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Abstract—This document gives a quick tutorial introduction
to functional program verification. In functional program ver-
ification, a program is viewed as a mathematical function from
one program state to another, and proving its correctness is
essentially comparing two mathematical functions, the function
computed by the program and the specification of the program.
The reader is assumed to have some programming experience
and to be familiar with sets and functions.

I. INTRODUCTION

Software is used widely in almost every aspect of our
daily lives. Even the smallest devices such as cellular phones
and PDAs are controlled by software. Software contains
defects. Defects are introduced during software development
and are often found through testing. However, studies indi-
cate that testing can’t detect more than 90% of defects; 10%
of defects are never detected through testing. As stated by a
famous computer scientist, testing has a fundamental flaw in
that it can show the existence of a defect but not its absence.
Can we do better than this? Can we detect or avoid defects
even before we start testing software?

In the late 70s, Harlan Mills and his colleagues at
IBM developed an approach to software development called
Cleanroom Software Engineering [1] [2]. Its name was taken
from the electronics industry, where a physical clean room
exists to prevent introduction of defects during hardware fab-
rication, and the method reflects the same emphasis on defect
prevention rather than defect removal. Special methods are
used at each stage of the software development—from
requirement specification and design to implementation—to
avoid errors. In particular, it uses specification and verifica-
tion, where verification means proving, mathematically, that
a program agrees with its specification.

Cleanroom is a lightweight, or semi-formal, method and
tries to verify the correctness of a program using a tech-
nique that we call functional program verification [3]. The
technique requires a minimal mathematical background by
viewing a program as a mathematical function from one
program state to another and by using equational reasoning
based on sets and functions. In essence, the functional
verification involves (a) calculating the function computed
by code called a code function and (b) comparing it with the
intention of the code written as a function called an intended
function [4]. For this, the behavior of each section of code is

documented, as well as the behavior of the whole program.
The documented behavior is the specification to which the
correctness of a program is verified.

We believe that the functional program verification tech-
nique can be effectively taught and practiced, as it requires
a minimal mathematical background and reflects the way
programmers reason about the correctness of a program
informally. It is also our conjecture that if programmers be-
come proficient in the functional program verification, they
may be able to learn easily other verification techniques such
as Hoare logic as a complementary reasoning technique.

This document provides a tutorial introduction to the
techniques of functional program verification. In Section II
below, we first learn that we can view a program as a
mathematical function and thus can specify its behavior as
a function. In Section III, we then learn how to verify the
correctness of code by essentially comparing two functions.
We describe techniques for verifying assignment statements,
sequences of statements, and conditional statements such as
an if statement. In Section IV, we cover loop statements such
as a while statement. In Section V, we apply the learned
techniques to verify sample code.

II. WRITING SPECIFICATIONS

The correctness of code means that code does what it
is supposed to do. The question then is: how do we know
what the code is supposed to do? It is the specification of
the code that should tell the behavior of the code. Therefore,
the first step of any verification—formal or informal—is to
document the expected behavior of code as its specification.
In this section, we learn how to write a specification that
describes the behavior of the code to be verified.

Consider the following statement involving two variables
x and sum.

sum = sum + x;

Suppose that the values of x and sum are 10 and 100,
respectively, before the execution of the statement, called an
initial state. Let us denote this initial state as {x 7→ 10, y 7→
100}. What do we know about the values of the variables
after the execution of the statement, called a final state. The
values of x and sum are 10 and 110, respectively; that is,
the final state is {x 7→ 10, sum 7→ 110}. As shown, an



execution of a statement, or a section of code, produces
a side-effect on a program state by changing the values
of some state variables such as program variables. Thus,
we can view an execution of a statement, or a section of
code, as a mathematical function that, given a program state,
produces a new state, where a program state is a mapping
from state variables to their values. For example, the above
statement can be modeled as a mathematical function, say f ,
that maps an initial state {x 7→ 10, sum 7→ 100} to a final
state {x 7→ 10, sum 7→ 110}, {x 7→ 20, sum 7→ 100} to
{x 7→ 10, sum 7→ 120}, and so on.1 We call such a function
a function computed by code or shortly a code function.

