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Large-scale computer-based simulations are being used increasingly to predict the behavior of
complex systems. Prime examples include the weather, global climate change, the performance
of nuclear weapons, the flow through an oil reservoir, and the performance of advanced aircraft.
Simulations invariably involve theory, experimental data, and numerical modeling, all with their
attendant errors. It is thus natural to ask, “Are the simulations believable?” “How does one assess the
accuracy and reliability of the results?” This article lays out methodologies for analyzing and com-
bining the various types of errors that can occur and then gives three concrete examples of how error
models are constructed and used.

N

NS, N \\\”.‘
RSN

\ "v\
IR \‘\ ‘\

At the top of these two pages is a simulation of low-viscosity gas (purple) displacing
higher-viscosity oil (red) in an oil recovery process. Error models can be used to improve
predictions of oil production from this process. Above, at left, is a component of such an
error model, and at right is a prediction of future oil production for a particular oil reser-
voir obtained from a simple empirical model in combination with the full error model.
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Reliable Predictions of
Complex Phenomena

There is an increasing demand for
reliable predictions of complex phe-
nomena encompassing, where possi-
ble, accurate predictions of full-sys-
tem behavior. This requirement is
driven by the needs of science itself,
as in modeling of supernovae or pro-
tein interactions, and by the need for
scientifically informed assessments in
support of high-consequence decisions
affecting the environment, national
security, and health and safety. For
example, decisions must be made
about the amount by which green-
house gases released into the atmos-
phere should be reduced, whether and
for what conditions a nuclear weapon
can be certified (Sharp and Wood-
Schulz 2003), or whether develop-
ment of an oil field is economically
sound. Large-scale computer-based
simulations provide the only feasible
method of producing quantitative,
predictive information about such
matters, both now and for the foresee-
able future. However, the cost of a
mistake can be very high. It is there-
fore vitally important that simulation
results come with a high level of
confidence when used to guide high-
consequence decisions.

Confidence in expectations about
the behavior of real-world phenomena
is typically based on repeated experi-
ence covering a range of conditions.
But for the phenomena we consider
here, sufficient data for high confi-
dence is often not available for a vari-
ety of reasons. Thus, obtaining the
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needed data may be too hazardous or
expensive, it may be forbidden as a
matter of policy, as in the case of
nuclear testing, or it just may not be
feasible. Confidence must then be
sought through understanding of the
scientific foundations on which the
predictions rest, including limitations
on the experimental and calculational
data and numerical methods used to
make the prediction. This understand-
ing must be sufficient to allow quanti-
tative estimates of the level of accura-
cy and limits of applicability of the
simulation, including evidence that
any factors that have been ignored in
making the predictions actually have a
small effect on the answer. If, as
sometimes happens, high-confidence
predictions cannot be made, this fact
must also be known, and a thorough
and accurate uncertainty analysis is
essential to identify measures that
could reduce uncertainties to a tolera-
ble level, or mitigate their impact.

Our goal in this paper is to provide
an overview of how the accuracy and
reliability of large-scale simulations of
complex phenomena are assessed, and
to highlight the role of what is known
as an error model in this process.

Why Is It Hard to Make
Accurate Predictions of
Complex Phenomena?

We begin with a couple of examples
that illustrate some of the uncertainties
that can make accurate predictions dif-
ficult. In the oil industry, predictions of
fluid flow through oil reservoirs are
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difficult to make with confidence
because, although the fluid properties
can be determined with reasonable
accuracy, the fluid flow is controlled
by the poorly known rock permeability
and porosity. The rock properties can
be measured by taking samples at
wells, but these samples represent only
a tiny fraction of the total reservoir
volume, leading to significant uncer-
tainties in fluid flow predictions. As an
analogy of the difficulties faced in pre-
dicting fluid flow in reservoirs, imag-
ine drawing a street map of London
and then predicting traffic flows based
on what you see from twelve street
corners in a thick fog!

In nuclear weapons certification, a
different problem arises. The physical
processes in an operating nuclear
weapon are not all accessible to labo-
ratory experiments (O’Nions et al.
2002). Since underground testing is
excluded by the Comprehensive Test
Ban Treaty (CTBT), full system pre-
dictions can only be compared with
limited archived test data.

The need for reliable predictions is
not confined to the two areas above.
Weather forecasting, global climate
modeling, and complex engineering
projects, such as aircraft design, all
generate requirements for reliable,
quantitative predictions—see, for
example, Palmer (2000) for a study of
predictability in weather and climate
simulations. These often depend on
features that are hard to model at the
required level of detail—especially if
many simulations are required in a
design-test-redesign cycle.

More generally, because we are
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dealing with complex phenomena,
knowledge about the state of a system
and the governing physical processes
is often incomplete, inaccurate, or
both. Furthermore, the strongly non-
linear character of many physical
processes of interest can result in the
dramatic amplification of even small
uncertainties in the input so that they
produce large uncertainties in the sys-
tem behavior. The effects of this sen-
sitivity will be exacerbated if experi-
mental data are not available for
model selection and validation.
Another factor that makes prediction
of complex phenomena very difficult
is the need to integrate large amounts
of experimental, theoretical, and com-
putational information about a com-
plex problem into a coherent whole.
Finally, if the important physical
processes couple multiple scales of
length and time, very fast and very
high memory capacity computers and
sophisticated numerical methods are
required to produce a high-fidelity
simulation. The examples discussed in
this article exhibit many of these diffi-
culties, as well as the uncertainties in
prediction to which they lead.

To account for such uncertainties,
models of complex systems and their
predictions are often formulated prob-
abilistically. But the accuracy of pre-
dictions of complex phenomena,
whether deterministic or probabilistic,
varies widely in practice. For example,
estimates of the amount of oil in a
reservoir that is at an early stage of
development are very uncertain. Large
capital investments are made on the
basis of probabilistic estimates of oil
in place, so that the oil industry is fun-
damentally a risk-based business. The
estimates are usually given at three
confidence levels: p90, p50, and p10,
meaning that there is a 90 percent,

50 percent, and 10 percent chance,
respectively, that the amount of oil in
place will be greater than the specified
reserve level. Figure 1 shows a
schematic plot (based on a real North
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Figure 1. Oil-in-Place Uncertainty Estimate Variation with Time

This figure shows estimates of p90, p50, and p10 probabilities that the amount of oil
in a reservoir is greater than the number shown. The estimated probabilities are
plotted as a function of time. The variations shown indicate the difficulties involved
in accurate probability estimations. [Photo courtesy of Terrington (York) Ltd.]
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Figure 2. Calibration Curve for Weather Forecasts

This plot shows estimates of the probability of precipitation from simulation fore-
casts vs the observed frequency of precipitation for a large number of observa-
tions. Next to each data point is the number of observations for that forecast.

Sea example) of estimated reserves as
a function of time. The plot clearly
shows that, as more information about

the reservoir was acquired during the
course of field development, estimates
of the range of reserves changed out-
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side the initial prediction. In other
words, the initial estimates of reserves,
although probabilistic, did not capture
the full range of uncertainty and were
thus unreliable. This situation was
obviously a cause for concern for a
company with billions of dollars in
investments on the line.

Probabilistic predictions are also
used in weather forecasting. If the
probabilistic forecast “20 percent
chance of rain” were correct, then on
average it would have rained on 1 in 5
days that received that forecast. Data
on whether or not it rained are easily
obtained. This rapid and repeated
feedback on weather predictions has
resulted in significantly improved reli-
ability of forecasts compared with pre-
dictions of uncertainty in oil reserves.
The comparison between the observed
frequency of precipitation and a proba-
bilistic forecast for a locality in the
United States shown in Figure 2 con-
firms the accuracy of the forecasts.

