (X~ ) == E,(s~) =—ds+ O (AN == X2:17) |
a( A) 270 Jiqe—iT a<8 )\) s S ( )

where the bound of the error term arises from the well known fact d(n) < n® (see [38],
§1.5.3) and |on(n)| < d(n). Now we evaluate the integral above by integrating on the
rectangular contour with vertices 1+ ¢ 4T, a —e £ i7" by (2.28) we have for the integrals
along the horizontal paths

14+e£iT K\ XS 1 1te
/ E, <s; —) = ds € AN e X 2 TE
a—e+iT A S

Applying the calculus of residues, (2.25) and (2.26) we have

K 1 fo—etil K\ X°* K
Do (X5~ ) = — Eo (s~ ) =—ds+Es (0~ )+ XA 1¢(1 -
( A) 27 Jamemir (5 A) s T ( A)+ (1-o)
X'tte —1l-« —gi yatete
) (1 +0a)+0 (AN"TEX 710

Hence

K 1 a—e+iT s\ X8 1 1+e
Ay (X)) = — Ey(si~) —ds+O (AN = X2+1)
“ < ’)\> 2mi /a—a—iT “ (S’A) s o ( )

Using the functional equation (2.27) it follows that

(2.29)  Ag <X; ;)

1 A\ e & R\ _1_q o . [T
= 53 <%) ;Ja(n) e (—nx> n (cos (7) I; —sin (7) Ig)

n

1 1+o o0 —
+ (%) cos (%) nZ::lJa(n) sin <27Tn§) n1l-op,

T2

+0 (AN‘z—isXﬁ“) ,
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where

a—e+iT Ar2n X \° d

L = / I'(1—s)I'(1+a—s)(1—cosms) (%) —S,
a—e—iT A S
a—e+iT ArenX 8 d

I, = / I'(1—-s)I'(1+a—s)sinws (%) —8,
a—e—iT A S
a—e+iT Am2n X s d

I o= / P(1— )1+ —s) (%) @,
a—e—iT A s

With Stirling’s formula we find

T(1—s)I(14a—s) e ™MiTe20 (1 >1).
It follows that

I < nEATON B X0

2e—a

2e—a
and therefore the contribution of the sum with I3 to (2.29) is < AN 2+ X* T2 | For
the other integrals we distinguish the cases n < N and n > N. First n > N: let

a—e+iT a—e—+1i a—e—1
L = / + / +
a—e+1 a—e—1 a—e—iT

I'(l—s)I'(1+a—s)(1—cosms) (

4r2n X \° ds

A2 s
= hLi+ho+1gs

and Iy =: Iy1 + I> o + I2 3, respectively. By Stirling’s formula we have

ar2nx\° 1
2

= A(o) (ﬁ#)at“—%em@ (1 +0 G)) (t>1)

with a bounded function A(o) and

I'l—s)I'(1+a—s)(1—cosms) (

S

4rin X
22
With Lemma 2.4 we obtain

F(t) :=tlog

+ (Im o — 2t) log t + 2t.

a—e—a N 2E=2 et 2e—a
Lia, [13 K" °ATN 2t X 25e
since

4min X 1
F'(t) = logWJrO(—) (1<t<T)
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is positive for T' large enough. Easily we find
Il,2 < na75A72aNsXa+€.

Thus the contribution of these terms with n > N to (2.29) is < AN S XN I Anal
ogously we get the same estimate for Io. Summing up, we conclude from (2.29)

(2.30) A, <X; ;)

1 A\ e B\ _1_a T . [T
= 57 <%) n;\; oa(n)e <—nx> n (cos (7) I; —sin (7) Ig)

+0 (AN‘T}rsXé_iz“) .

AR AT I T

420X \° ds
— |

Now we write

I'(1—s)I'(1+a—s)(1—cosms) (
S
= ha—hs—hLhe—T7—1Iig

and Iy =: Iy — Io5 — Iag — Io7 — Iz, respectively. With Mellin’s inversion formula (see
[39], §1.29) and the functional equation of the Gamma function we get by s — 1+ a — 5

2
14+« ,
47T27”LX 2+2a+1i00 s s
Ly = — | —=— 27IP (2T (2 —a—1
14 ( A2 ) { ~/2+2a—ioo <2> (2 “ )
1\ —
4 X 35 24-2a+1i00
i [Ar(nX)? d5+/ 28r(5> (——a—l)
A 2+2a—1i00 2
Ar(nX)z
xcos(g—w(lea))(?Tn ) }

1\ lHa 1 1
= —271' ) (7271‘(7;\)()2) (;KlJra (471-(7;\)()2) + Y1+a <4W(T;X)2 ))

and in the same way

1\ 1+a 1
2r(nX)2 4r(nX)?2
o (2000 ()

with the well known representation of the Bessel functions as Mellin transforms

c+ioco -1
231)  Ju(2) = —— gs=v=1p (2 (1 (v =2 41 275 ds,
2 2

21t Je—ico

1 fetioo s s
K - 28—1}—2F 2\ (2 = v=s g
)= /Hm (2) (2 ”)Z >

1 fetioe s s T8
2.32 Y = —— os—v=lp (2 (2 - o) Vs
(2.32) »(2) Qi/c—z‘ (2) <2 U>cos<2 U)Z ds
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valid for 2[v| < ¢ < |v| + 3 (see [39], §7.9). Since n < N, we get, using again Lemma 2.4,

N4+
Lis g < T? <log ( + 2) )
n

So their contribution to (2.30) is < AN 7= X 252, At last we bound trivially

a—ey—anETL ya—et L
11777 11,8 K nPTENTCN 2 e X +e

2e—a 2¢e—a
and the contributions of these terms to (2.30) are < AN Z¥ X* T2 . In a similar way
we obtain the same estimate for I as for I;. Summing up, we may replace (2.30) by

