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Abstract

In this paper we compare the performance of interest
point descriptors. Many different descriptors have been
proposed in the literature. However, it is unclear which de-
scriptors are more appropriate and how their performance
depends on the interest point detector. The descriptors
should be distinctive and at the same time robust to changes
in viewing conditions as well as to errors of the point detec-
tor. Our evaluation uses as criterion detection rate with
respect to false positive rate and is carried out for different
image transformations. We compare SIFT descriptors [11],
steerable filters [5], differential invariants [10], complex fil-
ters [17], moment invariants [21] and cross-correlation for
different types of interest points [8, 11, 13, 14]. In this eval-
uation, we observe that the ranking of the descriptors does
not depend on the point detector and that SIFT descriptors
perform best. Steerable filters come second; they can be
considered a good choice given the low dimensionality.

1. Introduction

Local photometric descriptors computed at interest
points have proved to be very successful in applications
such as matching and recognition [11, 13, 16, 18]. They
are distinctive, robust to occlusion and do not require seg-
mentation. Recent work has concentrated on making these
descriptors invariant to image transformations. The idea is
to construct invariant “image regions” which are then used
as support regions to compute invariant descriptors. For ex-
ample, Mikolajczyk and Schmid [14] have developed affine
invariant interest points with associated affine invariant re-
gions. Tuytelaars and Van Gool [20] construct two types
of affine invariant regions, one based on the combination of
interest points and edges and the other based on image in-
tensities. Lowe [11] proposes scale-invariant regions based
on local extrema in scale-space built with difference-of-
Gaussian (DoG) filters. Given invariant regions, the remain-
ing questions are which is the most appropriate descriptor
to characterize these regions, and does the choice of the de-
scriptor depend on the region detector. These questions will
be addressed in our paper.

To evaluate local descriptors we use the ROC (receiver
operating characteristics) of the detection rate for a query

image with respect to the false positive rate in a database of
images. The evaluation is carried out for different descrip-
tors, different interest point detectors and in the presence of
different image transformations.

1.1. Related work

Performance evaluation has gained more and more im-
portance in computer vision [3]. In the context of matching
and recognition several authors have evaluated interest point
detectors [7, 14, 19]. The performance is measured by the
repeatability rate, that is the percentage of points simulta-
neously present in two images. The higher the repeatability
rate between two images, the more points can potentially
be matched and the better are the matching and recognition
results.

Very little work has been done on the evaluation of lo-
cal descriptors in the context of matching and recognition.
The only previous work which evaluates the performance of
point descriptors is by Carneiro and Jepson [2]. They show
that their phase-based descriptor performs better than dif-
ferential invariants. In their comparison interest points are
detected by the Harris detector and the image transforma-
tions are generated artificially.

Local descriptors also called filters have been evaluated
in the context of texture classification [15]. However, the
results can not be directly transposed to point descriptors
and there are point descriptors which have not been used
for texture classification.

1.2. Overview

In section 2 we present a state of the art on local de-
scriptors. Section 3 gives the implementation details for the
detectors and descriptors used in our comparison as well as
the experimental conditions. In section 4 we present the ex-
perimental results. In the last section we discuss the results.

2. Descriptors

Many different techniques for describing local image re-
gions have been developed. The simplest descriptor is a
vector of image pixels. The cross-correlation measure can
then be used to compute a similarity score between two re-
gions. However, the high dimensionality of such a descrip-
tion increases the computational complexity of recognition.