This accuracy did not come easily,
and so we next briefly describe two of
the principal methods currently used
to improve the accuracy of predictions
of complex phenomena: calibration
and data assimilation.

Calibration is a procedure whereby
a simulation is matched to a particular
set of experimental data by perform-
ing a number of runs in which uncer-
tain model parameters are varied to
obtain agreement with the selected
data set. This procedure is sometimes
called “tuning,” and in the oil industry
it is known as history matching.
Calibration is useful when codes are
to be used for interpolation, but it is
of limited help for extrapolation out-
side the data set that was used for tun-
ing. One reason for this lack of pre-
dictability is that calibration only
ensures that unknown errors from dif-
ferent sources, say inaccurate physics
and numerics, have been adjusted to
compensate one another, so that the
net error in some observable is small.
Because different physical processes
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and numerical errors are unlikely to
scale in the same way, a calibrated
simulation is reliable only for the
regime for which it has been shown to
match experimental data.

In one variant of calibration, multi-
ple simultaneous simulations are per-
formed with different models. The
“best” prediction is defined as a
weighted average over the results
obtained with the different models. As
additional observations become avail-
able, the more successful models are
revealed, and their predictions are
weighted more heavily. If the models
used reflect the range of modeling
uncertainty, then the range of results
will indicate the variance of the pre-
diction due to those uncertainties.

Data assimilation, while basically a
form of calibration, has important dis-
tinctive features. One of the most
important is that it enables real-time
utilization of data to improve predic-
tions. The need for this capability
comes from the fact that, in opera-
tional weather forecasting, for exam-
ple, there is insufficient time to restart
a run from the beginning with new
data, so that this information must be
incorporated on the fly. In data assim-
ilation, one makes repeated correc-
tions to model parameters during a
single run, to bring the code output
into agreement with the latest data.
The corrections are typically deter-
mined using a time series analysis of
the discrepancies between the simula-
tion and the current observations.
Data assimilation is widely used in
weather forecasting. See Kao et al.
(2004) for a recent application to
shock-wave dynamics.

Sources of Error and How
to Analyze Them

Introducing Error Models. The
role of a thorough error analysis in
establishing confidence in predictions
has been mentioned. But evaluating
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the error in a prediction is often more
difficult than making the prediction in
the first place, and when confidence
in the answer is an issue, it is just as
important.

A systematic approach for deter-
mining and managing error in simula-
tions is to try to represent the effects
of inaccurate models, neglected phe-
nomena, and limited solution accuracy
using an error model.

Unlike the calibration and data
assimilation methods discussed above,
an error model is not primarily a
method of increasing the accuracy of
a simulation. Error modeling aims to
provide an independent estimate of
the known inadequacies in the simula-
tion. An error model does not purport
to provide a complete and precise
explanation of observed discrepancies
between simulation and experiment
or, more generally, of the differences
between the simulation model and the
real world. In practice, an error model
helps one achieve a scientific under-
standing of the knowable sources of
error in the simulation and put quanti-
tative bounds on as much of the error
as possible.

Simulation Errors. Computer
codes used for calculating complex
phenomena combine models for
diverse physical processes with algo-
rithms for solving the governing equa-
tions. Large databases containing
material properties such as cross sec-
tions or equations of state that tie the
simulation to a real-world system
must be integrated into the simulation
at the lowest level of aggregation.
These components and, significantly,
input from the user of the code must
be linked by a sophisticated computer
science infrastructure, with the result
that a simulation code for complex
phenomena is an exceedingly elabo-
rate piece of software. Such codes,
while elaborate, still provide only an
approximate representation of reality.

Simulation errors come from three
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Figure 3. Uncertainties in Reported Measurements of the Speed of

Light (1870-1960)

This figure shows measured values of the speed of light along with estimates of the
uncertainties in the measured values up until 1960. The error bars correspond to the
estimated 90% confidence intervals. The currently accepted value lies outside the
error bars of more measurements than would be expected, indicating the difficulty
of truly assessing the uncertainty in an experimental measurement. Refer to the arti-
cle by Henrion and Fischoff on pp. 666—-677 in Heuristics and Biases (2002) for more
details on this and other examples of uncertainties in physical constants.

(Photo courtesy of Department of Physics, Carnegie Mellon University.)

main sources: inaccurate input data,
inaccurate physics models, and limit-
ed accuracy of the solutions of the
governing equations. Clearly, each of
these generic sources of error is
potentially important. A perfect
physics model with perfect input data
will give wrong answers if the equa-
tions are solved poorly. Likewise, a
perfect solution of the wrong equa-
tions will also give incorrect answers.
The relative importance of errors from
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each source is problem dependent, but
each source of error must be evaluat-
ed. Our discussion of error models
will reflect the above comments by
categorizing simulation inadequacies
as due to input, solution, and physics
errors.

Input errors refer to errors in data
used to specify the problem, and they
include errors in material properties,
the description of geometrical config-
urations, boundary and initial condi-

tions, and others. Solution error is the
difference between the exact mathe-
matical solution of the governing
equations for the model and the
approximate solution of the equations
obtained with the numerical algo-
rithms used in the simulation. Physics
error includes the effects of phenome-
na that are inadequately represented in
the simulation, for example, the
unknown details of subscale physics,
such as the microscopic details of
material that is treated macroscopical-
ly in the simulation. Evaluations of
the effects of these details are typical-
ly based on statistical descriptions.
The physics component of an error
model is thus based on knowledge of
aspects of the nominal model that
need or might need correction.

Experimental Errors and
Solution Errors. Much of our under-
standing of how to analyze errors
comes from studies of experimental
error. We will also see below that
experimental and solution errors play
a similar role in an uncertainty analy-
sis. We therefore start by discussing
experimental errors.

Experimental errors play an impor-
tant role in building error models for
simulations. First, they can bias con-
clusions that are drawn when simula-
tion results are compared with meas-
ured data. Second, experimental errors
affect the accuracy of simulations
indirectly through their effects on
databases and input data used in a
simulation. Experimental errors are
classified as random or systematic.
Typically, both types of error are pres-
ent in any particular application. A
familiar example of a random error is
the statistical sampling error quoted
along with the results of opinion polls.
Another type of random error is the
result of variations in random physical
processes, such as the number of
radioactive decays in a sample per
unit time. The signals from measuring
instruments usually contain a compo-

Los Alamos Science Number 29 2005



nent that either is or appears to be
random whether the process that is the
subject of the measurement is random
or not. This component is the ubiqui-
tous “noise” that arises from a wide
variety of unwanted or uncharacter-
ized processes occurring in the meas-
urement apparatus. The way in which
noise affects a measurement must be
taken into consideration to attain valid
conclusions based on that data. Noise
is typically treated probabilistically,
either separately or included with a
statistical treatment of other random
error. However, systematic error is
often both more important and more
difficult to deal with than random
error. It is also frequently overlooked,
or even ignored.

To see how a systematic error can
occur, imagine that an opinion poll on
the importance of education was con-
ducted by questioning people on street
corners “at random”—not knowing
that many of them were coming and
going from a major library that hap-
pened to be located nearby. It is virtu-
ally certain that those questioned
would on average place a higher
importance on education than the pop-
ulation in general. Even if a very large
number of those individuals were
questioned, an activity that would
result in a small statistical sampling
error, conclusions about the impor-
tance of higher education drawn from
this data could be incorrect for the
population at large. This is why care-
fully conducted polls seek to avoid
systematic errors, or biases, by ensur-
ing that the population sampled is rep-
resentative.