Exercise 1. Describe the function computed by the follow-
ing code.

x = x + y;
y = x - y;
x = x - y;

How do we represent a code function? We use a concur-
rent assignment, a succinct notation to express a function
by only stating changes in an input state. A concurrent
assignment is written as:

[x1, x2, . . . , xn := e1, e2, . . . , en]

and states that each xi’s new value is ei, evaluated concur-
rently in the initial state, i.e., the input state or the state just
before executing the code. The value of a state variable that
doesn’t appear in the left-hand side of a concurrent assign-
ment remains the same. For example, the code function for
the statement sum = sum + x is [sum := sum+x], and
a function that swaps two variables, x and y, is written as
[x, y := y, x].

The function computed by code is often partial in that
the code works only for some well-defined input values. We
extend the concurrent assignment notation to also specify
such a partial function. For example, [n ̸= 0 → avg :=
sum/n] is a function that is defined only for a state in which
n is not zero. The condition is evaluated in the initial state.
We often want to specify different functions based on some
conditions. For example, the following function determines
the sign of the variable x.

[x > 0 → sign := 1
| x < 0 → sign := -1
| else → sign := 0]

The conditions are evaluated sequentially from the first to
the last, and if more than one condition holds, the function
defined is the one corresponding to the first condition that
holds. This form of concurrent assignments is called a con-
ditional concurrent assignment, and it contains any number
of cases, each of which contains a logical expression and

1The function f is defined as f({x 7→ X, sum 7→ S}) = {x 7→
X, y 7→ S +X}.

a concurrent assignment. When a section of code modifies
a state variable under certain conditions, its conditional
concurrent assignment includes the conditions to trace how
the state variables are affected.

Exercise 2. Write a conditional concurrent assignment to
describe the function computed by the following code.

if (n > maxSize) {
n = maxSize;

}
avg = sum / n;

Frequently we would like to highlight the fact that code
has no side-effect or it is undefined on certain input values
by explicitly stating it. This can be done by using special
symbols and keywords, such as I and undefined (see exam-
ples below).

[n > maxSize → n := maxSize | else → I]
[n > 0 → avg := sum/n | else → undefined]

The first function above states that when n is less than
or equal to maxSize, it is an identity function, denoted
by I; that is, the code doesn’t have any side-effect. The
second function explicitly states that it is undefined when n
is not positive. As shown, the undefined keyword is used
to indicate that the result under a certain condition is not
defined.

We use the concurrent assignment notation not only to
document the actual function computed by a section of code
but also to describe our intention for the code called an
intended function. An intended function is a specification
for a program or a section of code. It is a statement of the
behavior that we expect from the code. As a specification,
it only deals with the behavior that can be observed from
outside. When we intend for a part of a program to produce a
particular computation, we will describe that computation in
terms of a function from the current state to a new state. For
example, the intended function below states that variables x
and y are initialized to 0 and 1, respectively.

[x, y := 0, 1]
x = 0;
y = 1;

When we write an intended function for a piece of code,
we are saying specifically that the code must compute that
function when the code is executed in any state in the
domain of the function. When this is the case, we say that
the combination comprised of the intended function and the
code is correct, or that the code is correct with respect to the
intended function; correctness means that code agrees with
its intended function. In general, an intended function may
be correctly implemented by many different code sequences,
as shown below.
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[x, y := 0, 1]
y = 1;
x = 0;

[x, y := 0, 1]
y = 1;
x = y;
x = x - y;

An intended function is not concerned about the values
of variables in intermediate states. when there are more
than one statement. It specifies only the final result of the
computation. Also, an intended function doesn’t care about
the order in which variables are mutated when multiple
variables are involved.

Frequently, the final value of a variable is expressed in
terms of its initial value. In the intended function below, for
example, the new value of sum is its initial value plus the
summation of all elements of an array a starting at index i;
recall that a variable appearing in the right hand side of a
concurrent assignment refers to its initial value.