A, (X; ;) |
= X773 Y ga(n)e <—n§) n2m% (COS (%) {Y1+a <4W(?“;X)5>

+ %Kl—l—a (747T(?1X)§ ) } + sin <%) Jita (74W(7§\X)5>>

Now we make use of the well known asymptotic formulas of the Bessel functions (see [28],
p.87 and [41], §7)

(2.33) Ju(z) = j(—v)cos <Z_7r_v_z> +O(\z]_%>7

NE 2 1
K = D exp(2) (14001 1),

@231) vi(z) = Wy (z—%—%) +0(|27%)

N

with bounded functions j(v), k(v),y(v) independent on z and

(235) (o) = () =1/ 2,

s

for real v; note that the O( )-terms do not depend on v. Obviously K4, gives only a small
contribution to the error term. In the case of real o we find

1
A0 W S e R\ _3_ a 4r(nX)z T
Ag <X,)\> = 7“/5)\2X4 2 Zaa(n)e< n)\)n 1 2cos< 3 4)

n<N

+0 (AN*ﬁXﬁ“) .

Since € > 0 can be chosen arbitrarily small the assertions of Theorem 2.7 follows.e

With the identity

oa(n) = dz;da -y (%)a — 0o (n)

d|n
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we will now reflect our formulas to the case of o with positive real part. After a — —a we
get with partial summation for X ¢ Z

D, (X; ;) = Z o_a(n)e (n§> n®

n<X

N X K
= x2°D_, (:c; X) — a/ D_, (:c; X) 2%V dx
r=1 1
X1+a

. el XAl —a) + XA (X-f)
1+a/\ 14+ a)+ XX ((1—a)+ o (X5

X K
—a/ A, (x; X) dr 4+ O(1).
1

We have

_ Coa X 4 1
= —« E Ua(n)e<—n§> n*E*E/I 253 (Cos <7T2a> Y1—a< W(T)l\x) )
. [T 47T(nx)% 1 olias
—sin{ o ) Jia | —5—— | | do +O()\N 3 X3 6).

Applying Lemma 2.4 by use of the asymptotic expansions (2.33) and (2.34), the integral is
bounded by « )\%n*%, and so the sum is

3 a 5
< AZ ) nztea,
n<N

since 04(n) < n®e. Thus the integral above is bounded by A% ifa < % Finally we find
our "new” A as

o K
xea, (8

= X3 Y ca(n)e <—n§) n3-% (COS (%) Vi, (47r(nAX)%>

n<N
1
. iye’ 47T(TLX) 2 B R W
(22 ()} o)
So we have proved (using in the real case once more the asymptotic expansions with (2.35))

Corollary 2.8 Let A< X, 1< N <K X and ‘a — %’ < i. Then we have

K X1+a K
D,(X:~) = —l-ac(q X (1 — A, [ X2
a( : ) 1+a/\ Cl+a)+ XX ((1—a)+ a( ,/\>
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with

n<N
1
—sin <E> Ji—a <4W(T;X)2> ) +0 (AN*%X%“*E + A%) :
and for real o
1
1 a B o Ar(nX)z
e (55) = s 5 e (o)t (5

10 (AN*%X%“HE 4 A%) .

We remark that it should be possible to replace O (A%) by E, (0; %) explicitly, which is
only < Alog A.
2 1—2a
Putting N = A\3-2« X 32 it follows immediately from the corollary that

K 2-2a 1
(2.36)  Aq <X; X) < A\F2 XFmatOte A3
but one might conjecture more; sometimes A, must be smaller since

Theorem 2.9 For1 < X< X and ’a — i’ < i we have

X K
/% Aa (l’, X)

and for real o
X K
Aa ' N
J ‘ (x A)

Proof. First we consider the "real case” a = a: integration of the truncated Voronoi-type-

2
dr < )\X%+a+>\2 (X1+2a+s+X3+g+s> +3X,

e e
dr = AXEHe (6+4a§7r2c(3) 2

+0 ()\2 (X1+2a+6 +X%+%+6) + )\3X> )

formula of Corollary 2.8 above with N = X gives
2

(2.37) /; Aq (x;> da
_ 4—; 3 Ja(m)aa(n)e<(n—m)§> (mn)—3-%

mn<X

X 4
T

2

[
3
N~
o
o
13}
7 N
i
3
—~
>3
o
[
|
e~
N~
IS
&

X
X/
X

2

_ 1
Z Ua(n) e <n§> n_%_%xi‘f'% Ccos <_47r(7;\w)2 _ %)

n<X
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Since one easily calculates

/x“ cos? (I/x%) dr = fj: +0 (x%ﬂ‘) (n>-1)

we have

= 1
Z Ug(n)n_%_a /X 23+ cos? (747r(nw)2 - %) dr < X1T2ate,
n>X 2

So the diagonal terms m = n in the sum above deliver

A T St 47T(mx)% ™
mngai(n)n 2 O‘/g 22T cos? (f ~2 dx

1-92 %X

_ 3t 2 —2_a 14+2a+
= MX2 Wzga(n)n 2 +O()\X E).
n=1

Otherwise, the nondiagonal terms m # n contribute

= 4 Y calmatme((n-m)) m) -

s

w|R

m,n

n<m<X

X 1ta Am
X /X x27% cos <7 (Vm —\/nx)) dx

v

X o 4
—i—/X x2T%gin -~ (Vmz + /nx) | dx
5
=: 51+ 5s.
Once more with Lemma 2.4 we find
)\X1+(1

/KX 3% gin (%T (Vmz + M)) dr < NCEE

2

Thus Sy < AM2X 2, For S; we have to work a little bit more: analogously we get for m > n