As a second example, suppose that
10 measurements of the distance from
the Earth to the Sun gave a mean
value of 95,000,000 miles due, say, to
flaws in an electric cable used in mak-
ing these measurements. How would
someone know that 95,000,000 miles
is the wrong answer? This error could
not be revealed by a statistical analy-
sis of only those 10 measurements.
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Additional, independent measure-
ments made with independent measur-
ing equipment would suggest that
something was wrong if they were
inconsistent with these results.
However, the cause of the systematic
error could only be identified through
a physical understanding of how the
instruments work, including an analy-
sis of the experimental procedures and
the experimental environment. In this
example, the additional measurements
should show that the electrical charac-
teristics of the cable were not as
expected. To reiterate, the point of
both examples is that an understand-
ing of the systematic error in a meas-
ured quantity requires an analysis that
is independent of the instrument used
for the original measurement.

An example of how difficult it can
be to determine uncertainties correctly
is shown in Figure 3, a plot of esti-
mates of the speed of light vs the date
of the measurement. The dotted line
shows the accepted value, and the
published experimental uncertainties
are shown as error bars. The length of
the error bars—1.48 times the stan-
dard deviation—is the “90 percent
confidence interval” for a normally
distributed uncertainty for the experi-
mental error; that is, the experimental
error bars will include the correct
value 90 percent of the time if the
uncertainty were assessed correctly. It
is evident from the figure, however,
that many of the analyses were inade-
quate: The true value lies outside the
error bars far more often than 10 per-
cent of the time. This situation is not
uncommon, and it provides an exam-
ple of the degree of caution appropri-
ate when using experimental results.

The analysis of experimental error
is often quite arduous, and the rigor
with which it is done varies in prac-
tice, depending on the importance of
the result, the accuracy required,
whether the measurement technique is
standard or novel, and whether the
result is controversial. Often, the best
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way to judge the adequacy of an
analysis of uncertainty in a complex
experiment is to repeat the experiment
with an independent method and an
independent team.

Solution errors enter an analysis of
simulation error in several ways. In
addition to being a direct source of
error in predictions made with a given
model, solution errors can bias the con-
clusions one draws from comparing a
model to data in exactly the same way
that experimental errors do. Solution
errors also can affect a simulation
almost covertly: It is common for the
data or the code output to need further
processing before the two can be
directly compared. When this process-
ing requires modeling or simulation
with a different code, then the solution
error from that calculation can affect
the comparison. As with experimental
errors, solution errors must be deter-
mined independently of the simulations
that are being used for prediction.

Using Data to
Constrain Models

The scientific method uses a cycle
of comparison of model results with
data, alternating with model modifica-
tion. A thorough and accurate error
analysis is necessary to validate
improvements. The availability of
data is a significant issue for complex
systems, and data limitations permeate
efforts to improve simulation-based
predictions. It is therefore important
to use all relevant data in spite of dif-
ferences in experiment design and
measurement technique. This means
that it is important to have a proce-
dure to combine data from diverse
sources and to understand the signifi-
cance of the various errors that are
responsible for limitations on pre-
dictability.

The way in which the various cate-
gories of error can affect comparison
with experimental data and the steps

11



Error Analysis

to be taken if the errors are too large
are discussed in the next section. The
comparison of model predictions with
experimental data is often called the
forward step in this cycle and is a key
component in uncertainty assessments
of a predicted result. The backward
step of the cycle for model improve-
ment, which is discussed next, is the
statistical inference of an improved
model from the experimental data.
The Bayesian framework provides a
systematic procedure for inference of
an improved model from observa-
tions; lastly, we describe the use of
hierarchical Bayesian models to inte-
grate data from many sources.

Some discussion of the use of the
terms “uncertainty” and “error” is in
order. In general, any physical quan-
tity, whether random or not, has a spe-
cific value—such as the number of
radioactive decays in a sample of triti-
ated paint in a given 5-minute period.
The difference between that actual
number and an estimate determined
from knowledge of the number of tri-
tium nuclei present and the tritium
lifetime is the error in that estimate. If
the experiment were repeated many
times, a distribution of errors would
arise, and the probability density func-
tion for those errors is the uncertainty
in the estimate.

Decomposition of Errors. Our
ability to predict any physical phe-
nomenon is determined by the accura-
cy of our input data and our modeling
approach. When the modeling input
data are obtained by analysis of
experiments, the experimental error
and modeling error (solution error
plus physics approximations) terms
control the accuracy of our estimation
of those data, and hence our ability to
predict. Because a full uncertainty-
quantification study is in itself a com-
plex process, it is important to ensure
that those errors whose size can be
controlled—either by experimental
technique or by modeling/simulation
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Figure 4. Comparing Experimental Measurements with Simulations
The green line shows the true, unknown value of an observable over the range of
uncertainty in the experimental conditions, and the purple cross indicates the
uncertainty in the observation. The discrepancy measures the difference between

observation and simulation.

choices—are small enough to ensure
that predictions of the phenomena of
interest can be made with sufficient
precision for the task at hand. This
means that simpler techniques are
often appropriate at the start of a
study to ensure that we are operating
with the required level of precision.
The discrepancy between simula-
tion results and experimental data is
illustrated in Figure 4, which shows
the way in which this discrepancy can
be related to measurement errors and
solution errors. Note that the experi-
mental conditions are also subject to
uncertainties. This means that the
observed value may be associated

with a slightly different condition than
the one for which the experiment was
designed, as shown in Figure 4.

The three steps below could serve
as an initial, deterministic assessment
of the discrepancy between simulation
and experiment.

Step 1. Compare Simulated and
Experimental Results. The size of the
measurement error will obviously
affect the conclusions drawn from the
comparison. Those conclusions can
also be affected by the degree of
knowledge of the actual as opposed to
the designed experimental conditions.
For example, the as-built composition
of the physical parts of the system

Los Alamos Science Number 29 2005



under investigation may differ slightly
from the original design. The effects
of both of these errors are typically
reported together, but they are explic-
itly separated here because error in
the experimental conditions affects
the simulated result, as well as the
measured result, as can be seen in
Figure 4.

Step 2. Evaluate Solution Errors. If
the error is a simple matter of numeri-
cal accuracy—for example, spatial or
temporal resolution—then the error is
a fixed, determinable number in prin-
ciple. In other cases—for example,
subgrid stochastic processes—the
error may be knowable in only a sta-
tistical sense.

Step 3. Determine Impact on
Predictability. If the discrepancy is
large compared with the solution error
and experimental uncertainty, then the
model must be improved. If not, the
model may be correct, but in either
case, the data can be used to define a
range of modeling parameters that is
consistent with the observations. If that
range leads to an uncertainty in predic-
tion that is too large for the decision
being taken, the experimental errors or
solution errors must be reduced.

A significant discrepancy in step 1
indicates the presence of errors in the
simulation and/or experiment, and
steps 2 and 3 are necessary, but not
sufficient, to pinpoint the source(s) of
error. However, these simple steps do
not capture the true complexity of
analyzing input or modeling errors. In
practice, the system must be subdivid-
ed into pieces for which the errors can
be isolated (see below) and independ-
ently determined. The different errors
must then be carefully recombined to
determine the uncertainties in integral
quantities, such as the yield of a
nuclear weapon or the production of
an oil well, that are measured in full
system tests. A potential drawback of
this paradigm is that experiments on
subsystems may not be able to probe
the entire parameter space encoun-
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tered in full system operation.
Nevertheless, because the need to pre-
dict integral quantities motivates the
development and use of simulation, a
crucial test of the “correctness” of a
simulation is that it consistently and
accurately matches all available data.