Therefore, this technique is mainly used for finding point-
to-point correspondences between two images. The point
neighborhood can be sub-sampled to reduce the dimension.
Distribution based descriptors. A simple descriptor is the
distribution of the pixel intensities which can be represented
by a histogram. A more expressive representation was intro-
duced by Johnson and Hebert [9] in the context of 3D object
recognition. Their representation (spin image) is generated
using a histogram of the relative position of neighborhood
points to the interest point in 3D space.
Non-parametric transformations. An approach, interesting
for its robustness to illumination changes, was developed
by Zabih and Woodfill [22]. It relies on local transforms
based on non-parametric statistics, which use the informa-
tion about ordering and reciprocal relations between the
data, rather than the data values themselves. A small region
is described by ordered binary relations of the intensities at
neighboring points.
Spatial-frequency techniques. Many techniques describe
the frequency content of an image. The Fourier trans-
form decomposes the image content into the basis func-
tions. However, in this representation the spatial relations
between points are not explicit and the basis functions are
infinite, therefore difficult to adapt to a local approach. The
Gabor transform [6] overcomes these problems but a large
number of Gabor filters is required to capture small changes
in frequency and orientation, that is the description is high
dimensional. Gabor filters and wavelets [12] are frequently
explored in the context of texture classification.
Differential descriptors. A set of image derivatives com-
puted up to a given order approximates a point neighbor-
hood. The properties of local derivatives (local jet) were
investigated by Koenderink [10]. Florack et al. [4] derived
differential invariants, which combine components of the
local jet to obtain rotation invariance. Freeman and Adel-
son [5] developed steerable filters, which steer derivatives in
a particular direction given the components of the local jet.
Steering derivatives in the direction of the gradient makes
them invariant to rotation. A stable estimation of the deriva-
tives is obtained by convolution with Gaussian derivatives.
Baumberg [1] and Schaffalitzky and Zisserman [17]
proposed to use complex filters derived from the family
K(z,y,0) = f(x,y) exp(i0), where 8 is the orientation.
For the function f(z,y) Baumberg uses Gaussian deriva-
tives and Schaffalitzky and Zisserman apply a polynomial
(cf. section 3.2). These filters differ from the Gaussian
derivatives by a linear coordinates change in filter response
space.
Other techniques. Lowe [11] proposed a descriptor in
which a point neighborhood is represented with multiple
images. These images are orientation planes representing a
number of gradient orientations. Each image contains only
the gradients corresponding to one orientation. Each ori-

entation plane is blurred and re-sampled to allow for small
shifts in positions of the gradients. This description pro-
vides robustness against localization errors and small geo-
metric distortions.

Generalized moment invariants have been introduced by
Van Gool et al. [21] to describe the multi-spectral nature of
the data. The invariants combine central moments defined
by: Mg, = [ [o2Py?[I(z,y)]*dzdy with order p + ¢ and
degree a. These moments are independent and can be easily
computed for any order and degree. The moments charac-
terize the shape and the intensity distribution in a limited
region Q.

3. Experimental setup

In the following we first describe the interest point de-
tectors used in our comparison and the normalization of the
associated regions, on which the descriptors are computed.
We then give implementation details for the evaluated de-
scriptors. Finally we discuss the evaluation criteria and the
image data used in the tests.

3.1. Support regions

Point detectors. The point detectors determine the re-
gions which are used to compute the descriptors. In this
evaluation we have used four interest point detectors:
Harris points [8] are invariant to rotation. The support re-
gion is a fixed size neighborhood centered at the interest
point.

Harris-Laplace points [13] are invariant to rotation and
scale changes. The points are detected by a scale adapted
Harris function and selected in scale-space by the Lapla-
cian operator. The selected scale determines the size of the
support region.

DoG points [11] are invariant to rotation and scale changes.
The points are local scale-space maxima of the difference-
of-Gaussians. The selected scale determines the size of the
support region.

Harris-Affine points [14] are invariant to affine image trans-
formations. Localization and scale are estimated in a similar
way as in the Harris-Laplace detector and the affine invari-
ant neighborhood is determined by the eigenvalues of the
second moment matrix.

The code of the authors has been used for Harris-
Laplace, DoG and Harris-Affine detectors. The thresholds
used for each detector were constant for all the experiments.
Given an image, the number of detected points is approx-
imately equal for these detectors, on average 300 points.
These are obtained with thresholds empirically chosen for
each detector.

Region normalization. All regions are mapped to a cir-
cular region of constant radius to obtain scale and affine
invariance for each descriptor. The normalized region di-
ameter is 45 (2*22+1) pixels. The radius of the point neigh-
borhood is 5 times bigger than the scale at which the inter-



est point is detected. Point neighborhoods which are larger
than the normalized region, are smoothed before the size
normalization. The parameter o of the smoothing Gaussian
kernel is given by the ratio detected/normalized region size.
Differential invariants and the complex filters are invariant
to rotation. To obtain rotation invariance for the other de-
scriptors the regions are rotated in the direction of the aver-
age gradient orientation, which is computed within a small
point neighborhood. The geometric normalization of the
image patch uses bilinear interpolation.

We evaluate two approaches to compensate for affine
illumination changes of the pixel intensities (al(x) + b).
We can either normalize the image patch or compute in-
variant descriptors. If not stated otherwise, we normal-
ize the image patch by the mean and the standard devia-
tion of the pixel intensities within the point neighborhood:
I'(x) = (I(x) —mean(]))/stdev(I). lllumination invari-
ants can be computed for derivative-based descriptors. The
offset b is eliminated by the differentiation operation. The
invariance to linear scaling with factor a is obtained by di-
viding the higher order derivatives by the gradient magni-
tude raised to an appropriate power.