X A AX1ta
s+ - _ -
/5 x2 cos<)\ (v/m \/nx)> dr < N

2

and therefore

S o< NXMee Mo+ M Ta(m)oe(n)(mn) 175 (/m — vn) .
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and that the second sum is

< Y oam)m™TC > ga(n)(m—n)Th < XOTE

m<X F<n<m

Hence altogether S; + So < A2X1*2¢+¢ With the Cauchy-Schwarz-inequality we now
estimate the integral in the error term of (2.37)

/gX > oaln)e (—n§> n=3"% cos (@ B %>

2 |In<X

1 X B\ _3_a 47T(TZIL’)% T
< Xz /5 Z Ja(n)e<—nx>n 172 cos (ﬁ_ 1

Rewriting the squared modulus as a product of conjugates we bound the diagonal and
+5+e

nondiagonal terms by < A2X i in the same way as above. Summing up, we have

(2.38) /; ‘Aa (x ;)

It is well known (see [40], formula (1.3.3)) that
T R A <<((%3)— )¢ (3)

Then, applying formula (2.38) with 2! %X instead of X and adding up the results for k € IN,
the assertion for real a follows. In the case of @ ¢ R we may argue analogously. Using once

1-9 %X

2 3 3
dr = AX:T——= "oi(n)n 2"
x 2 61 da)n? ngl oi(n)n 2

10 ()\2 (X1+2a+€ +X§+§+e) + )\3X) .

n=1

more the asymptotic expansions (2.33) and (2.34) we get the estimate of Theorem 2.9.e

From Theorem 2.9 the existence of some x with small A, (z;%) follows immediately:
by the Cauchy-Schwarz-inequality we have for 0 < a < i

1
X 2 3
(2.39) min ‘Aa (x,f>' < X3 / ‘Aa (x,f) dz
X <e<x A x A

< AZXTS 4\ (X§+%+E +XO‘+E) A3,

Obviously o,(n) is differentiable with respect to «, so let

olm () = (%)maa(n) (m € INo)

and accordingly for related functions. We are now able to state formulas for the derivatives
of Dy (x; %) with respect to a. Let

AT+ @) + X271 - a).

14+«
(2.40) O, (X; “) _ X

A 14«
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This defines an analytic function in a. Moreover, Ay (X;%) = Do (X;5%) — O (X 5) is
analytic. Hence we have

ml (.5 _ gl x. 5 [m] .E>
i (x:5) = i (x:5) 4l (x:5).

One easily calculates

n(x.®) - X i Lt /
(2.41) O} (X,)\) = 1—1—04)\ {C(1+a) (logX o log)\)+C(1+a)}
+X X (log X(1 — @) — ¢'(1 — )
and
2 (x.E
(242) @ (X, A)
X1+a .

2 2
= AT —_— log X —log \) (log X —log A —
e e (e r2)

xCl+a)+20(1+a) (logX —log A\ — H%) +¢"(1+ a)}
—i—X)\O‘l{(log N2¢C(1—a) —2log X¢'(1 —a) +¢"(1 — a)}.

[m] K

It remains to give estimates of Ay™ (X;%). With the Cauchy integral formula we find a
generalization of (2.36) for 0 < a < &, namely

! A (X' 5)
943y  Alml (X.E> _ ﬂ/ LAy
( 3) @ A 271 la—z|=2 (a _ Z)erl z

|
< m max |A, <X;E>
a™ |a—z|=% A

| _3a a
< m: (A%XﬁJr%Jrs + )\%) .
am
But as in the case m = 0 we find better estimates for certain values of X. Theorem 2.9 and

the Cauchy-Schwarz-inequality imply

X
ml (.0
/é Ra (x’ A)

2
/X m! / A (%) J
= —_— —_— Az
X la—z]=2 (

27 o — Z)erl

1\ 2 a a

< <ﬂm) ()\X%Jr% + A2 (X1+3a+e +X%+37+€> +)\3X) ]
a

2
dzx

2
dx

Hence we may replace (2.39) by

(2.44)  min ‘Ag’ﬂ (x; ;)‘ < 8 (WX LA (X L XEE) 4 03)

X <w<X

for0<a<%.
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2.1.7 Analytic continuation

We need an analytic continuation of g(u,v) to a domain in the critical strip that includes
thelineReu:Rev:a:%—% Let

o) u v Ty
h(u,v,x):/o y (1 +vy) e(a) dy.

This defines an analytic function for Re u < 1 and 0 < Re v < 1. By Cauchy’s theorem we
have also
100

(2.45)  h(u,v,x) = y “(I+y) Ve (ﬁ) dy,
0 KA

which we shall use frequently in the sequel. Let N € IN, then we have by Stieltjes integration
for Re u < 0

> og1un(n)e (n?) h(u,v,n) = /OO h(u, v, %) dD1—y—s <x; ?)

n>N N+%
= —h (u,v,N + %) A1y (N + %; ;)
+ - h(u,v x)g@l,u,v <CC E) dx
N+% T O A
Y A1_u—v (x E) gh(u v, x) dr.
N+3 "N ox T

With (2.22) follows that

(246)  gu,v) — ih(u,v,n)a1_u—y(n)e<n§)

n=1

= > oi_u(n)e <”§) h(u,v,n)

n<N

1 1 %
_h <U,U, N + 5) AI—U—U (N =+ 5, X)

o0 0 R
+ o h(u,v,x)%Gl_u_v (x; X) dx

K

0
X) %h(u, v,x)dx

o0

- 1 Al—u—v <.’E;
N+5

4
= Zgj(u,v).
j=1

Obviously the functions g; (u,v) and g2(u,v) are analytic in the same range as h(u, v, ), in

particular if u,v € D := {s : % —e<o< %} by small positive € and T large enough. For

g3(u,v) we have to work a little bit more: by (2.40)

0 . K _ Jl—u—vy—24utv —u—v
61‘91_”_” (x,)\) =z A C2—u—v)+A C(u+v).
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Thus we consider

g3(u,v) = h(u,v, ) (:Ulfufv)fQJr”J”’((Q —u—v)+ XN C(u+ v)) dzx.
N+2

With (2.45) we get

)
N+ KA

( 1—u— B\ 2+u+v<( u_v)_i_)\fufv C(u—i—v)) dyde

B /No; (5617”7”)‘72“%((2 —u—v)+ X" C(u+ v))

100 u 71} Ty
1 — .
X/o y “(1+vy) e(;@A) dy dx

Now it is easy to calculate

/ / “1+y) ”e(ﬁ) dy dx
N+1 KA
KA [ N N+1)y
= ——./ y (1 +y) e<u dy.