Statistical Prediction

A major challenge of statistical
prediction is assessing the uncertainty
in a predicted result. Given a simula-
tion model, this problem reduces to
the propagation of errors from the
simulation input to the simulated
result. One major problem in examin-
ing the impact of uncertainties in
input data on simulation results is the
“curse of dimensionality.” If the prob-
lem is described by a large number of
input parameters and the response sur-
face is anything other than a smooth
quasilinear function of the input vari-
ables, computing the shape of the
response surface can be intractable
even with large parallel machines. For
example, if we have identified 8 criti-
cal parameters in a specific problem
and can afford to run 1 million simu-
lations, we can resolve the response
surface to an accuracy of fewer than
7 equally spaced points per axis.

Various methods exist to assess the
most important input parameters.
Sensitivities to partial derivatives can
be computed either numerically or
through adjoint methods. Adjoint
methods allow computation of sensi-
tivities in a reasonable time and are
widely used.

Experimental design techniques
can be used to improve efficiency.
Here, the response surface is assumed
to be a simple low-order polynomial
in the input variables, and then statis-
tical techniques are used to extract the
maximum amount of information for
a given number of runs. Principal
component analysis can also be used
to find combinations of parameters
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that capture most of the variability.

The principle that underlies many
of these techniques is that, for a com-
plex engineering system to be reli-
able, it should not depend sensitively
on the values of, for example, 104 or
more parameters. This is as true for a
weapon system that is required to
operate reliably as it is for an oil field
that is developed with billions of dol-
lars of investment funds.

Statistical Inference—The
Bayesian Framework. The Bayesian
framework for statistical inference
provides a systematic procedure for
updating current knowledge of a sys-
tem on the basis of new information.
In engineering and natural science
applications, we represent the system
by a simulation model m, which is
intended to be a complete specifica-
tion of all information needed to solve
a given problem. Thus m includes the
governing evolution equations (typi-
cally, partial differential equations) for
the physical model, initial and bound-
ary conditions, and various model
parameters, but it would not generally
include the parameters used to specify
the numerical solution procedure
itself. Any or all of the information in
m may be uncertain to some degree.
To represent the uncertainty that may
be present in the initial specification
of the system, we introduce an ensem-
ble of models M, with m € ‘M, and
define a probability distribution on
M. This is called the prior distribu-
tion and is denoted by p(m).

If additional information about the
system is supplied by an observation
0, one can determine an updated esti-
mate of the probability for m, called
the posterior distribution and denoted
by p(m|6), by using Bayes’ formula

p(m|0): J‘ p(0|m)p(m) @

a p(0|m)p(m)dm
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Figure 5. Bayesian Framework for
Predicting System Performance
with Relevant Uncertainties
Multiple simulations are performed
using the full physical range of parame-
ters. The discrepancies between the
observation and the simulated values
are used in a statistical inference proce-
dure to update estimates of modeling
and input uncertainties. The update
involves computing the likelihood of the
model parameters by using Bayes’ theo-
rem. The likelihood is computed from a
probability model for the discrepancy,
taking into account the measurement
errors (shown schematically by the
green dotted lines) and the solution
errors (blue dotted lines). The updated
parameter values are then used to pre-
dict system performance, and a deci-
sion is taken on whether the accuracy
of the predictions is adequate.
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It is important to realize that the
Bayesian procedure does not deter-
mine the choice of p(m). Thus, in
using Bayesian analysis, one must
supply the prior from an independent
data source or a more fundamental
theory, or otherwise, one must use a
noninformative “flat” prior.

The factor p(6|m) in Equation (1)
is called the likelihood. The likeli-
hood is the (unnormalized) condi-
tional probability for the observation
0, given the model m. In the cases of
interest here, model predictions are
determined by solutions s(m) of the
governing equations. The simulated
observables are functionals O(s(m))
of s(m). If both the experimentally
measured observables ¢ and the solu-
tion s(m), hence 0(s(m)), are exact,
the likelihood p(6|m) is a delta func-
tion concentrated on the hypersurface
in 2M defined by the equation

0= O(S(m)) )

Real-world observations and simula-
tions contain errors, of course, so that
a discrepancy will invariably be
observed between 0 and O(s(m)).
Because the likelihood is evaluated
subject to the hypothesis that the
model m € M is correct, any such
discrepancy can be attributed to
errors either in the solution or in the
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measurements. The likelihood is
defined by assigning probabilities to
solution and/or measurement errors
of different sizes. The required prob-
ability models for both types of
errors must be supplied by an inde-
pendent analysis.

This discussion shows that the role
of the likelihood in simulation-based
prediction is to assign a weight to a
model m based on a probabilistic
measure of the quality of the fit of the
model predictions to data. Probability
models for solution and measurement
errors play a similar role in determin-
ing the likelihood.

This point is so fundamental and
sufficiently removed from common
approaches to error analysis that we
repeat it for emphasis: Numerical
and observation errors are the lead-
ing terms in the determination of the
Bayesian likelihood. They supply
critical information needed for
uncertainty quantification.

Alternative approaches to infer-
ence include the use of interval
analysis, possibility theory, fuzzy
sets, theories of evidence, and others.
We do not survey these alternatives
here, but simply mention that they
are based on different assumptions
about what is known and what can be
concluded. For example, interval
analysis assumes that unknown
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parameters vary within an interval
(known exactly), but that the distri-
bution of possible values of the
parameter within the interval is not
known even in a probabilistic sense.
This method yields error bars but not
confidence intervals.

An illustration of the Bayesian
framework we follow to compute the
impact of solution error and experi-
mental uncertainty is shown in
Figure 5. Multiple simulations are
performed with the full physical
range of parameters. The discrepan-
cies (between simulation and obser-
vation) are used in a statistical infer-
ence procedure to update estimates of
modeling and input uncertainties.
These updated values are then used
to predict system performance, and a
decision is taken on whether the
accuracy of the predictions is
adequate.

Combining Information from
Diverse Sources

Bayesian inference can be extend-
ed to include multiple sources of
information about the details of a
physical process that is being simu-
lated (Gaver 1992). This information
may come from “off-line” experi-
ments on separate components of the
simulation model m, expert judg-
ment, measurements of the actual
physical process being simulated,
and measurements of a physical
process that is related, but not identi-
cal, to the process being simulated.
Such information can be incorporat-
ed into the inference process by
using Bayesian hierarchical models,
which can account for the nature and
strength of these various sources of
information. This capability is very
important since data directly bearing
on the process being modeled is
often in short supply and expensive
to acquire. Therefore, it is essential
to make full use of all possible
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sources of information—even
those that provide only indirect
information.

In principle, an analysis can uti-
lize any experimental data that can
be compared with some part of the
output of a simulation. To understand
this point, let us make the simple and
often useful assumption that the fam-
ily of possible models M can be
indexed by a set of parameters . In
this case, the somewhat abstract
specification of the prior as a proba-
bility distribution p(m) on models
can be thought of simply as a proba-
bility distribution p(6) on the param-
eters 6. Depending on the applica-
tion, 6 may include parameters that
describe the physical properties of a
system, such as its equation of state,
or that specify the initial and bound-
ary conditions for the system, to
mention just a few examples. In any
of these cases, uncertainty in 6
affects prediction uncertainty.
Typically, different data sources will
give information about different
parameters.

