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Fluorination of graphene has emerged as an attractive approach toward manipulating its physical,

chemical, and electronic properties. To this end, we have demonstrated the viability of sulfur

hexafluoride plasmas to fluorinate graphene as a safer alternative to the commonly reported

techniques of fluorination that include exposures to fluorine and xenon difluoride gas.

Incorporation of fluorine moieties on graphene after SF6 plasma-treatment was confirmed by x-ray

photoelectron spectroscopy. Modifications in the valence band states of graphene after plasma-

treatment were characterized by ultraviolet photoelectron spectroscopy. Increase in work function

of plasma-treated graphene demonstrates the ability of plasma-assisted fluorination to modify the

electron emission characteristics of graphene. Raman spectroscopy reveals that the majority of

carbon atoms in graphene retain their sp2 hybridization after the plasma-treatment. VC 2012
American Vacuum Society. [http://dx.doi.org/10.1116/1.3688760]

I. INTRODUCTION

Graphene is considered a possible successor to silicon for

post-CMOS electronics. Thus the ability to engineer its prop-

erties is critical to the realization of graphene-based electron-

ics. Toward this end, chemical functionalization of graphene

has emerged as an attractive method to manipulate its physi-

cal, chemical, and electronic properties. Typical applications

of chemical functionalization include band gap opening via

functionalization with oxygen,1–3 hydrogen,4 and fluorine5,6

and the production of graphene sheets by reduction of graphite

oxide.7–15 Recently, fluorinated graphene has garnered signifi-

cant attention as a wide band gap semiconductor and a high-

quality insulator.16 Fluorination of graphene therefore offers

the ability to tune its electronic properties. Derivation of gra-

phene sheets from graphite fluoride has also been demon-

strated.17 Since fluorination of graphene increases its

hydrophobicity18,19 biomedical applications of graphene could

be enabled.

Graphite fluoride was first synthesized in 1934 by exposing

graphite to molecular fluorine;20 extensive literature on the

fluorination of other graphitic structures such as buckyballs21

and carbon nanotubes22–24 is available. The techniques cur-

rently used to produce fluorinated graphene include exposure

to fluorine gas at high temperature5,25 (400–600 �C) and to

xenon difluoride (XeF2) at room temperature.6,25,26 However,

fluorine gas is toxic and corrosive, and XeF2 hydrolyzes read-

ily to form HF when exposed to air.

Plasma-assisted fluorination using benign sources of fluo-

rine such as sulfur hexafluoride (SF6) can provide a safer and

convenient alternative to F2 and XeF2 sources. Moreover,

plasma etching using SF6 is employed extensively in the fabri-

cation of integrated circuits. Fluorination of graphene using

SF6 plasmas has been demonstrated. In particular, electron

beam generated plasmas have been successfully used to fluori-

nate single-layer graphene film grown on copper and then

transferred to Si=SiO2 substrate.27 The fluorinated graphene

film was subsequently characterized using x-ray photoelectron

spectroscopy (XPS) and Raman spectroscopy, but the effect

of fluorination on the electronic properties was not reported.

Moreover, electron-beam technology requires high vacuuma)Electronic mail: dennis.hess@chbe.gatech.edu
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conditions, which can ultimately limit the industrial applica-

tion of this method. Most recently, Yang, et al. reported

Raman studies characterizing the results of SF6 plasma treat-

ment of few-layer (1–3) graphene flakes, which were exfoli-

ated from bulk graphite, in a reactive ion etch (RIE) reactor.28

However, their work does not provide a description of chemi-

cal bonding in the resultant material and thus direct evidence

of fluorination. Furthermore, the effect of SF6 plasma treat-

ment on the electronic properties is not discussed.

The work discussed in this paper investigates the SF6 RIE

plasma fluorination of both multilayer (�20 layers) and

single-layer graphene films, which were grown epitaxially on

the carbon-face silicon carbide (SiC). Plasma fluorination of

large-area epitaxial graphene films grown on SiC29 offers a

means of controlling electronic properties during device proc-

essing. In addition, the use of multilayer graphene allows a

more fundamental study of the extent of fluorination as a

function of relative rates of epitaxial graphene fluorination

and etching. Plasma-treated graphene films have been charac-

terized by Raman spectroscopy, x-ray photoelectron spectros-

copy, and ultraviolet photoelectron spectroscopy (UPS).