21 Jo

Similarly we have

100 -75?/
“(1 Vel —=) dyd
Johy o (55 dv
N e ()
- ‘(“5) 3t fy VD) (T o

Substituting w = xy, the second integral above equals

100 w 717u/oo 7U
el — |w T+ w dz dw
/0 (ﬁ)\> N+§( )
1 i 1 I=v
—U/o w <N+§+w> (n)\) dw
1 1\ vy pise (N+4)y
N - —u—1 1 1—v AN )
- < * 2) 0 Y (I+y) e ( KA dy

Summing up, we have once more with (2.45)

(247)  g3(u,v)
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0

1
x/ooy_“_l(1+y)_”e (W) dy

1—u— 1 l1—u—v
+)\—2+u+v<(2 — - ’U)# <N + 5)

x/ooy_“_l(l—i—y)l_”e ((N;}\ﬂy) dy}.
0 K

But these integrals are obviously uniformly convergent for u,v € D, so we have an analytic

continuation of g3(u,v) into D. Finally we consider

o0 ®\ O
ga(u,v) = — e A_u_v (x; ;) %h(u,v,x) dx.
We have
0 2y [io0 Ty
—h de = =—— e 4 g) e (=2
gty ds = 2 [Ty g e (B ay
270 g [P 1u< w)‘” (w)
pu— —_— 1 _— _
ﬁ)\x /0 w +x e 5 dw
< xReu—Q.

By (2.36) we get

1
Al*’u,*’v (.’E, ;) << J§1+2Re (u+v)+1*Re (U+U)+E

Hence g4(u,v) is an analytic function if u,v € D. Therefore, we have found by use of the

Voronoi-type-formula of §2.1.6 an analytic continuation of g(u,v) to the domain D in the
critical strip that includes the line Re u = Re v = a.

2.1.8 Exponential averaging

The following technique is due to Jutila (see [24] or [21], §15.5) and often leads to better
estimates than other ones (compare for example the error terms in the asymptotic mean
square formulas of the product of the zeta-function with a Dirichlet polynomial in [3] and
[32]). It bounds our error term by an average. Define

/OT |AF(a +it)? dz= = I(T) + E(T),

where I(T") denotes the main term and E(T') the error term. The mean square is obviously
an increasing function for positive 7. Thus we have for 0 <V <t

BE(V) < B(t) + I(t) — I(V) = E(t) + I(V,t — V)

since by the definition (2.5) of the mean square in short intervals I(T, H) = I(T+H)—I(T).
So by (2.21)

E(V) < E(t)+O(t - V).
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With the formula

(2.48) /_Oo exp (Ax - sz) de = \/gexp (%) (Re B >0)

[e 9]

(which follows by quadratic completion from the well known formula [*°_exp (—2?) dz =
\/m) integration of the last inequality leads to

u2

Note that E(—u) = E(u) and E(u) < u (by [29]). Thus we obtain

1| [~ 2
2.4 E(T i — E ——
(2.49) (T) < %;r‘l/a;(ﬂ Ledin {G—i— e i/_oo (V + u)exp ( ) du

Of course this also leads to an upper bound for the error term of the mean square for short
intervals since E(T,H) = E(T' + H) — E(T) by (2.5).
2.1.9 Bounding the error term

Let 6 = % — a. Since (2.46) guarantees an analytic continuation of g(u,v) to a domain in
the critical strip that includes Re © = Re v = a, the derivatives with respect to u and v are
regular in the same range as well. By (2.23) a typical summand of G(u,v) is

2—u—v r
S a(B)a(l)w(k, l)% S ol (n) e (nx)

k<M n=1
0o b c
X/ (log y)"(log(L +y))° | (@) .
0 yu(1+y)° KA

where the log-factors arise from differentiation of (2.22) with respect to u and v; note that
0 < b,e,m < 2 (higher derivatives do not occur). Since for fixed k,! we now have to deal
with the integral above with u = z,v = 2a — z (the other case u = 2a — z,v = z can be
treated analogously) instead of h(u,v;z) as in §2.1.7, we define

_ [ (logy)(log(1 +y))* (=y
h(z,x) = /0 (1 + g e (H)\) dy.

Differentiation of (2.46) at u = z,v = 2a — z leads to

(2.50) g(z) = Zoggl](n)e<n§) h(z,n)
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Now we take an exponential average over

4

a+iT a+iT 4
| ez = [T S gz = 3 BT

—iT —iT 55 s

(later we sum over k,l). Let % <V <2Tand L < G < VL™ Up tonow N is a free
parameter, but with regard to g2(z) we may choose an N with kAV < N < 2kAV such that

(2.51) Al (N+5 ;) < I? (A%Ni +AN%+E+A%)

by (2.44) (note that T < 1 for every constant ¢, so we can frequently eliminate certain
factors like N2°). First we consider

e} 2
(2.52) [m Ey(V +u) exp< 22> du
Z [m]( ) < )/ /a+z (V4u) ) u? Do d
n)e Z n)e — Z au
nSNU% a—i(V-+u) T

Let I(y) = log (1 + i), then

yZ(l + y)Qafz _ ya(l + y)aefitl(y).