[sum, i := sum + Σ
a.length−1

j=i a[j], anything]
while (i < a.length) {

sum += a[i];
i++;

}

The keyword anything indicates that we don’t care about
the final value of the variable i. Such a variable is often
called an incidental variable.

We use an intended function for both documentation and
verification purposes (see Section III). Thus, an intended
function should be written in such a way that it is easy to
read and understand, it is precise and unambiguous, and it
is in a form that is easy to manipulate in verification.

Exercise 3. Write intended functions for the following code.

(a) sum = sum + a;
avg = sum / n;

(b) if (a[i] == k) {
l = i;

}

(c) while (i < a.length) {
if (a[i] == k) {

l = i;
}
i++;

}

III. VERIFYING CORRECTNESS

Once we have a specification for code, we can check if the
code conforms to its specification. Verification is the process
of checking whether a program, or a section of code, is
correct with respect to its specification. Recall that we view a
program as a mathematical function and specify its behavior
as an intended function. Thus, verification essentially means

//@ [a is non-empty → l := index of max value in a]

//@ [l, i := 0, 1]
l = 0;
int i = 1;

/*@ [l, i := index of max value of a[l, i..n]
anything] @*/

while (i < a.length) {
//@ [a[i] > a[l] → l, i := i, i+1 else → i := i+1]

//@ [a[i] > a[l] → l := i+1 else → I]
if (a[i] > a[l]) {

//@ [l := i]
l = i;

}

//@ [i := i+1]
i++;

}

Figure 1. Sample annotated code

comparing two mathematical functions, a code function—
a function computed by code—and an intended function.
When code is simple, we often calculate its code function
directly and compare it with the intended function of the
code. When code is complicate, however, we use different
techniques to verify its correctness based on the structure of
the code. In this section, we learn several techniques that
we can use to verify the correctness of code.

A. Annotating Code
To facilitate correctness verification of a program, we an-

notate its code with intended functions. We write an intended
function for each section of code. Figure 1 shows sample
code annotated with intended functions. An annotation is
written as a special kind of comments preceded by an @
symbol. We often use indentation to indicate the region
of code that an intended function annotates. The top-level
intended function states that, given a non-empty array a, the
code sets the variable l to the index of a maximum value
in a. The function is partial because for an empty array the
output is undefined.

The next intended function annotates the initialization
code and specifies the initial values of l and i. For a control
structure such as an if statement and a while statement, we
specify the behavior of the whole structure as well as each of
its components. Recall that we use the keyword anything to
indicate that we don’t care about the final value of a certain
variable, typically a local or incidental variable. The symbol
I denotes an identity function.

Exercise 4. Annotate the following code with intended
functions.

c = 0;
int i = 0;
while (i < a.length) {

if (a[i] == n)
c++;

i++;
}
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B. Assignment Statement

The verification of a single assignment statement is often
straightforward because it is possible to calculate the func-
tion computed by the statement, which is often identical to
the intended function. For example, the following code is
correct; the code function and the intended function are the
same.

//@ [x := x + 1]
x = x + 1;

In general, the verification of a single statement with
a code function p with respect to an intended function f
involves showing that:

• The domain of p is a superset of the domain of f (dom
p ⊇ dom f ). That is, p accepts all the values accepted
by f .

• For each x in the domain of f , p maps x to the same
value that f maps to (p(x) = f(x) for x ∈ dom(f)).

The reason for the first condition is that often code does
more than what its intended function states. For example,
the following code is correct.

//@ [n > 0 → avg := sum / n]
avg = sum / n;

For the variable n, the intended function accepts only a
positive number, but the code accepts any non-zero number.

C. Sequential Composition

How do we verify the correctness of a sequence of
statements. Consider the following code involving two as-
signment statements.

//@ [n > 0 → sum, avg := sum+a, (sum+a)/n]
sum = sum + a;
avg = sum / n;

Since we view a statement as a mathematical function,
executing one statement after another is the same as applying
one mathematical function after another. That is, a sequential
composition of two statements is viewed as a composition
of two functions. Therefore, verification of the above code
requires proving that the composition of p1 and p2 is
correct with respect to the intended function, where p1 and
p2 are code functions of the first and second statements,
respectively. Here’s a proof.