Multiple sources of experimental
data can be included in a Bayesian
analysis by generalizing the likeli-
hood term. If, for example, the
experimental observations ¢ decom-
pose into three components (0, 0,,
03), the likelihood can be written as

p(en())= p(a}m(©))
X p(02|m2(0))

X p(03|m3(0))

if we assume that each component of
the data gives information about an
independent parameter 6. The sub-
scripts on the models are there to
remind us that, although the same
simulation model is used for each of
the likelihood components, different
subroutines within the simulation
code are likely to be used to simulate
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the different components of the out-
put. This means that each of the like-
lihood terms will have its own solu-
tion error, as well as its own observa-
tion error. The relative sizes of these
errors greatly affect how these vari-
ous data sources constrain 6. For
example, if it is known that m,(6)
does not reliably simulate 0,, then
the likelihood should reflect this fact.
Note that a danger here is that a mis-
specification of a likelihood term
may give some data sources undue
influence in constraining possible
values of one of the parameters 6.

In some cases, one (or more) com-
ponent (components) of the observed
data is (are) not from the actual
physical system of interest, but from
a related system. In such cases,
Bayesian hierarchical models can be
used to borrow strength from that
data by specifying a prior model that
incorporates information from the
different systems. See Johnson et al.
(2003) for an example.

Finally, expert judgment usually
plays a significant role in the formu-
lation and use of models of complex
phenomena—whether or not the
models are probabilistic. Sometimes,
expert judgment is exercised in an
indirect way, through selection of a
likelihood model or through the
choice of the data sources to be
included in an analysis. Expert judg-
ment is also used to help with the
choice of the probability distribution
for p(6), or to constrain the range of
possible outcomes in an experiment,
and such information is often
invoked in applications for which
experimental or observational data
are scarce or nonexistent. However,
the use of expert judgment is fraught
with its own set of difficulties. For
example, the choice of a prior can
leave a strong “imprint” on results
inferred from subsequent experi-
ments. See Heuristics and Biases
(2002) for enlightening discussions
of this topic.
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Figure 6. Dropping an Object
from a Tower

(a) The time it takes an object to drop
from each of 6 floors of a tower is
recorded. There is an uncertainty in the
measured drop times of about +0.2 s.
Predictions for times are desired for
drops from floors 7 through 10, but they
do not yet exist.

(b) A mathematical model is developed
to predict the drop times as a function
of drop height. The simulated drop
times (red line) are systematically too
low when compared with the experi-
mental data (triangles). The error bars
around the observed drop times show
the observation uncertainty.

(c) This systematic deviation between
the mathematical model and the experi-
mental data is accounted for in the like-
lihood model. A fitted correction term
adjusts the model-based predictions to
better match the data. The resulting 90%
prediction intervals for floors 7 through
10 are shown in this figure. Note that
the prediction intervals become wider
as the drop level moves away from the
floors with experimental data. The cyan
triangles corresponding to floors 7
through 10 show experimental observa-
tions taken later only for validation of
the predictions.

(d) An improved simulation model was
constructed that accounts for air resist-
ance. A parameter controlling the
strength of the resistance must be esti-
mated from the data, resulting in some
prediction uncertainty (90% prediction
intervals are shown for floors 7 through
10). The improved model captures more
of the physics, giving reduced predic-
tion uncertainty.
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Building Error Models—
Examples

Dropping Objects from a Tower.
Some of the basic ideas used in build-
ing error models are illustrated in
Figure 6. In this example, experimental
observations are combined with a sim-
ple physics model to predict how long
it takes an object to fall to the ground
when it is dropped from a tower. The
experimental data are drop times
recorded when the object is dropped
from each of six floors of the tower.
The actual drop time is measured with
an observation error, which we assume
for illustrative purposes to be Gaussian
(normal), with mean 0 and a standard
deviation of 0.2 second. The physics
model is based solely on the accelera-
tion due to gravity. We observe that the
predicted drop times are too short and
that this discrepancy apparently grows
with the height from which the object is
dropped.

Even though this model shows a
substantial error, which is apparent
from the discrepancy between the
experimental data and the model pre-
dictions (Figure 6(b)), it can still be
made useful for predicting drop times
from heights that are greater than the
height of the tower. As a first step, we
account for the discrepancy by includ-
ing an additional unknown correction
in the initial specification of the model,
namely, in the prior. This term repre-
sents the discrepancy as an unknown,
smooth function of drop height that is
estimated (with uncertainty) in the
analysis. The results are applied to give
predictions of drop times for heights
that would correspond to the seventh
through tenth floors of the tower. These
predictions have a fair amount of
uncertainty because the discrepancy
term has to be extrapolated to drop
heights that are beyond the range of the
experimental data. Note also that the
prediction uncertainty increases with
drop height (refer to Figure 6(c)).

This strictly phenomenological
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modeling of the error leads to results
that can be extrapolated over a very
limited range only, because predictions
of drop times from just a few floors
above the sixth have unacceptably large
uncertainties. But an improved physics
model can greatly extend the range
over which useful predictions can be
made. Thus, we next carry out an
analysis using a model that incorporates
a physically motivated term for air
resistance. This model requires estima-
tion of a single additional parameter
appearing as a coefficient in the air
resistance term. But when this parame-
ter is constrained by experimental data,
much better agreement with the meas-
ured drop times is obtained (see

Figure 6(d)). In fact, in this case, the
discrepancy is estimated to be nearly
zero. The remaining uncertainty in this
improved prediction results from uncer-
tainties in the measured data and in the
value of the air resistance parameter.

Using an Error Model to
Improve Predictions of Oil
Production. In most oil reservoirs,
the oil is recovered by injecting a
fluid to displace the oil toward the
production wells. The efficiency of
the oil recovery depends, in part, on
the physical properties of the displac-
ing fluid. The example in this section
concerns estimation of the viscosity
(typically poorly known) of an inject-
ed gas displacing oil in a porous
medium. We will show how an error
model for such estimates allows
improved estimates of the uncertainty
in future oil production using this
method of recovery.

Because the injected gas has lower
viscosity than the oil, the displace-
ment process is unstable and viscous
fingers develop (see Figure 7). The
phenomenon is similar to the
Rayleigh-Taylor instability of a dense
fluid on top of a less dense fluid. The
fingers have a reasonably predictable
average behavior, but there is some
randomness in their formation and
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Low-viscosity gas (purple) is injected into a reservoir to displace higher-viscosity
oil (red). The displacement is unstable and the gas fingers into the oil, reducing
recovery efficiency.

evolution associated with the lack of
knowledge of the initial conditions
and with unknown small-scale fluctu-
ations in rock properties.

The oil industry has a simple
empirical model that accounts for the
effects of fingering. This model,
called the Todd and Longstaff model,
fits an expansion wave (rarefaction
fan) to the average behavior. Although
the model is good, it is not perfect,
and in particular, when applied to
cases with a correlated permeability
field, it tends to underestimate the
speed with which the leading edge of
the gas moves through the medium.
If we compare results from the Todd
and Longstaff model with observed
data in order to estimate physical
parameters such as viscosity, we will
introduce errors into the parameter
estimates because of the errors in the
solution method. To compensate for
these errors, we create a statistical
model for the solution errors.!

For this example, we assume that
the primary unknown in the Todd and
Longstaff model is the ratio of gas
viscosity to oil viscosity, which deter-
mines the rate at which instabilities
grow. This ratio will be determined by

1 All the results cited in this section are
from Alannah O’Sullivan’s Ph.D. thesis
on error modeling (O’Sullivan 2004). We
are grateful to her for permission to use
these unpublished results in this article.

comparing simulation and observation
(in practice, oil and gas viscosities
would be measured, although there
would still be uncertainties associated
with amounts of gas dissolved in the
oil). To construct a solution error
model for the average gas concentra-
tion in the reservoir, we run a number
of fine-grid simulations at discrete
values of the viscosity ratio, which we
refer to as calibration points. Then, for
each value of the viscosity ratio, we
compute the difference between the
Todd and Longstaff model and the
fine-grid simulations as a function of
scaled distance along the flow (x) and
dimensionless time (7) (time divided
by the time for gas to break through
in the absence of fingering). The
mean error computed in this way for
the viscosity ratio 10 is shown in
Figure 8 as a function of the similarity
variable x/t. We also compute the
standard deviation of the error at each
time, as well as the correlation
between errors at different times. This
information is represented as a
“covariance matrix.”