Now with (2.48) we have

a+z(V+u) u?
(2.53) / /anJru h(z,n)exp e dz du
ati(V4u) oo (log y)° (log(1+y))c (ny) u?
el —= )ex dy dz du

/ /a iV +u) / y7 (1 + )2 ) P\ T2 ) Y

_ [ st ostiy
0 (1+y)“l

00 2

X/ (ei(VJru)l(y) _efi(VJru)l(y)) exp (_%) du dy

_ logy (log(1+y))® (ny G*(y) )\
= 2y G/ T+ )y e (a) exp (—T> sin (Vi(y)) dy

(changing the order of integration is obviously allowed by Fubini’s theorem). Hence we
have with (2.52)
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w2
Ei(V 4 u)exp e du

1 [0.9]
2/miC /_oo
= > Jg:;} (n)e <n§> /OOO pi(n,y)a(y) dy

n<N
= Pla

where
. 1 o _GQlQ(y)>
R I TR S

and
pa(e.y) =" (1+ 1) log ) Qog(1+ ) e (5 ) sin (VI(0)
Later we also need
(o) i=5"(1+ )" (log )" og(1+ ) (5 ) cos (VI(y)).
Clearly

(2.54)  q(y) < exp (—2—;) 0<y<1).

Moreover we have
iy = L (¢ w1 1) G
ys(1+y)2 \ 2 2Uy)  P(y) 4
Hence
G2
exp | —55 , O<y<1
Gy eXp(—@) oy =1

(this bound is the reason for the decomposition of the integrand above). Now let

Po= > ahm)e ('fé) {/OGLl +/Goz_1}p1(n,y)q(y) dy

n<N
=: P171 + PLQ.

It is easy to show with the second mean value theorem that
2

GL™! .
/0 p1(n,y)q(y) dy < exp <_Z> (GL1)ite

(the exp-factor motivates splitting the integration at y = GL™!). So we find with Corollary

2.8, (2.41) and (2.42) that

2
P< KAGV 1€ exp (—%) .
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To bound P; 2 we define

y

ri(x,y) :/ pj(x,z)dz (j=1,2).
GL-1?

Then we have with Lemma 2.5 that

(2.56)  rj(z,y) < y2ttey e

Moreover, we obtain with Lemma 2.3 for z > kA\VG~2L? that

A
(2.57)  ri(z,y) <K %yQ‘HE.

By
/ooi pi(n,y)g(y)dy = /ooi q(y) dri(n,y)
GL-1 GL-1
=~ [ nupd )y
GL-1

we have with (2.55), (2.56) and (2.57)

Py = - { Z + Z }Ug;;l](n) e <n§)

n<kAVG—2L2 kAVG—2L2<n<N

c () [
n<kAVG—2L2

L e dy

GL—1

m R\ 1 (> _
+G2%R\ Z Uéé}(n) e (nﬁ> —/ y320HE gy,
KAVG-2L2<n<N A nJer-

By Corollary 2.8, (2.41), (2.42) and (2.43) the first term is bounded by <« kVEtG. In
order to bound the second one we use partial summation

m %\ 1
Z J£5}(n) e (ng) —
KAVG2L2<n<N n
1 [m] R
= — Z Ty (n) € <n—>
N KAVG—2L2<n<N A
N J—
[m] k\ dx
+/ o n)e (n—) —
KAVG—2L2 m\VGQZL2<n§x 25 (1) A x?
< Vel
Since P 1 is negligible, we end up with
(258) P < kVE(GTEVE 4 1).
Now with (2.53)
1 o0 u?
_— E —— | d
20 /miG [m 2V + ) exp ( G2> “
[m] 1 0 1
= Ay (N+5 /0 p{N+35.y)aly)dy

2
= P2.



PrRoOoOF OF THEOREM 2.1 45

As above fOG L D1 (N + %,y) q(y) dy is negligible. The main contribution to P, comes

0o 1 S 1
/ P (N+—,y> q(y)dyz—/ 1 <N+—,y> q'(y) dy,
aL-1 2 aL-1 2

which is bounded by

from

2”_)\ o y25+573 dy < GEH—)\LQ,

G
N Jar— N

using (2.55) and (2.57). Hence we get with (2.51)
(259) Py < VE(WINTVTE 4 RRARV TR 420V,
We now consider with (2.47)

1

21

[ oot £ ((N+ ) y) N

yl—l—z(l + y)Qa—z K\

20
+Q3(N, A, 0)A"1 =2 (N + %)

[ s ) ((N+ ) y) dy}7

yl—l—z(l + y)Qa—z—l P\

where the Q;(N, A, 0) are certain polynomials in log (N + %) ,log A and %C(s) evaluated
at s = 1 £24. They are computed from (2.41) and (2.42) by differentiation with respect to
u and v; note that Q; < N¢. Analogously to (2.53) we find

e’} 2
\/?E /700 Es(V + u) exp (—%) du
1 20
= _HA{ (Ql(N,)\,é)A26_1 + Qa(N, N, HA 2 <N - 5) )
* (logy)"(log(1 +1))° (N +5)y a2\
b e ( o) o\ g ) Vi) dy
20
+Q3 (25, log ( N + %) log \, C(1 + 25)) N (N + %)

= (lo b log(1 c N+l Yy uQ .
[ () () eos)