Raman spectroscopy is used to verify that the sp2 configura-

tion of carbon atoms in graphene is not destroyed by plasma

treatment while XPS confirms the incorporation of fluorine

atoms in the SF6 plasma-treated samples, where fluorination

is limited to one or two layers at the surface and the concen-

tration of fluorine can be changed by simply varying the

plasma treatment time. UPS characterization reveals the mod-

ification in the valence electronic states and work function of

graphene after the SF6 plasma-treatment, which may facilitate

the application of graphene in optoelectronic devices. The

thickness of graphene films grown on the carbon-face SiC can

be controlled;30 this unique growth characteristic has been

exploited to fabricate a single or bilayer fluorinated graphene

on top of both the insulating substrate (SiC) and a conductive

graphene film of desired thickness. The ability to generate a

fluorinated graphene=graphene interface offers an approach to

the formation of layered structures with graded or structured

electronic properties that can be employed for device

fabrication.

II. EXPERIMENT

A. Material

Epitaxial graphene (EG) is grown on silicon carbide

(SiC) via sublimation of silicon atoms by high-temperature

(�1600 �C) annealing.31 The samples used in this study

were grown on the carbon-face of 4 H-SiC in an RF furnace.

On carbon-face SiC, graphene film thickness can be

controlled; in this work, fluorination of three multilayer

(�20 layers) EG samples that were grown simultaneously

and a single-layer EG sample were studied. Multilayer EG

samples described in this manuscript were grown by Profes-

sor Walt A. de Heer’s group who has established that these

multilayer graphene layers do not grow as AB stacked layers

in graphite; instead, these graphene layers contain a high

density of rotational stacking faults which cause the adjacent

layers to decouple electronically.32

B. Method

The samples were exposed to SF6 plasma generated in an

RIE (reactive ion etcher) system. This RIE system (Plasma-

Therm RIE) operates at a radio-frequency (rf) of 13.56 MHz

and has an electrode diameter of 11 in. An rf power of 50 W

and an SF6 partial pressure of 100 mTorr were used for all

experiments. In order to minimize sputtering and structural

damage to the surface of graphene, pure SF6 gas was used;

no other carrier gas was introduced into the system. All

experiments have been carried out at room temperature.

C. Characterization

The samples were characterized by XPS=UPS (Axis

UltraDLD, Kratos Analytical) to determine elemental composi-

tion, confirm the existence of fluorine-carbon bonds, measure

the thickness of the films, and investigate the valence-band

states. The fluorinated samples were depth-profiled by argon

ion-bombardment (3 keV) in a different XPS system (Thermo

Scientific K-Alpha). All XPS spectra were collected using

monochromatized AlKa radiation (energy¼ 1486.6 eV)

and UPS spectra were collected using He I radiation

(energy¼ 21.2 eV).

Raman spectroscopy was used to investigate the change

in graphitic structure of the EG after exposure to SF6 plas-

mas. All Raman spectra presented in this paper were

obtained with a confocal Raman microscope (JY Horiba

LabRam HR800) using 532 nm laser excitation.

III. RESULTS AND DISCUSSION

The ability of SF6 plasma treatment to control degree of

fluorination and work function of EG film was investigated

by exposing multilayer EG to SF6 plasmas for 30, 60, and

90 s under identical plasma conditions. Single-layer EG was

subsequently plasma-treated for 30 s to demonstrate that

single-layer EG can be successfully fluorinated by SF6

plasma-treatment.

A. Multilayer graphene

1. X-ray photoelectron spectroscopy

The presence of fluorine in samples exposed to SF6 plasmas

is confirmed by the appearance of an F 1s peak at� 688 eV in

the XPS survey spectra of fluorinated samples as shown in

Fig. 1. The fluorine-to-carbon (F=C) ratio obtained from XPS

analysis, as seen in Fig. 2, does not increase monotonically

with the treatment time. The F=C ratio after a 60 s plasma-

treatment is higher than the F=C ratio after a 30 s plasma-

treatment, but this ratio decreases when the treatment time

increases from 60 to 90 s. The film thickness (see Fig. 3) calcu-

lated from the relative intensities of the graphene and SiC peaks

in the C 1s spectra33 shows that graphene etching during a 30 s

plasma treatment is negligible while approximately one layer

of graphene is etched during 60 and 90 s plasma treatments.