We will show that the solution
error model (the mean error and the
covariance matrix), when used in con-
junction with predictions of the Todd
and Longstaff model at different vis-
cosity ratios, can yield good estimates
of the viscosity ratio for a given pro-
duction data set. Figure 9 shows the
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Figure 8. Mean Error and Data to Compute Mean Error

The black curve is the mean error in the gas concentration for viscosity ratio 10. The
data to compute the mean error (gray curves) come from the differences between a
single coarse-grid or approximate solution (in this case, the Todd and Longstaff
model) and multiple fine-grid realizations, all computed at viscosity ratio 10. The
variability in the fine-grid realizations reflects random fluctuations in the permeabili-
ty field, which create different finger locations and growth paths. In this case, the
gas concentration averaged across the flow from the fine-grid solution is subtracted
from the coarse Todd and Longstaff prediction as a function of x (distance along the
flow) divided by t (time). In the example discussed in the text, we compute the mean
error and covariance matrix at viscosity ratios 5, 10, and 15, and interpolation is
used to predict the behavior in between these values.
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Figure 9. Observed Production Compared with Predictions

The mean error from the error model is added to the coarse-grid result (blue curve)
at each time to generate an improved estimate of the gas concentration produced
(red curve). The black curve is observed data (actually synthetic data calculated
using the fine-grid model with oil-gas viscosity ratio equal to 13).
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observed production data (black
curve) for which we wish to deter-
mine the unknown viscosity ratio. We
first run the Todd and Longstaff
model at different viscosity ratios
from a prior range of 5 to 25 and then
correct each prediction by adding to it
the mean error at that specific viscosi-
ty ratio. The mean error at each vis-
cosity ratio is calculated by interpolat-
ing between the mean error at the
known calibration points for each
value of the similarity variable x/.
The blue curve in Figure 9 gives an
example of a Todd and Longstaff pre-
diction, and the red curve gives the
corrected curve obtained by adding
the mean error to the blue curve. To
apply the error model, we have con-
verted from the similarity variable x/¢
to time using the known length of the
system.

After calculating the corrected pre-
dictions for each viscosity ratio, the
next step is to compare the corrected
prediction (an example is shown in
red) for each viscosity ratio with the
observed data (shown in black) and
compute the misfit M between the
simulation and the data. The misfit is
given by

M= %(O—S-FE)TC_I(O—S-FE) , 3

where o is the observed value, s is the
simulated value, @ is the mean error,
and the covariance matrix is given by
C =03+ C,,, Thatis, for the
covariance matrix, we assume that the
data errors are Gaussian, independent,
and identically distributed and that
therefore they have a standard devia-
tion of Gfl, and we estimate the solu-
tion error model covariance matrix
C,,,, from the fine-scale simulations
performed at the calibration points.
The red curve in Figure 10 shows the
misfits as a function of viscosity ratio
computed using the full error model as
in Equation (3). The other misfit statis-
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Figure 10. Misfit Statistic vs Viscosity Ratio Calculated in Three Ways
This figure shows a plot of misfit as a function of the viscosity ratio. The misfit is
computed using a standard least-squares approach (black curve), least squares with
mean error added (blue curve), and the full error model. The misfit measures the
quality of the fit to the observed data with low misfits indicating a good fit.
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Figure 11. Posterior Probability Distribution Functions for the Viscosity
Ratio Calculated in Three Ways

This figure shows the estimated posterior probability (assuming a uniform prior
probability in the range 5-25) of the viscosity ratio obtained from three different
methods for matching the Todd and Longstaff predictions to observed data. The
black curve is obtained from the Todd and Longstaff predictions and a standard
least-squares approach. The probability density rises to a maximum at the upper
end of the viscosity range specified in the prior model. The blue curve shows the
effect of adding the mean error to the predictions. The bias in the coarse model has
been removed, but the uncertainty is still large. The red curve shows the estimated
viscosity ratio from a full error model treatment—refer to Equation (3)—indicating
that it is possible to use a statistical model of solution error to get a good estimate
of a physical parameter. The true value of the viscosity ratio in this example was 13.
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tics in Figure 10 were computed using
M= Z(o—s)z/crj

for the least-squares model and

M =Z(0—s+?)2/6d2

for least-squares plus mean-error
model.

The likelihood function L for the
viscosity ratio is then given by
L = exp(—M). Notice that the exponen-
tial is a signal that the probabilities
are sensitive to the method used for
computing the misfit. The likelihoods
are converted to probability distribu-
tion functions by being normalized so
that they integrate to 1.

To illustrate the improvement in
parameter estimation that results from
using an error model, we computed
estimates of the probability distribu-
tion function for the unknown viscosi-
ty ratio using the three different misfit
curves in Figure 10, which were cal-
culated with the three different meth-
ods: standard least squares, least
squares modified by the addition of a
mean error term, and least squares
with the inclusion of the mean error
plus the full covariance matrix. The
range of possible values for the vis-
cosity ratio and their posterior proba-
bilities are shown in Figure 11.

The true value of the viscosity
ratio used to generate the “observed”
(synthetic) production data in
Figure 9 was 13, and one can see that
this value has been accurately identi-
fied by the full error model. The stan-
dard least-squares method has not
identified this value because of the
underlying bias in the Todd and
Longstaff model.

We sample from the estimated
probability distribution for the viscos-
ity ratio to generate a forecast of
uncertainty in future production.
Figure 12 is a plot of the maximum
likelihood prediction from the Todd
and Longstaff model, along with the
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Figure 12. Prediction of Future Oil Production Using Error Model

The solid red line shows the mean (maximum likelihood) prediction from the Todd
and Longstaff model and the full error model. The dashed red lines show the 95%
confidence interval, and the fine gray curves show the results from 20 fine-grid sim-
ulations using the exact viscosity ratio of 13.

95 percent confidence limits obtained
by sampling for different values of
viscosity. In addition, 20 predictions
from fine-grid simulation are shown.
They use the exact viscosity ratio 13.
The uncertainty in the evolution of
the fingers gives rise to the uncertain-
ty in prediction shown by the multi-
ple light-gray curves. It is clear from
the figure that use of an error model
has allowed us to produce well-cali-
brated predictions.

Fluid Dynamics—Error Models
for Reverberating Shock Waves.
Compressible flow exhibits remark-
able phenomena, one of the most
striking being shock waves, which are
propagating disturbances character-
ized by sudden and often large jumps
in the flow variables across the wave
front (Courant and Friedrichs 1967).
In fact, for inviscid flows, these jumps
are represented as mathematical dis-
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continuities. Shock waves play a
prominent role in explosions, super-
sonic aerodynamics, inertial confine-
ment fusion, and numerous other
problems. Most problems of practical
importance involve two- or three-
dimensional (2-D or 3-D) flows, com-
plex wave interactions, and other
complications, so that a quantitative
description of the flow can be
obtained only by solving the fluid-
flow equations numerically. The abili-
ty to numerically simulate complex
flows is a triumph of modern science,
but such simulations, like all numeri-
cal solutions, are only approximate.
The errors in the numerical solution
can be significant, especially when the
computations use moderate to coarse
computational grids as is often neces-
sary for real-world problems. In this
section, we sketch an approach to esti-
mating these errors.