3.2. Descriptors

In the following we present the implementation details
for the descriptors used in our experimental evaluation. We
use five different region descriptors: SIFT [11], steerable
filters [5], differential invariants [10], complex filters [17]
and moment invariants [21]. In order to compare the per-
formance of the descriptors to simple cross-correlation of
image patches we include a descriptor based on sampled
pixel values.

SIFT descriptors are computed on image patches with the
code provided by Lowe [11]. He uses 8 orientation planes.
For each orientation the gradient image is sampled over a
4x4 grid of locations. The descriptor is of dimension 128.
The description vector is divided by the square root of the
sum of squared components to obtain illumination invari-
ance.

Steerable filters and differential invariants are computed
with Gaussian derivatives. Changing the orientation of
derivatives as proposed in [5] gives equivalent results to
computing the local jet on rotated image patches. We use
the second approach and apply Gaussian kernels witho = 7
in the image patch of size 45. The derivatives are com-
puted up to 4th order, that is the descriptor has dimension
13 (1+3+4+5). The differential invariants are computed up
to 3rd order (dimension 8). The gradient magnitude is the
first component of both descriptors.

Complex filters are derived from the following equation
Kopn(z,y) = (x+iy)™(z—iy)"G(x, y). Our experiments
have shown that the complex filters provide better results
if they are not weighted by the Gaussian function G(z,y).
This effect was also observed by Schaffalitzky. The ker-

nels are computed for a unit disk of radius 1 and sampled
at 45x45 locations. The code of the authors [17] has been
used for generating the kernels. We use 15 filters defined
by m + n < 6 (swapping m and n just gives complex con-
jugate filters); m = n = 0 gives the average intensity of
the region. Rotation influences the phase but not the magni-
tude of the response, therefore we use the modulus of each
complex filter response.

Moment invariants are computed up to 2nd order and 2nd
degree. The descriptor is 10-dimensional (without M g).
Cross correlation. To obtain this descriptor the point neigh-
borhood is smoothed and uniformly sampled. To limit the
descriptor dimension we sample at 13x13 pixel locations.
The similarity between two descriptors is measured with
cross-correlation.

Distance measure. The similarity between descriptors is
computed with the Mahalanobis distance except for SIFT
and cross correlation. We estimate one covariance matrix
for each combination of descriptor/detector ; the same ma-
trix is used for all experiments. The matrices are estimated
on a data set different from the test data. We use images
of planar scenes which are viewed under all the transforma-
tions for which we evaluate the descriptors. The homogra-
phy is used to establish point-to-point correspondences. We
then compute the average over these individual point-based
covariance matrices. The SIFT descriptors are compared
with the Euclidean distance as proposed in [11].

3.3. Performance evaluation

Evaluation criterion. We use a criterion similar to the
one proposed in [2]. It is based on Receiver Operating
Characteristics (ROC) of detection rate versus false posi-
tive rate. Two points a and b are similar if the distance
between their descriptors is below an arbitrary threshold
dy(Da — Dy) < t. The value of ¢ is varied to obtain the
ROC curves.

Given two images representing the same scene the de-
tection rate is the number of correctly matched points with
respect to the number of possible matches:

__ F correctmatches
Pcorrect = 7£ possible matches

To verify the correct matches we used the criterion proposed
in [14]. A match is correct if the error in relative location
is less than 3 pixels ||a — Hb|| < 3 and the error in image
area covered by two corresponding point neighborhoods is
less than 30% of the region union. The point location and
region area are verified with an independently estimated ho-
mography H. The number of possible matches are deter-
mined by the same criteria.

The false positive rate is the probability of a false match
in a database of descriptors. Each descriptor of the query
image is compared with each descriptor of the database and
we count the number of false matches. The probability of
false positives is the total number of false matches with re-
spect to the product of the number of database points and
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Figure 1: Evaluation for an image rotation of 45°. (a) Descriptors computed for Harris points. (b) Descriptors computed for

Harris-Laplace points.

the number of image points:

_ # false matches
Pfaise = (# database points)(# query image points)

The results are displayed for a false positive rate up to 0.012,
that is each point from the query image matches at most
with 1.2% of points in the database. The threshold is usually
set below this value otherwise the number of false matches
is too high to provide reliable scene recognition.