[sum := sum+ a];

[n ̸= 0 → avg := sum/n]

≡ [n ̸= 0 → sum, avg := sum+ a, (sum+ a)/n]

⊑ [n > 0 → sum, avg := sum+ a, (sum+ a)/n]

In the proof, the notation f1 ⊑ f2 means that f1 is correct
with respect to f2, where f1 and f2 are code or intended
functions; it is also said that f1 is a refinement of f2.

It is often error prone to calculate a function computed
by a sequence of statements, especially when the statements
change several variables. A trace table can be used to show
all the state changes made by a sequence of statements [4,
Chapter 3]. It is similar to executing statements symbolically.
As an example, consider the following statements.

x = x + 1;
y = 2 * x;
z = x * y;
x = x + 1;
x = 3 * x;

What is the function computed by the code? Let us
calculate it using a trace table. A trace table contains one
row per statement and a column for the statements plus one
column for each state variable that is changed or affected
by any of the statements (see below).

statement x y z
x = x + 1 x+ 1
y = 2 * x 2(x+ 1)
z = x * y (x+ 1) ∗ 2(x+ 1)
x = x + 1 x+ 2
x = 3 * x 3(x+ 2)

A trace table simulates the execution of a statement by
recording the effect of the execution on the state variables.
When a value is assigned to a variable, for example, its new
value is computed symbolically using the values available
in the current state and is recorded on the column for that
variable. For example, the execution of the second statement
results in adding 2(x + 1) to the y column because 2 ∗ x
is assigned to y and the current value of x is x + 1, the
most recent entry in the x column. In summary, for every
row in the table, there is a statement and the change made
to state variables by that statement. Upon completion of a
trace table, we collect the most recent entry of each variable
column to produce a function computed by the statements.
The above trace table produce the following function.

[x, y, z := x+2, 3(x+2), 2x2+4x+2]

Exercise 5. Use a trace table to calculate the function
computed by the following code.

rate = 0.5;
years++;
interest = balance * rate / 100;
balance = balance + interest;

It is possible to verify the correctness of a sequential
composition of statements in a modular way. Consider the
following skeletal code annotated with intended functions.

//@ [f0]
//@ [f1]
S1;
//@ [f2]
S2;

4



Its verification involves discharging the following three
proof obligations.

• Composition of f1 and f2 is correct with respect to f0
(f1; f2 ⊑ f0).

• S1 is correct with respect to f1 (S1 ⊑ f1)
• S2 is correct with respect to f2 (S2 ⊑ f2)
Note that the first obligation—the verification of f0—

is stated in terms of intended functions f1 and f2, not
in terms of code S1 and S2. The intended function of a
component is used in place of its code for the verification.
Such verification is modular in that it is valid for any
component code Si as long as Si is correct with respect
to an intended function fi. It also allows us to perform the
verification of a component separately from the verification
of the whole code. In short, we can use the intended function
of a component when verifying the whole code.

D. Conditional Statement

For a conditional statement such as an if statement, we
can use two different techniques to verify its correctness.
As before, we can calculate its code function and compare
it with its intended function. For this, a variation of a
trace table called a conditional trace table can be used. A
conditional trace table is similar to the trace table except
that it has an additional column for conditions. Essentially,
a new trace table is created for each case in the condition.
As an example, let us calculate the function computed by
the following code.

p = a * r;
if (a < b)

b = b - a;
else

b = b - p;

As before we create a trace table (see below). However,
the difference is that when we encounter a conditional
statement such as an if statement, we create a new trace
table for each branch of the statement by first copying the
existing rows and then proceeding to the computation of that
branch. We also fill the condition column with the condition
for that branch.

statement condition p b
p = a * r a ∗ r
if (a < b) a < b
b = b - a b− a
p = a * r a ∗ r
if (a < b) a ≥ b
b = b - p b− (a ∗ r)

As before, we collect the most recent entry of each
variable column to produce one function per table. The
conditions in the condition column are also collected and
conjoined to produce a conditional concurrent assignment.
We combine all the conditional concurrent assignments to

produce the function computed by the code. For example,
the above table produce the following function.