Depth of fluorination was determined by in situ ion-

bombardment to slowly remove graphene layers. After 15 s

of argon ion-bombardment, the C=Si ratio of single and

03D102-2 Sherpa et al.: Photoelectron spectroscopy studies of plasma-fluorinated epitaxial graphene 03D102-2
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three-layer thick EG films decreased from 1.9 to 1.0 and 3.0

to 1.9, respectively, thereby suggesting that one or two gra-

phene layers were etched. In addition, the fluorine concentra-

tion is below XPS detectability in all plasma-treated samples

after 15 s of ion-bombardment. These data indicate that gra-

phene fluorination under the conditions used in this study is

limited to one or two surface layers irrespective of the treat-

ment time.

The observation that fluorine concentration does not

increase monotonically with the exposure time and that fluo-

rination is limited to only one or two surface layers suggests

that plasma fluorination of graphene is governed by the rela-

tive rates of fluorination and etching. Since the etching of

graphene is not reported during the fluorination of mono-

layer graphene in a nonplasma environment, the etching

observed during the plasma fluorination can be attributed to

ion-bombardment. The interplay between the fluorination

and etching observed in our work can be described as

follows:

(1) During a 30 s plasma treatment, fluorination is dominant

and etching is negligible.

(2) The observed increase in fluorine concentration between

30 and 60 s plasma treatment along with the removal of

approximately one layer of graphene is indicative of si-

multaneous fluorination and etching. The increase in

F=C ratio implies that the rate of fluorination is higher

than the rate of etching.

(3) The F=C ratio decreases between 60 and 90 s of plasma

treatment; this change in F=C ratio is smaller than the

change in F=C ratio in the exposure interval from 30 to

60 s. This observation suggests that the rates of fluorina-

tion and etching are comparable.

For samples exposed to the SF6 plasma for 30 s, a F 1s

peak at� 687.3 eV appears as shown in Fig. 4(a) which is

characteristic of fluorine atoms bonded to carbon atoms in

aromatic rings.34 For samples exposed to SF6 plasma for 60

and 90 s, the peaks in F 1s spectra [see Fig. 4(a)] are shifted

by nearly 1 eV to 688.5 eV. A similar increase in the binding

energy with an increase in degree of fluorination has also

been reported in XPS studies of fluorobenzene.35 The pres-

ence of carbon-fluorine bonds in 60 and 90 plasma-treated

samples is corroborated by peaks at �289.5 eV, which is in-

dicative of carbon-fluorine bond in aromatic rings,35 in the

corresponding C 1s spectra as seen in Fig. 4(b). Absence of a

peak at a similar binding energy in the C 1s spectrum of 30 s

SF6 plasma-treated sample [see Fig. 4(b)], appears to contra-

dict our earlier conclusion regarding the existence of

fluorine-carbon bonds in the sample that was exposed to an

SF6 plasma for 30 s. However, this observation can be attrib-

uted to signal attenuation of the characteristic peak in C 1s

spectra as a result of the lower F=C ratio as shown in Fig. 2.

C 1s spectra of both pristine and fluorinated EG are domi-

nated by the peak at� 284.5 eV, which is characteristic of

graphitic carbon.36 There is no shift in the position and width

of this peak after plasma treatment, which indicates that the

FIG. 1. (Color online) XPS survey spectra of SF6 plasma-treated multilayer

EG.

FIG. 2. F=C ratio and increase in work function of SF6 plasma-treated multi-

layer EG.

FIG. 3. Thickness of pristine and SF6 plasma-treated multilayer EG.
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chemical environment of the graphitic carbon was not

altered significantly in spite of the incorporation of fluorine

moieties. The peak at� 282.3 eV is characteristic of carbidic

carbon-carbon atoms bound to silicon atoms in the silicon

carbide substrate.36

2. Raman spectroscopy

The Raman spectrum of graphene is dominated by the fea-

tures of graphitic carbon, the G and D peaks at �1580 and

�1350 cm�1, respectively. The G peak, a bond-stretching vibra-

tion of a pair of sp2-hybridized carbon atoms, is Raman active in

both aromatic rings and olefinic chains.37 The D peak is a

breathing vibration of a 6-member aromatic ring. The D peak

becomes Raman active only in polycrystalline graphite and its

intensity is inversely proportional to the effective crystalline

size.37 Raman spectra of all EG samples before and after

plasma-treatment, as shown in Fig. 5, consist of G peak around

1583 cm�1. Retention of the G peak at �1583 cm�1 in the

Raman spectrum of fluorinated EG films as seen in Fig. 5 sug-

gests that the sp2-hybridized carbon skeleton of graphene

remains intact after plasma exposure. The emergence of the D

peak at �1350 cm�1 is an indication of the polycrystallinity of

fluorinated graphene. Ion-bombardment during plasma treatment

most likely results in the formation of smaller graphite domains,

which enhances the Raman activity of the D peak. In addition to

the graphite phonon modes, several SiC characteristic bands at

�1480, 1520, 1620, 1688, and 1718 cm�1 appear in the Raman

spectra of both plasma-treated and pristine EG. Other than the

appearance of the D peak, no overall changes are observed in

the Raman spectra after plasma treatment. The position and

width of a single Lorentzian peak fitted around the G mode after

the plasma treatment does not undergo significant changes as

shown in Table I. In addition, there is no splitting of the G peak,

which is an indication that bond alteration has not occurred.