Dataset. We evaluate the descriptors on real image pairs
with different geometric and photometric transformations,
that is image rotation, scale changes, affine transformations
and illumination changes. These transformations have been
introduced by rotating the camera, varying the zoom and
changing the viewpoint angle. We vary the illumination by
changing the brightness and the position of the light source.
We use planar scenes such that the homography can be used
to verify the correct matches. For each type of transforma-
tion we use 3 image pairs, one is the query image and the
other one is a part of the database. We then compute an
average detection and false positive rate for these three im-
ages. To evaluate the false positive rate, that reflects the dis-
tinctiveness of the descriptors, we use a database of 1000
images. The images are extracted from 3 hours of a video,
which includes movies, sport events and news reports. Sim-
ilar images are mostly excluded by taking one image per
300 frames. There are about 300 000 points in the database.
There is one database of descriptors for each combination
of detector/descriptor. The test images are displayed in fig-
ure 5 and are available on the Internet 2.

4. Experimental results

In this section we present and discuss the experimental
results of the evaluation. The performance is compared for

hitp://www.inrial pes.fr/movi/Mikol g czyk/Database

image rotation, scale changes, affine transformations and
illumination changes.

4.1. Rotation

To evaluate the performance for image rotation we used
images with a rotation angle of approximatively 45 degrees
which represents the most difficult case. In figure 1(a)
we compare the descriptors computed for standard Harris
points. For these points image patches are fixed to a size
of 21x21 pixels and ¢ = 3.3 for Gaussian derivatives. We
can see that SIFT, steerable filters and cross correlation ob-
tain the best results. The detection rates are lower for scale
invariant Harris-Laplace points (cf. figure 1(b)). However,
the ranking of the detectors remains the same. The best re-
sults are obtained by the SIFT descriptor, followed by cross-
correlation and steerable filters. Note that for a 0.9 proba-
bility of correct detection, the probability of false match is
about 4 times lower for steerable filters than for moment
invariants.

There are three principal factors that influence the de-
scriptors: the error in scale estimation, in point localization
and in estimating the orientation angle. In the case of stan-
dard Harris the scale and therefore the patch size remains
fixed. The only noise comes from the inaccuracy of the lo-
calization and from the angle estimation. We notice in fig-
ure 1 that these errors have less impact on descriptors than
the scale error which occurs in the case of Harris-Laplace.
Anerror is introduced if the selected scales are not the same,
which can happened due to noise.

4.2. Scale changes

In this section we evaluate the descriptors on images with
combined rotation and scale changes. The scale changes are
approximately of a factor 2.5 and the image rotation is of
about 45 degrees. Figure 2(a) shows the performance of de-
scriptors computed for Harris-Laplace points. We can see
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Figure 2: Evaluation for a scale change of a factor 2.5 combined with an image rotation of 45°. (a) Descriptors computed for
Harris-Laplace points. (b) Descriptors computed for DoG points.

that the probability of false matches is lower for SIFT and
steerable filters than for the other descriptors. Differential
invariants obtain a significantly lower detection rate. We
can observe that the performance of all descriptors is worse
compared to rotation alone. Harris-Laplace interest points
are detected for an arbitrary chosen range of scales with a
1.2 scale interval. All descriptors are influenced by the inac-
curacy in scale estimation if the pre-selected scales do not
match exactly with the real scale change between images.
The performance of the cross-correlation drops more sig-
nificantly than that of the other descriptors. Scale changes
combined with rotation significantly deteriorate the results
for this technique, as the correlation is very sensitive to the
errors in region normalization.

Figure 2(b) shows the results for descriptors computed
on regions detected with the DoG detector. The ranking of
descriptors is the same as in the case of Harris-Laplace, but
the results are slightly better for DoG points. This can be
explained by the higher accuracy of the DoG detector used
in this comparison. The DoG detector improves the point
location and scale estimation by fitting a 3D quadratic func-
tion through the DoG function values around the location.

An interesting observation has been made when com-
paring descriptors computed on different size of a point
neighborhood. The performance of descriptors computed
for DoG points is much lower than for Harris points if the
neighborhood radius is only 3 times the detection scale in-
stead of 5. The DoG points unlike the Harris points are
mainly blob-like structures and the signal changes are low
in the center of the regions. The descriptor is more stable
and distinctive if we capture more signal variations by in-
creasing the size of the region. Harris points are detected at
locations with significant signal changes therefore a larger
neighborhood size has less influence on the descriptor per-
formance.