[a < b → p, b := a*r, b-a
| a ≥ b → p, b := a*r, b-(a*r)]

The second technique for the verification of a conditional
statement, which is preferred in most cases, is to perform a
case analysis based on the condition. Consider the following
skeletal code with an intended function.

//@ [f]
if (B)

S1;
else

S2;

If the condition B holds, S1 is executed; the if statement is
equivalent to S1. Otherwise, S2 is executed; the if statement
is equivalent to S2. Therefore, we have the following two
proof obligations.

• When B holds, S1 is correct with respect to f (B ⇒
S1 ⊑ f ).

• When B doesn’t hold, S2 is correct with respect to f
(¬B ⇒ S2 ⊑ f ).

As an example, let us verify the following code.

//@ [z ̸= 0 → r := |x-y|/z]
if (x > y)

r = (x-y)/z;
else

r = (y-x)/z;

Its verification is straightforward. When x > y holds, we
have the following because x− y = |x− y|:

[z ̸= 0 → r := (x− y)/z] ≡ [z ̸= 0 → r := |x− y|/z]

Similarly, when x > y doesn’t hold, we have the follow-
ing because y − x = |x− y|:

[z ̸= 0 → r := (y − x)/z] ≡ [z ̸= 0 → r := |x− y|/z]

Exercise 6. Derive proof obligations for an if statement
without an else part. That is, what do you have to prove for
the verification of the following skeletal code (Caution: you
also need to consider the case when the condition doesn’t
hold).

//@ [f]
if (B)

S;

Exercise 7. Write an intended function for the following
code and prove the correctness of the code with respect to
the intended function.

if (n > maxSize)
n = maxSize;

sum = sum + a;
avg = sum / n;

5



IV. VERIFYING ITERATIONS

Verification of code containing iterative statements such
as a while statement is more involved. It is because there is
no known algorithm to calculate the function computed by
such an iterative or loop statement. In this section, we learn
a technique for verifying the correctness of code consisting
of iterative statements.

A. Proof Obligations

Consider the following while statement annotated with an
intended function.

//@ [f]
while (B)

S

We know from the operational meanings of the while
statement that the above code is equivalent to the following
code.

//@ [f]
if (B) {

S
while (B)

S
}

Suppose that the original code is correct—that is, the
while statement is correct with respect to the intended
function f . This means that f and the while statement are
equivalent. Then, for verification purposes, we may use an
intended function in place of its code and replace the the
while statement with f (see below).

//@ [f]
if (B) {

S
[f]

}

The rewritten code now contains only an if statement
and a sequence statement, and we already know how to
verify these statements. From this code, we can develop the
following proof obligations for the while statement.

• If B doesn’t hold, the identity function is correct with
respect to f , i.e., (¬B ⇒ I ⊑ f ), where the symbol ⇒
denotes logical implication and I denotes the identity
function. If B is false, the whole statement is equivalent
to an empty statement, here represented by the identity
function.

• If B holds, S followed by f is correct with respect to
f , i.e., (B ⇒ S; f ⊑ f ).

As can be guessed, we use an induction to prove the
correctness of a while statement. The intended function is
an induction hypothesis. The first obligation is a basis step,
and the second is an induction step. In addition we also have
to prove the termination of the loop.

B. An Example
As an example, let us prove the following code from

Section II on page 3.
/*@ f1: [sum, i := sum + ΣL

j=ia[j], anything]
where L = a.length - 1 @*/

while (i < a.length) {
//@ f2: [sum, i := sum + a[i], i+1]

sum += a[i];
i++;

}

Its verification requires us to discharge the following three
proof obligations

1) Termination of the loop
2) Basis step: ¬(i < a.length) ⇒ I ⊑ f1
3) Induction step: i < a.length ⇒ f2; f1 ⊑ f1 and the

correctness of f2 and its code
How do we verify the termination of a loop? We find an

expression called a loop variant whose value is consistently
increased or decreased on each iteration of the loop. When
it reaches a certain value, it makes the loop condition false,
thus terminating the loop. We find a loop variant a.length−
i. As stated in f2, the value of i increases by 1 on each
iteration of the loop. Thus, the loop variant decreases by 1
on each iteration, eventually terminating the loop when it
becomes 0.