These observations suggest that little to no change in the energy

of bond-stretching vibration of sp2 sites after the plasma treat-

ment takes place; such results imply that the chemical environ-

ment of the sp2 graphene sites was not altered significantly by

the plasma treatment. These Raman studies are consistent with

our earlier conclusion from XPS characterization that the sp2

hybridized carbon skeleton of graphene remains intact upon

plasma fluorination.

FIG. 4. (Color online) XPS F 1s (a) and XPS C 1s (b) spectra of SF6 plasma-

treated multilayer EG.

FIG. 5. (Color online) Raman spectra of SF6 plasma-treated multilayer EG.

TABLE I. Position and width of a single Lorentzian peak fitted around the G mode (see Fig. 5) of multi-layer EG films before and after plasma treatment.

G peak position (cm�1) G peak width (cm�1)

Treatment time (s) Before plasma treatment After plasma treatment Before plasma treatment After plasma treatment

30 1583 6 0.5 1584 6 1.0 17 6 2.5 17 6 1.2

60 1583 6 2.0 1585 6 0.8 20 6 1.7 16 6 1.4

90 1584 6 0.4 1583 6 0.6 21 6 4.0 19 6 2.1
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3. Ultra-violet photoelectron spectroscopy

The effect of SF6 plasma treatments on the electronic

properties of graphene was investigated using UPS. Figure 6

indicates that the UPS spectrum of EG before plasma treat-

ment consists of peaks at �3.0 eV (labeled A) and �13.6 eV

(labeled B) below the Fermi level (labeled EF) which can be

attributed to photoelectrons emitted from the 2p-p and the

mixed 2s-2p hybridized states, respectively.38 Retention of

both peaks in the UPS spectra of plasma-treated samples

suggests that the sp2-hybridized carbon skeleton of graphene

is preserved after the plasma treatment. A feature at �10 eV

(labeled as C) appears in the UPS spectra of samples

plasma-treated for 60 and 90 s, which can be attributed to

the photoelectrons emitted from the fluorine 2p-like states.38

Emergence of this peak after plasma-treatment confirms the

existence of fluorine containing moieties while its absence in

the sample that was plasma-treated for only 30 s can be

explained by the lower fluorine concentration.

From UPS spectra, the work function of graphene can be

estimated by subtracting the width of the photoelectron spec-

trum from the photon energy. The work function of multi-

layer EG prior to the SF6 plasma-treatment is estimated to be

4.4 6 0.05 eV. The decrease in the width of the photoelec-

tron spectra after an SF6 plasma-treatment (see Fig. 6) indi-

cates that the work function has increased; this increase is

quantified in Fig. 2. Since the work function is the energy

difference between the Fermi and the vacuum level and no

shift in the Fermi edge was observed, the increased work

function can be attributed to the creation of a surface dipole

by adsorption of the highly electronegative fluorine contain-

ing moieties. An electrical double layer with a negatively

charged outer surface is generated, which produces a dipole

field at the surface that opposes electron escape from the sur-

face, thereby increasing the work function.39

Plasma-treatment involves ion bombardment of sample

surfaces; the surface defects created by the ion bombardment

have been reported to induce changes in work functions.39–42

Because a number of parameters (e.g., crystal orientation, mea-

surement technique, ion-bombardment energy) affect work

function measurements, these results do not establish a quanti-

tative relationship between surface defects and the change in

work function. Since the synergy between the effects of fluo-

rine adsorption and the surface defects generated by ion bom-

bardment governs the sign and magnitude of change in the

work function, plasma-treatment time does not correlate

directly with the increase in work function (see Fig. 2). The

relationship between the change in work function of graphene

and plasma treatment time can be elucidated by isolating the

two effects, fluorine adsorption and surface defects, from each

other and studying each effect separately; these studies are in

progress. Nevertheless, the observed increase in work function

after the plasma-treatment of EG indicates the utility of SF6

plasma treatments for modification of the electron emission

characteristics of graphene. Furthermore, retention of the char-

acteristic features of graphene in the valence-band spectra cor-

roborates our previous conclusions drawn from XPS and

Raman studies that the sp2 hybridized carbon skeleton of gra-

phene survives the plasma-treatment.