—~

[u—

= P3.
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Thus we have to bound

. 1
[t )" (log(1+))° <(N +3) y) esxp (- GQT”) sin (Vi(y)) dy

ytra(l4y)el(y) KA

= (/OGL_I +/GOZ1> %pl <N+ %y) q(y) dy

for w =0 and w = 1. Once more the short integrals are negligible. By the choice of N we
get analogously to the estimate of P o

o0 Yy 1 w 1 A
/ / ( + Z) 1 (N + = Z) dz q/(y) dy < ’Q_L3G€+wfl.
GL-1 JGL! z 2 N

Hence
(2.60) Py < wVEL

Finally, we obtain by (2.53)

o] u2
/ Ey(V + u) exp ( G2> du
oo a+i(V+u) > (log y) (log(1 4+ y))©
- _ AQ(S .’E, 2a—z
N+ 690 a—i(V4u) JO y(1+y)
xy U
Xe(ﬁ) exp( G2> dy dz dudz

e [0 85 (3 g [ )

Ox y (1 +y)e(y)
272
X e (%) exp (—%) sin (Vi(y)) dy dzx.

With w = xy we find
0 [ (logy)®(log(l +y))°¢ [zy G22(y)\ .
%/o e )lly) (7) P (‘T) sin (Vi(y)) dy

9 {5 [ Lo los14 )Y
0

ox w(x 4+ w)el(%)

X e (%) exp (— GQZ(%) sin <Vl (%)) dw}
SR () ()

2a+26y+G2 b 1 .
X{ <2a Ty gy Urples(e y)) sin (Vi)

Vcos (Vi(y))
+W} w
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Hence we have

u2
2\/_2G/ E4V+u)exp< )du

G2

— _/Ni% M/Om (logy)’(log(1 +y))° . <xy> - (_G2l2(y)>

v (1 +9)*l(y) KA 1
2a + 2cy + G? b 1 .
X{ <2a T Ty ey T ples(+ y)) sin (Vi)
Vcos (Vi(y))

= P4.
Obviously it is sufficient to consider

00 A[;g] (:C ?) KAV 1 00 v
’ Y
/NJF% x {/0 n/\Vx—l}p]( 2 (1+y)v a(y) dy

=: Py1+ Pyp

fory=v=0,10r p=0,v=1by j=1,2. With (2.54) we bound

KAVz—1 10 A 2
y KAV G

(@, dy dx < Xp | ——== | .

/0 p]( ?/) (1 y),, Q(y) Yy = exXp ( )

20
Since by (2.43)

A[m] x B

/OO i (2 ), de < AINT73 4 AENTTL,
N+3 x

P, 1 is negligible. If 4 = v = 0,1 we have as above

(2.61) /OO  Pi(2,y) (1_%) q(y) dy
/n/\Vm_l/n/\Vm_l e (?Zzy dzq'(y) dy.

With (2.55) and (2.57) this double integral is

KA G 2 26+e—3 G?
<<?{exp< 20>+G / Yy exp e dy .

By the transformation w = &

, one easily sees that

Hence

o0 A[m} X, Lz
Pk Ii)\GE/ M d
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if 4 = v. Now with the Cauchy-Schwarz-inequality and (2.44) we get

X

/00 A[25]( v,\)d

2

T2

1
S RVE ) g
Al R 2) dx
< E 2 i
= 2 Ass (x, A) d:v/Qn(]\H_%) x4>

< N(A% T LANTF £ AN )

2n+1 N+1

S
= XL

This leads to
(262) P4,2 <« Ve (ﬁi)\%‘/—% + H%)\%V_% + )\%V_1>

if 4 = v. Otherwise, when p = 0 and v = 1, we argue with

% q(y) )
; )d —22 ) d
/m\Vx—l P (@, y) 1 + y /m\\/x—l /m\\/z—l (@,2)dz (1 + 4

instead of (2.61). By a simlar estimate as above we obtain in that case the bound of (2.62)
multiplied with G~'. Thus

(2.63) P <V*© (miA%V*% +REARVTE 4 A%V*l) (G+VG™);

note that this also bounds P;.
Now we finish the proof. We observe that w(k,l) < (kl)¢ and a(k) < 1 by definition.
With (2.58), (2.59), (2.60) and (2.63) we get

u?
G/ E(V 4 u)exp e du

k)a(Dw(k,l
< Z M max min {|P1|+|P2|+|P3|+|P4|}

kI<M (] L<y<oT L<GLVL?
< min  M? (T%+€G7%+T%gG).
L<G<L

Since this is bounded by the first term if G < T%, we have with (2.49)

B(T) < min {G+G T3 M2},
L<G<T?

Balancing with G = T3 M5 we find for 6 < %
E(T + H) < E(T) < T3 M3,

Together with (2.21) we have proved Theorem 2.1. o
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Perhaps with refinements one can improve Theorem 2.1: for the error term in Atkinson’s
asymptotic mean square formula one can get E(7T) < T2+te using exponential sums (see
[22], §2.7); if the same exponent would hold in the error term above, one could obviously
find positive proportions for slightly smaller H. But in view of the corresponding {2-result
E(T)=%Q (Ti> (see [22], §3.2) the exponent must be > 1.

A different remarkable method to localize simple zeros of the zeta-function is due to Mont-
gomery [31]. Investigating the vertical distribution of zeros he found, assuming Riemann’s
hypothesis, that more than two thirds of the zeros are simple. Assuming in addition his
yet unproved pair correlation conjecture

Y1~ (/j (1 - (5122“)2> du+ 1[0175](0)) =,

0<y1,72<T
2 2m
259 <y -y < 272

where 1, g is the characteristic function of the interval [a, (], it even follows that almost
all zeros are simple!

But since all these assumptions are speculative, we now investigate the method of Con-
rey, Ghosh and Gonek that yields some unconditional results on simple zeros of ((s)...