4.3. Affine transformations

In this section we evaluate the performance if the view-
point of the camera is changed by 60 degrees. This in-
troduces a perspective transformation which can be locally
approximated by an affine transformation. There are also
some scale and brightness changes in the test images. To
eliminate the effects of the affine transformation, we use
the Harris-Affine detector which extracts affine-invariant re-
gions. The descriptors are computed on point neighbor-
hoods normalized with the locally estimated affine trans-
formations. The performance of all descriptors (cf. fig-
ure 3) is lower than for other image transformations, i.e.
scale changes and rotation. SIFT descriptors are more ro-
bust than the other ones. Note that SIFT descriptors com-
puted on Harris-Laplace regions perform worse than any of
the other descriptors (see HL si ft in figure 3), as these
regions and therefore the descriptors are only scale and not
affine invariant. Steerable filters come second, but they per-
form significantly worse than SIFT descriptors.

4.4. lllumination changes

Figure 4 shows the results in the presence of illumina-
tion changes which have been obtained by changing the
brightness as well as the position of the light source. The
descriptors are computed for Harris-Laplace points. Fig-
ure 4(a) compares two approaches to obtain affine illumi-
nation invariance for differential descriptors: (i) based on
region normalization (“steerable filers” and “diff. invari-
ant” used in all our comparisons), (ii) based on the invari-
ance of the descriptors (“inv. steer. filt.” and “inv. diff.
inv.”), see section 3.1 for details. We observe that the de-
scriptors computed on normalized regions are significantly
better. Theoretically the two methods are equivalent. How-
ever, the product of the derivatives of the differential invari-
ants gives rise to noise caused by scale and location errors as
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well as non-affine illumination changes. The importance of
affine illumination invariance is shown by the comparison
to un-normalized descriptors (computed on un-normalized
regions). These descriptors obtain worse results.

In figure 4(b) the standard descriptors are compared in
the presence of illumination change. Note that it shows the
results only for the detection rate higher than 0.6. SIFT de-
scriptors are normalized by the technique proposed in [11],
all other descriptors are computed on normalized image
patches. We observe how the descriptors perform in the
presence of small brightness changes which remain after
the patch normalization. All descriptors obtain very good
results except the differential invariants. Note that steerable
filters perform better than SIFT descriptors. This is proba-
bly due to the normalization procedure used for SIFT which
might be worth further investigations. We can also see that
the photometric image transformations have less influence
on descriptors compared to the geometric changes (cf. fig-
ure 2 and 3).

Discussion and Conclusions

In this paper we have presented an experimental evalu-
ation of interest point descriptors on images with real geo-
metric and photometric transformations. The goal was to
compare descriptors computed on regions extracted with
recently proposed detection techniques which are invari-
ant to scale and affine changes. In all tests, except for
light changes, SIFT descriptors obtain better results than
the other descriptors. This shows the robustness and the
distinctive character of the region-based SIFT descriptor.
The second best descriptors are the steerable filters com-
puted on image patches normalized to affine photometric
and geometric transformations. It can be considered as a

good choice given the low dimensionality of this descriptor.

The cross correlation measure gives unstable results.
The performance depends on the accuracy of interest point
and region detection, which decreases for significant geo-
metric transformations. The differential invariants give sig-
nificantly worse results that the steerable filters, which is
surprising as they are based on the same basic components
(Gaussian derivatives). The multiplication of derivatives
necessary to obtain the rotation invariance increases the in-
stability of the descriptors.

Regions detected by DoG are mainly blob-like struc-
tures. There are no significant signal changes in the center
of the blob and therefore the Gaussian filter-based descrip-
tors perform better on larger point neighborhoods.

Obviously, the comparison presented here is not exhaus-
tive and it would be interesting to include more descrip-
tors for example non-parametric descriptors, spin-images
and Gabor filters. However, the comparison seems to indi-
cate that robust region-based descriptors perform better than
point-wise descriptors. Correlation is the simplest region-
based descriptor. However, our comparison has shown that
it is very sensitive to the region parameters as well as local-
ization errors. It would be interesting to include correlation
with patch alignment which corrects for these errors and to
measure the gain obtained by such an alignment. Of course
this is very time consuming and should only be used for
verification.

It would be of interest to evaluate the impact of different
sources of error which can occur in the estimation of region
parameters. Performance of the operators under controlled
synthetic image degradation will be a useful and valuable
additional dimension of the work.
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