B. Single-layer graphene

The experiments described above on multilayer EG dem-

onstrated that graphene films can be fluorinated with negligi-

ble etching with a 30 s plasma treatment time. Therefore, a

plasma treatment time of 30 s was used to demonstrate that

single-layer EG films can be fluorinated by exposure to SF6

plasmas. Preservation of the G peak in the Raman spectrum

[Fig. 7(a)] of EG film after plasma treatment suggests that

the graphene film is not etched and the sp2-hybridized car-

bon skeleton survives the plasma treatment. Emergence of

the D peak in the Raman spectrum [Fig. 7(a)] accounts for

the polycrystallinity generated by ion bombardment. Fluo-

rine content in the plasma-treated sample is �8%; the peak

at �687 eV in the F 1s spectrum [Fig. 7(b)] and the peak at

�288.5 eV in the C 1s spectrum [Fig. 7(c)] suggest the exis-

tence of carbon-fluorine bonds. From the UPS spectra

[Fig. 7(d)], a 0.4 eV increase in work function after the

plasma-treatment is estimated.

In addition to confirming the viability of SF6 plasma to

fluorinate single-layer EG film, results on this single-layer

EG film also allows further insight into the experiments on

multilayer EG films. From the XPS, UPS, and Raman studies

of multilayer EG, we inferred that the sp2 configuration of

graphene remains intact after the plasma treatment and the

fluorination is limited to one or two surface layers. Such con-

clusions lead to the question of whether these spectroscopic

studies are influenced by the contribution of the EG layers

underneath the surface modified layer. XPS and Raman stud-

ies of single-layer EG clarify this issue. Retention of the G

peak in the Raman spectrum [Fig. 7(a)] and the graphene

peak in C 1s spectrum [Fig. 7(c)] of the single-layer EG

without any significant change in the peak position andFIG. 6. (Color online) UPS spectra of SF6 plasma-treated multilayer EG.
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width validate the conclusions drawn from our studies of

multilayer EG. Furthermore, our conclusions pose another

intriguing question concerning the existence of carbon-

fluorine bond—if the sp2 configuration of graphene is not

disrupted by plasma-treatment, then how is fluorine bonded

to carbon atoms? A plausible scenario is the confinement of

fluorination to the carbon atoms at the edges of graphite

domains generated by ion-bombardment. If carbon-fluorine

bonds exist only at the edges, the basal plane of graphene

does not undergo chemical modification which is manifested

in the spectroscopic characterization of plasma-treated sam-

ples. A subsequent question emerges on whether the carbon-

fluorine bonds lead to sp3 rehybridization of carbon atoms at

the edges of graphite domains. The observed shift of work

function requires a surface dipole perpendicular to the basal

plane of graphene which is not possible if the carbon-

fluorine bonds are coplanar with the basal plane of graphene.

Therefore, the carbon atoms at the edges most likely rehy-

bridize to sp3 configuration and the carbon-fluorine bonds

are out of plane.

IV. SUMMARY AND CONCLUSIONS

Due to the ubiquitous presence of plasma technology in

the semiconductor industry, plasma-enabled processing of

graphene may facilitate the integration of the technological

infrastructure of the semiconductor industry into graphene-

based electronics. Toward this end, this study demonstrates

that an SF6 RIE plasma can fluorinate both multilayer and

single-layer EG films without disruption of sp2 hybridized car-

bon framework of EG. Fluorine content in the sample can be

altered by simply varying the plasma treatment time and the

fluorination is limited to only one or two surface layers. In

addition, we have demonstrated the ability of plasma-assisted

fluorination to modify the electron emission characteristics of

graphene; therefore, SF6 plasma treatment facilitates the

application of graphene as an electrode for optoelectronic

devices. The ability to control the thickness of EG on carbon-

face SiC was exploited to fabricate one or two layers of fluori-

nated graphene both on top of the insulating substrate (SiC)

and on a conductive graphene film of desired thickness. Since

the semiconducting properties of fluorinated graphene have

been reported previously, a fluorinated graphene=graphene

interface also offers the possibility of fabricating bottom-

gated epitaxial graphene devices.
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