Chapter 3

The Method of Conrey, Ghosh and
Gonek

Conrey, Ghosh and Gonek [9] were able to prove the existence of infinitely many nontrivial
simple zeros of the zeta-function in a much easier way than Levinson had done. But with
the minor effort the information about the real parts of the localized zeros gets lost! Since
¢'(0) does not vanish iff g is a simple zero of ((s), the basic idea of Conrey, Ghosh and
Gonek is to interpret ), ('(0) as a sum of residues. Note that as a logarithmic derivative
C?/(s) has only simple poles in the zeros (see the expansion (1.18)) and the unique pole of
((s). So by the calculus of residues one has
!/ 1 CI !
> (o) = Q—M/CZC (s)ds,

1<H<T

where C is a path corresponding to the condition of summation. Conrey, Ghosh and Gonek
calculated the integral as ~ ﬂ—f. Since this tends to infinity with T — oo the series over
¢'(0) diverges, too. But this means that there are infinitely many nontrivial simple zeros
of the zeta-function!

Fujii [15] was able to sharpen the result of Conrey, Ghosh and Gonek to

oy — Z( l)Q LT oL
> (@ = (g ) +(v=1g-logo—+ (e =)

N +0 (Texp (—cﬁ)) )

where (the Euler-Mascheroni-constant) v and ¢; arise from the Laurent expansion

C(s) = Sil—i-’}/—i-cl(s—l)—i—...

and c is a certain positive constant.
We will slightly generalize the result of Conrey, Ghosh and Gonek to short intervals:

50
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Theorem 3.1 Let T3+ < H <T. Then we have

2
> (lo)= "+ OHE).

T<y<T+H

We deduce immediately that the distance between two consecutive simple zeros is < Tate.
Let N4(T') count the number of nontrivial simple zeros ¢ = f+ivy with 0 < v < T'. Dividing
the interval [T,T + H] into HT R disjoint subintervals of length T3¢ we have

Corollary 3.2 If T3te < H LT, then

N,(T + H) — Ny(T) > HT 2.

For ”small” H this trivial estimate yields more than our results of Chapter 2 give.
Assuming Riemann’s hypothesis Gonek [16] was able to show that
TL
B1) Y P~
1<H<T
which leads to Ng(T') > T by the Cauchy-Schwarz-inequality. The generalized Lindel6f
hypothesis states that

L (% + it,x) < (q(1+ )

o x(n)
n=1"ns

this and additionally Riemann’s hypothesis Conrey, Ghosh and Gonek [10] even find (once

for every(!) Dirichlet L-function L(s,x) := to a character xy mod ¢. Assuming

more using a mollifier) a positive proportions of simple zeros:

N (T 1
lim inf ( )> )

T—oo N(T) = 27

which is larger than what Montgomery’s pair correlation approach delivers assuming Rie-
mann’s hypothesis. We expect the same for short intervals [T, T + H| whenever H > Tate,
Note, that unconditional estimates of the left hand side of (3.1) do not lead to an improve-
ment of Corollary 3.2 since the order of the zeta-function in the critical strip is not to be
known as small as the Lindel6f hypothesis asserts.

As remarked above there is no immediate information about the real parts of the local-
ized simple zeros. But with the density result of Balasubramanian [2]

N(o,T + H) - N(0,T) < H5 5 )% (7% <H <T)
we get a nontrivial restriction: since

log H
J:3+aﬁH
2 +425=

1 l1—0o
HT 2 = H43720' —
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we find simple zeros o = ( + iy of the zeta function with

log H
34 2-°5=

1
T<"Y§T+H and §§6SW

If for example H = T%% i.e. the limit of our results in Chapter 2, we have

1 41
T<y<T+T%5  and §§B§E+a.

Now we give the

3.1 Proof of Theorem 3.1

We start with a brief description. In the beginning we give some (local and global) estimates
of the zeta-function and its derivatives (’, % in the critical strip. That enables us to bound
certain integrals which occur by interpretation of 37,(’(0) as a sum of residues (§3.1.1).
With a certain exponential integral (§3.1.2) we can evaluate the remaining integral, which
gives the main term (§3.1.3).

3.1.1 Interpretation as a sum of residues

It follows from the Riemann-von Mangoldt-formula (1.5) that the ordinates of the nontrivial
zeros cannot lie too dense: for any given Ty and fixed H we can find a T with Ty < T < Tp+1
and

1
(32)  min|t—9]> 17 for t=T,T+ H.
g

From the partial fraction of C?/(s) we get

o= L iom (1<o<y

¢ <1 ® @

(see [40], Theorem 9.6(A)) and the Riemann-von Mangoldt-formula (1.5) once again implies

(3.3) %(8) <L for t=T,T+H

in the same strip.

We obtain a global estimate with the Phragmén - Lindel6f principle (analogous to (2.28)
in §2.1.4; see once more [40], §5 or [38], §II.1.6): with the functional equations (1.10) and
(1.11) one easily gets

(34)  ((s) <t te <—% <o<1+ %) .

But the real order of the zeta-function in the critical strip is conjectured to be much smaller:
the Lindelof hypothesis asserts that

<t (o21)
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or equivalently ¢ (% + z’t) < t¢. On the other hand Montgomery (1977) found

1
1 1\z L'-°
S L\ L7
llzlta<XT10g|C( s)l 2 55 (U 2) (log L)~

for fixed o € (%, 1). Moreover Tsang (1992) proved

L%(logL)’% , %SJS%—FIOéL
max_log |C(s)| > _1
() onDy L b gy <0<

By the way, the author [37] showed that this order is also satisfied on arbitrary rectifiable
paths (with a positive distance to ¢ = 1) instead of vertical lines. Hence, if we interpret
|C(s)| as an analytical landscape over the critical strip, we see that there exist no ”real
valleys”!