Our approach makes heavy use of

the fact that shock waves are persist-
ent, highly localized wave distur-
bances. In this case, “persistent”
means that shock waves propagate as
locally steady-state wave fronts that
can be modified only by interactions
with other waves or unsteady flows.
Generally, interactions consist of col-
lisions with other shock waves,
boundaries, or material interfaces. The
phrase “highly localized” refers to
shock fronts being sharp and their
interactions occurring in limited
regions of space and time and possi-
bly being characterized by the refrac-
tion of shock fronts into multiple
wave fronts of different families.
These properties are illustrated in
Figure 13, which shows a sequence of
wave interactions being initiated when
a shock incident from the left collides
with a contact located a short distance
from a reflecting wall at the right
boundary in the figure. Each collision
event produces three outgoing waves:
a transmitted shock, a contact discon-
tinuity, and a reflected shock or rar-
efaction wave. The buildup of a com-
plex space-time pattern due to the
multiple wave interactions is evident.
Generally, solution errors are deter-
mined by comparison to a fiducial
solution, that is, a solution that is
accepted, not necessarily as perfect,
but as “correct enough” for the prob-
lem being studied. But producing a
fiducial solution may not be easy. In
principle, one might obtain one using a
very highly resolved computation.
However, in real-world problems, this
is generally not feasible. If it were, one
would just do it and forget about solu-
tion errors. So, what do we do when
we cannot compute a fiducial solution?
The development of models for
error generation and propagation
offers an approach for dealing with
flows that are too complex for direct
computation of a fiducial solution. For
compressible flows, the key point is
that the equations are hyperbolic,
which implies that errors are largely
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advected through smooth-flow
regions and significant errors are
only created when wave fronts col-
lide. The flow shown in Figure 13
consists of a sequence of binary
wave interactions, each of which is
simple enough to be computed on an
ultrafine grid. The basic idea is to
determine the solution errors for an
elementary wave interaction and to
construct “composition laws” that
give the error at any given point in
terms of the error generated at each
of the elementary wave interactions
in its domain of influence.

A number of points need to be
made here. First, there are a limited
number of types of elementary wave
interactions. One-dimensional (1-D)
interactions occur as refractions of
pairs of parallel wave fronts, 2-D
interactions are refractions of two
oblique wave fronts, and 3-D inter-
actions correspond to triple points
produced by three interacting waves.
It is important to note that, in each
spatial dimension, the elementary
wave interactions occur at isolated
points. Most of the types of wave
interactions that can occur in 1-D
flow appear in Figure 13. The coher-
ent traveling wave interactions that
occur in 2-D flows have been charac-
terized (Glimm et al. 1985). However,
substantial limitations are left on the
refinement and thoroughness with
which 3-D elementary wave interac-
tions can be studied.

Event 1 in Figure 13 is a typical
example of a 1-D wave interaction.
Here, the “incoming waves” consist of
an incident shock and a contact dis-
continuity, and the “outgoing state” is
described by a reflected shock, a
(moving) contact, and a transmitted
shock. The interaction can be
described as the solution to a
Riemann problem with data given by
the states behind the incoming wave
fronts. A Riemann problem is defined
as the initial value problem for a
hyperbolic system of conservation
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Figure 13. The Space-Time Interaction History of a Shock-Tube

Refraction

This figure shows the interaction history as reconstructed from the simulated solu-
tion data from a shock-tube refraction problem. A planar shock is incident from the
left on a contact discontinuity located near the middle of the test section of the
shock tube. A reflecting wall is located on the right side of the tube. Event 1 corre-
sponds to the initial refraction of the shock wave into reflected and transmitted
waves, event 2 occurs when the transmitted shock produced by interaction 1
reflects at the right wall, and the events numbered 3-10 correspond to subsequent
wave interactions between the various waves produced by earlier refractions or
reflections. Our error model is applied at each interaction location to estimate the
additional solution error produced by the interaction.

(This figure was supplied courtesy of Dr. Yan Yu, Stony Brook University.)

laws with scale-invariant initial data.
Riemann problems and their solutions
are basic theoretical tools in the study
of shock dynamics, the development
of shock-capturing schemes to numer-
ically compute flows, and they also
play a key role in our study of solu-
tion errors. A key point in the use of
Riemann problem solutions in our
error model is that the solution of a
1-D Riemann problem for hydrody-
namics reduces to solving a single,
relatively simple algebraic equation. It
is thus possible to solve large numbers

of Riemann problems for a flow
analysis quickly and efficiently. This
observation is particularly important
because our error model requires the
solution of multiple Riemann prob-
lems whose data are drawn from sta-
tistical ensembles of initial data to
represent uncertainties in the incom-
ing waves.

A final point here is that a realistic
solution error model must include the
study of the size distribution of errors
over an ensemble of problems, in
which the variability of problem char-
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Figure 14. Initial Data for a 1-D Shock-Tube Refraction Problem

This schematic diagram is for the initial data used to conduct an ensemble of simula-
tions of a 1-D shock tube refraction. Each simulation consisted of a shock wave inci-
dent from the left on a contact discontinuity between gases at the indicated pres-
sures and densities. Each realization from the ensemble is obtained by selecting a
shock strength consistent with a velocity v behind the incident shock taken from a
10% uniform distribution about the mean value v = 1, and an initial contact location
C chosen from a 10% uniform distribution about the mean position C = 1. In the dia-
gram, S is the shock position, M is the shock strength, and v, is the velocity of the
shock. The initial state behind the shock is set by using the Rankine-Hugoniot condi-
tions for the realization shock strength and the specified state ahead of the shock.

acteristics is described probabilistical-
ly. Of course, one will often want to
make as refined an error analysis as
possible within a given realization
from the ensemble (that is, a deter-
ministic error analysis), but there are
powerful reasons for a probabilistic
analysis to be needed as well. First,
you need probability to describe fea-
tures of a problem that are too com-
plex for feasible deterministic analy-
sis. Thus, fine details of error genera-
tion in complex flows are modeled as
random, just as are some details of the
operation of measuring instruments.
Second, a sensitivity analysis is need-
ed to determine the robustness of the
conclusions of a deterministic error
analysis to parameter variation. To get
an accurate picture, one needs to do
sensitivity analysis probabilistically,
to answer the question of how likely
the parameter variations are that lead
to computed changes in the errors.
Third, to be a useful tool, the error
model must be applicable to a reason-
able range of conditions and prob-
lems. The only way we are aware of
for achieving these goals is to base
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the error model on a study of an
ensemble of problems that reflects the
degree of variability one expects to
encounter in practice. Of course, the
choice of such an ensemble reflects
scientific judgment and is an ongoing
part of our effort.

Now, let us return to the analysis
of solution errors in elementary wave
interactions. Our work was motivated
by a study of a shock-contact interac-
tion—refer to event 1 in Figure 13.
The basic setup is shown in Figure 14,
which illustrates a classic shock-tube
experiment. An ensemble of problems
was generated by sampling from uni-
form probability distributions
(£10 percent about nominal values)
for the initial shock strength and the
contact position. The solution errors
were analyzed by computing the dif-
ference between coarse to moderate
grid solutions and a very fine grid
solution (1000 cells). Error statistics
are shown in Figure 15 for a 100-cell
grid (moderate grid) solution. Two
facts about these solution errors are
apparent. First, the solution errors fol-
low the same pattern as the solution

(the shock waves) itself; they are con-
centrated along the wave fronts,
where steep gradients in the solution
occur. Second, errors are generated at
the location of wave interactions. The
error generated by the interaction
increments the error in the outgoing
waves, which is inherited from errors
in the incoming waves.