Let us next prove the correctness of the loop inductively.
We first prove the basis step: ¬(i < a.length) ⇒ I ⊑ f1.
When i is not less than a.length, we have the following,
where the question mark (?) denotes an arbitrary value that
we don’t care about and L is a.length− 1.

f1 ≡ [sum, i := sum+ΣL
j=ia[j], ?]

≡ [sum, i := sum+ 0, ?]

≡ [sum, i := sum, ?]

⊒ [sum, i := sum, i] = I

We next prove the induction step: i < a.length ⇒
f2; f1 ⊑ f1. When i is less than a.length, we have the
following.

f2; f1 ≡ [sum, i := sum+ a[i], i+ 1];

[sum, i := sum+ΣL
j=ia[j], ?]

≡ [sum, i := sum+ a[i] + ΣL
j=i+1a[j], ?]

≡ [sum, i := sum+ΣL
j=ia[j], ?]

≡ f1

This concludes the proof of the loop in terms of the
intended function of the loop body. Lastly we need to prove
the correctness of the loop body. This proof is trivial, as the
intended function f2 is identical to the function computed
by the loop body.

Exercise 8. Prove the termination of the following loop.

6



while (low <= high) {
int mid = (low + high) / 2;
if (a[mid] < x)

low = mid + 1;
else if (a[mid] > x)

high = mid - 1;
else

high = low - 1;
}

Exercise 9. In the above proof of the induction step, we
introduced an intended function (f2) for the loop body.
Prove the induction step directly using the code of the body
without introducing an intended function for it (Hint: use
a trace table). Compare the two approaches stating their
implications.

C. Initialized Loops

A loop is seldom used by itself but is preceded by an
initialization. An initialization and a loop together compute
something useful. A loop usually computes a function more
general than one that is needed. However, it can be spe-
cialized by providing initial values. For example, the while
statement in the previous section doesn’t compute the sum
of all elements of an array. However, given an index i and an
accumulator sum, it adds all elements of an array a starting
at index i to the accumulator sum. By initializing both i
and sum to 0, we can make the code to compute the sum
of an array a.

In general, the use of a loop statement such as a while
statement has the following structure, where f0, f1, f2, and
f3 are intended functions for whole code, initialization code,
loop, and loop body, respectively.

//@ [f0]
//@ [f1]
S1

//@ [f2]
while (B) {

//@ [f3]
S2

}

Its verification requires discharging the following proof
obligations.

1) f1; f2 ⊑ f0.
2) S1 ⊑ f1.
3) while (B) S2 ⊑ f2, which requires the following sub-

proofs.
a) Termination of the loop.
b) Basis step: ¬B ⇒ I ⊑ f2.
c) Induction step: B ⇒ f3; f2 ⊑ f2 and S2 ⊑ f3.

Often, the most difficult part of the verification of code
containing a loop statement is to formulate the intended
function of the loop in isolation. Recall that it is an induction

int longestPlateau(int[] a) {
int l = 0;
int i = 0;
while (i < a.length) {

int cl = 0;
int v = a[i];
while (i < a.length && v == a[i]) {

cl++;
i++;

}
if (cl > l) {

l = cl;
}

}
return l;

}

Figure 2. Determining the length of the longest plateau

hypothesis. If the hypothesis is wrong, the verification
will surely fail. There are some heuristics for formulating
intended functions for loops in isolation, e.g., looking at
sequences of values that one wants the variables to get as
a loop iterates [4, Chapter 4]. But, always remember that
a loop doesn’t do a computation but it completes it. An
initialization determines where the computation starts, and
the combination of start and completion—initialization and
loop—does the job.

Exercise 10. Write intended functions for the following
while loops in isolation.