We continue in our proof. With the Cauchy integral-formula we have

oy L ¢(2)
¢'(s) = i /|SZ|:% (5202 dz

Hence estimates of ((s) give estimates for '(s). It follows from (3.4) that

(35)  ((s), ('(s) < 137 <_% o<1+ %)

for t < T. So we have
C/
¢

whenever (3.3) holds.
Let a =1+ % Now integrating on the rectangular contour with vertices a + i1, a +
i(T+H),1—a+i(T+ H),1—a+iT, we find by the calculus of residues

> (o)

T<y<T+H

1 ati(T+H) 1—ati(T+H) 1—atiT T ) ¢
= —/ +/ +/ +/ =('(s)ds
27t | JagiT ati(T+H) \—ati(T+H) | J1—avir | €
4
> ;.
=1

We will see that the main contribution comes from 75 so we bound the other integrals first.

(3.6) (s) < T2 <—% <o<1+ %)

On the line ¢ = a we may expand the integrand in its absolutely convergent Dirichlet series:
logarithmic differentiation of the Euler product (1.2) shows

¢ 1
e = 2O

A(m) . logp , m=p"
(3.7) z:: ms W (m) { 0 , otherwise ’
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if we use von Mangoldt’s function A. This leads to

B A(m)logn 1 [THH  qt
L= ;1 (mn)®  2m /T (mn)it
< %C'(a).

From (2.20) we get 7; < L3. With (3.6) follows immediately Zo, T, < T2+, Hence
(3.8) > o) = T+0o(17F).

T<~y<T+H
3.1.2 A certain exponential integral
We will make use of
Lemma 3.3 Let a be fixed and A large enough. Then

1 (B , t t\%3
—/ exp <ztlog —) (—) dt
2 Ja em 2T

{ (%)“eXp(—im+%)+O(A“—%) . A<m<B<24

O(A‘k%) , m<Aorm>B

The proof follows from the Taylor expansion of the integrand (see [16]). By (1.11) we have

as an immediate application

Lemma 3.4 Let > ° a(n) converge uniformly for o > 1 and absolutely for 0 > 1+¢. Let

n=1 ns
a(n) < n® and a =1+ (logU)~L. Then
1 a+iU . o] a(n) n l+€
3 o x(1 —s)r ;Fds— ;Ua(n)e(—;) +O(U2 )

— 27

3.1.3 The main term

It remains to evaluate I3: via s — 1 — 5 we find

7 1 a+i(T+H) C, 1w d
3——%/(”” ZC( —35)ds.
By the reflection principle this is the conjugate of
1 a+i(T+H) C/ ,
- > (1 — ) ds.
2mi /aﬂ'T ¢ ¢ =s)ds
With the functional equations (1.12) and (1.15) one easily gets
/ X/ C/
-9 = (A= He)) (-8 - x(L - s)C()
¢ X ¢
_ 2><’ 1 / 1 ¢ X'\’ 1
= - ;X( —5)C(s) + x( —S)ZC(S)JF ~ X(1—s)¢(s).
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Hence 73 equals

e (2%)((1 SLGCRCERRICR CHRCE S)C(S)> "

27 JatiT
=: 2F + Fo+ Fs.

We find with (1.16)

e /aa+i(T+H) (log % +0 (%)) (1= $)C(s) ds

270 JayiT

_ /TT+H <log % 40 (%)) d <2i a:t x(1— 8)C'(s) ds) .

With Lemma 3.4 the integrator equals

L[ = )¢ (s) ds = logn + O (£3+¢
%/ﬁi x(1—3s){'(s)ds = — ; ogn + ( )

— 27

Hence by partial summation and the Taylor expansion of the logarithm

H 1y
A= (mro(z)), X a0 ()
27 S +
HIL?
= +O(HL + T2 ).
27
In a similar way we get
Fo=— > A(m)logn+ O (T%+5) .

The sum above equals
T H
> A(m) > logn= > A(m < log +0 <—)> .

L iTen v lZren e Tet 2mm 2mm m
— 27

2mm — 2m™m

by partial integration. Since ¥(x) = >, -, A(m) by (3.7) we are able to calculate with the
prime number theorem (1.7) and summation by parts

A(m)

Y —— = L+0(1),
m<Zin
— 27
A(m)1 L2
v Almlogm L7 b,
m<Zen T 2
— 27
This leads to
HL2
(3.9) Fp= +O(HL +T3%).

47
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Further

1 fotiT+H) t\2 log ¢
F3 = ~5. /GHT ((log %> +0 (—)) x(1 —s)C(s)ds

Once again with Lemma 3.4

o [ s ds = X 140 (1),

27 +i RS%
We obtain
HIL?
Fy=———+0(HL+T3").
27

Since the main terms are invariant under conjugation we have altogether

Ty = Zig 10 (HL 1 T%+€) .

By (3.8) this leads to

> (o)

T<y<T+H

HIL?
= +0 (HL+1T7+)
™
for every T' with the condition (3.2). To get this uniformly in 7" we allow an arbitrarily T’
at the expense of an error < T3+ (by shifting the path of integration using (3.5)). So we
have proved Theorem 3.1. e

Of course, the results of Chapter 3 could be transferred to Dirichlet L-functions, and by
the work of Hilano [18] also those of Chapter 2. But unfortunately Levinson’s method
does not work for L-functions associated with holomorphic cusp forms, as Farmer [14]
observed, and also the method of Conrey, Ghosh and Gonek fails in the special case of
Ramanujan’s 7-function. However, Conrey and Ghosh [7] developped yet another method
to detect unconditionally simple zeros of Dirichlet series of a much more general class. They
proved the existence of infinitely many nontrivial simple zeros of Ramanujan’s 7-function.
Unfortunately this approach does not guarantee a positive proportion of simple zeros, so
there remains a lot to do...
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