Comparable studies have been car-
ried out for each of the types of wave
interaction shown in Figure 13, as well
as corresponding wave interactions
that occur in spherical implosions or
explosions (Dutta et al. 2004). An
analysis of statistical ensembles of
such interactions has led us to suggest
the following scheme for estimating
the solution errors. The key steps are
(a) identification of the main wave
fronts in a flow, (b) determination of
the times and locations of wave inter-
actions, and (c) approximate evalua-
tion of the errors generated during the
interactions. Wave fronts are most
simply identified as regions of large
flow gradients, and the distribution of
the wave positions and velocities are
found by solving Riemann problems
whose data are taken from ensembles
of state information near the detected
wave fronts. The error generated dur-
ing an interaction is fit by a linear
expression in the uncertainties of the
incoming wave’s strength. The coeffi-
cients are computed using a least-
squares fit to the distribution of outgo-
ing wave strengths. This fitting proce-
dure can be thought of as defining an
input/output relation between errors in
incoming and outgoing waves.

A linear relation of this kind,
which amounts to treating the errors
perturbatively, holds even for strong,
and hence nonlinear, wave interac-
tions. But there are limitations.
Linearity works if the errors in the
incoming waves are not too large, but
it may break down for larger errors.
In the latter case, higher order (for
example, bilinear or rational) terms
in the expansion may be needed. See
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Figure 15. Space-Time Error Statistics for Shock-Tube Refraction Problems

Panel (a) shows the space-time 100-mesh-point density field for a
single realization from the flow ensemble. The space-time error
field for each realization is computed from the difference between
a 100-mesh-zone calculation and a fiducial solution computed

Glimm et al. (2003) for details.

We can now explain how the com-
position law for solution errors actual-
ly works. The basic idea is that errors
are introduced into the problem by
two mechanisms: input errors that are
present in waves that initiate the
sequence of wave interactions—see
the incoming waves for event 1 in
Figure 13—and errors generated at
each interaction site. However they
are introduced, errors advect with the
flow and are transferred at each inter-
action site by computable relations.

Generally, waves arrive at a given
space-time point by more than one
path. Referring again to Figure 13,
suppose you want to find the errors in
the output waves for event 3, where
the shock reflected off the wall
reshocks the contact. On path A, the
error propagates directly from the out-
put of interaction 1 along the path of
the contact, where it forms part of the
input error for event 3. On path B, the
output error in the transmitted shock
from event 1 follows the transmitted
shock to the wall, where it is reflected
and then re-crosses the contact. In this
way, the error coming into event 3 is
given as a sum of terms, with each
term labeled by a sequence of wave
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interactions and of waves connecting
these interactions. Moreover, each
term can be computed on the basis of
elementary wave interactions and
does not require the full solution of
the numerical problem. The final step
in the process is to compute the errors
in the output waves at event 3, by
using the input/output relations devel-
oped for this type of wave interaction.

This procedure represents a sub-
stantial reduction in the difficulty of
the error analysis problem, and we
must ask whether it actually works.
Full validation requires use in practice,
of course. As a first validation step, we
compute the error in two ways. First,
we compute the error directly by com-
paring very fine and coarse-grid simu-
lations for an entire wave pattern.
Results are shown in Figure 15.
Second, we compute the error using
the composition law procedure shown
in Figure 13. Comparing the errors
computed in these two ways provides
the basis for validation.

In Glimm et al. (2003) and Dutta et
al. (2004), we carried out such valida-
tion studies for planar and spherical
shock-wave reverberation problems.
As an example, for events 1 to 3 in
the planar problem in Figure 13, we

using 1000 mesh zones. Panels (b) and (c) show the mean and
variance, respectively, over the ensemble as a function of
space and time. Note that most errors are generated at the
wave interactions and then move with the wave fronts.

considered three grid levels, the finest
(5000 cells) defining the fiducial solu-
tion, and the other two representing
“resolved” (500 cells) and “under-
resolved” (100 cells) solutions for this
problem. We introduced a 10 percent
initial input uncertainty to define the
ensemble of problems to be examined.
The results can be summarized briefly
as follows. For the resolved case, the
composition law gave accurate results
for the errors (as determined by direct
fine-to-coarse grid comparisons) in all
cases: wave strength, wave width, and
wave position errors. This was not the
case for the under-resolved simula-
tion. Although the composition law
gave good results for wave strength
and wave width errors, it gave poor
results for wave position errors. The
nature of these results can be under-
stood in terms of a breakdown in
some of the modeling assumptions
used in the analysis.

An interesting point of contrast
emerged between the planar and
spherical cases. For the planar case,
the dominant source of error was from
initial uncertainty, while for the spher-
ical symmetry case, the dominant
source of error arose in the simulation
itself, and especially from shock
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reflections off the center of symmetry.

We come now to the “so what?”
question for error models. What are
they good for? Our analysis shows
that, with an error model, one can
determine the relative importance of
input and solution errors (thereby
allocating resources effectively to
their reduction), as well as the precise
source of the solution error (for the
same purpose), and, finally, one can
assess the error in a far more efficient
manner than by direct comparison
with a highly refined computation of
the full problem.

A significant limitation in our
results to date is that they pertain
mostly to 1-D flows, namely, to flows
having planar, cylindrical, or spheri-
cal symmetry. Two-dimensional prob-
lems are currently under study, while
full 3-D problems are to be solved in
the future. Furthermore, errors in
some important fluid flows lie outside
the framework we have developed,
and their analysis will require new
ideas. One such problem—fluid mix-
ing—was discussed in the previous
subsection.

Conclusions

This paper started from the prem-
ise that predictive simulations of com-
plex phenomena will increasingly be
called upon to support high-conse-
quence decisions, for which confi-
dence in the answer is essential. Many
factors limit the accuracy of simula-
tions of complex phenomena, one of
the most important being the sparsity
of relevant, high-quality data. Other
factors include incomplete or insuffi-
ciently accurate models, inaccurate
solutions of the governing equations
in the model, and the need to integrate
the diverse and numerous components
of a complex simulation into a coher-
ent whole. Error analysis by itself
does not circumvent these limitations.
It is a way to estimate the level of

24

confidence that can be placed in a
simulation-based prediction on the
basis of a careful analysis of the
source and size of errors affecting this
prediction. Thus, the metric of success
of an error analysis is the confidence
it gives that the errors are of a specific
size—not necessarily that they are
small (they might not be).

We have reviewed some of the
ideas and methods that are used in the
study of simulation errors and have
presented three examples illustrating
how these methods can be used. The
examples show how an improved
physics model can dramatically
reduce the size of errors, how an
improved error model can reduce
uncertainty in prediction of future oil
production, and how an error model
for a complex shock-wave problem
can be built up from an error analysis
of its components.

Similar to models of natural phe-
nomena, error models will never be
perfect. Estimates of errors and uncer-
tainties are always provisional
because the data supporting these esti-
mates are derived from a limited
range of experience. Certainty is not
in the picture. Nevertheless, confi-
dence in predictions can be derived
from the scope and power of the theo-
ry and solution methods that are being
used. Scope refers to the number and
variety of cases in which a theory has
been tested. Scope is important in
building confidence that one has iden-
tified the factors limiting the applica-
bility of the theory. Power is judged
by comparing what is put into the
simulation with what comes out.

Error models contribute to confi-
dence by clarifying what we do and
do not understand. They also guide
efforts to improve our understanding
by focusing on factors that are the
leading sources of error. Thus, in pre-
dictions of complex phenomena, an
error analysis will form an indispensa-
ble part of the answer. m
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