(a) while (i < a.length) {
if (a[i] > 0) {

sum += s[i];
}
i++;

}

(b) while (n > 1) {
n = n - 2;

}

Exercise 11. Prove the correctness of the following code.

//@[ r := n!]
r = 1;
int i = n;
while (i > 1) {

r = r * i;
i--;

}

V. EXAMPLE VERIFICATION

In this section, we will verify a small program using the
techniques that we learned in previous sections. Figure 2
shows code that, given an integer array, determines the
length of the longest plateau; a plateau is an array section
of equal values. For example, an array {1, 1, 2, 2, 2,
3} has three plateaus of lengths 2, 3, and 1, respectively.
The first step of verification is to document the code by

7



/*@ [result := LLP(a)] where
LLP(a) = length of the longest plateau of a. @*/

int longestPlateau(int[] a) {
//@ [l, i := 0, 0]
int l = 0;
int i = 0;

//@ [l, i := max(l,LLP(a[i..])), anything]
while (i < a.length) {

/*@ [l, i := max(l, L), i + L] where
L = length of the next plateau of a[i..]. @*/

//@ [cl, v := 0, a[i]]
int cl = 0;
int v = a[i];

/*@ [cl, i := cl + N, i + N] where
N = num of next elems in a[i..] equal to v. @*/

while (i < a.length && v == a[i]) {
cl++;
i++;

}

//@ [cl > l → l := cl | else → I]
if (cl > l) {
l = cl;

}
}

//@ [result := l]
return l;

}

Figure 3. Annotated code

writing intended functions for its expected behavior. Figure 3
shows an annotated version of the code. The main sections
of the code are documented with their intended functions
along with the method specification, the top-level intended
function. In the first annotation, the pseudo variable result
denotes the return value of the method. Below we verify the
annotated code in a top-down fashion.

We first verify that the method specification is correctly
implemented by the method body, considering only the main
components of the method body (see below).
/*@ f0:[result := LLP(a)] where

LLP(a) = length of the longest plateau of a. @*/
int longestPlateau(int[] a) {

//@ f1:[l, i := 0, 0]
int l = 0;
int i = 0;

//@ f2:[l, i := max(l,LLP(a[i..])), anything]
while (i < a.length) { ... }

//@ f3:[result := l]
return l;

}

We follow a stepwise refinement in our proof. At this step,
we need to prove the following.

1) f1; f2; f3 ⊑ f0. The method body correctly imple-
ments the method specification.

2) Correctness of f1, f2, and f3 and their code. Each
intended function is correctly implemented or refined
by its code.

The verifications of f1 and f3 are trivial. For the ver-
ification of f3, we can treat a return statement as an

assignment statement that assigns a value to a pseudo
variable result; recall that we use result to denote the
return value of a method. We will prove the refinement of
f2 in the next step. For the proof of the first obligation, we
can build a trace table shown below.

statement result l i
f1 0 0
f2 LLP(a[0..]) ?
f3 LLP(a[0..])

Note that f2 sets l to max(0, LLP (a[i..])), which is
simplified to LLP (a[0..]) because i is 0; as stated in the
annotation, LLP denotes the length of the longest plateau
in a given array. From the above trace table, we get the
following code function for the method body.

[result, l, i := LLP (a[0..]), LLP (a[0..], ?]

If we ignore local variables l and i, we have:

[result := LLP (a[0..])]

≡ [result := LLP (a)]

≡ f0

This concludes our proof at the top level, and we next
proof the refinement of f2 shown below.
//@ f2:[l, i := max(l,LLP(a[i..])), anything]
while (i < a.length) {

/*@ f4: [l, i := max(l, L), i + L] where
L = length of the next plateau of a[i..]. @*/

}

By applying the proof rules for a while statement that
we learned in Section IV, we have the following proof
obligations.

1) Termination of the loop.
2) Basis step: ¬(i < a.length) ⇒ I ⊑ f2.
3) Induction step: i < a.length ⇒ f4; f2 ⊑ f2.
For the termination proof, we find a loop variant

a.length− i and note that i increases by L on each iteration
of the loop, where L is the length of the next plateau. For
the basis step, we have the following proof; LLP (a[i..]) is
undefined (⊥) when ¬(i < a.length) holds.

f2 ≡ [l, i := max(l, LLP (a[i..])), ?]

≡ [l, i := max(l,⊥), ?]

≡ [l, i := l, ?]

⊒ [l, i := l, i]

≡ I

For the induction step, we have the following when i <
a.length holds.
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f4; f2 ≡ [l, i := max(l, L), i+ L];

[l, i := max(l, LLP (a[i..])), ?]

≡ [l, i := max(max(l, L), LLP (a[i+ L..])), ?]

≡ [l, i := max(l, L, LLP (a[i+ L..])), ?]

≡ [l, i := max(l,max(L,LLP (a[i+ L..]))), ?]

≡ [l, i := max(l, LLP (a[i..])), ?]

≡ f2

We next prove the correctness of the loop body, of which
code is shown below.

/*@ f4:[l, i := max(l, L), i + L] where
L = length of the next plateau of a[i..]. @*/

//@ f5: [cl, v := 0, a[i]]
int cl = 0;
int v = a[i];

/*@ f6:[cl, i := cl + N, i + N] where
N = num of next elems in a[i..] equal to v. @*/

while (i < a.length && v == a[i]) {
cl++;
i++;

}

//@ f7:[cl > l → l := cl | else → I]
if (cl > l) {

l = cl;
}

We have the following obligations for its proof.

1) f5; f6; f7 ⊑ f4.
2) Refinements of f5, f6, and f7. The proofs of f5 and f7

are straightforward, and we will prove the correctness
of f6 and its code in an exercise at the end of this
section.

For the proof of the first obligation, we construct the
following conditional trace table.

statement condition l cl v i
f5 0 a[i]
f6 N i+N

if (...) N > l
f7 N
f5 0 a[i]
f6 N i+N

if (...) N ≤ l
f7

Note that f6 assigns cl + N to cl, which is simplified
to N because cl’s current value is 0 assigned by f5; N is
the number of next elements equal to v. Similarly, the if
condition, cl > l, is also written as N > l because cl’s
current value is now N . The above trace table produces the
following function for f5; f6; f7 which is a refinement of f4
(see below).

f5; f6; f7 ≡ [N > l → l, cl, v, i := N,N, a[i], i+N

| else → cl, v, i := N, a[i], i+N ]

⊑ [N > l → l, i := N, i+N

| else → i := i+N ]

≡ [l, i := max(l, N), i+N ]

≡ [l, i := max(l, L), i+ L] (because N = L)

≡ f4

In the second step we ignored local variables such as cl
and v for the refinement. Also note the equivalence of L
and N , the length of the next plateau starting at index i and
the length of consecutive elements equal to a[i] starting at
index i.

Exercise 12. Prove the correctness of the refinement of
f6 above (Hint: use the proof obligations for the while
statement).

Exercise 13. Write code that, given a sorted integer array
and a value, checks if the value is contained in the array
using a binary search algorithm. If the value is contained
in the array, its index is returned; otherwise, -1 is returned.
Prove the correctness of the code.

Exercise 14. Write code implementing quicksort and prove
its correctness. The quicksort algorithm employs a divide
and conquer strategy to divide a list into two sub-lists, and
the steps are: (1) pick an element, called a pivot, from the
list, (2) reorder the list so that all elements with values less
than the pivot come before the pivot, while all elements with
values greater than the pivot come after it (equal values can
go either way), and (3) recursively sort the sub-list of lesser
elements and the sub-list of greater elements. The base case
of the recursion is a list of size zero or one.

VI. SUMMARY

In this tutorial we introduced a functional program ver-
ification. We explained the technique by applying it to
representative control structures of modern programming
languages, such as assignment statements, sequential com-
positions, if statements, and while statements. For the proof
for code involving other control structures and abstraction
mechanisms we ask the readers to refer to references such
as the book by Stavely [4]. For a more formal treatment of
the topic including formal proof rules, refer to [3].
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